RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / firewire / ohci.c
blobcecf06f0ef910f5d5c3db7293a6e646307de8a99
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/time.h>
44 #include <asm/byteorder.h>
45 #include <asm/page.h>
46 #include <asm/system.h>
48 #ifdef CONFIG_PPC_PMAC
49 #include <asm/pmac_feature.h>
50 #endif
52 #include "core.h"
53 #include "ohci.h"
55 #define DESCRIPTOR_OUTPUT_MORE 0
56 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
57 #define DESCRIPTOR_INPUT_MORE (2 << 12)
58 #define DESCRIPTOR_INPUT_LAST (3 << 12)
59 #define DESCRIPTOR_STATUS (1 << 11)
60 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
61 #define DESCRIPTOR_PING (1 << 7)
62 #define DESCRIPTOR_YY (1 << 6)
63 #define DESCRIPTOR_NO_IRQ (0 << 4)
64 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
65 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
66 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
67 #define DESCRIPTOR_WAIT (3 << 0)
69 struct descriptor {
70 __le16 req_count;
71 __le16 control;
72 __le32 data_address;
73 __le32 branch_address;
74 __le16 res_count;
75 __le16 transfer_status;
76 } __attribute__((aligned(16)));
78 #define CONTROL_SET(regs) (regs)
79 #define CONTROL_CLEAR(regs) ((regs) + 4)
80 #define COMMAND_PTR(regs) ((regs) + 12)
81 #define CONTEXT_MATCH(regs) ((regs) + 16)
83 struct ar_buffer {
84 struct descriptor descriptor;
85 struct ar_buffer *next;
86 __le32 data[0];
89 struct ar_context {
90 struct fw_ohci *ohci;
91 struct ar_buffer *current_buffer;
92 struct ar_buffer *last_buffer;
93 void *pointer;
94 u32 regs;
95 struct tasklet_struct tasklet;
98 struct context;
100 typedef int (*descriptor_callback_t)(struct context *ctx,
101 struct descriptor *d,
102 struct descriptor *last);
105 * A buffer that contains a block of DMA-able coherent memory used for
106 * storing a portion of a DMA descriptor program.
108 struct descriptor_buffer {
109 struct list_head list;
110 dma_addr_t buffer_bus;
111 size_t buffer_size;
112 size_t used;
113 struct descriptor buffer[0];
116 struct context {
117 struct fw_ohci *ohci;
118 u32 regs;
119 int total_allocation;
122 * List of page-sized buffers for storing DMA descriptors.
123 * Head of list contains buffers in use and tail of list contains
124 * free buffers.
126 struct list_head buffer_list;
129 * Pointer to a buffer inside buffer_list that contains the tail
130 * end of the current DMA program.
132 struct descriptor_buffer *buffer_tail;
135 * The descriptor containing the branch address of the first
136 * descriptor that has not yet been filled by the device.
138 struct descriptor *last;
141 * The last descriptor in the DMA program. It contains the branch
142 * address that must be updated upon appending a new descriptor.
144 struct descriptor *prev;
146 descriptor_callback_t callback;
148 struct tasklet_struct tasklet;
151 #define IT_HEADER_SY(v) ((v) << 0)
152 #define IT_HEADER_TCODE(v) ((v) << 4)
153 #define IT_HEADER_CHANNEL(v) ((v) << 8)
154 #define IT_HEADER_TAG(v) ((v) << 14)
155 #define IT_HEADER_SPEED(v) ((v) << 16)
156 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
158 struct iso_context {
159 struct fw_iso_context base;
160 struct context context;
161 int excess_bytes;
162 void *header;
163 size_t header_length;
166 #define CONFIG_ROM_SIZE 1024
168 struct fw_ohci {
169 struct fw_card card;
171 __iomem char *registers;
172 int node_id;
173 int generation;
174 int request_generation; /* for timestamping incoming requests */
175 unsigned quirks;
176 unsigned int pri_req_max;
177 u32 bus_time;
178 bool is_root;
179 bool csr_state_setclear_abdicate;
182 * Spinlock for accessing fw_ohci data. Never call out of
183 * this driver with this lock held.
185 spinlock_t lock;
187 struct mutex phy_reg_mutex;
189 struct ar_context ar_request_ctx;
190 struct ar_context ar_response_ctx;
191 struct context at_request_ctx;
192 struct context at_response_ctx;
194 u32 it_context_mask; /* unoccupied IT contexts */
195 struct iso_context *it_context_list;
196 u64 ir_context_channels; /* unoccupied channels */
197 u32 ir_context_mask; /* unoccupied IR contexts */
198 struct iso_context *ir_context_list;
199 u64 mc_channels; /* channels in use by the multichannel IR context */
200 bool mc_allocated;
202 __be32 *config_rom;
203 dma_addr_t config_rom_bus;
204 __be32 *next_config_rom;
205 dma_addr_t next_config_rom_bus;
206 __be32 next_header;
208 __le32 *self_id_cpu;
209 dma_addr_t self_id_bus;
210 struct tasklet_struct bus_reset_tasklet;
212 u32 self_id_buffer[512];
215 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
217 return container_of(card, struct fw_ohci, card);
220 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
221 #define IR_CONTEXT_BUFFER_FILL 0x80000000
222 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
223 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
224 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
225 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
227 #define CONTEXT_RUN 0x8000
228 #define CONTEXT_WAKE 0x1000
229 #define CONTEXT_DEAD 0x0800
230 #define CONTEXT_ACTIVE 0x0400
232 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
233 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
234 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
236 #define OHCI1394_REGISTER_SIZE 0x800
237 #define OHCI_LOOP_COUNT 500
238 #define OHCI1394_PCI_HCI_Control 0x40
239 #define SELF_ID_BUF_SIZE 0x800
240 #define OHCI_TCODE_PHY_PACKET 0x0e
241 #define OHCI_VERSION_1_1 0x010010
243 static char ohci_driver_name[] = KBUILD_MODNAME;
245 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
246 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
247 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
249 #define QUIRK_CYCLE_TIMER 1
250 #define QUIRK_RESET_PACKET 2
251 #define QUIRK_BE_HEADERS 4
252 #define QUIRK_NO_1394A 8
253 #define QUIRK_NO_MSI 16
255 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
256 static const struct {
257 unsigned short vendor, device, revision, flags;
258 } ohci_quirks[] = {
259 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
260 QUIRK_CYCLE_TIMER},
262 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
263 QUIRK_BE_HEADERS},
265 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
266 QUIRK_NO_MSI},
268 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
269 QUIRK_NO_MSI},
271 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
272 QUIRK_CYCLE_TIMER},
274 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
275 QUIRK_CYCLE_TIMER},
277 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
278 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
280 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
281 QUIRK_RESET_PACKET},
283 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
284 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
287 /* This overrides anything that was found in ohci_quirks[]. */
288 static int param_quirks;
289 module_param_named(quirks, param_quirks, int, 0644);
290 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
291 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
292 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
293 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
294 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
295 ", disable MSI = " __stringify(QUIRK_NO_MSI)
296 ")");
298 #define OHCI_PARAM_DEBUG_AT_AR 1
299 #define OHCI_PARAM_DEBUG_SELFIDS 2
300 #define OHCI_PARAM_DEBUG_IRQS 4
301 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
303 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
305 static int param_debug;
306 module_param_named(debug, param_debug, int, 0644);
307 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
308 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
309 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
310 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
311 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
312 ", or a combination, or all = -1)");
314 static void log_irqs(u32 evt)
316 if (likely(!(param_debug &
317 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
318 return;
320 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
321 !(evt & OHCI1394_busReset))
322 return;
324 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
325 evt & OHCI1394_selfIDComplete ? " selfID" : "",
326 evt & OHCI1394_RQPkt ? " AR_req" : "",
327 evt & OHCI1394_RSPkt ? " AR_resp" : "",
328 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
329 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
330 evt & OHCI1394_isochRx ? " IR" : "",
331 evt & OHCI1394_isochTx ? " IT" : "",
332 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
333 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
334 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
335 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
336 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
337 evt & OHCI1394_busReset ? " busReset" : "",
338 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
339 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
340 OHCI1394_respTxComplete | OHCI1394_isochRx |
341 OHCI1394_isochTx | OHCI1394_postedWriteErr |
342 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
343 OHCI1394_cycleInconsistent |
344 OHCI1394_regAccessFail | OHCI1394_busReset)
345 ? " ?" : "");
348 static const char *speed[] = {
349 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
351 static const char *power[] = {
352 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
353 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
355 static const char port[] = { '.', '-', 'p', 'c', };
357 static char _p(u32 *s, int shift)
359 return port[*s >> shift & 3];
362 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
364 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
365 return;
367 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
368 self_id_count, generation, node_id);
370 for (; self_id_count--; ++s)
371 if ((*s & 1 << 23) == 0)
372 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
373 "%s gc=%d %s %s%s%s\n",
374 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
375 speed[*s >> 14 & 3], *s >> 16 & 63,
376 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
377 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
378 else
379 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
380 *s, *s >> 24 & 63,
381 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
382 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
385 static const char *evts[] = {
386 [0x00] = "evt_no_status", [0x01] = "-reserved-",
387 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
388 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
389 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
390 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
391 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
392 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
393 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
394 [0x10] = "-reserved-", [0x11] = "ack_complete",
395 [0x12] = "ack_pending ", [0x13] = "-reserved-",
396 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
397 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
398 [0x18] = "-reserved-", [0x19] = "-reserved-",
399 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
400 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
401 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
402 [0x20] = "pending/cancelled",
404 static const char *tcodes[] = {
405 [0x0] = "QW req", [0x1] = "BW req",
406 [0x2] = "W resp", [0x3] = "-reserved-",
407 [0x4] = "QR req", [0x5] = "BR req",
408 [0x6] = "QR resp", [0x7] = "BR resp",
409 [0x8] = "cycle start", [0x9] = "Lk req",
410 [0xa] = "async stream packet", [0xb] = "Lk resp",
411 [0xc] = "-reserved-", [0xd] = "-reserved-",
412 [0xe] = "link internal", [0xf] = "-reserved-",
414 static const char *phys[] = {
415 [0x0] = "phy config packet", [0x1] = "link-on packet",
416 [0x2] = "self-id packet", [0x3] = "-reserved-",
419 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
421 int tcode = header[0] >> 4 & 0xf;
422 char specific[12];
424 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
425 return;
427 if (unlikely(evt >= ARRAY_SIZE(evts)))
428 evt = 0x1f;
430 if (evt == OHCI1394_evt_bus_reset) {
431 fw_notify("A%c evt_bus_reset, generation %d\n",
432 dir, (header[2] >> 16) & 0xff);
433 return;
436 if (header[0] == ~header[1]) {
437 fw_notify("A%c %s, %s, %08x\n",
438 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
439 return;
442 switch (tcode) {
443 case 0x0: case 0x6: case 0x8:
444 snprintf(specific, sizeof(specific), " = %08x",
445 be32_to_cpu((__force __be32)header[3]));
446 break;
447 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
448 snprintf(specific, sizeof(specific), " %x,%x",
449 header[3] >> 16, header[3] & 0xffff);
450 break;
451 default:
452 specific[0] = '\0';
455 switch (tcode) {
456 case 0xe: case 0xa:
457 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
458 break;
459 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
460 fw_notify("A%c spd %x tl %02x, "
461 "%04x -> %04x, %s, "
462 "%s, %04x%08x%s\n",
463 dir, speed, header[0] >> 10 & 0x3f,
464 header[1] >> 16, header[0] >> 16, evts[evt],
465 tcodes[tcode], header[1] & 0xffff, header[2], specific);
466 break;
467 default:
468 fw_notify("A%c spd %x tl %02x, "
469 "%04x -> %04x, %s, "
470 "%s%s\n",
471 dir, speed, header[0] >> 10 & 0x3f,
472 header[1] >> 16, header[0] >> 16, evts[evt],
473 tcodes[tcode], specific);
477 #else
479 #define param_debug 0
480 static inline void log_irqs(u32 evt) {}
481 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
482 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
484 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
486 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
488 writel(data, ohci->registers + offset);
491 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
493 return readl(ohci->registers + offset);
496 static inline void flush_writes(const struct fw_ohci *ohci)
498 /* Do a dummy read to flush writes. */
499 reg_read(ohci, OHCI1394_Version);
502 static int read_phy_reg(struct fw_ohci *ohci, int addr)
504 u32 val;
505 int i;
507 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
508 for (i = 0; i < 3 + 100; i++) {
509 val = reg_read(ohci, OHCI1394_PhyControl);
510 if (val & OHCI1394_PhyControl_ReadDone)
511 return OHCI1394_PhyControl_ReadData(val);
514 * Try a few times without waiting. Sleeping is necessary
515 * only when the link/PHY interface is busy.
517 if (i >= 3)
518 msleep(1);
520 fw_error("failed to read phy reg\n");
522 return -EBUSY;
525 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
527 int i;
529 reg_write(ohci, OHCI1394_PhyControl,
530 OHCI1394_PhyControl_Write(addr, val));
531 for (i = 0; i < 3 + 100; i++) {
532 val = reg_read(ohci, OHCI1394_PhyControl);
533 if (!(val & OHCI1394_PhyControl_WritePending))
534 return 0;
536 if (i >= 3)
537 msleep(1);
539 fw_error("failed to write phy reg\n");
541 return -EBUSY;
544 static int update_phy_reg(struct fw_ohci *ohci, int addr,
545 int clear_bits, int set_bits)
547 int ret = read_phy_reg(ohci, addr);
548 if (ret < 0)
549 return ret;
552 * The interrupt status bits are cleared by writing a one bit.
553 * Avoid clearing them unless explicitly requested in set_bits.
555 if (addr == 5)
556 clear_bits |= PHY_INT_STATUS_BITS;
558 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
561 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
563 int ret;
565 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
566 if (ret < 0)
567 return ret;
569 return read_phy_reg(ohci, addr);
572 static int ohci_read_phy_reg(struct fw_card *card, int addr)
574 struct fw_ohci *ohci = fw_ohci(card);
575 int ret;
577 mutex_lock(&ohci->phy_reg_mutex);
578 ret = read_phy_reg(ohci, addr);
579 mutex_unlock(&ohci->phy_reg_mutex);
581 return ret;
584 static int ohci_update_phy_reg(struct fw_card *card, int addr,
585 int clear_bits, int set_bits)
587 struct fw_ohci *ohci = fw_ohci(card);
588 int ret;
590 mutex_lock(&ohci->phy_reg_mutex);
591 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
592 mutex_unlock(&ohci->phy_reg_mutex);
594 return ret;
597 static int ar_context_add_page(struct ar_context *ctx)
599 struct device *dev = ctx->ohci->card.device;
600 struct ar_buffer *ab;
601 dma_addr_t uninitialized_var(ab_bus);
602 size_t offset;
604 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
605 if (ab == NULL)
606 return -ENOMEM;
608 ab->next = NULL;
609 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
610 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
611 DESCRIPTOR_STATUS |
612 DESCRIPTOR_BRANCH_ALWAYS);
613 offset = offsetof(struct ar_buffer, data);
614 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
615 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
616 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
617 ab->descriptor.branch_address = 0;
619 wmb(); /* finish init of new descriptors before branch_address update */
620 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
621 ctx->last_buffer->next = ab;
622 ctx->last_buffer = ab;
624 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
625 flush_writes(ctx->ohci);
627 return 0;
630 static void ar_context_release(struct ar_context *ctx)
632 struct ar_buffer *ab, *ab_next;
633 size_t offset;
634 dma_addr_t ab_bus;
636 for (ab = ctx->current_buffer; ab; ab = ab_next) {
637 ab_next = ab->next;
638 offset = offsetof(struct ar_buffer, data);
639 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
640 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
641 ab, ab_bus);
645 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
646 #define cond_le32_to_cpu(v) \
647 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
648 #else
649 #define cond_le32_to_cpu(v) le32_to_cpu(v)
650 #endif
652 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
654 struct fw_ohci *ohci = ctx->ohci;
655 struct fw_packet p;
656 u32 status, length, tcode;
657 int evt;
659 p.header[0] = cond_le32_to_cpu(buffer[0]);
660 p.header[1] = cond_le32_to_cpu(buffer[1]);
661 p.header[2] = cond_le32_to_cpu(buffer[2]);
663 tcode = (p.header[0] >> 4) & 0x0f;
664 switch (tcode) {
665 case TCODE_WRITE_QUADLET_REQUEST:
666 case TCODE_READ_QUADLET_RESPONSE:
667 p.header[3] = (__force __u32) buffer[3];
668 p.header_length = 16;
669 p.payload_length = 0;
670 break;
672 case TCODE_READ_BLOCK_REQUEST :
673 p.header[3] = cond_le32_to_cpu(buffer[3]);
674 p.header_length = 16;
675 p.payload_length = 0;
676 break;
678 case TCODE_WRITE_BLOCK_REQUEST:
679 case TCODE_READ_BLOCK_RESPONSE:
680 case TCODE_LOCK_REQUEST:
681 case TCODE_LOCK_RESPONSE:
682 p.header[3] = cond_le32_to_cpu(buffer[3]);
683 p.header_length = 16;
684 p.payload_length = p.header[3] >> 16;
685 break;
687 case TCODE_WRITE_RESPONSE:
688 case TCODE_READ_QUADLET_REQUEST:
689 case OHCI_TCODE_PHY_PACKET:
690 p.header_length = 12;
691 p.payload_length = 0;
692 break;
694 default:
695 p.header_length = 0;
696 p.payload_length = 0;
699 p.payload = (void *) buffer + p.header_length;
701 length = (p.header_length + p.payload_length + 3) / 4;
702 status = cond_le32_to_cpu(buffer[length]);
703 evt = (status >> 16) & 0x1f;
705 p.ack = evt - 16;
706 p.speed = (status >> 21) & 0x7;
707 p.timestamp = status & 0xffff;
708 p.generation = ohci->request_generation;
710 log_ar_at_event('R', p.speed, p.header, evt);
713 * Several controllers, notably from NEC and VIA, forget to
714 * write ack_complete status at PHY packet reception.
716 if (evt == OHCI1394_evt_no_status &&
717 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
718 p.ack = ACK_COMPLETE;
721 * The OHCI bus reset handler synthesizes a PHY packet with
722 * the new generation number when a bus reset happens (see
723 * section 8.4.2.3). This helps us determine when a request
724 * was received and make sure we send the response in the same
725 * generation. We only need this for requests; for responses
726 * we use the unique tlabel for finding the matching
727 * request.
729 * Alas some chips sometimes emit bus reset packets with a
730 * wrong generation. We set the correct generation for these
731 * at a slightly incorrect time (in bus_reset_tasklet).
733 if (evt == OHCI1394_evt_bus_reset) {
734 if (!(ohci->quirks & QUIRK_RESET_PACKET))
735 ohci->request_generation = (p.header[2] >> 16) & 0xff;
736 } else if (ctx == &ohci->ar_request_ctx) {
737 fw_core_handle_request(&ohci->card, &p);
738 } else {
739 fw_core_handle_response(&ohci->card, &p);
742 return buffer + length + 1;
745 static void ar_context_tasklet(unsigned long data)
747 struct ar_context *ctx = (struct ar_context *)data;
748 struct fw_ohci *ohci = ctx->ohci;
749 struct ar_buffer *ab;
750 struct descriptor *d;
751 void *buffer, *end;
753 ab = ctx->current_buffer;
754 d = &ab->descriptor;
756 if (d->res_count == 0) {
757 size_t size, size2, rest, pktsize, size3, offset;
758 dma_addr_t start_bus;
759 void *start;
762 * This descriptor is finished and we may have a
763 * packet split across this and the next buffer. We
764 * reuse the page for reassembling the split packet.
767 offset = offsetof(struct ar_buffer, data);
768 start = ab;
769 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
770 buffer = ab->data;
772 ab = ab->next;
773 d = &ab->descriptor;
774 size = start + PAGE_SIZE - ctx->pointer;
775 /* valid buffer data in the next page */
776 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
777 /* what actually fits in this page */
778 size2 = min(rest, (size_t)PAGE_SIZE - offset - size);
779 memmove(buffer, ctx->pointer, size);
780 memcpy(buffer + size, ab->data, size2);
782 while (size > 0) {
783 void *next = handle_ar_packet(ctx, buffer);
784 pktsize = next - buffer;
785 if (pktsize >= size) {
787 * We have handled all the data that was
788 * originally in this page, so we can now
789 * continue in the next page.
791 buffer = next;
792 break;
794 /* move the next packet to the start of the buffer */
795 memmove(buffer, next, size + size2 - pktsize);
796 size -= pktsize;
797 /* fill up this page again */
798 size3 = min(rest - size2,
799 (size_t)PAGE_SIZE - offset - size - size2);
800 memcpy(buffer + size + size2,
801 (void *) ab->data + size2, size3);
802 size2 += size3;
805 if (rest > 0) {
806 /* handle the packets that are fully in the next page */
807 buffer = (void *) ab->data +
808 (buffer - (start + offset + size));
809 end = (void *) ab->data + rest;
811 while (buffer < end)
812 buffer = handle_ar_packet(ctx, buffer);
814 ctx->current_buffer = ab;
815 ctx->pointer = end;
817 dma_free_coherent(ohci->card.device, PAGE_SIZE,
818 start, start_bus);
819 ar_context_add_page(ctx);
820 } else {
821 ctx->pointer = start + PAGE_SIZE;
823 } else {
824 buffer = ctx->pointer;
825 ctx->pointer = end =
826 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
828 while (buffer < end)
829 buffer = handle_ar_packet(ctx, buffer);
833 static int ar_context_init(struct ar_context *ctx,
834 struct fw_ohci *ohci, u32 regs)
836 struct ar_buffer ab;
838 ctx->regs = regs;
839 ctx->ohci = ohci;
840 ctx->last_buffer = &ab;
841 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
843 ar_context_add_page(ctx);
844 ar_context_add_page(ctx);
845 ctx->current_buffer = ab.next;
846 ctx->pointer = ctx->current_buffer->data;
848 return 0;
851 static void ar_context_run(struct ar_context *ctx)
853 struct ar_buffer *ab = ctx->current_buffer;
854 dma_addr_t ab_bus;
855 size_t offset;
857 offset = offsetof(struct ar_buffer, data);
858 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
860 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
861 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
862 flush_writes(ctx->ohci);
865 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
867 int b, key;
869 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
870 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
872 /* figure out which descriptor the branch address goes in */
873 if (z == 2 && (b == 3 || key == 2))
874 return d;
875 else
876 return d + z - 1;
879 static void context_tasklet(unsigned long data)
881 struct context *ctx = (struct context *) data;
882 struct descriptor *d, *last;
883 u32 address;
884 int z;
885 struct descriptor_buffer *desc;
887 desc = list_entry(ctx->buffer_list.next,
888 struct descriptor_buffer, list);
889 last = ctx->last;
890 while (last->branch_address != 0) {
891 struct descriptor_buffer *old_desc = desc;
892 address = le32_to_cpu(last->branch_address);
893 z = address & 0xf;
894 address &= ~0xf;
896 /* If the branch address points to a buffer outside of the
897 * current buffer, advance to the next buffer. */
898 if (address < desc->buffer_bus ||
899 address >= desc->buffer_bus + desc->used)
900 desc = list_entry(desc->list.next,
901 struct descriptor_buffer, list);
902 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
903 last = find_branch_descriptor(d, z);
905 if (!ctx->callback(ctx, d, last))
906 break;
908 if (old_desc != desc) {
909 /* If we've advanced to the next buffer, move the
910 * previous buffer to the free list. */
911 unsigned long flags;
912 old_desc->used = 0;
913 spin_lock_irqsave(&ctx->ohci->lock, flags);
914 list_move_tail(&old_desc->list, &ctx->buffer_list);
915 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
917 ctx->last = last;
922 * Allocate a new buffer and add it to the list of free buffers for this
923 * context. Must be called with ohci->lock held.
925 static int context_add_buffer(struct context *ctx)
927 struct descriptor_buffer *desc;
928 dma_addr_t uninitialized_var(bus_addr);
929 int offset;
932 * 16MB of descriptors should be far more than enough for any DMA
933 * program. This will catch run-away userspace or DoS attacks.
935 if (ctx->total_allocation >= 16*1024*1024)
936 return -ENOMEM;
938 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
939 &bus_addr, GFP_ATOMIC);
940 if (!desc)
941 return -ENOMEM;
943 offset = (void *)&desc->buffer - (void *)desc;
944 desc->buffer_size = PAGE_SIZE - offset;
945 desc->buffer_bus = bus_addr + offset;
946 desc->used = 0;
948 list_add_tail(&desc->list, &ctx->buffer_list);
949 ctx->total_allocation += PAGE_SIZE;
951 return 0;
954 static int context_init(struct context *ctx, struct fw_ohci *ohci,
955 u32 regs, descriptor_callback_t callback)
957 ctx->ohci = ohci;
958 ctx->regs = regs;
959 ctx->total_allocation = 0;
961 INIT_LIST_HEAD(&ctx->buffer_list);
962 if (context_add_buffer(ctx) < 0)
963 return -ENOMEM;
965 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
966 struct descriptor_buffer, list);
968 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
969 ctx->callback = callback;
972 * We put a dummy descriptor in the buffer that has a NULL
973 * branch address and looks like it's been sent. That way we
974 * have a descriptor to append DMA programs to.
976 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
977 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
978 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
979 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
980 ctx->last = ctx->buffer_tail->buffer;
981 ctx->prev = ctx->buffer_tail->buffer;
983 return 0;
986 static void context_release(struct context *ctx)
988 struct fw_card *card = &ctx->ohci->card;
989 struct descriptor_buffer *desc, *tmp;
991 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
992 dma_free_coherent(card->device, PAGE_SIZE, desc,
993 desc->buffer_bus -
994 ((void *)&desc->buffer - (void *)desc));
997 /* Must be called with ohci->lock held */
998 static struct descriptor *context_get_descriptors(struct context *ctx,
999 int z, dma_addr_t *d_bus)
1001 struct descriptor *d = NULL;
1002 struct descriptor_buffer *desc = ctx->buffer_tail;
1004 if (z * sizeof(*d) > desc->buffer_size)
1005 return NULL;
1007 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1008 /* No room for the descriptor in this buffer, so advance to the
1009 * next one. */
1011 if (desc->list.next == &ctx->buffer_list) {
1012 /* If there is no free buffer next in the list,
1013 * allocate one. */
1014 if (context_add_buffer(ctx) < 0)
1015 return NULL;
1017 desc = list_entry(desc->list.next,
1018 struct descriptor_buffer, list);
1019 ctx->buffer_tail = desc;
1022 d = desc->buffer + desc->used / sizeof(*d);
1023 memset(d, 0, z * sizeof(*d));
1024 *d_bus = desc->buffer_bus + desc->used;
1026 return d;
1029 static void context_run(struct context *ctx, u32 extra)
1031 struct fw_ohci *ohci = ctx->ohci;
1033 reg_write(ohci, COMMAND_PTR(ctx->regs),
1034 le32_to_cpu(ctx->last->branch_address));
1035 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1036 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1037 flush_writes(ohci);
1040 static void context_append(struct context *ctx,
1041 struct descriptor *d, int z, int extra)
1043 dma_addr_t d_bus;
1044 struct descriptor_buffer *desc = ctx->buffer_tail;
1046 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1048 desc->used += (z + extra) * sizeof(*d);
1050 wmb(); /* finish init of new descriptors before branch_address update */
1051 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1052 ctx->prev = find_branch_descriptor(d, z);
1054 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1055 flush_writes(ctx->ohci);
1058 static void context_stop(struct context *ctx)
1060 u32 reg;
1061 int i;
1063 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1064 flush_writes(ctx->ohci);
1066 for (i = 0; i < 10; i++) {
1067 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1068 if ((reg & CONTEXT_ACTIVE) == 0)
1069 return;
1071 mdelay(1);
1073 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1076 struct driver_data {
1077 struct fw_packet *packet;
1081 * This function apppends a packet to the DMA queue for transmission.
1082 * Must always be called with the ochi->lock held to ensure proper
1083 * generation handling and locking around packet queue manipulation.
1085 static int at_context_queue_packet(struct context *ctx,
1086 struct fw_packet *packet)
1088 struct fw_ohci *ohci = ctx->ohci;
1089 dma_addr_t d_bus, uninitialized_var(payload_bus);
1090 struct driver_data *driver_data;
1091 struct descriptor *d, *last;
1092 __le32 *header;
1093 int z, tcode;
1094 u32 reg;
1096 d = context_get_descriptors(ctx, 4, &d_bus);
1097 if (d == NULL) {
1098 packet->ack = RCODE_SEND_ERROR;
1099 return -1;
1102 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1103 d[0].res_count = cpu_to_le16(packet->timestamp);
1106 * The DMA format for asyncronous link packets is different
1107 * from the IEEE1394 layout, so shift the fields around
1108 * accordingly. If header_length is 8, it's a PHY packet, to
1109 * which we need to prepend an extra quadlet.
1112 header = (__le32 *) &d[1];
1113 switch (packet->header_length) {
1114 case 16:
1115 case 12:
1116 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1117 (packet->speed << 16));
1118 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1119 (packet->header[0] & 0xffff0000));
1120 header[2] = cpu_to_le32(packet->header[2]);
1122 tcode = (packet->header[0] >> 4) & 0x0f;
1123 if (TCODE_IS_BLOCK_PACKET(tcode))
1124 header[3] = cpu_to_le32(packet->header[3]);
1125 else
1126 header[3] = (__force __le32) packet->header[3];
1128 d[0].req_count = cpu_to_le16(packet->header_length);
1129 break;
1131 case 8:
1132 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1133 (packet->speed << 16));
1134 header[1] = cpu_to_le32(packet->header[0]);
1135 header[2] = cpu_to_le32(packet->header[1]);
1136 d[0].req_count = cpu_to_le16(12);
1138 if (is_ping_packet(packet->header))
1139 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1140 break;
1142 case 4:
1143 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1144 (packet->speed << 16));
1145 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1146 d[0].req_count = cpu_to_le16(8);
1147 break;
1149 default:
1150 /* BUG(); */
1151 packet->ack = RCODE_SEND_ERROR;
1152 return -1;
1155 driver_data = (struct driver_data *) &d[3];
1156 driver_data->packet = packet;
1157 packet->driver_data = driver_data;
1159 if (packet->payload_length > 0) {
1160 payload_bus =
1161 dma_map_single(ohci->card.device, packet->payload,
1162 packet->payload_length, DMA_TO_DEVICE);
1163 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1164 packet->ack = RCODE_SEND_ERROR;
1165 return -1;
1167 packet->payload_bus = payload_bus;
1168 packet->payload_mapped = true;
1170 d[2].req_count = cpu_to_le16(packet->payload_length);
1171 d[2].data_address = cpu_to_le32(payload_bus);
1172 last = &d[2];
1173 z = 3;
1174 } else {
1175 last = &d[0];
1176 z = 2;
1179 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1180 DESCRIPTOR_IRQ_ALWAYS |
1181 DESCRIPTOR_BRANCH_ALWAYS);
1183 if (ohci->generation != packet->generation ||
1184 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1185 if (packet->payload_mapped)
1186 dma_unmap_single(ohci->card.device, payload_bus,
1187 packet->payload_length, DMA_TO_DEVICE);
1188 packet->ack = RCODE_GENERATION;
1189 return -1;
1192 context_append(ctx, d, z, 4 - z);
1194 /* If the context isn't already running, start it up. */
1195 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1196 if ((reg & CONTEXT_RUN) == 0)
1197 context_run(ctx, 0);
1199 return 0;
1202 static int handle_at_packet(struct context *context,
1203 struct descriptor *d,
1204 struct descriptor *last)
1206 struct driver_data *driver_data;
1207 struct fw_packet *packet;
1208 struct fw_ohci *ohci = context->ohci;
1209 int evt;
1211 if (last->transfer_status == 0)
1212 /* This descriptor isn't done yet, stop iteration. */
1213 return 0;
1215 driver_data = (struct driver_data *) &d[3];
1216 packet = driver_data->packet;
1217 if (packet == NULL)
1218 /* This packet was cancelled, just continue. */
1219 return 1;
1221 if (packet->payload_mapped)
1222 dma_unmap_single(ohci->card.device, packet->payload_bus,
1223 packet->payload_length, DMA_TO_DEVICE);
1225 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1226 packet->timestamp = le16_to_cpu(last->res_count);
1228 log_ar_at_event('T', packet->speed, packet->header, evt);
1230 switch (evt) {
1231 case OHCI1394_evt_timeout:
1232 /* Async response transmit timed out. */
1233 packet->ack = RCODE_CANCELLED;
1234 break;
1236 case OHCI1394_evt_flushed:
1238 * The packet was flushed should give same error as
1239 * when we try to use a stale generation count.
1241 packet->ack = RCODE_GENERATION;
1242 break;
1244 case OHCI1394_evt_missing_ack:
1246 * Using a valid (current) generation count, but the
1247 * node is not on the bus or not sending acks.
1249 packet->ack = RCODE_NO_ACK;
1250 break;
1252 case ACK_COMPLETE + 0x10:
1253 case ACK_PENDING + 0x10:
1254 case ACK_BUSY_X + 0x10:
1255 case ACK_BUSY_A + 0x10:
1256 case ACK_BUSY_B + 0x10:
1257 case ACK_DATA_ERROR + 0x10:
1258 case ACK_TYPE_ERROR + 0x10:
1259 packet->ack = evt - 0x10;
1260 break;
1262 default:
1263 packet->ack = RCODE_SEND_ERROR;
1264 break;
1267 packet->callback(packet, &ohci->card, packet->ack);
1269 return 1;
1272 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1273 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1274 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1275 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1276 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1278 static void handle_local_rom(struct fw_ohci *ohci,
1279 struct fw_packet *packet, u32 csr)
1281 struct fw_packet response;
1282 int tcode, length, i;
1284 tcode = HEADER_GET_TCODE(packet->header[0]);
1285 if (TCODE_IS_BLOCK_PACKET(tcode))
1286 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1287 else
1288 length = 4;
1290 i = csr - CSR_CONFIG_ROM;
1291 if (i + length > CONFIG_ROM_SIZE) {
1292 fw_fill_response(&response, packet->header,
1293 RCODE_ADDRESS_ERROR, NULL, 0);
1294 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1295 fw_fill_response(&response, packet->header,
1296 RCODE_TYPE_ERROR, NULL, 0);
1297 } else {
1298 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1299 (void *) ohci->config_rom + i, length);
1302 fw_core_handle_response(&ohci->card, &response);
1305 static void handle_local_lock(struct fw_ohci *ohci,
1306 struct fw_packet *packet, u32 csr)
1308 struct fw_packet response;
1309 int tcode, length, ext_tcode, sel, try;
1310 __be32 *payload, lock_old;
1311 u32 lock_arg, lock_data;
1313 tcode = HEADER_GET_TCODE(packet->header[0]);
1314 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1315 payload = packet->payload;
1316 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1318 if (tcode == TCODE_LOCK_REQUEST &&
1319 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1320 lock_arg = be32_to_cpu(payload[0]);
1321 lock_data = be32_to_cpu(payload[1]);
1322 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1323 lock_arg = 0;
1324 lock_data = 0;
1325 } else {
1326 fw_fill_response(&response, packet->header,
1327 RCODE_TYPE_ERROR, NULL, 0);
1328 goto out;
1331 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1332 reg_write(ohci, OHCI1394_CSRData, lock_data);
1333 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1334 reg_write(ohci, OHCI1394_CSRControl, sel);
1336 for (try = 0; try < 20; try++)
1337 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1338 lock_old = cpu_to_be32(reg_read(ohci,
1339 OHCI1394_CSRData));
1340 fw_fill_response(&response, packet->header,
1341 RCODE_COMPLETE,
1342 &lock_old, sizeof(lock_old));
1343 goto out;
1346 fw_error("swap not done (CSR lock timeout)\n");
1347 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1349 out:
1350 fw_core_handle_response(&ohci->card, &response);
1353 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1355 u64 offset, csr;
1357 if (ctx == &ctx->ohci->at_request_ctx) {
1358 packet->ack = ACK_PENDING;
1359 packet->callback(packet, &ctx->ohci->card, packet->ack);
1362 offset =
1363 ((unsigned long long)
1364 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1365 packet->header[2];
1366 csr = offset - CSR_REGISTER_BASE;
1368 /* Handle config rom reads. */
1369 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1370 handle_local_rom(ctx->ohci, packet, csr);
1371 else switch (csr) {
1372 case CSR_BUS_MANAGER_ID:
1373 case CSR_BANDWIDTH_AVAILABLE:
1374 case CSR_CHANNELS_AVAILABLE_HI:
1375 case CSR_CHANNELS_AVAILABLE_LO:
1376 handle_local_lock(ctx->ohci, packet, csr);
1377 break;
1378 default:
1379 if (ctx == &ctx->ohci->at_request_ctx)
1380 fw_core_handle_request(&ctx->ohci->card, packet);
1381 else
1382 fw_core_handle_response(&ctx->ohci->card, packet);
1383 break;
1386 if (ctx == &ctx->ohci->at_response_ctx) {
1387 packet->ack = ACK_COMPLETE;
1388 packet->callback(packet, &ctx->ohci->card, packet->ack);
1392 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1394 unsigned long flags;
1395 int ret;
1397 spin_lock_irqsave(&ctx->ohci->lock, flags);
1399 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1400 ctx->ohci->generation == packet->generation) {
1401 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1402 handle_local_request(ctx, packet);
1403 return;
1406 ret = at_context_queue_packet(ctx, packet);
1407 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1409 if (ret < 0)
1410 packet->callback(packet, &ctx->ohci->card, packet->ack);
1414 static u32 cycle_timer_ticks(u32 cycle_timer)
1416 u32 ticks;
1418 ticks = cycle_timer & 0xfff;
1419 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1420 ticks += (3072 * 8000) * (cycle_timer >> 25);
1422 return ticks;
1426 * Some controllers exhibit one or more of the following bugs when updating the
1427 * iso cycle timer register:
1428 * - When the lowest six bits are wrapping around to zero, a read that happens
1429 * at the same time will return garbage in the lowest ten bits.
1430 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1431 * not incremented for about 60 ns.
1432 * - Occasionally, the entire register reads zero.
1434 * To catch these, we read the register three times and ensure that the
1435 * difference between each two consecutive reads is approximately the same, i.e.
1436 * less than twice the other. Furthermore, any negative difference indicates an
1437 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1438 * execute, so we have enough precision to compute the ratio of the differences.)
1440 static u32 get_cycle_time(struct fw_ohci *ohci)
1442 u32 c0, c1, c2;
1443 u32 t0, t1, t2;
1444 s32 diff01, diff12;
1445 int i;
1447 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1449 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1450 i = 0;
1451 c1 = c2;
1452 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1453 do {
1454 c0 = c1;
1455 c1 = c2;
1456 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1457 t0 = cycle_timer_ticks(c0);
1458 t1 = cycle_timer_ticks(c1);
1459 t2 = cycle_timer_ticks(c2);
1460 diff01 = t1 - t0;
1461 diff12 = t2 - t1;
1462 } while ((diff01 <= 0 || diff12 <= 0 ||
1463 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1464 && i++ < 20);
1467 return c2;
1471 * This function has to be called at least every 64 seconds. The bus_time
1472 * field stores not only the upper 25 bits of the BUS_TIME register but also
1473 * the most significant bit of the cycle timer in bit 6 so that we can detect
1474 * changes in this bit.
1476 static u32 update_bus_time(struct fw_ohci *ohci)
1478 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1480 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1481 ohci->bus_time += 0x40;
1483 return ohci->bus_time | cycle_time_seconds;
1486 static void bus_reset_tasklet(unsigned long data)
1488 struct fw_ohci *ohci = (struct fw_ohci *)data;
1489 int self_id_count, i, j, reg;
1490 int generation, new_generation;
1491 unsigned long flags;
1492 void *free_rom = NULL;
1493 dma_addr_t free_rom_bus = 0;
1494 bool is_new_root;
1496 reg = reg_read(ohci, OHCI1394_NodeID);
1497 if (!(reg & OHCI1394_NodeID_idValid)) {
1498 fw_notify("node ID not valid, new bus reset in progress\n");
1499 return;
1501 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1502 fw_notify("malconfigured bus\n");
1503 return;
1505 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1506 OHCI1394_NodeID_nodeNumber);
1508 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1509 if (!(ohci->is_root && is_new_root))
1510 reg_write(ohci, OHCI1394_LinkControlSet,
1511 OHCI1394_LinkControl_cycleMaster);
1512 ohci->is_root = is_new_root;
1514 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1515 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1516 fw_notify("inconsistent self IDs\n");
1517 return;
1520 * The count in the SelfIDCount register is the number of
1521 * bytes in the self ID receive buffer. Since we also receive
1522 * the inverted quadlets and a header quadlet, we shift one
1523 * bit extra to get the actual number of self IDs.
1525 self_id_count = (reg >> 3) & 0xff;
1526 if (self_id_count == 0 || self_id_count > 252) {
1527 fw_notify("inconsistent self IDs\n");
1528 return;
1530 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1531 rmb();
1533 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1534 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1535 fw_notify("inconsistent self IDs\n");
1536 return;
1538 ohci->self_id_buffer[j] =
1539 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1541 rmb();
1544 * Check the consistency of the self IDs we just read. The
1545 * problem we face is that a new bus reset can start while we
1546 * read out the self IDs from the DMA buffer. If this happens,
1547 * the DMA buffer will be overwritten with new self IDs and we
1548 * will read out inconsistent data. The OHCI specification
1549 * (section 11.2) recommends a technique similar to
1550 * linux/seqlock.h, where we remember the generation of the
1551 * self IDs in the buffer before reading them out and compare
1552 * it to the current generation after reading them out. If
1553 * the two generations match we know we have a consistent set
1554 * of self IDs.
1557 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1558 if (new_generation != generation) {
1559 fw_notify("recursive bus reset detected, "
1560 "discarding self ids\n");
1561 return;
1564 spin_lock_irqsave(&ohci->lock, flags);
1566 ohci->generation = generation;
1567 context_stop(&ohci->at_request_ctx);
1568 context_stop(&ohci->at_response_ctx);
1569 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1571 if (ohci->quirks & QUIRK_RESET_PACKET)
1572 ohci->request_generation = generation;
1575 * This next bit is unrelated to the AT context stuff but we
1576 * have to do it under the spinlock also. If a new config rom
1577 * was set up before this reset, the old one is now no longer
1578 * in use and we can free it. Update the config rom pointers
1579 * to point to the current config rom and clear the
1580 * next_config_rom pointer so a new update can take place.
1583 if (ohci->next_config_rom != NULL) {
1584 if (ohci->next_config_rom != ohci->config_rom) {
1585 free_rom = ohci->config_rom;
1586 free_rom_bus = ohci->config_rom_bus;
1588 ohci->config_rom = ohci->next_config_rom;
1589 ohci->config_rom_bus = ohci->next_config_rom_bus;
1590 ohci->next_config_rom = NULL;
1593 * Restore config_rom image and manually update
1594 * config_rom registers. Writing the header quadlet
1595 * will indicate that the config rom is ready, so we
1596 * do that last.
1598 reg_write(ohci, OHCI1394_BusOptions,
1599 be32_to_cpu(ohci->config_rom[2]));
1600 ohci->config_rom[0] = ohci->next_header;
1601 reg_write(ohci, OHCI1394_ConfigROMhdr,
1602 be32_to_cpu(ohci->next_header));
1605 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1606 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1607 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1608 #endif
1610 spin_unlock_irqrestore(&ohci->lock, flags);
1612 if (free_rom)
1613 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1614 free_rom, free_rom_bus);
1616 log_selfids(ohci->node_id, generation,
1617 self_id_count, ohci->self_id_buffer);
1619 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1620 self_id_count, ohci->self_id_buffer,
1621 ohci->csr_state_setclear_abdicate);
1622 ohci->csr_state_setclear_abdicate = false;
1625 static irqreturn_t irq_handler(int irq, void *data)
1627 struct fw_ohci *ohci = data;
1628 u32 event, iso_event;
1629 int i;
1631 event = reg_read(ohci, OHCI1394_IntEventClear);
1633 if (!event || !~event)
1634 return IRQ_NONE;
1636 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1637 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1638 log_irqs(event);
1640 if (event & OHCI1394_selfIDComplete)
1641 tasklet_schedule(&ohci->bus_reset_tasklet);
1643 if (event & OHCI1394_RQPkt)
1644 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1646 if (event & OHCI1394_RSPkt)
1647 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1649 if (event & OHCI1394_reqTxComplete)
1650 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1652 if (event & OHCI1394_respTxComplete)
1653 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1655 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1656 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1658 while (iso_event) {
1659 i = ffs(iso_event) - 1;
1660 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1661 iso_event &= ~(1 << i);
1664 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1665 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1667 while (iso_event) {
1668 i = ffs(iso_event) - 1;
1669 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1670 iso_event &= ~(1 << i);
1673 if (unlikely(event & OHCI1394_regAccessFail))
1674 fw_error("Register access failure - "
1675 "please notify linux1394-devel@lists.sf.net\n");
1677 if (unlikely(event & OHCI1394_postedWriteErr))
1678 fw_error("PCI posted write error\n");
1680 if (unlikely(event & OHCI1394_cycleTooLong)) {
1681 if (printk_ratelimit())
1682 fw_notify("isochronous cycle too long\n");
1683 reg_write(ohci, OHCI1394_LinkControlSet,
1684 OHCI1394_LinkControl_cycleMaster);
1687 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1688 if (printk_ratelimit())
1689 fw_notify("isochronous cycle inconsistent\n");
1692 if (event & OHCI1394_cycle64Seconds) {
1693 spin_lock(&ohci->lock);
1694 update_bus_time(ohci);
1695 spin_unlock(&ohci->lock);
1698 return IRQ_HANDLED;
1701 static int software_reset(struct fw_ohci *ohci)
1703 int i;
1705 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1707 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1708 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1709 OHCI1394_HCControl_softReset) == 0)
1710 return 0;
1711 msleep(1);
1714 return -EBUSY;
1717 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1719 size_t size = length * 4;
1721 memcpy(dest, src, size);
1722 if (size < CONFIG_ROM_SIZE)
1723 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1726 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1728 bool enable_1394a;
1729 int ret, clear, set, offset;
1731 /* Check if the driver should configure link and PHY. */
1732 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1733 OHCI1394_HCControl_programPhyEnable))
1734 return 0;
1736 /* Paranoia: check whether the PHY supports 1394a, too. */
1737 enable_1394a = false;
1738 ret = read_phy_reg(ohci, 2);
1739 if (ret < 0)
1740 return ret;
1741 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1742 ret = read_paged_phy_reg(ohci, 1, 8);
1743 if (ret < 0)
1744 return ret;
1745 if (ret >= 1)
1746 enable_1394a = true;
1749 if (ohci->quirks & QUIRK_NO_1394A)
1750 enable_1394a = false;
1752 /* Configure PHY and link consistently. */
1753 if (enable_1394a) {
1754 clear = 0;
1755 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1756 } else {
1757 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1758 set = 0;
1760 ret = update_phy_reg(ohci, 5, clear, set);
1761 if (ret < 0)
1762 return ret;
1764 if (enable_1394a)
1765 offset = OHCI1394_HCControlSet;
1766 else
1767 offset = OHCI1394_HCControlClear;
1768 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1770 /* Clean up: configuration has been taken care of. */
1771 reg_write(ohci, OHCI1394_HCControlClear,
1772 OHCI1394_HCControl_programPhyEnable);
1774 return 0;
1777 static int ohci_enable(struct fw_card *card,
1778 const __be32 *config_rom, size_t length)
1780 struct fw_ohci *ohci = fw_ohci(card);
1781 struct pci_dev *dev = to_pci_dev(card->device);
1782 u32 lps, seconds, version, irqs;
1783 int i, ret;
1785 if (software_reset(ohci)) {
1786 fw_error("Failed to reset ohci card.\n");
1787 return -EBUSY;
1791 * Now enable LPS, which we need in order to start accessing
1792 * most of the registers. In fact, on some cards (ALI M5251),
1793 * accessing registers in the SClk domain without LPS enabled
1794 * will lock up the machine. Wait 50msec to make sure we have
1795 * full link enabled. However, with some cards (well, at least
1796 * a JMicron PCIe card), we have to try again sometimes.
1798 reg_write(ohci, OHCI1394_HCControlSet,
1799 OHCI1394_HCControl_LPS |
1800 OHCI1394_HCControl_postedWriteEnable);
1801 flush_writes(ohci);
1803 for (lps = 0, i = 0; !lps && i < 3; i++) {
1804 msleep(50);
1805 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1806 OHCI1394_HCControl_LPS;
1809 if (!lps) {
1810 fw_error("Failed to set Link Power Status\n");
1811 return -EIO;
1814 reg_write(ohci, OHCI1394_HCControlClear,
1815 OHCI1394_HCControl_noByteSwapData);
1817 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1818 reg_write(ohci, OHCI1394_LinkControlSet,
1819 OHCI1394_LinkControl_rcvSelfID |
1820 OHCI1394_LinkControl_rcvPhyPkt |
1821 OHCI1394_LinkControl_cycleTimerEnable |
1822 OHCI1394_LinkControl_cycleMaster);
1824 reg_write(ohci, OHCI1394_ATRetries,
1825 OHCI1394_MAX_AT_REQ_RETRIES |
1826 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1827 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1828 (200 << 16));
1830 seconds = lower_32_bits(get_seconds());
1831 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1832 ohci->bus_time = seconds & ~0x3f;
1834 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1835 if (version >= OHCI_VERSION_1_1) {
1836 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1837 0xfffffffe);
1838 card->broadcast_channel_auto_allocated = true;
1841 /* Get implemented bits of the priority arbitration request counter. */
1842 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1843 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1844 reg_write(ohci, OHCI1394_FairnessControl, 0);
1845 card->priority_budget_implemented = ohci->pri_req_max != 0;
1847 ar_context_run(&ohci->ar_request_ctx);
1848 ar_context_run(&ohci->ar_response_ctx);
1850 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1851 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1852 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1854 ret = configure_1394a_enhancements(ohci);
1855 if (ret < 0)
1856 return ret;
1858 /* Activate link_on bit and contender bit in our self ID packets.*/
1859 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1860 if (ret < 0)
1861 return ret;
1864 if (config_rom) {
1865 ohci->next_config_rom =
1866 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1867 &ohci->next_config_rom_bus,
1868 GFP_KERNEL);
1869 if (ohci->next_config_rom == NULL)
1870 return -ENOMEM;
1872 copy_config_rom(ohci->next_config_rom, config_rom, length);
1873 } else {
1875 * In the suspend case, config_rom is NULL, which
1876 * means that we just reuse the old config rom.
1878 ohci->next_config_rom = ohci->config_rom;
1879 ohci->next_config_rom_bus = ohci->config_rom_bus;
1882 ohci->next_header = ohci->next_config_rom[0];
1883 ohci->next_config_rom[0] = 0;
1884 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1885 reg_write(ohci, OHCI1394_BusOptions,
1886 be32_to_cpu(ohci->next_config_rom[2]));
1887 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1889 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1891 if (!(ohci->quirks & QUIRK_NO_MSI))
1892 pci_enable_msi(dev);
1893 if (request_irq(dev->irq, irq_handler,
1894 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1895 ohci_driver_name, ohci)) {
1896 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1897 pci_disable_msi(dev);
1898 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1899 ohci->config_rom, ohci->config_rom_bus);
1900 return -EIO;
1903 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1904 OHCI1394_RQPkt | OHCI1394_RSPkt |
1905 OHCI1394_isochTx | OHCI1394_isochRx |
1906 OHCI1394_postedWriteErr |
1907 OHCI1394_selfIDComplete |
1908 OHCI1394_regAccessFail |
1909 OHCI1394_cycle64Seconds |
1910 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1911 OHCI1394_masterIntEnable;
1912 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1913 irqs |= OHCI1394_busReset;
1914 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1916 reg_write(ohci, OHCI1394_HCControlSet,
1917 OHCI1394_HCControl_linkEnable |
1918 OHCI1394_HCControl_BIBimageValid);
1919 flush_writes(ohci);
1921 /* We are ready to go, reset bus to finish initialization. */
1922 fw_schedule_bus_reset(&ohci->card, false, true);
1924 return 0;
1927 static int ohci_set_config_rom(struct fw_card *card,
1928 const __be32 *config_rom, size_t length)
1930 struct fw_ohci *ohci;
1931 unsigned long flags;
1932 int ret = -EBUSY;
1933 __be32 *next_config_rom;
1934 dma_addr_t uninitialized_var(next_config_rom_bus);
1936 ohci = fw_ohci(card);
1939 next_config_rom =
1940 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1941 &next_config_rom_bus, GFP_KERNEL);
1942 if (next_config_rom == NULL)
1943 return -ENOMEM;
1945 spin_lock_irqsave(&ohci->lock, flags);
1947 if (ohci->next_config_rom == NULL) {
1948 ohci->next_config_rom = next_config_rom;
1949 ohci->next_config_rom_bus = next_config_rom_bus;
1951 copy_config_rom(ohci->next_config_rom, config_rom, length);
1953 ohci->next_header = config_rom[0];
1954 ohci->next_config_rom[0] = 0;
1956 reg_write(ohci, OHCI1394_ConfigROMmap,
1957 ohci->next_config_rom_bus);
1958 ret = 0;
1961 spin_unlock_irqrestore(&ohci->lock, flags);
1964 * Now initiate a bus reset to have the changes take
1965 * effect. We clean up the old config rom memory and DMA
1966 * mappings in the bus reset tasklet, since the OHCI
1967 * controller could need to access it before the bus reset
1968 * takes effect.
1970 if (ret == 0)
1971 fw_schedule_bus_reset(&ohci->card, true, true);
1972 else
1973 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1974 next_config_rom, next_config_rom_bus);
1976 return ret;
1979 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1981 struct fw_ohci *ohci = fw_ohci(card);
1983 at_context_transmit(&ohci->at_request_ctx, packet);
1986 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1988 struct fw_ohci *ohci = fw_ohci(card);
1990 at_context_transmit(&ohci->at_response_ctx, packet);
1993 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1995 struct fw_ohci *ohci = fw_ohci(card);
1996 struct context *ctx = &ohci->at_request_ctx;
1997 struct driver_data *driver_data = packet->driver_data;
1998 int ret = -ENOENT;
2000 tasklet_disable(&ctx->tasklet);
2002 if (packet->ack != 0)
2003 goto out;
2005 if (packet->payload_mapped)
2006 dma_unmap_single(ohci->card.device, packet->payload_bus,
2007 packet->payload_length, DMA_TO_DEVICE);
2009 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2010 driver_data->packet = NULL;
2011 packet->ack = RCODE_CANCELLED;
2012 packet->callback(packet, &ohci->card, packet->ack);
2013 ret = 0;
2014 out:
2015 tasklet_enable(&ctx->tasklet);
2017 return ret;
2020 static int ohci_enable_phys_dma(struct fw_card *card,
2021 int node_id, int generation)
2023 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2024 return 0;
2025 #else
2026 struct fw_ohci *ohci = fw_ohci(card);
2027 unsigned long flags;
2028 int n, ret = 0;
2031 spin_lock_irqsave(&ohci->lock, flags);
2033 if (ohci->generation != generation) {
2034 ret = -ESTALE;
2035 goto out;
2039 * Note, if the node ID contains a non-local bus ID, physical DMA is
2040 * enabled for _all_ nodes on remote buses.
2043 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2044 if (n < 32)
2045 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2046 else
2047 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2049 flush_writes(ohci);
2050 out:
2051 spin_unlock_irqrestore(&ohci->lock, flags);
2053 return ret;
2054 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2057 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2059 struct fw_ohci *ohci = fw_ohci(card);
2060 unsigned long flags;
2061 u32 value;
2063 switch (csr_offset) {
2064 case CSR_STATE_CLEAR:
2065 case CSR_STATE_SET:
2066 if (ohci->is_root &&
2067 (reg_read(ohci, OHCI1394_LinkControlSet) &
2068 OHCI1394_LinkControl_cycleMaster))
2069 value = CSR_STATE_BIT_CMSTR;
2070 else
2071 value = 0;
2072 if (ohci->csr_state_setclear_abdicate)
2073 value |= CSR_STATE_BIT_ABDICATE;
2075 return value;
2077 case CSR_NODE_IDS:
2078 return reg_read(ohci, OHCI1394_NodeID) << 16;
2080 case CSR_CYCLE_TIME:
2081 return get_cycle_time(ohci);
2083 case CSR_BUS_TIME:
2085 * We might be called just after the cycle timer has wrapped
2086 * around but just before the cycle64Seconds handler, so we
2087 * better check here, too, if the bus time needs to be updated.
2089 spin_lock_irqsave(&ohci->lock, flags);
2090 value = update_bus_time(ohci);
2091 spin_unlock_irqrestore(&ohci->lock, flags);
2092 return value;
2094 case CSR_BUSY_TIMEOUT:
2095 value = reg_read(ohci, OHCI1394_ATRetries);
2096 return (value >> 4) & 0x0ffff00f;
2098 case CSR_PRIORITY_BUDGET:
2099 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2100 (ohci->pri_req_max << 8);
2102 default:
2103 WARN_ON(1);
2104 return 0;
2108 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2110 struct fw_ohci *ohci = fw_ohci(card);
2111 unsigned long flags;
2113 switch (csr_offset) {
2114 case CSR_STATE_CLEAR:
2115 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2116 reg_write(ohci, OHCI1394_LinkControlClear,
2117 OHCI1394_LinkControl_cycleMaster);
2118 flush_writes(ohci);
2120 if (value & CSR_STATE_BIT_ABDICATE)
2121 ohci->csr_state_setclear_abdicate = false;
2122 break;
2124 case CSR_STATE_SET:
2125 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2126 reg_write(ohci, OHCI1394_LinkControlSet,
2127 OHCI1394_LinkControl_cycleMaster);
2128 flush_writes(ohci);
2130 if (value & CSR_STATE_BIT_ABDICATE)
2131 ohci->csr_state_setclear_abdicate = true;
2132 break;
2134 case CSR_NODE_IDS:
2135 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2136 flush_writes(ohci);
2137 break;
2139 case CSR_CYCLE_TIME:
2140 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2141 reg_write(ohci, OHCI1394_IntEventSet,
2142 OHCI1394_cycleInconsistent);
2143 flush_writes(ohci);
2144 break;
2146 case CSR_BUS_TIME:
2147 spin_lock_irqsave(&ohci->lock, flags);
2148 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2149 spin_unlock_irqrestore(&ohci->lock, flags);
2150 break;
2152 case CSR_BUSY_TIMEOUT:
2153 value = (value & 0xf) | ((value & 0xf) << 4) |
2154 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2155 reg_write(ohci, OHCI1394_ATRetries, value);
2156 flush_writes(ohci);
2157 break;
2159 case CSR_PRIORITY_BUDGET:
2160 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2161 flush_writes(ohci);
2162 break;
2164 default:
2165 WARN_ON(1);
2166 break;
2170 static void copy_iso_headers(struct iso_context *ctx, void *p)
2172 int i = ctx->header_length;
2174 if (i + ctx->base.header_size > PAGE_SIZE)
2175 return;
2178 * The iso header is byteswapped to little endian by
2179 * the controller, but the remaining header quadlets
2180 * are big endian. We want to present all the headers
2181 * as big endian, so we have to swap the first quadlet.
2183 if (ctx->base.header_size > 0)
2184 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2185 if (ctx->base.header_size > 4)
2186 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2187 if (ctx->base.header_size > 8)
2188 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2189 ctx->header_length += ctx->base.header_size;
2192 static int handle_ir_packet_per_buffer(struct context *context,
2193 struct descriptor *d,
2194 struct descriptor *last)
2196 struct iso_context *ctx =
2197 container_of(context, struct iso_context, context);
2198 struct descriptor *pd;
2199 __le32 *ir_header;
2200 void *p;
2202 for (pd = d; pd <= last; pd++)
2203 if (pd->transfer_status)
2204 break;
2205 if (pd > last)
2206 /* Descriptor(s) not done yet, stop iteration */
2207 return 0;
2209 p = last + 1;
2210 copy_iso_headers(ctx, p);
2212 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2213 ir_header = (__le32 *) p;
2214 ctx->base.callback.sc(&ctx->base,
2215 le32_to_cpu(ir_header[0]) & 0xffff,
2216 ctx->header_length, ctx->header,
2217 ctx->base.callback_data);
2218 ctx->header_length = 0;
2221 return 1;
2224 /* d == last because each descriptor block is only a single descriptor. */
2225 static int handle_ir_buffer_fill(struct context *context,
2226 struct descriptor *d,
2227 struct descriptor *last)
2229 struct iso_context *ctx =
2230 container_of(context, struct iso_context, context);
2232 if (!last->transfer_status)
2233 /* Descriptor(s) not done yet, stop iteration */
2234 return 0;
2236 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2237 ctx->base.callback.mc(&ctx->base,
2238 le32_to_cpu(last->data_address) +
2239 le16_to_cpu(last->req_count) -
2240 le16_to_cpu(last->res_count),
2241 ctx->base.callback_data);
2243 return 1;
2246 static int handle_it_packet(struct context *context,
2247 struct descriptor *d,
2248 struct descriptor *last)
2250 struct iso_context *ctx =
2251 container_of(context, struct iso_context, context);
2252 int i;
2253 struct descriptor *pd;
2255 for (pd = d; pd <= last; pd++)
2256 if (pd->transfer_status)
2257 break;
2258 if (pd > last)
2259 /* Descriptor(s) not done yet, stop iteration */
2260 return 0;
2262 i = ctx->header_length;
2263 if (i + 4 < PAGE_SIZE) {
2264 /* Present this value as big-endian to match the receive code */
2265 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2266 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2267 le16_to_cpu(pd->res_count));
2268 ctx->header_length += 4;
2270 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2271 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2272 ctx->header_length, ctx->header,
2273 ctx->base.callback_data);
2274 ctx->header_length = 0;
2276 return 1;
2279 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2281 u32 hi = channels >> 32, lo = channels;
2283 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2284 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2285 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2286 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2287 mmiowb();
2288 ohci->mc_channels = channels;
2291 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2292 int type, int channel, size_t header_size)
2294 struct fw_ohci *ohci = fw_ohci(card);
2295 struct iso_context *uninitialized_var(ctx);
2296 descriptor_callback_t uninitialized_var(callback);
2297 u64 *uninitialized_var(channels);
2298 u32 *uninitialized_var(mask), uninitialized_var(regs);
2299 unsigned long flags;
2300 int index, ret = -EBUSY;
2302 spin_lock_irqsave(&ohci->lock, flags);
2304 switch (type) {
2305 case FW_ISO_CONTEXT_TRANSMIT:
2306 mask = &ohci->it_context_mask;
2307 callback = handle_it_packet;
2308 index = ffs(*mask) - 1;
2309 if (index >= 0) {
2310 *mask &= ~(1 << index);
2311 regs = OHCI1394_IsoXmitContextBase(index);
2312 ctx = &ohci->it_context_list[index];
2314 break;
2316 case FW_ISO_CONTEXT_RECEIVE:
2317 channels = &ohci->ir_context_channels;
2318 mask = &ohci->ir_context_mask;
2319 callback = handle_ir_packet_per_buffer;
2320 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2321 if (index >= 0) {
2322 *channels &= ~(1ULL << channel);
2323 *mask &= ~(1 << index);
2324 regs = OHCI1394_IsoRcvContextBase(index);
2325 ctx = &ohci->ir_context_list[index];
2327 break;
2329 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2330 mask = &ohci->ir_context_mask;
2331 callback = handle_ir_buffer_fill;
2332 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2333 if (index >= 0) {
2334 ohci->mc_allocated = true;
2335 *mask &= ~(1 << index);
2336 regs = OHCI1394_IsoRcvContextBase(index);
2337 ctx = &ohci->ir_context_list[index];
2339 break;
2341 default:
2342 index = -1;
2343 ret = -ENOSYS;
2346 spin_unlock_irqrestore(&ohci->lock, flags);
2348 if (index < 0)
2349 return ERR_PTR(ret);
2351 memset(ctx, 0, sizeof(*ctx));
2352 ctx->header_length = 0;
2353 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2354 if (ctx->header == NULL) {
2355 ret = -ENOMEM;
2356 goto out;
2358 ret = context_init(&ctx->context, ohci, regs, callback);
2359 if (ret < 0)
2360 goto out_with_header;
2362 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2363 set_multichannel_mask(ohci, 0);
2365 return &ctx->base;
2367 out_with_header:
2368 free_page((unsigned long)ctx->header);
2369 out:
2370 spin_lock_irqsave(&ohci->lock, flags);
2372 switch (type) {
2373 case FW_ISO_CONTEXT_RECEIVE:
2374 *channels |= 1ULL << channel;
2375 break;
2377 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2378 ohci->mc_allocated = false;
2379 break;
2381 *mask |= 1 << index;
2383 spin_unlock_irqrestore(&ohci->lock, flags);
2385 return ERR_PTR(ret);
2388 static int ohci_start_iso(struct fw_iso_context *base,
2389 s32 cycle, u32 sync, u32 tags)
2391 struct iso_context *ctx = container_of(base, struct iso_context, base);
2392 struct fw_ohci *ohci = ctx->context.ohci;
2393 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2394 int index;
2396 switch (ctx->base.type) {
2397 case FW_ISO_CONTEXT_TRANSMIT:
2398 index = ctx - ohci->it_context_list;
2399 match = 0;
2400 if (cycle >= 0)
2401 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2402 (cycle & 0x7fff) << 16;
2404 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2405 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2406 context_run(&ctx->context, match);
2407 break;
2409 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2410 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2411 /* fall through */
2412 case FW_ISO_CONTEXT_RECEIVE:
2413 index = ctx - ohci->ir_context_list;
2414 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2415 if (cycle >= 0) {
2416 match |= (cycle & 0x07fff) << 12;
2417 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2420 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2421 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2422 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2423 context_run(&ctx->context, control);
2424 break;
2427 return 0;
2430 static int ohci_stop_iso(struct fw_iso_context *base)
2432 struct fw_ohci *ohci = fw_ohci(base->card);
2433 struct iso_context *ctx = container_of(base, struct iso_context, base);
2434 int index;
2436 switch (ctx->base.type) {
2437 case FW_ISO_CONTEXT_TRANSMIT:
2438 index = ctx - ohci->it_context_list;
2439 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2440 break;
2442 case FW_ISO_CONTEXT_RECEIVE:
2443 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2444 index = ctx - ohci->ir_context_list;
2445 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2446 break;
2448 flush_writes(ohci);
2449 context_stop(&ctx->context);
2451 return 0;
2454 static void ohci_free_iso_context(struct fw_iso_context *base)
2456 struct fw_ohci *ohci = fw_ohci(base->card);
2457 struct iso_context *ctx = container_of(base, struct iso_context, base);
2458 unsigned long flags;
2459 int index;
2461 ohci_stop_iso(base);
2462 context_release(&ctx->context);
2463 free_page((unsigned long)ctx->header);
2465 spin_lock_irqsave(&ohci->lock, flags);
2467 switch (base->type) {
2468 case FW_ISO_CONTEXT_TRANSMIT:
2469 index = ctx - ohci->it_context_list;
2470 ohci->it_context_mask |= 1 << index;
2471 break;
2473 case FW_ISO_CONTEXT_RECEIVE:
2474 index = ctx - ohci->ir_context_list;
2475 ohci->ir_context_mask |= 1 << index;
2476 ohci->ir_context_channels |= 1ULL << base->channel;
2477 break;
2479 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2480 index = ctx - ohci->ir_context_list;
2481 ohci->ir_context_mask |= 1 << index;
2482 ohci->ir_context_channels |= ohci->mc_channels;
2483 ohci->mc_channels = 0;
2484 ohci->mc_allocated = false;
2485 break;
2488 spin_unlock_irqrestore(&ohci->lock, flags);
2491 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2493 struct fw_ohci *ohci = fw_ohci(base->card);
2494 unsigned long flags;
2495 int ret;
2497 switch (base->type) {
2498 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2500 spin_lock_irqsave(&ohci->lock, flags);
2502 /* Don't allow multichannel to grab other contexts' channels. */
2503 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2504 *channels = ohci->ir_context_channels;
2505 ret = -EBUSY;
2506 } else {
2507 set_multichannel_mask(ohci, *channels);
2508 ret = 0;
2511 spin_unlock_irqrestore(&ohci->lock, flags);
2513 break;
2514 default:
2515 ret = -EINVAL;
2518 return ret;
2521 static int queue_iso_transmit(struct iso_context *ctx,
2522 struct fw_iso_packet *packet,
2523 struct fw_iso_buffer *buffer,
2524 unsigned long payload)
2526 struct descriptor *d, *last, *pd;
2527 struct fw_iso_packet *p;
2528 __le32 *header;
2529 dma_addr_t d_bus, page_bus;
2530 u32 z, header_z, payload_z, irq;
2531 u32 payload_index, payload_end_index, next_page_index;
2532 int page, end_page, i, length, offset;
2534 p = packet;
2535 payload_index = payload;
2537 if (p->skip)
2538 z = 1;
2539 else
2540 z = 2;
2541 if (p->header_length > 0)
2542 z++;
2544 /* Determine the first page the payload isn't contained in. */
2545 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2546 if (p->payload_length > 0)
2547 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2548 else
2549 payload_z = 0;
2551 z += payload_z;
2553 /* Get header size in number of descriptors. */
2554 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2556 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2557 if (d == NULL)
2558 return -ENOMEM;
2560 if (!p->skip) {
2561 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2562 d[0].req_count = cpu_to_le16(8);
2563 d[0].branch_address = cpu_to_le32(d_bus | z);
2565 header = (__le32 *) &d[1];
2566 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2567 IT_HEADER_TAG(p->tag) |
2568 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2569 IT_HEADER_CHANNEL(ctx->base.channel) |
2570 IT_HEADER_SPEED(ctx->base.speed));
2571 header[1] =
2572 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2573 p->payload_length));
2576 if (p->header_length > 0) {
2577 d[2].req_count = cpu_to_le16(p->header_length);
2578 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2579 memcpy(&d[z], p->header, p->header_length);
2582 pd = d + z - payload_z;
2583 payload_end_index = payload_index + p->payload_length;
2584 for (i = 0; i < payload_z; i++) {
2585 page = payload_index >> PAGE_SHIFT;
2586 offset = payload_index & ~PAGE_MASK;
2587 next_page_index = (page + 1) << PAGE_SHIFT;
2588 length =
2589 min(next_page_index, payload_end_index) - payload_index;
2590 pd[i].req_count = cpu_to_le16(length);
2592 page_bus = page_private(buffer->pages[page]);
2593 pd[i].data_address = cpu_to_le32(page_bus + offset);
2595 payload_index += length;
2598 if (p->interrupt)
2599 irq = DESCRIPTOR_IRQ_ALWAYS;
2600 else
2601 irq = DESCRIPTOR_NO_IRQ;
2603 last = z == 2 ? d : d + z - 1;
2604 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2605 DESCRIPTOR_STATUS |
2606 DESCRIPTOR_BRANCH_ALWAYS |
2607 irq);
2609 context_append(&ctx->context, d, z, header_z);
2611 return 0;
2614 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2615 struct fw_iso_packet *packet,
2616 struct fw_iso_buffer *buffer,
2617 unsigned long payload)
2619 struct descriptor *d, *pd;
2620 dma_addr_t d_bus, page_bus;
2621 u32 z, header_z, rest;
2622 int i, j, length;
2623 int page, offset, packet_count, header_size, payload_per_buffer;
2626 * The OHCI controller puts the isochronous header and trailer in the
2627 * buffer, so we need at least 8 bytes.
2629 packet_count = packet->header_length / ctx->base.header_size;
2630 header_size = max(ctx->base.header_size, (size_t)8);
2632 /* Get header size in number of descriptors. */
2633 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2634 page = payload >> PAGE_SHIFT;
2635 offset = payload & ~PAGE_MASK;
2636 payload_per_buffer = packet->payload_length / packet_count;
2638 for (i = 0; i < packet_count; i++) {
2639 /* d points to the header descriptor */
2640 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2641 d = context_get_descriptors(&ctx->context,
2642 z + header_z, &d_bus);
2643 if (d == NULL)
2644 return -ENOMEM;
2646 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2647 DESCRIPTOR_INPUT_MORE);
2648 if (packet->skip && i == 0)
2649 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2650 d->req_count = cpu_to_le16(header_size);
2651 d->res_count = d->req_count;
2652 d->transfer_status = 0;
2653 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2655 rest = payload_per_buffer;
2656 pd = d;
2657 for (j = 1; j < z; j++) {
2658 pd++;
2659 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2660 DESCRIPTOR_INPUT_MORE);
2662 if (offset + rest < PAGE_SIZE)
2663 length = rest;
2664 else
2665 length = PAGE_SIZE - offset;
2666 pd->req_count = cpu_to_le16(length);
2667 pd->res_count = pd->req_count;
2668 pd->transfer_status = 0;
2670 page_bus = page_private(buffer->pages[page]);
2671 pd->data_address = cpu_to_le32(page_bus + offset);
2673 offset = (offset + length) & ~PAGE_MASK;
2674 rest -= length;
2675 if (offset == 0)
2676 page++;
2678 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2679 DESCRIPTOR_INPUT_LAST |
2680 DESCRIPTOR_BRANCH_ALWAYS);
2681 if (packet->interrupt && i == packet_count - 1)
2682 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2684 context_append(&ctx->context, d, z, header_z);
2687 return 0;
2690 static int queue_iso_buffer_fill(struct iso_context *ctx,
2691 struct fw_iso_packet *packet,
2692 struct fw_iso_buffer *buffer,
2693 unsigned long payload)
2695 struct descriptor *d;
2696 dma_addr_t d_bus, page_bus;
2697 int page, offset, rest, z, i, length;
2699 page = payload >> PAGE_SHIFT;
2700 offset = payload & ~PAGE_MASK;
2701 rest = packet->payload_length;
2703 /* We need one descriptor for each page in the buffer. */
2704 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2706 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2707 return -EFAULT;
2709 for (i = 0; i < z; i++) {
2710 d = context_get_descriptors(&ctx->context, 1, &d_bus);
2711 if (d == NULL)
2712 return -ENOMEM;
2714 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2715 DESCRIPTOR_BRANCH_ALWAYS);
2716 if (packet->skip && i == 0)
2717 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2718 if (packet->interrupt && i == z - 1)
2719 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2721 if (offset + rest < PAGE_SIZE)
2722 length = rest;
2723 else
2724 length = PAGE_SIZE - offset;
2725 d->req_count = cpu_to_le16(length);
2726 d->res_count = d->req_count;
2727 d->transfer_status = 0;
2729 page_bus = page_private(buffer->pages[page]);
2730 d->data_address = cpu_to_le32(page_bus + offset);
2732 rest -= length;
2733 offset = 0;
2734 page++;
2736 context_append(&ctx->context, d, 1, 0);
2739 return 0;
2742 static int ohci_queue_iso(struct fw_iso_context *base,
2743 struct fw_iso_packet *packet,
2744 struct fw_iso_buffer *buffer,
2745 unsigned long payload)
2747 struct iso_context *ctx = container_of(base, struct iso_context, base);
2748 unsigned long flags;
2749 int ret = -ENOSYS;
2751 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2752 switch (base->type) {
2753 case FW_ISO_CONTEXT_TRANSMIT:
2754 ret = queue_iso_transmit(ctx, packet, buffer, payload);
2755 break;
2756 case FW_ISO_CONTEXT_RECEIVE:
2757 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2758 break;
2759 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2760 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2761 break;
2763 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2765 return ret;
2768 static const struct fw_card_driver ohci_driver = {
2769 .enable = ohci_enable,
2770 .read_phy_reg = ohci_read_phy_reg,
2771 .update_phy_reg = ohci_update_phy_reg,
2772 .set_config_rom = ohci_set_config_rom,
2773 .send_request = ohci_send_request,
2774 .send_response = ohci_send_response,
2775 .cancel_packet = ohci_cancel_packet,
2776 .enable_phys_dma = ohci_enable_phys_dma,
2777 .read_csr = ohci_read_csr,
2778 .write_csr = ohci_write_csr,
2780 .allocate_iso_context = ohci_allocate_iso_context,
2781 .free_iso_context = ohci_free_iso_context,
2782 .set_iso_channels = ohci_set_iso_channels,
2783 .queue_iso = ohci_queue_iso,
2784 .start_iso = ohci_start_iso,
2785 .stop_iso = ohci_stop_iso,
2788 #ifdef CONFIG_PPC_PMAC
2789 static void pmac_ohci_on(struct pci_dev *dev)
2791 if (machine_is(powermac)) {
2792 struct device_node *ofn = pci_device_to_OF_node(dev);
2794 if (ofn) {
2795 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2796 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2801 static void pmac_ohci_off(struct pci_dev *dev)
2803 if (machine_is(powermac)) {
2804 struct device_node *ofn = pci_device_to_OF_node(dev);
2806 if (ofn) {
2807 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2808 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2812 #else
2813 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2814 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2815 #endif /* CONFIG_PPC_PMAC */
2817 static int __devinit pci_probe(struct pci_dev *dev,
2818 const struct pci_device_id *ent)
2820 struct fw_ohci *ohci;
2821 u32 bus_options, max_receive, link_speed, version;
2822 u64 guid;
2823 int i, err, n_ir, n_it;
2824 size_t size;
2826 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2827 if (ohci == NULL) {
2828 err = -ENOMEM;
2829 goto fail;
2832 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2834 pmac_ohci_on(dev);
2836 err = pci_enable_device(dev);
2837 if (err) {
2838 fw_error("Failed to enable OHCI hardware\n");
2839 goto fail_free;
2842 pci_set_master(dev);
2843 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2844 pci_set_drvdata(dev, ohci);
2846 spin_lock_init(&ohci->lock);
2847 mutex_init(&ohci->phy_reg_mutex);
2849 tasklet_init(&ohci->bus_reset_tasklet,
2850 bus_reset_tasklet, (unsigned long)ohci);
2852 err = pci_request_region(dev, 0, ohci_driver_name);
2853 if (err) {
2854 fw_error("MMIO resource unavailable\n");
2855 goto fail_disable;
2858 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2859 if (ohci->registers == NULL) {
2860 fw_error("Failed to remap registers\n");
2861 err = -ENXIO;
2862 goto fail_iomem;
2865 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2866 if ((ohci_quirks[i].vendor == dev->vendor) &&
2867 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
2868 ohci_quirks[i].device == dev->device) &&
2869 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
2870 ohci_quirks[i].revision >= dev->revision)) {
2871 ohci->quirks = ohci_quirks[i].flags;
2872 break;
2874 if (param_quirks)
2875 ohci->quirks = param_quirks;
2877 ar_context_init(&ohci->ar_request_ctx, ohci,
2878 OHCI1394_AsReqRcvContextControlSet);
2880 ar_context_init(&ohci->ar_response_ctx, ohci,
2881 OHCI1394_AsRspRcvContextControlSet);
2883 context_init(&ohci->at_request_ctx, ohci,
2884 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2886 context_init(&ohci->at_response_ctx, ohci,
2887 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2889 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2890 ohci->ir_context_channels = ~0ULL;
2891 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2892 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2893 n_ir = hweight32(ohci->ir_context_mask);
2894 size = sizeof(struct iso_context) * n_ir;
2895 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2897 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2898 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2899 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2900 n_it = hweight32(ohci->it_context_mask);
2901 size = sizeof(struct iso_context) * n_it;
2902 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2904 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2905 err = -ENOMEM;
2906 goto fail_contexts;
2909 /* self-id dma buffer allocation */
2910 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2911 SELF_ID_BUF_SIZE,
2912 &ohci->self_id_bus,
2913 GFP_KERNEL);
2914 if (ohci->self_id_cpu == NULL) {
2915 err = -ENOMEM;
2916 goto fail_contexts;
2919 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2920 max_receive = (bus_options >> 12) & 0xf;
2921 link_speed = bus_options & 0x7;
2922 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2923 reg_read(ohci, OHCI1394_GUIDLo);
2925 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2926 if (err)
2927 goto fail_self_id;
2929 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2930 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2931 "%d IR + %d IT contexts, quirks 0x%x\n",
2932 dev_name(&dev->dev), version >> 16, version & 0xff,
2933 n_ir, n_it, ohci->quirks);
2935 return 0;
2937 fail_self_id:
2938 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2939 ohci->self_id_cpu, ohci->self_id_bus);
2940 fail_contexts:
2941 kfree(ohci->ir_context_list);
2942 kfree(ohci->it_context_list);
2943 context_release(&ohci->at_response_ctx);
2944 context_release(&ohci->at_request_ctx);
2945 ar_context_release(&ohci->ar_response_ctx);
2946 ar_context_release(&ohci->ar_request_ctx);
2947 pci_iounmap(dev, ohci->registers);
2948 fail_iomem:
2949 pci_release_region(dev, 0);
2950 fail_disable:
2951 pci_disable_device(dev);
2952 fail_free:
2953 kfree(&ohci->card);
2954 pmac_ohci_off(dev);
2955 fail:
2956 if (err == -ENOMEM)
2957 fw_error("Out of memory\n");
2959 return err;
2962 static void pci_remove(struct pci_dev *dev)
2964 struct fw_ohci *ohci;
2966 ohci = pci_get_drvdata(dev);
2967 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2968 flush_writes(ohci);
2969 fw_core_remove_card(&ohci->card);
2972 software_reset(ohci);
2973 free_irq(dev->irq, ohci);
2975 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2976 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2977 ohci->next_config_rom, ohci->next_config_rom_bus);
2978 if (ohci->config_rom)
2979 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2980 ohci->config_rom, ohci->config_rom_bus);
2981 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2982 ohci->self_id_cpu, ohci->self_id_bus);
2983 ar_context_release(&ohci->ar_request_ctx);
2984 ar_context_release(&ohci->ar_response_ctx);
2985 context_release(&ohci->at_request_ctx);
2986 context_release(&ohci->at_response_ctx);
2987 kfree(ohci->it_context_list);
2988 kfree(ohci->ir_context_list);
2989 pci_disable_msi(dev);
2990 pci_iounmap(dev, ohci->registers);
2991 pci_release_region(dev, 0);
2992 pci_disable_device(dev);
2993 kfree(&ohci->card);
2994 pmac_ohci_off(dev);
2996 fw_notify("Removed fw-ohci device.\n");
2999 #ifdef CONFIG_PM
3000 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3002 struct fw_ohci *ohci = pci_get_drvdata(dev);
3003 int err;
3005 software_reset(ohci);
3006 free_irq(dev->irq, ohci);
3007 pci_disable_msi(dev);
3008 err = pci_save_state(dev);
3009 if (err) {
3010 fw_error("pci_save_state failed\n");
3011 return err;
3013 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3014 if (err)
3015 fw_error("pci_set_power_state failed with %d\n", err);
3016 pmac_ohci_off(dev);
3018 return 0;
3021 static int pci_resume(struct pci_dev *dev)
3023 struct fw_ohci *ohci = pci_get_drvdata(dev);
3024 int err;
3026 pmac_ohci_on(dev);
3027 pci_set_power_state(dev, PCI_D0);
3028 pci_restore_state(dev);
3029 err = pci_enable_device(dev);
3030 if (err) {
3031 fw_error("pci_enable_device failed\n");
3032 return err;
3035 return ohci_enable(&ohci->card, NULL, 0);
3037 #endif
3039 static const struct pci_device_id pci_table[] = {
3040 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3044 MODULE_DEVICE_TABLE(pci, pci_table);
3046 static struct pci_driver fw_ohci_pci_driver = {
3047 .name = ohci_driver_name,
3048 .id_table = pci_table,
3049 .probe = pci_probe,
3050 .remove = pci_remove,
3051 #ifdef CONFIG_PM
3052 .resume = pci_resume,
3053 .suspend = pci_suspend,
3054 #endif
3057 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3058 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3059 MODULE_LICENSE("GPL");
3061 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3062 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3063 MODULE_ALIAS("ohci1394");
3064 #endif
3066 static int __init fw_ohci_init(void)
3068 return pci_register_driver(&fw_ohci_pci_driver);
3071 static void __exit fw_ohci_cleanup(void)
3073 pci_unregister_driver(&fw_ohci_pci_driver);
3076 module_init(fw_ohci_init);
3077 module_exit(fw_ohci_cleanup);