RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / edac / i7core_edac.c
blobb02a4d4dc0ef796125466090a93a7244485223a6
1 /* Intel i7 core/Nehalem Memory Controller kernel module
3 * This driver supports yhe memory controllers found on the Intel
4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6 * and Westmere-EP.
8 * This file may be distributed under the terms of the
9 * GNU General Public License version 2 only.
11 * Copyright (c) 2009-2010 by:
12 * Mauro Carvalho Chehab <mchehab@redhat.com>
14 * Red Hat Inc. http://www.redhat.com
16 * Forked and adapted from the i5400_edac driver
18 * Based on the following public Intel datasheets:
19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20 * Datasheet, Volume 2:
21 * http://download.intel.com/design/processor/datashts/320835.pdf
22 * Intel Xeon Processor 5500 Series Datasheet Volume 2
23 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24 * also available at:
25 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/pci_ids.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/edac.h>
35 #include <linux/mmzone.h>
36 #include <linux/edac_mce.h>
37 #include <linux/smp.h>
38 #include <asm/processor.h>
40 #include "edac_core.h"
43 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
44 * registers start at bus 255, and are not reported by BIOS.
45 * We currently find devices with only 2 sockets. In order to support more QPI
46 * Quick Path Interconnect, just increment this number.
48 #define MAX_SOCKET_BUSES 2
52 * Alter this version for the module when modifications are made
54 #define I7CORE_REVISION " Ver: 1.0.0 " __DATE__
55 #define EDAC_MOD_STR "i7core_edac"
58 * Debug macros
60 #define i7core_printk(level, fmt, arg...) \
61 edac_printk(level, "i7core", fmt, ##arg)
63 #define i7core_mc_printk(mci, level, fmt, arg...) \
64 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
67 * i7core Memory Controller Registers
70 /* OFFSETS for Device 0 Function 0 */
72 #define MC_CFG_CONTROL 0x90
74 /* OFFSETS for Device 3 Function 0 */
76 #define MC_CONTROL 0x48
77 #define MC_STATUS 0x4c
78 #define MC_MAX_DOD 0x64
81 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
82 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
85 #define MC_TEST_ERR_RCV1 0x60
86 #define DIMM2_COR_ERR(r) ((r) & 0x7fff)
88 #define MC_TEST_ERR_RCV0 0x64
89 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
90 #define DIMM0_COR_ERR(r) ((r) & 0x7fff)
92 /* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
93 #define MC_COR_ECC_CNT_0 0x80
94 #define MC_COR_ECC_CNT_1 0x84
95 #define MC_COR_ECC_CNT_2 0x88
96 #define MC_COR_ECC_CNT_3 0x8c
97 #define MC_COR_ECC_CNT_4 0x90
98 #define MC_COR_ECC_CNT_5 0x94
100 #define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff)
101 #define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff)
104 /* OFFSETS for Devices 4,5 and 6 Function 0 */
106 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
107 #define THREE_DIMMS_PRESENT (1 << 24)
108 #define SINGLE_QUAD_RANK_PRESENT (1 << 23)
109 #define QUAD_RANK_PRESENT (1 << 22)
110 #define REGISTERED_DIMM (1 << 15)
112 #define MC_CHANNEL_MAPPER 0x60
113 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
114 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
116 #define MC_CHANNEL_RANK_PRESENT 0x7c
117 #define RANK_PRESENT_MASK 0xffff
119 #define MC_CHANNEL_ADDR_MATCH 0xf0
120 #define MC_CHANNEL_ERROR_MASK 0xf8
121 #define MC_CHANNEL_ERROR_INJECT 0xfc
122 #define INJECT_ADDR_PARITY 0x10
123 #define INJECT_ECC 0x08
124 #define MASK_CACHELINE 0x06
125 #define MASK_FULL_CACHELINE 0x06
126 #define MASK_MSB32_CACHELINE 0x04
127 #define MASK_LSB32_CACHELINE 0x02
128 #define NO_MASK_CACHELINE 0x00
129 #define REPEAT_EN 0x01
131 /* OFFSETS for Devices 4,5 and 6 Function 1 */
133 #define MC_DOD_CH_DIMM0 0x48
134 #define MC_DOD_CH_DIMM1 0x4c
135 #define MC_DOD_CH_DIMM2 0x50
136 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
137 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
138 #define DIMM_PRESENT_MASK (1 << 9)
139 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
140 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
141 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
142 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
143 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
144 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
145 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
146 #define MC_DOD_NUMCOL_MASK 3
147 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
149 #define MC_RANK_PRESENT 0x7c
151 #define MC_SAG_CH_0 0x80
152 #define MC_SAG_CH_1 0x84
153 #define MC_SAG_CH_2 0x88
154 #define MC_SAG_CH_3 0x8c
155 #define MC_SAG_CH_4 0x90
156 #define MC_SAG_CH_5 0x94
157 #define MC_SAG_CH_6 0x98
158 #define MC_SAG_CH_7 0x9c
160 #define MC_RIR_LIMIT_CH_0 0x40
161 #define MC_RIR_LIMIT_CH_1 0x44
162 #define MC_RIR_LIMIT_CH_2 0x48
163 #define MC_RIR_LIMIT_CH_3 0x4C
164 #define MC_RIR_LIMIT_CH_4 0x50
165 #define MC_RIR_LIMIT_CH_5 0x54
166 #define MC_RIR_LIMIT_CH_6 0x58
167 #define MC_RIR_LIMIT_CH_7 0x5C
168 #define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
170 #define MC_RIR_WAY_CH 0x80
171 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
172 #define MC_RIR_WAY_RANK_MASK 0x7
175 * i7core structs
178 #define NUM_CHANS 3
179 #define MAX_DIMMS 3 /* Max DIMMS per channel */
180 #define MAX_MCR_FUNC 4
181 #define MAX_CHAN_FUNC 3
183 struct i7core_info {
184 u32 mc_control;
185 u32 mc_status;
186 u32 max_dod;
187 u32 ch_map;
191 struct i7core_inject {
192 int enable;
194 u32 section;
195 u32 type;
196 u32 eccmask;
198 /* Error address mask */
199 int channel, dimm, rank, bank, page, col;
202 struct i7core_channel {
203 u32 ranks;
204 u32 dimms;
207 struct pci_id_descr {
208 int dev;
209 int func;
210 int dev_id;
211 int optional;
214 struct pci_id_table {
215 struct pci_id_descr *descr;
216 int n_devs;
219 struct i7core_dev {
220 struct list_head list;
221 u8 socket;
222 struct pci_dev **pdev;
223 int n_devs;
224 struct mem_ctl_info *mci;
227 struct i7core_pvt {
228 struct pci_dev *pci_noncore;
229 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1];
230 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
232 struct i7core_dev *i7core_dev;
234 struct i7core_info info;
235 struct i7core_inject inject;
236 struct i7core_channel channel[NUM_CHANS];
238 int channels; /* Number of active channels */
240 int ce_count_available;
241 int csrow_map[NUM_CHANS][MAX_DIMMS];
243 /* ECC corrected errors counts per udimm */
244 unsigned long udimm_ce_count[MAX_DIMMS];
245 int udimm_last_ce_count[MAX_DIMMS];
246 /* ECC corrected errors counts per rdimm */
247 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
248 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
250 unsigned int is_registered;
252 /* mcelog glue */
253 struct edac_mce edac_mce;
255 /* Fifo double buffers */
256 struct mce mce_entry[MCE_LOG_LEN];
257 struct mce mce_outentry[MCE_LOG_LEN];
259 /* Fifo in/out counters */
260 unsigned mce_in, mce_out;
262 /* Count indicator to show errors not got */
263 unsigned mce_overrun;
266 /* Static vars */
267 static LIST_HEAD(i7core_edac_list);
268 static DEFINE_MUTEX(i7core_edac_lock);
270 #define PCI_DESCR(device, function, device_id) \
271 .dev = (device), \
272 .func = (function), \
273 .dev_id = (device_id)
275 struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
276 /* Memory controller */
277 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
278 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
279 /* Exists only for RDIMM */
280 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 },
281 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
283 /* Channel 0 */
284 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
285 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
286 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
287 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
289 /* Channel 1 */
290 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
291 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
292 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
293 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
295 /* Channel 2 */
296 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
297 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
298 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
299 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
301 /* Generic Non-core registers */
303 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
304 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
305 * the probing code needs to test for the other address in case of
306 * failure of this one
308 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) },
312 struct pci_id_descr pci_dev_descr_lynnfield[] = {
313 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) },
314 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) },
315 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) },
317 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
318 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
319 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
320 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) },
322 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
323 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
324 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
325 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) },
328 * This is the PCI device has an alternate address on some
329 * processors like Core i7 860
331 { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) },
334 struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
335 /* Memory controller */
336 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) },
337 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) },
338 /* Exists only for RDIMM */
339 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 },
340 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
342 /* Channel 0 */
343 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
344 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
345 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
346 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) },
348 /* Channel 1 */
349 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
350 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
351 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
352 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) },
354 /* Channel 2 */
355 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
356 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
357 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
358 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) },
360 /* Generic Non-core registers */
361 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) },
365 #define PCI_ID_TABLE_ENTRY(A) { A, ARRAY_SIZE(A) }
366 struct pci_id_table pci_dev_table[] = {
367 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
368 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
369 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
373 * pci_device_id table for which devices we are looking for
375 static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
376 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
377 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
378 {0,} /* 0 terminated list. */
381 static struct edac_pci_ctl_info *i7core_pci;
383 /****************************************************************************
384 Anciliary status routines
385 ****************************************************************************/
387 /* MC_CONTROL bits */
388 #define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
389 #define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
391 /* MC_STATUS bits */
392 #define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4))
393 #define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
395 /* MC_MAX_DOD read functions */
396 static inline int numdimms(u32 dimms)
398 return (dimms & 0x3) + 1;
401 static inline int numrank(u32 rank)
403 static int ranks[4] = { 1, 2, 4, -EINVAL };
405 return ranks[rank & 0x3];
408 static inline int numbank(u32 bank)
410 static int banks[4] = { 4, 8, 16, -EINVAL };
412 return banks[bank & 0x3];
415 static inline int numrow(u32 row)
417 static int rows[8] = {
418 1 << 12, 1 << 13, 1 << 14, 1 << 15,
419 1 << 16, -EINVAL, -EINVAL, -EINVAL,
422 return rows[row & 0x7];
425 static inline int numcol(u32 col)
427 static int cols[8] = {
428 1 << 10, 1 << 11, 1 << 12, -EINVAL,
430 return cols[col & 0x3];
433 static struct i7core_dev *get_i7core_dev(u8 socket)
435 struct i7core_dev *i7core_dev;
437 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
438 if (i7core_dev->socket == socket)
439 return i7core_dev;
442 return NULL;
445 /****************************************************************************
446 Memory check routines
447 ****************************************************************************/
448 static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
449 unsigned func)
451 struct i7core_dev *i7core_dev = get_i7core_dev(socket);
452 int i;
454 if (!i7core_dev)
455 return NULL;
457 for (i = 0; i < i7core_dev->n_devs; i++) {
458 if (!i7core_dev->pdev[i])
459 continue;
461 if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
462 PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
463 return i7core_dev->pdev[i];
467 return NULL;
471 * i7core_get_active_channels() - gets the number of channels and csrows
472 * @socket: Quick Path Interconnect socket
473 * @channels: Number of channels that will be returned
474 * @csrows: Number of csrows found
476 * Since EDAC core needs to know in advance the number of available channels
477 * and csrows, in order to allocate memory for csrows/channels, it is needed
478 * to run two similar steps. At the first step, implemented on this function,
479 * it checks the number of csrows/channels present at one socket.
480 * this is used in order to properly allocate the size of mci components.
482 * It should be noticed that none of the current available datasheets explain
483 * or even mention how csrows are seen by the memory controller. So, we need
484 * to add a fake description for csrows.
485 * So, this driver is attributing one DIMM memory for one csrow.
487 static int i7core_get_active_channels(u8 socket, unsigned *channels,
488 unsigned *csrows)
490 struct pci_dev *pdev = NULL;
491 int i, j;
492 u32 status, control;
494 *channels = 0;
495 *csrows = 0;
497 pdev = get_pdev_slot_func(socket, 3, 0);
498 if (!pdev) {
499 i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
500 socket);
501 return -ENODEV;
504 /* Device 3 function 0 reads */
505 pci_read_config_dword(pdev, MC_STATUS, &status);
506 pci_read_config_dword(pdev, MC_CONTROL, &control);
508 for (i = 0; i < NUM_CHANS; i++) {
509 u32 dimm_dod[3];
510 /* Check if the channel is active */
511 if (!(control & (1 << (8 + i))))
512 continue;
514 /* Check if the channel is disabled */
515 if (status & (1 << i))
516 continue;
518 pdev = get_pdev_slot_func(socket, i + 4, 1);
519 if (!pdev) {
520 i7core_printk(KERN_ERR, "Couldn't find socket %d "
521 "fn %d.%d!!!\n",
522 socket, i + 4, 1);
523 return -ENODEV;
525 /* Devices 4-6 function 1 */
526 pci_read_config_dword(pdev,
527 MC_DOD_CH_DIMM0, &dimm_dod[0]);
528 pci_read_config_dword(pdev,
529 MC_DOD_CH_DIMM1, &dimm_dod[1]);
530 pci_read_config_dword(pdev,
531 MC_DOD_CH_DIMM2, &dimm_dod[2]);
533 (*channels)++;
535 for (j = 0; j < 3; j++) {
536 if (!DIMM_PRESENT(dimm_dod[j]))
537 continue;
538 (*csrows)++;
542 debugf0("Number of active channels on socket %d: %d\n",
543 socket, *channels);
545 return 0;
548 static int get_dimm_config(struct mem_ctl_info *mci, int *csrow)
550 struct i7core_pvt *pvt = mci->pvt_info;
551 struct csrow_info *csr;
552 struct pci_dev *pdev;
553 int i, j;
554 unsigned long last_page = 0;
555 enum edac_type mode;
556 enum mem_type mtype;
558 /* Get data from the MC register, function 0 */
559 pdev = pvt->pci_mcr[0];
560 if (!pdev)
561 return -ENODEV;
563 /* Device 3 function 0 reads */
564 pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
565 pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
566 pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
567 pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
569 debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
570 pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
571 pvt->info.max_dod, pvt->info.ch_map);
573 if (ECC_ENABLED(pvt)) {
574 debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
575 if (ECCx8(pvt))
576 mode = EDAC_S8ECD8ED;
577 else
578 mode = EDAC_S4ECD4ED;
579 } else {
580 debugf0("ECC disabled\n");
581 mode = EDAC_NONE;
584 debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
585 "x%x x 0x%x\n",
586 numdimms(pvt->info.max_dod),
587 numrank(pvt->info.max_dod >> 2),
588 numbank(pvt->info.max_dod >> 4),
589 numrow(pvt->info.max_dod >> 6),
590 numcol(pvt->info.max_dod >> 9));
592 for (i = 0; i < NUM_CHANS; i++) {
593 u32 data, dimm_dod[3], value[8];
595 if (!pvt->pci_ch[i][0])
596 continue;
598 if (!CH_ACTIVE(pvt, i)) {
599 debugf0("Channel %i is not active\n", i);
600 continue;
602 if (CH_DISABLED(pvt, i)) {
603 debugf0("Channel %i is disabled\n", i);
604 continue;
607 /* Devices 4-6 function 0 */
608 pci_read_config_dword(pvt->pci_ch[i][0],
609 MC_CHANNEL_DIMM_INIT_PARAMS, &data);
611 pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
612 4 : 2;
614 if (data & REGISTERED_DIMM)
615 mtype = MEM_RDDR3;
616 else
617 mtype = MEM_DDR3;
619 /* Devices 4-6 function 1 */
620 pci_read_config_dword(pvt->pci_ch[i][1],
621 MC_DOD_CH_DIMM0, &dimm_dod[0]);
622 pci_read_config_dword(pvt->pci_ch[i][1],
623 MC_DOD_CH_DIMM1, &dimm_dod[1]);
624 pci_read_config_dword(pvt->pci_ch[i][1],
625 MC_DOD_CH_DIMM2, &dimm_dod[2]);
627 debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
628 "%d ranks, %cDIMMs\n",
630 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
631 data,
632 pvt->channel[i].ranks,
633 (data & REGISTERED_DIMM) ? 'R' : 'U');
635 for (j = 0; j < 3; j++) {
636 u32 banks, ranks, rows, cols;
637 u32 size, npages;
639 if (!DIMM_PRESENT(dimm_dod[j]))
640 continue;
642 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
643 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
644 rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
645 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
647 /* DDR3 has 8 I/O banks */
648 size = (rows * cols * banks * ranks) >> (20 - 3);
650 pvt->channel[i].dimms++;
652 debugf0("\tdimm %d %d Mb offset: %x, "
653 "bank: %d, rank: %d, row: %#x, col: %#x\n",
654 j, size,
655 RANKOFFSET(dimm_dod[j]),
656 banks, ranks, rows, cols);
658 #if PAGE_SHIFT > 20
659 npages = size >> (PAGE_SHIFT - 20);
660 #else
661 npages = size << (20 - PAGE_SHIFT);
662 #endif
664 csr = &mci->csrows[*csrow];
665 csr->first_page = last_page + 1;
666 last_page += npages;
667 csr->last_page = last_page;
668 csr->nr_pages = npages;
670 csr->page_mask = 0;
671 csr->grain = 8;
672 csr->csrow_idx = *csrow;
673 csr->nr_channels = 1;
675 csr->channels[0].chan_idx = i;
676 csr->channels[0].ce_count = 0;
678 pvt->csrow_map[i][j] = *csrow;
680 switch (banks) {
681 case 4:
682 csr->dtype = DEV_X4;
683 break;
684 case 8:
685 csr->dtype = DEV_X8;
686 break;
687 case 16:
688 csr->dtype = DEV_X16;
689 break;
690 default:
691 csr->dtype = DEV_UNKNOWN;
694 csr->edac_mode = mode;
695 csr->mtype = mtype;
697 (*csrow)++;
700 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
701 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
702 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
703 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
704 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
705 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
706 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
707 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
708 debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
709 for (j = 0; j < 8; j++)
710 debugf1("\t\t%#x\t%#x\t%#x\n",
711 (value[j] >> 27) & 0x1,
712 (value[j] >> 24) & 0x7,
713 (value[j] && ((1 << 24) - 1)));
716 return 0;
719 /****************************************************************************
720 Error insertion routines
721 ****************************************************************************/
723 /* The i7core has independent error injection features per channel.
724 However, to have a simpler code, we don't allow enabling error injection
725 on more than one channel.
726 Also, since a change at an inject parameter will be applied only at enable,
727 we're disabling error injection on all write calls to the sysfs nodes that
728 controls the error code injection.
730 static int disable_inject(struct mem_ctl_info *mci)
732 struct i7core_pvt *pvt = mci->pvt_info;
734 pvt->inject.enable = 0;
736 if (!pvt->pci_ch[pvt->inject.channel][0])
737 return -ENODEV;
739 pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
740 MC_CHANNEL_ERROR_INJECT, 0);
742 return 0;
746 * i7core inject inject.section
748 * accept and store error injection inject.section value
749 * bit 0 - refers to the lower 32-byte half cacheline
750 * bit 1 - refers to the upper 32-byte half cacheline
752 static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
753 const char *data, size_t count)
755 struct i7core_pvt *pvt = mci->pvt_info;
756 unsigned long value;
757 int rc;
759 if (pvt->inject.enable)
760 disable_inject(mci);
762 rc = strict_strtoul(data, 10, &value);
763 if ((rc < 0) || (value > 3))
764 return -EIO;
766 pvt->inject.section = (u32) value;
767 return count;
770 static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
771 char *data)
773 struct i7core_pvt *pvt = mci->pvt_info;
774 return sprintf(data, "0x%08x\n", pvt->inject.section);
778 * i7core inject.type
780 * accept and store error injection inject.section value
781 * bit 0 - repeat enable - Enable error repetition
782 * bit 1 - inject ECC error
783 * bit 2 - inject parity error
785 static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
786 const char *data, size_t count)
788 struct i7core_pvt *pvt = mci->pvt_info;
789 unsigned long value;
790 int rc;
792 if (pvt->inject.enable)
793 disable_inject(mci);
795 rc = strict_strtoul(data, 10, &value);
796 if ((rc < 0) || (value > 7))
797 return -EIO;
799 pvt->inject.type = (u32) value;
800 return count;
803 static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
804 char *data)
806 struct i7core_pvt *pvt = mci->pvt_info;
807 return sprintf(data, "0x%08x\n", pvt->inject.type);
811 * i7core_inject_inject.eccmask_store
813 * The type of error (UE/CE) will depend on the inject.eccmask value:
814 * Any bits set to a 1 will flip the corresponding ECC bit
815 * Correctable errors can be injected by flipping 1 bit or the bits within
816 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
817 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
818 * uncorrectable error to be injected.
820 static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
821 const char *data, size_t count)
823 struct i7core_pvt *pvt = mci->pvt_info;
824 unsigned long value;
825 int rc;
827 if (pvt->inject.enable)
828 disable_inject(mci);
830 rc = strict_strtoul(data, 10, &value);
831 if (rc < 0)
832 return -EIO;
834 pvt->inject.eccmask = (u32) value;
835 return count;
838 static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
839 char *data)
841 struct i7core_pvt *pvt = mci->pvt_info;
842 return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
846 * i7core_addrmatch
848 * The type of error (UE/CE) will depend on the inject.eccmask value:
849 * Any bits set to a 1 will flip the corresponding ECC bit
850 * Correctable errors can be injected by flipping 1 bit or the bits within
851 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
852 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
853 * uncorrectable error to be injected.
856 #define DECLARE_ADDR_MATCH(param, limit) \
857 static ssize_t i7core_inject_store_##param( \
858 struct mem_ctl_info *mci, \
859 const char *data, size_t count) \
861 struct i7core_pvt *pvt; \
862 long value; \
863 int rc; \
865 debugf1("%s()\n", __func__); \
866 pvt = mci->pvt_info; \
868 if (pvt->inject.enable) \
869 disable_inject(mci); \
871 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
872 value = -1; \
873 else { \
874 rc = strict_strtoul(data, 10, &value); \
875 if ((rc < 0) || (value >= limit)) \
876 return -EIO; \
879 pvt->inject.param = value; \
881 return count; \
884 static ssize_t i7core_inject_show_##param( \
885 struct mem_ctl_info *mci, \
886 char *data) \
888 struct i7core_pvt *pvt; \
890 pvt = mci->pvt_info; \
891 debugf1("%s() pvt=%p\n", __func__, pvt); \
892 if (pvt->inject.param < 0) \
893 return sprintf(data, "any\n"); \
894 else \
895 return sprintf(data, "%d\n", pvt->inject.param);\
898 #define ATTR_ADDR_MATCH(param) \
900 .attr = { \
901 .name = #param, \
902 .mode = (S_IRUGO | S_IWUSR) \
903 }, \
904 .show = i7core_inject_show_##param, \
905 .store = i7core_inject_store_##param, \
908 DECLARE_ADDR_MATCH(channel, 3);
909 DECLARE_ADDR_MATCH(dimm, 3);
910 DECLARE_ADDR_MATCH(rank, 4);
911 DECLARE_ADDR_MATCH(bank, 32);
912 DECLARE_ADDR_MATCH(page, 0x10000);
913 DECLARE_ADDR_MATCH(col, 0x4000);
915 static int write_and_test(struct pci_dev *dev, int where, u32 val)
917 u32 read;
918 int count;
920 debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
921 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
922 where, val);
924 for (count = 0; count < 10; count++) {
925 if (count)
926 msleep(100);
927 pci_write_config_dword(dev, where, val);
928 pci_read_config_dword(dev, where, &read);
930 if (read == val)
931 return 0;
934 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
935 "write=%08x. Read=%08x\n",
936 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
937 where, val, read);
939 return -EINVAL;
942 static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
943 const char *data, size_t count)
945 struct i7core_pvt *pvt = mci->pvt_info;
946 u32 injectmask;
947 u64 mask = 0;
948 int rc;
949 long enable;
951 if (!pvt->pci_ch[pvt->inject.channel][0])
952 return 0;
954 rc = strict_strtoul(data, 10, &enable);
955 if ((rc < 0))
956 return 0;
958 if (enable) {
959 pvt->inject.enable = 1;
960 } else {
961 disable_inject(mci);
962 return count;
965 /* Sets pvt->inject.dimm mask */
966 if (pvt->inject.dimm < 0)
967 mask |= 1LL << 41;
968 else {
969 if (pvt->channel[pvt->inject.channel].dimms > 2)
970 mask |= (pvt->inject.dimm & 0x3LL) << 35;
971 else
972 mask |= (pvt->inject.dimm & 0x1LL) << 36;
975 /* Sets pvt->inject.rank mask */
976 if (pvt->inject.rank < 0)
977 mask |= 1LL << 40;
978 else {
979 if (pvt->channel[pvt->inject.channel].dimms > 2)
980 mask |= (pvt->inject.rank & 0x1LL) << 34;
981 else
982 mask |= (pvt->inject.rank & 0x3LL) << 34;
985 /* Sets pvt->inject.bank mask */
986 if (pvt->inject.bank < 0)
987 mask |= 1LL << 39;
988 else
989 mask |= (pvt->inject.bank & 0x15LL) << 30;
991 /* Sets pvt->inject.page mask */
992 if (pvt->inject.page < 0)
993 mask |= 1LL << 38;
994 else
995 mask |= (pvt->inject.page & 0xffff) << 14;
997 /* Sets pvt->inject.column mask */
998 if (pvt->inject.col < 0)
999 mask |= 1LL << 37;
1000 else
1001 mask |= (pvt->inject.col & 0x3fff);
1004 * bit 0: REPEAT_EN
1005 * bits 1-2: MASK_HALF_CACHELINE
1006 * bit 3: INJECT_ECC
1007 * bit 4: INJECT_ADDR_PARITY
1010 injectmask = (pvt->inject.type & 1) |
1011 (pvt->inject.section & 0x3) << 1 |
1012 (pvt->inject.type & 0x6) << (3 - 1);
1014 /* Unlock writes to registers - this register is write only */
1015 pci_write_config_dword(pvt->pci_noncore,
1016 MC_CFG_CONTROL, 0x2);
1018 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1019 MC_CHANNEL_ADDR_MATCH, mask);
1020 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1021 MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
1023 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1024 MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1026 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1027 MC_CHANNEL_ERROR_INJECT, injectmask);
1030 * This is something undocumented, based on my tests
1031 * Without writing 8 to this register, errors aren't injected. Not sure
1032 * why.
1034 pci_write_config_dword(pvt->pci_noncore,
1035 MC_CFG_CONTROL, 8);
1037 debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
1038 " inject 0x%08x\n",
1039 mask, pvt->inject.eccmask, injectmask);
1042 return count;
1045 static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
1046 char *data)
1048 struct i7core_pvt *pvt = mci->pvt_info;
1049 u32 injectmask;
1051 if (!pvt->pci_ch[pvt->inject.channel][0])
1052 return 0;
1054 pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1055 MC_CHANNEL_ERROR_INJECT, &injectmask);
1057 debugf0("Inject error read: 0x%018x\n", injectmask);
1059 if (injectmask & 0x0c)
1060 pvt->inject.enable = 1;
1062 return sprintf(data, "%d\n", pvt->inject.enable);
1065 #define DECLARE_COUNTER(param) \
1066 static ssize_t i7core_show_counter_##param( \
1067 struct mem_ctl_info *mci, \
1068 char *data) \
1070 struct i7core_pvt *pvt = mci->pvt_info; \
1072 debugf1("%s() \n", __func__); \
1073 if (!pvt->ce_count_available || (pvt->is_registered)) \
1074 return sprintf(data, "data unavailable\n"); \
1075 return sprintf(data, "%lu\n", \
1076 pvt->udimm_ce_count[param]); \
1079 #define ATTR_COUNTER(param) \
1081 .attr = { \
1082 .name = __stringify(udimm##param), \
1083 .mode = (S_IRUGO | S_IWUSR) \
1084 }, \
1085 .show = i7core_show_counter_##param \
1088 DECLARE_COUNTER(0);
1089 DECLARE_COUNTER(1);
1090 DECLARE_COUNTER(2);
1093 * Sysfs struct
1097 static struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1098 ATTR_ADDR_MATCH(channel),
1099 ATTR_ADDR_MATCH(dimm),
1100 ATTR_ADDR_MATCH(rank),
1101 ATTR_ADDR_MATCH(bank),
1102 ATTR_ADDR_MATCH(page),
1103 ATTR_ADDR_MATCH(col),
1104 { .attr = { .name = NULL } }
1107 static struct mcidev_sysfs_group i7core_inject_addrmatch = {
1108 .name = "inject_addrmatch",
1109 .mcidev_attr = i7core_addrmatch_attrs,
1112 static struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1113 ATTR_COUNTER(0),
1114 ATTR_COUNTER(1),
1115 ATTR_COUNTER(2),
1116 { .attr = { .name = NULL } }
1119 static struct mcidev_sysfs_group i7core_udimm_counters = {
1120 .name = "all_channel_counts",
1121 .mcidev_attr = i7core_udimm_counters_attrs,
1124 static struct mcidev_sysfs_attribute i7core_sysfs_attrs[] = {
1126 .attr = {
1127 .name = "inject_section",
1128 .mode = (S_IRUGO | S_IWUSR)
1130 .show = i7core_inject_section_show,
1131 .store = i7core_inject_section_store,
1132 }, {
1133 .attr = {
1134 .name = "inject_type",
1135 .mode = (S_IRUGO | S_IWUSR)
1137 .show = i7core_inject_type_show,
1138 .store = i7core_inject_type_store,
1139 }, {
1140 .attr = {
1141 .name = "inject_eccmask",
1142 .mode = (S_IRUGO | S_IWUSR)
1144 .show = i7core_inject_eccmask_show,
1145 .store = i7core_inject_eccmask_store,
1146 }, {
1147 .grp = &i7core_inject_addrmatch,
1148 }, {
1149 .attr = {
1150 .name = "inject_enable",
1151 .mode = (S_IRUGO | S_IWUSR)
1153 .show = i7core_inject_enable_show,
1154 .store = i7core_inject_enable_store,
1156 { .attr = { .name = NULL } }, /* Reserved for udimm counters */
1157 { .attr = { .name = NULL } }
1160 /****************************************************************************
1161 Device initialization routines: put/get, init/exit
1162 ****************************************************************************/
1165 * i7core_put_devices 'put' all the devices that we have
1166 * reserved via 'get'
1168 static void i7core_put_devices(struct i7core_dev *i7core_dev)
1170 int i;
1172 debugf0(__FILE__ ": %s()\n", __func__);
1173 for (i = 0; i < i7core_dev->n_devs; i++) {
1174 struct pci_dev *pdev = i7core_dev->pdev[i];
1175 if (!pdev)
1176 continue;
1177 debugf0("Removing dev %02x:%02x.%d\n",
1178 pdev->bus->number,
1179 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1180 pci_dev_put(pdev);
1182 kfree(i7core_dev->pdev);
1183 list_del(&i7core_dev->list);
1184 kfree(i7core_dev);
1187 static void i7core_put_all_devices(void)
1189 struct i7core_dev *i7core_dev, *tmp;
1191 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list)
1192 i7core_put_devices(i7core_dev);
1195 static void __init i7core_xeon_pci_fixup(struct pci_id_table *table)
1197 struct pci_dev *pdev = NULL;
1198 int i;
1200 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
1201 * aren't announced by acpi. So, we need to use a legacy scan probing
1202 * to detect them
1204 while (table && table->descr) {
1205 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1206 if (unlikely(!pdev)) {
1207 for (i = 0; i < MAX_SOCKET_BUSES; i++)
1208 pcibios_scan_specific_bus(255-i);
1210 pci_dev_put(pdev);
1211 table++;
1215 static unsigned i7core_pci_lastbus(void)
1217 int last_bus = 0, bus;
1218 struct pci_bus *b = NULL;
1220 while ((b = pci_find_next_bus(b)) != NULL) {
1221 bus = b->number;
1222 debugf0("Found bus %d\n", bus);
1223 if (bus > last_bus)
1224 last_bus = bus;
1227 debugf0("Last bus %d\n", last_bus);
1229 return last_bus;
1233 * i7core_get_devices Find and perform 'get' operation on the MCH's
1234 * device/functions we want to reference for this driver
1236 * Need to 'get' device 16 func 1 and func 2
1238 int i7core_get_onedevice(struct pci_dev **prev, int devno,
1239 struct pci_id_descr *dev_descr, unsigned n_devs,
1240 unsigned last_bus)
1242 struct i7core_dev *i7core_dev;
1244 struct pci_dev *pdev = NULL;
1245 u8 bus = 0;
1246 u8 socket = 0;
1248 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1249 dev_descr->dev_id, *prev);
1252 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
1253 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1254 * to probe for the alternate address in case of failure
1256 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1257 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1258 PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1260 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
1261 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1262 PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1263 *prev);
1265 if (!pdev) {
1266 if (*prev) {
1267 *prev = pdev;
1268 return 0;
1271 if (dev_descr->optional)
1272 return 0;
1274 if (devno == 0)
1275 return -ENODEV;
1277 i7core_printk(KERN_INFO,
1278 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1279 dev_descr->dev, dev_descr->func,
1280 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1282 /* End of list, leave */
1283 return -ENODEV;
1285 bus = pdev->bus->number;
1287 socket = last_bus - bus;
1289 i7core_dev = get_i7core_dev(socket);
1290 if (!i7core_dev) {
1291 i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
1292 if (!i7core_dev)
1293 return -ENOMEM;
1294 i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * n_devs,
1295 GFP_KERNEL);
1296 if (!i7core_dev->pdev) {
1297 kfree(i7core_dev);
1298 return -ENOMEM;
1300 i7core_dev->socket = socket;
1301 i7core_dev->n_devs = n_devs;
1302 list_add_tail(&i7core_dev->list, &i7core_edac_list);
1305 if (i7core_dev->pdev[devno]) {
1306 i7core_printk(KERN_ERR,
1307 "Duplicated device for "
1308 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1309 bus, dev_descr->dev, dev_descr->func,
1310 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1311 pci_dev_put(pdev);
1312 return -ENODEV;
1315 i7core_dev->pdev[devno] = pdev;
1317 /* Sanity check */
1318 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1319 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1320 i7core_printk(KERN_ERR,
1321 "Device PCI ID %04x:%04x "
1322 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1323 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1324 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1325 bus, dev_descr->dev, dev_descr->func);
1326 return -ENODEV;
1329 /* Be sure that the device is enabled */
1330 if (unlikely(pci_enable_device(pdev) < 0)) {
1331 i7core_printk(KERN_ERR,
1332 "Couldn't enable "
1333 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1334 bus, dev_descr->dev, dev_descr->func,
1335 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1336 return -ENODEV;
1339 debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1340 socket, bus, dev_descr->dev,
1341 dev_descr->func,
1342 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1344 *prev = pdev;
1346 return 0;
1349 static int i7core_get_devices(struct pci_id_table *table)
1351 int i, rc, last_bus;
1352 struct pci_dev *pdev = NULL;
1353 struct pci_id_descr *dev_descr;
1355 last_bus = i7core_pci_lastbus();
1357 while (table && table->descr) {
1358 dev_descr = table->descr;
1359 for (i = 0; i < table->n_devs; i++) {
1360 pdev = NULL;
1361 do {
1362 rc = i7core_get_onedevice(&pdev, i,
1363 &dev_descr[i],
1364 table->n_devs,
1365 last_bus);
1366 if (rc < 0) {
1367 if (i == 0) {
1368 i = table->n_devs;
1369 break;
1371 i7core_put_all_devices();
1372 return -ENODEV;
1374 } while (pdev);
1376 table++;
1379 return 0;
1380 return 0;
1383 static int mci_bind_devs(struct mem_ctl_info *mci,
1384 struct i7core_dev *i7core_dev)
1386 struct i7core_pvt *pvt = mci->pvt_info;
1387 struct pci_dev *pdev;
1388 int i, func, slot;
1390 /* Associates i7core_dev and mci for future usage */
1391 pvt->i7core_dev = i7core_dev;
1392 i7core_dev->mci = mci;
1394 pvt->is_registered = 0;
1395 for (i = 0; i < i7core_dev->n_devs; i++) {
1396 pdev = i7core_dev->pdev[i];
1397 if (!pdev)
1398 continue;
1400 func = PCI_FUNC(pdev->devfn);
1401 slot = PCI_SLOT(pdev->devfn);
1402 if (slot == 3) {
1403 if (unlikely(func > MAX_MCR_FUNC))
1404 goto error;
1405 pvt->pci_mcr[func] = pdev;
1406 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1407 if (unlikely(func > MAX_CHAN_FUNC))
1408 goto error;
1409 pvt->pci_ch[slot - 4][func] = pdev;
1410 } else if (!slot && !func)
1411 pvt->pci_noncore = pdev;
1412 else
1413 goto error;
1415 debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
1416 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1417 pdev, i7core_dev->socket);
1419 if (PCI_SLOT(pdev->devfn) == 3 &&
1420 PCI_FUNC(pdev->devfn) == 2)
1421 pvt->is_registered = 1;
1425 * Add extra nodes to count errors on udimm
1426 * For registered memory, this is not needed, since the counters
1427 * are already displayed at the standard locations
1429 if (!pvt->is_registered)
1430 i7core_sysfs_attrs[ARRAY_SIZE(i7core_sysfs_attrs)-2].grp =
1431 &i7core_udimm_counters;
1433 return 0;
1435 error:
1436 i7core_printk(KERN_ERR, "Device %d, function %d "
1437 "is out of the expected range\n",
1438 slot, func);
1439 return -EINVAL;
1442 /****************************************************************************
1443 Error check routines
1444 ****************************************************************************/
1445 static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1446 int chan, int dimm, int add)
1448 char *msg;
1449 struct i7core_pvt *pvt = mci->pvt_info;
1450 int row = pvt->csrow_map[chan][dimm], i;
1452 for (i = 0; i < add; i++) {
1453 msg = kasprintf(GFP_KERNEL, "Corrected error "
1454 "(Socket=%d channel=%d dimm=%d)",
1455 pvt->i7core_dev->socket, chan, dimm);
1457 edac_mc_handle_fbd_ce(mci, row, 0, msg);
1458 kfree (msg);
1462 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1463 int chan, int new0, int new1, int new2)
1465 struct i7core_pvt *pvt = mci->pvt_info;
1466 int add0 = 0, add1 = 0, add2 = 0;
1467 /* Updates CE counters if it is not the first time here */
1468 if (pvt->ce_count_available) {
1469 /* Updates CE counters */
1471 add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1472 add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1473 add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1475 if (add2 < 0)
1476 add2 += 0x7fff;
1477 pvt->rdimm_ce_count[chan][2] += add2;
1479 if (add1 < 0)
1480 add1 += 0x7fff;
1481 pvt->rdimm_ce_count[chan][1] += add1;
1483 if (add0 < 0)
1484 add0 += 0x7fff;
1485 pvt->rdimm_ce_count[chan][0] += add0;
1486 } else
1487 pvt->ce_count_available = 1;
1489 /* Store the new values */
1490 pvt->rdimm_last_ce_count[chan][2] = new2;
1491 pvt->rdimm_last_ce_count[chan][1] = new1;
1492 pvt->rdimm_last_ce_count[chan][0] = new0;
1494 /*updated the edac core */
1495 if (add0 != 0)
1496 i7core_rdimm_update_csrow(mci, chan, 0, add0);
1497 if (add1 != 0)
1498 i7core_rdimm_update_csrow(mci, chan, 1, add1);
1499 if (add2 != 0)
1500 i7core_rdimm_update_csrow(mci, chan, 2, add2);
1504 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1506 struct i7core_pvt *pvt = mci->pvt_info;
1507 u32 rcv[3][2];
1508 int i, new0, new1, new2;
1510 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/
1511 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1512 &rcv[0][0]);
1513 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1514 &rcv[0][1]);
1515 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1516 &rcv[1][0]);
1517 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1518 &rcv[1][1]);
1519 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1520 &rcv[2][0]);
1521 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1522 &rcv[2][1]);
1523 for (i = 0 ; i < 3; i++) {
1524 debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1525 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1526 /*if the channel has 3 dimms*/
1527 if (pvt->channel[i].dimms > 2) {
1528 new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1529 new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1530 new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1531 } else {
1532 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1533 DIMM_BOT_COR_ERR(rcv[i][0]);
1534 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1535 DIMM_BOT_COR_ERR(rcv[i][1]);
1536 new2 = 0;
1539 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1543 /* This function is based on the device 3 function 4 registers as described on:
1544 * Intel Xeon Processor 5500 Series Datasheet Volume 2
1545 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1546 * also available at:
1547 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1549 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1551 struct i7core_pvt *pvt = mci->pvt_info;
1552 u32 rcv1, rcv0;
1553 int new0, new1, new2;
1555 if (!pvt->pci_mcr[4]) {
1556 debugf0("%s MCR registers not found\n", __func__);
1557 return;
1560 /* Corrected test errors */
1561 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1562 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1564 /* Store the new values */
1565 new2 = DIMM2_COR_ERR(rcv1);
1566 new1 = DIMM1_COR_ERR(rcv0);
1567 new0 = DIMM0_COR_ERR(rcv0);
1569 /* Updates CE counters if it is not the first time here */
1570 if (pvt->ce_count_available) {
1571 /* Updates CE counters */
1572 int add0, add1, add2;
1574 add2 = new2 - pvt->udimm_last_ce_count[2];
1575 add1 = new1 - pvt->udimm_last_ce_count[1];
1576 add0 = new0 - pvt->udimm_last_ce_count[0];
1578 if (add2 < 0)
1579 add2 += 0x7fff;
1580 pvt->udimm_ce_count[2] += add2;
1582 if (add1 < 0)
1583 add1 += 0x7fff;
1584 pvt->udimm_ce_count[1] += add1;
1586 if (add0 < 0)
1587 add0 += 0x7fff;
1588 pvt->udimm_ce_count[0] += add0;
1590 if (add0 | add1 | add2)
1591 i7core_printk(KERN_ERR, "New Corrected error(s): "
1592 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1593 add0, add1, add2);
1594 } else
1595 pvt->ce_count_available = 1;
1597 /* Store the new values */
1598 pvt->udimm_last_ce_count[2] = new2;
1599 pvt->udimm_last_ce_count[1] = new1;
1600 pvt->udimm_last_ce_count[0] = new0;
1604 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1605 * Architectures Software Developer’s Manual Volume 3B.
1606 * Nehalem are defined as family 0x06, model 0x1a
1608 * The MCA registers used here are the following ones:
1609 * struct mce field MCA Register
1610 * m->status MSR_IA32_MC8_STATUS
1611 * m->addr MSR_IA32_MC8_ADDR
1612 * m->misc MSR_IA32_MC8_MISC
1613 * In the case of Nehalem, the error information is masked at .status and .misc
1614 * fields
1616 static void i7core_mce_output_error(struct mem_ctl_info *mci,
1617 struct mce *m)
1619 struct i7core_pvt *pvt = mci->pvt_info;
1620 char *type, *optype, *err, *msg;
1621 unsigned long error = m->status & 0x1ff0000l;
1622 u32 optypenum = (m->status >> 4) & 0x07;
1623 u32 core_err_cnt = (m->status >> 38) && 0x7fff;
1624 u32 dimm = (m->misc >> 16) & 0x3;
1625 u32 channel = (m->misc >> 18) & 0x3;
1626 u32 syndrome = m->misc >> 32;
1627 u32 errnum = find_first_bit(&error, 32);
1628 int csrow;
1630 if (m->mcgstatus & 1)
1631 type = "FATAL";
1632 else
1633 type = "NON_FATAL";
1635 switch (optypenum) {
1636 case 0:
1637 optype = "generic undef request";
1638 break;
1639 case 1:
1640 optype = "read error";
1641 break;
1642 case 2:
1643 optype = "write error";
1644 break;
1645 case 3:
1646 optype = "addr/cmd error";
1647 break;
1648 case 4:
1649 optype = "scrubbing error";
1650 break;
1651 default:
1652 optype = "reserved";
1653 break;
1656 switch (errnum) {
1657 case 16:
1658 err = "read ECC error";
1659 break;
1660 case 17:
1661 err = "RAS ECC error";
1662 break;
1663 case 18:
1664 err = "write parity error";
1665 break;
1666 case 19:
1667 err = "redundacy loss";
1668 break;
1669 case 20:
1670 err = "reserved";
1671 break;
1672 case 21:
1673 err = "memory range error";
1674 break;
1675 case 22:
1676 err = "RTID out of range";
1677 break;
1678 case 23:
1679 err = "address parity error";
1680 break;
1681 case 24:
1682 err = "byte enable parity error";
1683 break;
1684 default:
1685 err = "unknown";
1688 msg = kasprintf(GFP_ATOMIC,
1689 "%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1690 "syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1691 type, (long long) m->addr, m->cpu, dimm, channel,
1692 syndrome, core_err_cnt, (long long)m->status,
1693 (long long)m->misc, optype, err);
1695 debugf0("%s", msg);
1697 csrow = pvt->csrow_map[channel][dimm];
1699 /* Call the helper to output message */
1700 if (m->mcgstatus & 1)
1701 edac_mc_handle_fbd_ue(mci, csrow, 0,
1702 0, msg);
1703 else if (!pvt->is_registered)
1704 edac_mc_handle_fbd_ce(mci, csrow,
1705 0, msg);
1707 kfree(msg);
1711 * i7core_check_error Retrieve and process errors reported by the
1712 * hardware. Called by the Core module.
1714 static void i7core_check_error(struct mem_ctl_info *mci)
1716 struct i7core_pvt *pvt = mci->pvt_info;
1717 int i;
1718 unsigned count = 0;
1719 struct mce *m;
1722 * MCE first step: Copy all mce errors into a temporary buffer
1723 * We use a double buffering here, to reduce the risk of
1724 * loosing an error.
1726 smp_rmb();
1727 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1728 % MCE_LOG_LEN;
1729 if (!count)
1730 goto check_ce_error;
1732 m = pvt->mce_outentry;
1733 if (pvt->mce_in + count > MCE_LOG_LEN) {
1734 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1736 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1737 smp_wmb();
1738 pvt->mce_in = 0;
1739 count -= l;
1740 m += l;
1742 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1743 smp_wmb();
1744 pvt->mce_in += count;
1746 smp_rmb();
1747 if (pvt->mce_overrun) {
1748 i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1749 pvt->mce_overrun);
1750 smp_wmb();
1751 pvt->mce_overrun = 0;
1755 * MCE second step: parse errors and display
1757 for (i = 0; i < count; i++)
1758 i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1761 * Now, let's increment CE error counts
1763 check_ce_error:
1764 if (!pvt->is_registered)
1765 i7core_udimm_check_mc_ecc_err(mci);
1766 else
1767 i7core_rdimm_check_mc_ecc_err(mci);
1771 * i7core_mce_check_error Replicates mcelog routine to get errors
1772 * This routine simply queues mcelog errors, and
1773 * return. The error itself should be handled later
1774 * by i7core_check_error.
1775 * WARNING: As this routine should be called at NMI time, extra care should
1776 * be taken to avoid deadlocks, and to be as fast as possible.
1778 static int i7core_mce_check_error(void *priv, struct mce *mce)
1780 struct mem_ctl_info *mci = priv;
1781 struct i7core_pvt *pvt = mci->pvt_info;
1784 * Just let mcelog handle it if the error is
1785 * outside the memory controller
1787 if (((mce->status & 0xffff) >> 7) != 1)
1788 return 0;
1790 /* Bank 8 registers are the only ones that we know how to handle */
1791 if (mce->bank != 8)
1792 return 0;
1794 #ifdef CONFIG_SMP
1795 /* Only handle if it is the right mc controller */
1796 if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1797 return 0;
1798 #endif
1800 smp_rmb();
1801 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1802 smp_wmb();
1803 pvt->mce_overrun++;
1804 return 0;
1807 /* Copy memory error at the ringbuffer */
1808 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1809 smp_wmb();
1810 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1812 /* Handle fatal errors immediately */
1813 if (mce->mcgstatus & 1)
1814 i7core_check_error(mci);
1816 /* Advice mcelog that the error were handled */
1817 return 1;
1820 static int i7core_register_mci(struct i7core_dev *i7core_dev,
1821 int num_channels, int num_csrows)
1823 struct mem_ctl_info *mci;
1824 struct i7core_pvt *pvt;
1825 int csrow = 0;
1826 int rc;
1828 /* allocate a new MC control structure */
1829 mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
1830 i7core_dev->socket);
1831 if (unlikely(!mci))
1832 return -ENOMEM;
1834 debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1836 /* record ptr to the generic device */
1837 mci->dev = &i7core_dev->pdev[0]->dev;
1839 pvt = mci->pvt_info;
1840 memset(pvt, 0, sizeof(*pvt));
1842 mci->mtype_cap = MEM_FLAG_DDR3;
1843 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1844 mci->edac_cap = EDAC_FLAG_NONE;
1845 mci->mod_name = "i7core_edac.c";
1846 mci->mod_ver = I7CORE_REVISION;
1847 mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
1848 i7core_dev->socket);
1849 mci->dev_name = pci_name(i7core_dev->pdev[0]);
1850 mci->ctl_page_to_phys = NULL;
1851 mci->mc_driver_sysfs_attributes = i7core_sysfs_attrs;
1852 /* Set the function pointer to an actual operation function */
1853 mci->edac_check = i7core_check_error;
1855 /* Store pci devices at mci for faster access */
1856 rc = mci_bind_devs(mci, i7core_dev);
1857 if (unlikely(rc < 0))
1858 goto fail;
1860 /* Get dimm basic config */
1861 get_dimm_config(mci, &csrow);
1863 /* add this new MC control structure to EDAC's list of MCs */
1864 if (unlikely(edac_mc_add_mc(mci))) {
1865 debugf0("MC: " __FILE__
1866 ": %s(): failed edac_mc_add_mc()\n", __func__);
1868 rc = -EINVAL;
1869 goto fail;
1872 /* allocating generic PCI control info */
1873 i7core_pci = edac_pci_create_generic_ctl(&i7core_dev->pdev[0]->dev,
1874 EDAC_MOD_STR);
1875 if (unlikely(!i7core_pci)) {
1876 printk(KERN_WARNING
1877 "%s(): Unable to create PCI control\n",
1878 __func__);
1879 printk(KERN_WARNING
1880 "%s(): PCI error report via EDAC not setup\n",
1881 __func__);
1884 /* Default error mask is any memory */
1885 pvt->inject.channel = 0;
1886 pvt->inject.dimm = -1;
1887 pvt->inject.rank = -1;
1888 pvt->inject.bank = -1;
1889 pvt->inject.page = -1;
1890 pvt->inject.col = -1;
1892 /* Registers on edac_mce in order to receive memory errors */
1893 pvt->edac_mce.priv = mci;
1894 pvt->edac_mce.check_error = i7core_mce_check_error;
1896 rc = edac_mce_register(&pvt->edac_mce);
1897 if (unlikely(rc < 0)) {
1898 debugf0("MC: " __FILE__
1899 ": %s(): failed edac_mce_register()\n", __func__);
1902 fail:
1903 if (rc < 0)
1904 edac_mc_free(mci);
1905 return rc;
1909 * i7core_probe Probe for ONE instance of device to see if it is
1910 * present.
1911 * return:
1912 * 0 for FOUND a device
1913 * < 0 for error code
1916 static int probed = 0;
1918 static int __devinit i7core_probe(struct pci_dev *pdev,
1919 const struct pci_device_id *id)
1921 int rc;
1922 struct i7core_dev *i7core_dev;
1924 /* get the pci devices we want to reserve for our use */
1925 mutex_lock(&i7core_edac_lock);
1928 * All memory controllers are allocated at the first pass.
1930 if (unlikely(probed >= 1)) {
1931 mutex_unlock(&i7core_edac_lock);
1932 return -EINVAL;
1934 probed++;
1936 rc = i7core_get_devices(pci_dev_table);
1937 if (unlikely(rc < 0))
1938 goto fail0;
1940 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
1941 int channels;
1942 int csrows;
1944 /* Check the number of active and not disabled channels */
1945 rc = i7core_get_active_channels(i7core_dev->socket,
1946 &channels, &csrows);
1947 if (unlikely(rc < 0))
1948 goto fail1;
1950 rc = i7core_register_mci(i7core_dev, channels, csrows);
1951 if (unlikely(rc < 0))
1952 goto fail1;
1955 i7core_printk(KERN_INFO, "Driver loaded.\n");
1957 mutex_unlock(&i7core_edac_lock);
1958 return 0;
1960 fail1:
1961 i7core_put_all_devices();
1962 fail0:
1963 mutex_unlock(&i7core_edac_lock);
1964 return rc;
1968 * i7core_remove destructor for one instance of device
1971 static void __devexit i7core_remove(struct pci_dev *pdev)
1973 struct mem_ctl_info *mci;
1974 struct i7core_dev *i7core_dev, *tmp;
1976 debugf0(__FILE__ ": %s()\n", __func__);
1978 if (i7core_pci)
1979 edac_pci_release_generic_ctl(i7core_pci);
1982 * we have a trouble here: pdev value for removal will be wrong, since
1983 * it will point to the X58 register used to detect that the machine
1984 * is a Nehalem or upper design. However, due to the way several PCI
1985 * devices are grouped together to provide MC functionality, we need
1986 * to use a different method for releasing the devices
1989 mutex_lock(&i7core_edac_lock);
1990 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1991 mci = edac_mc_del_mc(&i7core_dev->pdev[0]->dev);
1992 if (mci) {
1993 struct i7core_pvt *pvt = mci->pvt_info;
1995 i7core_dev = pvt->i7core_dev;
1996 edac_mce_unregister(&pvt->edac_mce);
1997 kfree(mci->ctl_name);
1998 edac_mc_free(mci);
1999 i7core_put_devices(i7core_dev);
2000 } else {
2001 i7core_printk(KERN_ERR,
2002 "Couldn't find mci for socket %d\n",
2003 i7core_dev->socket);
2006 probed--;
2008 mutex_unlock(&i7core_edac_lock);
2011 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2014 * i7core_driver pci_driver structure for this module
2017 static struct pci_driver i7core_driver = {
2018 .name = "i7core_edac",
2019 .probe = i7core_probe,
2020 .remove = __devexit_p(i7core_remove),
2021 .id_table = i7core_pci_tbl,
2025 * i7core_init Module entry function
2026 * Try to initialize this module for its devices
2028 static int __init i7core_init(void)
2030 int pci_rc;
2032 debugf2("MC: " __FILE__ ": %s()\n", __func__);
2034 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2035 opstate_init();
2037 i7core_xeon_pci_fixup(pci_dev_table);
2039 pci_rc = pci_register_driver(&i7core_driver);
2041 if (pci_rc >= 0)
2042 return 0;
2044 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2045 pci_rc);
2047 return pci_rc;
2051 * i7core_exit() Module exit function
2052 * Unregister the driver
2054 static void __exit i7core_exit(void)
2056 debugf2("MC: " __FILE__ ": %s()\n", __func__);
2057 pci_unregister_driver(&i7core_driver);
2060 module_init(i7core_init);
2061 module_exit(i7core_exit);
2063 MODULE_LICENSE("GPL");
2064 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2065 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2066 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2067 I7CORE_REVISION);
2069 module_param(edac_op_state, int, 0444);
2070 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");