RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / block / cciss.c
blob1a9182b0c4fe7f2ec1b91d1d8603b8d150b4b48a
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
69 static int cciss_allow_hpsa;
70 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
71 MODULE_PARM_DESC(cciss_allow_hpsa,
72 "Prevent cciss driver from accessing hardware known to be "
73 " supported by the hpsa driver");
75 #include "cciss_cmd.h"
76 #include "cciss.h"
77 #include <linux/cciss_ioctl.h>
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id[] = {
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254},
113 {0,}
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
122 static struct board_type products[] = {
123 {0x40700E11, "Smart Array 5300", &SA5_access},
124 {0x40800E11, "Smart Array 5i", &SA5B_access},
125 {0x40820E11, "Smart Array 532", &SA5B_access},
126 {0x40830E11, "Smart Array 5312", &SA5B_access},
127 {0x409A0E11, "Smart Array 641", &SA5_access},
128 {0x409B0E11, "Smart Array 642", &SA5_access},
129 {0x409C0E11, "Smart Array 6400", &SA5_access},
130 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131 {0x40910E11, "Smart Array 6i", &SA5_access},
132 {0x3225103C, "Smart Array P600", &SA5_access},
133 {0x3235103C, "Smart Array P400i", &SA5_access},
134 {0x3211103C, "Smart Array E200i", &SA5_access},
135 {0x3212103C, "Smart Array E200", &SA5_access},
136 {0x3213103C, "Smart Array E200i", &SA5_access},
137 {0x3214103C, "Smart Array E200i", &SA5_access},
138 {0x3215103C, "Smart Array E200i", &SA5_access},
139 {0x3237103C, "Smart Array E500", &SA5_access},
140 /* controllers below this line are also supported by the hpsa driver. */
141 #define HPSA_BOUNDARY 0x3223103C
142 {0x3223103C, "Smart Array P800", &SA5_access},
143 {0x3234103C, "Smart Array P400", &SA5_access},
144 {0x323D103C, "Smart Array P700m", &SA5_access},
145 {0x3241103C, "Smart Array P212", &SA5_access},
146 {0x3243103C, "Smart Array P410", &SA5_access},
147 {0x3245103C, "Smart Array P410i", &SA5_access},
148 {0x3247103C, "Smart Array P411", &SA5_access},
149 {0x3249103C, "Smart Array P812", &SA5_access},
150 {0x324A103C, "Smart Array P712m", &SA5_access},
151 {0x324B103C, "Smart Array P711m", &SA5_access},
152 {0x3250103C, "Smart Array", &SA5_access},
153 {0x3251103C, "Smart Array", &SA5_access},
154 {0x3252103C, "Smart Array", &SA5_access},
155 {0x3253103C, "Smart Array", &SA5_access},
156 {0x3254103C, "Smart Array", &SA5_access},
159 /* How long to wait (in milliseconds) for board to go into simple mode */
160 #define MAX_CONFIG_WAIT 30000
161 #define MAX_IOCTL_CONFIG_WAIT 1000
163 /*define how many times we will try a command because of bus resets */
164 #define MAX_CMD_RETRIES 3
166 #define MAX_CTLR 32
168 /* Originally cciss driver only supports 8 major numbers */
169 #define MAX_CTLR_ORIG 8
171 static ctlr_info_t *hba[MAX_CTLR];
173 static struct task_struct *cciss_scan_thread;
174 static DEFINE_MUTEX(scan_mutex);
175 static LIST_HEAD(scan_q);
177 static void do_cciss_request(struct request_queue *q);
178 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
179 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
180 static int cciss_open(struct block_device *bdev, fmode_t mode);
181 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
182 static int cciss_release(struct gendisk *disk, fmode_t mode);
183 static int do_ioctl(struct block_device *bdev, fmode_t mode,
184 unsigned int cmd, unsigned long arg);
185 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
186 unsigned int cmd, unsigned long arg);
187 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
189 static int cciss_revalidate(struct gendisk *disk);
190 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
191 static int deregister_disk(ctlr_info_t *h, int drv_index,
192 int clear_all, int via_ioctl);
194 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
195 sector_t *total_size, unsigned int *block_size);
196 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
197 sector_t *total_size, unsigned int *block_size);
198 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
199 sector_t total_size,
200 unsigned int block_size, InquiryData_struct *inq_buff,
201 drive_info_struct *drv);
202 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
203 static void start_io(ctlr_info_t *h);
204 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
205 __u8 page_code, unsigned char scsi3addr[],
206 int cmd_type);
207 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
208 int attempt_retry);
209 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
211 static int add_to_scan_list(struct ctlr_info *h);
212 static int scan_thread(void *data);
213 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
214 static void cciss_hba_release(struct device *dev);
215 static void cciss_device_release(struct device *dev);
216 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
217 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
218 static inline u32 next_command(ctlr_info_t *h);
219 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
220 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
221 u64 *cfg_offset);
222 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
223 unsigned long *memory_bar);
226 /* performant mode helper functions */
227 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
228 int *bucket_map);
229 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
231 #ifdef CONFIG_PROC_FS
232 static void cciss_procinit(ctlr_info_t *h);
233 #else
234 static void cciss_procinit(ctlr_info_t *h)
237 #endif /* CONFIG_PROC_FS */
239 #ifdef CONFIG_COMPAT
240 static int cciss_compat_ioctl(struct block_device *, fmode_t,
241 unsigned, unsigned long);
242 #endif
244 static const struct block_device_operations cciss_fops = {
245 .owner = THIS_MODULE,
246 .open = cciss_unlocked_open,
247 .release = cciss_release,
248 .ioctl = do_ioctl,
249 .getgeo = cciss_getgeo,
250 #ifdef CONFIG_COMPAT
251 .compat_ioctl = cciss_compat_ioctl,
252 #endif
253 .revalidate_disk = cciss_revalidate,
256 /* set_performant_mode: Modify the tag for cciss performant
257 * set bit 0 for pull model, bits 3-1 for block fetch
258 * register number
260 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
262 if (likely(h->transMethod == CFGTBL_Trans_Performant))
263 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
267 * Enqueuing and dequeuing functions for cmdlists.
269 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
271 hlist_add_head(&c->list, list);
274 static inline void removeQ(CommandList_struct *c)
277 * After kexec/dump some commands might still
278 * be in flight, which the firmware will try
279 * to complete. Resetting the firmware doesn't work
280 * with old fw revisions, so we have to mark
281 * them off as 'stale' to prevent the driver from
282 * falling over.
284 if (WARN_ON(hlist_unhashed(&c->list))) {
285 c->cmd_type = CMD_MSG_STALE;
286 return;
289 hlist_del_init(&c->list);
292 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
293 CommandList_struct *c)
295 unsigned long flags;
296 set_performant_mode(h, c);
297 spin_lock_irqsave(&h->lock, flags);
298 addQ(&h->reqQ, c);
299 h->Qdepth++;
300 if (h->Qdepth > h->maxQsinceinit)
301 h->maxQsinceinit = h->Qdepth;
302 start_io(h);
303 spin_unlock_irqrestore(&h->lock, flags);
306 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
307 int nr_cmds)
309 int i;
311 if (!cmd_sg_list)
312 return;
313 for (i = 0; i < nr_cmds; i++) {
314 kfree(cmd_sg_list[i]);
315 cmd_sg_list[i] = NULL;
317 kfree(cmd_sg_list);
320 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
321 ctlr_info_t *h, int chainsize, int nr_cmds)
323 int j;
324 SGDescriptor_struct **cmd_sg_list;
326 if (chainsize <= 0)
327 return NULL;
329 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
330 if (!cmd_sg_list)
331 return NULL;
333 /* Build up chain blocks for each command */
334 for (j = 0; j < nr_cmds; j++) {
335 /* Need a block of chainsized s/g elements. */
336 cmd_sg_list[j] = kmalloc((chainsize *
337 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
338 if (!cmd_sg_list[j]) {
339 dev_err(&h->pdev->dev, "Cannot get memory "
340 "for s/g chains.\n");
341 goto clean;
344 return cmd_sg_list;
345 clean:
346 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
347 return NULL;
350 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
352 SGDescriptor_struct *chain_sg;
353 u64bit temp64;
355 if (c->Header.SGTotal <= h->max_cmd_sgentries)
356 return;
358 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
359 temp64.val32.lower = chain_sg->Addr.lower;
360 temp64.val32.upper = chain_sg->Addr.upper;
361 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
364 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
365 SGDescriptor_struct *chain_block, int len)
367 SGDescriptor_struct *chain_sg;
368 u64bit temp64;
370 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
371 chain_sg->Ext = CCISS_SG_CHAIN;
372 chain_sg->Len = len;
373 temp64.val = pci_map_single(h->pdev, chain_block, len,
374 PCI_DMA_TODEVICE);
375 chain_sg->Addr.lower = temp64.val32.lower;
376 chain_sg->Addr.upper = temp64.val32.upper;
379 #include "cciss_scsi.c" /* For SCSI tape support */
381 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
382 "UNKNOWN"
384 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
386 #ifdef CONFIG_PROC_FS
389 * Report information about this controller.
391 #define ENG_GIG 1000000000
392 #define ENG_GIG_FACTOR (ENG_GIG/512)
393 #define ENGAGE_SCSI "engage scsi"
395 static struct proc_dir_entry *proc_cciss;
397 static void cciss_seq_show_header(struct seq_file *seq)
399 ctlr_info_t *h = seq->private;
401 seq_printf(seq, "%s: HP %s Controller\n"
402 "Board ID: 0x%08lx\n"
403 "Firmware Version: %c%c%c%c\n"
404 "IRQ: %d\n"
405 "Logical drives: %d\n"
406 "Current Q depth: %d\n"
407 "Current # commands on controller: %d\n"
408 "Max Q depth since init: %d\n"
409 "Max # commands on controller since init: %d\n"
410 "Max SG entries since init: %d\n",
411 h->devname,
412 h->product_name,
413 (unsigned long)h->board_id,
414 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
415 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
416 h->num_luns,
417 h->Qdepth, h->commands_outstanding,
418 h->maxQsinceinit, h->max_outstanding, h->maxSG);
420 #ifdef CONFIG_CISS_SCSI_TAPE
421 cciss_seq_tape_report(seq, h);
422 #endif /* CONFIG_CISS_SCSI_TAPE */
425 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
427 ctlr_info_t *h = seq->private;
428 unsigned long flags;
430 /* prevent displaying bogus info during configuration
431 * or deconfiguration of a logical volume
433 spin_lock_irqsave(&h->lock, flags);
434 if (h->busy_configuring) {
435 spin_unlock_irqrestore(&h->lock, flags);
436 return ERR_PTR(-EBUSY);
438 h->busy_configuring = 1;
439 spin_unlock_irqrestore(&h->lock, flags);
441 if (*pos == 0)
442 cciss_seq_show_header(seq);
444 return pos;
447 static int cciss_seq_show(struct seq_file *seq, void *v)
449 sector_t vol_sz, vol_sz_frac;
450 ctlr_info_t *h = seq->private;
451 unsigned ctlr = h->ctlr;
452 loff_t *pos = v;
453 drive_info_struct *drv = h->drv[*pos];
455 if (*pos > h->highest_lun)
456 return 0;
458 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
459 return 0;
461 if (drv->heads == 0)
462 return 0;
464 vol_sz = drv->nr_blocks;
465 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
466 vol_sz_frac *= 100;
467 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
469 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
470 drv->raid_level = RAID_UNKNOWN;
471 seq_printf(seq, "cciss/c%dd%d:"
472 "\t%4u.%02uGB\tRAID %s\n",
473 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
474 raid_label[drv->raid_level]);
475 return 0;
478 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
480 ctlr_info_t *h = seq->private;
482 if (*pos > h->highest_lun)
483 return NULL;
484 *pos += 1;
486 return pos;
489 static void cciss_seq_stop(struct seq_file *seq, void *v)
491 ctlr_info_t *h = seq->private;
493 /* Only reset h->busy_configuring if we succeeded in setting
494 * it during cciss_seq_start. */
495 if (v == ERR_PTR(-EBUSY))
496 return;
498 h->busy_configuring = 0;
501 static const struct seq_operations cciss_seq_ops = {
502 .start = cciss_seq_start,
503 .show = cciss_seq_show,
504 .next = cciss_seq_next,
505 .stop = cciss_seq_stop,
508 static int cciss_seq_open(struct inode *inode, struct file *file)
510 int ret = seq_open(file, &cciss_seq_ops);
511 struct seq_file *seq = file->private_data;
513 if (!ret)
514 seq->private = PDE(inode)->data;
516 return ret;
519 static ssize_t
520 cciss_proc_write(struct file *file, const char __user *buf,
521 size_t length, loff_t *ppos)
523 int err;
524 char *buffer;
526 #ifndef CONFIG_CISS_SCSI_TAPE
527 return -EINVAL;
528 #endif
530 if (!buf || length > PAGE_SIZE - 1)
531 return -EINVAL;
533 buffer = (char *)__get_free_page(GFP_KERNEL);
534 if (!buffer)
535 return -ENOMEM;
537 err = -EFAULT;
538 if (copy_from_user(buffer, buf, length))
539 goto out;
540 buffer[length] = '\0';
542 #ifdef CONFIG_CISS_SCSI_TAPE
543 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
544 struct seq_file *seq = file->private_data;
545 ctlr_info_t *h = seq->private;
547 err = cciss_engage_scsi(h);
548 if (err == 0)
549 err = length;
550 } else
551 #endif /* CONFIG_CISS_SCSI_TAPE */
552 err = -EINVAL;
553 /* might be nice to have "disengage" too, but it's not
554 safely possible. (only 1 module use count, lock issues.) */
556 out:
557 free_page((unsigned long)buffer);
558 return err;
561 static const struct file_operations cciss_proc_fops = {
562 .owner = THIS_MODULE,
563 .open = cciss_seq_open,
564 .read = seq_read,
565 .llseek = seq_lseek,
566 .release = seq_release,
567 .write = cciss_proc_write,
570 static void __devinit cciss_procinit(ctlr_info_t *h)
572 struct proc_dir_entry *pde;
574 if (proc_cciss == NULL)
575 proc_cciss = proc_mkdir("driver/cciss", NULL);
576 if (!proc_cciss)
577 return;
578 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
579 S_IROTH, proc_cciss,
580 &cciss_proc_fops, h);
582 #endif /* CONFIG_PROC_FS */
584 #define MAX_PRODUCT_NAME_LEN 19
586 #define to_hba(n) container_of(n, struct ctlr_info, dev)
587 #define to_drv(n) container_of(n, drive_info_struct, dev)
589 static ssize_t host_store_rescan(struct device *dev,
590 struct device_attribute *attr,
591 const char *buf, size_t count)
593 struct ctlr_info *h = to_hba(dev);
595 add_to_scan_list(h);
596 wake_up_process(cciss_scan_thread);
597 wait_for_completion_interruptible(&h->scan_wait);
599 return count;
601 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
603 static ssize_t dev_show_unique_id(struct device *dev,
604 struct device_attribute *attr,
605 char *buf)
607 drive_info_struct *drv = to_drv(dev);
608 struct ctlr_info *h = to_hba(drv->dev.parent);
609 __u8 sn[16];
610 unsigned long flags;
611 int ret = 0;
613 spin_lock_irqsave(&h->lock, flags);
614 if (h->busy_configuring)
615 ret = -EBUSY;
616 else
617 memcpy(sn, drv->serial_no, sizeof(sn));
618 spin_unlock_irqrestore(&h->lock, flags);
620 if (ret)
621 return ret;
622 else
623 return snprintf(buf, 16 * 2 + 2,
624 "%02X%02X%02X%02X%02X%02X%02X%02X"
625 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
626 sn[0], sn[1], sn[2], sn[3],
627 sn[4], sn[5], sn[6], sn[7],
628 sn[8], sn[9], sn[10], sn[11],
629 sn[12], sn[13], sn[14], sn[15]);
631 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
633 static ssize_t dev_show_vendor(struct device *dev,
634 struct device_attribute *attr,
635 char *buf)
637 drive_info_struct *drv = to_drv(dev);
638 struct ctlr_info *h = to_hba(drv->dev.parent);
639 char vendor[VENDOR_LEN + 1];
640 unsigned long flags;
641 int ret = 0;
643 spin_lock_irqsave(&h->lock, flags);
644 if (h->busy_configuring)
645 ret = -EBUSY;
646 else
647 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
648 spin_unlock_irqrestore(&h->lock, flags);
650 if (ret)
651 return ret;
652 else
653 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
655 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
657 static ssize_t dev_show_model(struct device *dev,
658 struct device_attribute *attr,
659 char *buf)
661 drive_info_struct *drv = to_drv(dev);
662 struct ctlr_info *h = to_hba(drv->dev.parent);
663 char model[MODEL_LEN + 1];
664 unsigned long flags;
665 int ret = 0;
667 spin_lock_irqsave(&h->lock, flags);
668 if (h->busy_configuring)
669 ret = -EBUSY;
670 else
671 memcpy(model, drv->model, MODEL_LEN + 1);
672 spin_unlock_irqrestore(&h->lock, flags);
674 if (ret)
675 return ret;
676 else
677 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
679 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
681 static ssize_t dev_show_rev(struct device *dev,
682 struct device_attribute *attr,
683 char *buf)
685 drive_info_struct *drv = to_drv(dev);
686 struct ctlr_info *h = to_hba(drv->dev.parent);
687 char rev[REV_LEN + 1];
688 unsigned long flags;
689 int ret = 0;
691 spin_lock_irqsave(&h->lock, flags);
692 if (h->busy_configuring)
693 ret = -EBUSY;
694 else
695 memcpy(rev, drv->rev, REV_LEN + 1);
696 spin_unlock_irqrestore(&h->lock, flags);
698 if (ret)
699 return ret;
700 else
701 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
703 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
705 static ssize_t cciss_show_lunid(struct device *dev,
706 struct device_attribute *attr, char *buf)
708 drive_info_struct *drv = to_drv(dev);
709 struct ctlr_info *h = to_hba(drv->dev.parent);
710 unsigned long flags;
711 unsigned char lunid[8];
713 spin_lock_irqsave(&h->lock, flags);
714 if (h->busy_configuring) {
715 spin_unlock_irqrestore(&h->lock, flags);
716 return -EBUSY;
718 if (!drv->heads) {
719 spin_unlock_irqrestore(&h->lock, flags);
720 return -ENOTTY;
722 memcpy(lunid, drv->LunID, sizeof(lunid));
723 spin_unlock_irqrestore(&h->lock, flags);
724 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
725 lunid[0], lunid[1], lunid[2], lunid[3],
726 lunid[4], lunid[5], lunid[6], lunid[7]);
728 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
730 static ssize_t cciss_show_raid_level(struct device *dev,
731 struct device_attribute *attr, char *buf)
733 drive_info_struct *drv = to_drv(dev);
734 struct ctlr_info *h = to_hba(drv->dev.parent);
735 int raid;
736 unsigned long flags;
738 spin_lock_irqsave(&h->lock, flags);
739 if (h->busy_configuring) {
740 spin_unlock_irqrestore(&h->lock, flags);
741 return -EBUSY;
743 raid = drv->raid_level;
744 spin_unlock_irqrestore(&h->lock, flags);
745 if (raid < 0 || raid > RAID_UNKNOWN)
746 raid = RAID_UNKNOWN;
748 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
749 raid_label[raid]);
751 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
753 static ssize_t cciss_show_usage_count(struct device *dev,
754 struct device_attribute *attr, char *buf)
756 drive_info_struct *drv = to_drv(dev);
757 struct ctlr_info *h = to_hba(drv->dev.parent);
758 unsigned long flags;
759 int count;
761 spin_lock_irqsave(&h->lock, flags);
762 if (h->busy_configuring) {
763 spin_unlock_irqrestore(&h->lock, flags);
764 return -EBUSY;
766 count = drv->usage_count;
767 spin_unlock_irqrestore(&h->lock, flags);
768 return snprintf(buf, 20, "%d\n", count);
770 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
772 static struct attribute *cciss_host_attrs[] = {
773 &dev_attr_rescan.attr,
774 NULL
777 static struct attribute_group cciss_host_attr_group = {
778 .attrs = cciss_host_attrs,
781 static const struct attribute_group *cciss_host_attr_groups[] = {
782 &cciss_host_attr_group,
783 NULL
786 static struct device_type cciss_host_type = {
787 .name = "cciss_host",
788 .groups = cciss_host_attr_groups,
789 .release = cciss_hba_release,
792 static struct attribute *cciss_dev_attrs[] = {
793 &dev_attr_unique_id.attr,
794 &dev_attr_model.attr,
795 &dev_attr_vendor.attr,
796 &dev_attr_rev.attr,
797 &dev_attr_lunid.attr,
798 &dev_attr_raid_level.attr,
799 &dev_attr_usage_count.attr,
800 NULL
803 static struct attribute_group cciss_dev_attr_group = {
804 .attrs = cciss_dev_attrs,
807 static const struct attribute_group *cciss_dev_attr_groups[] = {
808 &cciss_dev_attr_group,
809 NULL
812 static struct device_type cciss_dev_type = {
813 .name = "cciss_device",
814 .groups = cciss_dev_attr_groups,
815 .release = cciss_device_release,
818 static struct bus_type cciss_bus_type = {
819 .name = "cciss",
823 * cciss_hba_release is called when the reference count
824 * of h->dev goes to zero.
826 static void cciss_hba_release(struct device *dev)
829 * nothing to do, but need this to avoid a warning
830 * about not having a release handler from lib/kref.c.
835 * Initialize sysfs entry for each controller. This sets up and registers
836 * the 'cciss#' directory for each individual controller under
837 * /sys/bus/pci/devices/<dev>/.
839 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
841 device_initialize(&h->dev);
842 h->dev.type = &cciss_host_type;
843 h->dev.bus = &cciss_bus_type;
844 dev_set_name(&h->dev, "%s", h->devname);
845 h->dev.parent = &h->pdev->dev;
847 return device_add(&h->dev);
851 * Remove sysfs entries for an hba.
853 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
855 device_del(&h->dev);
856 put_device(&h->dev); /* final put. */
859 /* cciss_device_release is called when the reference count
860 * of h->drv[x]dev goes to zero.
862 static void cciss_device_release(struct device *dev)
864 drive_info_struct *drv = to_drv(dev);
865 kfree(drv);
869 * Initialize sysfs for each logical drive. This sets up and registers
870 * the 'c#d#' directory for each individual logical drive under
871 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
872 * /sys/block/cciss!c#d# to this entry.
874 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
875 int drv_index)
877 struct device *dev;
879 if (h->drv[drv_index]->device_initialized)
880 return 0;
882 dev = &h->drv[drv_index]->dev;
883 device_initialize(dev);
884 dev->type = &cciss_dev_type;
885 dev->bus = &cciss_bus_type;
886 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
887 dev->parent = &h->dev;
888 h->drv[drv_index]->device_initialized = 1;
889 return device_add(dev);
893 * Remove sysfs entries for a logical drive.
895 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
896 int ctlr_exiting)
898 struct device *dev = &h->drv[drv_index]->dev;
900 /* special case for c*d0, we only destroy it on controller exit */
901 if (drv_index == 0 && !ctlr_exiting)
902 return;
904 device_del(dev);
905 put_device(dev); /* the "final" put. */
906 h->drv[drv_index] = NULL;
910 * For operations that cannot sleep, a command block is allocated at init,
911 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
912 * which ones are free or in use.
914 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
916 CommandList_struct *c;
917 int i;
918 u64bit temp64;
919 dma_addr_t cmd_dma_handle, err_dma_handle;
921 do {
922 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
923 if (i == h->nr_cmds)
924 return NULL;
925 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
926 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
927 c = h->cmd_pool + i;
928 memset(c, 0, sizeof(CommandList_struct));
929 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
930 c->err_info = h->errinfo_pool + i;
931 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
932 err_dma_handle = h->errinfo_pool_dhandle
933 + i * sizeof(ErrorInfo_struct);
934 h->nr_allocs++;
936 c->cmdindex = i;
938 INIT_HLIST_NODE(&c->list);
939 c->busaddr = (__u32) cmd_dma_handle;
940 temp64.val = (__u64) err_dma_handle;
941 c->ErrDesc.Addr.lower = temp64.val32.lower;
942 c->ErrDesc.Addr.upper = temp64.val32.upper;
943 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
945 c->ctlr = h->ctlr;
946 return c;
949 /* allocate a command using pci_alloc_consistent, used for ioctls,
950 * etc., not for the main i/o path.
952 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
954 CommandList_struct *c;
955 u64bit temp64;
956 dma_addr_t cmd_dma_handle, err_dma_handle;
958 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
959 sizeof(CommandList_struct), &cmd_dma_handle);
960 if (c == NULL)
961 return NULL;
962 memset(c, 0, sizeof(CommandList_struct));
964 c->cmdindex = -1;
966 c->err_info = (ErrorInfo_struct *)
967 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
968 &err_dma_handle);
970 if (c->err_info == NULL) {
971 pci_free_consistent(h->pdev,
972 sizeof(CommandList_struct), c, cmd_dma_handle);
973 return NULL;
975 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
977 INIT_HLIST_NODE(&c->list);
978 c->busaddr = (__u32) cmd_dma_handle;
979 temp64.val = (__u64) err_dma_handle;
980 c->ErrDesc.Addr.lower = temp64.val32.lower;
981 c->ErrDesc.Addr.upper = temp64.val32.upper;
982 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
984 c->ctlr = h->ctlr;
985 return c;
988 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
990 int i;
992 i = c - h->cmd_pool;
993 clear_bit(i & (BITS_PER_LONG - 1),
994 h->cmd_pool_bits + (i / BITS_PER_LONG));
995 h->nr_frees++;
998 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1000 u64bit temp64;
1002 temp64.val32.lower = c->ErrDesc.Addr.lower;
1003 temp64.val32.upper = c->ErrDesc.Addr.upper;
1004 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1005 c->err_info, (dma_addr_t) temp64.val);
1006 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
1007 c, (dma_addr_t) c->busaddr);
1010 static inline ctlr_info_t *get_host(struct gendisk *disk)
1012 return disk->queue->queuedata;
1015 static inline drive_info_struct *get_drv(struct gendisk *disk)
1017 return disk->private_data;
1021 * Open. Make sure the device is really there.
1023 static int cciss_open(struct block_device *bdev, fmode_t mode)
1025 ctlr_info_t *h = get_host(bdev->bd_disk);
1026 drive_info_struct *drv = get_drv(bdev->bd_disk);
1028 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1029 if (drv->busy_configuring)
1030 return -EBUSY;
1032 * Root is allowed to open raw volume zero even if it's not configured
1033 * so array config can still work. Root is also allowed to open any
1034 * volume that has a LUN ID, so it can issue IOCTL to reread the
1035 * disk information. I don't think I really like this
1036 * but I'm already using way to many device nodes to claim another one
1037 * for "raw controller".
1039 if (drv->heads == 0) {
1040 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1041 /* if not node 0 make sure it is a partition = 0 */
1042 if (MINOR(bdev->bd_dev) & 0x0f) {
1043 return -ENXIO;
1044 /* if it is, make sure we have a LUN ID */
1045 } else if (memcmp(drv->LunID, CTLR_LUNID,
1046 sizeof(drv->LunID))) {
1047 return -ENXIO;
1050 if (!capable(CAP_SYS_ADMIN))
1051 return -EPERM;
1053 drv->usage_count++;
1054 h->usage_count++;
1055 return 0;
1058 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1060 int ret;
1062 lock_kernel();
1063 ret = cciss_open(bdev, mode);
1064 unlock_kernel();
1066 return ret;
1070 * Close. Sync first.
1072 static int cciss_release(struct gendisk *disk, fmode_t mode)
1074 ctlr_info_t *h;
1075 drive_info_struct *drv;
1077 lock_kernel();
1078 h = get_host(disk);
1079 drv = get_drv(disk);
1080 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1081 drv->usage_count--;
1082 h->usage_count--;
1083 unlock_kernel();
1084 return 0;
1087 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1088 unsigned cmd, unsigned long arg)
1090 int ret;
1091 lock_kernel();
1092 ret = cciss_ioctl(bdev, mode, cmd, arg);
1093 unlock_kernel();
1094 return ret;
1097 #ifdef CONFIG_COMPAT
1099 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1100 unsigned cmd, unsigned long arg);
1101 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1102 unsigned cmd, unsigned long arg);
1104 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1105 unsigned cmd, unsigned long arg)
1107 switch (cmd) {
1108 case CCISS_GETPCIINFO:
1109 case CCISS_GETINTINFO:
1110 case CCISS_SETINTINFO:
1111 case CCISS_GETNODENAME:
1112 case CCISS_SETNODENAME:
1113 case CCISS_GETHEARTBEAT:
1114 case CCISS_GETBUSTYPES:
1115 case CCISS_GETFIRMVER:
1116 case CCISS_GETDRIVVER:
1117 case CCISS_REVALIDVOLS:
1118 case CCISS_DEREGDISK:
1119 case CCISS_REGNEWDISK:
1120 case CCISS_REGNEWD:
1121 case CCISS_RESCANDISK:
1122 case CCISS_GETLUNINFO:
1123 return do_ioctl(bdev, mode, cmd, arg);
1125 case CCISS_PASSTHRU32:
1126 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1127 case CCISS_BIG_PASSTHRU32:
1128 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1130 default:
1131 return -ENOIOCTLCMD;
1135 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1136 unsigned cmd, unsigned long arg)
1138 IOCTL32_Command_struct __user *arg32 =
1139 (IOCTL32_Command_struct __user *) arg;
1140 IOCTL_Command_struct arg64;
1141 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1142 int err;
1143 u32 cp;
1145 err = 0;
1146 err |=
1147 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1148 sizeof(arg64.LUN_info));
1149 err |=
1150 copy_from_user(&arg64.Request, &arg32->Request,
1151 sizeof(arg64.Request));
1152 err |=
1153 copy_from_user(&arg64.error_info, &arg32->error_info,
1154 sizeof(arg64.error_info));
1155 err |= get_user(arg64.buf_size, &arg32->buf_size);
1156 err |= get_user(cp, &arg32->buf);
1157 arg64.buf = compat_ptr(cp);
1158 err |= copy_to_user(p, &arg64, sizeof(arg64));
1160 if (err)
1161 return -EFAULT;
1163 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1164 if (err)
1165 return err;
1166 err |=
1167 copy_in_user(&arg32->error_info, &p->error_info,
1168 sizeof(arg32->error_info));
1169 if (err)
1170 return -EFAULT;
1171 return err;
1174 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1175 unsigned cmd, unsigned long arg)
1177 BIG_IOCTL32_Command_struct __user *arg32 =
1178 (BIG_IOCTL32_Command_struct __user *) arg;
1179 BIG_IOCTL_Command_struct arg64;
1180 BIG_IOCTL_Command_struct __user *p =
1181 compat_alloc_user_space(sizeof(arg64));
1182 int err;
1183 u32 cp;
1185 err = 0;
1186 err |=
1187 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1188 sizeof(arg64.LUN_info));
1189 err |=
1190 copy_from_user(&arg64.Request, &arg32->Request,
1191 sizeof(arg64.Request));
1192 err |=
1193 copy_from_user(&arg64.error_info, &arg32->error_info,
1194 sizeof(arg64.error_info));
1195 err |= get_user(arg64.buf_size, &arg32->buf_size);
1196 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1197 err |= get_user(cp, &arg32->buf);
1198 arg64.buf = compat_ptr(cp);
1199 err |= copy_to_user(p, &arg64, sizeof(arg64));
1201 if (err)
1202 return -EFAULT;
1204 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1205 if (err)
1206 return err;
1207 err |=
1208 copy_in_user(&arg32->error_info, &p->error_info,
1209 sizeof(arg32->error_info));
1210 if (err)
1211 return -EFAULT;
1212 return err;
1214 #endif
1216 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1218 drive_info_struct *drv = get_drv(bdev->bd_disk);
1220 if (!drv->cylinders)
1221 return -ENXIO;
1223 geo->heads = drv->heads;
1224 geo->sectors = drv->sectors;
1225 geo->cylinders = drv->cylinders;
1226 return 0;
1229 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1231 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1232 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1233 (void)check_for_unit_attention(h, c);
1236 * ioctl
1238 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1239 unsigned int cmd, unsigned long arg)
1241 struct gendisk *disk = bdev->bd_disk;
1242 ctlr_info_t *h = get_host(disk);
1243 drive_info_struct *drv = get_drv(disk);
1244 void __user *argp = (void __user *)arg;
1246 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1247 cmd, arg);
1248 switch (cmd) {
1249 case CCISS_GETPCIINFO:
1251 cciss_pci_info_struct pciinfo;
1253 if (!arg)
1254 return -EINVAL;
1255 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1256 pciinfo.bus = h->pdev->bus->number;
1257 pciinfo.dev_fn = h->pdev->devfn;
1258 pciinfo.board_id = h->board_id;
1259 if (copy_to_user
1260 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1261 return -EFAULT;
1262 return 0;
1264 case CCISS_GETINTINFO:
1266 cciss_coalint_struct intinfo;
1267 if (!arg)
1268 return -EINVAL;
1269 intinfo.delay =
1270 readl(&h->cfgtable->HostWrite.CoalIntDelay);
1271 intinfo.count =
1272 readl(&h->cfgtable->HostWrite.CoalIntCount);
1273 if (copy_to_user
1274 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1275 return -EFAULT;
1276 return 0;
1278 case CCISS_SETINTINFO:
1280 cciss_coalint_struct intinfo;
1281 unsigned long flags;
1282 int i;
1284 if (!arg)
1285 return -EINVAL;
1286 if (!capable(CAP_SYS_ADMIN))
1287 return -EPERM;
1288 if (copy_from_user
1289 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1290 return -EFAULT;
1291 if ((intinfo.delay == 0) && (intinfo.count == 0))
1292 return -EINVAL;
1293 spin_lock_irqsave(&h->lock, flags);
1294 /* Update the field, and then ring the doorbell */
1295 writel(intinfo.delay,
1296 &(h->cfgtable->HostWrite.CoalIntDelay));
1297 writel(intinfo.count,
1298 &(h->cfgtable->HostWrite.CoalIntCount));
1299 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1301 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1302 if (!(readl(h->vaddr + SA5_DOORBELL)
1303 & CFGTBL_ChangeReq))
1304 break;
1305 /* delay and try again */
1306 udelay(1000);
1308 spin_unlock_irqrestore(&h->lock, flags);
1309 if (i >= MAX_IOCTL_CONFIG_WAIT)
1310 return -EAGAIN;
1311 return 0;
1313 case CCISS_GETNODENAME:
1315 NodeName_type NodeName;
1316 int i;
1318 if (!arg)
1319 return -EINVAL;
1320 for (i = 0; i < 16; i++)
1321 NodeName[i] =
1322 readb(&h->cfgtable->ServerName[i]);
1323 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1324 return -EFAULT;
1325 return 0;
1327 case CCISS_SETNODENAME:
1329 NodeName_type NodeName;
1330 unsigned long flags;
1331 int i;
1333 if (!arg)
1334 return -EINVAL;
1335 if (!capable(CAP_SYS_ADMIN))
1336 return -EPERM;
1338 if (copy_from_user
1339 (NodeName, argp, sizeof(NodeName_type)))
1340 return -EFAULT;
1342 spin_lock_irqsave(&h->lock, flags);
1344 /* Update the field, and then ring the doorbell */
1345 for (i = 0; i < 16; i++)
1346 writeb(NodeName[i],
1347 &h->cfgtable->ServerName[i]);
1349 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1351 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1352 if (!(readl(h->vaddr + SA5_DOORBELL)
1353 & CFGTBL_ChangeReq))
1354 break;
1355 /* delay and try again */
1356 udelay(1000);
1358 spin_unlock_irqrestore(&h->lock, flags);
1359 if (i >= MAX_IOCTL_CONFIG_WAIT)
1360 return -EAGAIN;
1361 return 0;
1364 case CCISS_GETHEARTBEAT:
1366 Heartbeat_type heartbeat;
1368 if (!arg)
1369 return -EINVAL;
1370 heartbeat = readl(&h->cfgtable->HeartBeat);
1371 if (copy_to_user
1372 (argp, &heartbeat, sizeof(Heartbeat_type)))
1373 return -EFAULT;
1374 return 0;
1376 case CCISS_GETBUSTYPES:
1378 BusTypes_type BusTypes;
1380 if (!arg)
1381 return -EINVAL;
1382 BusTypes = readl(&h->cfgtable->BusTypes);
1383 if (copy_to_user
1384 (argp, &BusTypes, sizeof(BusTypes_type)))
1385 return -EFAULT;
1386 return 0;
1388 case CCISS_GETFIRMVER:
1390 FirmwareVer_type firmware;
1392 if (!arg)
1393 return -EINVAL;
1394 memcpy(firmware, h->firm_ver, 4);
1396 if (copy_to_user
1397 (argp, firmware, sizeof(FirmwareVer_type)))
1398 return -EFAULT;
1399 return 0;
1401 case CCISS_GETDRIVVER:
1403 DriverVer_type DriverVer = DRIVER_VERSION;
1405 if (!arg)
1406 return -EINVAL;
1408 if (copy_to_user
1409 (argp, &DriverVer, sizeof(DriverVer_type)))
1410 return -EFAULT;
1411 return 0;
1414 case CCISS_DEREGDISK:
1415 case CCISS_REGNEWD:
1416 case CCISS_REVALIDVOLS:
1417 return rebuild_lun_table(h, 0, 1);
1419 case CCISS_GETLUNINFO:{
1420 LogvolInfo_struct luninfo;
1422 memcpy(&luninfo.LunID, drv->LunID,
1423 sizeof(luninfo.LunID));
1424 luninfo.num_opens = drv->usage_count;
1425 luninfo.num_parts = 0;
1426 if (copy_to_user(argp, &luninfo,
1427 sizeof(LogvolInfo_struct)))
1428 return -EFAULT;
1429 return 0;
1431 case CCISS_PASSTHRU:
1433 IOCTL_Command_struct iocommand;
1434 CommandList_struct *c;
1435 char *buff = NULL;
1436 u64bit temp64;
1437 DECLARE_COMPLETION_ONSTACK(wait);
1439 if (!arg)
1440 return -EINVAL;
1442 if (!capable(CAP_SYS_RAWIO))
1443 return -EPERM;
1445 if (copy_from_user
1446 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1447 return -EFAULT;
1448 if ((iocommand.buf_size < 1) &&
1449 (iocommand.Request.Type.Direction != XFER_NONE)) {
1450 return -EINVAL;
1452 if (iocommand.buf_size > 0) {
1453 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1454 if (buff == NULL)
1455 return -EFAULT;
1457 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1458 /* Copy the data into the buffer we created */
1459 if (copy_from_user
1460 (buff, iocommand.buf, iocommand.buf_size)) {
1461 kfree(buff);
1462 return -EFAULT;
1464 } else {
1465 memset(buff, 0, iocommand.buf_size);
1467 c = cmd_special_alloc(h);
1468 if (!c) {
1469 kfree(buff);
1470 return -ENOMEM;
1472 /* Fill in the command type */
1473 c->cmd_type = CMD_IOCTL_PEND;
1474 /* Fill in Command Header */
1475 c->Header.ReplyQueue = 0; /* unused in simple mode */
1476 if (iocommand.buf_size > 0) /* buffer to fill */
1478 c->Header.SGList = 1;
1479 c->Header.SGTotal = 1;
1480 } else /* no buffers to fill */
1482 c->Header.SGList = 0;
1483 c->Header.SGTotal = 0;
1485 c->Header.LUN = iocommand.LUN_info;
1486 /* use the kernel address the cmd block for tag */
1487 c->Header.Tag.lower = c->busaddr;
1489 /* Fill in Request block */
1490 c->Request = iocommand.Request;
1492 /* Fill in the scatter gather information */
1493 if (iocommand.buf_size > 0) {
1494 temp64.val = pci_map_single(h->pdev, buff,
1495 iocommand.buf_size,
1496 PCI_DMA_BIDIRECTIONAL);
1497 c->SG[0].Addr.lower = temp64.val32.lower;
1498 c->SG[0].Addr.upper = temp64.val32.upper;
1499 c->SG[0].Len = iocommand.buf_size;
1500 c->SG[0].Ext = 0; /* we are not chaining */
1502 c->waiting = &wait;
1504 enqueue_cmd_and_start_io(h, c);
1505 wait_for_completion(&wait);
1507 /* unlock the buffers from DMA */
1508 temp64.val32.lower = c->SG[0].Addr.lower;
1509 temp64.val32.upper = c->SG[0].Addr.upper;
1510 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val,
1511 iocommand.buf_size,
1512 PCI_DMA_BIDIRECTIONAL);
1514 check_ioctl_unit_attention(h, c);
1516 /* Copy the error information out */
1517 iocommand.error_info = *(c->err_info);
1518 if (copy_to_user
1519 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1520 kfree(buff);
1521 cmd_special_free(h, c);
1522 return -EFAULT;
1525 if (iocommand.Request.Type.Direction == XFER_READ) {
1526 /* Copy the data out of the buffer we created */
1527 if (copy_to_user
1528 (iocommand.buf, buff, iocommand.buf_size)) {
1529 kfree(buff);
1530 cmd_special_free(h, c);
1531 return -EFAULT;
1534 kfree(buff);
1535 cmd_special_free(h, c);
1536 return 0;
1538 case CCISS_BIG_PASSTHRU:{
1539 BIG_IOCTL_Command_struct *ioc;
1540 CommandList_struct *c;
1541 unsigned char **buff = NULL;
1542 int *buff_size = NULL;
1543 u64bit temp64;
1544 BYTE sg_used = 0;
1545 int status = 0;
1546 int i;
1547 DECLARE_COMPLETION_ONSTACK(wait);
1548 __u32 left;
1549 __u32 sz;
1550 BYTE __user *data_ptr;
1552 if (!arg)
1553 return -EINVAL;
1554 if (!capable(CAP_SYS_RAWIO))
1555 return -EPERM;
1556 ioc = (BIG_IOCTL_Command_struct *)
1557 kmalloc(sizeof(*ioc), GFP_KERNEL);
1558 if (!ioc) {
1559 status = -ENOMEM;
1560 goto cleanup1;
1562 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1563 status = -EFAULT;
1564 goto cleanup1;
1566 if ((ioc->buf_size < 1) &&
1567 (ioc->Request.Type.Direction != XFER_NONE)) {
1568 status = -EINVAL;
1569 goto cleanup1;
1571 /* Check kmalloc limits using all SGs */
1572 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1573 status = -EINVAL;
1574 goto cleanup1;
1576 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1577 status = -EINVAL;
1578 goto cleanup1;
1580 buff =
1581 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1582 if (!buff) {
1583 status = -ENOMEM;
1584 goto cleanup1;
1586 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1587 GFP_KERNEL);
1588 if (!buff_size) {
1589 status = -ENOMEM;
1590 goto cleanup1;
1592 left = ioc->buf_size;
1593 data_ptr = ioc->buf;
1594 while (left) {
1595 sz = (left >
1596 ioc->malloc_size) ? ioc->
1597 malloc_size : left;
1598 buff_size[sg_used] = sz;
1599 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1600 if (buff[sg_used] == NULL) {
1601 status = -ENOMEM;
1602 goto cleanup1;
1604 if (ioc->Request.Type.Direction == XFER_WRITE) {
1605 if (copy_from_user
1606 (buff[sg_used], data_ptr, sz)) {
1607 status = -EFAULT;
1608 goto cleanup1;
1610 } else {
1611 memset(buff[sg_used], 0, sz);
1613 left -= sz;
1614 data_ptr += sz;
1615 sg_used++;
1617 c = cmd_special_alloc(h);
1618 if (!c) {
1619 status = -ENOMEM;
1620 goto cleanup1;
1622 c->cmd_type = CMD_IOCTL_PEND;
1623 c->Header.ReplyQueue = 0;
1625 if (ioc->buf_size > 0) {
1626 c->Header.SGList = sg_used;
1627 c->Header.SGTotal = sg_used;
1628 } else {
1629 c->Header.SGList = 0;
1630 c->Header.SGTotal = 0;
1632 c->Header.LUN = ioc->LUN_info;
1633 c->Header.Tag.lower = c->busaddr;
1635 c->Request = ioc->Request;
1636 if (ioc->buf_size > 0) {
1637 for (i = 0; i < sg_used; i++) {
1638 temp64.val =
1639 pci_map_single(h->pdev, buff[i],
1640 buff_size[i],
1641 PCI_DMA_BIDIRECTIONAL);
1642 c->SG[i].Addr.lower =
1643 temp64.val32.lower;
1644 c->SG[i].Addr.upper =
1645 temp64.val32.upper;
1646 c->SG[i].Len = buff_size[i];
1647 c->SG[i].Ext = 0; /* we are not chaining */
1650 c->waiting = &wait;
1651 enqueue_cmd_and_start_io(h, c);
1652 wait_for_completion(&wait);
1653 /* unlock the buffers from DMA */
1654 for (i = 0; i < sg_used; i++) {
1655 temp64.val32.lower = c->SG[i].Addr.lower;
1656 temp64.val32.upper = c->SG[i].Addr.upper;
1657 pci_unmap_single(h->pdev,
1658 (dma_addr_t) temp64.val, buff_size[i],
1659 PCI_DMA_BIDIRECTIONAL);
1661 check_ioctl_unit_attention(h, c);
1662 /* Copy the error information out */
1663 ioc->error_info = *(c->err_info);
1664 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1665 cmd_special_free(h, c);
1666 status = -EFAULT;
1667 goto cleanup1;
1669 if (ioc->Request.Type.Direction == XFER_READ) {
1670 /* Copy the data out of the buffer we created */
1671 BYTE __user *ptr = ioc->buf;
1672 for (i = 0; i < sg_used; i++) {
1673 if (copy_to_user
1674 (ptr, buff[i], buff_size[i])) {
1675 cmd_special_free(h, c);
1676 status = -EFAULT;
1677 goto cleanup1;
1679 ptr += buff_size[i];
1682 cmd_special_free(h, c);
1683 status = 0;
1684 cleanup1:
1685 if (buff) {
1686 for (i = 0; i < sg_used; i++)
1687 kfree(buff[i]);
1688 kfree(buff);
1690 kfree(buff_size);
1691 kfree(ioc);
1692 return status;
1695 /* scsi_cmd_ioctl handles these, below, though some are not */
1696 /* very meaningful for cciss. SG_IO is the main one people want. */
1698 case SG_GET_VERSION_NUM:
1699 case SG_SET_TIMEOUT:
1700 case SG_GET_TIMEOUT:
1701 case SG_GET_RESERVED_SIZE:
1702 case SG_SET_RESERVED_SIZE:
1703 case SG_EMULATED_HOST:
1704 case SG_IO:
1705 case SCSI_IOCTL_SEND_COMMAND:
1706 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1708 /* scsi_cmd_ioctl would normally handle these, below, but */
1709 /* they aren't a good fit for cciss, as CD-ROMs are */
1710 /* not supported, and we don't have any bus/target/lun */
1711 /* which we present to the kernel. */
1713 case CDROM_SEND_PACKET:
1714 case CDROMCLOSETRAY:
1715 case CDROMEJECT:
1716 case SCSI_IOCTL_GET_IDLUN:
1717 case SCSI_IOCTL_GET_BUS_NUMBER:
1718 default:
1719 return -ENOTTY;
1723 static void cciss_check_queues(ctlr_info_t *h)
1725 int start_queue = h->next_to_run;
1726 int i;
1728 /* check to see if we have maxed out the number of commands that can
1729 * be placed on the queue. If so then exit. We do this check here
1730 * in case the interrupt we serviced was from an ioctl and did not
1731 * free any new commands.
1733 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1734 return;
1736 /* We have room on the queue for more commands. Now we need to queue
1737 * them up. We will also keep track of the next queue to run so
1738 * that every queue gets a chance to be started first.
1740 for (i = 0; i < h->highest_lun + 1; i++) {
1741 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1742 /* make sure the disk has been added and the drive is real
1743 * because this can be called from the middle of init_one.
1745 if (!h->drv[curr_queue])
1746 continue;
1747 if (!(h->drv[curr_queue]->queue) ||
1748 !(h->drv[curr_queue]->heads))
1749 continue;
1750 blk_start_queue(h->gendisk[curr_queue]->queue);
1752 /* check to see if we have maxed out the number of commands
1753 * that can be placed on the queue.
1755 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1756 if (curr_queue == start_queue) {
1757 h->next_to_run =
1758 (start_queue + 1) % (h->highest_lun + 1);
1759 break;
1760 } else {
1761 h->next_to_run = curr_queue;
1762 break;
1768 static void cciss_softirq_done(struct request *rq)
1770 CommandList_struct *c = rq->completion_data;
1771 ctlr_info_t *h = hba[c->ctlr];
1772 SGDescriptor_struct *curr_sg = c->SG;
1773 u64bit temp64;
1774 unsigned long flags;
1775 int i, ddir;
1776 int sg_index = 0;
1778 if (c->Request.Type.Direction == XFER_READ)
1779 ddir = PCI_DMA_FROMDEVICE;
1780 else
1781 ddir = PCI_DMA_TODEVICE;
1783 /* command did not need to be retried */
1784 /* unmap the DMA mapping for all the scatter gather elements */
1785 for (i = 0; i < c->Header.SGList; i++) {
1786 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1787 cciss_unmap_sg_chain_block(h, c);
1788 /* Point to the next block */
1789 curr_sg = h->cmd_sg_list[c->cmdindex];
1790 sg_index = 0;
1792 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1793 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1794 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1795 ddir);
1796 ++sg_index;
1799 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1801 /* set the residual count for pc requests */
1802 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1803 rq->resid_len = c->err_info->ResidualCnt;
1805 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1807 spin_lock_irqsave(&h->lock, flags);
1808 cmd_free(h, c);
1809 cciss_check_queues(h);
1810 spin_unlock_irqrestore(&h->lock, flags);
1813 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1814 unsigned char scsi3addr[], uint32_t log_unit)
1816 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1817 sizeof(h->drv[log_unit]->LunID));
1820 /* This function gets the SCSI vendor, model, and revision of a logical drive
1821 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1822 * they cannot be read.
1824 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1825 char *vendor, char *model, char *rev)
1827 int rc;
1828 InquiryData_struct *inq_buf;
1829 unsigned char scsi3addr[8];
1831 *vendor = '\0';
1832 *model = '\0';
1833 *rev = '\0';
1835 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1836 if (!inq_buf)
1837 return;
1839 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1840 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1841 scsi3addr, TYPE_CMD);
1842 if (rc == IO_OK) {
1843 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1844 vendor[VENDOR_LEN] = '\0';
1845 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1846 model[MODEL_LEN] = '\0';
1847 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1848 rev[REV_LEN] = '\0';
1851 kfree(inq_buf);
1852 return;
1855 /* This function gets the serial number of a logical drive via
1856 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1857 * number cannot be had, for whatever reason, 16 bytes of 0xff
1858 * are returned instead.
1860 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1861 unsigned char *serial_no, int buflen)
1863 #define PAGE_83_INQ_BYTES 64
1864 int rc;
1865 unsigned char *buf;
1866 unsigned char scsi3addr[8];
1868 if (buflen > 16)
1869 buflen = 16;
1870 memset(serial_no, 0xff, buflen);
1871 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1872 if (!buf)
1873 return;
1874 memset(serial_no, 0, buflen);
1875 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1876 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1877 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1878 if (rc == IO_OK)
1879 memcpy(serial_no, &buf[8], buflen);
1880 kfree(buf);
1881 return;
1885 * cciss_add_disk sets up the block device queue for a logical drive
1887 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1888 int drv_index)
1890 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1891 if (!disk->queue)
1892 goto init_queue_failure;
1893 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1894 disk->major = h->major;
1895 disk->first_minor = drv_index << NWD_SHIFT;
1896 disk->fops = &cciss_fops;
1897 if (cciss_create_ld_sysfs_entry(h, drv_index))
1898 goto cleanup_queue;
1899 disk->private_data = h->drv[drv_index];
1900 disk->driverfs_dev = &h->drv[drv_index]->dev;
1902 /* Set up queue information */
1903 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1905 /* This is a hardware imposed limit. */
1906 blk_queue_max_segments(disk->queue, h->maxsgentries);
1908 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1910 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1912 disk->queue->queuedata = h;
1914 blk_queue_logical_block_size(disk->queue,
1915 h->drv[drv_index]->block_size);
1917 /* Make sure all queue data is written out before */
1918 /* setting h->drv[drv_index]->queue, as setting this */
1919 /* allows the interrupt handler to start the queue */
1920 wmb();
1921 h->drv[drv_index]->queue = disk->queue;
1922 add_disk(disk);
1923 return 0;
1925 cleanup_queue:
1926 blk_cleanup_queue(disk->queue);
1927 disk->queue = NULL;
1928 init_queue_failure:
1929 return -1;
1932 /* This function will check the usage_count of the drive to be updated/added.
1933 * If the usage_count is zero and it is a heretofore unknown drive, or,
1934 * the drive's capacity, geometry, or serial number has changed,
1935 * then the drive information will be updated and the disk will be
1936 * re-registered with the kernel. If these conditions don't hold,
1937 * then it will be left alone for the next reboot. The exception to this
1938 * is disk 0 which will always be left registered with the kernel since it
1939 * is also the controller node. Any changes to disk 0 will show up on
1940 * the next reboot.
1942 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1943 int first_time, int via_ioctl)
1945 struct gendisk *disk;
1946 InquiryData_struct *inq_buff = NULL;
1947 unsigned int block_size;
1948 sector_t total_size;
1949 unsigned long flags = 0;
1950 int ret = 0;
1951 drive_info_struct *drvinfo;
1953 /* Get information about the disk and modify the driver structure */
1954 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1955 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1956 if (inq_buff == NULL || drvinfo == NULL)
1957 goto mem_msg;
1959 /* testing to see if 16-byte CDBs are already being used */
1960 if (h->cciss_read == CCISS_READ_16) {
1961 cciss_read_capacity_16(h, drv_index,
1962 &total_size, &block_size);
1964 } else {
1965 cciss_read_capacity(h, drv_index, &total_size, &block_size);
1966 /* if read_capacity returns all F's this volume is >2TB */
1967 /* in size so we switch to 16-byte CDB's for all */
1968 /* read/write ops */
1969 if (total_size == 0xFFFFFFFFULL) {
1970 cciss_read_capacity_16(h, drv_index,
1971 &total_size, &block_size);
1972 h->cciss_read = CCISS_READ_16;
1973 h->cciss_write = CCISS_WRITE_16;
1974 } else {
1975 h->cciss_read = CCISS_READ_10;
1976 h->cciss_write = CCISS_WRITE_10;
1980 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
1981 inq_buff, drvinfo);
1982 drvinfo->block_size = block_size;
1983 drvinfo->nr_blocks = total_size + 1;
1985 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
1986 drvinfo->model, drvinfo->rev);
1987 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
1988 sizeof(drvinfo->serial_no));
1989 /* Save the lunid in case we deregister the disk, below. */
1990 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1991 sizeof(drvinfo->LunID));
1993 /* Is it the same disk we already know, and nothing's changed? */
1994 if (h->drv[drv_index]->raid_level != -1 &&
1995 ((memcmp(drvinfo->serial_no,
1996 h->drv[drv_index]->serial_no, 16) == 0) &&
1997 drvinfo->block_size == h->drv[drv_index]->block_size &&
1998 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1999 drvinfo->heads == h->drv[drv_index]->heads &&
2000 drvinfo->sectors == h->drv[drv_index]->sectors &&
2001 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2002 /* The disk is unchanged, nothing to update */
2003 goto freeret;
2005 /* If we get here it's not the same disk, or something's changed,
2006 * so we need to * deregister it, and re-register it, if it's not
2007 * in use.
2008 * If the disk already exists then deregister it before proceeding
2009 * (unless it's the first disk (for the controller node).
2011 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2012 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2013 spin_lock_irqsave(&h->lock, flags);
2014 h->drv[drv_index]->busy_configuring = 1;
2015 spin_unlock_irqrestore(&h->lock, flags);
2017 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2018 * which keeps the interrupt handler from starting
2019 * the queue.
2021 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2024 /* If the disk is in use return */
2025 if (ret)
2026 goto freeret;
2028 /* Save the new information from cciss_geometry_inquiry
2029 * and serial number inquiry. If the disk was deregistered
2030 * above, then h->drv[drv_index] will be NULL.
2032 if (h->drv[drv_index] == NULL) {
2033 drvinfo->device_initialized = 0;
2034 h->drv[drv_index] = drvinfo;
2035 drvinfo = NULL; /* so it won't be freed below. */
2036 } else {
2037 /* special case for cxd0 */
2038 h->drv[drv_index]->block_size = drvinfo->block_size;
2039 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2040 h->drv[drv_index]->heads = drvinfo->heads;
2041 h->drv[drv_index]->sectors = drvinfo->sectors;
2042 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2043 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2044 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2045 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2046 VENDOR_LEN + 1);
2047 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2048 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2051 ++h->num_luns;
2052 disk = h->gendisk[drv_index];
2053 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2055 /* If it's not disk 0 (drv_index != 0)
2056 * or if it was disk 0, but there was previously
2057 * no actual corresponding configured logical drive
2058 * (raid_leve == -1) then we want to update the
2059 * logical drive's information.
2061 if (drv_index || first_time) {
2062 if (cciss_add_disk(h, disk, drv_index) != 0) {
2063 cciss_free_gendisk(h, drv_index);
2064 cciss_free_drive_info(h, drv_index);
2065 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2066 drv_index);
2067 --h->num_luns;
2071 freeret:
2072 kfree(inq_buff);
2073 kfree(drvinfo);
2074 return;
2075 mem_msg:
2076 dev_err(&h->pdev->dev, "out of memory\n");
2077 goto freeret;
2080 /* This function will find the first index of the controllers drive array
2081 * that has a null drv pointer and allocate the drive info struct and
2082 * will return that index This is where new drives will be added.
2083 * If the index to be returned is greater than the highest_lun index for
2084 * the controller then highest_lun is set * to this new index.
2085 * If there are no available indexes or if tha allocation fails, then -1
2086 * is returned. * "controller_node" is used to know if this is a real
2087 * logical drive, or just the controller node, which determines if this
2088 * counts towards highest_lun.
2090 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2092 int i;
2093 drive_info_struct *drv;
2095 /* Search for an empty slot for our drive info */
2096 for (i = 0; i < CISS_MAX_LUN; i++) {
2098 /* if not cxd0 case, and it's occupied, skip it. */
2099 if (h->drv[i] && i != 0)
2100 continue;
2102 * If it's cxd0 case, and drv is alloc'ed already, and a
2103 * disk is configured there, skip it.
2105 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2106 continue;
2109 * We've found an empty slot. Update highest_lun
2110 * provided this isn't just the fake cxd0 controller node.
2112 if (i > h->highest_lun && !controller_node)
2113 h->highest_lun = i;
2115 /* If adding a real disk at cxd0, and it's already alloc'ed */
2116 if (i == 0 && h->drv[i] != NULL)
2117 return i;
2120 * Found an empty slot, not already alloc'ed. Allocate it.
2121 * Mark it with raid_level == -1, so we know it's new later on.
2123 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2124 if (!drv)
2125 return -1;
2126 drv->raid_level = -1; /* so we know it's new */
2127 h->drv[i] = drv;
2128 return i;
2130 return -1;
2133 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2135 kfree(h->drv[drv_index]);
2136 h->drv[drv_index] = NULL;
2139 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2141 put_disk(h->gendisk[drv_index]);
2142 h->gendisk[drv_index] = NULL;
2145 /* cciss_add_gendisk finds a free hba[]->drv structure
2146 * and allocates a gendisk if needed, and sets the lunid
2147 * in the drvinfo structure. It returns the index into
2148 * the ->drv[] array, or -1 if none are free.
2149 * is_controller_node indicates whether highest_lun should
2150 * count this disk, or if it's only being added to provide
2151 * a means to talk to the controller in case no logical
2152 * drives have yet been configured.
2154 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2155 int controller_node)
2157 int drv_index;
2159 drv_index = cciss_alloc_drive_info(h, controller_node);
2160 if (drv_index == -1)
2161 return -1;
2163 /*Check if the gendisk needs to be allocated */
2164 if (!h->gendisk[drv_index]) {
2165 h->gendisk[drv_index] =
2166 alloc_disk(1 << NWD_SHIFT);
2167 if (!h->gendisk[drv_index]) {
2168 dev_err(&h->pdev->dev,
2169 "could not allocate a new disk %d\n",
2170 drv_index);
2171 goto err_free_drive_info;
2174 memcpy(h->drv[drv_index]->LunID, lunid,
2175 sizeof(h->drv[drv_index]->LunID));
2176 if (cciss_create_ld_sysfs_entry(h, drv_index))
2177 goto err_free_disk;
2178 /* Don't need to mark this busy because nobody */
2179 /* else knows about this disk yet to contend */
2180 /* for access to it. */
2181 h->drv[drv_index]->busy_configuring = 0;
2182 wmb();
2183 return drv_index;
2185 err_free_disk:
2186 cciss_free_gendisk(h, drv_index);
2187 err_free_drive_info:
2188 cciss_free_drive_info(h, drv_index);
2189 return -1;
2192 /* This is for the special case of a controller which
2193 * has no logical drives. In this case, we still need
2194 * to register a disk so the controller can be accessed
2195 * by the Array Config Utility.
2197 static void cciss_add_controller_node(ctlr_info_t *h)
2199 struct gendisk *disk;
2200 int drv_index;
2202 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2203 return;
2205 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2206 if (drv_index == -1)
2207 goto error;
2208 h->drv[drv_index]->block_size = 512;
2209 h->drv[drv_index]->nr_blocks = 0;
2210 h->drv[drv_index]->heads = 0;
2211 h->drv[drv_index]->sectors = 0;
2212 h->drv[drv_index]->cylinders = 0;
2213 h->drv[drv_index]->raid_level = -1;
2214 memset(h->drv[drv_index]->serial_no, 0, 16);
2215 disk = h->gendisk[drv_index];
2216 if (cciss_add_disk(h, disk, drv_index) == 0)
2217 return;
2218 cciss_free_gendisk(h, drv_index);
2219 cciss_free_drive_info(h, drv_index);
2220 error:
2221 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2222 return;
2225 /* This function will add and remove logical drives from the Logical
2226 * drive array of the controller and maintain persistency of ordering
2227 * so that mount points are preserved until the next reboot. This allows
2228 * for the removal of logical drives in the middle of the drive array
2229 * without a re-ordering of those drives.
2230 * INPUT
2231 * h = The controller to perform the operations on
2233 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2234 int via_ioctl)
2236 int num_luns;
2237 ReportLunData_struct *ld_buff = NULL;
2238 int return_code;
2239 int listlength = 0;
2240 int i;
2241 int drv_found;
2242 int drv_index = 0;
2243 unsigned char lunid[8] = CTLR_LUNID;
2244 unsigned long flags;
2246 if (!capable(CAP_SYS_RAWIO))
2247 return -EPERM;
2249 /* Set busy_configuring flag for this operation */
2250 spin_lock_irqsave(&h->lock, flags);
2251 if (h->busy_configuring) {
2252 spin_unlock_irqrestore(&h->lock, flags);
2253 return -EBUSY;
2255 h->busy_configuring = 1;
2256 spin_unlock_irqrestore(&h->lock, flags);
2258 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2259 if (ld_buff == NULL)
2260 goto mem_msg;
2262 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2263 sizeof(ReportLunData_struct),
2264 0, CTLR_LUNID, TYPE_CMD);
2266 if (return_code == IO_OK)
2267 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2268 else { /* reading number of logical volumes failed */
2269 dev_warn(&h->pdev->dev,
2270 "report logical volume command failed\n");
2271 listlength = 0;
2272 goto freeret;
2275 num_luns = listlength / 8; /* 8 bytes per entry */
2276 if (num_luns > CISS_MAX_LUN) {
2277 num_luns = CISS_MAX_LUN;
2278 dev_warn(&h->pdev->dev, "more luns configured"
2279 " on controller than can be handled by"
2280 " this driver.\n");
2283 if (num_luns == 0)
2284 cciss_add_controller_node(h);
2286 /* Compare controller drive array to driver's drive array
2287 * to see if any drives are missing on the controller due
2288 * to action of Array Config Utility (user deletes drive)
2289 * and deregister logical drives which have disappeared.
2291 for (i = 0; i <= h->highest_lun; i++) {
2292 int j;
2293 drv_found = 0;
2295 /* skip holes in the array from already deleted drives */
2296 if (h->drv[i] == NULL)
2297 continue;
2299 for (j = 0; j < num_luns; j++) {
2300 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2301 if (memcmp(h->drv[i]->LunID, lunid,
2302 sizeof(lunid)) == 0) {
2303 drv_found = 1;
2304 break;
2307 if (!drv_found) {
2308 /* Deregister it from the OS, it's gone. */
2309 spin_lock_irqsave(&h->lock, flags);
2310 h->drv[i]->busy_configuring = 1;
2311 spin_unlock_irqrestore(&h->lock, flags);
2312 return_code = deregister_disk(h, i, 1, via_ioctl);
2313 if (h->drv[i] != NULL)
2314 h->drv[i]->busy_configuring = 0;
2318 /* Compare controller drive array to driver's drive array.
2319 * Check for updates in the drive information and any new drives
2320 * on the controller due to ACU adding logical drives, or changing
2321 * a logical drive's size, etc. Reregister any new/changed drives
2323 for (i = 0; i < num_luns; i++) {
2324 int j;
2326 drv_found = 0;
2328 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2329 /* Find if the LUN is already in the drive array
2330 * of the driver. If so then update its info
2331 * if not in use. If it does not exist then find
2332 * the first free index and add it.
2334 for (j = 0; j <= h->highest_lun; j++) {
2335 if (h->drv[j] != NULL &&
2336 memcmp(h->drv[j]->LunID, lunid,
2337 sizeof(h->drv[j]->LunID)) == 0) {
2338 drv_index = j;
2339 drv_found = 1;
2340 break;
2344 /* check if the drive was found already in the array */
2345 if (!drv_found) {
2346 drv_index = cciss_add_gendisk(h, lunid, 0);
2347 if (drv_index == -1)
2348 goto freeret;
2350 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2351 } /* end for */
2353 freeret:
2354 kfree(ld_buff);
2355 h->busy_configuring = 0;
2356 /* We return -1 here to tell the ACU that we have registered/updated
2357 * all of the drives that we can and to keep it from calling us
2358 * additional times.
2360 return -1;
2361 mem_msg:
2362 dev_err(&h->pdev->dev, "out of memory\n");
2363 h->busy_configuring = 0;
2364 goto freeret;
2367 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2369 /* zero out the disk size info */
2370 drive_info->nr_blocks = 0;
2371 drive_info->block_size = 0;
2372 drive_info->heads = 0;
2373 drive_info->sectors = 0;
2374 drive_info->cylinders = 0;
2375 drive_info->raid_level = -1;
2376 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2377 memset(drive_info->model, 0, sizeof(drive_info->model));
2378 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2379 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2381 * don't clear the LUNID though, we need to remember which
2382 * one this one is.
2386 /* This function will deregister the disk and it's queue from the
2387 * kernel. It must be called with the controller lock held and the
2388 * drv structures busy_configuring flag set. It's parameters are:
2390 * disk = This is the disk to be deregistered
2391 * drv = This is the drive_info_struct associated with the disk to be
2392 * deregistered. It contains information about the disk used
2393 * by the driver.
2394 * clear_all = This flag determines whether or not the disk information
2395 * is going to be completely cleared out and the highest_lun
2396 * reset. Sometimes we want to clear out information about
2397 * the disk in preparation for re-adding it. In this case
2398 * the highest_lun should be left unchanged and the LunID
2399 * should not be cleared.
2400 * via_ioctl
2401 * This indicates whether we've reached this path via ioctl.
2402 * This affects the maximum usage count allowed for c0d0 to be messed with.
2403 * If this path is reached via ioctl(), then the max_usage_count will
2404 * be 1, as the process calling ioctl() has got to have the device open.
2405 * If we get here via sysfs, then the max usage count will be zero.
2407 static int deregister_disk(ctlr_info_t *h, int drv_index,
2408 int clear_all, int via_ioctl)
2410 int i;
2411 struct gendisk *disk;
2412 drive_info_struct *drv;
2413 int recalculate_highest_lun;
2415 if (!capable(CAP_SYS_RAWIO))
2416 return -EPERM;
2418 drv = h->drv[drv_index];
2419 disk = h->gendisk[drv_index];
2421 /* make sure logical volume is NOT is use */
2422 if (clear_all || (h->gendisk[0] == disk)) {
2423 if (drv->usage_count > via_ioctl)
2424 return -EBUSY;
2425 } else if (drv->usage_count > 0)
2426 return -EBUSY;
2428 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2430 /* invalidate the devices and deregister the disk. If it is disk
2431 * zero do not deregister it but just zero out it's values. This
2432 * allows us to delete disk zero but keep the controller registered.
2434 if (h->gendisk[0] != disk) {
2435 struct request_queue *q = disk->queue;
2436 if (disk->flags & GENHD_FL_UP) {
2437 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2438 del_gendisk(disk);
2440 if (q)
2441 blk_cleanup_queue(q);
2442 /* If clear_all is set then we are deleting the logical
2443 * drive, not just refreshing its info. For drives
2444 * other than disk 0 we will call put_disk. We do not
2445 * do this for disk 0 as we need it to be able to
2446 * configure the controller.
2448 if (clear_all){
2449 /* This isn't pretty, but we need to find the
2450 * disk in our array and NULL our the pointer.
2451 * This is so that we will call alloc_disk if
2452 * this index is used again later.
2454 for (i=0; i < CISS_MAX_LUN; i++){
2455 if (h->gendisk[i] == disk) {
2456 h->gendisk[i] = NULL;
2457 break;
2460 put_disk(disk);
2462 } else {
2463 set_capacity(disk, 0);
2464 cciss_clear_drive_info(drv);
2467 --h->num_luns;
2469 /* if it was the last disk, find the new hightest lun */
2470 if (clear_all && recalculate_highest_lun) {
2471 int newhighest = -1;
2472 for (i = 0; i <= h->highest_lun; i++) {
2473 /* if the disk has size > 0, it is available */
2474 if (h->drv[i] && h->drv[i]->heads)
2475 newhighest = i;
2477 h->highest_lun = newhighest;
2479 return 0;
2482 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2483 size_t size, __u8 page_code, unsigned char *scsi3addr,
2484 int cmd_type)
2486 u64bit buff_dma_handle;
2487 int status = IO_OK;
2489 c->cmd_type = CMD_IOCTL_PEND;
2490 c->Header.ReplyQueue = 0;
2491 if (buff != NULL) {
2492 c->Header.SGList = 1;
2493 c->Header.SGTotal = 1;
2494 } else {
2495 c->Header.SGList = 0;
2496 c->Header.SGTotal = 0;
2498 c->Header.Tag.lower = c->busaddr;
2499 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2501 c->Request.Type.Type = cmd_type;
2502 if (cmd_type == TYPE_CMD) {
2503 switch (cmd) {
2504 case CISS_INQUIRY:
2505 /* are we trying to read a vital product page */
2506 if (page_code != 0) {
2507 c->Request.CDB[1] = 0x01;
2508 c->Request.CDB[2] = page_code;
2510 c->Request.CDBLen = 6;
2511 c->Request.Type.Attribute = ATTR_SIMPLE;
2512 c->Request.Type.Direction = XFER_READ;
2513 c->Request.Timeout = 0;
2514 c->Request.CDB[0] = CISS_INQUIRY;
2515 c->Request.CDB[4] = size & 0xFF;
2516 break;
2517 case CISS_REPORT_LOG:
2518 case CISS_REPORT_PHYS:
2519 /* Talking to controller so It's a physical command
2520 mode = 00 target = 0. Nothing to write.
2522 c->Request.CDBLen = 12;
2523 c->Request.Type.Attribute = ATTR_SIMPLE;
2524 c->Request.Type.Direction = XFER_READ;
2525 c->Request.Timeout = 0;
2526 c->Request.CDB[0] = cmd;
2527 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2528 c->Request.CDB[7] = (size >> 16) & 0xFF;
2529 c->Request.CDB[8] = (size >> 8) & 0xFF;
2530 c->Request.CDB[9] = size & 0xFF;
2531 break;
2533 case CCISS_READ_CAPACITY:
2534 c->Request.CDBLen = 10;
2535 c->Request.Type.Attribute = ATTR_SIMPLE;
2536 c->Request.Type.Direction = XFER_READ;
2537 c->Request.Timeout = 0;
2538 c->Request.CDB[0] = cmd;
2539 break;
2540 case CCISS_READ_CAPACITY_16:
2541 c->Request.CDBLen = 16;
2542 c->Request.Type.Attribute = ATTR_SIMPLE;
2543 c->Request.Type.Direction = XFER_READ;
2544 c->Request.Timeout = 0;
2545 c->Request.CDB[0] = cmd;
2546 c->Request.CDB[1] = 0x10;
2547 c->Request.CDB[10] = (size >> 24) & 0xFF;
2548 c->Request.CDB[11] = (size >> 16) & 0xFF;
2549 c->Request.CDB[12] = (size >> 8) & 0xFF;
2550 c->Request.CDB[13] = size & 0xFF;
2551 c->Request.Timeout = 0;
2552 c->Request.CDB[0] = cmd;
2553 break;
2554 case CCISS_CACHE_FLUSH:
2555 c->Request.CDBLen = 12;
2556 c->Request.Type.Attribute = ATTR_SIMPLE;
2557 c->Request.Type.Direction = XFER_WRITE;
2558 c->Request.Timeout = 0;
2559 c->Request.CDB[0] = BMIC_WRITE;
2560 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2561 break;
2562 case TEST_UNIT_READY:
2563 c->Request.CDBLen = 6;
2564 c->Request.Type.Attribute = ATTR_SIMPLE;
2565 c->Request.Type.Direction = XFER_NONE;
2566 c->Request.Timeout = 0;
2567 break;
2568 default:
2569 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2570 return IO_ERROR;
2572 } else if (cmd_type == TYPE_MSG) {
2573 switch (cmd) {
2574 case 0: /* ABORT message */
2575 c->Request.CDBLen = 12;
2576 c->Request.Type.Attribute = ATTR_SIMPLE;
2577 c->Request.Type.Direction = XFER_WRITE;
2578 c->Request.Timeout = 0;
2579 c->Request.CDB[0] = cmd; /* abort */
2580 c->Request.CDB[1] = 0; /* abort a command */
2581 /* buff contains the tag of the command to abort */
2582 memcpy(&c->Request.CDB[4], buff, 8);
2583 break;
2584 case 1: /* RESET message */
2585 c->Request.CDBLen = 16;
2586 c->Request.Type.Attribute = ATTR_SIMPLE;
2587 c->Request.Type.Direction = XFER_NONE;
2588 c->Request.Timeout = 0;
2589 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2590 c->Request.CDB[0] = cmd; /* reset */
2591 c->Request.CDB[1] = 0x03; /* reset a target */
2592 break;
2593 case 3: /* No-Op message */
2594 c->Request.CDBLen = 1;
2595 c->Request.Type.Attribute = ATTR_SIMPLE;
2596 c->Request.Type.Direction = XFER_WRITE;
2597 c->Request.Timeout = 0;
2598 c->Request.CDB[0] = cmd;
2599 break;
2600 default:
2601 dev_warn(&h->pdev->dev,
2602 "unknown message type %d\n", cmd);
2603 return IO_ERROR;
2605 } else {
2606 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2607 return IO_ERROR;
2609 /* Fill in the scatter gather information */
2610 if (size > 0) {
2611 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2612 buff, size,
2613 PCI_DMA_BIDIRECTIONAL);
2614 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2615 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2616 c->SG[0].Len = size;
2617 c->SG[0].Ext = 0; /* we are not chaining */
2619 return status;
2622 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2624 switch (c->err_info->ScsiStatus) {
2625 case SAM_STAT_GOOD:
2626 return IO_OK;
2627 case SAM_STAT_CHECK_CONDITION:
2628 switch (0xf & c->err_info->SenseInfo[2]) {
2629 case 0: return IO_OK; /* no sense */
2630 case 1: return IO_OK; /* recovered error */
2631 default:
2632 if (check_for_unit_attention(h, c))
2633 return IO_NEEDS_RETRY;
2634 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2635 "check condition, sense key = 0x%02x\n",
2636 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2638 break;
2639 default:
2640 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2641 "scsi status = 0x%02x\n",
2642 c->Request.CDB[0], c->err_info->ScsiStatus);
2643 break;
2645 return IO_ERROR;
2648 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2650 int return_status = IO_OK;
2652 if (c->err_info->CommandStatus == CMD_SUCCESS)
2653 return IO_OK;
2655 switch (c->err_info->CommandStatus) {
2656 case CMD_TARGET_STATUS:
2657 return_status = check_target_status(h, c);
2658 break;
2659 case CMD_DATA_UNDERRUN:
2660 case CMD_DATA_OVERRUN:
2661 /* expected for inquiry and report lun commands */
2662 break;
2663 case CMD_INVALID:
2664 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2665 "reported invalid\n", c->Request.CDB[0]);
2666 return_status = IO_ERROR;
2667 break;
2668 case CMD_PROTOCOL_ERR:
2669 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2670 "protocol error\n", c->Request.CDB[0]);
2671 return_status = IO_ERROR;
2672 break;
2673 case CMD_HARDWARE_ERR:
2674 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2675 " hardware error\n", c->Request.CDB[0]);
2676 return_status = IO_ERROR;
2677 break;
2678 case CMD_CONNECTION_LOST:
2679 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2680 "connection lost\n", c->Request.CDB[0]);
2681 return_status = IO_ERROR;
2682 break;
2683 case CMD_ABORTED:
2684 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2685 "aborted\n", c->Request.CDB[0]);
2686 return_status = IO_ERROR;
2687 break;
2688 case CMD_ABORT_FAILED:
2689 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2690 "abort failed\n", c->Request.CDB[0]);
2691 return_status = IO_ERROR;
2692 break;
2693 case CMD_UNSOLICITED_ABORT:
2694 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2695 c->Request.CDB[0]);
2696 return_status = IO_NEEDS_RETRY;
2697 break;
2698 default:
2699 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2700 "unknown status %x\n", c->Request.CDB[0],
2701 c->err_info->CommandStatus);
2702 return_status = IO_ERROR;
2704 return return_status;
2707 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2708 int attempt_retry)
2710 DECLARE_COMPLETION_ONSTACK(wait);
2711 u64bit buff_dma_handle;
2712 int return_status = IO_OK;
2714 resend_cmd2:
2715 c->waiting = &wait;
2716 enqueue_cmd_and_start_io(h, c);
2718 wait_for_completion(&wait);
2720 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2721 goto command_done;
2723 return_status = process_sendcmd_error(h, c);
2725 if (return_status == IO_NEEDS_RETRY &&
2726 c->retry_count < MAX_CMD_RETRIES) {
2727 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2728 c->Request.CDB[0]);
2729 c->retry_count++;
2730 /* erase the old error information */
2731 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2732 return_status = IO_OK;
2733 INIT_COMPLETION(wait);
2734 goto resend_cmd2;
2737 command_done:
2738 /* unlock the buffers from DMA */
2739 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2740 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2741 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2742 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2743 return return_status;
2746 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2747 __u8 page_code, unsigned char scsi3addr[],
2748 int cmd_type)
2750 CommandList_struct *c;
2751 int return_status;
2753 c = cmd_special_alloc(h);
2754 if (!c)
2755 return -ENOMEM;
2756 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2757 scsi3addr, cmd_type);
2758 if (return_status == IO_OK)
2759 return_status = sendcmd_withirq_core(h, c, 1);
2761 cmd_special_free(h, c);
2762 return return_status;
2765 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2766 sector_t total_size,
2767 unsigned int block_size,
2768 InquiryData_struct *inq_buff,
2769 drive_info_struct *drv)
2771 int return_code;
2772 unsigned long t;
2773 unsigned char scsi3addr[8];
2775 memset(inq_buff, 0, sizeof(InquiryData_struct));
2776 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2777 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2778 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2779 if (return_code == IO_OK) {
2780 if (inq_buff->data_byte[8] == 0xFF) {
2781 dev_warn(&h->pdev->dev,
2782 "reading geometry failed, volume "
2783 "does not support reading geometry\n");
2784 drv->heads = 255;
2785 drv->sectors = 32; /* Sectors per track */
2786 drv->cylinders = total_size + 1;
2787 drv->raid_level = RAID_UNKNOWN;
2788 } else {
2789 drv->heads = inq_buff->data_byte[6];
2790 drv->sectors = inq_buff->data_byte[7];
2791 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2792 drv->cylinders += inq_buff->data_byte[5];
2793 drv->raid_level = inq_buff->data_byte[8];
2795 drv->block_size = block_size;
2796 drv->nr_blocks = total_size + 1;
2797 t = drv->heads * drv->sectors;
2798 if (t > 1) {
2799 sector_t real_size = total_size + 1;
2800 unsigned long rem = sector_div(real_size, t);
2801 if (rem)
2802 real_size++;
2803 drv->cylinders = real_size;
2805 } else { /* Get geometry failed */
2806 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2810 static void
2811 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2812 unsigned int *block_size)
2814 ReadCapdata_struct *buf;
2815 int return_code;
2816 unsigned char scsi3addr[8];
2818 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2819 if (!buf) {
2820 dev_warn(&h->pdev->dev, "out of memory\n");
2821 return;
2824 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2825 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2826 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2827 if (return_code == IO_OK) {
2828 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2829 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2830 } else { /* read capacity command failed */
2831 dev_warn(&h->pdev->dev, "read capacity failed\n");
2832 *total_size = 0;
2833 *block_size = BLOCK_SIZE;
2835 kfree(buf);
2838 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2839 sector_t *total_size, unsigned int *block_size)
2841 ReadCapdata_struct_16 *buf;
2842 int return_code;
2843 unsigned char scsi3addr[8];
2845 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2846 if (!buf) {
2847 dev_warn(&h->pdev->dev, "out of memory\n");
2848 return;
2851 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2852 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2853 buf, sizeof(ReadCapdata_struct_16),
2854 0, scsi3addr, TYPE_CMD);
2855 if (return_code == IO_OK) {
2856 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2857 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2858 } else { /* read capacity command failed */
2859 dev_warn(&h->pdev->dev, "read capacity failed\n");
2860 *total_size = 0;
2861 *block_size = BLOCK_SIZE;
2863 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2864 (unsigned long long)*total_size+1, *block_size);
2865 kfree(buf);
2868 static int cciss_revalidate(struct gendisk *disk)
2870 ctlr_info_t *h = get_host(disk);
2871 drive_info_struct *drv = get_drv(disk);
2872 int logvol;
2873 int FOUND = 0;
2874 unsigned int block_size;
2875 sector_t total_size;
2876 InquiryData_struct *inq_buff = NULL;
2878 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2879 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2880 sizeof(drv->LunID)) == 0) {
2881 FOUND = 1;
2882 break;
2886 if (!FOUND)
2887 return 1;
2889 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2890 if (inq_buff == NULL) {
2891 dev_warn(&h->pdev->dev, "out of memory\n");
2892 return 1;
2894 if (h->cciss_read == CCISS_READ_10) {
2895 cciss_read_capacity(h, logvol,
2896 &total_size, &block_size);
2897 } else {
2898 cciss_read_capacity_16(h, logvol,
2899 &total_size, &block_size);
2901 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2902 inq_buff, drv);
2904 blk_queue_logical_block_size(drv->queue, drv->block_size);
2905 set_capacity(disk, drv->nr_blocks);
2907 kfree(inq_buff);
2908 return 0;
2912 * Map (physical) PCI mem into (virtual) kernel space
2914 static void __iomem *remap_pci_mem(ulong base, ulong size)
2916 ulong page_base = ((ulong) base) & PAGE_MASK;
2917 ulong page_offs = ((ulong) base) - page_base;
2918 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2920 return page_remapped ? (page_remapped + page_offs) : NULL;
2924 * Takes jobs of the Q and sends them to the hardware, then puts it on
2925 * the Q to wait for completion.
2927 static void start_io(ctlr_info_t *h)
2929 CommandList_struct *c;
2931 while (!hlist_empty(&h->reqQ)) {
2932 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2933 /* can't do anything if fifo is full */
2934 if ((h->access.fifo_full(h))) {
2935 dev_warn(&h->pdev->dev, "fifo full\n");
2936 break;
2939 /* Get the first entry from the Request Q */
2940 removeQ(c);
2941 h->Qdepth--;
2943 /* Tell the controller execute command */
2944 h->access.submit_command(h, c);
2946 /* Put job onto the completed Q */
2947 addQ(&h->cmpQ, c);
2951 /* Assumes that h->lock is held. */
2952 /* Zeros out the error record and then resends the command back */
2953 /* to the controller */
2954 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2956 /* erase the old error information */
2957 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2959 /* add it to software queue and then send it to the controller */
2960 addQ(&h->reqQ, c);
2961 h->Qdepth++;
2962 if (h->Qdepth > h->maxQsinceinit)
2963 h->maxQsinceinit = h->Qdepth;
2965 start_io(h);
2968 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2969 unsigned int msg_byte, unsigned int host_byte,
2970 unsigned int driver_byte)
2972 /* inverse of macros in scsi.h */
2973 return (scsi_status_byte & 0xff) |
2974 ((msg_byte & 0xff) << 8) |
2975 ((host_byte & 0xff) << 16) |
2976 ((driver_byte & 0xff) << 24);
2979 static inline int evaluate_target_status(ctlr_info_t *h,
2980 CommandList_struct *cmd, int *retry_cmd)
2982 unsigned char sense_key;
2983 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2984 int error_value;
2986 *retry_cmd = 0;
2987 /* If we get in here, it means we got "target status", that is, scsi status */
2988 status_byte = cmd->err_info->ScsiStatus;
2989 driver_byte = DRIVER_OK;
2990 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2992 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
2993 host_byte = DID_PASSTHROUGH;
2994 else
2995 host_byte = DID_OK;
2997 error_value = make_status_bytes(status_byte, msg_byte,
2998 host_byte, driver_byte);
3000 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3001 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3002 dev_warn(&h->pdev->dev, "cmd %p "
3003 "has SCSI Status 0x%x\n",
3004 cmd, cmd->err_info->ScsiStatus);
3005 return error_value;
3008 /* check the sense key */
3009 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3010 /* no status or recovered error */
3011 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3012 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3013 error_value = 0;
3015 if (check_for_unit_attention(h, cmd)) {
3016 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3017 return 0;
3020 /* Not SG_IO or similar? */
3021 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3022 if (error_value != 0)
3023 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3024 " sense key = 0x%x\n", cmd, sense_key);
3025 return error_value;
3028 /* SG_IO or similar, copy sense data back */
3029 if (cmd->rq->sense) {
3030 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3031 cmd->rq->sense_len = cmd->err_info->SenseLen;
3032 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3033 cmd->rq->sense_len);
3034 } else
3035 cmd->rq->sense_len = 0;
3037 return error_value;
3040 /* checks the status of the job and calls complete buffers to mark all
3041 * buffers for the completed job. Note that this function does not need
3042 * to hold the hba/queue lock.
3044 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3045 int timeout)
3047 int retry_cmd = 0;
3048 struct request *rq = cmd->rq;
3050 rq->errors = 0;
3052 if (timeout)
3053 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3055 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3056 goto after_error_processing;
3058 switch (cmd->err_info->CommandStatus) {
3059 case CMD_TARGET_STATUS:
3060 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3061 break;
3062 case CMD_DATA_UNDERRUN:
3063 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3064 dev_warn(&h->pdev->dev, "cmd %p has"
3065 " completed with data underrun "
3066 "reported\n", cmd);
3067 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3069 break;
3070 case CMD_DATA_OVERRUN:
3071 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3072 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3073 " completed with data overrun "
3074 "reported\n", cmd);
3075 break;
3076 case CMD_INVALID:
3077 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3078 "reported invalid\n", cmd);
3079 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3080 cmd->err_info->CommandStatus, DRIVER_OK,
3081 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3082 DID_PASSTHROUGH : DID_ERROR);
3083 break;
3084 case CMD_PROTOCOL_ERR:
3085 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3086 "protocol error\n", cmd);
3087 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3088 cmd->err_info->CommandStatus, DRIVER_OK,
3089 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3090 DID_PASSTHROUGH : DID_ERROR);
3091 break;
3092 case CMD_HARDWARE_ERR:
3093 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3094 " hardware error\n", cmd);
3095 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3096 cmd->err_info->CommandStatus, DRIVER_OK,
3097 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3098 DID_PASSTHROUGH : DID_ERROR);
3099 break;
3100 case CMD_CONNECTION_LOST:
3101 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3102 "connection lost\n", cmd);
3103 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3104 cmd->err_info->CommandStatus, DRIVER_OK,
3105 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3106 DID_PASSTHROUGH : DID_ERROR);
3107 break;
3108 case CMD_ABORTED:
3109 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3110 "aborted\n", cmd);
3111 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3112 cmd->err_info->CommandStatus, DRIVER_OK,
3113 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3114 DID_PASSTHROUGH : DID_ABORT);
3115 break;
3116 case CMD_ABORT_FAILED:
3117 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3118 "abort failed\n", cmd);
3119 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3120 cmd->err_info->CommandStatus, DRIVER_OK,
3121 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3122 DID_PASSTHROUGH : DID_ERROR);
3123 break;
3124 case CMD_UNSOLICITED_ABORT:
3125 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3126 "abort %p\n", h->ctlr, cmd);
3127 if (cmd->retry_count < MAX_CMD_RETRIES) {
3128 retry_cmd = 1;
3129 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3130 cmd->retry_count++;
3131 } else
3132 dev_warn(&h->pdev->dev,
3133 "%p retried too many times\n", cmd);
3134 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3135 cmd->err_info->CommandStatus, DRIVER_OK,
3136 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3137 DID_PASSTHROUGH : DID_ABORT);
3138 break;
3139 case CMD_TIMEOUT:
3140 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3141 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3142 cmd->err_info->CommandStatus, DRIVER_OK,
3143 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3144 DID_PASSTHROUGH : DID_ERROR);
3145 break;
3146 default:
3147 dev_warn(&h->pdev->dev, "cmd %p returned "
3148 "unknown status %x\n", cmd,
3149 cmd->err_info->CommandStatus);
3150 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3151 cmd->err_info->CommandStatus, DRIVER_OK,
3152 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3153 DID_PASSTHROUGH : DID_ERROR);
3156 after_error_processing:
3158 /* We need to return this command */
3159 if (retry_cmd) {
3160 resend_cciss_cmd(h, cmd);
3161 return;
3163 cmd->rq->completion_data = cmd;
3164 blk_complete_request(cmd->rq);
3167 static inline u32 cciss_tag_contains_index(u32 tag)
3169 #define DIRECT_LOOKUP_BIT 0x10
3170 return tag & DIRECT_LOOKUP_BIT;
3173 static inline u32 cciss_tag_to_index(u32 tag)
3175 #define DIRECT_LOOKUP_SHIFT 5
3176 return tag >> DIRECT_LOOKUP_SHIFT;
3179 static inline u32 cciss_tag_discard_error_bits(u32 tag)
3181 #define CCISS_ERROR_BITS 0x03
3182 return tag & ~CCISS_ERROR_BITS;
3185 static inline void cciss_mark_tag_indexed(u32 *tag)
3187 *tag |= DIRECT_LOOKUP_BIT;
3190 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3192 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3196 * Get a request and submit it to the controller.
3198 static void do_cciss_request(struct request_queue *q)
3200 ctlr_info_t *h = q->queuedata;
3201 CommandList_struct *c;
3202 sector_t start_blk;
3203 int seg;
3204 struct request *creq;
3205 u64bit temp64;
3206 struct scatterlist *tmp_sg;
3207 SGDescriptor_struct *curr_sg;
3208 drive_info_struct *drv;
3209 int i, dir;
3210 int sg_index = 0;
3211 int chained = 0;
3213 /* We call start_io here in case there is a command waiting on the
3214 * queue that has not been sent.
3216 if (blk_queue_plugged(q))
3217 goto startio;
3219 queue:
3220 creq = blk_peek_request(q);
3221 if (!creq)
3222 goto startio;
3224 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3226 c = cmd_alloc(h);
3227 if (!c)
3228 goto full;
3230 blk_start_request(creq);
3232 tmp_sg = h->scatter_list[c->cmdindex];
3233 spin_unlock_irq(q->queue_lock);
3235 c->cmd_type = CMD_RWREQ;
3236 c->rq = creq;
3238 /* fill in the request */
3239 drv = creq->rq_disk->private_data;
3240 c->Header.ReplyQueue = 0; /* unused in simple mode */
3241 /* got command from pool, so use the command block index instead */
3242 /* for direct lookups. */
3243 /* The first 2 bits are reserved for controller error reporting. */
3244 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3245 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3246 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3247 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3248 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3249 c->Request.Type.Attribute = ATTR_SIMPLE;
3250 c->Request.Type.Direction =
3251 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3252 c->Request.Timeout = 0; /* Don't time out */
3253 c->Request.CDB[0] =
3254 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3255 start_blk = blk_rq_pos(creq);
3256 dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3257 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3258 sg_init_table(tmp_sg, h->maxsgentries);
3259 seg = blk_rq_map_sg(q, creq, tmp_sg);
3261 /* get the DMA records for the setup */
3262 if (c->Request.Type.Direction == XFER_READ)
3263 dir = PCI_DMA_FROMDEVICE;
3264 else
3265 dir = PCI_DMA_TODEVICE;
3267 curr_sg = c->SG;
3268 sg_index = 0;
3269 chained = 0;
3271 for (i = 0; i < seg; i++) {
3272 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3273 !chained && ((seg - i) > 1)) {
3274 /* Point to next chain block. */
3275 curr_sg = h->cmd_sg_list[c->cmdindex];
3276 sg_index = 0;
3277 chained = 1;
3279 curr_sg[sg_index].Len = tmp_sg[i].length;
3280 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3281 tmp_sg[i].offset,
3282 tmp_sg[i].length, dir);
3283 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3284 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3285 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3286 ++sg_index;
3288 if (chained)
3289 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3290 (seg - (h->max_cmd_sgentries - 1)) *
3291 sizeof(SGDescriptor_struct));
3293 /* track how many SG entries we are using */
3294 if (seg > h->maxSG)
3295 h->maxSG = seg;
3297 dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3298 "chained[%d]\n",
3299 blk_rq_sectors(creq), seg, chained);
3301 c->Header.SGTotal = seg + chained;
3302 if (seg <= h->max_cmd_sgentries)
3303 c->Header.SGList = c->Header.SGTotal;
3304 else
3305 c->Header.SGList = h->max_cmd_sgentries;
3306 set_performant_mode(h, c);
3308 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3309 if(h->cciss_read == CCISS_READ_10) {
3310 c->Request.CDB[1] = 0;
3311 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3312 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3313 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3314 c->Request.CDB[5] = start_blk & 0xff;
3315 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3316 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3317 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3318 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3319 } else {
3320 u32 upper32 = upper_32_bits(start_blk);
3322 c->Request.CDBLen = 16;
3323 c->Request.CDB[1]= 0;
3324 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3325 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3326 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3327 c->Request.CDB[5]= upper32 & 0xff;
3328 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3329 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3330 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3331 c->Request.CDB[9]= start_blk & 0xff;
3332 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3333 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3334 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3335 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3336 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3338 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3339 c->Request.CDBLen = creq->cmd_len;
3340 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3341 } else {
3342 dev_warn(&h->pdev->dev, "bad request type %d\n",
3343 creq->cmd_type);
3344 BUG();
3347 spin_lock_irq(q->queue_lock);
3349 addQ(&h->reqQ, c);
3350 h->Qdepth++;
3351 if (h->Qdepth > h->maxQsinceinit)
3352 h->maxQsinceinit = h->Qdepth;
3354 goto queue;
3355 full:
3356 blk_stop_queue(q);
3357 startio:
3358 /* We will already have the driver lock here so not need
3359 * to lock it.
3361 start_io(h);
3364 static inline unsigned long get_next_completion(ctlr_info_t *h)
3366 return h->access.command_completed(h);
3369 static inline int interrupt_pending(ctlr_info_t *h)
3371 return h->access.intr_pending(h);
3374 static inline long interrupt_not_for_us(ctlr_info_t *h)
3376 return ((h->access.intr_pending(h) == 0) ||
3377 (h->interrupts_enabled == 0));
3380 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3381 u32 raw_tag)
3383 if (unlikely(tag_index >= h->nr_cmds)) {
3384 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3385 return 1;
3387 return 0;
3390 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3391 u32 raw_tag)
3393 removeQ(c);
3394 if (likely(c->cmd_type == CMD_RWREQ))
3395 complete_command(h, c, 0);
3396 else if (c->cmd_type == CMD_IOCTL_PEND)
3397 complete(c->waiting);
3398 #ifdef CONFIG_CISS_SCSI_TAPE
3399 else if (c->cmd_type == CMD_SCSI)
3400 complete_scsi_command(c, 0, raw_tag);
3401 #endif
3404 static inline u32 next_command(ctlr_info_t *h)
3406 u32 a;
3408 if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
3409 return h->access.command_completed(h);
3411 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3412 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3413 (h->reply_pool_head)++;
3414 h->commands_outstanding--;
3415 } else {
3416 a = FIFO_EMPTY;
3418 /* Check for wraparound */
3419 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3420 h->reply_pool_head = h->reply_pool;
3421 h->reply_pool_wraparound ^= 1;
3423 return a;
3426 /* process completion of an indexed ("direct lookup") command */
3427 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3429 u32 tag_index;
3430 CommandList_struct *c;
3432 tag_index = cciss_tag_to_index(raw_tag);
3433 if (bad_tag(h, tag_index, raw_tag))
3434 return next_command(h);
3435 c = h->cmd_pool + tag_index;
3436 finish_cmd(h, c, raw_tag);
3437 return next_command(h);
3440 /* process completion of a non-indexed command */
3441 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3443 u32 tag;
3444 CommandList_struct *c = NULL;
3445 struct hlist_node *tmp;
3446 __u32 busaddr_masked, tag_masked;
3448 tag = cciss_tag_discard_error_bits(raw_tag);
3449 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3450 busaddr_masked = cciss_tag_discard_error_bits(c->busaddr);
3451 tag_masked = cciss_tag_discard_error_bits(tag);
3452 if (busaddr_masked == tag_masked) {
3453 finish_cmd(h, c, raw_tag);
3454 return next_command(h);
3457 bad_tag(h, h->nr_cmds + 1, raw_tag);
3458 return next_command(h);
3461 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3463 ctlr_info_t *h = dev_id;
3464 unsigned long flags;
3465 u32 raw_tag;
3467 if (interrupt_not_for_us(h))
3468 return IRQ_NONE;
3469 spin_lock_irqsave(&h->lock, flags);
3470 while (interrupt_pending(h)) {
3471 raw_tag = get_next_completion(h);
3472 while (raw_tag != FIFO_EMPTY) {
3473 if (cciss_tag_contains_index(raw_tag))
3474 raw_tag = process_indexed_cmd(h, raw_tag);
3475 else
3476 raw_tag = process_nonindexed_cmd(h, raw_tag);
3479 spin_unlock_irqrestore(&h->lock, flags);
3480 return IRQ_HANDLED;
3483 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3484 * check the interrupt pending register because it is not set.
3486 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3488 ctlr_info_t *h = dev_id;
3489 unsigned long flags;
3490 u32 raw_tag;
3492 spin_lock_irqsave(&h->lock, flags);
3493 raw_tag = get_next_completion(h);
3494 while (raw_tag != FIFO_EMPTY) {
3495 if (cciss_tag_contains_index(raw_tag))
3496 raw_tag = process_indexed_cmd(h, raw_tag);
3497 else
3498 raw_tag = process_nonindexed_cmd(h, raw_tag);
3500 spin_unlock_irqrestore(&h->lock, flags);
3501 return IRQ_HANDLED;
3505 * add_to_scan_list() - add controller to rescan queue
3506 * @h: Pointer to the controller.
3508 * Adds the controller to the rescan queue if not already on the queue.
3510 * returns 1 if added to the queue, 0 if skipped (could be on the
3511 * queue already, or the controller could be initializing or shutting
3512 * down).
3514 static int add_to_scan_list(struct ctlr_info *h)
3516 struct ctlr_info *test_h;
3517 int found = 0;
3518 int ret = 0;
3520 if (h->busy_initializing)
3521 return 0;
3523 if (!mutex_trylock(&h->busy_shutting_down))
3524 return 0;
3526 mutex_lock(&scan_mutex);
3527 list_for_each_entry(test_h, &scan_q, scan_list) {
3528 if (test_h == h) {
3529 found = 1;
3530 break;
3533 if (!found && !h->busy_scanning) {
3534 INIT_COMPLETION(h->scan_wait);
3535 list_add_tail(&h->scan_list, &scan_q);
3536 ret = 1;
3538 mutex_unlock(&scan_mutex);
3539 mutex_unlock(&h->busy_shutting_down);
3541 return ret;
3545 * remove_from_scan_list() - remove controller from rescan queue
3546 * @h: Pointer to the controller.
3548 * Removes the controller from the rescan queue if present. Blocks if
3549 * the controller is currently conducting a rescan. The controller
3550 * can be in one of three states:
3551 * 1. Doesn't need a scan
3552 * 2. On the scan list, but not scanning yet (we remove it)
3553 * 3. Busy scanning (and not on the list). In this case we want to wait for
3554 * the scan to complete to make sure the scanning thread for this
3555 * controller is completely idle.
3557 static void remove_from_scan_list(struct ctlr_info *h)
3559 struct ctlr_info *test_h, *tmp_h;
3561 mutex_lock(&scan_mutex);
3562 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3563 if (test_h == h) { /* state 2. */
3564 list_del(&h->scan_list);
3565 complete_all(&h->scan_wait);
3566 mutex_unlock(&scan_mutex);
3567 return;
3570 if (h->busy_scanning) { /* state 3. */
3571 mutex_unlock(&scan_mutex);
3572 wait_for_completion(&h->scan_wait);
3573 } else { /* state 1, nothing to do. */
3574 mutex_unlock(&scan_mutex);
3579 * scan_thread() - kernel thread used to rescan controllers
3580 * @data: Ignored.
3582 * A kernel thread used scan for drive topology changes on
3583 * controllers. The thread processes only one controller at a time
3584 * using a queue. Controllers are added to the queue using
3585 * add_to_scan_list() and removed from the queue either after done
3586 * processing or using remove_from_scan_list().
3588 * returns 0.
3590 static int scan_thread(void *data)
3592 struct ctlr_info *h;
3594 while (1) {
3595 set_current_state(TASK_INTERRUPTIBLE);
3596 schedule();
3597 if (kthread_should_stop())
3598 break;
3600 while (1) {
3601 mutex_lock(&scan_mutex);
3602 if (list_empty(&scan_q)) {
3603 mutex_unlock(&scan_mutex);
3604 break;
3607 h = list_entry(scan_q.next,
3608 struct ctlr_info,
3609 scan_list);
3610 list_del(&h->scan_list);
3611 h->busy_scanning = 1;
3612 mutex_unlock(&scan_mutex);
3614 rebuild_lun_table(h, 0, 0);
3615 complete_all(&h->scan_wait);
3616 mutex_lock(&scan_mutex);
3617 h->busy_scanning = 0;
3618 mutex_unlock(&scan_mutex);
3622 return 0;
3625 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3627 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3628 return 0;
3630 switch (c->err_info->SenseInfo[12]) {
3631 case STATE_CHANGED:
3632 dev_warn(&h->pdev->dev, "a state change "
3633 "detected, command retried\n");
3634 return 1;
3635 break;
3636 case LUN_FAILED:
3637 dev_warn(&h->pdev->dev, "LUN failure "
3638 "detected, action required\n");
3639 return 1;
3640 break;
3641 case REPORT_LUNS_CHANGED:
3642 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3644 * Here, we could call add_to_scan_list and wake up the scan thread,
3645 * except that it's quite likely that we will get more than one
3646 * REPORT_LUNS_CHANGED condition in quick succession, which means
3647 * that those which occur after the first one will likely happen
3648 * *during* the scan_thread's rescan. And the rescan code is not
3649 * robust enough to restart in the middle, undoing what it has already
3650 * done, and it's not clear that it's even possible to do this, since
3651 * part of what it does is notify the block layer, which starts
3652 * doing it's own i/o to read partition tables and so on, and the
3653 * driver doesn't have visibility to know what might need undoing.
3654 * In any event, if possible, it is horribly complicated to get right
3655 * so we just don't do it for now.
3657 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3659 return 1;
3660 break;
3661 case POWER_OR_RESET:
3662 dev_warn(&h->pdev->dev,
3663 "a power on or device reset detected\n");
3664 return 1;
3665 break;
3666 case UNIT_ATTENTION_CLEARED:
3667 dev_warn(&h->pdev->dev,
3668 "unit attention cleared by another initiator\n");
3669 return 1;
3670 break;
3671 default:
3672 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3673 return 1;
3678 * We cannot read the structure directly, for portability we must use
3679 * the io functions.
3680 * This is for debug only.
3682 static void print_cfg_table(ctlr_info_t *h)
3684 int i;
3685 char temp_name[17];
3686 CfgTable_struct *tb = h->cfgtable;
3688 dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3689 dev_dbg(&h->pdev->dev, "------------------------------------\n");
3690 for (i = 0; i < 4; i++)
3691 temp_name[i] = readb(&(tb->Signature[i]));
3692 temp_name[4] = '\0';
3693 dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3694 dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3695 readl(&(tb->SpecValence)));
3696 dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3697 readl(&(tb->TransportSupport)));
3698 dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3699 readl(&(tb->TransportActive)));
3700 dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3701 readl(&(tb->HostWrite.TransportRequest)));
3702 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3703 readl(&(tb->HostWrite.CoalIntDelay)));
3704 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3705 readl(&(tb->HostWrite.CoalIntCount)));
3706 dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
3707 readl(&(tb->CmdsOutMax)));
3708 dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3709 readl(&(tb->BusTypes)));
3710 for (i = 0; i < 16; i++)
3711 temp_name[i] = readb(&(tb->ServerName[i]));
3712 temp_name[16] = '\0';
3713 dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3714 dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3715 readl(&(tb->HeartBeat)));
3718 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3720 int i, offset, mem_type, bar_type;
3721 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3722 return 0;
3723 offset = 0;
3724 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3725 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3726 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3727 offset += 4;
3728 else {
3729 mem_type = pci_resource_flags(pdev, i) &
3730 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3731 switch (mem_type) {
3732 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3733 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3734 offset += 4; /* 32 bit */
3735 break;
3736 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3737 offset += 8;
3738 break;
3739 default: /* reserved in PCI 2.2 */
3740 dev_warn(&pdev->dev,
3741 "Base address is invalid\n");
3742 return -1;
3743 break;
3746 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3747 return i + 1;
3749 return -1;
3752 /* Fill in bucket_map[], given nsgs (the max number of
3753 * scatter gather elements supported) and bucket[],
3754 * which is an array of 8 integers. The bucket[] array
3755 * contains 8 different DMA transfer sizes (in 16
3756 * byte increments) which the controller uses to fetch
3757 * commands. This function fills in bucket_map[], which
3758 * maps a given number of scatter gather elements to one of
3759 * the 8 DMA transfer sizes. The point of it is to allow the
3760 * controller to only do as much DMA as needed to fetch the
3761 * command, with the DMA transfer size encoded in the lower
3762 * bits of the command address.
3764 static void calc_bucket_map(int bucket[], int num_buckets,
3765 int nsgs, int *bucket_map)
3767 int i, j, b, size;
3769 /* even a command with 0 SGs requires 4 blocks */
3770 #define MINIMUM_TRANSFER_BLOCKS 4
3771 #define NUM_BUCKETS 8
3772 /* Note, bucket_map must have nsgs+1 entries. */
3773 for (i = 0; i <= nsgs; i++) {
3774 /* Compute size of a command with i SG entries */
3775 size = i + MINIMUM_TRANSFER_BLOCKS;
3776 b = num_buckets; /* Assume the biggest bucket */
3777 /* Find the bucket that is just big enough */
3778 for (j = 0; j < 8; j++) {
3779 if (bucket[j] >= size) {
3780 b = j;
3781 break;
3784 /* for a command with i SG entries, use bucket b. */
3785 bucket_map[i] = b;
3789 static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3791 int i;
3793 /* under certain very rare conditions, this can take awhile.
3794 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3795 * as we enter this code.) */
3796 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3797 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3798 break;
3799 msleep(10);
3803 static __devinit void cciss_enter_performant_mode(ctlr_info_t *h)
3805 /* This is a bit complicated. There are 8 registers on
3806 * the controller which we write to to tell it 8 different
3807 * sizes of commands which there may be. It's a way of
3808 * reducing the DMA done to fetch each command. Encoded into
3809 * each command's tag are 3 bits which communicate to the controller
3810 * which of the eight sizes that command fits within. The size of
3811 * each command depends on how many scatter gather entries there are.
3812 * Each SG entry requires 16 bytes. The eight registers are programmed
3813 * with the number of 16-byte blocks a command of that size requires.
3814 * The smallest command possible requires 5 such 16 byte blocks.
3815 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3816 * blocks. Note, this only extends to the SG entries contained
3817 * within the command block, and does not extend to chained blocks
3818 * of SG elements. bft[] contains the eight values we write to
3819 * the registers. They are not evenly distributed, but have more
3820 * sizes for small commands, and fewer sizes for larger commands.
3822 __u32 trans_offset;
3823 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3825 * 5 = 1 s/g entry or 4k
3826 * 6 = 2 s/g entry or 8k
3827 * 8 = 4 s/g entry or 16k
3828 * 10 = 6 s/g entry or 24k
3830 unsigned long register_value;
3831 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3833 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3835 /* Controller spec: zero out this buffer. */
3836 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3837 h->reply_pool_head = h->reply_pool;
3839 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3840 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3841 h->blockFetchTable);
3842 writel(bft[0], &h->transtable->BlockFetch0);
3843 writel(bft[1], &h->transtable->BlockFetch1);
3844 writel(bft[2], &h->transtable->BlockFetch2);
3845 writel(bft[3], &h->transtable->BlockFetch3);
3846 writel(bft[4], &h->transtable->BlockFetch4);
3847 writel(bft[5], &h->transtable->BlockFetch5);
3848 writel(bft[6], &h->transtable->BlockFetch6);
3849 writel(bft[7], &h->transtable->BlockFetch7);
3851 /* size of controller ring buffer */
3852 writel(h->max_commands, &h->transtable->RepQSize);
3853 writel(1, &h->transtable->RepQCount);
3854 writel(0, &h->transtable->RepQCtrAddrLow32);
3855 writel(0, &h->transtable->RepQCtrAddrHigh32);
3856 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3857 writel(0, &h->transtable->RepQAddr0High32);
3858 writel(CFGTBL_Trans_Performant,
3859 &(h->cfgtable->HostWrite.TransportRequest));
3861 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3862 cciss_wait_for_mode_change_ack(h);
3863 register_value = readl(&(h->cfgtable->TransportActive));
3864 if (!(register_value & CFGTBL_Trans_Performant))
3865 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
3866 " performant mode\n");
3869 static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3871 __u32 trans_support;
3873 dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
3874 /* Attempt to put controller into performant mode if supported */
3875 /* Does board support performant mode? */
3876 trans_support = readl(&(h->cfgtable->TransportSupport));
3877 if (!(trans_support & PERFORMANT_MODE))
3878 return;
3880 dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
3881 /* Performant mode demands commands on a 32 byte boundary
3882 * pci_alloc_consistent aligns on page boundarys already.
3883 * Just need to check if divisible by 32
3885 if ((sizeof(CommandList_struct) % 32) != 0) {
3886 dev_warn(&h->pdev->dev, "%s %d %s\n",
3887 "cciss info: command size[",
3888 (int)sizeof(CommandList_struct),
3889 "] not divisible by 32, no performant mode..\n");
3890 return;
3893 /* Performant mode ring buffer and supporting data structures */
3894 h->reply_pool = (__u64 *)pci_alloc_consistent(
3895 h->pdev, h->max_commands * sizeof(__u64),
3896 &(h->reply_pool_dhandle));
3898 /* Need a block fetch table for performant mode */
3899 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
3900 sizeof(__u32)), GFP_KERNEL);
3902 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
3903 goto clean_up;
3905 cciss_enter_performant_mode(h);
3907 /* Change the access methods to the performant access methods */
3908 h->access = SA5_performant_access;
3909 h->transMethod = CFGTBL_Trans_Performant;
3911 return;
3912 clean_up:
3913 kfree(h->blockFetchTable);
3914 if (h->reply_pool)
3915 pci_free_consistent(h->pdev,
3916 h->max_commands * sizeof(__u64),
3917 h->reply_pool,
3918 h->reply_pool_dhandle);
3919 return;
3921 } /* cciss_put_controller_into_performant_mode */
3923 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3924 * controllers that are capable. If not, we use IO-APIC mode.
3927 static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
3929 #ifdef CONFIG_PCI_MSI
3930 int err;
3931 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3932 {0, 2}, {0, 3}
3935 /* Some boards advertise MSI but don't really support it */
3936 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3937 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3938 goto default_int_mode;
3940 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3941 err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
3942 if (!err) {
3943 h->intr[0] = cciss_msix_entries[0].vector;
3944 h->intr[1] = cciss_msix_entries[1].vector;
3945 h->intr[2] = cciss_msix_entries[2].vector;
3946 h->intr[3] = cciss_msix_entries[3].vector;
3947 h->msix_vector = 1;
3948 return;
3950 if (err > 0) {
3951 dev_warn(&h->pdev->dev,
3952 "only %d MSI-X vectors available\n", err);
3953 goto default_int_mode;
3954 } else {
3955 dev_warn(&h->pdev->dev,
3956 "MSI-X init failed %d\n", err);
3957 goto default_int_mode;
3960 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3961 if (!pci_enable_msi(h->pdev))
3962 h->msi_vector = 1;
3963 else
3964 dev_warn(&h->pdev->dev, "MSI init failed\n");
3966 default_int_mode:
3967 #endif /* CONFIG_PCI_MSI */
3968 /* if we get here we're going to use the default interrupt mode */
3969 h->intr[PERF_MODE_INT] = h->pdev->irq;
3970 return;
3973 static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3975 int i;
3976 u32 subsystem_vendor_id, subsystem_device_id;
3978 subsystem_vendor_id = pdev->subsystem_vendor;
3979 subsystem_device_id = pdev->subsystem_device;
3980 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3981 subsystem_vendor_id;
3983 for (i = 0; i < ARRAY_SIZE(products); i++) {
3984 /* Stand aside for hpsa driver on request */
3985 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3986 return -ENODEV;
3987 if (*board_id == products[i].board_id)
3988 return i;
3990 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
3991 *board_id);
3992 return -ENODEV;
3995 static inline bool cciss_board_disabled(ctlr_info_t *h)
3997 u16 command;
3999 (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4000 return ((command & PCI_COMMAND_MEMORY) == 0);
4003 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4004 unsigned long *memory_bar)
4006 int i;
4008 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4009 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4010 /* addressing mode bits already removed */
4011 *memory_bar = pci_resource_start(pdev, i);
4012 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4013 *memory_bar);
4014 return 0;
4016 dev_warn(&pdev->dev, "no memory BAR found\n");
4017 return -ENODEV;
4020 static int __devinit cciss_wait_for_board_ready(ctlr_info_t *h)
4022 int i;
4023 u32 scratchpad;
4025 for (i = 0; i < CCISS_BOARD_READY_ITERATIONS; i++) {
4026 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4027 if (scratchpad == CCISS_FIRMWARE_READY)
4028 return 0;
4029 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4031 dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
4032 return -ENODEV;
4035 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4036 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4037 u64 *cfg_offset)
4039 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4040 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4041 *cfg_base_addr &= (u32) 0x0000ffff;
4042 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4043 if (*cfg_base_addr_index == -1) {
4044 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4045 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4046 return -ENODEV;
4048 return 0;
4051 static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4053 u64 cfg_offset;
4054 u32 cfg_base_addr;
4055 u64 cfg_base_addr_index;
4056 u32 trans_offset;
4057 int rc;
4059 rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4060 &cfg_base_addr_index, &cfg_offset);
4061 if (rc)
4062 return rc;
4063 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4064 cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4065 if (!h->cfgtable)
4066 return -ENOMEM;
4067 /* Find performant mode table. */
4068 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4069 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4070 cfg_base_addr_index)+cfg_offset+trans_offset,
4071 sizeof(*h->transtable));
4072 if (!h->transtable)
4073 return -ENOMEM;
4074 return 0;
4077 static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4079 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4080 if (h->max_commands < 16) {
4081 dev_warn(&h->pdev->dev, "Controller reports "
4082 "max supported commands of %d, an obvious lie. "
4083 "Using 16. Ensure that firmware is up to date.\n",
4084 h->max_commands);
4085 h->max_commands = 16;
4089 /* Interrogate the hardware for some limits:
4090 * max commands, max SG elements without chaining, and with chaining,
4091 * SG chain block size, etc.
4093 static void __devinit cciss_find_board_params(ctlr_info_t *h)
4095 cciss_get_max_perf_mode_cmds(h);
4096 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4097 h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4099 * Limit in-command s/g elements to 32 save dma'able memory.
4100 * Howvever spec says if 0, use 31
4102 h->max_cmd_sgentries = 31;
4103 if (h->maxsgentries > 512) {
4104 h->max_cmd_sgentries = 32;
4105 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4106 h->maxsgentries--; /* save one for chain pointer */
4107 } else {
4108 h->maxsgentries = 31; /* default to traditional values */
4109 h->chainsize = 0;
4113 static inline bool CISS_signature_present(ctlr_info_t *h)
4115 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4116 (readb(&h->cfgtable->Signature[1]) != 'I') ||
4117 (readb(&h->cfgtable->Signature[2]) != 'S') ||
4118 (readb(&h->cfgtable->Signature[3]) != 'S')) {
4119 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4120 return false;
4122 return true;
4125 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4126 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4128 #ifdef CONFIG_X86
4129 u32 prefetch;
4131 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4132 prefetch |= 0x100;
4133 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4134 #endif
4137 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4138 * in a prefetch beyond physical memory.
4140 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4142 u32 dma_prefetch;
4143 __u32 dma_refetch;
4145 if (h->board_id != 0x3225103C)
4146 return;
4147 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4148 dma_prefetch |= 0x8000;
4149 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4150 pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4151 dma_refetch |= 0x1;
4152 pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4155 static int __devinit cciss_pci_init(ctlr_info_t *h)
4157 int prod_index, err;
4159 prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4160 if (prod_index < 0)
4161 return -ENODEV;
4162 h->product_name = products[prod_index].product_name;
4163 h->access = *(products[prod_index].access);
4165 if (cciss_board_disabled(h)) {
4166 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4167 return -ENODEV;
4169 err = pci_enable_device(h->pdev);
4170 if (err) {
4171 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4172 return err;
4175 err = pci_request_regions(h->pdev, "cciss");
4176 if (err) {
4177 dev_warn(&h->pdev->dev,
4178 "Cannot obtain PCI resources, aborting\n");
4179 return err;
4182 dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4183 dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4185 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4186 * else we use the IO-APIC interrupt assigned to us by system ROM.
4188 cciss_interrupt_mode(h);
4189 err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4190 if (err)
4191 goto err_out_free_res;
4192 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4193 if (!h->vaddr) {
4194 err = -ENOMEM;
4195 goto err_out_free_res;
4197 err = cciss_wait_for_board_ready(h);
4198 if (err)
4199 goto err_out_free_res;
4200 err = cciss_find_cfgtables(h);
4201 if (err)
4202 goto err_out_free_res;
4203 print_cfg_table(h);
4204 cciss_find_board_params(h);
4206 if (!CISS_signature_present(h)) {
4207 err = -ENODEV;
4208 goto err_out_free_res;
4210 cciss_enable_scsi_prefetch(h);
4211 cciss_p600_dma_prefetch_quirk(h);
4212 cciss_put_controller_into_performant_mode(h);
4213 return 0;
4215 err_out_free_res:
4217 * Deliberately omit pci_disable_device(): it does something nasty to
4218 * Smart Array controllers that pci_enable_device does not undo
4220 if (h->transtable)
4221 iounmap(h->transtable);
4222 if (h->cfgtable)
4223 iounmap(h->cfgtable);
4224 if (h->vaddr)
4225 iounmap(h->vaddr);
4226 pci_release_regions(h->pdev);
4227 return err;
4230 /* Function to find the first free pointer into our hba[] array
4231 * Returns -1 if no free entries are left.
4233 static int alloc_cciss_hba(struct pci_dev *pdev)
4235 int i;
4237 for (i = 0; i < MAX_CTLR; i++) {
4238 if (!hba[i]) {
4239 ctlr_info_t *h;
4241 h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4242 if (!h)
4243 goto Enomem;
4244 hba[i] = h;
4245 return i;
4248 dev_warn(&pdev->dev, "This driver supports a maximum"
4249 " of %d controllers.\n", MAX_CTLR);
4250 return -1;
4251 Enomem:
4252 dev_warn(&pdev->dev, "out of memory.\n");
4253 return -1;
4256 static void free_hba(ctlr_info_t *h)
4258 int i;
4260 hba[h->ctlr] = NULL;
4261 for (i = 0; i < h->highest_lun + 1; i++)
4262 if (h->gendisk[i] != NULL)
4263 put_disk(h->gendisk[i]);
4264 kfree(h);
4267 /* Send a message CDB to the firmware. */
4268 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4270 typedef struct {
4271 CommandListHeader_struct CommandHeader;
4272 RequestBlock_struct Request;
4273 ErrDescriptor_struct ErrorDescriptor;
4274 } Command;
4275 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4276 Command *cmd;
4277 dma_addr_t paddr64;
4278 uint32_t paddr32, tag;
4279 void __iomem *vaddr;
4280 int i, err;
4282 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4283 if (vaddr == NULL)
4284 return -ENOMEM;
4286 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4287 CCISS commands, so they must be allocated from the lower 4GiB of
4288 memory. */
4289 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4290 if (err) {
4291 iounmap(vaddr);
4292 return -ENOMEM;
4295 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4296 if (cmd == NULL) {
4297 iounmap(vaddr);
4298 return -ENOMEM;
4301 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4302 although there's no guarantee, we assume that the address is at
4303 least 4-byte aligned (most likely, it's page-aligned). */
4304 paddr32 = paddr64;
4306 cmd->CommandHeader.ReplyQueue = 0;
4307 cmd->CommandHeader.SGList = 0;
4308 cmd->CommandHeader.SGTotal = 0;
4309 cmd->CommandHeader.Tag.lower = paddr32;
4310 cmd->CommandHeader.Tag.upper = 0;
4311 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4313 cmd->Request.CDBLen = 16;
4314 cmd->Request.Type.Type = TYPE_MSG;
4315 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4316 cmd->Request.Type.Direction = XFER_NONE;
4317 cmd->Request.Timeout = 0; /* Don't time out */
4318 cmd->Request.CDB[0] = opcode;
4319 cmd->Request.CDB[1] = type;
4320 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4322 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4323 cmd->ErrorDescriptor.Addr.upper = 0;
4324 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4326 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4328 for (i = 0; i < 10; i++) {
4329 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4330 if ((tag & ~3) == paddr32)
4331 break;
4332 schedule_timeout_uninterruptible(HZ);
4335 iounmap(vaddr);
4337 /* we leak the DMA buffer here ... no choice since the controller could
4338 still complete the command. */
4339 if (i == 10) {
4340 dev_err(&pdev->dev,
4341 "controller message %02x:%02x timed out\n",
4342 opcode, type);
4343 return -ETIMEDOUT;
4346 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4348 if (tag & 2) {
4349 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4350 opcode, type);
4351 return -EIO;
4354 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4355 opcode, type);
4356 return 0;
4359 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4360 #define cciss_noop(p) cciss_message(p, 3, 0)
4362 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4364 /* the #defines are stolen from drivers/pci/msi.h. */
4365 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4366 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4368 int pos;
4369 u16 control = 0;
4371 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4372 if (pos) {
4373 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4374 if (control & PCI_MSI_FLAGS_ENABLE) {
4375 dev_info(&pdev->dev, "resetting MSI\n");
4376 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4380 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4381 if (pos) {
4382 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4383 if (control & PCI_MSIX_FLAGS_ENABLE) {
4384 dev_info(&pdev->dev, "resetting MSI-X\n");
4385 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4389 return 0;
4392 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4393 void * __iomem vaddr, bool use_doorbell)
4395 u16 pmcsr;
4396 int pos;
4398 if (use_doorbell) {
4399 /* For everything after the P600, the PCI power state method
4400 * of resetting the controller doesn't work, so we have this
4401 * other way using the doorbell register.
4403 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4404 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
4405 msleep(1000);
4406 } else { /* Try to do it the PCI power state way */
4408 /* Quoting from the Open CISS Specification: "The Power
4409 * Management Control/Status Register (CSR) controls the power
4410 * state of the device. The normal operating state is D0,
4411 * CSR=00h. The software off state is D3, CSR=03h. To reset
4412 * the controller, place the interface device in D3 then to D0,
4413 * this causes a secondary PCI reset which will reset the
4414 * controller." */
4416 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4417 if (pos == 0) {
4418 dev_err(&pdev->dev,
4419 "cciss_controller_hard_reset: "
4420 "PCI PM not supported\n");
4421 return -ENODEV;
4423 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4424 /* enter the D3hot power management state */
4425 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4426 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4427 pmcsr |= PCI_D3hot;
4428 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4430 msleep(500);
4432 /* enter the D0 power management state */
4433 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4434 pmcsr |= PCI_D0;
4435 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4437 msleep(500);
4439 return 0;
4442 /* This does a hard reset of the controller using PCI power management
4443 * states or using the doorbell register. */
4444 static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4446 u16 saved_config_space[32];
4447 u64 cfg_offset;
4448 u32 cfg_base_addr;
4449 u64 cfg_base_addr_index;
4450 void __iomem *vaddr;
4451 unsigned long paddr;
4452 u32 misc_fw_support, active_transport;
4453 int rc, i;
4454 CfgTable_struct __iomem *cfgtable;
4455 bool use_doorbell;
4456 u32 board_id;
4458 /* For controllers as old a the p600, this is very nearly
4459 * the same thing as
4461 * pci_save_state(pci_dev);
4462 * pci_set_power_state(pci_dev, PCI_D3hot);
4463 * pci_set_power_state(pci_dev, PCI_D0);
4464 * pci_restore_state(pci_dev);
4466 * but we can't use these nice canned kernel routines on
4467 * kexec, because they also check the MSI/MSI-X state in PCI
4468 * configuration space and do the wrong thing when it is
4469 * set/cleared. Also, the pci_save/restore_state functions
4470 * violate the ordering requirements for restoring the
4471 * configuration space from the CCISS document (see the
4472 * comment below). So we roll our own ....
4474 * For controllers newer than the P600, the pci power state
4475 * method of resetting doesn't work so we have another way
4476 * using the doorbell register.
4479 /* Exclude 640x boards. These are two pci devices in one slot
4480 * which share a battery backed cache module. One controls the
4481 * cache, the other accesses the cache through the one that controls
4482 * it. If we reset the one controlling the cache, the other will
4483 * likely not be happy. Just forbid resetting this conjoined mess.
4485 cciss_lookup_board_id(pdev, &board_id);
4486 if (board_id == 0x409C0E11 || board_id == 0x409D0E11) {
4487 dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4488 "due to shared cache module.");
4489 return -ENODEV;
4492 for (i = 0; i < 32; i++)
4493 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4495 /* find the first memory BAR, so we can find the cfg table */
4496 rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4497 if (rc)
4498 return rc;
4499 vaddr = remap_pci_mem(paddr, 0x250);
4500 if (!vaddr)
4501 return -ENOMEM;
4503 /* find cfgtable in order to check if reset via doorbell is supported */
4504 rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4505 &cfg_base_addr_index, &cfg_offset);
4506 if (rc)
4507 goto unmap_vaddr;
4508 cfgtable = remap_pci_mem(pci_resource_start(pdev,
4509 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4510 if (!cfgtable) {
4511 rc = -ENOMEM;
4512 goto unmap_vaddr;
4515 /* If reset via doorbell register is supported, use that. */
4516 misc_fw_support = readl(&cfgtable->misc_fw_support);
4517 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4519 /* The doorbell reset seems to cause lockups on some Smart
4520 * Arrays (e.g. P410, P410i, maybe others). Until this is
4521 * fixed or at least isolated, avoid the doorbell reset.
4523 use_doorbell = 0;
4525 rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4526 if (rc)
4527 goto unmap_cfgtable;
4529 /* Restore the PCI configuration space. The Open CISS
4530 * Specification says, "Restore the PCI Configuration
4531 * Registers, offsets 00h through 60h. It is important to
4532 * restore the command register, 16-bits at offset 04h,
4533 * last. Do not restore the configuration status register,
4534 * 16-bits at offset 06h." Note that the offset is 2*i.
4536 for (i = 0; i < 32; i++) {
4537 if (i == 2 || i == 3)
4538 continue;
4539 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4541 wmb();
4542 pci_write_config_word(pdev, 4, saved_config_space[2]);
4544 /* Some devices (notably the HP Smart Array 5i Controller)
4545 need a little pause here */
4546 msleep(CCISS_POST_RESET_PAUSE_MSECS);
4548 /* Controller should be in simple mode at this point. If it's not,
4549 * It means we're on one of those controllers which doesn't support
4550 * the doorbell reset method and on which the PCI power management reset
4551 * method doesn't work (P800, for example.)
4552 * In those cases, don't try to proceed, as it generally doesn't work.
4554 active_transport = readl(&cfgtable->TransportActive);
4555 if (active_transport & PERFORMANT_MODE) {
4556 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
4557 " Ignoring controller.\n");
4558 rc = -ENODEV;
4561 unmap_cfgtable:
4562 iounmap(cfgtable);
4564 unmap_vaddr:
4565 iounmap(vaddr);
4566 return rc;
4569 static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4571 int rc, i;
4573 if (!reset_devices)
4574 return 0;
4576 /* Reset the controller with a PCI power-cycle or via doorbell */
4577 rc = cciss_kdump_hard_reset_controller(pdev);
4579 /* -ENOTSUPP here means we cannot reset the controller
4580 * but it's already (and still) up and running in
4581 * "performant mode". Or, it might be 640x, which can't reset
4582 * due to concerns about shared bbwc between 6402/6404 pair.
4584 if (rc == -ENOTSUPP)
4585 return 0; /* just try to do the kdump anyhow. */
4586 if (rc)
4587 return -ENODEV;
4588 if (cciss_reset_msi(pdev))
4589 return -ENODEV;
4591 /* Now try to get the controller to respond to a no-op */
4592 for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4593 if (cciss_noop(pdev) == 0)
4594 break;
4595 else
4596 dev_warn(&pdev->dev, "no-op failed%s\n",
4597 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4598 "; re-trying" : ""));
4599 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4601 return 0;
4605 * This is it. Find all the controllers and register them. I really hate
4606 * stealing all these major device numbers.
4607 * returns the number of block devices registered.
4609 static int __devinit cciss_init_one(struct pci_dev *pdev,
4610 const struct pci_device_id *ent)
4612 int i;
4613 int j = 0;
4614 int k = 0;
4615 int rc;
4616 int dac, return_code;
4617 InquiryData_struct *inq_buff;
4618 ctlr_info_t *h;
4620 rc = cciss_init_reset_devices(pdev);
4621 if (rc)
4622 return rc;
4623 i = alloc_cciss_hba(pdev);
4624 if (i < 0)
4625 return -1;
4627 h = hba[i];
4628 h->pdev = pdev;
4629 h->busy_initializing = 1;
4630 INIT_HLIST_HEAD(&h->cmpQ);
4631 INIT_HLIST_HEAD(&h->reqQ);
4632 mutex_init(&h->busy_shutting_down);
4634 if (cciss_pci_init(h) != 0)
4635 goto clean_no_release_regions;
4637 sprintf(h->devname, "cciss%d", i);
4638 h->ctlr = i;
4640 init_completion(&h->scan_wait);
4642 if (cciss_create_hba_sysfs_entry(h))
4643 goto clean0;
4645 /* configure PCI DMA stuff */
4646 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4647 dac = 1;
4648 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4649 dac = 0;
4650 else {
4651 dev_err(&h->pdev->dev, "no suitable DMA available\n");
4652 goto clean1;
4656 * register with the major number, or get a dynamic major number
4657 * by passing 0 as argument. This is done for greater than
4658 * 8 controller support.
4660 if (i < MAX_CTLR_ORIG)
4661 h->major = COMPAQ_CISS_MAJOR + i;
4662 rc = register_blkdev(h->major, h->devname);
4663 if (rc == -EBUSY || rc == -EINVAL) {
4664 dev_err(&h->pdev->dev,
4665 "Unable to get major number %d for %s "
4666 "on hba %d\n", h->major, h->devname, i);
4667 goto clean1;
4668 } else {
4669 if (i >= MAX_CTLR_ORIG)
4670 h->major = rc;
4673 /* make sure the board interrupts are off */
4674 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4675 if (h->msi_vector || h->msix_vector) {
4676 if (request_irq(h->intr[PERF_MODE_INT],
4677 do_cciss_msix_intr,
4678 IRQF_DISABLED, h->devname, h)) {
4679 dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4680 h->intr[PERF_MODE_INT], h->devname);
4681 goto clean2;
4683 } else {
4684 if (request_irq(h->intr[PERF_MODE_INT], do_cciss_intx,
4685 IRQF_DISABLED, h->devname, h)) {
4686 dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4687 h->intr[PERF_MODE_INT], h->devname);
4688 goto clean2;
4692 dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4693 h->devname, pdev->device, pci_name(pdev),
4694 h->intr[PERF_MODE_INT], dac ? "" : " not");
4696 h->cmd_pool_bits =
4697 kmalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
4698 * sizeof(unsigned long), GFP_KERNEL);
4699 h->cmd_pool = (CommandList_struct *)
4700 pci_alloc_consistent(h->pdev,
4701 h->nr_cmds * sizeof(CommandList_struct),
4702 &(h->cmd_pool_dhandle));
4703 h->errinfo_pool = (ErrorInfo_struct *)
4704 pci_alloc_consistent(h->pdev,
4705 h->nr_cmds * sizeof(ErrorInfo_struct),
4706 &(h->errinfo_pool_dhandle));
4707 if ((h->cmd_pool_bits == NULL)
4708 || (h->cmd_pool == NULL)
4709 || (h->errinfo_pool == NULL)) {
4710 dev_err(&h->pdev->dev, "out of memory");
4711 goto clean4;
4714 /* Need space for temp scatter list */
4715 h->scatter_list = kmalloc(h->max_commands *
4716 sizeof(struct scatterlist *),
4717 GFP_KERNEL);
4718 if (!h->scatter_list)
4719 goto clean4;
4721 for (k = 0; k < h->nr_cmds; k++) {
4722 h->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4723 h->maxsgentries,
4724 GFP_KERNEL);
4725 if (h->scatter_list[k] == NULL) {
4726 dev_err(&h->pdev->dev,
4727 "could not allocate s/g lists\n");
4728 goto clean4;
4731 h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
4732 h->chainsize, h->nr_cmds);
4733 if (!h->cmd_sg_list && h->chainsize > 0)
4734 goto clean4;
4736 spin_lock_init(&h->lock);
4738 /* Initialize the pdev driver private data.
4739 have it point to h. */
4740 pci_set_drvdata(pdev, h);
4741 /* command and error info recs zeroed out before
4742 they are used */
4743 memset(h->cmd_pool_bits, 0,
4744 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
4745 * sizeof(unsigned long));
4747 h->num_luns = 0;
4748 h->highest_lun = -1;
4749 for (j = 0; j < CISS_MAX_LUN; j++) {
4750 h->drv[j] = NULL;
4751 h->gendisk[j] = NULL;
4754 cciss_scsi_setup(h);
4756 /* Turn the interrupts on so we can service requests */
4757 h->access.set_intr_mask(h, CCISS_INTR_ON);
4759 /* Get the firmware version */
4760 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4761 if (inq_buff == NULL) {
4762 dev_err(&h->pdev->dev, "out of memory\n");
4763 goto clean4;
4766 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
4767 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4768 if (return_code == IO_OK) {
4769 h->firm_ver[0] = inq_buff->data_byte[32];
4770 h->firm_ver[1] = inq_buff->data_byte[33];
4771 h->firm_ver[2] = inq_buff->data_byte[34];
4772 h->firm_ver[3] = inq_buff->data_byte[35];
4773 } else { /* send command failed */
4774 dev_warn(&h->pdev->dev, "unable to determine firmware"
4775 " version of controller\n");
4777 kfree(inq_buff);
4779 cciss_procinit(h);
4781 h->cciss_max_sectors = 8192;
4783 rebuild_lun_table(h, 1, 0);
4784 h->busy_initializing = 0;
4785 return 1;
4787 clean4:
4788 kfree(h->cmd_pool_bits);
4789 /* Free up sg elements */
4790 for (k-- ; k >= 0; k--)
4791 kfree(h->scatter_list[k]);
4792 kfree(h->scatter_list);
4793 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4794 if (h->cmd_pool)
4795 pci_free_consistent(h->pdev,
4796 h->nr_cmds * sizeof(CommandList_struct),
4797 h->cmd_pool, h->cmd_pool_dhandle);
4798 if (h->errinfo_pool)
4799 pci_free_consistent(h->pdev,
4800 h->nr_cmds * sizeof(ErrorInfo_struct),
4801 h->errinfo_pool,
4802 h->errinfo_pool_dhandle);
4803 free_irq(h->intr[PERF_MODE_INT], h);
4804 clean2:
4805 unregister_blkdev(h->major, h->devname);
4806 clean1:
4807 cciss_destroy_hba_sysfs_entry(h);
4808 clean0:
4809 pci_release_regions(pdev);
4810 clean_no_release_regions:
4811 h->busy_initializing = 0;
4814 * Deliberately omit pci_disable_device(): it does something nasty to
4815 * Smart Array controllers that pci_enable_device does not undo
4817 pci_set_drvdata(pdev, NULL);
4818 free_hba(h);
4819 return -1;
4822 static void cciss_shutdown(struct pci_dev *pdev)
4824 ctlr_info_t *h;
4825 char *flush_buf;
4826 int return_code;
4828 h = pci_get_drvdata(pdev);
4829 flush_buf = kzalloc(4, GFP_KERNEL);
4830 if (!flush_buf) {
4831 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
4832 return;
4834 /* write all data in the battery backed cache to disk */
4835 memset(flush_buf, 0, 4);
4836 return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
4837 4, 0, CTLR_LUNID, TYPE_CMD);
4838 kfree(flush_buf);
4839 if (return_code != IO_OK)
4840 dev_warn(&h->pdev->dev, "Error flushing cache\n");
4841 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4842 free_irq(h->intr[PERF_MODE_INT], h);
4845 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4847 ctlr_info_t *h;
4848 int i, j;
4850 if (pci_get_drvdata(pdev) == NULL) {
4851 dev_err(&pdev->dev, "Unable to remove device\n");
4852 return;
4855 h = pci_get_drvdata(pdev);
4856 i = h->ctlr;
4857 if (hba[i] == NULL) {
4858 dev_err(&pdev->dev, "device appears to already be removed\n");
4859 return;
4862 mutex_lock(&h->busy_shutting_down);
4864 remove_from_scan_list(h);
4865 remove_proc_entry(h->devname, proc_cciss);
4866 unregister_blkdev(h->major, h->devname);
4868 /* remove it from the disk list */
4869 for (j = 0; j < CISS_MAX_LUN; j++) {
4870 struct gendisk *disk = h->gendisk[j];
4871 if (disk) {
4872 struct request_queue *q = disk->queue;
4874 if (disk->flags & GENHD_FL_UP) {
4875 cciss_destroy_ld_sysfs_entry(h, j, 1);
4876 del_gendisk(disk);
4878 if (q)
4879 blk_cleanup_queue(q);
4883 #ifdef CONFIG_CISS_SCSI_TAPE
4884 cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
4885 #endif
4887 cciss_shutdown(pdev);
4889 #ifdef CONFIG_PCI_MSI
4890 if (h->msix_vector)
4891 pci_disable_msix(h->pdev);
4892 else if (h->msi_vector)
4893 pci_disable_msi(h->pdev);
4894 #endif /* CONFIG_PCI_MSI */
4896 iounmap(h->transtable);
4897 iounmap(h->cfgtable);
4898 iounmap(h->vaddr);
4900 pci_free_consistent(h->pdev, h->nr_cmds * sizeof(CommandList_struct),
4901 h->cmd_pool, h->cmd_pool_dhandle);
4902 pci_free_consistent(h->pdev, h->nr_cmds * sizeof(ErrorInfo_struct),
4903 h->errinfo_pool, h->errinfo_pool_dhandle);
4904 kfree(h->cmd_pool_bits);
4905 /* Free up sg elements */
4906 for (j = 0; j < h->nr_cmds; j++)
4907 kfree(h->scatter_list[j]);
4908 kfree(h->scatter_list);
4909 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4911 * Deliberately omit pci_disable_device(): it does something nasty to
4912 * Smart Array controllers that pci_enable_device does not undo
4914 pci_release_regions(pdev);
4915 pci_set_drvdata(pdev, NULL);
4916 cciss_destroy_hba_sysfs_entry(h);
4917 mutex_unlock(&h->busy_shutting_down);
4918 free_hba(h);
4921 static struct pci_driver cciss_pci_driver = {
4922 .name = "cciss",
4923 .probe = cciss_init_one,
4924 .remove = __devexit_p(cciss_remove_one),
4925 .id_table = cciss_pci_device_id, /* id_table */
4926 .shutdown = cciss_shutdown,
4930 * This is it. Register the PCI driver information for the cards we control
4931 * the OS will call our registered routines when it finds one of our cards.
4933 static int __init cciss_init(void)
4935 int err;
4938 * The hardware requires that commands are aligned on a 64-bit
4939 * boundary. Given that we use pci_alloc_consistent() to allocate an
4940 * array of them, the size must be a multiple of 8 bytes.
4942 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4943 printk(KERN_INFO DRIVER_NAME "\n");
4945 err = bus_register(&cciss_bus_type);
4946 if (err)
4947 return err;
4949 /* Start the scan thread */
4950 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4951 if (IS_ERR(cciss_scan_thread)) {
4952 err = PTR_ERR(cciss_scan_thread);
4953 goto err_bus_unregister;
4956 /* Register for our PCI devices */
4957 err = pci_register_driver(&cciss_pci_driver);
4958 if (err)
4959 goto err_thread_stop;
4961 return err;
4963 err_thread_stop:
4964 kthread_stop(cciss_scan_thread);
4965 err_bus_unregister:
4966 bus_unregister(&cciss_bus_type);
4968 return err;
4971 static void __exit cciss_cleanup(void)
4973 int i;
4975 pci_unregister_driver(&cciss_pci_driver);
4976 /* double check that all controller entrys have been removed */
4977 for (i = 0; i < MAX_CTLR; i++) {
4978 if (hba[i] != NULL) {
4979 dev_warn(&hba[i]->pdev->dev,
4980 "had to remove controller\n");
4981 cciss_remove_one(hba[i]->pdev);
4984 kthread_stop(cciss_scan_thread);
4985 remove_proc_entry("driver/cciss", NULL);
4986 bus_unregister(&cciss_bus_type);
4989 module_init(cciss_init);
4990 module_exit(cciss_cleanup);