RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / powerpc / platforms / pseries / eeh.c
blobd52ec4aa4f37a17fe1a1c821f1ebbe9045ec9439
1 /*
2 * eeh.c
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
24 #undef DEBUG
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rbtree.h>
32 #include <linux/seq_file.h>
33 #include <linux/spinlock.h>
34 #include <linux/of.h>
36 #include <asm/atomic.h>
37 #include <asm/eeh.h>
38 #include <asm/eeh_event.h>
39 #include <asm/io.h>
40 #include <asm/machdep.h>
41 #include <asm/ppc-pci.h>
42 #include <asm/rtas.h>
45 /** Overview:
46 * EEH, or "Extended Error Handling" is a PCI bridge technology for
47 * dealing with PCI bus errors that can't be dealt with within the
48 * usual PCI framework, except by check-stopping the CPU. Systems
49 * that are designed for high-availability/reliability cannot afford
50 * to crash due to a "mere" PCI error, thus the need for EEH.
51 * An EEH-capable bridge operates by converting a detected error
52 * into a "slot freeze", taking the PCI adapter off-line, making
53 * the slot behave, from the OS'es point of view, as if the slot
54 * were "empty": all reads return 0xff's and all writes are silently
55 * ignored. EEH slot isolation events can be triggered by parity
56 * errors on the address or data busses (e.g. during posted writes),
57 * which in turn might be caused by low voltage on the bus, dust,
58 * vibration, humidity, radioactivity or plain-old failed hardware.
60 * Note, however, that one of the leading causes of EEH slot
61 * freeze events are buggy device drivers, buggy device microcode,
62 * or buggy device hardware. This is because any attempt by the
63 * device to bus-master data to a memory address that is not
64 * assigned to the device will trigger a slot freeze. (The idea
65 * is to prevent devices-gone-wild from corrupting system memory).
66 * Buggy hardware/drivers will have a miserable time co-existing
67 * with EEH.
69 * Ideally, a PCI device driver, when suspecting that an isolation
70 * event has occured (e.g. by reading 0xff's), will then ask EEH
71 * whether this is the case, and then take appropriate steps to
72 * reset the PCI slot, the PCI device, and then resume operations.
73 * However, until that day, the checking is done here, with the
74 * eeh_check_failure() routine embedded in the MMIO macros. If
75 * the slot is found to be isolated, an "EEH Event" is synthesized
76 * and sent out for processing.
79 /* If a device driver keeps reading an MMIO register in an interrupt
80 * handler after a slot isolation event, it might be broken.
81 * This sets the threshold for how many read attempts we allow
82 * before printing an error message.
84 #define EEH_MAX_FAILS 2100000
86 /* Time to wait for a PCI slot to report status, in milliseconds */
87 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
89 /* RTAS tokens */
90 static int ibm_set_eeh_option;
91 static int ibm_set_slot_reset;
92 static int ibm_read_slot_reset_state;
93 static int ibm_read_slot_reset_state2;
94 static int ibm_slot_error_detail;
95 static int ibm_get_config_addr_info;
96 static int ibm_get_config_addr_info2;
97 static int ibm_configure_bridge;
99 int eeh_subsystem_enabled;
100 EXPORT_SYMBOL(eeh_subsystem_enabled);
102 /* Lock to avoid races due to multiple reports of an error */
103 static DEFINE_RAW_SPINLOCK(confirm_error_lock);
105 /* Buffer for reporting slot-error-detail rtas calls. Its here
106 * in BSS, and not dynamically alloced, so that it ends up in
107 * RMO where RTAS can access it.
109 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
110 static DEFINE_SPINLOCK(slot_errbuf_lock);
111 static int eeh_error_buf_size;
113 /* Buffer for reporting pci register dumps. Its here in BSS, and
114 * not dynamically alloced, so that it ends up in RMO where RTAS
115 * can access it.
117 #define EEH_PCI_REGS_LOG_LEN 4096
118 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
120 /* System monitoring statistics */
121 static unsigned long no_device;
122 static unsigned long no_dn;
123 static unsigned long no_cfg_addr;
124 static unsigned long ignored_check;
125 static unsigned long total_mmio_ffs;
126 static unsigned long false_positives;
127 static unsigned long slot_resets;
129 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
131 /* --------------------------------------------------------------- */
132 /* Below lies the EEH event infrastructure */
134 static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
135 char *driver_log, size_t loglen)
137 int config_addr;
138 unsigned long flags;
139 int rc;
141 /* Log the error with the rtas logger */
142 spin_lock_irqsave(&slot_errbuf_lock, flags);
143 memset(slot_errbuf, 0, eeh_error_buf_size);
145 /* Use PE configuration address, if present */
146 config_addr = pdn->eeh_config_addr;
147 if (pdn->eeh_pe_config_addr)
148 config_addr = pdn->eeh_pe_config_addr;
150 rc = rtas_call(ibm_slot_error_detail,
151 8, 1, NULL, config_addr,
152 BUID_HI(pdn->phb->buid),
153 BUID_LO(pdn->phb->buid),
154 virt_to_phys(driver_log), loglen,
155 virt_to_phys(slot_errbuf),
156 eeh_error_buf_size,
157 severity);
159 if (rc == 0)
160 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
161 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
165 * gather_pci_data - copy assorted PCI config space registers to buff
166 * @pdn: device to report data for
167 * @buf: point to buffer in which to log
168 * @len: amount of room in buffer
170 * This routine captures assorted PCI configuration space data,
171 * and puts them into a buffer for RTAS error logging.
173 static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
175 struct pci_dev *dev = pdn->pcidev;
176 u32 cfg;
177 int cap, i;
178 int n = 0;
180 n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
181 printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
183 rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
184 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
185 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
187 rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
188 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
189 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
191 if (!dev) {
192 printk(KERN_WARNING "EEH: no PCI device for this of node\n");
193 return n;
196 /* Gather bridge-specific registers */
197 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
198 rtas_read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
199 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
200 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
202 rtas_read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
203 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
204 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
207 /* Dump out the PCI-X command and status regs */
208 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
209 if (cap) {
210 rtas_read_config(pdn, cap, 4, &cfg);
211 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
212 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
214 rtas_read_config(pdn, cap+4, 4, &cfg);
215 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
216 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
219 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
220 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
221 if (cap) {
222 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
223 printk(KERN_WARNING
224 "EEH: PCI-E capabilities and status follow:\n");
226 for (i=0; i<=8; i++) {
227 rtas_read_config(pdn, cap+4*i, 4, &cfg);
228 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
229 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
232 cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
233 if (cap) {
234 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
235 printk(KERN_WARNING
236 "EEH: PCI-E AER capability register set follows:\n");
238 for (i=0; i<14; i++) {
239 rtas_read_config(pdn, cap+4*i, 4, &cfg);
240 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
241 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
246 /* Gather status on devices under the bridge */
247 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
248 struct device_node *dn;
250 for_each_child_of_node(pdn->node, dn) {
251 pdn = PCI_DN(dn);
252 if (pdn)
253 n += gather_pci_data(pdn, buf+n, len-n);
257 return n;
260 void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
262 size_t loglen = 0;
263 pci_regs_buf[0] = 0;
265 rtas_pci_enable(pdn, EEH_THAW_MMIO);
266 loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
268 rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
272 * read_slot_reset_state - Read the reset state of a device node's slot
273 * @dn: device node to read
274 * @rets: array to return results in
276 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
278 int token, outputs;
279 int config_addr;
281 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
282 token = ibm_read_slot_reset_state2;
283 outputs = 4;
284 } else {
285 token = ibm_read_slot_reset_state;
286 rets[2] = 0; /* fake PE Unavailable info */
287 outputs = 3;
290 /* Use PE configuration address, if present */
291 config_addr = pdn->eeh_config_addr;
292 if (pdn->eeh_pe_config_addr)
293 config_addr = pdn->eeh_pe_config_addr;
295 return rtas_call(token, 3, outputs, rets, config_addr,
296 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
300 * eeh_wait_for_slot_status - returns error status of slot
301 * @pdn pci device node
302 * @max_wait_msecs maximum number to millisecs to wait
304 * Return negative value if a permanent error, else return
305 * Partition Endpoint (PE) status value.
307 * If @max_wait_msecs is positive, then this routine will
308 * sleep until a valid status can be obtained, or until
309 * the max allowed wait time is exceeded, in which case
310 * a -2 is returned.
313 eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
315 int rc;
316 int rets[3];
317 int mwait;
319 while (1) {
320 rc = read_slot_reset_state(pdn, rets);
321 if (rc) return rc;
322 if (rets[1] == 0) return -1; /* EEH is not supported */
324 if (rets[0] != 5) return rets[0]; /* return actual status */
326 if (rets[2] == 0) return -1; /* permanently unavailable */
328 if (max_wait_msecs <= 0) break;
330 mwait = rets[2];
331 if (mwait <= 0) {
332 printk (KERN_WARNING
333 "EEH: Firmware returned bad wait value=%d\n", mwait);
334 mwait = 1000;
335 } else if (mwait > 300*1000) {
336 printk (KERN_WARNING
337 "EEH: Firmware is taking too long, time=%d\n", mwait);
338 mwait = 300*1000;
340 max_wait_msecs -= mwait;
341 msleep (mwait);
344 printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
345 return -2;
349 * eeh_token_to_phys - convert EEH address token to phys address
350 * @token i/o token, should be address in the form 0xA....
352 static inline unsigned long eeh_token_to_phys(unsigned long token)
354 pte_t *ptep;
355 unsigned long pa;
357 ptep = find_linux_pte(init_mm.pgd, token);
358 if (!ptep)
359 return token;
360 pa = pte_pfn(*ptep) << PAGE_SHIFT;
362 return pa | (token & (PAGE_SIZE-1));
365 /**
366 * Return the "partitionable endpoint" (pe) under which this device lies
368 struct device_node * find_device_pe(struct device_node *dn)
370 while ((dn->parent) && PCI_DN(dn->parent) &&
371 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
372 dn = dn->parent;
374 return dn;
377 /** Mark all devices that are children of this device as failed.
378 * Mark the device driver too, so that it can see the failure
379 * immediately; this is critical, since some drivers poll
380 * status registers in interrupts ... If a driver is polling,
381 * and the slot is frozen, then the driver can deadlock in
382 * an interrupt context, which is bad.
385 static void __eeh_mark_slot(struct device_node *parent, int mode_flag)
387 struct device_node *dn;
389 for_each_child_of_node(parent, dn) {
390 if (PCI_DN(dn)) {
391 /* Mark the pci device driver too */
392 struct pci_dev *dev = PCI_DN(dn)->pcidev;
394 PCI_DN(dn)->eeh_mode |= mode_flag;
396 if (dev && dev->driver)
397 dev->error_state = pci_channel_io_frozen;
399 __eeh_mark_slot(dn, mode_flag);
404 void eeh_mark_slot (struct device_node *dn, int mode_flag)
406 struct pci_dev *dev;
407 dn = find_device_pe (dn);
409 /* Back up one, since config addrs might be shared */
410 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
411 dn = dn->parent;
413 PCI_DN(dn)->eeh_mode |= mode_flag;
415 /* Mark the pci device too */
416 dev = PCI_DN(dn)->pcidev;
417 if (dev)
418 dev->error_state = pci_channel_io_frozen;
420 __eeh_mark_slot(dn, mode_flag);
423 static void __eeh_clear_slot(struct device_node *parent, int mode_flag)
425 struct device_node *dn;
427 for_each_child_of_node(parent, dn) {
428 if (PCI_DN(dn)) {
429 PCI_DN(dn)->eeh_mode &= ~mode_flag;
430 PCI_DN(dn)->eeh_check_count = 0;
431 __eeh_clear_slot(dn, mode_flag);
436 void eeh_clear_slot (struct device_node *dn, int mode_flag)
438 unsigned long flags;
439 raw_spin_lock_irqsave(&confirm_error_lock, flags);
441 dn = find_device_pe (dn);
443 /* Back up one, since config addrs might be shared */
444 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
445 dn = dn->parent;
447 PCI_DN(dn)->eeh_mode &= ~mode_flag;
448 PCI_DN(dn)->eeh_check_count = 0;
449 __eeh_clear_slot(dn, mode_flag);
450 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
454 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
455 * @dn device node
456 * @dev pci device, if known
458 * Check for an EEH failure for the given device node. Call this
459 * routine if the result of a read was all 0xff's and you want to
460 * find out if this is due to an EEH slot freeze. This routine
461 * will query firmware for the EEH status.
463 * Returns 0 if there has not been an EEH error; otherwise returns
464 * a non-zero value and queues up a slot isolation event notification.
466 * It is safe to call this routine in an interrupt context.
468 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
470 int ret;
471 int rets[3];
472 unsigned long flags;
473 struct pci_dn *pdn;
474 int rc = 0;
475 const char *location;
477 total_mmio_ffs++;
479 if (!eeh_subsystem_enabled)
480 return 0;
482 if (!dn) {
483 no_dn++;
484 return 0;
486 dn = find_device_pe(dn);
487 pdn = PCI_DN(dn);
489 /* Access to IO BARs might get this far and still not want checking. */
490 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
491 pdn->eeh_mode & EEH_MODE_NOCHECK) {
492 ignored_check++;
493 pr_debug("EEH: Ignored check (%x) for %s %s\n",
494 pdn->eeh_mode, eeh_pci_name(dev), dn->full_name);
495 return 0;
498 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
499 no_cfg_addr++;
500 return 0;
503 /* If we already have a pending isolation event for this
504 * slot, we know it's bad already, we don't need to check.
505 * Do this checking under a lock; as multiple PCI devices
506 * in one slot might report errors simultaneously, and we
507 * only want one error recovery routine running.
509 raw_spin_lock_irqsave(&confirm_error_lock, flags);
510 rc = 1;
511 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
512 pdn->eeh_check_count ++;
513 if (pdn->eeh_check_count % EEH_MAX_FAILS == 0) {
514 location = of_get_property(dn, "ibm,loc-code", NULL);
515 printk (KERN_ERR "EEH: %d reads ignored for recovering device at "
516 "location=%s driver=%s pci addr=%s\n",
517 pdn->eeh_check_count, location,
518 dev->driver->name, eeh_pci_name(dev));
519 printk (KERN_ERR "EEH: Might be infinite loop in %s driver\n",
520 dev->driver->name);
521 dump_stack();
523 goto dn_unlock;
527 * Now test for an EEH failure. This is VERY expensive.
528 * Note that the eeh_config_addr may be a parent device
529 * in the case of a device behind a bridge, or it may be
530 * function zero of a multi-function device.
531 * In any case they must share a common PHB.
533 ret = read_slot_reset_state(pdn, rets);
535 /* If the call to firmware failed, punt */
536 if (ret != 0) {
537 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
538 ret, dn->full_name);
539 false_positives++;
540 pdn->eeh_false_positives ++;
541 rc = 0;
542 goto dn_unlock;
545 /* Note that config-io to empty slots may fail;
546 * they are empty when they don't have children. */
547 if ((rets[0] == 5) && (rets[2] == 0) && (dn->child == NULL)) {
548 false_positives++;
549 pdn->eeh_false_positives ++;
550 rc = 0;
551 goto dn_unlock;
554 /* If EEH is not supported on this device, punt. */
555 if (rets[1] != 1) {
556 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
557 ret, dn->full_name);
558 false_positives++;
559 pdn->eeh_false_positives ++;
560 rc = 0;
561 goto dn_unlock;
564 /* If not the kind of error we know about, punt. */
565 if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
566 false_positives++;
567 pdn->eeh_false_positives ++;
568 rc = 0;
569 goto dn_unlock;
572 slot_resets++;
574 /* Avoid repeated reports of this failure, including problems
575 * with other functions on this device, and functions under
576 * bridges. */
577 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
578 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
580 eeh_send_failure_event (dn, dev);
582 /* Most EEH events are due to device driver bugs. Having
583 * a stack trace will help the device-driver authors figure
584 * out what happened. So print that out. */
585 dump_stack();
586 return 1;
588 dn_unlock:
589 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
590 return rc;
593 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
595 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
597 unsigned long addr;
598 struct pci_dev *dev;
599 struct device_node *dn;
601 /* Finding the phys addr + pci device; this is pretty quick. */
602 addr = eeh_token_to_phys((unsigned long __force) token);
603 dev = pci_get_device_by_addr(addr);
604 if (!dev) {
605 no_device++;
606 return val;
609 dn = pci_device_to_OF_node(dev);
610 eeh_dn_check_failure (dn, dev);
612 pci_dev_put(dev);
613 return val;
616 EXPORT_SYMBOL(eeh_check_failure);
618 /* ------------------------------------------------------------- */
619 /* The code below deals with error recovery */
622 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
623 * @pdn pci device node
627 rtas_pci_enable(struct pci_dn *pdn, int function)
629 int config_addr;
630 int rc;
632 /* Use PE configuration address, if present */
633 config_addr = pdn->eeh_config_addr;
634 if (pdn->eeh_pe_config_addr)
635 config_addr = pdn->eeh_pe_config_addr;
637 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
638 config_addr,
639 BUID_HI(pdn->phb->buid),
640 BUID_LO(pdn->phb->buid),
641 function);
643 if (rc)
644 printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
645 function, rc, pdn->node->full_name);
647 rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
648 if ((rc == 4) && (function == EEH_THAW_MMIO))
649 return 0;
651 return rc;
655 * rtas_pci_slot_reset - raises/lowers the pci #RST line
656 * @pdn pci device node
657 * @state: 1/0 to raise/lower the #RST
659 * Clear the EEH-frozen condition on a slot. This routine
660 * asserts the PCI #RST line if the 'state' argument is '1',
661 * and drops the #RST line if 'state is '0'. This routine is
662 * safe to call in an interrupt context.
666 static void
667 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
669 int config_addr;
670 int rc;
672 BUG_ON (pdn==NULL);
674 if (!pdn->phb) {
675 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
676 pdn->node->full_name);
677 return;
680 /* Use PE configuration address, if present */
681 config_addr = pdn->eeh_config_addr;
682 if (pdn->eeh_pe_config_addr)
683 config_addr = pdn->eeh_pe_config_addr;
685 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
686 config_addr,
687 BUID_HI(pdn->phb->buid),
688 BUID_LO(pdn->phb->buid),
689 state);
690 if (rc)
691 printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
692 " (%d) #RST=%d dn=%s\n",
693 rc, state, pdn->node->full_name);
697 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
698 * @dev: pci device struct
699 * @state: reset state to enter
701 * Return value:
702 * 0 if success
704 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
706 struct device_node *dn = pci_device_to_OF_node(dev);
707 struct pci_dn *pdn = PCI_DN(dn);
709 switch (state) {
710 case pcie_deassert_reset:
711 rtas_pci_slot_reset(pdn, 0);
712 break;
713 case pcie_hot_reset:
714 rtas_pci_slot_reset(pdn, 1);
715 break;
716 case pcie_warm_reset:
717 rtas_pci_slot_reset(pdn, 3);
718 break;
719 default:
720 return -EINVAL;
723 return 0;
727 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
728 * @pdn: pci device node to be reset.
730 * Return 0 if success, else a non-zero value.
733 static void __rtas_set_slot_reset(struct pci_dn *pdn)
735 struct pci_dev *dev = pdn->pcidev;
737 /* Determine type of EEH reset required by device,
738 * default hot reset or fundamental reset
740 if (dev && dev->needs_freset)
741 rtas_pci_slot_reset(pdn, 3);
742 else
743 rtas_pci_slot_reset(pdn, 1);
745 /* The PCI bus requires that the reset be held high for at least
746 * a 100 milliseconds. We wait a bit longer 'just in case'. */
748 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
749 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
751 /* We might get hit with another EEH freeze as soon as the
752 * pci slot reset line is dropped. Make sure we don't miss
753 * these, and clear the flag now. */
754 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
756 rtas_pci_slot_reset (pdn, 0);
758 /* After a PCI slot has been reset, the PCI Express spec requires
759 * a 1.5 second idle time for the bus to stabilize, before starting
760 * up traffic. */
761 #define PCI_BUS_SETTLE_TIME_MSEC 1800
762 msleep (PCI_BUS_SETTLE_TIME_MSEC);
765 int rtas_set_slot_reset(struct pci_dn *pdn)
767 int i, rc;
769 /* Take three shots at resetting the bus */
770 for (i=0; i<3; i++) {
771 __rtas_set_slot_reset(pdn);
773 rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
774 if (rc == 0)
775 return 0;
777 if (rc < 0) {
778 printk(KERN_ERR "EEH: unrecoverable slot failure %s\n",
779 pdn->node->full_name);
780 return -1;
782 printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n",
783 i+1, pdn->node->full_name, rc);
786 return -1;
789 /* ------------------------------------------------------- */
790 /** Save and restore of PCI BARs
792 * Although firmware will set up BARs during boot, it doesn't
793 * set up device BAR's after a device reset, although it will,
794 * if requested, set up bridge configuration. Thus, we need to
795 * configure the PCI devices ourselves.
799 * __restore_bars - Restore the Base Address Registers
800 * @pdn: pci device node
802 * Loads the PCI configuration space base address registers,
803 * the expansion ROM base address, the latency timer, and etc.
804 * from the saved values in the device node.
806 static inline void __restore_bars (struct pci_dn *pdn)
808 int i;
809 u32 cmd;
811 if (NULL==pdn->phb) return;
812 for (i=4; i<10; i++) {
813 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
816 /* 12 == Expansion ROM Address */
817 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
819 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
820 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
822 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
823 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
825 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
826 SAVED_BYTE(PCI_LATENCY_TIMER));
828 /* max latency, min grant, interrupt pin and line */
829 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
831 /* Restore PERR & SERR bits, some devices require it,
832 don't touch the other command bits */
833 rtas_read_config(pdn, PCI_COMMAND, 4, &cmd);
834 if (pdn->config_space[1] & PCI_COMMAND_PARITY)
835 cmd |= PCI_COMMAND_PARITY;
836 else
837 cmd &= ~PCI_COMMAND_PARITY;
838 if (pdn->config_space[1] & PCI_COMMAND_SERR)
839 cmd |= PCI_COMMAND_SERR;
840 else
841 cmd &= ~PCI_COMMAND_SERR;
842 rtas_write_config(pdn, PCI_COMMAND, 4, cmd);
846 * eeh_restore_bars - restore the PCI config space info
848 * This routine performs a recursive walk to the children
849 * of this device as well.
851 void eeh_restore_bars(struct pci_dn *pdn)
853 struct device_node *dn;
854 if (!pdn)
855 return;
857 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
858 __restore_bars (pdn);
860 for_each_child_of_node(pdn->node, dn)
861 eeh_restore_bars (PCI_DN(dn));
865 * eeh_save_bars - save device bars
867 * Save the values of the device bars. Unlike the restore
868 * routine, this routine is *not* recursive. This is because
869 * PCI devices are added individuallly; but, for the restore,
870 * an entire slot is reset at a time.
872 static void eeh_save_bars(struct pci_dn *pdn)
874 int i;
876 if (!pdn )
877 return;
879 for (i = 0; i < 16; i++)
880 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
883 void
884 rtas_configure_bridge(struct pci_dn *pdn)
886 int config_addr;
887 int rc;
889 /* Use PE configuration address, if present */
890 config_addr = pdn->eeh_config_addr;
891 if (pdn->eeh_pe_config_addr)
892 config_addr = pdn->eeh_pe_config_addr;
894 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
895 config_addr,
896 BUID_HI(pdn->phb->buid),
897 BUID_LO(pdn->phb->buid));
898 if (rc) {
899 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
900 rc, pdn->node->full_name);
904 /* ------------------------------------------------------------- */
905 /* The code below deals with enabling EEH for devices during the
906 * early boot sequence. EEH must be enabled before any PCI probing
907 * can be done.
910 #define EEH_ENABLE 1
912 struct eeh_early_enable_info {
913 unsigned int buid_hi;
914 unsigned int buid_lo;
917 static int get_pe_addr (int config_addr,
918 struct eeh_early_enable_info *info)
920 unsigned int rets[3];
921 int ret;
923 /* Use latest config-addr token on power6 */
924 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
925 /* Make sure we have a PE in hand */
926 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
927 config_addr, info->buid_hi, info->buid_lo, 1);
928 if (ret || (rets[0]==0))
929 return 0;
931 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
932 config_addr, info->buid_hi, info->buid_lo, 0);
933 if (ret)
934 return 0;
935 return rets[0];
938 /* Use older config-addr token on power5 */
939 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
940 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
941 config_addr, info->buid_hi, info->buid_lo, 0);
942 if (ret)
943 return 0;
944 return rets[0];
946 return 0;
949 /* Enable eeh for the given device node. */
950 static void *early_enable_eeh(struct device_node *dn, void *data)
952 unsigned int rets[3];
953 struct eeh_early_enable_info *info = data;
954 int ret;
955 const u32 *class_code = of_get_property(dn, "class-code", NULL);
956 const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
957 const u32 *device_id = of_get_property(dn, "device-id", NULL);
958 const u32 *regs;
959 int enable;
960 struct pci_dn *pdn = PCI_DN(dn);
962 pdn->class_code = 0;
963 pdn->eeh_mode = 0;
964 pdn->eeh_check_count = 0;
965 pdn->eeh_freeze_count = 0;
966 pdn->eeh_false_positives = 0;
968 if (!of_device_is_available(dn))
969 return NULL;
971 /* Ignore bad nodes. */
972 if (!class_code || !vendor_id || !device_id)
973 return NULL;
975 /* There is nothing to check on PCI to ISA bridges */
976 if (dn->type && !strcmp(dn->type, "isa")) {
977 pdn->eeh_mode |= EEH_MODE_NOCHECK;
978 return NULL;
980 pdn->class_code = *class_code;
982 /* Ok... see if this device supports EEH. Some do, some don't,
983 * and the only way to find out is to check each and every one. */
984 regs = of_get_property(dn, "reg", NULL);
985 if (regs) {
986 /* First register entry is addr (00BBSS00) */
987 /* Try to enable eeh */
988 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
989 regs[0], info->buid_hi, info->buid_lo,
990 EEH_ENABLE);
992 enable = 0;
993 if (ret == 0) {
994 pdn->eeh_config_addr = regs[0];
996 /* If the newer, better, ibm,get-config-addr-info is supported,
997 * then use that instead. */
998 pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
1000 /* Some older systems (Power4) allow the
1001 * ibm,set-eeh-option call to succeed even on nodes
1002 * where EEH is not supported. Verify support
1003 * explicitly. */
1004 ret = read_slot_reset_state(pdn, rets);
1005 if ((ret == 0) && (rets[1] == 1))
1006 enable = 1;
1009 if (enable) {
1010 eeh_subsystem_enabled = 1;
1011 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1013 pr_debug("EEH: %s: eeh enabled, config=%x pe_config=%x\n",
1014 dn->full_name, pdn->eeh_config_addr,
1015 pdn->eeh_pe_config_addr);
1016 } else {
1018 /* This device doesn't support EEH, but it may have an
1019 * EEH parent, in which case we mark it as supported. */
1020 if (dn->parent && PCI_DN(dn->parent)
1021 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
1022 /* Parent supports EEH. */
1023 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1024 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
1025 return NULL;
1028 } else {
1029 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
1030 dn->full_name);
1033 eeh_save_bars(pdn);
1034 return NULL;
1038 * Initialize EEH by trying to enable it for all of the adapters in the system.
1039 * As a side effect we can determine here if eeh is supported at all.
1040 * Note that we leave EEH on so failed config cycles won't cause a machine
1041 * check. If a user turns off EEH for a particular adapter they are really
1042 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1043 * grant access to a slot if EEH isn't enabled, and so we always enable
1044 * EEH for all slots/all devices.
1046 * The eeh-force-off option disables EEH checking globally, for all slots.
1047 * Even if force-off is set, the EEH hardware is still enabled, so that
1048 * newer systems can boot.
1050 void __init eeh_init(void)
1052 struct device_node *phb, *np;
1053 struct eeh_early_enable_info info;
1055 raw_spin_lock_init(&confirm_error_lock);
1056 spin_lock_init(&slot_errbuf_lock);
1058 np = of_find_node_by_path("/rtas");
1059 if (np == NULL)
1060 return;
1062 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1063 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1064 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1065 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1066 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1067 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
1068 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
1069 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
1071 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1072 return;
1074 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1075 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1076 eeh_error_buf_size = 1024;
1078 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1079 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1080 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1081 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1084 /* Enable EEH for all adapters. Note that eeh requires buid's */
1085 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1086 phb = of_find_node_by_name(phb, "pci")) {
1087 unsigned long buid;
1089 buid = get_phb_buid(phb);
1090 if (buid == 0 || PCI_DN(phb) == NULL)
1091 continue;
1093 info.buid_lo = BUID_LO(buid);
1094 info.buid_hi = BUID_HI(buid);
1095 traverse_pci_devices(phb, early_enable_eeh, &info);
1098 if (eeh_subsystem_enabled)
1099 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1100 else
1101 printk(KERN_WARNING "EEH: No capable adapters found\n");
1105 * eeh_add_device_early - enable EEH for the indicated device_node
1106 * @dn: device node for which to set up EEH
1108 * This routine must be used to perform EEH initialization for PCI
1109 * devices that were added after system boot (e.g. hotplug, dlpar).
1110 * This routine must be called before any i/o is performed to the
1111 * adapter (inluding any config-space i/o).
1112 * Whether this actually enables EEH or not for this device depends
1113 * on the CEC architecture, type of the device, on earlier boot
1114 * command-line arguments & etc.
1116 static void eeh_add_device_early(struct device_node *dn)
1118 struct pci_controller *phb;
1119 struct eeh_early_enable_info info;
1121 if (!dn || !PCI_DN(dn))
1122 return;
1123 phb = PCI_DN(dn)->phb;
1125 /* USB Bus children of PCI devices will not have BUID's */
1126 if (NULL == phb || 0 == phb->buid)
1127 return;
1129 info.buid_hi = BUID_HI(phb->buid);
1130 info.buid_lo = BUID_LO(phb->buid);
1131 early_enable_eeh(dn, &info);
1134 void eeh_add_device_tree_early(struct device_node *dn)
1136 struct device_node *sib;
1138 for_each_child_of_node(dn, sib)
1139 eeh_add_device_tree_early(sib);
1140 eeh_add_device_early(dn);
1142 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1145 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1146 * @dev: pci device for which to set up EEH
1148 * This routine must be used to complete EEH initialization for PCI
1149 * devices that were added after system boot (e.g. hotplug, dlpar).
1151 static void eeh_add_device_late(struct pci_dev *dev)
1153 struct device_node *dn;
1154 struct pci_dn *pdn;
1156 if (!dev || !eeh_subsystem_enabled)
1157 return;
1159 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1161 dn = pci_device_to_OF_node(dev);
1162 pdn = PCI_DN(dn);
1163 if (pdn->pcidev == dev) {
1164 pr_debug("EEH: Already referenced !\n");
1165 return;
1167 WARN_ON(pdn->pcidev);
1169 pci_dev_get (dev);
1170 pdn->pcidev = dev;
1172 pci_addr_cache_insert_device(dev);
1173 eeh_sysfs_add_device(dev);
1176 void eeh_add_device_tree_late(struct pci_bus *bus)
1178 struct pci_dev *dev;
1180 list_for_each_entry(dev, &bus->devices, bus_list) {
1181 eeh_add_device_late(dev);
1182 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1183 struct pci_bus *subbus = dev->subordinate;
1184 if (subbus)
1185 eeh_add_device_tree_late(subbus);
1189 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1192 * eeh_remove_device - undo EEH setup for the indicated pci device
1193 * @dev: pci device to be removed
1195 * This routine should be called when a device is removed from
1196 * a running system (e.g. by hotplug or dlpar). It unregisters
1197 * the PCI device from the EEH subsystem. I/O errors affecting
1198 * this device will no longer be detected after this call; thus,
1199 * i/o errors affecting this slot may leave this device unusable.
1201 static void eeh_remove_device(struct pci_dev *dev)
1203 struct device_node *dn;
1204 if (!dev || !eeh_subsystem_enabled)
1205 return;
1207 /* Unregister the device with the EEH/PCI address search system */
1208 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1210 dn = pci_device_to_OF_node(dev);
1211 if (PCI_DN(dn)->pcidev == NULL) {
1212 pr_debug("EEH: Not referenced !\n");
1213 return;
1215 PCI_DN(dn)->pcidev = NULL;
1216 pci_dev_put (dev);
1218 pci_addr_cache_remove_device(dev);
1219 eeh_sysfs_remove_device(dev);
1222 void eeh_remove_bus_device(struct pci_dev *dev)
1224 struct pci_bus *bus = dev->subordinate;
1225 struct pci_dev *child, *tmp;
1227 eeh_remove_device(dev);
1229 if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1230 list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1231 eeh_remove_bus_device(child);
1234 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1236 static int proc_eeh_show(struct seq_file *m, void *v)
1238 if (0 == eeh_subsystem_enabled) {
1239 seq_printf(m, "EEH Subsystem is globally disabled\n");
1240 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1241 } else {
1242 seq_printf(m, "EEH Subsystem is enabled\n");
1243 seq_printf(m,
1244 "no device=%ld\n"
1245 "no device node=%ld\n"
1246 "no config address=%ld\n"
1247 "check not wanted=%ld\n"
1248 "eeh_total_mmio_ffs=%ld\n"
1249 "eeh_false_positives=%ld\n"
1250 "eeh_slot_resets=%ld\n",
1251 no_device, no_dn, no_cfg_addr,
1252 ignored_check, total_mmio_ffs,
1253 false_positives,
1254 slot_resets);
1257 return 0;
1260 static int proc_eeh_open(struct inode *inode, struct file *file)
1262 return single_open(file, proc_eeh_show, NULL);
1265 static const struct file_operations proc_eeh_operations = {
1266 .open = proc_eeh_open,
1267 .read = seq_read,
1268 .llseek = seq_lseek,
1269 .release = single_release,
1272 static int __init eeh_init_proc(void)
1274 if (machine_is(pseries))
1275 proc_create("ppc64/eeh", 0, NULL, &proc_eeh_operations);
1276 return 0;
1278 __initcall(eeh_init_proc);