RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / powerpc / kernel / perf_event_fsl_emb.c
blob1ba45471ae436617e1ecbf3654a5064ef15d1af7
1 /*
2 * Performance event support - Freescale Embedded Performance Monitor
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 * Copyright 2010 Freescale Semiconductor, Inc.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/perf_event.h>
15 #include <linux/percpu.h>
16 #include <linux/hardirq.h>
17 #include <asm/reg_fsl_emb.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
23 struct cpu_hw_events {
24 int n_events;
25 int disabled;
26 u8 pmcs_enabled;
27 struct perf_event *event[MAX_HWEVENTS];
29 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
31 static struct fsl_emb_pmu *ppmu;
33 /* Number of perf_events counting hardware events */
34 static atomic_t num_events;
35 /* Used to avoid races in calling reserve/release_pmc_hardware */
36 static DEFINE_MUTEX(pmc_reserve_mutex);
39 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
40 * it as an NMI.
42 static inline int perf_intr_is_nmi(struct pt_regs *regs)
44 #ifdef __powerpc64__
45 return !regs->softe;
46 #else
47 return 0;
48 #endif
51 static void perf_event_interrupt(struct pt_regs *regs);
54 * Read one performance monitor counter (PMC).
56 static unsigned long read_pmc(int idx)
58 unsigned long val;
60 switch (idx) {
61 case 0:
62 val = mfpmr(PMRN_PMC0);
63 break;
64 case 1:
65 val = mfpmr(PMRN_PMC1);
66 break;
67 case 2:
68 val = mfpmr(PMRN_PMC2);
69 break;
70 case 3:
71 val = mfpmr(PMRN_PMC3);
72 break;
73 default:
74 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
75 val = 0;
77 return val;
81 * Write one PMC.
83 static void write_pmc(int idx, unsigned long val)
85 switch (idx) {
86 case 0:
87 mtpmr(PMRN_PMC0, val);
88 break;
89 case 1:
90 mtpmr(PMRN_PMC1, val);
91 break;
92 case 2:
93 mtpmr(PMRN_PMC2, val);
94 break;
95 case 3:
96 mtpmr(PMRN_PMC3, val);
97 break;
98 default:
99 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
102 isync();
106 * Write one local control A register
108 static void write_pmlca(int idx, unsigned long val)
110 switch (idx) {
111 case 0:
112 mtpmr(PMRN_PMLCA0, val);
113 break;
114 case 1:
115 mtpmr(PMRN_PMLCA1, val);
116 break;
117 case 2:
118 mtpmr(PMRN_PMLCA2, val);
119 break;
120 case 3:
121 mtpmr(PMRN_PMLCA3, val);
122 break;
123 default:
124 printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
127 isync();
131 * Write one local control B register
133 static void write_pmlcb(int idx, unsigned long val)
135 switch (idx) {
136 case 0:
137 mtpmr(PMRN_PMLCB0, val);
138 break;
139 case 1:
140 mtpmr(PMRN_PMLCB1, val);
141 break;
142 case 2:
143 mtpmr(PMRN_PMLCB2, val);
144 break;
145 case 3:
146 mtpmr(PMRN_PMLCB3, val);
147 break;
148 default:
149 printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
152 isync();
155 static void fsl_emb_pmu_read(struct perf_event *event)
157 s64 val, delta, prev;
160 * Performance monitor interrupts come even when interrupts
161 * are soft-disabled, as long as interrupts are hard-enabled.
162 * Therefore we treat them like NMIs.
164 do {
165 prev = local64_read(&event->hw.prev_count);
166 barrier();
167 val = read_pmc(event->hw.idx);
168 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
170 /* The counters are only 32 bits wide */
171 delta = (val - prev) & 0xfffffffful;
172 local64_add(delta, &event->count);
173 local64_sub(delta, &event->hw.period_left);
177 * Disable all events to prevent PMU interrupts and to allow
178 * events to be added or removed.
180 void hw_perf_disable(void)
182 struct cpu_hw_events *cpuhw;
183 unsigned long flags;
185 local_irq_save(flags);
186 cpuhw = &__get_cpu_var(cpu_hw_events);
188 if (!cpuhw->disabled) {
189 cpuhw->disabled = 1;
192 * Check if we ever enabled the PMU on this cpu.
194 if (!cpuhw->pmcs_enabled) {
195 ppc_enable_pmcs();
196 cpuhw->pmcs_enabled = 1;
199 if (atomic_read(&num_events)) {
201 * Set the 'freeze all counters' bit, and disable
202 * interrupts. The barrier is to make sure the
203 * mtpmr has been executed and the PMU has frozen
204 * the events before we return.
207 mtpmr(PMRN_PMGC0, PMGC0_FAC);
208 isync();
211 local_irq_restore(flags);
215 * Re-enable all events if disable == 0.
216 * If we were previously disabled and events were added, then
217 * put the new config on the PMU.
219 void hw_perf_enable(void)
221 struct cpu_hw_events *cpuhw;
222 unsigned long flags;
224 local_irq_save(flags);
225 cpuhw = &__get_cpu_var(cpu_hw_events);
226 if (!cpuhw->disabled)
227 goto out;
229 cpuhw->disabled = 0;
230 ppc_set_pmu_inuse(cpuhw->n_events != 0);
232 if (cpuhw->n_events > 0) {
233 mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
234 isync();
237 out:
238 local_irq_restore(flags);
241 static int collect_events(struct perf_event *group, int max_count,
242 struct perf_event *ctrs[])
244 int n = 0;
245 struct perf_event *event;
247 if (!is_software_event(group)) {
248 if (n >= max_count)
249 return -1;
250 ctrs[n] = group;
251 n++;
253 list_for_each_entry(event, &group->sibling_list, group_entry) {
254 if (!is_software_event(event) &&
255 event->state != PERF_EVENT_STATE_OFF) {
256 if (n >= max_count)
257 return -1;
258 ctrs[n] = event;
259 n++;
262 return n;
265 /* perf must be disabled, context locked on entry */
266 static int fsl_emb_pmu_enable(struct perf_event *event)
268 struct cpu_hw_events *cpuhw;
269 int ret = -EAGAIN;
270 int num_counters = ppmu->n_counter;
271 u64 val;
272 int i;
274 cpuhw = &get_cpu_var(cpu_hw_events);
276 if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
277 num_counters = ppmu->n_restricted;
280 * Allocate counters from top-down, so that restricted-capable
281 * counters are kept free as long as possible.
283 for (i = num_counters - 1; i >= 0; i--) {
284 if (cpuhw->event[i])
285 continue;
287 break;
290 if (i < 0)
291 goto out;
293 event->hw.idx = i;
294 cpuhw->event[i] = event;
295 ++cpuhw->n_events;
297 val = 0;
298 if (event->hw.sample_period) {
299 s64 left = local64_read(&event->hw.period_left);
300 if (left < 0x80000000L)
301 val = 0x80000000L - left;
303 local64_set(&event->hw.prev_count, val);
304 write_pmc(i, val);
305 perf_event_update_userpage(event);
307 write_pmlcb(i, event->hw.config >> 32);
308 write_pmlca(i, event->hw.config_base);
310 ret = 0;
311 out:
312 put_cpu_var(cpu_hw_events);
313 return ret;
316 /* perf must be disabled, context locked on entry */
317 static void fsl_emb_pmu_disable(struct perf_event *event)
319 struct cpu_hw_events *cpuhw;
320 int i = event->hw.idx;
322 if (i < 0)
323 goto out;
325 fsl_emb_pmu_read(event);
327 cpuhw = &get_cpu_var(cpu_hw_events);
329 WARN_ON(event != cpuhw->event[event->hw.idx]);
331 write_pmlca(i, 0);
332 write_pmlcb(i, 0);
333 write_pmc(i, 0);
335 cpuhw->event[i] = NULL;
336 event->hw.idx = -1;
339 * TODO: if at least one restricted event exists, and we
340 * just freed up a non-restricted-capable counter, and
341 * there is a restricted-capable counter occupied by
342 * a non-restricted event, migrate that event to the
343 * vacated counter.
346 cpuhw->n_events--;
348 out:
349 put_cpu_var(cpu_hw_events);
353 * Re-enable interrupts on a event after they were throttled
354 * because they were coming too fast.
356 * Context is locked on entry, but perf is not disabled.
358 static void fsl_emb_pmu_unthrottle(struct perf_event *event)
360 s64 val, left;
361 unsigned long flags;
363 if (event->hw.idx < 0 || !event->hw.sample_period)
364 return;
365 local_irq_save(flags);
366 perf_disable();
367 fsl_emb_pmu_read(event);
368 left = event->hw.sample_period;
369 event->hw.last_period = left;
370 val = 0;
371 if (left < 0x80000000L)
372 val = 0x80000000L - left;
373 write_pmc(event->hw.idx, val);
374 local64_set(&event->hw.prev_count, val);
375 local64_set(&event->hw.period_left, left);
376 perf_event_update_userpage(event);
377 perf_enable();
378 local_irq_restore(flags);
381 static struct pmu fsl_emb_pmu = {
382 .enable = fsl_emb_pmu_enable,
383 .disable = fsl_emb_pmu_disable,
384 .read = fsl_emb_pmu_read,
385 .unthrottle = fsl_emb_pmu_unthrottle,
389 * Release the PMU if this is the last perf_event.
391 static void hw_perf_event_destroy(struct perf_event *event)
393 if (!atomic_add_unless(&num_events, -1, 1)) {
394 mutex_lock(&pmc_reserve_mutex);
395 if (atomic_dec_return(&num_events) == 0)
396 release_pmc_hardware();
397 mutex_unlock(&pmc_reserve_mutex);
402 * Translate a generic cache event_id config to a raw event_id code.
404 static int hw_perf_cache_event(u64 config, u64 *eventp)
406 unsigned long type, op, result;
407 int ev;
409 if (!ppmu->cache_events)
410 return -EINVAL;
412 /* unpack config */
413 type = config & 0xff;
414 op = (config >> 8) & 0xff;
415 result = (config >> 16) & 0xff;
417 if (type >= PERF_COUNT_HW_CACHE_MAX ||
418 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
419 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
420 return -EINVAL;
422 ev = (*ppmu->cache_events)[type][op][result];
423 if (ev == 0)
424 return -EOPNOTSUPP;
425 if (ev == -1)
426 return -EINVAL;
427 *eventp = ev;
428 return 0;
431 const struct pmu *hw_perf_event_init(struct perf_event *event)
433 u64 ev;
434 struct perf_event *events[MAX_HWEVENTS];
435 int n;
436 int err;
437 int num_restricted;
438 int i;
440 switch (event->attr.type) {
441 case PERF_TYPE_HARDWARE:
442 ev = event->attr.config;
443 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
444 return ERR_PTR(-EOPNOTSUPP);
445 ev = ppmu->generic_events[ev];
446 break;
448 case PERF_TYPE_HW_CACHE:
449 err = hw_perf_cache_event(event->attr.config, &ev);
450 if (err)
451 return ERR_PTR(err);
452 break;
454 case PERF_TYPE_RAW:
455 ev = event->attr.config;
456 break;
458 default:
459 return ERR_PTR(-EINVAL);
462 event->hw.config = ppmu->xlate_event(ev);
463 if (!(event->hw.config & FSL_EMB_EVENT_VALID))
464 return ERR_PTR(-EINVAL);
467 * If this is in a group, check if it can go on with all the
468 * other hardware events in the group. We assume the event
469 * hasn't been linked into its leader's sibling list at this point.
471 n = 0;
472 if (event->group_leader != event) {
473 n = collect_events(event->group_leader,
474 ppmu->n_counter - 1, events);
475 if (n < 0)
476 return ERR_PTR(-EINVAL);
479 if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
480 num_restricted = 0;
481 for (i = 0; i < n; i++) {
482 if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
483 num_restricted++;
486 if (num_restricted >= ppmu->n_restricted)
487 return ERR_PTR(-EINVAL);
490 event->hw.idx = -1;
492 event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
493 (u32)((ev << 16) & PMLCA_EVENT_MASK);
495 if (event->attr.exclude_user)
496 event->hw.config_base |= PMLCA_FCU;
497 if (event->attr.exclude_kernel)
498 event->hw.config_base |= PMLCA_FCS;
499 if (event->attr.exclude_idle)
500 return ERR_PTR(-ENOTSUPP);
502 event->hw.last_period = event->hw.sample_period;
503 local64_set(&event->hw.period_left, event->hw.last_period);
506 * See if we need to reserve the PMU.
507 * If no events are currently in use, then we have to take a
508 * mutex to ensure that we don't race with another task doing
509 * reserve_pmc_hardware or release_pmc_hardware.
511 err = 0;
512 if (!atomic_inc_not_zero(&num_events)) {
513 mutex_lock(&pmc_reserve_mutex);
514 if (atomic_read(&num_events) == 0 &&
515 reserve_pmc_hardware(perf_event_interrupt))
516 err = -EBUSY;
517 else
518 atomic_inc(&num_events);
519 mutex_unlock(&pmc_reserve_mutex);
521 mtpmr(PMRN_PMGC0, PMGC0_FAC);
522 isync();
524 event->destroy = hw_perf_event_destroy;
526 if (err)
527 return ERR_PTR(err);
528 return &fsl_emb_pmu;
532 * A counter has overflowed; update its count and record
533 * things if requested. Note that interrupts are hard-disabled
534 * here so there is no possibility of being interrupted.
536 static void record_and_restart(struct perf_event *event, unsigned long val,
537 struct pt_regs *regs, int nmi)
539 u64 period = event->hw.sample_period;
540 s64 prev, delta, left;
541 int record = 0;
543 /* we don't have to worry about interrupts here */
544 prev = local64_read(&event->hw.prev_count);
545 delta = (val - prev) & 0xfffffffful;
546 local64_add(delta, &event->count);
549 * See if the total period for this event has expired,
550 * and update for the next period.
552 val = 0;
553 left = local64_read(&event->hw.period_left) - delta;
554 if (period) {
555 if (left <= 0) {
556 left += period;
557 if (left <= 0)
558 left = period;
559 record = 1;
561 if (left < 0x80000000LL)
562 val = 0x80000000LL - left;
566 * Finally record data if requested.
568 if (record) {
569 struct perf_sample_data data;
571 perf_sample_data_init(&data, 0);
572 data.period = event->hw.last_period;
574 if (perf_event_overflow(event, nmi, &data, regs)) {
576 * Interrupts are coming too fast - throttle them
577 * by setting the event to 0, so it will be
578 * at least 2^30 cycles until the next interrupt
579 * (assuming each event counts at most 2 counts
580 * per cycle).
582 val = 0;
583 left = ~0ULL >> 1;
587 write_pmc(event->hw.idx, val);
588 local64_set(&event->hw.prev_count, val);
589 local64_set(&event->hw.period_left, left);
590 perf_event_update_userpage(event);
593 static void perf_event_interrupt(struct pt_regs *regs)
595 int i;
596 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
597 struct perf_event *event;
598 unsigned long val;
599 int found = 0;
600 int nmi;
602 nmi = perf_intr_is_nmi(regs);
603 if (nmi)
604 nmi_enter();
605 else
606 irq_enter();
608 for (i = 0; i < ppmu->n_counter; ++i) {
609 event = cpuhw->event[i];
611 val = read_pmc(i);
612 if ((int)val < 0) {
613 if (event) {
614 /* event has overflowed */
615 found = 1;
616 record_and_restart(event, val, regs, nmi);
617 } else {
619 * Disabled counter is negative,
620 * reset it just in case.
622 write_pmc(i, 0);
627 /* PMM will keep counters frozen until we return from the interrupt. */
628 mtmsr(mfmsr() | MSR_PMM);
629 mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
630 isync();
632 if (nmi)
633 nmi_exit();
634 else
635 irq_exit();
638 void hw_perf_event_setup(int cpu)
640 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
642 memset(cpuhw, 0, sizeof(*cpuhw));
645 int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
647 if (ppmu)
648 return -EBUSY; /* something's already registered */
650 ppmu = pmu;
651 pr_info("%s performance monitor hardware support registered\n",
652 pmu->name);
654 return 0;