RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / ia64 / kernel / mca.c
blobe7ce3dd824f87a9885db7b93c2765028df1147cf
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched.h>
76 #include <linux/interrupt.h>
77 #include <linux/irq.h>
78 #include <linux/bootmem.h>
79 #include <linux/acpi.h>
80 #include <linux/timer.h>
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/smp.h>
84 #include <linux/workqueue.h>
85 #include <linux/cpumask.h>
86 #include <linux/kdebug.h>
87 #include <linux/cpu.h>
88 #include <linux/gfp.h>
90 #include <asm/delay.h>
91 #include <asm/machvec.h>
92 #include <asm/meminit.h>
93 #include <asm/page.h>
94 #include <asm/ptrace.h>
95 #include <asm/system.h>
96 #include <asm/sal.h>
97 #include <asm/mca.h>
98 #include <asm/kexec.h>
100 #include <asm/irq.h>
101 #include <asm/hw_irq.h>
102 #include <asm/tlb.h>
104 #include "mca_drv.h"
105 #include "entry.h"
107 #if defined(IA64_MCA_DEBUG_INFO)
108 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
109 #else
110 # define IA64_MCA_DEBUG(fmt...)
111 #endif
113 #define NOTIFY_INIT(event, regs, arg, spin) \
114 do { \
115 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
116 == NOTIFY_STOP) && ((spin) == 1)) \
117 ia64_mca_spin(__func__); \
118 } while (0)
120 #define NOTIFY_MCA(event, regs, arg, spin) \
121 do { \
122 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
123 == NOTIFY_STOP) && ((spin) == 1)) \
124 ia64_mca_spin(__func__); \
125 } while (0)
127 /* Used by mca_asm.S */
128 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
129 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
130 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
131 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
132 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
134 unsigned long __per_cpu_mca[NR_CPUS];
136 /* In mca_asm.S */
137 extern void ia64_os_init_dispatch_monarch (void);
138 extern void ia64_os_init_dispatch_slave (void);
140 static int monarch_cpu = -1;
142 static ia64_mc_info_t ia64_mc_info;
144 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
145 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
146 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
147 #define CPE_HISTORY_LENGTH 5
148 #define CMC_HISTORY_LENGTH 5
150 #ifdef CONFIG_ACPI
151 static struct timer_list cpe_poll_timer;
152 #endif
153 static struct timer_list cmc_poll_timer;
155 * This variable tells whether we are currently in polling mode.
156 * Start with this in the wrong state so we won't play w/ timers
157 * before the system is ready.
159 static int cmc_polling_enabled = 1;
162 * Clearing this variable prevents CPE polling from getting activated
163 * in mca_late_init. Use it if your system doesn't provide a CPEI,
164 * but encounters problems retrieving CPE logs. This should only be
165 * necessary for debugging.
167 static int cpe_poll_enabled = 1;
169 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
171 static int mca_init __initdata;
174 * limited & delayed printing support for MCA/INIT handler
177 #define mprintk(fmt...) ia64_mca_printk(fmt)
179 #define MLOGBUF_SIZE (512+256*NR_CPUS)
180 #define MLOGBUF_MSGMAX 256
181 static char mlogbuf[MLOGBUF_SIZE];
182 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
183 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
184 static unsigned long mlogbuf_start;
185 static unsigned long mlogbuf_end;
186 static unsigned int mlogbuf_finished = 0;
187 static unsigned long mlogbuf_timestamp = 0;
189 static int loglevel_save = -1;
190 #define BREAK_LOGLEVEL(__console_loglevel) \
191 oops_in_progress = 1; \
192 if (loglevel_save < 0) \
193 loglevel_save = __console_loglevel; \
194 __console_loglevel = 15;
196 #define RESTORE_LOGLEVEL(__console_loglevel) \
197 if (loglevel_save >= 0) { \
198 __console_loglevel = loglevel_save; \
199 loglevel_save = -1; \
201 mlogbuf_finished = 0; \
202 oops_in_progress = 0;
205 * Push messages into buffer, print them later if not urgent.
207 void ia64_mca_printk(const char *fmt, ...)
209 va_list args;
210 int printed_len;
211 char temp_buf[MLOGBUF_MSGMAX];
212 char *p;
214 va_start(args, fmt);
215 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
216 va_end(args);
218 /* Copy the output into mlogbuf */
219 if (oops_in_progress) {
220 /* mlogbuf was abandoned, use printk directly instead. */
221 printk(temp_buf);
222 } else {
223 spin_lock(&mlogbuf_wlock);
224 for (p = temp_buf; *p; p++) {
225 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
226 if (next != mlogbuf_start) {
227 mlogbuf[mlogbuf_end] = *p;
228 mlogbuf_end = next;
229 } else {
230 /* buffer full */
231 break;
234 mlogbuf[mlogbuf_end] = '\0';
235 spin_unlock(&mlogbuf_wlock);
238 EXPORT_SYMBOL(ia64_mca_printk);
241 * Print buffered messages.
242 * NOTE: call this after returning normal context. (ex. from salinfod)
244 void ia64_mlogbuf_dump(void)
246 char temp_buf[MLOGBUF_MSGMAX];
247 char *p;
248 unsigned long index;
249 unsigned long flags;
250 unsigned int printed_len;
252 /* Get output from mlogbuf */
253 while (mlogbuf_start != mlogbuf_end) {
254 temp_buf[0] = '\0';
255 p = temp_buf;
256 printed_len = 0;
258 spin_lock_irqsave(&mlogbuf_rlock, flags);
260 index = mlogbuf_start;
261 while (index != mlogbuf_end) {
262 *p = mlogbuf[index];
263 index = (index + 1) % MLOGBUF_SIZE;
264 if (!*p)
265 break;
266 p++;
267 if (++printed_len >= MLOGBUF_MSGMAX - 1)
268 break;
270 *p = '\0';
271 if (temp_buf[0])
272 printk(temp_buf);
273 mlogbuf_start = index;
275 mlogbuf_timestamp = 0;
276 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
279 EXPORT_SYMBOL(ia64_mlogbuf_dump);
282 * Call this if system is going to down or if immediate flushing messages to
283 * console is required. (ex. recovery was failed, crash dump is going to be
284 * invoked, long-wait rendezvous etc.)
285 * NOTE: this should be called from monarch.
287 static void ia64_mlogbuf_finish(int wait)
289 BREAK_LOGLEVEL(console_loglevel);
291 spin_lock_init(&mlogbuf_rlock);
292 ia64_mlogbuf_dump();
293 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
294 "MCA/INIT might be dodgy or fail.\n");
296 if (!wait)
297 return;
299 /* wait for console */
300 printk("Delaying for 5 seconds...\n");
301 udelay(5*1000000);
303 mlogbuf_finished = 1;
307 * Print buffered messages from INIT context.
309 static void ia64_mlogbuf_dump_from_init(void)
311 if (mlogbuf_finished)
312 return;
314 if (mlogbuf_timestamp &&
315 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
316 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
317 " and the system seems to be messed up.\n");
318 ia64_mlogbuf_finish(0);
319 return;
322 if (!spin_trylock(&mlogbuf_rlock)) {
323 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
324 "Generated messages other than stack dump will be "
325 "buffered to mlogbuf and will be printed later.\n");
326 printk(KERN_ERR "INIT: If messages would not printed after "
327 "this INIT, wait 30sec and assert INIT again.\n");
328 if (!mlogbuf_timestamp)
329 mlogbuf_timestamp = jiffies;
330 return;
332 spin_unlock(&mlogbuf_rlock);
333 ia64_mlogbuf_dump();
336 static void inline
337 ia64_mca_spin(const char *func)
339 if (monarch_cpu == smp_processor_id())
340 ia64_mlogbuf_finish(0);
341 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
342 while (1)
343 cpu_relax();
346 * IA64_MCA log support
348 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
349 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
351 typedef struct ia64_state_log_s
353 spinlock_t isl_lock;
354 int isl_index;
355 unsigned long isl_count;
356 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
357 } ia64_state_log_t;
359 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
361 #define IA64_LOG_ALLOCATE(it, size) \
362 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
363 (ia64_err_rec_t *)alloc_bootmem(size); \
364 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
365 (ia64_err_rec_t *)alloc_bootmem(size);}
366 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
367 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
368 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
369 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
370 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
371 #define IA64_LOG_INDEX_INC(it) \
372 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
373 ia64_state_log[it].isl_count++;}
374 #define IA64_LOG_INDEX_DEC(it) \
375 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
376 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
377 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
378 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
381 * ia64_log_init
382 * Reset the OS ia64 log buffer
383 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
384 * Outputs : None
386 static void __init
387 ia64_log_init(int sal_info_type)
389 u64 max_size = 0;
391 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
392 IA64_LOG_LOCK_INIT(sal_info_type);
394 // SAL will tell us the maximum size of any error record of this type
395 max_size = ia64_sal_get_state_info_size(sal_info_type);
396 if (!max_size)
397 /* alloc_bootmem() doesn't like zero-sized allocations! */
398 return;
400 // set up OS data structures to hold error info
401 IA64_LOG_ALLOCATE(sal_info_type, max_size);
402 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
403 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
407 * ia64_log_get
409 * Get the current MCA log from SAL and copy it into the OS log buffer.
411 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
412 * irq_safe whether you can use printk at this point
413 * Outputs : size (total record length)
414 * *buffer (ptr to error record)
417 static u64
418 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
420 sal_log_record_header_t *log_buffer;
421 u64 total_len = 0;
422 unsigned long s;
424 IA64_LOG_LOCK(sal_info_type);
426 /* Get the process state information */
427 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
429 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
431 if (total_len) {
432 IA64_LOG_INDEX_INC(sal_info_type);
433 IA64_LOG_UNLOCK(sal_info_type);
434 if (irq_safe) {
435 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
436 __func__, sal_info_type, total_len);
438 *buffer = (u8 *) log_buffer;
439 return total_len;
440 } else {
441 IA64_LOG_UNLOCK(sal_info_type);
442 return 0;
446 static void
447 ia64_mca_log_sal_error_record(int sal_info_type)
449 u8 *buffer;
450 sal_log_record_header_t *rh;
451 u64 size;
452 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
453 #ifdef IA64_MCA_DEBUG_INFO
454 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
455 #endif
457 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
458 if (!size)
459 return;
461 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
463 if (irq_safe)
464 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
465 smp_processor_id(),
466 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
468 /* Clear logs from corrected errors in case there's no user-level logger */
469 rh = (sal_log_record_header_t *)buffer;
470 if (rh->severity == sal_log_severity_corrected)
471 ia64_sal_clear_state_info(sal_info_type);
475 * search_mca_table
476 * See if the MCA surfaced in an instruction range
477 * that has been tagged as recoverable.
479 * Inputs
480 * first First address range to check
481 * last Last address range to check
482 * ip Instruction pointer, address we are looking for
484 * Return value:
485 * 1 on Success (in the table)/ 0 on Failure (not in the table)
488 search_mca_table (const struct mca_table_entry *first,
489 const struct mca_table_entry *last,
490 unsigned long ip)
492 const struct mca_table_entry *curr;
493 u64 curr_start, curr_end;
495 curr = first;
496 while (curr <= last) {
497 curr_start = (u64) &curr->start_addr + curr->start_addr;
498 curr_end = (u64) &curr->end_addr + curr->end_addr;
500 if ((ip >= curr_start) && (ip <= curr_end)) {
501 return 1;
503 curr++;
505 return 0;
508 /* Given an address, look for it in the mca tables. */
509 int mca_recover_range(unsigned long addr)
511 extern struct mca_table_entry __start___mca_table[];
512 extern struct mca_table_entry __stop___mca_table[];
514 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
516 EXPORT_SYMBOL_GPL(mca_recover_range);
518 #ifdef CONFIG_ACPI
520 int cpe_vector = -1;
521 int ia64_cpe_irq = -1;
523 static irqreturn_t
524 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
526 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
527 static int index;
528 static DEFINE_SPINLOCK(cpe_history_lock);
530 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
531 __func__, cpe_irq, smp_processor_id());
533 /* SAL spec states this should run w/ interrupts enabled */
534 local_irq_enable();
536 spin_lock(&cpe_history_lock);
537 if (!cpe_poll_enabled && cpe_vector >= 0) {
539 int i, count = 1; /* we know 1 happened now */
540 unsigned long now = jiffies;
542 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
543 if (now - cpe_history[i] <= HZ)
544 count++;
547 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
548 if (count >= CPE_HISTORY_LENGTH) {
550 cpe_poll_enabled = 1;
551 spin_unlock(&cpe_history_lock);
552 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
555 * Corrected errors will still be corrected, but
556 * make sure there's a log somewhere that indicates
557 * something is generating more than we can handle.
559 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
561 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
563 /* lock already released, get out now */
564 goto out;
565 } else {
566 cpe_history[index++] = now;
567 if (index == CPE_HISTORY_LENGTH)
568 index = 0;
571 spin_unlock(&cpe_history_lock);
572 out:
573 /* Get the CPE error record and log it */
574 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
576 return IRQ_HANDLED;
579 #endif /* CONFIG_ACPI */
581 #ifdef CONFIG_ACPI
583 * ia64_mca_register_cpev
585 * Register the corrected platform error vector with SAL.
587 * Inputs
588 * cpev Corrected Platform Error Vector number
590 * Outputs
591 * None
593 void
594 ia64_mca_register_cpev (int cpev)
596 /* Register the CPE interrupt vector with SAL */
597 struct ia64_sal_retval isrv;
599 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
600 if (isrv.status) {
601 printk(KERN_ERR "Failed to register Corrected Platform "
602 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
603 return;
606 IA64_MCA_DEBUG("%s: corrected platform error "
607 "vector %#x registered\n", __func__, cpev);
609 #endif /* CONFIG_ACPI */
612 * ia64_mca_cmc_vector_setup
614 * Setup the corrected machine check vector register in the processor.
615 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
616 * This function is invoked on a per-processor basis.
618 * Inputs
619 * None
621 * Outputs
622 * None
624 void __cpuinit
625 ia64_mca_cmc_vector_setup (void)
627 cmcv_reg_t cmcv;
629 cmcv.cmcv_regval = 0;
630 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
631 cmcv.cmcv_vector = IA64_CMC_VECTOR;
632 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
634 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
635 __func__, smp_processor_id(), IA64_CMC_VECTOR);
637 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
638 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
642 * ia64_mca_cmc_vector_disable
644 * Mask the corrected machine check vector register in the processor.
645 * This function is invoked on a per-processor basis.
647 * Inputs
648 * dummy(unused)
650 * Outputs
651 * None
653 static void
654 ia64_mca_cmc_vector_disable (void *dummy)
656 cmcv_reg_t cmcv;
658 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
660 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
661 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
663 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
664 __func__, smp_processor_id(), cmcv.cmcv_vector);
668 * ia64_mca_cmc_vector_enable
670 * Unmask the corrected machine check vector register in the processor.
671 * This function is invoked on a per-processor basis.
673 * Inputs
674 * dummy(unused)
676 * Outputs
677 * None
679 static void
680 ia64_mca_cmc_vector_enable (void *dummy)
682 cmcv_reg_t cmcv;
684 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
686 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
687 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
689 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
690 __func__, smp_processor_id(), cmcv.cmcv_vector);
694 * ia64_mca_cmc_vector_disable_keventd
696 * Called via keventd (smp_call_function() is not safe in interrupt context) to
697 * disable the cmc interrupt vector.
699 static void
700 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
702 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
706 * ia64_mca_cmc_vector_enable_keventd
708 * Called via keventd (smp_call_function() is not safe in interrupt context) to
709 * enable the cmc interrupt vector.
711 static void
712 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
714 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
718 * ia64_mca_wakeup
720 * Send an inter-cpu interrupt to wake-up a particular cpu.
722 * Inputs : cpuid
723 * Outputs : None
725 static void
726 ia64_mca_wakeup(int cpu)
728 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
732 * ia64_mca_wakeup_all
734 * Wakeup all the slave cpus which have rendez'ed previously.
736 * Inputs : None
737 * Outputs : None
739 static void
740 ia64_mca_wakeup_all(void)
742 int cpu;
744 /* Clear the Rendez checkin flag for all cpus */
745 for_each_online_cpu(cpu) {
746 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
747 ia64_mca_wakeup(cpu);
753 * ia64_mca_rendez_interrupt_handler
755 * This is handler used to put slave processors into spinloop
756 * while the monarch processor does the mca handling and later
757 * wake each slave up once the monarch is done. The state
758 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
759 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
760 * the cpu has come out of OS rendezvous.
762 * Inputs : None
763 * Outputs : None
765 static irqreturn_t
766 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
768 unsigned long flags;
769 int cpu = smp_processor_id();
770 struct ia64_mca_notify_die nd =
771 { .sos = NULL, .monarch_cpu = &monarch_cpu };
773 /* Mask all interrupts */
774 local_irq_save(flags);
776 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
778 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
779 /* Register with the SAL monarch that the slave has
780 * reached SAL
782 ia64_sal_mc_rendez();
784 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
786 /* Wait for the monarch cpu to exit. */
787 while (monarch_cpu != -1)
788 cpu_relax(); /* spin until monarch leaves */
790 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
792 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
793 /* Enable all interrupts */
794 local_irq_restore(flags);
795 return IRQ_HANDLED;
799 * ia64_mca_wakeup_int_handler
801 * The interrupt handler for processing the inter-cpu interrupt to the
802 * slave cpu which was spinning in the rendez loop.
803 * Since this spinning is done by turning off the interrupts and
804 * polling on the wakeup-interrupt bit in the IRR, there is
805 * nothing useful to be done in the handler.
807 * Inputs : wakeup_irq (Wakeup-interrupt bit)
808 * arg (Interrupt handler specific argument)
809 * Outputs : None
812 static irqreturn_t
813 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
815 return IRQ_HANDLED;
818 /* Function pointer for extra MCA recovery */
819 int (*ia64_mca_ucmc_extension)
820 (void*,struct ia64_sal_os_state*)
821 = NULL;
824 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
826 if (ia64_mca_ucmc_extension)
827 return 1;
829 ia64_mca_ucmc_extension = fn;
830 return 0;
833 void
834 ia64_unreg_MCA_extension(void)
836 if (ia64_mca_ucmc_extension)
837 ia64_mca_ucmc_extension = NULL;
840 EXPORT_SYMBOL(ia64_reg_MCA_extension);
841 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
844 static inline void
845 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
847 u64 fslot, tslot, nat;
848 *tr = *fr;
849 fslot = ((unsigned long)fr >> 3) & 63;
850 tslot = ((unsigned long)tr >> 3) & 63;
851 *tnat &= ~(1UL << tslot);
852 nat = (fnat >> fslot) & 1;
853 *tnat |= (nat << tslot);
856 /* Change the comm field on the MCA/INT task to include the pid that
857 * was interrupted, it makes for easier debugging. If that pid was 0
858 * (swapper or nested MCA/INIT) then use the start of the previous comm
859 * field suffixed with its cpu.
862 static void
863 ia64_mca_modify_comm(const struct task_struct *previous_current)
865 char *p, comm[sizeof(current->comm)];
866 if (previous_current->pid)
867 snprintf(comm, sizeof(comm), "%s %d",
868 current->comm, previous_current->pid);
869 else {
870 int l;
871 if ((p = strchr(previous_current->comm, ' ')))
872 l = p - previous_current->comm;
873 else
874 l = strlen(previous_current->comm);
875 snprintf(comm, sizeof(comm), "%s %*s %d",
876 current->comm, l, previous_current->comm,
877 task_thread_info(previous_current)->cpu);
879 memcpy(current->comm, comm, sizeof(current->comm));
882 static void
883 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
884 unsigned long *nat)
886 const pal_min_state_area_t *ms = sos->pal_min_state;
887 const u64 *bank;
889 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
890 * pmsa_{xip,xpsr,xfs}
892 if (ia64_psr(regs)->ic) {
893 regs->cr_iip = ms->pmsa_iip;
894 regs->cr_ipsr = ms->pmsa_ipsr;
895 regs->cr_ifs = ms->pmsa_ifs;
896 } else {
897 regs->cr_iip = ms->pmsa_xip;
898 regs->cr_ipsr = ms->pmsa_xpsr;
899 regs->cr_ifs = ms->pmsa_xfs;
901 sos->iip = ms->pmsa_iip;
902 sos->ipsr = ms->pmsa_ipsr;
903 sos->ifs = ms->pmsa_ifs;
905 regs->pr = ms->pmsa_pr;
906 regs->b0 = ms->pmsa_br0;
907 regs->ar_rsc = ms->pmsa_rsc;
908 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
909 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
910 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
911 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
912 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
913 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
914 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
915 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
916 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
917 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
918 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
919 if (ia64_psr(regs)->bn)
920 bank = ms->pmsa_bank1_gr;
921 else
922 bank = ms->pmsa_bank0_gr;
923 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
924 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
925 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
926 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
927 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
928 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
929 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
930 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
931 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
932 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
933 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
934 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
935 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
936 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
937 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
938 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
941 /* On entry to this routine, we are running on the per cpu stack, see
942 * mca_asm.h. The original stack has not been touched by this event. Some of
943 * the original stack's registers will be in the RBS on this stack. This stack
944 * also contains a partial pt_regs and switch_stack, the rest of the data is in
945 * PAL minstate.
947 * The first thing to do is modify the original stack to look like a blocked
948 * task so we can run backtrace on the original task. Also mark the per cpu
949 * stack as current to ensure that we use the correct task state, it also means
950 * that we can do backtrace on the MCA/INIT handler code itself.
953 static struct task_struct *
954 ia64_mca_modify_original_stack(struct pt_regs *regs,
955 const struct switch_stack *sw,
956 struct ia64_sal_os_state *sos,
957 const char *type)
959 char *p;
960 ia64_va va;
961 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
962 const pal_min_state_area_t *ms = sos->pal_min_state;
963 struct task_struct *previous_current;
964 struct pt_regs *old_regs;
965 struct switch_stack *old_sw;
966 unsigned size = sizeof(struct pt_regs) +
967 sizeof(struct switch_stack) + 16;
968 unsigned long *old_bspstore, *old_bsp;
969 unsigned long *new_bspstore, *new_bsp;
970 unsigned long old_unat, old_rnat, new_rnat, nat;
971 u64 slots, loadrs = regs->loadrs;
972 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
973 u64 ar_bspstore = regs->ar_bspstore;
974 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
975 const char *msg;
976 int cpu = smp_processor_id();
978 previous_current = curr_task(cpu);
979 set_curr_task(cpu, current);
980 if ((p = strchr(current->comm, ' ')))
981 *p = '\0';
983 /* Best effort attempt to cope with MCA/INIT delivered while in
984 * physical mode.
986 regs->cr_ipsr = ms->pmsa_ipsr;
987 if (ia64_psr(regs)->dt == 0) {
988 va.l = r12;
989 if (va.f.reg == 0) {
990 va.f.reg = 7;
991 r12 = va.l;
993 va.l = r13;
994 if (va.f.reg == 0) {
995 va.f.reg = 7;
996 r13 = va.l;
999 if (ia64_psr(regs)->rt == 0) {
1000 va.l = ar_bspstore;
1001 if (va.f.reg == 0) {
1002 va.f.reg = 7;
1003 ar_bspstore = va.l;
1005 va.l = ar_bsp;
1006 if (va.f.reg == 0) {
1007 va.f.reg = 7;
1008 ar_bsp = va.l;
1012 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1013 * have been copied to the old stack, the old stack may fail the
1014 * validation tests below. So ia64_old_stack() must restore the dirty
1015 * registers from the new stack. The old and new bspstore probably
1016 * have different alignments, so loadrs calculated on the old bsp
1017 * cannot be used to restore from the new bsp. Calculate a suitable
1018 * loadrs for the new stack and save it in the new pt_regs, where
1019 * ia64_old_stack() can get it.
1021 old_bspstore = (unsigned long *)ar_bspstore;
1022 old_bsp = (unsigned long *)ar_bsp;
1023 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1024 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1025 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1026 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1028 /* Verify the previous stack state before we change it */
1029 if (user_mode(regs)) {
1030 msg = "occurred in user space";
1031 /* previous_current is guaranteed to be valid when the task was
1032 * in user space, so ...
1034 ia64_mca_modify_comm(previous_current);
1035 goto no_mod;
1038 if (r13 != sos->prev_IA64_KR_CURRENT) {
1039 msg = "inconsistent previous current and r13";
1040 goto no_mod;
1043 if (!mca_recover_range(ms->pmsa_iip)) {
1044 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1045 msg = "inconsistent r12 and r13";
1046 goto no_mod;
1048 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1049 msg = "inconsistent ar.bspstore and r13";
1050 goto no_mod;
1052 va.p = old_bspstore;
1053 if (va.f.reg < 5) {
1054 msg = "old_bspstore is in the wrong region";
1055 goto no_mod;
1057 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1058 msg = "inconsistent ar.bsp and r13";
1059 goto no_mod;
1061 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1062 if (ar_bspstore + size > r12) {
1063 msg = "no room for blocked state";
1064 goto no_mod;
1068 ia64_mca_modify_comm(previous_current);
1070 /* Make the original task look blocked. First stack a struct pt_regs,
1071 * describing the state at the time of interrupt. mca_asm.S built a
1072 * partial pt_regs, copy it and fill in the blanks using minstate.
1074 p = (char *)r12 - sizeof(*regs);
1075 old_regs = (struct pt_regs *)p;
1076 memcpy(old_regs, regs, sizeof(*regs));
1077 old_regs->loadrs = loadrs;
1078 old_unat = old_regs->ar_unat;
1079 finish_pt_regs(old_regs, sos, &old_unat);
1081 /* Next stack a struct switch_stack. mca_asm.S built a partial
1082 * switch_stack, copy it and fill in the blanks using pt_regs and
1083 * minstate.
1085 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1086 * ar.pfs is set to 0.
1088 * unwind.c::unw_unwind() does special processing for interrupt frames.
1089 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1090 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1091 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1092 * switch_stack on the original stack so it will unwind correctly when
1093 * unwind.c reads pt_regs.
1095 * thread.ksp is updated to point to the synthesized switch_stack.
1097 p -= sizeof(struct switch_stack);
1098 old_sw = (struct switch_stack *)p;
1099 memcpy(old_sw, sw, sizeof(*sw));
1100 old_sw->caller_unat = old_unat;
1101 old_sw->ar_fpsr = old_regs->ar_fpsr;
1102 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1103 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1104 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1105 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1106 old_sw->b0 = (u64)ia64_leave_kernel;
1107 old_sw->b1 = ms->pmsa_br1;
1108 old_sw->ar_pfs = 0;
1109 old_sw->ar_unat = old_unat;
1110 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1111 previous_current->thread.ksp = (u64)p - 16;
1113 /* Finally copy the original stack's registers back to its RBS.
1114 * Registers from ar.bspstore through ar.bsp at the time of the event
1115 * are in the current RBS, copy them back to the original stack. The
1116 * copy must be done register by register because the original bspstore
1117 * and the current one have different alignments, so the saved RNAT
1118 * data occurs at different places.
1120 * mca_asm does cover, so the old_bsp already includes all registers at
1121 * the time of MCA/INIT. It also does flushrs, so all registers before
1122 * this function have been written to backing store on the MCA/INIT
1123 * stack.
1125 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1126 old_rnat = regs->ar_rnat;
1127 while (slots--) {
1128 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1129 new_rnat = ia64_get_rnat(new_bspstore++);
1131 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1132 *old_bspstore++ = old_rnat;
1133 old_rnat = 0;
1135 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1136 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1137 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1138 *old_bspstore++ = *new_bspstore++;
1140 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1141 old_sw->ar_rnat = old_rnat;
1143 sos->prev_task = previous_current;
1144 return previous_current;
1146 no_mod:
1147 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1148 smp_processor_id(), type, msg);
1149 old_unat = regs->ar_unat;
1150 finish_pt_regs(regs, sos, &old_unat);
1151 return previous_current;
1154 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1155 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1156 * not entered rendezvous yet then wait a bit. The assumption is that any
1157 * slave that has not rendezvoused after a reasonable time is never going to do
1158 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1159 * interrupt, as well as cpus that receive the INIT slave event.
1162 static void
1163 ia64_wait_for_slaves(int monarch, const char *type)
1165 int c, i , wait;
1168 * wait 5 seconds total for slaves (arbitrary)
1170 for (i = 0; i < 5000; i++) {
1171 wait = 0;
1172 for_each_online_cpu(c) {
1173 if (c == monarch)
1174 continue;
1175 if (ia64_mc_info.imi_rendez_checkin[c]
1176 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1177 udelay(1000); /* short wait */
1178 wait = 1;
1179 break;
1182 if (!wait)
1183 goto all_in;
1187 * Maybe slave(s) dead. Print buffered messages immediately.
1189 ia64_mlogbuf_finish(0);
1190 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1191 for_each_online_cpu(c) {
1192 if (c == monarch)
1193 continue;
1194 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1195 mprintk(" %d", c);
1197 mprintk("\n");
1198 return;
1200 all_in:
1201 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1202 return;
1205 /* mca_insert_tr
1207 * Switch rid when TR reload and needed!
1208 * iord: 1: itr, 2: itr;
1211 static void mca_insert_tr(u64 iord)
1214 int i;
1215 u64 old_rr;
1216 struct ia64_tr_entry *p;
1217 unsigned long psr;
1218 int cpu = smp_processor_id();
1220 if (!ia64_idtrs[cpu])
1221 return;
1223 psr = ia64_clear_ic();
1224 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1225 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1226 if (p->pte & 0x1) {
1227 old_rr = ia64_get_rr(p->ifa);
1228 if (old_rr != p->rr) {
1229 ia64_set_rr(p->ifa, p->rr);
1230 ia64_srlz_d();
1232 ia64_ptr(iord, p->ifa, p->itir >> 2);
1233 ia64_srlz_i();
1234 if (iord & 0x1) {
1235 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1236 ia64_srlz_i();
1238 if (iord & 0x2) {
1239 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1240 ia64_srlz_i();
1242 if (old_rr != p->rr) {
1243 ia64_set_rr(p->ifa, old_rr);
1244 ia64_srlz_d();
1248 ia64_set_psr(psr);
1252 * ia64_mca_handler
1254 * This is uncorrectable machine check handler called from OS_MCA
1255 * dispatch code which is in turn called from SAL_CHECK().
1256 * This is the place where the core of OS MCA handling is done.
1257 * Right now the logs are extracted and displayed in a well-defined
1258 * format. This handler code is supposed to be run only on the
1259 * monarch processor. Once the monarch is done with MCA handling
1260 * further MCA logging is enabled by clearing logs.
1261 * Monarch also has the duty of sending wakeup-IPIs to pull the
1262 * slave processors out of rendezvous spinloop.
1264 * If multiple processors call into OS_MCA, the first will become
1265 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1266 * bitmask. After the first monarch has processed its MCA, it
1267 * will wake up the next cpu in the mca_cpu bitmask and then go
1268 * into the rendezvous loop. When all processors have serviced
1269 * their MCA, the last monarch frees up the rest of the processors.
1271 void
1272 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1273 struct ia64_sal_os_state *sos)
1275 int recover, cpu = smp_processor_id();
1276 struct task_struct *previous_current;
1277 struct ia64_mca_notify_die nd =
1278 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1279 static atomic_t mca_count;
1280 static cpumask_t mca_cpu;
1282 if (atomic_add_return(1, &mca_count) == 1) {
1283 monarch_cpu = cpu;
1284 sos->monarch = 1;
1285 } else {
1286 cpu_set(cpu, mca_cpu);
1287 sos->monarch = 0;
1289 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1290 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1292 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1294 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1296 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1297 if (sos->monarch) {
1298 ia64_wait_for_slaves(cpu, "MCA");
1300 /* Wakeup all the processors which are spinning in the
1301 * rendezvous loop. They will leave SAL, then spin in the OS
1302 * with interrupts disabled until this monarch cpu leaves the
1303 * MCA handler. That gets control back to the OS so we can
1304 * backtrace the other cpus, backtrace when spinning in SAL
1305 * does not work.
1307 ia64_mca_wakeup_all();
1308 } else {
1309 while (cpu_isset(cpu, mca_cpu))
1310 cpu_relax(); /* spin until monarch wakes us */
1313 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1315 /* Get the MCA error record and log it */
1316 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1318 /* MCA error recovery */
1319 recover = (ia64_mca_ucmc_extension
1320 && ia64_mca_ucmc_extension(
1321 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1322 sos));
1324 if (recover) {
1325 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1326 rh->severity = sal_log_severity_corrected;
1327 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1328 sos->os_status = IA64_MCA_CORRECTED;
1329 } else {
1330 /* Dump buffered message to console */
1331 ia64_mlogbuf_finish(1);
1334 if (__get_cpu_var(ia64_mca_tr_reload)) {
1335 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1336 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1339 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1341 if (atomic_dec_return(&mca_count) > 0) {
1342 int i;
1344 /* wake up the next monarch cpu,
1345 * and put this cpu in the rendez loop.
1347 for_each_online_cpu(i) {
1348 if (cpu_isset(i, mca_cpu)) {
1349 monarch_cpu = i;
1350 cpu_clear(i, mca_cpu); /* wake next cpu */
1351 while (monarch_cpu != -1)
1352 cpu_relax(); /* spin until last cpu leaves */
1353 set_curr_task(cpu, previous_current);
1354 ia64_mc_info.imi_rendez_checkin[cpu]
1355 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1356 return;
1360 set_curr_task(cpu, previous_current);
1361 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1362 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1365 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1366 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1369 * ia64_mca_cmc_int_handler
1371 * This is corrected machine check interrupt handler.
1372 * Right now the logs are extracted and displayed in a well-defined
1373 * format.
1375 * Inputs
1376 * interrupt number
1377 * client data arg ptr
1379 * Outputs
1380 * None
1382 static irqreturn_t
1383 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1385 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1386 static int index;
1387 static DEFINE_SPINLOCK(cmc_history_lock);
1389 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1390 __func__, cmc_irq, smp_processor_id());
1392 /* SAL spec states this should run w/ interrupts enabled */
1393 local_irq_enable();
1395 spin_lock(&cmc_history_lock);
1396 if (!cmc_polling_enabled) {
1397 int i, count = 1; /* we know 1 happened now */
1398 unsigned long now = jiffies;
1400 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1401 if (now - cmc_history[i] <= HZ)
1402 count++;
1405 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1406 if (count >= CMC_HISTORY_LENGTH) {
1408 cmc_polling_enabled = 1;
1409 spin_unlock(&cmc_history_lock);
1410 /* If we're being hit with CMC interrupts, we won't
1411 * ever execute the schedule_work() below. Need to
1412 * disable CMC interrupts on this processor now.
1414 ia64_mca_cmc_vector_disable(NULL);
1415 schedule_work(&cmc_disable_work);
1418 * Corrected errors will still be corrected, but
1419 * make sure there's a log somewhere that indicates
1420 * something is generating more than we can handle.
1422 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1424 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1426 /* lock already released, get out now */
1427 goto out;
1428 } else {
1429 cmc_history[index++] = now;
1430 if (index == CMC_HISTORY_LENGTH)
1431 index = 0;
1434 spin_unlock(&cmc_history_lock);
1435 out:
1436 /* Get the CMC error record and log it */
1437 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1439 return IRQ_HANDLED;
1443 * ia64_mca_cmc_int_caller
1445 * Triggered by sw interrupt from CMC polling routine. Calls
1446 * real interrupt handler and either triggers a sw interrupt
1447 * on the next cpu or does cleanup at the end.
1449 * Inputs
1450 * interrupt number
1451 * client data arg ptr
1452 * Outputs
1453 * handled
1455 static irqreturn_t
1456 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1458 static int start_count = -1;
1459 unsigned int cpuid;
1461 cpuid = smp_processor_id();
1463 /* If first cpu, update count */
1464 if (start_count == -1)
1465 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1467 ia64_mca_cmc_int_handler(cmc_irq, arg);
1469 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1471 if (cpuid < nr_cpu_ids) {
1472 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1473 } else {
1474 /* If no log record, switch out of polling mode */
1475 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1477 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1478 schedule_work(&cmc_enable_work);
1479 cmc_polling_enabled = 0;
1481 } else {
1483 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1486 start_count = -1;
1489 return IRQ_HANDLED;
1493 * ia64_mca_cmc_poll
1495 * Poll for Corrected Machine Checks (CMCs)
1497 * Inputs : dummy(unused)
1498 * Outputs : None
1501 static void
1502 ia64_mca_cmc_poll (unsigned long dummy)
1504 /* Trigger a CMC interrupt cascade */
1505 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1509 * ia64_mca_cpe_int_caller
1511 * Triggered by sw interrupt from CPE polling routine. Calls
1512 * real interrupt handler and either triggers a sw interrupt
1513 * on the next cpu or does cleanup at the end.
1515 * Inputs
1516 * interrupt number
1517 * client data arg ptr
1518 * Outputs
1519 * handled
1521 #ifdef CONFIG_ACPI
1523 static irqreturn_t
1524 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1526 static int start_count = -1;
1527 static int poll_time = MIN_CPE_POLL_INTERVAL;
1528 unsigned int cpuid;
1530 cpuid = smp_processor_id();
1532 /* If first cpu, update count */
1533 if (start_count == -1)
1534 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1536 ia64_mca_cpe_int_handler(cpe_irq, arg);
1538 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1540 if (cpuid < NR_CPUS) {
1541 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1542 } else {
1544 * If a log was recorded, increase our polling frequency,
1545 * otherwise, backoff or return to interrupt mode.
1547 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1548 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1549 } else if (cpe_vector < 0) {
1550 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1551 } else {
1552 poll_time = MIN_CPE_POLL_INTERVAL;
1554 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1555 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1556 cpe_poll_enabled = 0;
1559 if (cpe_poll_enabled)
1560 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1561 start_count = -1;
1564 return IRQ_HANDLED;
1568 * ia64_mca_cpe_poll
1570 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1571 * on first cpu, from there it will trickle through all the cpus.
1573 * Inputs : dummy(unused)
1574 * Outputs : None
1577 static void
1578 ia64_mca_cpe_poll (unsigned long dummy)
1580 /* Trigger a CPE interrupt cascade */
1581 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1584 #endif /* CONFIG_ACPI */
1586 static int
1587 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1589 int c;
1590 struct task_struct *g, *t;
1591 if (val != DIE_INIT_MONARCH_PROCESS)
1592 return NOTIFY_DONE;
1593 #ifdef CONFIG_KEXEC
1594 if (atomic_read(&kdump_in_progress))
1595 return NOTIFY_DONE;
1596 #endif
1598 BREAK_LOGLEVEL(console_loglevel);
1599 ia64_mlogbuf_dump_from_init();
1601 printk(KERN_ERR "Processes interrupted by INIT -");
1602 for_each_online_cpu(c) {
1603 struct ia64_sal_os_state *s;
1604 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1605 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1606 g = s->prev_task;
1607 if (g) {
1608 if (g->pid)
1609 printk(" %d", g->pid);
1610 else
1611 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1614 printk("\n\n");
1615 if (read_trylock(&tasklist_lock)) {
1616 do_each_thread (g, t) {
1617 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1618 show_stack(t, NULL);
1619 } while_each_thread (g, t);
1620 read_unlock(&tasklist_lock);
1622 RESTORE_LOGLEVEL(console_loglevel);
1623 return NOTIFY_DONE;
1627 * C portion of the OS INIT handler
1629 * Called from ia64_os_init_dispatch
1631 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1632 * this event. This code is used for both monarch and slave INIT events, see
1633 * sos->monarch.
1635 * All INIT events switch to the INIT stack and change the previous process to
1636 * blocked status. If one of the INIT events is the monarch then we are
1637 * probably processing the nmi button/command. Use the monarch cpu to dump all
1638 * the processes. The slave INIT events all spin until the monarch cpu
1639 * returns. We can also get INIT slave events for MCA, in which case the MCA
1640 * process is the monarch.
1643 void
1644 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1645 struct ia64_sal_os_state *sos)
1647 static atomic_t slaves;
1648 static atomic_t monarchs;
1649 struct task_struct *previous_current;
1650 int cpu = smp_processor_id();
1651 struct ia64_mca_notify_die nd =
1652 { .sos = sos, .monarch_cpu = &monarch_cpu };
1654 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1656 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1657 sos->proc_state_param, cpu, sos->monarch);
1658 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1660 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1661 sos->os_status = IA64_INIT_RESUME;
1663 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1664 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1665 __func__, cpu);
1666 atomic_dec(&slaves);
1667 sos->monarch = 1;
1670 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1671 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1672 __func__, cpu);
1673 atomic_dec(&monarchs);
1674 sos->monarch = 0;
1677 if (!sos->monarch) {
1678 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1680 #ifdef CONFIG_KEXEC
1681 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1682 udelay(1000);
1683 #else
1684 while (monarch_cpu == -1)
1685 cpu_relax(); /* spin until monarch enters */
1686 #endif
1688 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1689 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1691 #ifdef CONFIG_KEXEC
1692 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1693 udelay(1000);
1694 #else
1695 while (monarch_cpu != -1)
1696 cpu_relax(); /* spin until monarch leaves */
1697 #endif
1699 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1701 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1702 set_curr_task(cpu, previous_current);
1703 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1704 atomic_dec(&slaves);
1705 return;
1708 monarch_cpu = cpu;
1709 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1712 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1713 * generated via the BMC's command-line interface, but since the console is on the
1714 * same serial line, the user will need some time to switch out of the BMC before
1715 * the dump begins.
1717 mprintk("Delaying for 5 seconds...\n");
1718 udelay(5*1000000);
1719 ia64_wait_for_slaves(cpu, "INIT");
1720 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1721 * to default_monarch_init_process() above and just print all the
1722 * tasks.
1724 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1725 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1727 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1728 atomic_dec(&monarchs);
1729 set_curr_task(cpu, previous_current);
1730 monarch_cpu = -1;
1731 return;
1734 static int __init
1735 ia64_mca_disable_cpe_polling(char *str)
1737 cpe_poll_enabled = 0;
1738 return 1;
1741 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1743 static struct irqaction cmci_irqaction = {
1744 .handler = ia64_mca_cmc_int_handler,
1745 .flags = IRQF_DISABLED,
1746 .name = "cmc_hndlr"
1749 static struct irqaction cmcp_irqaction = {
1750 .handler = ia64_mca_cmc_int_caller,
1751 .flags = IRQF_DISABLED,
1752 .name = "cmc_poll"
1755 static struct irqaction mca_rdzv_irqaction = {
1756 .handler = ia64_mca_rendez_int_handler,
1757 .flags = IRQF_DISABLED,
1758 .name = "mca_rdzv"
1761 static struct irqaction mca_wkup_irqaction = {
1762 .handler = ia64_mca_wakeup_int_handler,
1763 .flags = IRQF_DISABLED,
1764 .name = "mca_wkup"
1767 #ifdef CONFIG_ACPI
1768 static struct irqaction mca_cpe_irqaction = {
1769 .handler = ia64_mca_cpe_int_handler,
1770 .flags = IRQF_DISABLED,
1771 .name = "cpe_hndlr"
1774 static struct irqaction mca_cpep_irqaction = {
1775 .handler = ia64_mca_cpe_int_caller,
1776 .flags = IRQF_DISABLED,
1777 .name = "cpe_poll"
1779 #endif /* CONFIG_ACPI */
1781 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1782 * these stacks can never sleep, they cannot return from the kernel to user
1783 * space, they do not appear in a normal ps listing. So there is no need to
1784 * format most of the fields.
1787 static void __cpuinit
1788 format_mca_init_stack(void *mca_data, unsigned long offset,
1789 const char *type, int cpu)
1791 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1792 struct thread_info *ti;
1793 memset(p, 0, KERNEL_STACK_SIZE);
1794 ti = task_thread_info(p);
1795 ti->flags = _TIF_MCA_INIT;
1796 ti->preempt_count = 1;
1797 ti->task = p;
1798 ti->cpu = cpu;
1799 p->stack = ti;
1800 p->state = TASK_UNINTERRUPTIBLE;
1801 cpu_set(cpu, p->cpus_allowed);
1802 INIT_LIST_HEAD(&p->tasks);
1803 p->parent = p->real_parent = p->group_leader = p;
1804 INIT_LIST_HEAD(&p->children);
1805 INIT_LIST_HEAD(&p->sibling);
1806 strncpy(p->comm, type, sizeof(p->comm)-1);
1809 /* Caller prevents this from being called after init */
1810 static void * __init_refok mca_bootmem(void)
1812 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1813 KERNEL_STACK_SIZE, 0);
1816 /* Do per-CPU MCA-related initialization. */
1817 void __cpuinit
1818 ia64_mca_cpu_init(void *cpu_data)
1820 void *pal_vaddr;
1821 void *data;
1822 long sz = sizeof(struct ia64_mca_cpu);
1823 int cpu = smp_processor_id();
1824 static int first_time = 1;
1827 * Structure will already be allocated if cpu has been online,
1828 * then offlined.
1830 if (__per_cpu_mca[cpu]) {
1831 data = __va(__per_cpu_mca[cpu]);
1832 } else {
1833 if (first_time) {
1834 data = mca_bootmem();
1835 first_time = 0;
1836 } else
1837 data = __get_free_pages(GFP_KERNEL, get_order(sz));
1838 if (!data)
1839 panic("Could not allocate MCA memory for cpu %d\n",
1840 cpu);
1842 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1843 "MCA", cpu);
1844 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1845 "INIT", cpu);
1846 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1849 * Stash away a copy of the PTE needed to map the per-CPU page.
1850 * We may need it during MCA recovery.
1852 __get_cpu_var(ia64_mca_per_cpu_pte) =
1853 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1856 * Also, stash away a copy of the PAL address and the PTE
1857 * needed to map it.
1859 pal_vaddr = efi_get_pal_addr();
1860 if (!pal_vaddr)
1861 return;
1862 __get_cpu_var(ia64_mca_pal_base) =
1863 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1864 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1865 PAGE_KERNEL));
1868 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1870 unsigned long flags;
1872 local_irq_save(flags);
1873 if (!cmc_polling_enabled)
1874 ia64_mca_cmc_vector_enable(NULL);
1875 local_irq_restore(flags);
1878 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1879 unsigned long action,
1880 void *hcpu)
1882 int hotcpu = (unsigned long) hcpu;
1884 switch (action) {
1885 case CPU_ONLINE:
1886 case CPU_ONLINE_FROZEN:
1887 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1888 NULL, 0);
1889 break;
1891 return NOTIFY_OK;
1894 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1895 .notifier_call = mca_cpu_callback
1899 * ia64_mca_init
1901 * Do all the system level mca specific initialization.
1903 * 1. Register spinloop and wakeup request interrupt vectors
1905 * 2. Register OS_MCA handler entry point
1907 * 3. Register OS_INIT handler entry point
1909 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1911 * Note that this initialization is done very early before some kernel
1912 * services are available.
1914 * Inputs : None
1916 * Outputs : None
1918 void __init
1919 ia64_mca_init(void)
1921 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1922 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1923 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1924 int i;
1925 long rc;
1926 struct ia64_sal_retval isrv;
1927 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1928 static struct notifier_block default_init_monarch_nb = {
1929 .notifier_call = default_monarch_init_process,
1930 .priority = 0/* we need to notified last */
1933 IA64_MCA_DEBUG("%s: begin\n", __func__);
1935 /* Clear the Rendez checkin flag for all cpus */
1936 for(i = 0 ; i < NR_CPUS; i++)
1937 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1940 * Register the rendezvous spinloop and wakeup mechanism with SAL
1943 /* Register the rendezvous interrupt vector with SAL */
1944 while (1) {
1945 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1946 SAL_MC_PARAM_MECHANISM_INT,
1947 IA64_MCA_RENDEZ_VECTOR,
1948 timeout,
1949 SAL_MC_PARAM_RZ_ALWAYS);
1950 rc = isrv.status;
1951 if (rc == 0)
1952 break;
1953 if (rc == -2) {
1954 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1955 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1956 timeout = isrv.v0;
1957 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1958 continue;
1960 printk(KERN_ERR "Failed to register rendezvous interrupt "
1961 "with SAL (status %ld)\n", rc);
1962 return;
1965 /* Register the wakeup interrupt vector with SAL */
1966 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1967 SAL_MC_PARAM_MECHANISM_INT,
1968 IA64_MCA_WAKEUP_VECTOR,
1969 0, 0);
1970 rc = isrv.status;
1971 if (rc) {
1972 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1973 "(status %ld)\n", rc);
1974 return;
1977 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1979 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1980 ia64_mc_info.imi_mca_handler_size = 0;
1982 /* Register the os mca handler with SAL */
1983 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1984 ia64_mc_info.imi_mca_handler,
1985 ia64_tpa(mca_hldlr_ptr->gp),
1986 ia64_mc_info.imi_mca_handler_size,
1987 0, 0, 0)))
1989 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1990 "(status %ld)\n", rc);
1991 return;
1994 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1995 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1997 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1998 ia64_mc_info.imi_monarch_init_handler_size = 0;
1999 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2000 ia64_mc_info.imi_slave_init_handler_size = 0;
2002 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2003 ia64_mc_info.imi_monarch_init_handler);
2005 /* Register the os init handler with SAL */
2006 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2007 ia64_mc_info.imi_monarch_init_handler,
2008 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2009 ia64_mc_info.imi_monarch_init_handler_size,
2010 ia64_mc_info.imi_slave_init_handler,
2011 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2012 ia64_mc_info.imi_slave_init_handler_size)))
2014 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2015 "(status %ld)\n", rc);
2016 return;
2018 if (register_die_notifier(&default_init_monarch_nb)) {
2019 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2020 return;
2023 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2026 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2027 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2029 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2030 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2031 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2033 /* Setup the MCA rendezvous interrupt vector */
2034 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2036 /* Setup the MCA wakeup interrupt vector */
2037 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2039 #ifdef CONFIG_ACPI
2040 /* Setup the CPEI/P handler */
2041 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2042 #endif
2044 /* Initialize the areas set aside by the OS to buffer the
2045 * platform/processor error states for MCA/INIT/CMC
2046 * handling.
2048 ia64_log_init(SAL_INFO_TYPE_MCA);
2049 ia64_log_init(SAL_INFO_TYPE_INIT);
2050 ia64_log_init(SAL_INFO_TYPE_CMC);
2051 ia64_log_init(SAL_INFO_TYPE_CPE);
2053 mca_init = 1;
2054 printk(KERN_INFO "MCA related initialization done\n");
2058 * ia64_mca_late_init
2060 * Opportunity to setup things that require initialization later
2061 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2062 * platform doesn't support an interrupt driven mechanism.
2064 * Inputs : None
2065 * Outputs : Status
2067 static int __init
2068 ia64_mca_late_init(void)
2070 if (!mca_init)
2071 return 0;
2073 register_hotcpu_notifier(&mca_cpu_notifier);
2075 /* Setup the CMCI/P vector and handler */
2076 init_timer(&cmc_poll_timer);
2077 cmc_poll_timer.function = ia64_mca_cmc_poll;
2079 /* Unmask/enable the vector */
2080 cmc_polling_enabled = 0;
2081 schedule_work(&cmc_enable_work);
2083 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2085 #ifdef CONFIG_ACPI
2086 /* Setup the CPEI/P vector and handler */
2087 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2088 init_timer(&cpe_poll_timer);
2089 cpe_poll_timer.function = ia64_mca_cpe_poll;
2092 struct irq_desc *desc;
2093 unsigned int irq;
2095 if (cpe_vector >= 0) {
2096 /* If platform supports CPEI, enable the irq. */
2097 irq = local_vector_to_irq(cpe_vector);
2098 if (irq > 0) {
2099 cpe_poll_enabled = 0;
2100 desc = irq_desc + irq;
2101 desc->status |= IRQ_PER_CPU;
2102 setup_irq(irq, &mca_cpe_irqaction);
2103 ia64_cpe_irq = irq;
2104 ia64_mca_register_cpev(cpe_vector);
2105 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2106 __func__);
2107 return 0;
2109 printk(KERN_ERR "%s: Failed to find irq for CPE "
2110 "interrupt handler, vector %d\n",
2111 __func__, cpe_vector);
2113 /* If platform doesn't support CPEI, get the timer going. */
2114 if (cpe_poll_enabled) {
2115 ia64_mca_cpe_poll(0UL);
2116 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2119 #endif
2121 return 0;
2124 device_initcall(ia64_mca_late_init);