RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / arch / ia64 / include / asm / sn / shubio.h
blob0cb81515735132baebd78350042f2ae6620581c0
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
7 */
9 #ifndef _ASM_IA64_SN_SHUBIO_H
10 #define _ASM_IA64_SN_SHUBIO_H
12 #define HUB_WIDGET_ID_MAX 0xf
13 #define IIO_NUM_ITTES 7
14 #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
16 #define IIO_WID 0x00400000 /* Crosstalk Widget Identification */
17 /* This register is also accessible from
18 * Crosstalk at address 0x0. */
19 #define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */
20 #define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */
21 #define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */
22 #define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */
23 #define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */
24 #define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */
25 #define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */
26 #define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */
27 #define IIO_ILLR 0x00400130 /* IO LLP Log Register */
28 #define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */
30 #define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */
31 #define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */
33 #define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */
34 #define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */
36 #define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */
37 #define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */
38 #define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */
39 #define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */
40 #define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */
41 #define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */
42 #define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */
44 #define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */
45 #define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */
46 #define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */
47 #define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */
48 #define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */
49 #define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */
50 #define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */
51 #define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */
52 #define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */
54 #define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */
55 #define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */
56 #define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */
57 #define IIO_IECLR 0x004001F8 /* IO Error Clear Register */
58 #define IIO_IBCR 0x00400200 /* IO BTE Control Register */
60 #define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */
61 #define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */
63 #define IIO_ILCT 0x00400218 /* IO LLP Channel Test */
65 #define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */
66 #define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */
68 #define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */
69 #define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */
71 #define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */
72 #define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */
73 #define IIO_IWC 0x00400250 /* IO Wrapper Control Register */
74 #define IIO_IWS 0x00400258 /* IO Wrapper Status Register */
75 #define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */
77 #define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */
79 #define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */
80 #define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */
81 #define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */
82 #define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */
83 #define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */
84 #define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */
85 #define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */
86 #define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */
88 #define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */
89 #define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */
90 #define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */
91 #define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */
92 #define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */
93 #define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */
94 #define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */
95 #define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */
97 #define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */
98 #define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */
99 #define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */
100 #define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */
101 #define IIO_ICMR 0x004003A8 /* IO CRB Management Register */
102 #define IIO_ICCR 0x004003B0 /* IO CRB Control Register */
103 #define IIO_ICTO 0x004003B8 /* IO CRB Timeout */
104 #define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */
106 #define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */
107 #define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */
108 #define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */
109 #define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */
110 #define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */
112 #define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */
113 #define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */
114 #define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */
115 #define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */
116 #define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */
118 #define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */
119 #define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */
120 #define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */
121 #define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */
122 #define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */
124 #define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */
125 #define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */
126 #define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */
127 #define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */
128 #define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */
130 #define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */
131 #define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */
132 #define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */
133 #define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */
134 #define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */
136 #define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */
137 #define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */
138 #define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */
139 #define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */
140 #define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */
142 #define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */
143 #define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */
144 #define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */
145 #define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */
146 #define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */
148 #define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */
149 #define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */
150 #define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */
151 #define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */
152 #define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */
154 #define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */
155 #define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */
156 #define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */
157 #define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */
158 #define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */
160 #define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */
161 #define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */
162 #define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */
163 #define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */
164 #define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */
166 #define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */
167 #define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */
168 #define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */
169 #define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */
170 #define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */
172 #define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */
173 #define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */
174 #define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */
175 #define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */
176 #define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */
178 #define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */
179 #define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */
180 #define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */
181 #define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */
182 #define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */
184 #define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */
185 #define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */
186 #define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */
187 #define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */
188 #define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */
190 #define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */
191 #define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */
192 #define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */
193 #define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */
194 #define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */
196 #define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */
197 #define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */
198 #define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */
200 #define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */
202 #define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */
203 #define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */
204 #define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */
205 #define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */
206 #define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */
207 #define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */
208 #define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */
209 #define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */
210 #define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */
211 #define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */
212 #define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */
213 #define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */
215 #define IIO_IPCR 0x00430000 /* IO Performance Control */
216 #define IIO_IPPR 0x00430008 /* IO Performance Profiling */
218 /************************************************************************
220 * Description: This register echoes some information from the *
221 * LB_REV_ID register. It is available through Crosstalk as described *
222 * above. The REV_NUM and MFG_NUM fields receive their values from *
223 * the REVISION and MANUFACTURER fields in the LB_REV_ID register. *
224 * The PART_NUM field's value is the Crosstalk device ID number that *
225 * Steve Miller assigned to the SHub chip. *
227 ************************************************************************/
229 typedef union ii_wid_u {
230 u64 ii_wid_regval;
231 struct {
232 u64 w_rsvd_1:1;
233 u64 w_mfg_num:11;
234 u64 w_part_num:16;
235 u64 w_rev_num:4;
236 u64 w_rsvd:32;
237 } ii_wid_fld_s;
238 } ii_wid_u_t;
240 /************************************************************************
242 * The fields in this register are set upon detection of an error *
243 * and cleared by various mechanisms, as explained in the *
244 * description. *
246 ************************************************************************/
248 typedef union ii_wstat_u {
249 u64 ii_wstat_regval;
250 struct {
251 u64 w_pending:4;
252 u64 w_xt_crd_to:1;
253 u64 w_xt_tail_to:1;
254 u64 w_rsvd_3:3;
255 u64 w_tx_mx_rty:1;
256 u64 w_rsvd_2:6;
257 u64 w_llp_tx_cnt:8;
258 u64 w_rsvd_1:8;
259 u64 w_crazy:1;
260 u64 w_rsvd:31;
261 } ii_wstat_fld_s;
262 } ii_wstat_u_t;
264 /************************************************************************
266 * Description: This is a read-write enabled register. It controls *
267 * various aspects of the Crosstalk flow control. *
269 ************************************************************************/
271 typedef union ii_wcr_u {
272 u64 ii_wcr_regval;
273 struct {
274 u64 w_wid:4;
275 u64 w_tag:1;
276 u64 w_rsvd_1:8;
277 u64 w_dst_crd:3;
278 u64 w_f_bad_pkt:1;
279 u64 w_dir_con:1;
280 u64 w_e_thresh:5;
281 u64 w_rsvd:41;
282 } ii_wcr_fld_s;
283 } ii_wcr_u_t;
285 /************************************************************************
287 * Description: This register's value is a bit vector that guards *
288 * access to local registers within the II as well as to external *
289 * Crosstalk widgets. Each bit in the register corresponds to a *
290 * particular region in the system; a region consists of one, two or *
291 * four nodes (depending on the value of the REGION_SIZE field in the *
292 * LB_REV_ID register, which is documented in Section 8.3.1.1). The *
293 * protection provided by this register applies to PIO read *
294 * operations as well as PIO write operations. The II will perform a *
295 * PIO read or write request only if the bit for the requestor's *
296 * region is set; otherwise, the II will not perform the requested *
297 * operation and will return an error response. When a PIO read or *
298 * write request targets an external Crosstalk widget, then not only *
299 * must the bit for the requestor's region be set in the ILAPR, but *
300 * also the target widget's bit in the IOWA register must be set in *
301 * order for the II to perform the requested operation; otherwise, *
302 * the II will return an error response. Hence, the protection *
303 * provided by the IOWA register supplements the protection provided *
304 * by the ILAPR for requests that target external Crosstalk widgets. *
305 * This register itself can be accessed only by the nodes whose *
306 * region ID bits are enabled in this same register. It can also be *
307 * accessed through the IAlias space by the local processors. *
308 * The reset value of this register allows access by all nodes. *
310 ************************************************************************/
312 typedef union ii_ilapr_u {
313 u64 ii_ilapr_regval;
314 struct {
315 u64 i_region:64;
316 } ii_ilapr_fld_s;
317 } ii_ilapr_u_t;
319 /************************************************************************
321 * Description: A write to this register of the 64-bit value *
322 * "SGIrules" in ASCII, will cause the bit in the ILAPR register *
323 * corresponding to the region of the requestor to be set (allow *
324 * access). A write of any other value will be ignored. Access *
325 * protection for this register is "SGIrules". *
326 * This register can also be accessed through the IAlias space. *
327 * However, this access will not change the access permissions in the *
328 * ILAPR. *
330 ************************************************************************/
332 typedef union ii_ilapo_u {
333 u64 ii_ilapo_regval;
334 struct {
335 u64 i_io_ovrride:64;
336 } ii_ilapo_fld_s;
337 } ii_ilapo_u_t;
339 /************************************************************************
341 * This register qualifies all the PIO and Graphics writes launched *
342 * from the SHUB towards a widget. *
344 ************************************************************************/
346 typedef union ii_iowa_u {
347 u64 ii_iowa_regval;
348 struct {
349 u64 i_w0_oac:1;
350 u64 i_rsvd_1:7;
351 u64 i_wx_oac:8;
352 u64 i_rsvd:48;
353 } ii_iowa_fld_s;
354 } ii_iowa_u_t;
356 /************************************************************************
358 * Description: This register qualifies all the requests launched *
359 * from a widget towards the Shub. This register is intended to be *
360 * used by software in case of misbehaving widgets. *
363 ************************************************************************/
365 typedef union ii_iiwa_u {
366 u64 ii_iiwa_regval;
367 struct {
368 u64 i_w0_iac:1;
369 u64 i_rsvd_1:7;
370 u64 i_wx_iac:8;
371 u64 i_rsvd:48;
372 } ii_iiwa_fld_s;
373 } ii_iiwa_u_t;
375 /************************************************************************
377 * Description: This register qualifies all the operations launched *
378 * from a widget towards the SHub. It allows individual access *
379 * control for up to 8 devices per widget. A device refers to *
380 * individual DMA master hosted by a widget. *
381 * The bits in each field of this register are cleared by the Shub *
382 * upon detection of an error which requires the device to be *
383 * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric *
384 * Crosstalk). Whether or not a device has access rights to this *
385 * Shub is determined by an AND of the device enable bit in the *
386 * appropriate field of this register and the corresponding bit in *
387 * the Wx_IAC field (for the widget which this device belongs to). *
388 * The bits in this field are set by writing a 1 to them. Incoming *
389 * replies from Crosstalk are not subject to this access control *
390 * mechanism. *
392 ************************************************************************/
394 typedef union ii_iidem_u {
395 u64 ii_iidem_regval;
396 struct {
397 u64 i_w8_dxs:8;
398 u64 i_w9_dxs:8;
399 u64 i_wa_dxs:8;
400 u64 i_wb_dxs:8;
401 u64 i_wc_dxs:8;
402 u64 i_wd_dxs:8;
403 u64 i_we_dxs:8;
404 u64 i_wf_dxs:8;
405 } ii_iidem_fld_s;
406 } ii_iidem_u_t;
408 /************************************************************************
410 * This register contains the various programmable fields necessary *
411 * for controlling and observing the LLP signals. *
413 ************************************************************************/
415 typedef union ii_ilcsr_u {
416 u64 ii_ilcsr_regval;
417 struct {
418 u64 i_nullto:6;
419 u64 i_rsvd_4:2;
420 u64 i_wrmrst:1;
421 u64 i_rsvd_3:1;
422 u64 i_llp_en:1;
423 u64 i_bm8:1;
424 u64 i_llp_stat:2;
425 u64 i_remote_power:1;
426 u64 i_rsvd_2:1;
427 u64 i_maxrtry:10;
428 u64 i_d_avail_sel:2;
429 u64 i_rsvd_1:4;
430 u64 i_maxbrst:10;
431 u64 i_rsvd:22;
433 } ii_ilcsr_fld_s;
434 } ii_ilcsr_u_t;
436 /************************************************************************
438 * This is simply a status registers that monitors the LLP error *
439 * rate. *
441 ************************************************************************/
443 typedef union ii_illr_u {
444 u64 ii_illr_regval;
445 struct {
446 u64 i_sn_cnt:16;
447 u64 i_cb_cnt:16;
448 u64 i_rsvd:32;
449 } ii_illr_fld_s;
450 } ii_illr_u_t;
452 /************************************************************************
454 * Description: All II-detected non-BTE error interrupts are *
455 * specified via this register. *
456 * NOTE: The PI interrupt register address is hardcoded in the II. If *
457 * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI *
458 * packet) to address offset 0x0180_0090 within the local register *
459 * address space of PI0 on the node specified by the NODE field. If *
460 * PI_ID==1, then the II sends the interrupt request to address *
461 * offset 0x01A0_0090 within the local register address space of PI1 *
462 * on the node specified by the NODE field. *
464 ************************************************************************/
466 typedef union ii_iidsr_u {
467 u64 ii_iidsr_regval;
468 struct {
469 u64 i_level:8;
470 u64 i_pi_id:1;
471 u64 i_node:11;
472 u64 i_rsvd_3:4;
473 u64 i_enable:1;
474 u64 i_rsvd_2:3;
475 u64 i_int_sent:2;
476 u64 i_rsvd_1:2;
477 u64 i_pi0_forward_int:1;
478 u64 i_pi1_forward_int:1;
479 u64 i_rsvd:30;
480 } ii_iidsr_fld_s;
481 } ii_iidsr_u_t;
483 /************************************************************************
485 * There are two instances of this register. This register is used *
486 * for matching up the incoming responses from the graphics widget to *
487 * the processor that initiated the graphics operation. The *
488 * write-responses are converted to graphics credits and returned to *
489 * the processor so that the processor interface can manage the flow *
490 * control. *
492 ************************************************************************/
494 typedef union ii_igfx0_u {
495 u64 ii_igfx0_regval;
496 struct {
497 u64 i_w_num:4;
498 u64 i_pi_id:1;
499 u64 i_n_num:12;
500 u64 i_p_num:1;
501 u64 i_rsvd:46;
502 } ii_igfx0_fld_s;
503 } ii_igfx0_u_t;
505 /************************************************************************
507 * There are two instances of this register. This register is used *
508 * for matching up the incoming responses from the graphics widget to *
509 * the processor that initiated the graphics operation. The *
510 * write-responses are converted to graphics credits and returned to *
511 * the processor so that the processor interface can manage the flow *
512 * control. *
514 ************************************************************************/
516 typedef union ii_igfx1_u {
517 u64 ii_igfx1_regval;
518 struct {
519 u64 i_w_num:4;
520 u64 i_pi_id:1;
521 u64 i_n_num:12;
522 u64 i_p_num:1;
523 u64 i_rsvd:46;
524 } ii_igfx1_fld_s;
525 } ii_igfx1_u_t;
527 /************************************************************************
529 * There are two instances of this registers. These registers are *
530 * used as scratch registers for software use. *
532 ************************************************************************/
534 typedef union ii_iscr0_u {
535 u64 ii_iscr0_regval;
536 struct {
537 u64 i_scratch:64;
538 } ii_iscr0_fld_s;
539 } ii_iscr0_u_t;
541 /************************************************************************
543 * There are two instances of this registers. These registers are *
544 * used as scratch registers for software use. *
546 ************************************************************************/
548 typedef union ii_iscr1_u {
549 u64 ii_iscr1_regval;
550 struct {
551 u64 i_scratch:64;
552 } ii_iscr1_fld_s;
553 } ii_iscr1_u_t;
555 /************************************************************************
557 * Description: There are seven instances of translation table entry *
558 * registers. Each register maps a Shub Big Window to a 48-bit *
559 * address on Crosstalk. *
560 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
561 * number) are used to select one of these 7 registers. The Widget *
562 * number field is then derived from the W_NUM field for synthesizing *
563 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
564 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
565 * are padded with zeros. Although the maximum Crosstalk space *
566 * addressable by the SHub is thus the lower 16 GBytes per widget *
567 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
568 * space can be accessed. *
569 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
570 * Window number) are used to select one of these 7 registers. The *
571 * Widget number field is then derived from the W_NUM field for *
572 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
573 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
574 * field is used as Crosstalk[47], and remainder of the Crosstalk *
575 * address bits (Crosstalk[46:34]) are always zero. While the maximum *
576 * Crosstalk space addressable by the Shub is thus the lower *
577 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
578 * of this space can be accessed. *
580 ************************************************************************/
582 typedef union ii_itte1_u {
583 u64 ii_itte1_regval;
584 struct {
585 u64 i_offset:5;
586 u64 i_rsvd_1:3;
587 u64 i_w_num:4;
588 u64 i_iosp:1;
589 u64 i_rsvd:51;
590 } ii_itte1_fld_s;
591 } ii_itte1_u_t;
593 /************************************************************************
595 * Description: There are seven instances of translation table entry *
596 * registers. Each register maps a Shub Big Window to a 48-bit *
597 * address on Crosstalk. *
598 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
599 * number) are used to select one of these 7 registers. The Widget *
600 * number field is then derived from the W_NUM field for synthesizing *
601 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
602 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
603 * are padded with zeros. Although the maximum Crosstalk space *
604 * addressable by the Shub is thus the lower 16 GBytes per widget *
605 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
606 * space can be accessed. *
607 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
608 * Window number) are used to select one of these 7 registers. The *
609 * Widget number field is then derived from the W_NUM field for *
610 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
611 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
612 * field is used as Crosstalk[47], and remainder of the Crosstalk *
613 * address bits (Crosstalk[46:34]) are always zero. While the maximum *
614 * Crosstalk space addressable by the Shub is thus the lower *
615 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
616 * of this space can be accessed. *
618 ************************************************************************/
620 typedef union ii_itte2_u {
621 u64 ii_itte2_regval;
622 struct {
623 u64 i_offset:5;
624 u64 i_rsvd_1:3;
625 u64 i_w_num:4;
626 u64 i_iosp:1;
627 u64 i_rsvd:51;
628 } ii_itte2_fld_s;
629 } ii_itte2_u_t;
631 /************************************************************************
633 * Description: There are seven instances of translation table entry *
634 * registers. Each register maps a Shub Big Window to a 48-bit *
635 * address on Crosstalk. *
636 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
637 * number) are used to select one of these 7 registers. The Widget *
638 * number field is then derived from the W_NUM field for synthesizing *
639 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
640 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
641 * are padded with zeros. Although the maximum Crosstalk space *
642 * addressable by the Shub is thus the lower 16 GBytes per widget *
643 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
644 * space can be accessed. *
645 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
646 * Window number) are used to select one of these 7 registers. The *
647 * Widget number field is then derived from the W_NUM field for *
648 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
649 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
650 * field is used as Crosstalk[47], and remainder of the Crosstalk *
651 * address bits (Crosstalk[46:34]) are always zero. While the maximum *
652 * Crosstalk space addressable by the SHub is thus the lower *
653 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
654 * of this space can be accessed. *
656 ************************************************************************/
658 typedef union ii_itte3_u {
659 u64 ii_itte3_regval;
660 struct {
661 u64 i_offset:5;
662 u64 i_rsvd_1:3;
663 u64 i_w_num:4;
664 u64 i_iosp:1;
665 u64 i_rsvd:51;
666 } ii_itte3_fld_s;
667 } ii_itte3_u_t;
669 /************************************************************************
671 * Description: There are seven instances of translation table entry *
672 * registers. Each register maps a SHub Big Window to a 48-bit *
673 * address on Crosstalk. *
674 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
675 * number) are used to select one of these 7 registers. The Widget *
676 * number field is then derived from the W_NUM field for synthesizing *
677 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
678 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
679 * are padded with zeros. Although the maximum Crosstalk space *
680 * addressable by the SHub is thus the lower 16 GBytes per widget *
681 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
682 * space can be accessed. *
683 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
684 * Window number) are used to select one of these 7 registers. The *
685 * Widget number field is then derived from the W_NUM field for *
686 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
687 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
688 * field is used as Crosstalk[47], and remainder of the Crosstalk *
689 * address bits (Crosstalk[46:34]) are always zero. While the maximum *
690 * Crosstalk space addressable by the SHub is thus the lower *
691 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
692 * of this space can be accessed. *
694 ************************************************************************/
696 typedef union ii_itte4_u {
697 u64 ii_itte4_regval;
698 struct {
699 u64 i_offset:5;
700 u64 i_rsvd_1:3;
701 u64 i_w_num:4;
702 u64 i_iosp:1;
703 u64 i_rsvd:51;
704 } ii_itte4_fld_s;
705 } ii_itte4_u_t;
707 /************************************************************************
709 * Description: There are seven instances of translation table entry *
710 * registers. Each register maps a SHub Big Window to a 48-bit *
711 * address on Crosstalk. *
712 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
713 * number) are used to select one of these 7 registers. The Widget *
714 * number field is then derived from the W_NUM field for synthesizing *
715 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
716 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
717 * are padded with zeros. Although the maximum Crosstalk space *
718 * addressable by the Shub is thus the lower 16 GBytes per widget *
719 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
720 * space can be accessed. *
721 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
722 * Window number) are used to select one of these 7 registers. The *
723 * Widget number field is then derived from the W_NUM field for *
724 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
725 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
726 * field is used as Crosstalk[47], and remainder of the Crosstalk *
727 * address bits (Crosstalk[46:34]) are always zero. While the maximum *
728 * Crosstalk space addressable by the Shub is thus the lower *
729 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
730 * of this space can be accessed. *
732 ************************************************************************/
734 typedef union ii_itte5_u {
735 u64 ii_itte5_regval;
736 struct {
737 u64 i_offset:5;
738 u64 i_rsvd_1:3;
739 u64 i_w_num:4;
740 u64 i_iosp:1;
741 u64 i_rsvd:51;
742 } ii_itte5_fld_s;
743 } ii_itte5_u_t;
745 /************************************************************************
747 * Description: There are seven instances of translation table entry *
748 * registers. Each register maps a Shub Big Window to a 48-bit *
749 * address on Crosstalk. *
750 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
751 * number) are used to select one of these 7 registers. The Widget *
752 * number field is then derived from the W_NUM field for synthesizing *
753 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
754 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
755 * are padded with zeros. Although the maximum Crosstalk space *
756 * addressable by the Shub is thus the lower 16 GBytes per widget *
757 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
758 * space can be accessed. *
759 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
760 * Window number) are used to select one of these 7 registers. The *
761 * Widget number field is then derived from the W_NUM field for *
762 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
763 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
764 * field is used as Crosstalk[47], and remainder of the Crosstalk *
765 * address bits (Crosstalk[46:34]) are always zero. While the maximum *
766 * Crosstalk space addressable by the Shub is thus the lower *
767 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
768 * of this space can be accessed. *
770 ************************************************************************/
772 typedef union ii_itte6_u {
773 u64 ii_itte6_regval;
774 struct {
775 u64 i_offset:5;
776 u64 i_rsvd_1:3;
777 u64 i_w_num:4;
778 u64 i_iosp:1;
779 u64 i_rsvd:51;
780 } ii_itte6_fld_s;
781 } ii_itte6_u_t;
783 /************************************************************************
785 * Description: There are seven instances of translation table entry *
786 * registers. Each register maps a Shub Big Window to a 48-bit *
787 * address on Crosstalk. *
788 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
789 * number) are used to select one of these 7 registers. The Widget *
790 * number field is then derived from the W_NUM field for synthesizing *
791 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
792 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
793 * are padded with zeros. Although the maximum Crosstalk space *
794 * addressable by the Shub is thus the lower 16 GBytes per widget *
795 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
796 * space can be accessed. *
797 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
798 * Window number) are used to select one of these 7 registers. The *
799 * Widget number field is then derived from the W_NUM field for *
800 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
801 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
802 * field is used as Crosstalk[47], and remainder of the Crosstalk *
803 * address bits (Crosstalk[46:34]) are always zero. While the maximum *
804 * Crosstalk space addressable by the SHub is thus the lower *
805 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
806 * of this space can be accessed. *
808 ************************************************************************/
810 typedef union ii_itte7_u {
811 u64 ii_itte7_regval;
812 struct {
813 u64 i_offset:5;
814 u64 i_rsvd_1:3;
815 u64 i_w_num:4;
816 u64 i_iosp:1;
817 u64 i_rsvd:51;
818 } ii_itte7_fld_s;
819 } ii_itte7_u_t;
821 /************************************************************************
823 * Description: There are 9 instances of this register, one per *
824 * actual widget in this implementation of SHub and Crossbow. *
825 * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
826 * refers to Crossbow's internal space. *
827 * This register contains the state elements per widget that are *
828 * necessary to manage the PIO flow control on Crosstalk and on the *
829 * Router Network. See the PIO Flow Control chapter for a complete *
830 * description of this register *
831 * The SPUR_WR bit requires some explanation. When this register is *
832 * written, the new value of the C field is captured in an internal *
833 * register so the hardware can remember what the programmer wrote *
834 * into the credit counter. The SPUR_WR bit sets whenever the C field *
835 * increments above this stored value, which indicates that there *
836 * have been more responses received than requests sent. The SPUR_WR *
837 * bit cannot be cleared until a value is written to the IPRBx *
838 * register; the write will correct the C field and capture its new *
839 * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
840 * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
841 * . *
843 ************************************************************************/
845 typedef union ii_iprb0_u {
846 u64 ii_iprb0_regval;
847 struct {
848 u64 i_c:8;
849 u64 i_na:14;
850 u64 i_rsvd_2:2;
851 u64 i_nb:14;
852 u64 i_rsvd_1:2;
853 u64 i_m:2;
854 u64 i_f:1;
855 u64 i_of_cnt:5;
856 u64 i_error:1;
857 u64 i_rd_to:1;
858 u64 i_spur_wr:1;
859 u64 i_spur_rd:1;
860 u64 i_rsvd:11;
861 u64 i_mult_err:1;
862 } ii_iprb0_fld_s;
863 } ii_iprb0_u_t;
865 /************************************************************************
867 * Description: There are 9 instances of this register, one per *
868 * actual widget in this implementation of SHub and Crossbow. *
869 * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
870 * refers to Crossbow's internal space. *
871 * This register contains the state elements per widget that are *
872 * necessary to manage the PIO flow control on Crosstalk and on the *
873 * Router Network. See the PIO Flow Control chapter for a complete *
874 * description of this register *
875 * The SPUR_WR bit requires some explanation. When this register is *
876 * written, the new value of the C field is captured in an internal *
877 * register so the hardware can remember what the programmer wrote *
878 * into the credit counter. The SPUR_WR bit sets whenever the C field *
879 * increments above this stored value, which indicates that there *
880 * have been more responses received than requests sent. The SPUR_WR *
881 * bit cannot be cleared until a value is written to the IPRBx *
882 * register; the write will correct the C field and capture its new *
883 * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
884 * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
885 * . *
887 ************************************************************************/
889 typedef union ii_iprb8_u {
890 u64 ii_iprb8_regval;
891 struct {
892 u64 i_c:8;
893 u64 i_na:14;
894 u64 i_rsvd_2:2;
895 u64 i_nb:14;
896 u64 i_rsvd_1:2;
897 u64 i_m:2;
898 u64 i_f:1;
899 u64 i_of_cnt:5;
900 u64 i_error:1;
901 u64 i_rd_to:1;
902 u64 i_spur_wr:1;
903 u64 i_spur_rd:1;
904 u64 i_rsvd:11;
905 u64 i_mult_err:1;
906 } ii_iprb8_fld_s;
907 } ii_iprb8_u_t;
909 /************************************************************************
911 * Description: There are 9 instances of this register, one per *
912 * actual widget in this implementation of SHub and Crossbow. *
913 * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
914 * refers to Crossbow's internal space. *
915 * This register contains the state elements per widget that are *
916 * necessary to manage the PIO flow control on Crosstalk and on the *
917 * Router Network. See the PIO Flow Control chapter for a complete *
918 * description of this register *
919 * The SPUR_WR bit requires some explanation. When this register is *
920 * written, the new value of the C field is captured in an internal *
921 * register so the hardware can remember what the programmer wrote *
922 * into the credit counter. The SPUR_WR bit sets whenever the C field *
923 * increments above this stored value, which indicates that there *
924 * have been more responses received than requests sent. The SPUR_WR *
925 * bit cannot be cleared until a value is written to the IPRBx *
926 * register; the write will correct the C field and capture its new *
927 * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
928 * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
929 * . *
931 ************************************************************************/
933 typedef union ii_iprb9_u {
934 u64 ii_iprb9_regval;
935 struct {
936 u64 i_c:8;
937 u64 i_na:14;
938 u64 i_rsvd_2:2;
939 u64 i_nb:14;
940 u64 i_rsvd_1:2;
941 u64 i_m:2;
942 u64 i_f:1;
943 u64 i_of_cnt:5;
944 u64 i_error:1;
945 u64 i_rd_to:1;
946 u64 i_spur_wr:1;
947 u64 i_spur_rd:1;
948 u64 i_rsvd:11;
949 u64 i_mult_err:1;
950 } ii_iprb9_fld_s;
951 } ii_iprb9_u_t;
953 /************************************************************************
955 * Description: There are 9 instances of this register, one per *
956 * actual widget in this implementation of SHub and Crossbow. *
957 * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
958 * refers to Crossbow's internal space. *
959 * This register contains the state elements per widget that are *
960 * necessary to manage the PIO flow control on Crosstalk and on the *
961 * Router Network. See the PIO Flow Control chapter for a complete *
962 * description of this register *
963 * The SPUR_WR bit requires some explanation. When this register is *
964 * written, the new value of the C field is captured in an internal *
965 * register so the hardware can remember what the programmer wrote *
966 * into the credit counter. The SPUR_WR bit sets whenever the C field *
967 * increments above this stored value, which indicates that there *
968 * have been more responses received than requests sent. The SPUR_WR *
969 * bit cannot be cleared until a value is written to the IPRBx *
970 * register; the write will correct the C field and capture its new *
971 * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
972 * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
975 ************************************************************************/
977 typedef union ii_iprba_u {
978 u64 ii_iprba_regval;
979 struct {
980 u64 i_c:8;
981 u64 i_na:14;
982 u64 i_rsvd_2:2;
983 u64 i_nb:14;
984 u64 i_rsvd_1:2;
985 u64 i_m:2;
986 u64 i_f:1;
987 u64 i_of_cnt:5;
988 u64 i_error:1;
989 u64 i_rd_to:1;
990 u64 i_spur_wr:1;
991 u64 i_spur_rd:1;
992 u64 i_rsvd:11;
993 u64 i_mult_err:1;
994 } ii_iprba_fld_s;
995 } ii_iprba_u_t;
997 /************************************************************************
999 * Description: There are 9 instances of this register, one per *
1000 * actual widget in this implementation of SHub and Crossbow. *
1001 * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
1002 * refers to Crossbow's internal space. *
1003 * This register contains the state elements per widget that are *
1004 * necessary to manage the PIO flow control on Crosstalk and on the *
1005 * Router Network. See the PIO Flow Control chapter for a complete *
1006 * description of this register *
1007 * The SPUR_WR bit requires some explanation. When this register is *
1008 * written, the new value of the C field is captured in an internal *
1009 * register so the hardware can remember what the programmer wrote *
1010 * into the credit counter. The SPUR_WR bit sets whenever the C field *
1011 * increments above this stored value, which indicates that there *
1012 * have been more responses received than requests sent. The SPUR_WR *
1013 * bit cannot be cleared until a value is written to the IPRBx *
1014 * register; the write will correct the C field and capture its new *
1015 * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
1016 * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
1017 * . *
1019 ************************************************************************/
1021 typedef union ii_iprbb_u {
1022 u64 ii_iprbb_regval;
1023 struct {
1024 u64 i_c:8;
1025 u64 i_na:14;
1026 u64 i_rsvd_2:2;
1027 u64 i_nb:14;
1028 u64 i_rsvd_1:2;
1029 u64 i_m:2;
1030 u64 i_f:1;
1031 u64 i_of_cnt:5;
1032 u64 i_error:1;
1033 u64 i_rd_to:1;
1034 u64 i_spur_wr:1;
1035 u64 i_spur_rd:1;
1036 u64 i_rsvd:11;
1037 u64 i_mult_err:1;
1038 } ii_iprbb_fld_s;
1039 } ii_iprbb_u_t;
1041 /************************************************************************
1043 * Description: There are 9 instances of this register, one per *
1044 * actual widget in this implementation of SHub and Crossbow. *
1045 * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
1046 * refers to Crossbow's internal space. *
1047 * This register contains the state elements per widget that are *
1048 * necessary to manage the PIO flow control on Crosstalk and on the *
1049 * Router Network. See the PIO Flow Control chapter for a complete *
1050 * description of this register *
1051 * The SPUR_WR bit requires some explanation. When this register is *
1052 * written, the new value of the C field is captured in an internal *
1053 * register so the hardware can remember what the programmer wrote *
1054 * into the credit counter. The SPUR_WR bit sets whenever the C field *
1055 * increments above this stored value, which indicates that there *
1056 * have been more responses received than requests sent. The SPUR_WR *
1057 * bit cannot be cleared until a value is written to the IPRBx *
1058 * register; the write will correct the C field and capture its new *
1059 * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
1060 * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
1061 * . *
1063 ************************************************************************/
1065 typedef union ii_iprbc_u {
1066 u64 ii_iprbc_regval;
1067 struct {
1068 u64 i_c:8;
1069 u64 i_na:14;
1070 u64 i_rsvd_2:2;
1071 u64 i_nb:14;
1072 u64 i_rsvd_1:2;
1073 u64 i_m:2;
1074 u64 i_f:1;
1075 u64 i_of_cnt:5;
1076 u64 i_error:1;
1077 u64 i_rd_to:1;
1078 u64 i_spur_wr:1;
1079 u64 i_spur_rd:1;
1080 u64 i_rsvd:11;
1081 u64 i_mult_err:1;
1082 } ii_iprbc_fld_s;
1083 } ii_iprbc_u_t;
1085 /************************************************************************
1087 * Description: There are 9 instances of this register, one per *
1088 * actual widget in this implementation of SHub and Crossbow. *
1089 * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
1090 * refers to Crossbow's internal space. *
1091 * This register contains the state elements per widget that are *
1092 * necessary to manage the PIO flow control on Crosstalk and on the *
1093 * Router Network. See the PIO Flow Control chapter for a complete *
1094 * description of this register *
1095 * The SPUR_WR bit requires some explanation. When this register is *
1096 * written, the new value of the C field is captured in an internal *
1097 * register so the hardware can remember what the programmer wrote *
1098 * into the credit counter. The SPUR_WR bit sets whenever the C field *
1099 * increments above this stored value, which indicates that there *
1100 * have been more responses received than requests sent. The SPUR_WR *
1101 * bit cannot be cleared until a value is written to the IPRBx *
1102 * register; the write will correct the C field and capture its new *
1103 * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
1104 * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
1105 * . *
1107 ************************************************************************/
1109 typedef union ii_iprbd_u {
1110 u64 ii_iprbd_regval;
1111 struct {
1112 u64 i_c:8;
1113 u64 i_na:14;
1114 u64 i_rsvd_2:2;
1115 u64 i_nb:14;
1116 u64 i_rsvd_1:2;
1117 u64 i_m:2;
1118 u64 i_f:1;
1119 u64 i_of_cnt:5;
1120 u64 i_error:1;
1121 u64 i_rd_to:1;
1122 u64 i_spur_wr:1;
1123 u64 i_spur_rd:1;
1124 u64 i_rsvd:11;
1125 u64 i_mult_err:1;
1126 } ii_iprbd_fld_s;
1127 } ii_iprbd_u_t;
1129 /************************************************************************
1131 * Description: There are 9 instances of this register, one per *
1132 * actual widget in this implementation of SHub and Crossbow. *
1133 * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
1134 * refers to Crossbow's internal space. *
1135 * This register contains the state elements per widget that are *
1136 * necessary to manage the PIO flow control on Crosstalk and on the *
1137 * Router Network. See the PIO Flow Control chapter for a complete *
1138 * description of this register *
1139 * The SPUR_WR bit requires some explanation. When this register is *
1140 * written, the new value of the C field is captured in an internal *
1141 * register so the hardware can remember what the programmer wrote *
1142 * into the credit counter. The SPUR_WR bit sets whenever the C field *
1143 * increments above this stored value, which indicates that there *
1144 * have been more responses received than requests sent. The SPUR_WR *
1145 * bit cannot be cleared until a value is written to the IPRBx *
1146 * register; the write will correct the C field and capture its new *
1147 * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
1148 * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
1149 * . *
1151 ************************************************************************/
1153 typedef union ii_iprbe_u {
1154 u64 ii_iprbe_regval;
1155 struct {
1156 u64 i_c:8;
1157 u64 i_na:14;
1158 u64 i_rsvd_2:2;
1159 u64 i_nb:14;
1160 u64 i_rsvd_1:2;
1161 u64 i_m:2;
1162 u64 i_f:1;
1163 u64 i_of_cnt:5;
1164 u64 i_error:1;
1165 u64 i_rd_to:1;
1166 u64 i_spur_wr:1;
1167 u64 i_spur_rd:1;
1168 u64 i_rsvd:11;
1169 u64 i_mult_err:1;
1170 } ii_iprbe_fld_s;
1171 } ii_iprbe_u_t;
1173 /************************************************************************
1175 * Description: There are 9 instances of this register, one per *
1176 * actual widget in this implementation of Shub and Crossbow. *
1177 * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
1178 * refers to Crossbow's internal space. *
1179 * This register contains the state elements per widget that are *
1180 * necessary to manage the PIO flow control on Crosstalk and on the *
1181 * Router Network. See the PIO Flow Control chapter for a complete *
1182 * description of this register *
1183 * The SPUR_WR bit requires some explanation. When this register is *
1184 * written, the new value of the C field is captured in an internal *
1185 * register so the hardware can remember what the programmer wrote *
1186 * into the credit counter. The SPUR_WR bit sets whenever the C field *
1187 * increments above this stored value, which indicates that there *
1188 * have been more responses received than requests sent. The SPUR_WR *
1189 * bit cannot be cleared until a value is written to the IPRBx *
1190 * register; the write will correct the C field and capture its new *
1191 * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
1192 * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
1193 * . *
1195 ************************************************************************/
1197 typedef union ii_iprbf_u {
1198 u64 ii_iprbf_regval;
1199 struct {
1200 u64 i_c:8;
1201 u64 i_na:14;
1202 u64 i_rsvd_2:2;
1203 u64 i_nb:14;
1204 u64 i_rsvd_1:2;
1205 u64 i_m:2;
1206 u64 i_f:1;
1207 u64 i_of_cnt:5;
1208 u64 i_error:1;
1209 u64 i_rd_to:1;
1210 u64 i_spur_wr:1;
1211 u64 i_spur_rd:1;
1212 u64 i_rsvd:11;
1213 u64 i_mult_err:1;
1214 } ii_iprbe_fld_s;
1215 } ii_iprbf_u_t;
1217 /************************************************************************
1219 * This register specifies the timeout value to use for monitoring *
1220 * Crosstalk credits which are used outbound to Crosstalk. An *
1221 * internal counter called the Crosstalk Credit Timeout Counter *
1222 * increments every 128 II clocks. The counter starts counting *
1223 * anytime the credit count drops below a threshold, and resets to *
1224 * zero (stops counting) anytime the credit count is at or above the *
1225 * threshold. The threshold is 1 credit in direct connect mode and 2 *
1226 * in Crossbow connect mode. When the internal Crosstalk Credit *
1227 * Timeout Counter reaches the value programmed in this register, a *
1228 * Crosstalk Credit Timeout has occurred. The internal counter is not *
1229 * readable from software, and stops counting at its maximum value, *
1230 * so it cannot cause more than one interrupt. *
1232 ************************************************************************/
1234 typedef union ii_ixcc_u {
1235 u64 ii_ixcc_regval;
1236 struct {
1237 u64 i_time_out:26;
1238 u64 i_rsvd:38;
1239 } ii_ixcc_fld_s;
1240 } ii_ixcc_u_t;
1242 /************************************************************************
1244 * Description: This register qualifies all the PIO and DMA *
1245 * operations launched from widget 0 towards the SHub. In *
1246 * addition, it also qualifies accesses by the BTE streams. *
1247 * The bits in each field of this register are cleared by the SHub *
1248 * upon detection of an error which requires widget 0 or the BTE *
1249 * streams to be terminated. Whether or not widget x has access *
1250 * rights to this SHub is determined by an AND of the device *
1251 * enable bit in the appropriate field of this register and bit 0 in *
1252 * the Wx_IAC field. The bits in this field are set by writing a 1 to *
1253 * them. Incoming replies from Crosstalk are not subject to this *
1254 * access control mechanism. *
1256 ************************************************************************/
1258 typedef union ii_imem_u {
1259 u64 ii_imem_regval;
1260 struct {
1261 u64 i_w0_esd:1;
1262 u64 i_rsvd_3:3;
1263 u64 i_b0_esd:1;
1264 u64 i_rsvd_2:3;
1265 u64 i_b1_esd:1;
1266 u64 i_rsvd_1:3;
1267 u64 i_clr_precise:1;
1268 u64 i_rsvd:51;
1269 } ii_imem_fld_s;
1270 } ii_imem_u_t;
1272 /************************************************************************
1274 * Description: This register specifies the timeout value to use for *
1275 * monitoring Crosstalk tail flits coming into the Shub in the *
1276 * TAIL_TO field. An internal counter associated with this register *
1277 * is incremented every 128 II internal clocks (7 bits). The counter *
1278 * starts counting anytime a header micropacket is received and stops *
1279 * counting (and resets to zero) any time a micropacket with a Tail *
1280 * bit is received. Once the counter reaches the threshold value *
1281 * programmed in this register, it generates an interrupt to the *
1282 * processor that is programmed into the IIDSR. The counter saturates *
1283 * (does not roll over) at its maximum value, so it cannot cause *
1284 * another interrupt until after it is cleared. *
1285 * The register also contains the Read Response Timeout values. The *
1286 * Prescalar is 23 bits, and counts II clocks. An internal counter *
1287 * increments on every II clock and when it reaches the value in the *
1288 * Prescalar field, all IPRTE registers with their valid bits set *
1289 * have their Read Response timers bumped. Whenever any of them match *
1290 * the value in the RRSP_TO field, a Read Response Timeout has *
1291 * occurred, and error handling occurs as described in the Error *
1292 * Handling section of this document. *
1294 ************************************************************************/
1296 typedef union ii_ixtt_u {
1297 u64 ii_ixtt_regval;
1298 struct {
1299 u64 i_tail_to:26;
1300 u64 i_rsvd_1:6;
1301 u64 i_rrsp_ps:23;
1302 u64 i_rrsp_to:5;
1303 u64 i_rsvd:4;
1304 } ii_ixtt_fld_s;
1305 } ii_ixtt_u_t;
1307 /************************************************************************
1309 * Writing a 1 to the fields of this register clears the appropriate *
1310 * error bits in other areas of SHub. Note that when the *
1311 * E_PRB_x bits are used to clear error bits in PRB registers, *
1312 * SPUR_RD and SPUR_WR may persist, because they require additional *
1313 * action to clear them. See the IPRBx and IXSS Register *
1314 * specifications. *
1316 ************************************************************************/
1318 typedef union ii_ieclr_u {
1319 u64 ii_ieclr_regval;
1320 struct {
1321 u64 i_e_prb_0:1;
1322 u64 i_rsvd:7;
1323 u64 i_e_prb_8:1;
1324 u64 i_e_prb_9:1;
1325 u64 i_e_prb_a:1;
1326 u64 i_e_prb_b:1;
1327 u64 i_e_prb_c:1;
1328 u64 i_e_prb_d:1;
1329 u64 i_e_prb_e:1;
1330 u64 i_e_prb_f:1;
1331 u64 i_e_crazy:1;
1332 u64 i_e_bte_0:1;
1333 u64 i_e_bte_1:1;
1334 u64 i_reserved_1:10;
1335 u64 i_spur_rd_hdr:1;
1336 u64 i_cam_intr_to:1;
1337 u64 i_cam_overflow:1;
1338 u64 i_cam_read_miss:1;
1339 u64 i_ioq_rep_underflow:1;
1340 u64 i_ioq_req_underflow:1;
1341 u64 i_ioq_rep_overflow:1;
1342 u64 i_ioq_req_overflow:1;
1343 u64 i_iiq_rep_overflow:1;
1344 u64 i_iiq_req_overflow:1;
1345 u64 i_ii_xn_rep_cred_overflow:1;
1346 u64 i_ii_xn_req_cred_overflow:1;
1347 u64 i_ii_xn_invalid_cmd:1;
1348 u64 i_xn_ii_invalid_cmd:1;
1349 u64 i_reserved_2:21;
1350 } ii_ieclr_fld_s;
1351 } ii_ieclr_u_t;
1353 /************************************************************************
1355 * This register controls both BTEs. SOFT_RESET is intended for *
1356 * recovery after an error. COUNT controls the total number of CRBs *
1357 * that both BTEs (combined) can use, which affects total BTE *
1358 * bandwidth. *
1360 ************************************************************************/
1362 typedef union ii_ibcr_u {
1363 u64 ii_ibcr_regval;
1364 struct {
1365 u64 i_count:4;
1366 u64 i_rsvd_1:4;
1367 u64 i_soft_reset:1;
1368 u64 i_rsvd:55;
1369 } ii_ibcr_fld_s;
1370 } ii_ibcr_u_t;
1372 /************************************************************************
1374 * This register contains the header of a spurious read response *
1375 * received from Crosstalk. A spurious read response is defined as a *
1376 * read response received by II from a widget for which (1) the SIDN *
1377 * has a value between 1 and 7, inclusive (II never sends requests to *
1378 * these widgets (2) there is no valid IPRTE register which *
1379 * corresponds to the TNUM, or (3) the widget indicated in SIDN is *
1380 * not the same as the widget recorded in the IPRTE register *
1381 * referenced by the TNUM. If this condition is true, and if the *
1382 * IXSS[VALID] bit is clear, then the header of the spurious read *
1383 * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The *
1384 * errant header is thereby captured, and no further spurious read *
1385 * respones are captured until IXSS[VALID] is cleared by setting the *
1386 * appropriate bit in IECLR.Everytime a spurious read response is *
1387 * detected, the SPUR_RD bit of the PRB corresponding to the incoming *
1388 * message's SIDN field is set. This always happens, regarless of *
1389 * whether a header is captured. The programmer should check *
1390 * IXSM[SIDN] to determine which widget sent the spurious response, *
1391 * because there may be more than one SPUR_RD bit set in the PRB *
1392 * registers. The widget indicated by IXSM[SIDN] was the first *
1393 * spurious read response to be received since the last time *
1394 * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB *
1395 * will be set. Any SPUR_RD bits in any other PRB registers indicate *
1396 * spurious messages from other widets which were detected after the *
1397 * header was captured.. *
1399 ************************************************************************/
1401 typedef union ii_ixsm_u {
1402 u64 ii_ixsm_regval;
1403 struct {
1404 u64 i_byte_en:32;
1405 u64 i_reserved:1;
1406 u64 i_tag:3;
1407 u64 i_alt_pactyp:4;
1408 u64 i_bo:1;
1409 u64 i_error:1;
1410 u64 i_vbpm:1;
1411 u64 i_gbr:1;
1412 u64 i_ds:2;
1413 u64 i_ct:1;
1414 u64 i_tnum:5;
1415 u64 i_pactyp:4;
1416 u64 i_sidn:4;
1417 u64 i_didn:4;
1418 } ii_ixsm_fld_s;
1419 } ii_ixsm_u_t;
1421 /************************************************************************
1423 * This register contains the sideband bits of a spurious read *
1424 * response received from Crosstalk. *
1426 ************************************************************************/
1428 typedef union ii_ixss_u {
1429 u64 ii_ixss_regval;
1430 struct {
1431 u64 i_sideband:8;
1432 u64 i_rsvd:55;
1433 u64 i_valid:1;
1434 } ii_ixss_fld_s;
1435 } ii_ixss_u_t;
1437 /************************************************************************
1439 * This register enables software to access the II LLP's test port. *
1440 * Refer to the LLP 2.5 documentation for an explanation of the test *
1441 * port. Software can write to this register to program the values *
1442 * for the control fields (TestErrCapture, TestClear, TestFlit, *
1443 * TestMask and TestSeed). Similarly, software can read from this *
1444 * register to obtain the values of the test port's status outputs *
1445 * (TestCBerr, TestValid and TestData). *
1447 ************************************************************************/
1449 typedef union ii_ilct_u {
1450 u64 ii_ilct_regval;
1451 struct {
1452 u64 i_test_seed:20;
1453 u64 i_test_mask:8;
1454 u64 i_test_data:20;
1455 u64 i_test_valid:1;
1456 u64 i_test_cberr:1;
1457 u64 i_test_flit:3;
1458 u64 i_test_clear:1;
1459 u64 i_test_err_capture:1;
1460 u64 i_rsvd:9;
1461 } ii_ilct_fld_s;
1462 } ii_ilct_u_t;
1464 /************************************************************************
1466 * If the II detects an illegal incoming Duplonet packet (request or *
1467 * reply) when VALID==0 in the IIEPH1 register, then it saves the *
1468 * contents of the packet's header flit in the IIEPH1 and IIEPH2 *
1469 * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, *
1470 * and assigns a value to the ERR_TYPE field which indicates the *
1471 * specific nature of the error. The II recognizes four different *
1472 * types of errors: short request packets (ERR_TYPE==2), short reply *
1473 * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long *
1474 * reply packets (ERR_TYPE==5). The encodings for these types of *
1475 * errors were chosen to be consistent with the same types of errors *
1476 * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in *
1477 * the LB unit). If the II detects an illegal incoming Duplonet *
1478 * packet when VALID==1 in the IIEPH1 register, then it merely sets *
1479 * the OVERRUN bit to indicate that a subsequent error has happened, *
1480 * and does nothing further. *
1482 ************************************************************************/
1484 typedef union ii_iieph1_u {
1485 u64 ii_iieph1_regval;
1486 struct {
1487 u64 i_command:7;
1488 u64 i_rsvd_5:1;
1489 u64 i_suppl:14;
1490 u64 i_rsvd_4:1;
1491 u64 i_source:14;
1492 u64 i_rsvd_3:1;
1493 u64 i_err_type:4;
1494 u64 i_rsvd_2:4;
1495 u64 i_overrun:1;
1496 u64 i_rsvd_1:3;
1497 u64 i_valid:1;
1498 u64 i_rsvd:13;
1499 } ii_iieph1_fld_s;
1500 } ii_iieph1_u_t;
1502 /************************************************************************
1504 * This register holds the Address field from the header flit of an *
1505 * incoming erroneous Duplonet packet, along with the tail bit which *
1506 * accompanied this header flit. This register is essentially an *
1507 * extension of IIEPH1. Two registers were necessary because the 64 *
1508 * bits available in only a single register were insufficient to *
1509 * capture the entire header flit of an erroneous packet. *
1511 ************************************************************************/
1513 typedef union ii_iieph2_u {
1514 u64 ii_iieph2_regval;
1515 struct {
1516 u64 i_rsvd_0:3;
1517 u64 i_address:47;
1518 u64 i_rsvd_1:10;
1519 u64 i_tail:1;
1520 u64 i_rsvd:3;
1521 } ii_iieph2_fld_s;
1522 } ii_iieph2_u_t;
1524 /******************************/
1526 /************************************************************************
1528 * This register's value is a bit vector that guards access from SXBs *
1529 * to local registers within the II as well as to external Crosstalk *
1530 * widgets *
1532 ************************************************************************/
1534 typedef union ii_islapr_u {
1535 u64 ii_islapr_regval;
1536 struct {
1537 u64 i_region:64;
1538 } ii_islapr_fld_s;
1539 } ii_islapr_u_t;
1541 /************************************************************************
1543 * A write to this register of the 56-bit value "Pup+Bun" will cause *
1544 * the bit in the ISLAPR register corresponding to the region of the *
1545 * requestor to be set (access allowed). (
1547 ************************************************************************/
1549 typedef union ii_islapo_u {
1550 u64 ii_islapo_regval;
1551 struct {
1552 u64 i_io_sbx_ovrride:56;
1553 u64 i_rsvd:8;
1554 } ii_islapo_fld_s;
1555 } ii_islapo_u_t;
1557 /************************************************************************
1559 * Determines how long the wrapper will wait aftr an interrupt is *
1560 * initially issued from the II before it times out the outstanding *
1561 * interrupt and drops it from the interrupt queue. *
1563 ************************************************************************/
1565 typedef union ii_iwi_u {
1566 u64 ii_iwi_regval;
1567 struct {
1568 u64 i_prescale:24;
1569 u64 i_rsvd:8;
1570 u64 i_timeout:8;
1571 u64 i_rsvd1:8;
1572 u64 i_intrpt_retry_period:8;
1573 u64 i_rsvd2:8;
1574 } ii_iwi_fld_s;
1575 } ii_iwi_u_t;
1577 /************************************************************************
1579 * Log errors which have occurred in the II wrapper. The errors are *
1580 * cleared by writing to the IECLR register. *
1582 ************************************************************************/
1584 typedef union ii_iwel_u {
1585 u64 ii_iwel_regval;
1586 struct {
1587 u64 i_intr_timed_out:1;
1588 u64 i_rsvd:7;
1589 u64 i_cam_overflow:1;
1590 u64 i_cam_read_miss:1;
1591 u64 i_rsvd1:2;
1592 u64 i_ioq_rep_underflow:1;
1593 u64 i_ioq_req_underflow:1;
1594 u64 i_ioq_rep_overflow:1;
1595 u64 i_ioq_req_overflow:1;
1596 u64 i_iiq_rep_overflow:1;
1597 u64 i_iiq_req_overflow:1;
1598 u64 i_rsvd2:6;
1599 u64 i_ii_xn_rep_cred_over_under:1;
1600 u64 i_ii_xn_req_cred_over_under:1;
1601 u64 i_rsvd3:6;
1602 u64 i_ii_xn_invalid_cmd:1;
1603 u64 i_xn_ii_invalid_cmd:1;
1604 u64 i_rsvd4:30;
1605 } ii_iwel_fld_s;
1606 } ii_iwel_u_t;
1608 /************************************************************************
1610 * Controls the II wrapper. *
1612 ************************************************************************/
1614 typedef union ii_iwc_u {
1615 u64 ii_iwc_regval;
1616 struct {
1617 u64 i_dma_byte_swap:1;
1618 u64 i_rsvd:3;
1619 u64 i_cam_read_lines_reset:1;
1620 u64 i_rsvd1:3;
1621 u64 i_ii_xn_cred_over_under_log:1;
1622 u64 i_rsvd2:19;
1623 u64 i_xn_rep_iq_depth:5;
1624 u64 i_rsvd3:3;
1625 u64 i_xn_req_iq_depth:5;
1626 u64 i_rsvd4:3;
1627 u64 i_iiq_depth:6;
1628 u64 i_rsvd5:12;
1629 u64 i_force_rep_cred:1;
1630 u64 i_force_req_cred:1;
1631 } ii_iwc_fld_s;
1632 } ii_iwc_u_t;
1634 /************************************************************************
1636 * Status in the II wrapper. *
1638 ************************************************************************/
1640 typedef union ii_iws_u {
1641 u64 ii_iws_regval;
1642 struct {
1643 u64 i_xn_rep_iq_credits:5;
1644 u64 i_rsvd:3;
1645 u64 i_xn_req_iq_credits:5;
1646 u64 i_rsvd1:51;
1647 } ii_iws_fld_s;
1648 } ii_iws_u_t;
1650 /************************************************************************
1652 * Masks errors in the IWEL register. *
1654 ************************************************************************/
1656 typedef union ii_iweim_u {
1657 u64 ii_iweim_regval;
1658 struct {
1659 u64 i_intr_timed_out:1;
1660 u64 i_rsvd:7;
1661 u64 i_cam_overflow:1;
1662 u64 i_cam_read_miss:1;
1663 u64 i_rsvd1:2;
1664 u64 i_ioq_rep_underflow:1;
1665 u64 i_ioq_req_underflow:1;
1666 u64 i_ioq_rep_overflow:1;
1667 u64 i_ioq_req_overflow:1;
1668 u64 i_iiq_rep_overflow:1;
1669 u64 i_iiq_req_overflow:1;
1670 u64 i_rsvd2:6;
1671 u64 i_ii_xn_rep_cred_overflow:1;
1672 u64 i_ii_xn_req_cred_overflow:1;
1673 u64 i_rsvd3:6;
1674 u64 i_ii_xn_invalid_cmd:1;
1675 u64 i_xn_ii_invalid_cmd:1;
1676 u64 i_rsvd4:30;
1677 } ii_iweim_fld_s;
1678 } ii_iweim_u_t;
1680 /************************************************************************
1682 * A write to this register causes a particular field in the *
1683 * corresponding widget's PRB entry to be adjusted up or down by 1. *
1684 * This counter should be used when recovering from error and reset *
1685 * conditions. Note that software would be capable of causing *
1686 * inadvertent overflow or underflow of these counters. *
1688 ************************************************************************/
1690 typedef union ii_ipca_u {
1691 u64 ii_ipca_regval;
1692 struct {
1693 u64 i_wid:4;
1694 u64 i_adjust:1;
1695 u64 i_rsvd_1:3;
1696 u64 i_field:2;
1697 u64 i_rsvd:54;
1698 } ii_ipca_fld_s;
1699 } ii_ipca_u_t;
1701 /************************************************************************
1703 * There are 8 instances of this register. This register contains *
1704 * the information that the II has to remember once it has launched a *
1705 * PIO Read operation. The contents are used to form the correct *
1706 * Router Network packet and direct the Crosstalk reply to the *
1707 * appropriate processor. *
1709 ************************************************************************/
1711 typedef union ii_iprte0a_u {
1712 u64 ii_iprte0a_regval;
1713 struct {
1714 u64 i_rsvd_1:54;
1715 u64 i_widget:4;
1716 u64 i_to_cnt:5;
1717 u64 i_vld:1;
1718 } ii_iprte0a_fld_s;
1719 } ii_iprte0a_u_t;
1721 /************************************************************************
1723 * There are 8 instances of this register. This register contains *
1724 * the information that the II has to remember once it has launched a *
1725 * PIO Read operation. The contents are used to form the correct *
1726 * Router Network packet and direct the Crosstalk reply to the *
1727 * appropriate processor. *
1729 ************************************************************************/
1731 typedef union ii_iprte1a_u {
1732 u64 ii_iprte1a_regval;
1733 struct {
1734 u64 i_rsvd_1:54;
1735 u64 i_widget:4;
1736 u64 i_to_cnt:5;
1737 u64 i_vld:1;
1738 } ii_iprte1a_fld_s;
1739 } ii_iprte1a_u_t;
1741 /************************************************************************
1743 * There are 8 instances of this register. This register contains *
1744 * the information that the II has to remember once it has launched a *
1745 * PIO Read operation. The contents are used to form the correct *
1746 * Router Network packet and direct the Crosstalk reply to the *
1747 * appropriate processor. *
1749 ************************************************************************/
1751 typedef union ii_iprte2a_u {
1752 u64 ii_iprte2a_regval;
1753 struct {
1754 u64 i_rsvd_1:54;
1755 u64 i_widget:4;
1756 u64 i_to_cnt:5;
1757 u64 i_vld:1;
1758 } ii_iprte2a_fld_s;
1759 } ii_iprte2a_u_t;
1761 /************************************************************************
1763 * There are 8 instances of this register. This register contains *
1764 * the information that the II has to remember once it has launched a *
1765 * PIO Read operation. The contents are used to form the correct *
1766 * Router Network packet and direct the Crosstalk reply to the *
1767 * appropriate processor. *
1769 ************************************************************************/
1771 typedef union ii_iprte3a_u {
1772 u64 ii_iprte3a_regval;
1773 struct {
1774 u64 i_rsvd_1:54;
1775 u64 i_widget:4;
1776 u64 i_to_cnt:5;
1777 u64 i_vld:1;
1778 } ii_iprte3a_fld_s;
1779 } ii_iprte3a_u_t;
1781 /************************************************************************
1783 * There are 8 instances of this register. This register contains *
1784 * the information that the II has to remember once it has launched a *
1785 * PIO Read operation. The contents are used to form the correct *
1786 * Router Network packet and direct the Crosstalk reply to the *
1787 * appropriate processor. *
1789 ************************************************************************/
1791 typedef union ii_iprte4a_u {
1792 u64 ii_iprte4a_regval;
1793 struct {
1794 u64 i_rsvd_1:54;
1795 u64 i_widget:4;
1796 u64 i_to_cnt:5;
1797 u64 i_vld:1;
1798 } ii_iprte4a_fld_s;
1799 } ii_iprte4a_u_t;
1801 /************************************************************************
1803 * There are 8 instances of this register. This register contains *
1804 * the information that the II has to remember once it has launched a *
1805 * PIO Read operation. The contents are used to form the correct *
1806 * Router Network packet and direct the Crosstalk reply to the *
1807 * appropriate processor. *
1809 ************************************************************************/
1811 typedef union ii_iprte5a_u {
1812 u64 ii_iprte5a_regval;
1813 struct {
1814 u64 i_rsvd_1:54;
1815 u64 i_widget:4;
1816 u64 i_to_cnt:5;
1817 u64 i_vld:1;
1818 } ii_iprte5a_fld_s;
1819 } ii_iprte5a_u_t;
1821 /************************************************************************
1823 * There are 8 instances of this register. This register contains *
1824 * the information that the II has to remember once it has launched a *
1825 * PIO Read operation. The contents are used to form the correct *
1826 * Router Network packet and direct the Crosstalk reply to the *
1827 * appropriate processor. *
1829 ************************************************************************/
1831 typedef union ii_iprte6a_u {
1832 u64 ii_iprte6a_regval;
1833 struct {
1834 u64 i_rsvd_1:54;
1835 u64 i_widget:4;
1836 u64 i_to_cnt:5;
1837 u64 i_vld:1;
1838 } ii_iprte6a_fld_s;
1839 } ii_iprte6a_u_t;
1841 /************************************************************************
1843 * There are 8 instances of this register. This register contains *
1844 * the information that the II has to remember once it has launched a *
1845 * PIO Read operation. The contents are used to form the correct *
1846 * Router Network packet and direct the Crosstalk reply to the *
1847 * appropriate processor. *
1849 ************************************************************************/
1851 typedef union ii_iprte7a_u {
1852 u64 ii_iprte7a_regval;
1853 struct {
1854 u64 i_rsvd_1:54;
1855 u64 i_widget:4;
1856 u64 i_to_cnt:5;
1857 u64 i_vld:1;
1858 } ii_iprtea7_fld_s;
1859 } ii_iprte7a_u_t;
1861 /************************************************************************
1863 * There are 8 instances of this register. This register contains *
1864 * the information that the II has to remember once it has launched a *
1865 * PIO Read operation. The contents are used to form the correct *
1866 * Router Network packet and direct the Crosstalk reply to the *
1867 * appropriate processor. *
1869 ************************************************************************/
1871 typedef union ii_iprte0b_u {
1872 u64 ii_iprte0b_regval;
1873 struct {
1874 u64 i_rsvd_1:3;
1875 u64 i_address:47;
1876 u64 i_init:3;
1877 u64 i_source:11;
1878 } ii_iprte0b_fld_s;
1879 } ii_iprte0b_u_t;
1881 /************************************************************************
1883 * There are 8 instances of this register. This register contains *
1884 * the information that the II has to remember once it has launched a *
1885 * PIO Read operation. The contents are used to form the correct *
1886 * Router Network packet and direct the Crosstalk reply to the *
1887 * appropriate processor. *
1889 ************************************************************************/
1891 typedef union ii_iprte1b_u {
1892 u64 ii_iprte1b_regval;
1893 struct {
1894 u64 i_rsvd_1:3;
1895 u64 i_address:47;
1896 u64 i_init:3;
1897 u64 i_source:11;
1898 } ii_iprte1b_fld_s;
1899 } ii_iprte1b_u_t;
1901 /************************************************************************
1903 * There are 8 instances of this register. This register contains *
1904 * the information that the II has to remember once it has launched a *
1905 * PIO Read operation. The contents are used to form the correct *
1906 * Router Network packet and direct the Crosstalk reply to the *
1907 * appropriate processor. *
1909 ************************************************************************/
1911 typedef union ii_iprte2b_u {
1912 u64 ii_iprte2b_regval;
1913 struct {
1914 u64 i_rsvd_1:3;
1915 u64 i_address:47;
1916 u64 i_init:3;
1917 u64 i_source:11;
1918 } ii_iprte2b_fld_s;
1919 } ii_iprte2b_u_t;
1921 /************************************************************************
1923 * There are 8 instances of this register. This register contains *
1924 * the information that the II has to remember once it has launched a *
1925 * PIO Read operation. The contents are used to form the correct *
1926 * Router Network packet and direct the Crosstalk reply to the *
1927 * appropriate processor. *
1929 ************************************************************************/
1931 typedef union ii_iprte3b_u {
1932 u64 ii_iprte3b_regval;
1933 struct {
1934 u64 i_rsvd_1:3;
1935 u64 i_address:47;
1936 u64 i_init:3;
1937 u64 i_source:11;
1938 } ii_iprte3b_fld_s;
1939 } ii_iprte3b_u_t;
1941 /************************************************************************
1943 * There are 8 instances of this register. This register contains *
1944 * the information that the II has to remember once it has launched a *
1945 * PIO Read operation. The contents are used to form the correct *
1946 * Router Network packet and direct the Crosstalk reply to the *
1947 * appropriate processor. *
1949 ************************************************************************/
1951 typedef union ii_iprte4b_u {
1952 u64 ii_iprte4b_regval;
1953 struct {
1954 u64 i_rsvd_1:3;
1955 u64 i_address:47;
1956 u64 i_init:3;
1957 u64 i_source:11;
1958 } ii_iprte4b_fld_s;
1959 } ii_iprte4b_u_t;
1961 /************************************************************************
1963 * There are 8 instances of this register. This register contains *
1964 * the information that the II has to remember once it has launched a *
1965 * PIO Read operation. The contents are used to form the correct *
1966 * Router Network packet and direct the Crosstalk reply to the *
1967 * appropriate processor. *
1969 ************************************************************************/
1971 typedef union ii_iprte5b_u {
1972 u64 ii_iprte5b_regval;
1973 struct {
1974 u64 i_rsvd_1:3;
1975 u64 i_address:47;
1976 u64 i_init:3;
1977 u64 i_source:11;
1978 } ii_iprte5b_fld_s;
1979 } ii_iprte5b_u_t;
1981 /************************************************************************
1983 * There are 8 instances of this register. This register contains *
1984 * the information that the II has to remember once it has launched a *
1985 * PIO Read operation. The contents are used to form the correct *
1986 * Router Network packet and direct the Crosstalk reply to the *
1987 * appropriate processor. *
1989 ************************************************************************/
1991 typedef union ii_iprte6b_u {
1992 u64 ii_iprte6b_regval;
1993 struct {
1994 u64 i_rsvd_1:3;
1995 u64 i_address:47;
1996 u64 i_init:3;
1997 u64 i_source:11;
1999 } ii_iprte6b_fld_s;
2000 } ii_iprte6b_u_t;
2002 /************************************************************************
2004 * There are 8 instances of this register. This register contains *
2005 * the information that the II has to remember once it has launched a *
2006 * PIO Read operation. The contents are used to form the correct *
2007 * Router Network packet and direct the Crosstalk reply to the *
2008 * appropriate processor. *
2010 ************************************************************************/
2012 typedef union ii_iprte7b_u {
2013 u64 ii_iprte7b_regval;
2014 struct {
2015 u64 i_rsvd_1:3;
2016 u64 i_address:47;
2017 u64 i_init:3;
2018 u64 i_source:11;
2019 } ii_iprte7b_fld_s;
2020 } ii_iprte7b_u_t;
2022 /************************************************************************
2024 * Description: SHub II contains a feature which did not exist in *
2025 * the Hub which automatically cleans up after a Read Response *
2026 * timeout, including deallocation of the IPRTE and recovery of IBuf *
2027 * space. The inclusion of this register in SHub is for backward *
2028 * compatibility *
2029 * A write to this register causes an entry from the table of *
2030 * outstanding PIO Read Requests to be freed and returned to the *
2031 * stack of free entries. This register is used in handling the *
2032 * timeout errors that result in a PIO Reply never returning from *
2033 * Crosstalk. *
2034 * Note that this register does not affect the contents of the IPRTE *
2035 * registers. The Valid bits in those registers have to be *
2036 * specifically turned off by software. *
2038 ************************************************************************/
2040 typedef union ii_ipdr_u {
2041 u64 ii_ipdr_regval;
2042 struct {
2043 u64 i_te:3;
2044 u64 i_rsvd_1:1;
2045 u64 i_pnd:1;
2046 u64 i_init_rpcnt:1;
2047 u64 i_rsvd:58;
2048 } ii_ipdr_fld_s;
2049 } ii_ipdr_u_t;
2051 /************************************************************************
2053 * A write to this register causes a CRB entry to be returned to the *
2054 * queue of free CRBs. The entry should have previously been cleared *
2055 * (mark bit) via backdoor access to the pertinent CRB entry. This *
2056 * register is used in the last step of handling the errors that are *
2057 * captured and marked in CRB entries. Briefly: 1) first error for *
2058 * DMA write from a particular device, and first error for a *
2059 * particular BTE stream, lead to a marked CRB entry, and processor *
2060 * interrupt, 2) software reads the error information captured in the *
2061 * CRB entry, and presumably takes some corrective action, 3) *
2062 * software clears the mark bit, and finally 4) software writes to *
2063 * the ICDR register to return the CRB entry to the list of free CRB *
2064 * entries. *
2066 ************************************************************************/
2068 typedef union ii_icdr_u {
2069 u64 ii_icdr_regval;
2070 struct {
2071 u64 i_crb_num:4;
2072 u64 i_pnd:1;
2073 u64 i_rsvd:59;
2074 } ii_icdr_fld_s;
2075 } ii_icdr_u_t;
2077 /************************************************************************
2079 * This register provides debug access to two FIFOs inside of II. *
2080 * Both IOQ_MAX* fields of this register contain the instantaneous *
2081 * depth (in units of the number of available entries) of the *
2082 * associated IOQ FIFO. A read of this register will return the *
2083 * number of free entries on each FIFO at the time of the read. So *
2084 * when a FIFO is idle, the associated field contains the maximum *
2085 * depth of the FIFO. This register is writable for debug reasons *
2086 * and is intended to be written with the maximum desired FIFO depth *
2087 * while the FIFO is idle. Software must assure that II is idle when *
2088 * this register is written. If there are any active entries in any *
2089 * of these FIFOs when this register is written, the results are *
2090 * undefined. *
2092 ************************************************************************/
2094 typedef union ii_ifdr_u {
2095 u64 ii_ifdr_regval;
2096 struct {
2097 u64 i_ioq_max_rq:7;
2098 u64 i_set_ioq_rq:1;
2099 u64 i_ioq_max_rp:7;
2100 u64 i_set_ioq_rp:1;
2101 u64 i_rsvd:48;
2102 } ii_ifdr_fld_s;
2103 } ii_ifdr_u_t;
2105 /************************************************************************
2107 * This register allows the II to become sluggish in removing *
2108 * messages from its inbound queue (IIQ). This will cause messages to *
2109 * back up in either virtual channel. Disabling the "molasses" mode *
2110 * subsequently allows the II to be tested under stress. In the *
2111 * sluggish ("Molasses") mode, the localized effects of congestion *
2112 * can be observed. *
2114 ************************************************************************/
2116 typedef union ii_iiap_u {
2117 u64 ii_iiap_regval;
2118 struct {
2119 u64 i_rq_mls:6;
2120 u64 i_rsvd_1:2;
2121 u64 i_rp_mls:6;
2122 u64 i_rsvd:50;
2123 } ii_iiap_fld_s;
2124 } ii_iiap_u_t;
2126 /************************************************************************
2128 * This register allows several parameters of CRB operation to be *
2129 * set. Note that writing to this register can have catastrophic side *
2130 * effects, if the CRB is not quiescent, i.e. if the CRB is *
2131 * processing protocol messages when the write occurs. *
2133 ************************************************************************/
2135 typedef union ii_icmr_u {
2136 u64 ii_icmr_regval;
2137 struct {
2138 u64 i_sp_msg:1;
2139 u64 i_rd_hdr:1;
2140 u64 i_rsvd_4:2;
2141 u64 i_c_cnt:4;
2142 u64 i_rsvd_3:4;
2143 u64 i_clr_rqpd:1;
2144 u64 i_clr_rppd:1;
2145 u64 i_rsvd_2:2;
2146 u64 i_fc_cnt:4;
2147 u64 i_crb_vld:15;
2148 u64 i_crb_mark:15;
2149 u64 i_rsvd_1:2;
2150 u64 i_precise:1;
2151 u64 i_rsvd:11;
2152 } ii_icmr_fld_s;
2153 } ii_icmr_u_t;
2155 /************************************************************************
2157 * This register allows control of the table portion of the CRB *
2158 * logic via software. Control operations from this register have *
2159 * priority over all incoming Crosstalk or BTE requests. *
2161 ************************************************************************/
2163 typedef union ii_iccr_u {
2164 u64 ii_iccr_regval;
2165 struct {
2166 u64 i_crb_num:4;
2167 u64 i_rsvd_1:4;
2168 u64 i_cmd:8;
2169 u64 i_pending:1;
2170 u64 i_rsvd:47;
2171 } ii_iccr_fld_s;
2172 } ii_iccr_u_t;
2174 /************************************************************************
2176 * This register allows the maximum timeout value to be programmed. *
2178 ************************************************************************/
2180 typedef union ii_icto_u {
2181 u64 ii_icto_regval;
2182 struct {
2183 u64 i_timeout:8;
2184 u64 i_rsvd:56;
2185 } ii_icto_fld_s;
2186 } ii_icto_u_t;
2188 /************************************************************************
2190 * This register allows the timeout prescalar to be programmed. An *
2191 * internal counter is associated with this register. When the *
2192 * internal counter reaches the value of the PRESCALE field, the *
2193 * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] *
2194 * field). The internal counter resets to zero, and then continues *
2195 * counting. *
2197 ************************************************************************/
2199 typedef union ii_ictp_u {
2200 u64 ii_ictp_regval;
2201 struct {
2202 u64 i_prescale:24;
2203 u64 i_rsvd:40;
2204 } ii_ictp_fld_s;
2205 } ii_ictp_u_t;
2207 /************************************************************************
2209 * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
2210 * used for Crosstalk operations (both cacheline and partial *
2211 * operations) or BTE/IO. Because the CRB entries are very wide, five *
2212 * registers (_A to _E) are required to read and write each entry. *
2213 * The CRB Entry registers can be conceptualized as rows and columns *
2214 * (illustrated in the table above). Each row contains the 4 *
2215 * registers required for a single CRB Entry. The first doubleword *
2216 * (column) for each entry is labeled A, and the second doubleword *
2217 * (higher address) is labeled B, the third doubleword is labeled C, *
2218 * the fourth doubleword is labeled D and the fifth doubleword is *
2219 * labeled E. All CRB entries have their addresses on a quarter *
2220 * cacheline aligned boundary. *
2221 * Upon reset, only the following fields are initialized: valid *
2222 * (VLD), priority count, timeout, timeout valid, and context valid. *
2223 * All other bits should be cleared by software before use (after *
2224 * recovering any potential error state from before the reset). *
2225 * The following four tables summarize the format for the four *
2226 * registers that are used for each ICRB# Entry. *
2228 ************************************************************************/
2230 typedef union ii_icrb0_a_u {
2231 u64 ii_icrb0_a_regval;
2232 struct {
2233 u64 ia_iow:1;
2234 u64 ia_vld:1;
2235 u64 ia_addr:47;
2236 u64 ia_tnum:5;
2237 u64 ia_sidn:4;
2238 u64 ia_rsvd:6;
2239 } ii_icrb0_a_fld_s;
2240 } ii_icrb0_a_u_t;
2242 /************************************************************************
2244 * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
2245 * used for Crosstalk operations (both cacheline and partial *
2246 * operations) or BTE/IO. Because the CRB entries are very wide, five *
2247 * registers (_A to _E) are required to read and write each entry. *
2249 ************************************************************************/
2251 typedef union ii_icrb0_b_u {
2252 u64 ii_icrb0_b_regval;
2253 struct {
2254 u64 ib_xt_err:1;
2255 u64 ib_mark:1;
2256 u64 ib_ln_uce:1;
2257 u64 ib_errcode:3;
2258 u64 ib_error:1;
2259 u64 ib_stall__bte_1:1;
2260 u64 ib_stall__bte_0:1;
2261 u64 ib_stall__intr:1;
2262 u64 ib_stall_ib:1;
2263 u64 ib_intvn:1;
2264 u64 ib_wb:1;
2265 u64 ib_hold:1;
2266 u64 ib_ack:1;
2267 u64 ib_resp:1;
2268 u64 ib_ack_cnt:11;
2269 u64 ib_rsvd:7;
2270 u64 ib_exc:5;
2271 u64 ib_init:3;
2272 u64 ib_imsg:8;
2273 u64 ib_imsgtype:2;
2274 u64 ib_use_old:1;
2275 u64 ib_rsvd_1:11;
2276 } ii_icrb0_b_fld_s;
2277 } ii_icrb0_b_u_t;
2279 /************************************************************************
2281 * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
2282 * used for Crosstalk operations (both cacheline and partial *
2283 * operations) or BTE/IO. Because the CRB entries are very wide, five *
2284 * registers (_A to _E) are required to read and write each entry. *
2286 ************************************************************************/
2288 typedef union ii_icrb0_c_u {
2289 u64 ii_icrb0_c_regval;
2290 struct {
2291 u64 ic_source:15;
2292 u64 ic_size:2;
2293 u64 ic_ct:1;
2294 u64 ic_bte_num:1;
2295 u64 ic_gbr:1;
2296 u64 ic_resprqd:1;
2297 u64 ic_bo:1;
2298 u64 ic_suppl:15;
2299 u64 ic_rsvd:27;
2300 } ii_icrb0_c_fld_s;
2301 } ii_icrb0_c_u_t;
2303 /************************************************************************
2305 * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
2306 * used for Crosstalk operations (both cacheline and partial *
2307 * operations) or BTE/IO. Because the CRB entries are very wide, five *
2308 * registers (_A to _E) are required to read and write each entry. *
2310 ************************************************************************/
2312 typedef union ii_icrb0_d_u {
2313 u64 ii_icrb0_d_regval;
2314 struct {
2315 u64 id_pa_be:43;
2316 u64 id_bte_op:1;
2317 u64 id_pr_psc:4;
2318 u64 id_pr_cnt:4;
2319 u64 id_sleep:1;
2320 u64 id_rsvd:11;
2321 } ii_icrb0_d_fld_s;
2322 } ii_icrb0_d_u_t;
2324 /************************************************************************
2326 * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
2327 * used for Crosstalk operations (both cacheline and partial *
2328 * operations) or BTE/IO. Because the CRB entries are very wide, five *
2329 * registers (_A to _E) are required to read and write each entry. *
2331 ************************************************************************/
2333 typedef union ii_icrb0_e_u {
2334 u64 ii_icrb0_e_regval;
2335 struct {
2336 u64 ie_timeout:8;
2337 u64 ie_context:15;
2338 u64 ie_rsvd:1;
2339 u64 ie_tvld:1;
2340 u64 ie_cvld:1;
2341 u64 ie_rsvd_0:38;
2342 } ii_icrb0_e_fld_s;
2343 } ii_icrb0_e_u_t;
2345 /************************************************************************
2347 * This register contains the lower 64 bits of the header of the *
2348 * spurious message captured by II. Valid when the SP_MSG bit in ICMR *
2349 * register is set. *
2351 ************************************************************************/
2353 typedef union ii_icsml_u {
2354 u64 ii_icsml_regval;
2355 struct {
2356 u64 i_tt_addr:47;
2357 u64 i_newsuppl_ex:14;
2358 u64 i_reserved:2;
2359 u64 i_overflow:1;
2360 } ii_icsml_fld_s;
2361 } ii_icsml_u_t;
2363 /************************************************************************
2365 * This register contains the middle 64 bits of the header of the *
2366 * spurious message captured by II. Valid when the SP_MSG bit in ICMR *
2367 * register is set. *
2369 ************************************************************************/
2371 typedef union ii_icsmm_u {
2372 u64 ii_icsmm_regval;
2373 struct {
2374 u64 i_tt_ack_cnt:11;
2375 u64 i_reserved:53;
2376 } ii_icsmm_fld_s;
2377 } ii_icsmm_u_t;
2379 /************************************************************************
2381 * This register contains the microscopic state, all the inputs to *
2382 * the protocol table, captured with the spurious message. Valid when *
2383 * the SP_MSG bit in the ICMR register is set. *
2385 ************************************************************************/
2387 typedef union ii_icsmh_u {
2388 u64 ii_icsmh_regval;
2389 struct {
2390 u64 i_tt_vld:1;
2391 u64 i_xerr:1;
2392 u64 i_ft_cwact_o:1;
2393 u64 i_ft_wact_o:1;
2394 u64 i_ft_active_o:1;
2395 u64 i_sync:1;
2396 u64 i_mnusg:1;
2397 u64 i_mnusz:1;
2398 u64 i_plusz:1;
2399 u64 i_plusg:1;
2400 u64 i_tt_exc:5;
2401 u64 i_tt_wb:1;
2402 u64 i_tt_hold:1;
2403 u64 i_tt_ack:1;
2404 u64 i_tt_resp:1;
2405 u64 i_tt_intvn:1;
2406 u64 i_g_stall_bte1:1;
2407 u64 i_g_stall_bte0:1;
2408 u64 i_g_stall_il:1;
2409 u64 i_g_stall_ib:1;
2410 u64 i_tt_imsg:8;
2411 u64 i_tt_imsgtype:2;
2412 u64 i_tt_use_old:1;
2413 u64 i_tt_respreqd:1;
2414 u64 i_tt_bte_num:1;
2415 u64 i_cbn:1;
2416 u64 i_match:1;
2417 u64 i_rpcnt_lt_34:1;
2418 u64 i_rpcnt_ge_34:1;
2419 u64 i_rpcnt_lt_18:1;
2420 u64 i_rpcnt_ge_18:1;
2421 u64 i_rpcnt_lt_2:1;
2422 u64 i_rpcnt_ge_2:1;
2423 u64 i_rqcnt_lt_18:1;
2424 u64 i_rqcnt_ge_18:1;
2425 u64 i_rqcnt_lt_2:1;
2426 u64 i_rqcnt_ge_2:1;
2427 u64 i_tt_device:7;
2428 u64 i_tt_init:3;
2429 u64 i_reserved:5;
2430 } ii_icsmh_fld_s;
2431 } ii_icsmh_u_t;
2433 /************************************************************************
2435 * The Shub DEBUG unit provides a 3-bit selection signal to the *
2436 * II core and a 3-bit selection signal to the fsbclk domain in the II *
2437 * wrapper. *
2439 ************************************************************************/
2441 typedef union ii_idbss_u {
2442 u64 ii_idbss_regval;
2443 struct {
2444 u64 i_iioclk_core_submenu:3;
2445 u64 i_rsvd:5;
2446 u64 i_fsbclk_wrapper_submenu:3;
2447 u64 i_rsvd_1:5;
2448 u64 i_iioclk_menu:5;
2449 u64 i_rsvd_2:43;
2450 } ii_idbss_fld_s;
2451 } ii_idbss_u_t;
2453 /************************************************************************
2455 * Description: This register is used to set up the length for a *
2456 * transfer and then to monitor the progress of that transfer. This *
2457 * register needs to be initialized before a transfer is started. A *
2458 * legitimate write to this register will set the Busy bit, clear the *
2459 * Error bit, and initialize the length to the value desired. *
2460 * While the transfer is in progress, hardware will decrement the *
2461 * length field with each successful block that is copied. Once the *
2462 * transfer completes, hardware will clear the Busy bit. The length *
2463 * field will also contain the number of cache lines left to be *
2464 * transferred. *
2466 ************************************************************************/
2468 typedef union ii_ibls0_u {
2469 u64 ii_ibls0_regval;
2470 struct {
2471 u64 i_length:16;
2472 u64 i_error:1;
2473 u64 i_rsvd_1:3;
2474 u64 i_busy:1;
2475 u64 i_rsvd:43;
2476 } ii_ibls0_fld_s;
2477 } ii_ibls0_u_t;
2479 /************************************************************************
2481 * This register should be loaded before a transfer is started. The *
2482 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
2483 * address as described in Section 1.3, Figure2 and Figure3. Since *
2484 * the bottom 7 bits of the address are always taken to be zero, BTE *
2485 * transfers are always cacheline-aligned. *
2487 ************************************************************************/
2489 typedef union ii_ibsa0_u {
2490 u64 ii_ibsa0_regval;
2491 struct {
2492 u64 i_rsvd_1:7;
2493 u64 i_addr:42;
2494 u64 i_rsvd:15;
2495 } ii_ibsa0_fld_s;
2496 } ii_ibsa0_u_t;
2498 /************************************************************************
2500 * This register should be loaded before a transfer is started. The *
2501 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
2502 * address as described in Section 1.3, Figure2 and Figure3. Since *
2503 * the bottom 7 bits of the address are always taken to be zero, BTE *
2504 * transfers are always cacheline-aligned. *
2506 ************************************************************************/
2508 typedef union ii_ibda0_u {
2509 u64 ii_ibda0_regval;
2510 struct {
2511 u64 i_rsvd_1:7;
2512 u64 i_addr:42;
2513 u64 i_rsvd:15;
2514 } ii_ibda0_fld_s;
2515 } ii_ibda0_u_t;
2517 /************************************************************************
2519 * Writing to this register sets up the attributes of the transfer *
2520 * and initiates the transfer operation. Reading this register has *
2521 * the side effect of terminating any transfer in progress. Note: *
2522 * stopping a transfer midstream could have an adverse impact on the *
2523 * other BTE. If a BTE stream has to be stopped (due to error *
2524 * handling for example), both BTE streams should be stopped and *
2525 * their transfers discarded. *
2527 ************************************************************************/
2529 typedef union ii_ibct0_u {
2530 u64 ii_ibct0_regval;
2531 struct {
2532 u64 i_zerofill:1;
2533 u64 i_rsvd_2:3;
2534 u64 i_notify:1;
2535 u64 i_rsvd_1:3;
2536 u64 i_poison:1;
2537 u64 i_rsvd:55;
2538 } ii_ibct0_fld_s;
2539 } ii_ibct0_u_t;
2541 /************************************************************************
2543 * This register contains the address to which the WINV is sent. *
2544 * This address has to be cache line aligned. *
2546 ************************************************************************/
2548 typedef union ii_ibna0_u {
2549 u64 ii_ibna0_regval;
2550 struct {
2551 u64 i_rsvd_1:7;
2552 u64 i_addr:42;
2553 u64 i_rsvd:15;
2554 } ii_ibna0_fld_s;
2555 } ii_ibna0_u_t;
2557 /************************************************************************
2559 * This register contains the programmable level as well as the node *
2560 * ID and PI unit of the processor to which the interrupt will be *
2561 * sent. *
2563 ************************************************************************/
2565 typedef union ii_ibia0_u {
2566 u64 ii_ibia0_regval;
2567 struct {
2568 u64 i_rsvd_2:1;
2569 u64 i_node_id:11;
2570 u64 i_rsvd_1:4;
2571 u64 i_level:7;
2572 u64 i_rsvd:41;
2573 } ii_ibia0_fld_s;
2574 } ii_ibia0_u_t;
2576 /************************************************************************
2578 * Description: This register is used to set up the length for a *
2579 * transfer and then to monitor the progress of that transfer. This *
2580 * register needs to be initialized before a transfer is started. A *
2581 * legitimate write to this register will set the Busy bit, clear the *
2582 * Error bit, and initialize the length to the value desired. *
2583 * While the transfer is in progress, hardware will decrement the *
2584 * length field with each successful block that is copied. Once the *
2585 * transfer completes, hardware will clear the Busy bit. The length *
2586 * field will also contain the number of cache lines left to be *
2587 * transferred. *
2589 ************************************************************************/
2591 typedef union ii_ibls1_u {
2592 u64 ii_ibls1_regval;
2593 struct {
2594 u64 i_length:16;
2595 u64 i_error:1;
2596 u64 i_rsvd_1:3;
2597 u64 i_busy:1;
2598 u64 i_rsvd:43;
2599 } ii_ibls1_fld_s;
2600 } ii_ibls1_u_t;
2602 /************************************************************************
2604 * This register should be loaded before a transfer is started. The *
2605 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
2606 * address as described in Section 1.3, Figure2 and Figure3. Since *
2607 * the bottom 7 bits of the address are always taken to be zero, BTE *
2608 * transfers are always cacheline-aligned. *
2610 ************************************************************************/
2612 typedef union ii_ibsa1_u {
2613 u64 ii_ibsa1_regval;
2614 struct {
2615 u64 i_rsvd_1:7;
2616 u64 i_addr:33;
2617 u64 i_rsvd:24;
2618 } ii_ibsa1_fld_s;
2619 } ii_ibsa1_u_t;
2621 /************************************************************************
2623 * This register should be loaded before a transfer is started. The *
2624 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
2625 * address as described in Section 1.3, Figure2 and Figure3. Since *
2626 * the bottom 7 bits of the address are always taken to be zero, BTE *
2627 * transfers are always cacheline-aligned. *
2629 ************************************************************************/
2631 typedef union ii_ibda1_u {
2632 u64 ii_ibda1_regval;
2633 struct {
2634 u64 i_rsvd_1:7;
2635 u64 i_addr:33;
2636 u64 i_rsvd:24;
2637 } ii_ibda1_fld_s;
2638 } ii_ibda1_u_t;
2640 /************************************************************************
2642 * Writing to this register sets up the attributes of the transfer *
2643 * and initiates the transfer operation. Reading this register has *
2644 * the side effect of terminating any transfer in progress. Note: *
2645 * stopping a transfer midstream could have an adverse impact on the *
2646 * other BTE. If a BTE stream has to be stopped (due to error *
2647 * handling for example), both BTE streams should be stopped and *
2648 * their transfers discarded. *
2650 ************************************************************************/
2652 typedef union ii_ibct1_u {
2653 u64 ii_ibct1_regval;
2654 struct {
2655 u64 i_zerofill:1;
2656 u64 i_rsvd_2:3;
2657 u64 i_notify:1;
2658 u64 i_rsvd_1:3;
2659 u64 i_poison:1;
2660 u64 i_rsvd:55;
2661 } ii_ibct1_fld_s;
2662 } ii_ibct1_u_t;
2664 /************************************************************************
2666 * This register contains the address to which the WINV is sent. *
2667 * This address has to be cache line aligned. *
2669 ************************************************************************/
2671 typedef union ii_ibna1_u {
2672 u64 ii_ibna1_regval;
2673 struct {
2674 u64 i_rsvd_1:7;
2675 u64 i_addr:33;
2676 u64 i_rsvd:24;
2677 } ii_ibna1_fld_s;
2678 } ii_ibna1_u_t;
2680 /************************************************************************
2682 * This register contains the programmable level as well as the node *
2683 * ID and PI unit of the processor to which the interrupt will be *
2684 * sent. *
2686 ************************************************************************/
2688 typedef union ii_ibia1_u {
2689 u64 ii_ibia1_regval;
2690 struct {
2691 u64 i_pi_id:1;
2692 u64 i_node_id:8;
2693 u64 i_rsvd_1:7;
2694 u64 i_level:7;
2695 u64 i_rsvd:41;
2696 } ii_ibia1_fld_s;
2697 } ii_ibia1_u_t;
2699 /************************************************************************
2701 * This register defines the resources that feed information into *
2702 * the two performance counters located in the IO Performance *
2703 * Profiling Register. There are 17 different quantities that can be *
2704 * measured. Given these 17 different options, the two performance *
2705 * counters have 15 of them in common; menu selections 0 through 0xE *
2706 * are identical for each performance counter. As for the other two *
2707 * options, one is available from one performance counter and the *
2708 * other is available from the other performance counter. Hence, the *
2709 * II supports all 17*16=272 possible combinations of quantities to *
2710 * measure. *
2712 ************************************************************************/
2714 typedef union ii_ipcr_u {
2715 u64 ii_ipcr_regval;
2716 struct {
2717 u64 i_ippr0_c:4;
2718 u64 i_ippr1_c:4;
2719 u64 i_icct:8;
2720 u64 i_rsvd:48;
2721 } ii_ipcr_fld_s;
2722 } ii_ipcr_u_t;
2724 /************************************************************************
2728 ************************************************************************/
2730 typedef union ii_ippr_u {
2731 u64 ii_ippr_regval;
2732 struct {
2733 u64 i_ippr0:32;
2734 u64 i_ippr1:32;
2735 } ii_ippr_fld_s;
2736 } ii_ippr_u_t;
2738 /************************************************************************
2740 * The following defines which were not formed into structures are *
2741 * probably indentical to another register, and the name of the *
2742 * register is provided against each of these registers. This *
2743 * information needs to be checked carefully *
2745 * IIO_ICRB1_A IIO_ICRB0_A *
2746 * IIO_ICRB1_B IIO_ICRB0_B *
2747 * IIO_ICRB1_C IIO_ICRB0_C *
2748 * IIO_ICRB1_D IIO_ICRB0_D *
2749 * IIO_ICRB1_E IIO_ICRB0_E *
2750 * IIO_ICRB2_A IIO_ICRB0_A *
2751 * IIO_ICRB2_B IIO_ICRB0_B *
2752 * IIO_ICRB2_C IIO_ICRB0_C *
2753 * IIO_ICRB2_D IIO_ICRB0_D *
2754 * IIO_ICRB2_E IIO_ICRB0_E *
2755 * IIO_ICRB3_A IIO_ICRB0_A *
2756 * IIO_ICRB3_B IIO_ICRB0_B *
2757 * IIO_ICRB3_C IIO_ICRB0_C *
2758 * IIO_ICRB3_D IIO_ICRB0_D *
2759 * IIO_ICRB3_E IIO_ICRB0_E *
2760 * IIO_ICRB4_A IIO_ICRB0_A *
2761 * IIO_ICRB4_B IIO_ICRB0_B *
2762 * IIO_ICRB4_C IIO_ICRB0_C *
2763 * IIO_ICRB4_D IIO_ICRB0_D *
2764 * IIO_ICRB4_E IIO_ICRB0_E *
2765 * IIO_ICRB5_A IIO_ICRB0_A *
2766 * IIO_ICRB5_B IIO_ICRB0_B *
2767 * IIO_ICRB5_C IIO_ICRB0_C *
2768 * IIO_ICRB5_D IIO_ICRB0_D *
2769 * IIO_ICRB5_E IIO_ICRB0_E *
2770 * IIO_ICRB6_A IIO_ICRB0_A *
2771 * IIO_ICRB6_B IIO_ICRB0_B *
2772 * IIO_ICRB6_C IIO_ICRB0_C *
2773 * IIO_ICRB6_D IIO_ICRB0_D *
2774 * IIO_ICRB6_E IIO_ICRB0_E *
2775 * IIO_ICRB7_A IIO_ICRB0_A *
2776 * IIO_ICRB7_B IIO_ICRB0_B *
2777 * IIO_ICRB7_C IIO_ICRB0_C *
2778 * IIO_ICRB7_D IIO_ICRB0_D *
2779 * IIO_ICRB7_E IIO_ICRB0_E *
2780 * IIO_ICRB8_A IIO_ICRB0_A *
2781 * IIO_ICRB8_B IIO_ICRB0_B *
2782 * IIO_ICRB8_C IIO_ICRB0_C *
2783 * IIO_ICRB8_D IIO_ICRB0_D *
2784 * IIO_ICRB8_E IIO_ICRB0_E *
2785 * IIO_ICRB9_A IIO_ICRB0_A *
2786 * IIO_ICRB9_B IIO_ICRB0_B *
2787 * IIO_ICRB9_C IIO_ICRB0_C *
2788 * IIO_ICRB9_D IIO_ICRB0_D *
2789 * IIO_ICRB9_E IIO_ICRB0_E *
2790 * IIO_ICRBA_A IIO_ICRB0_A *
2791 * IIO_ICRBA_B IIO_ICRB0_B *
2792 * IIO_ICRBA_C IIO_ICRB0_C *
2793 * IIO_ICRBA_D IIO_ICRB0_D *
2794 * IIO_ICRBA_E IIO_ICRB0_E *
2795 * IIO_ICRBB_A IIO_ICRB0_A *
2796 * IIO_ICRBB_B IIO_ICRB0_B *
2797 * IIO_ICRBB_C IIO_ICRB0_C *
2798 * IIO_ICRBB_D IIO_ICRB0_D *
2799 * IIO_ICRBB_E IIO_ICRB0_E *
2800 * IIO_ICRBC_A IIO_ICRB0_A *
2801 * IIO_ICRBC_B IIO_ICRB0_B *
2802 * IIO_ICRBC_C IIO_ICRB0_C *
2803 * IIO_ICRBC_D IIO_ICRB0_D *
2804 * IIO_ICRBC_E IIO_ICRB0_E *
2805 * IIO_ICRBD_A IIO_ICRB0_A *
2806 * IIO_ICRBD_B IIO_ICRB0_B *
2807 * IIO_ICRBD_C IIO_ICRB0_C *
2808 * IIO_ICRBD_D IIO_ICRB0_D *
2809 * IIO_ICRBD_E IIO_ICRB0_E *
2810 * IIO_ICRBE_A IIO_ICRB0_A *
2811 * IIO_ICRBE_B IIO_ICRB0_B *
2812 * IIO_ICRBE_C IIO_ICRB0_C *
2813 * IIO_ICRBE_D IIO_ICRB0_D *
2814 * IIO_ICRBE_E IIO_ICRB0_E *
2816 ************************************************************************/
2819 * Slightly friendlier names for some common registers.
2821 #define IIO_WIDGET IIO_WID /* Widget identification */
2822 #define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */
2823 #define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */
2824 #define IIO_PROTECT IIO_ILAPR /* IO interface protection */
2825 #define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */
2826 #define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */
2827 #define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */
2828 #define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */
2829 #define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */
2830 #define IIO_LLP_LOG IIO_ILLR /* LLP log */
2831 #define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout */
2832 #define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */
2833 #define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */
2834 #define IIO_IGFX_0 IIO_IGFX0
2835 #define IIO_IGFX_1 IIO_IGFX1
2836 #define IIO_IBCT_0 IIO_IBCT0
2837 #define IIO_IBCT_1 IIO_IBCT1
2838 #define IIO_IBLS_0 IIO_IBLS0
2839 #define IIO_IBLS_1 IIO_IBLS1
2840 #define IIO_IBSA_0 IIO_IBSA0
2841 #define IIO_IBSA_1 IIO_IBSA1
2842 #define IIO_IBDA_0 IIO_IBDA0
2843 #define IIO_IBDA_1 IIO_IBDA1
2844 #define IIO_IBNA_0 IIO_IBNA0
2845 #define IIO_IBNA_1 IIO_IBNA1
2846 #define IIO_IBIA_0 IIO_IBIA0
2847 #define IIO_IBIA_1 IIO_IBIA1
2848 #define IIO_IOPRB_0 IIO_IPRB0
2850 #define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x)))
2851 #define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x)))
2852 #define IIO_NUM_PRTES 8 /* Total number of PRB table entries */
2853 #define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */
2854 #define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */
2856 #define IIO_NUM_IPRBS 9
2858 #define IIO_LLP_CSR_IS_UP 0x00002000
2859 #define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000
2860 #define IIO_LLP_CSR_LLP_STAT_SHFT 12
2862 #define IIO_LLP_CB_MAX 0xffff /* in ILLR CB_CNT, Max Check Bit errors */
2863 #define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */
2865 /* key to IIO_PROTECT_OVRRD */
2866 #define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */
2868 /* BTE register names */
2869 #define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */
2870 #define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */
2871 #define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */
2872 #define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */
2873 #define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */
2874 #define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */
2875 #define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */
2876 #define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */
2878 /* BTE register offsets from base */
2879 #define BTEOFF_STAT 0
2880 #define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
2881 #define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
2882 #define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
2883 #define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
2884 #define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0)
2886 /* names used in shub diags */
2887 #define IIO_BASE_BTE0 IIO_IBLS_0
2888 #define IIO_BASE_BTE1 IIO_IBLS_1
2891 * Macro which takes the widget number, and returns the
2892 * IO PRB address of that widget.
2893 * value _x is expected to be a widget number in the range
2894 * 0, 8 - 0xF
2896 #define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
2897 (_x) : \
2898 (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
2900 /* GFX Flow Control Node/Widget Register */
2901 #define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */
2902 #define IIO_IGFX_W_NUM_MASK ((1<<IIO_IGFX_W_NUM_BITS)-1)
2903 #define IIO_IGFX_W_NUM_SHIFT 0
2904 #define IIO_IGFX_PI_NUM_BITS 1 /* size of PI num field */
2905 #define IIO_IGFX_PI_NUM_MASK ((1<<IIO_IGFX_PI_NUM_BITS)-1)
2906 #define IIO_IGFX_PI_NUM_SHIFT 4
2907 #define IIO_IGFX_N_NUM_BITS 8 /* size of node num field */
2908 #define IIO_IGFX_N_NUM_MASK ((1<<IIO_IGFX_N_NUM_BITS)-1)
2909 #define IIO_IGFX_N_NUM_SHIFT 5
2910 #define IIO_IGFX_P_NUM_BITS 1 /* size of processor num field */
2911 #define IIO_IGFX_P_NUM_MASK ((1<<IIO_IGFX_P_NUM_BITS)-1)
2912 #define IIO_IGFX_P_NUM_SHIFT 16
2913 #define IIO_IGFX_INIT(widget, pi, node, cpu) (\
2914 (((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) | \
2915 (((pi) & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)| \
2916 (((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \
2917 (((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
2919 /* Scratch registers (all bits available) */
2920 #define IIO_SCRATCH_REG0 IIO_ISCR0
2921 #define IIO_SCRATCH_REG1 IIO_ISCR1
2922 #define IIO_SCRATCH_MASK 0xffffffffffffffffUL
2924 #define IIO_SCRATCH_BIT0_0 0x0000000000000001UL
2925 #define IIO_SCRATCH_BIT0_1 0x0000000000000002UL
2926 #define IIO_SCRATCH_BIT0_2 0x0000000000000004UL
2927 #define IIO_SCRATCH_BIT0_3 0x0000000000000008UL
2928 #define IIO_SCRATCH_BIT0_4 0x0000000000000010UL
2929 #define IIO_SCRATCH_BIT0_5 0x0000000000000020UL
2930 #define IIO_SCRATCH_BIT0_6 0x0000000000000040UL
2931 #define IIO_SCRATCH_BIT0_7 0x0000000000000080UL
2932 #define IIO_SCRATCH_BIT0_8 0x0000000000000100UL
2933 #define IIO_SCRATCH_BIT0_9 0x0000000000000200UL
2934 #define IIO_SCRATCH_BIT0_A 0x0000000000000400UL
2936 #define IIO_SCRATCH_BIT1_0 0x0000000000000001UL
2937 #define IIO_SCRATCH_BIT1_1 0x0000000000000002UL
2938 /* IO Translation Table Entries */
2939 #define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */
2940 /* Hw manuals number them 1..7! */
2942 * IIO_IMEM Register fields.
2944 #define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */
2945 #define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */
2946 #define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */
2948 #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
2951 * Use the top big window as a surrogate for the first small window
2953 #define SWIN0_BIGWIN HUB_NUM_BIG_WINDOW
2955 #define ILCSR_WARM_RESET 0x100
2958 * CRB manipulation macros
2959 * The CRB macros are slightly complicated, since there are up to
2960 * four registers associated with each CRB entry.
2962 #define IIO_NUM_CRBS 15 /* Number of CRBs */
2963 #define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */
2964 #define IIO_ICRB_OFFSET 8
2965 #define IIO_ICRB_0 IIO_ICRB0_A
2966 #define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */
2968 #define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
2969 #define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
2970 #define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
2971 #define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
2972 #define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
2974 #define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7)
2977 * values for "ecode" field
2979 #define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */
2980 #define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */
2981 #define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access
2982 * e.g. WINV to a Read only line. */
2983 #define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */
2984 #define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */
2985 #define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */
2986 #define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */
2987 #define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */
2990 * Values for field imsgtype
2992 #define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */
2993 #define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */
2994 #define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */
2995 #define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */
2998 * values for field initiator.
3000 #define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */
3001 #define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */
3002 #define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */
3003 #define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */
3004 #define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */
3007 * Number of credits Hub widget has while sending req/response to
3008 * xbow.
3009 * Value of 3 is required by Xbow 1.1
3010 * We may be able to increase this to 4 with Xbow 1.2.
3012 #define HUBII_XBOW_CREDIT 3
3013 #define HUBII_XBOW_REV2_CREDIT 4
3016 * Number of credits that xtalk devices should use when communicating
3017 * with a SHub (depth of SHub's queue).
3019 #define HUB_CREDIT 4
3022 * Some IIO_PRB fields
3024 #define IIO_PRB_MULTI_ERR (1LL << 63)
3025 #define IIO_PRB_SPUR_RD (1LL << 51)
3026 #define IIO_PRB_SPUR_WR (1LL << 50)
3027 #define IIO_PRB_RD_TO (1LL << 49)
3028 #define IIO_PRB_ERROR (1LL << 48)
3030 /*************************************************************************
3032 Some of the IIO field masks and shifts are defined here.
3033 This is in order to maintain compatibility in SN0 and SN1 code
3035 **************************************************************************/
3038 * ICMR register fields
3039 * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
3040 * present in SHub)
3043 #define IIO_ICMR_CRB_VLD_SHFT 20
3044 #define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
3046 #define IIO_ICMR_FC_CNT_SHFT 16
3047 #define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT)
3049 #define IIO_ICMR_C_CNT_SHFT 4
3050 #define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT)
3052 #define IIO_ICMR_PRECISE (1UL << 52)
3053 #define IIO_ICMR_CLR_RPPD (1UL << 13)
3054 #define IIO_ICMR_CLR_RQPD (1UL << 12)
3056 #define IIO_IPDR_PND (1 << 4)
3059 * IIO CRB deallocation register field masks: (IIO_ICDR)
3061 #define IIO_ICDR_PND (1 << 4)
3064 * IO BTE Length/Status (IIO_IBLS) register bit field definitions
3066 #define IBLS_BUSY (0x1UL << 20)
3067 #define IBLS_ERROR_SHFT 16
3068 #define IBLS_ERROR (0x1UL << IBLS_ERROR_SHFT)
3069 #define IBLS_LENGTH_MASK 0xffff
3072 * IO BTE Control/Terminate register (IBCT) register bit field definitions
3074 #define IBCT_POISON (0x1UL << 8)
3075 #define IBCT_NOTIFY (0x1UL << 4)
3076 #define IBCT_ZFIL_MODE (0x1UL << 0)
3079 * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
3081 #define IIEPH1_VALID (1UL << 44)
3082 #define IIEPH1_OVERRUN (1UL << 40)
3083 #define IIEPH1_ERR_TYPE_SHFT 32
3084 #define IIEPH1_ERR_TYPE_MASK 0xf
3085 #define IIEPH1_SOURCE_SHFT 20
3086 #define IIEPH1_SOURCE_MASK 11
3087 #define IIEPH1_SUPPL_SHFT 8
3088 #define IIEPH1_SUPPL_MASK 11
3089 #define IIEPH1_CMD_SHFT 0
3090 #define IIEPH1_CMD_MASK 7
3092 #define IIEPH2_TAIL (1UL << 40)
3093 #define IIEPH2_ADDRESS_SHFT 0
3094 #define IIEPH2_ADDRESS_MASK 38
3096 #define IIEPH1_ERR_SHORT_REQ 2
3097 #define IIEPH1_ERR_SHORT_REPLY 3
3098 #define IIEPH1_ERR_LONG_REQ 4
3099 #define IIEPH1_ERR_LONG_REPLY 5
3102 * IO Error Clear register bit field definitions
3104 #define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */
3105 #define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */
3106 #define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */
3107 #define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */
3108 #define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */
3109 #define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */
3110 #define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */
3111 #define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */
3112 #define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */
3113 #define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */
3114 #define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */
3115 #define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */
3116 #define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */
3117 #define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */
3118 #define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */
3121 * IIO CRB control register Fields: IIO_ICCR
3123 #define IIO_ICCR_PENDING 0x10000
3124 #define IIO_ICCR_CMD_MASK 0xFF
3125 #define IIO_ICCR_CMD_SHFT 7
3126 #define IIO_ICCR_CMD_NOP 0x0 /* No Op */
3127 #define IIO_ICCR_CMD_WAKE 0x100 /* Reactivate CRB entry and process */
3128 #define IIO_ICCR_CMD_TIMEOUT 0x200 /* Make CRB timeout & mark invalid */
3129 #define IIO_ICCR_CMD_EJECT 0x400 /* Contents of entry written to memory
3130 * via a WB
3132 #define IIO_ICCR_CMD_FLUSH 0x800
3136 * CRB Register description.
3138 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3139 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3140 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3141 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3142 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3144 * Many of the fields in CRB are status bits used by hardware
3145 * for implementation of the protocol. It's very dangerous to
3146 * mess around with the CRB registers.
3148 * It's OK to read the CRB registers and try to make sense out of the
3149 * fields in CRB.
3151 * Updating CRB requires all activities in Hub IIO to be quiesced.
3152 * otherwise, a write to CRB could corrupt other CRB entries.
3153 * CRBs are here only as a back door peek to shub IIO's status.
3154 * Quiescing implies no dmas no PIOs
3155 * either directly from the cpu or from sn0net.
3156 * this is not something that can be done easily. So, AVOID updating
3157 * CRBs.
3161 * Easy access macros for CRBs, all 5 registers (A-E)
3163 typedef ii_icrb0_a_u_t icrba_t;
3164 #define a_sidn ii_icrb0_a_fld_s.ia_sidn
3165 #define a_tnum ii_icrb0_a_fld_s.ia_tnum
3166 #define a_addr ii_icrb0_a_fld_s.ia_addr
3167 #define a_valid ii_icrb0_a_fld_s.ia_vld
3168 #define a_iow ii_icrb0_a_fld_s.ia_iow
3169 #define a_regvalue ii_icrb0_a_regval
3171 typedef ii_icrb0_b_u_t icrbb_t;
3172 #define b_use_old ii_icrb0_b_fld_s.ib_use_old
3173 #define b_imsgtype ii_icrb0_b_fld_s.ib_imsgtype
3174 #define b_imsg ii_icrb0_b_fld_s.ib_imsg
3175 #define b_initiator ii_icrb0_b_fld_s.ib_init
3176 #define b_exc ii_icrb0_b_fld_s.ib_exc
3177 #define b_ackcnt ii_icrb0_b_fld_s.ib_ack_cnt
3178 #define b_resp ii_icrb0_b_fld_s.ib_resp
3179 #define b_ack ii_icrb0_b_fld_s.ib_ack
3180 #define b_hold ii_icrb0_b_fld_s.ib_hold
3181 #define b_wb ii_icrb0_b_fld_s.ib_wb
3182 #define b_intvn ii_icrb0_b_fld_s.ib_intvn
3183 #define b_stall_ib ii_icrb0_b_fld_s.ib_stall_ib
3184 #define b_stall_int ii_icrb0_b_fld_s.ib_stall__intr
3185 #define b_stall_bte_0 ii_icrb0_b_fld_s.ib_stall__bte_0
3186 #define b_stall_bte_1 ii_icrb0_b_fld_s.ib_stall__bte_1
3187 #define b_error ii_icrb0_b_fld_s.ib_error
3188 #define b_ecode ii_icrb0_b_fld_s.ib_errcode
3189 #define b_lnetuce ii_icrb0_b_fld_s.ib_ln_uce
3190 #define b_mark ii_icrb0_b_fld_s.ib_mark
3191 #define b_xerr ii_icrb0_b_fld_s.ib_xt_err
3192 #define b_regvalue ii_icrb0_b_regval
3194 typedef ii_icrb0_c_u_t icrbc_t;
3195 #define c_suppl ii_icrb0_c_fld_s.ic_suppl
3196 #define c_barrop ii_icrb0_c_fld_s.ic_bo
3197 #define c_doresp ii_icrb0_c_fld_s.ic_resprqd
3198 #define c_gbr ii_icrb0_c_fld_s.ic_gbr
3199 #define c_btenum ii_icrb0_c_fld_s.ic_bte_num
3200 #define c_cohtrans ii_icrb0_c_fld_s.ic_ct
3201 #define c_xtsize ii_icrb0_c_fld_s.ic_size
3202 #define c_source ii_icrb0_c_fld_s.ic_source
3203 #define c_regvalue ii_icrb0_c_regval
3205 typedef ii_icrb0_d_u_t icrbd_t;
3206 #define d_sleep ii_icrb0_d_fld_s.id_sleep
3207 #define d_pricnt ii_icrb0_d_fld_s.id_pr_cnt
3208 #define d_pripsc ii_icrb0_d_fld_s.id_pr_psc
3209 #define d_bteop ii_icrb0_d_fld_s.id_bte_op
3210 #define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */
3211 #define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */
3212 #define d_regvalue ii_icrb0_d_regval
3214 typedef ii_icrb0_e_u_t icrbe_t;
3215 #define icrbe_ctxtvld ii_icrb0_e_fld_s.ie_cvld
3216 #define icrbe_toutvld ii_icrb0_e_fld_s.ie_tvld
3217 #define icrbe_context ii_icrb0_e_fld_s.ie_context
3218 #define icrbe_timeout ii_icrb0_e_fld_s.ie_timeout
3219 #define e_regvalue ii_icrb0_e_regval
3221 /* Number of widgets supported by shub */
3222 #define HUB_NUM_WIDGET 9
3223 #define HUB_WIDGET_ID_MIN 0x8
3224 #define HUB_WIDGET_ID_MAX 0xf
3226 #define HUB_WIDGET_PART_NUM 0xc120
3227 #define MAX_HUBS_PER_XBOW 2
3229 /* A few more #defines for backwards compatibility */
3230 #define iprb_t ii_iprb0_u_t
3231 #define iprb_regval ii_iprb0_regval
3232 #define iprb_mult_err ii_iprb0_fld_s.i_mult_err
3233 #define iprb_spur_rd ii_iprb0_fld_s.i_spur_rd
3234 #define iprb_spur_wr ii_iprb0_fld_s.i_spur_wr
3235 #define iprb_rd_to ii_iprb0_fld_s.i_rd_to
3236 #define iprb_ovflow ii_iprb0_fld_s.i_of_cnt
3237 #define iprb_error ii_iprb0_fld_s.i_error
3238 #define iprb_ff ii_iprb0_fld_s.i_f
3239 #define iprb_mode ii_iprb0_fld_s.i_m
3240 #define iprb_bnakctr ii_iprb0_fld_s.i_nb
3241 #define iprb_anakctr ii_iprb0_fld_s.i_na
3242 #define iprb_xtalkctr ii_iprb0_fld_s.i_c
3244 #define LNK_STAT_WORKING 0x2 /* LLP is working */
3246 #define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */
3247 #define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */
3248 #define IIO_WSTAT_TXRETRY_MASK 0x7F /* should be 0xFF?? */
3249 #define IIO_WSTAT_TXRETRY_SHFT 16
3250 #define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
3251 IIO_WSTAT_TXRETRY_MASK)
3253 /* Number of II perf. counters we can multiplex at once */
3255 #define IO_PERF_SETS 32
3257 /* Bit for the widget in inbound access register */
3258 #define IIO_IIWA_WIDGET(_w) ((u64)(1ULL << _w))
3259 /* Bit for the widget in outbound access register */
3260 #define IIO_IOWA_WIDGET(_w) ((u64)(1ULL << _w))
3262 /* NOTE: The following define assumes that we are going to get
3263 * widget numbers from 8 thru F and the device numbers within
3264 * widget from 0 thru 7.
3266 #define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((u64)(1ULL << (8 * ((w) - 8) + (d))))
3268 /* IO Interrupt Destination Register */
3269 #define IIO_IIDSR_SENT_SHIFT 28
3270 #define IIO_IIDSR_SENT_MASK 0x30000000
3271 #define IIO_IIDSR_ENB_SHIFT 24
3272 #define IIO_IIDSR_ENB_MASK 0x01000000
3273 #define IIO_IIDSR_NODE_SHIFT 9
3274 #define IIO_IIDSR_NODE_MASK 0x000ff700
3275 #define IIO_IIDSR_PI_ID_SHIFT 8
3276 #define IIO_IIDSR_PI_ID_MASK 0x00000100
3277 #define IIO_IIDSR_LVL_SHIFT 0
3278 #define IIO_IIDSR_LVL_MASK 0x000000ff
3280 /* Xtalk timeout threshold register (IIO_IXTT) */
3281 #define IXTT_RRSP_TO_SHFT 55 /* read response timeout */
3282 #define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT)
3283 #define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */
3284 #define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
3285 #define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */
3286 #define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
3289 * The IO LLP control status register and widget control register
3292 typedef union hubii_wcr_u {
3293 u64 wcr_reg_value;
3294 struct {
3295 u64 wcr_widget_id:4, /* LLP crossbar credit */
3296 wcr_tag_mode:1, /* Tag mode */
3297 wcr_rsvd1:8, /* Reserved */
3298 wcr_xbar_crd:3, /* LLP crossbar credit */
3299 wcr_f_bad_pkt:1, /* Force bad llp pkt enable */
3300 wcr_dir_con:1, /* widget direct connect */
3301 wcr_e_thresh:5, /* elasticity threshold */
3302 wcr_rsvd:41; /* unused */
3303 } wcr_fields_s;
3304 } hubii_wcr_t;
3306 #define iwcr_dir_con wcr_fields_s.wcr_dir_con
3308 /* The structures below are defined to extract and modify the ii
3309 performance registers */
3311 /* io_perf_sel allows the caller to specify what tests will be
3312 performed */
3314 typedef union io_perf_sel {
3315 u64 perf_sel_reg;
3316 struct {
3317 u64 perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48;
3318 } perf_sel_bits;
3319 } io_perf_sel_t;
3321 /* io_perf_cnt is to extract the count from the shub registers. Due to
3322 hardware problems there is only one counter, not two. */
3324 typedef union io_perf_cnt {
3325 u64 perf_cnt;
3326 struct {
3327 u64 perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
3328 } perf_cnt_bits;
3330 } io_perf_cnt_t;
3332 typedef union iprte_a {
3333 u64 entry;
3334 struct {
3335 u64 i_rsvd_1:3;
3336 u64 i_addr:38;
3337 u64 i_init:3;
3338 u64 i_source:8;
3339 u64 i_rsvd:2;
3340 u64 i_widget:4;
3341 u64 i_to_cnt:5;
3342 u64 i_vld:1;
3343 } iprte_fields;
3344 } iprte_a_t;
3346 #endif /* _ASM_IA64_SN_SHUBIO_H */