update/add new 3G modem modules
[tomato.git] / release / src-rt / linux / linux-2.6 / block / ll_rw_blk.c
blob739bd1ebc3ffea835d919333e140cefc32526137
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
35 * for max sense size
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(request_queue_t *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
47 * For the allocated request tables
49 static struct kmem_cache *request_cachep;
52 * For queue allocation
54 static struct kmem_cache *requestq_cachep;
57 * For io context allocations
59 static struct kmem_cache *iocontext_cachep;
62 * Controlling structure to kblockd
64 static struct workqueue_struct *kblockd_workqueue;
66 unsigned long blk_max_low_pfn, blk_max_pfn;
68 EXPORT_SYMBOL(blk_max_low_pfn);
69 EXPORT_SYMBOL(blk_max_pfn);
71 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
73 /* Amount of time in which a process may batch requests */
74 #define BLK_BATCH_TIME (HZ/50UL)
76 /* Number of requests a "batching" process may submit */
77 #define BLK_BATCH_REQ 32
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested. It include a little hysteresis to keep the
82 * context switch rate down.
84 static inline int queue_congestion_on_threshold(struct request_queue *q)
86 return q->nr_congestion_on;
90 * The threshold at which a queue is considered to be uncongested
92 static inline int queue_congestion_off_threshold(struct request_queue *q)
94 return q->nr_congestion_off;
97 static void blk_queue_congestion_threshold(struct request_queue *q)
99 int nr;
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 struct backing_dev_info *ret = NULL;
124 request_queue_t *q = bdev_get_queue(bdev);
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
133 * blk_queue_prep_rq - set a prepare_request function for queue
134 * @q: queue
135 * @pfn: prepare_request function
137 * It's possible for a queue to register a prepare_request callback which
138 * is invoked before the request is handed to the request_fn. The goal of
139 * the function is to prepare a request for I/O, it can be used to build a
140 * cdb from the request data for instance.
143 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
145 q->prep_rq_fn = pfn;
148 EXPORT_SYMBOL(blk_queue_prep_rq);
151 * blk_queue_merge_bvec - set a merge_bvec function for queue
152 * @q: queue
153 * @mbfn: merge_bvec_fn
155 * Usually queues have static limitations on the max sectors or segments that
156 * we can put in a request. Stacking drivers may have some settings that
157 * are dynamic, and thus we have to query the queue whether it is ok to
158 * add a new bio_vec to a bio at a given offset or not. If the block device
159 * has such limitations, it needs to register a merge_bvec_fn to control
160 * the size of bio's sent to it. Note that a block device *must* allow a
161 * single page to be added to an empty bio. The block device driver may want
162 * to use the bio_split() function to deal with these bio's. By default
163 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
164 * honored.
166 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
168 q->merge_bvec_fn = mbfn;
171 EXPORT_SYMBOL(blk_queue_merge_bvec);
173 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
175 q->softirq_done_fn = fn;
178 EXPORT_SYMBOL(blk_queue_softirq_done);
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q: the request queue for the device to be affected
183 * @mfn: the alternate make_request function
185 * Description:
186 * The normal way for &struct bios to be passed to a device
187 * driver is for them to be collected into requests on a request
188 * queue, and then to allow the device driver to select requests
189 * off that queue when it is ready. This works well for many block
190 * devices. However some block devices (typically virtual devices
191 * such as md or lvm) do not benefit from the processing on the
192 * request queue, and are served best by having the requests passed
193 * directly to them. This can be achieved by providing a function
194 * to blk_queue_make_request().
196 * Caveat:
197 * The driver that does this *must* be able to deal appropriately
198 * with buffers in "highmemory". This can be accomplished by either calling
199 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 * blk_queue_bounce() to create a buffer in normal memory.
202 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
205 * set defaults
207 q->nr_requests = BLKDEV_MAX_RQ;
208 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
209 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
210 q->make_request_fn = mfn;
211 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
212 q->backing_dev_info.state = 0;
213 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
214 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
215 blk_queue_hardsect_size(q, 512);
216 blk_queue_dma_alignment(q, 511);
217 blk_queue_congestion_threshold(q);
218 q->nr_batching = BLK_BATCH_REQ;
220 q->unplug_thresh = 4; /* hmm */
221 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
222 if (q->unplug_delay == 0)
223 q->unplug_delay = 1;
225 INIT_WORK(&q->unplug_work, blk_unplug_work);
227 q->unplug_timer.function = blk_unplug_timeout;
228 q->unplug_timer.data = (unsigned long)q;
231 * by default assume old behaviour and bounce for any highmem page
233 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
236 EXPORT_SYMBOL(blk_queue_make_request);
238 static void rq_init(request_queue_t *q, struct request *rq)
240 INIT_LIST_HEAD(&rq->queuelist);
241 INIT_LIST_HEAD(&rq->donelist);
243 rq->errors = 0;
244 rq->bio = rq->biotail = NULL;
245 INIT_HLIST_NODE(&rq->hash);
246 RB_CLEAR_NODE(&rq->rb_node);
247 rq->ioprio = 0;
248 rq->buffer = NULL;
249 rq->ref_count = 1;
250 rq->q = q;
251 rq->special = NULL;
252 rq->data_len = 0;
253 rq->data = NULL;
254 rq->nr_phys_segments = 0;
255 rq->sense = NULL;
256 rq->end_io = NULL;
257 rq->end_io_data = NULL;
258 rq->completion_data = NULL;
262 * blk_queue_ordered - does this queue support ordered writes
263 * @q: the request queue
264 * @ordered: one of QUEUE_ORDERED_*
265 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
267 * Description:
268 * For journalled file systems, doing ordered writes on a commit
269 * block instead of explicitly doing wait_on_buffer (which is bad
270 * for performance) can be a big win. Block drivers supporting this
271 * feature should call this function and indicate so.
274 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
275 prepare_flush_fn *prepare_flush_fn)
277 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
278 prepare_flush_fn == NULL) {
279 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
280 return -EINVAL;
283 if (ordered != QUEUE_ORDERED_NONE &&
284 ordered != QUEUE_ORDERED_DRAIN &&
285 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
286 ordered != QUEUE_ORDERED_DRAIN_FUA &&
287 ordered != QUEUE_ORDERED_TAG &&
288 ordered != QUEUE_ORDERED_TAG_FLUSH &&
289 ordered != QUEUE_ORDERED_TAG_FUA) {
290 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
291 return -EINVAL;
294 q->ordered = ordered;
295 q->next_ordered = ordered;
296 q->prepare_flush_fn = prepare_flush_fn;
298 return 0;
301 EXPORT_SYMBOL(blk_queue_ordered);
304 * blk_queue_issue_flush_fn - set function for issuing a flush
305 * @q: the request queue
306 * @iff: the function to be called issuing the flush
308 * Description:
309 * If a driver supports issuing a flush command, the support is notified
310 * to the block layer by defining it through this call.
313 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
315 q->issue_flush_fn = iff;
318 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
321 * Cache flushing for ordered writes handling
323 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
325 if (!q->ordseq)
326 return 0;
327 return 1 << ffz(q->ordseq);
330 unsigned blk_ordered_req_seq(struct request *rq)
332 request_queue_t *q = rq->q;
334 BUG_ON(q->ordseq == 0);
336 if (rq == &q->pre_flush_rq)
337 return QUEUE_ORDSEQ_PREFLUSH;
338 if (rq == &q->bar_rq)
339 return QUEUE_ORDSEQ_BAR;
340 if (rq == &q->post_flush_rq)
341 return QUEUE_ORDSEQ_POSTFLUSH;
344 * !fs requests don't need to follow barrier ordering. Always
345 * put them at the front. This fixes the following deadlock.
347 * http://thread.gmane.org/gmane.linux.kernel/537473
349 if (!blk_fs_request(rq))
350 return QUEUE_ORDSEQ_DRAIN;
352 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
353 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
354 return QUEUE_ORDSEQ_DRAIN;
355 else
356 return QUEUE_ORDSEQ_DONE;
359 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
361 struct request *rq;
363 if (error && !q->orderr)
364 q->orderr = error;
366 BUG_ON(q->ordseq & seq);
367 q->ordseq |= seq;
369 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
370 return;
373 * Okay, sequence complete.
375 q->ordseq = 0;
376 rq = q->orig_bar_rq;
378 if (__blk_end_request(rq, q->orderr, blk_rq_bytes(rq)))
379 BUG();
382 static void pre_flush_end_io(struct request *rq, int error)
384 elv_completed_request(rq->q, rq);
385 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
388 static void bar_end_io(struct request *rq, int error)
390 elv_completed_request(rq->q, rq);
391 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
394 static void post_flush_end_io(struct request *rq, int error)
396 elv_completed_request(rq->q, rq);
397 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
400 static void queue_flush(request_queue_t *q, unsigned which)
402 struct request *rq;
403 rq_end_io_fn *end_io;
405 if (which == QUEUE_ORDERED_PREFLUSH) {
406 rq = &q->pre_flush_rq;
407 end_io = pre_flush_end_io;
408 } else {
409 rq = &q->post_flush_rq;
410 end_io = post_flush_end_io;
413 rq->cmd_flags = REQ_HARDBARRIER;
414 rq_init(q, rq);
415 rq->elevator_private = NULL;
416 rq->elevator_private2 = NULL;
417 rq->rq_disk = q->bar_rq.rq_disk;
418 rq->end_io = end_io;
419 q->prepare_flush_fn(q, rq);
421 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
424 static inline struct request *start_ordered(request_queue_t *q,
425 struct request *rq)
427 q->bi_size = 0;
428 q->orderr = 0;
429 q->ordered = q->next_ordered;
430 q->ordseq |= QUEUE_ORDSEQ_STARTED;
433 * Prep proxy barrier request.
435 blkdev_dequeue_request(rq);
436 q->orig_bar_rq = rq;
437 rq = &q->bar_rq;
438 rq->cmd_flags = 0;
439 rq_init(q, rq);
440 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
441 rq->cmd_flags |= REQ_RW;
442 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
443 rq->elevator_private = NULL;
444 rq->elevator_private2 = NULL;
445 init_request_from_bio(rq, q->orig_bar_rq->bio);
446 rq->end_io = bar_end_io;
449 * Queue ordered sequence. As we stack them at the head, we
450 * need to queue in reverse order. Note that we rely on that
451 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
452 * request gets inbetween ordered sequence.
454 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
455 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
456 else
457 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
459 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
461 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
462 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
463 rq = &q->pre_flush_rq;
464 } else
465 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
467 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
468 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
469 else
470 rq = NULL;
472 return rq;
475 int blk_do_ordered(request_queue_t *q, struct request **rqp)
477 struct request *rq = *rqp;
478 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
480 if (!q->ordseq) {
481 if (!is_barrier)
482 return 1;
484 if (q->next_ordered != QUEUE_ORDERED_NONE) {
485 *rqp = start_ordered(q, rq);
486 return 1;
487 } else {
489 * This can happen when the queue switches to
490 * ORDERED_NONE while this request is on it.
492 blkdev_dequeue_request(rq);
493 if (__blk_end_request(rq, -EOPNOTSUPP,
494 blk_rq_bytes(rq)))
495 BUG();
496 *rqp = NULL;
497 return 0;
502 * Ordered sequence in progress
505 /* Special requests are not subject to ordering rules. */
506 if (!blk_fs_request(rq) &&
507 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
508 return 1;
510 if (q->ordered & QUEUE_ORDERED_TAG) {
511 /* Ordered by tag. Blocking the next barrier is enough. */
512 if (is_barrier && rq != &q->bar_rq)
513 *rqp = NULL;
514 } else {
515 /* Ordered by draining. Wait for turn. */
516 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
517 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
518 *rqp = NULL;
521 return 1;
524 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
526 request_queue_t *q = bio->bi_private;
527 struct bio_vec *bvec;
528 int i;
531 * This is dry run, restore bio_sector and size. We'll finish
532 * this request again with the original bi_end_io after an
533 * error occurs or post flush is complete.
535 q->bi_size += bytes;
537 if (bio->bi_size)
538 return 1;
540 /* Rewind bvec's */
541 bio->bi_idx = 0;
542 bio_for_each_segment(bvec, bio, i) {
543 bvec->bv_len += bvec->bv_offset;
544 bvec->bv_offset = 0;
547 /* Reset bio */
548 set_bit(BIO_UPTODATE, &bio->bi_flags);
549 bio->bi_size = q->bi_size;
550 bio->bi_sector -= (q->bi_size >> 9);
551 q->bi_size = 0;
553 return 0;
556 static int ordered_bio_endio(struct request *rq, struct bio *bio,
557 unsigned int nbytes, int error)
559 request_queue_t *q = rq->q;
560 bio_end_io_t *endio;
561 void *private;
563 if (&q->bar_rq != rq)
564 return 0;
567 * Okay, this is the barrier request in progress, dry finish it.
569 if (error && !q->orderr)
570 q->orderr = error;
572 endio = bio->bi_end_io;
573 private = bio->bi_private;
574 bio->bi_end_io = flush_dry_bio_endio;
575 bio->bi_private = q;
577 bio_endio(bio, nbytes, error);
579 bio->bi_end_io = endio;
580 bio->bi_private = private;
582 return 1;
586 * blk_queue_bounce_limit - set bounce buffer limit for queue
587 * @q: the request queue for the device
588 * @dma_addr: bus address limit
590 * Description:
591 * Different hardware can have different requirements as to what pages
592 * it can do I/O directly to. A low level driver can call
593 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
594 * buffers for doing I/O to pages residing above @page.
596 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
598 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
599 int dma = 0;
601 q->bounce_gfp = GFP_NOIO;
602 #if BITS_PER_LONG == 64
603 /* Assume anything <= 4GB can be handled by IOMMU.
604 Actually some IOMMUs can handle everything, but I don't
605 know of a way to test this here. */
606 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
607 dma = 1;
608 q->bounce_pfn = max_low_pfn;
609 #else
610 if (bounce_pfn < blk_max_low_pfn)
611 dma = 1;
612 q->bounce_pfn = bounce_pfn;
613 #endif
614 if (dma) {
615 init_emergency_isa_pool();
616 q->bounce_gfp = GFP_NOIO | GFP_DMA;
617 q->bounce_pfn = bounce_pfn;
621 EXPORT_SYMBOL(blk_queue_bounce_limit);
624 * blk_queue_max_sectors - set max sectors for a request for this queue
625 * @q: the request queue for the device
626 * @max_sectors: max sectors in the usual 512b unit
628 * Description:
629 * Enables a low level driver to set an upper limit on the size of
630 * received requests.
632 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
634 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
635 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
636 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
639 if (BLK_DEF_MAX_SECTORS > max_sectors)
640 q->max_hw_sectors = q->max_sectors = max_sectors;
641 else {
642 q->max_sectors = BLK_DEF_MAX_SECTORS;
643 q->max_hw_sectors = max_sectors;
647 EXPORT_SYMBOL(blk_queue_max_sectors);
650 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
651 * @q: the request queue for the device
652 * @max_segments: max number of segments
654 * Description:
655 * Enables a low level driver to set an upper limit on the number of
656 * physical data segments in a request. This would be the largest sized
657 * scatter list the driver could handle.
659 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
661 if (!max_segments) {
662 max_segments = 1;
663 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
666 q->max_phys_segments = max_segments;
669 EXPORT_SYMBOL(blk_queue_max_phys_segments);
672 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
673 * @q: the request queue for the device
674 * @max_segments: max number of segments
676 * Description:
677 * Enables a low level driver to set an upper limit on the number of
678 * hw data segments in a request. This would be the largest number of
679 * address/length pairs the host adapter can actually give as once
680 * to the device.
682 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
684 if (!max_segments) {
685 max_segments = 1;
686 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
689 q->max_hw_segments = max_segments;
692 EXPORT_SYMBOL(blk_queue_max_hw_segments);
695 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
696 * @q: the request queue for the device
697 * @max_size: max size of segment in bytes
699 * Description:
700 * Enables a low level driver to set an upper limit on the size of a
701 * coalesced segment
703 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
705 if (max_size < PAGE_CACHE_SIZE) {
706 max_size = PAGE_CACHE_SIZE;
707 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
710 q->max_segment_size = max_size;
713 EXPORT_SYMBOL(blk_queue_max_segment_size);
716 * blk_queue_hardsect_size - set hardware sector size for the queue
717 * @q: the request queue for the device
718 * @size: the hardware sector size, in bytes
720 * Description:
721 * This should typically be set to the lowest possible sector size
722 * that the hardware can operate on (possible without reverting to
723 * even internal read-modify-write operations). Usually the default
724 * of 512 covers most hardware.
726 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
728 q->hardsect_size = size;
731 EXPORT_SYMBOL(blk_queue_hardsect_size);
734 * Returns the minimum that is _not_ zero, unless both are zero.
736 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
739 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
740 * @t: the stacking driver (top)
741 * @b: the underlying device (bottom)
743 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
745 /* zero is "infinity" */
746 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
747 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
749 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
750 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
751 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
752 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
753 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
754 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
757 EXPORT_SYMBOL(blk_queue_stack_limits);
760 * blk_queue_segment_boundary - set boundary rules for segment merging
761 * @q: the request queue for the device
762 * @mask: the memory boundary mask
764 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
766 if (mask < PAGE_CACHE_SIZE - 1) {
767 mask = PAGE_CACHE_SIZE - 1;
768 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
771 q->seg_boundary_mask = mask;
774 EXPORT_SYMBOL(blk_queue_segment_boundary);
777 * blk_queue_dma_alignment - set dma length and memory alignment
778 * @q: the request queue for the device
779 * @mask: alignment mask
781 * description:
782 * set required memory and length aligment for direct dma transactions.
783 * this is used when buiding direct io requests for the queue.
786 void blk_queue_dma_alignment(request_queue_t *q, int mask)
788 q->dma_alignment = mask;
791 EXPORT_SYMBOL(blk_queue_dma_alignment);
794 * blk_queue_update_dma_alignment - update dma length and memory alignment
795 * @q: the request queue for the device
796 * @mask: alignment mask
798 * description:
799 * update required memory and length aligment for direct dma transactions.
800 * If the requested alignment is larger than the current alignment, then
801 * the current queue alignment is updated to the new value, otherwise it
802 * is left alone. The design of this is to allow multiple objects
803 * (driver, device, transport etc) to set their respective
804 * alignments without having them interfere.
807 void blk_queue_update_dma_alignment(request_queue_t *q, int mask)
809 BUG_ON(mask > PAGE_SIZE);
811 if (mask > q->dma_alignment)
812 q->dma_alignment = mask;
815 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
818 * blk_queue_find_tag - find a request by its tag and queue
819 * @q: The request queue for the device
820 * @tag: The tag of the request
822 * Notes:
823 * Should be used when a device returns a tag and you want to match
824 * it with a request.
826 * no locks need be held.
828 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
830 return blk_map_queue_find_tag(q->queue_tags, tag);
833 EXPORT_SYMBOL(blk_queue_find_tag);
836 * __blk_free_tags - release a given set of tag maintenance info
837 * @bqt: the tag map to free
839 * Tries to free the specified @bqt@. Returns true if it was
840 * actually freed and false if there are still references using it
842 static int __blk_free_tags(struct blk_queue_tag *bqt)
844 int retval;
846 retval = atomic_dec_and_test(&bqt->refcnt);
847 if (retval) {
848 BUG_ON(bqt->busy);
850 kfree(bqt->tag_index);
851 bqt->tag_index = NULL;
853 kfree(bqt->tag_map);
854 bqt->tag_map = NULL;
856 kfree(bqt);
860 return retval;
864 * __blk_queue_free_tags - release tag maintenance info
865 * @q: the request queue for the device
867 * Notes:
868 * blk_cleanup_queue() will take care of calling this function, if tagging
869 * has been used. So there's no need to call this directly.
871 static void __blk_queue_free_tags(request_queue_t *q)
873 struct blk_queue_tag *bqt = q->queue_tags;
875 if (!bqt)
876 return;
878 __blk_free_tags(bqt);
880 q->queue_tags = NULL;
881 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
886 * blk_free_tags - release a given set of tag maintenance info
887 * @bqt: the tag map to free
889 * For externally managed @bqt@ frees the map. Callers of this
890 * function must guarantee to have released all the queues that
891 * might have been using this tag map.
893 void blk_free_tags(struct blk_queue_tag *bqt)
895 if (unlikely(!__blk_free_tags(bqt)))
896 BUG();
898 EXPORT_SYMBOL(blk_free_tags);
901 * blk_queue_free_tags - release tag maintenance info
902 * @q: the request queue for the device
904 * Notes:
905 * This is used to disabled tagged queuing to a device, yet leave
906 * queue in function.
908 void blk_queue_free_tags(request_queue_t *q)
910 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
913 EXPORT_SYMBOL(blk_queue_free_tags);
915 static int
916 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
918 struct request **tag_index;
919 unsigned long *tag_map;
920 int nr_ulongs;
922 if (q && depth > q->nr_requests * 2) {
923 depth = q->nr_requests * 2;
924 printk(KERN_ERR "%s: adjusted depth to %d\n",
925 __FUNCTION__, depth);
928 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
929 if (!tag_index)
930 goto fail;
932 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
933 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
934 if (!tag_map)
935 goto fail;
937 tags->real_max_depth = depth;
938 tags->max_depth = depth;
939 tags->tag_index = tag_index;
940 tags->tag_map = tag_map;
942 return 0;
943 fail:
944 kfree(tag_index);
945 return -ENOMEM;
948 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
949 int depth)
951 struct blk_queue_tag *tags;
953 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
954 if (!tags)
955 goto fail;
957 if (init_tag_map(q, tags, depth))
958 goto fail;
960 tags->busy = 0;
961 atomic_set(&tags->refcnt, 1);
962 return tags;
963 fail:
964 kfree(tags);
965 return NULL;
969 * blk_init_tags - initialize the tag info for an external tag map
970 * @depth: the maximum queue depth supported
971 * @tags: the tag to use
973 struct blk_queue_tag *blk_init_tags(int depth)
975 return __blk_queue_init_tags(NULL, depth);
977 EXPORT_SYMBOL(blk_init_tags);
980 * blk_queue_init_tags - initialize the queue tag info
981 * @q: the request queue for the device
982 * @depth: the maximum queue depth supported
983 * @tags: the tag to use
985 int blk_queue_init_tags(request_queue_t *q, int depth,
986 struct blk_queue_tag *tags)
988 int rc;
990 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
992 if (!tags && !q->queue_tags) {
993 tags = __blk_queue_init_tags(q, depth);
995 if (!tags)
996 goto fail;
997 } else if (q->queue_tags) {
998 if ((rc = blk_queue_resize_tags(q, depth)))
999 return rc;
1000 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
1001 return 0;
1002 } else
1003 atomic_inc(&tags->refcnt);
1006 * assign it, all done
1008 q->queue_tags = tags;
1009 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
1010 INIT_LIST_HEAD(&q->tag_busy_list);
1011 return 0;
1012 fail:
1013 kfree(tags);
1014 return -ENOMEM;
1017 EXPORT_SYMBOL(blk_queue_init_tags);
1020 * blk_queue_resize_tags - change the queueing depth
1021 * @q: the request queue for the device
1022 * @new_depth: the new max command queueing depth
1024 * Notes:
1025 * Must be called with the queue lock held.
1027 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1029 struct blk_queue_tag *bqt = q->queue_tags;
1030 struct request **tag_index;
1031 unsigned long *tag_map;
1032 int max_depth, nr_ulongs;
1034 if (!bqt)
1035 return -ENXIO;
1038 * if we already have large enough real_max_depth. just
1039 * adjust max_depth. *NOTE* as requests with tag value
1040 * between new_depth and real_max_depth can be in-flight, tag
1041 * map can not be shrunk blindly here.
1043 if (new_depth <= bqt->real_max_depth) {
1044 bqt->max_depth = new_depth;
1045 return 0;
1049 * Currently cannot replace a shared tag map with a new
1050 * one, so error out if this is the case
1052 if (atomic_read(&bqt->refcnt) != 1)
1053 return -EBUSY;
1056 * save the old state info, so we can copy it back
1058 tag_index = bqt->tag_index;
1059 tag_map = bqt->tag_map;
1060 max_depth = bqt->real_max_depth;
1062 if (init_tag_map(q, bqt, new_depth))
1063 return -ENOMEM;
1065 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1066 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1067 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1069 kfree(tag_index);
1070 kfree(tag_map);
1071 return 0;
1074 EXPORT_SYMBOL(blk_queue_resize_tags);
1077 * blk_queue_end_tag - end tag operations for a request
1078 * @q: the request queue for the device
1079 * @rq: the request that has completed
1081 * Description:
1082 * Typically called when end_that_request_first() returns 0, meaning
1083 * all transfers have been done for a request. It's important to call
1084 * this function before end_that_request_last(), as that will put the
1085 * request back on the free list thus corrupting the internal tag list.
1087 * Notes:
1088 * queue lock must be held.
1090 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1092 struct blk_queue_tag *bqt = q->queue_tags;
1093 int tag = rq->tag;
1095 BUG_ON(tag == -1);
1097 if (unlikely(tag >= bqt->real_max_depth))
1099 * This can happen after tag depth has been reduced.
1100 * FIXME: how about a warning or info message here?
1102 return;
1104 list_del_init(&rq->queuelist);
1105 rq->cmd_flags &= ~REQ_QUEUED;
1106 rq->tag = -1;
1108 if (unlikely(bqt->tag_index[tag] == NULL))
1109 printk(KERN_ERR "%s: tag %d is missing\n",
1110 __FUNCTION__, tag);
1112 bqt->tag_index[tag] = NULL;
1114 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1115 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1116 __FUNCTION__, tag);
1117 return;
1120 bqt->busy--;
1123 EXPORT_SYMBOL(blk_queue_end_tag);
1126 * blk_queue_start_tag - find a free tag and assign it
1127 * @q: the request queue for the device
1128 * @rq: the block request that needs tagging
1130 * Description:
1131 * This can either be used as a stand-alone helper, or possibly be
1132 * assigned as the queue &prep_rq_fn (in which case &struct request
1133 * automagically gets a tag assigned). Note that this function
1134 * assumes that any type of request can be queued! if this is not
1135 * true for your device, you must check the request type before
1136 * calling this function. The request will also be removed from
1137 * the request queue, so it's the drivers responsibility to readd
1138 * it if it should need to be restarted for some reason.
1140 * Notes:
1141 * queue lock must be held.
1143 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1145 struct blk_queue_tag *bqt = q->queue_tags;
1146 int tag;
1148 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1149 printk(KERN_ERR
1150 "%s: request %p for device [%s] already tagged %d",
1151 __FUNCTION__, rq,
1152 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1153 BUG();
1157 * Protect against shared tag maps, as we may not have exclusive
1158 * access to the tag map.
1160 do {
1161 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1162 if (tag >= bqt->max_depth)
1163 return 1;
1165 } while (test_and_set_bit(tag, bqt->tag_map));
1167 rq->cmd_flags |= REQ_QUEUED;
1168 rq->tag = tag;
1169 bqt->tag_index[tag] = rq;
1170 blkdev_dequeue_request(rq);
1171 list_add(&rq->queuelist, &q->tag_busy_list);
1172 bqt->busy++;
1173 return 0;
1176 EXPORT_SYMBOL(blk_queue_start_tag);
1179 * blk_queue_invalidate_tags - invalidate all pending tags
1180 * @q: the request queue for the device
1182 * Description:
1183 * Hardware conditions may dictate a need to stop all pending requests.
1184 * In this case, we will safely clear the block side of the tag queue and
1185 * readd all requests to the request queue in the right order.
1187 * Notes:
1188 * queue lock must be held.
1190 void blk_queue_invalidate_tags(request_queue_t *q)
1192 struct list_head *tmp, *n;
1193 struct request *rq;
1195 list_for_each_safe(tmp, n, &q->tag_busy_list) {
1196 rq = list_entry_rq(tmp);
1198 if (rq->tag == -1) {
1199 printk(KERN_ERR
1200 "%s: bad tag found on list\n", __FUNCTION__);
1201 list_del_init(&rq->queuelist);
1202 rq->cmd_flags &= ~REQ_QUEUED;
1203 } else
1204 blk_queue_end_tag(q, rq);
1206 rq->cmd_flags &= ~REQ_STARTED;
1207 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1211 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1213 void blk_dump_rq_flags(struct request *rq, char *msg)
1215 int bit;
1217 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1218 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1219 rq->cmd_flags);
1221 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1222 rq->nr_sectors,
1223 rq->current_nr_sectors);
1224 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1226 if (blk_pc_request(rq)) {
1227 printk("cdb: ");
1228 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1229 printk("%02x ", rq->cmd[bit]);
1230 printk("\n");
1234 EXPORT_SYMBOL(blk_dump_rq_flags);
1236 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1238 struct bio_vec *bv, *bvprv = NULL;
1239 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1240 int high, highprv = 1;
1242 if (unlikely(!bio->bi_io_vec))
1243 return;
1245 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1246 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1247 bio_for_each_segment(bv, bio, i) {
1249 * the trick here is making sure that a high page is never
1250 * considered part of another segment, since that might
1251 * change with the bounce page.
1253 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1254 if (high || highprv)
1255 goto new_hw_segment;
1256 if (cluster) {
1257 if (seg_size + bv->bv_len > q->max_segment_size)
1258 goto new_segment;
1259 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1260 goto new_segment;
1261 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1262 goto new_segment;
1263 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1264 goto new_hw_segment;
1266 seg_size += bv->bv_len;
1267 hw_seg_size += bv->bv_len;
1268 bvprv = bv;
1269 continue;
1271 new_segment:
1272 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1273 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1274 hw_seg_size += bv->bv_len;
1275 } else {
1276 new_hw_segment:
1277 if (hw_seg_size > bio->bi_hw_front_size)
1278 bio->bi_hw_front_size = hw_seg_size;
1279 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1280 nr_hw_segs++;
1283 nr_phys_segs++;
1284 bvprv = bv;
1285 seg_size = bv->bv_len;
1286 highprv = high;
1288 if (hw_seg_size > bio->bi_hw_back_size)
1289 bio->bi_hw_back_size = hw_seg_size;
1290 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1291 bio->bi_hw_front_size = hw_seg_size;
1292 bio->bi_phys_segments = nr_phys_segs;
1293 bio->bi_hw_segments = nr_hw_segs;
1294 bio->bi_flags |= (1 << BIO_SEG_VALID);
1296 EXPORT_SYMBOL(blk_recount_segments);
1298 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1299 struct bio *nxt)
1301 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1302 return 0;
1304 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1305 return 0;
1306 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1307 return 0;
1310 * bio and nxt are contigous in memory, check if the queue allows
1311 * these two to be merged into one
1313 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1314 return 1;
1316 return 0;
1319 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1320 struct bio *nxt)
1322 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1323 blk_recount_segments(q, bio);
1324 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1325 blk_recount_segments(q, nxt);
1326 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1327 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1328 return 0;
1329 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1330 return 0;
1332 return 1;
1336 * map a request to scatterlist, return number of sg entries setup. Caller
1337 * must make sure sg can hold rq->nr_phys_segments entries
1339 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1341 struct bio_vec *bvec, *bvprv;
1342 struct bio *bio;
1343 int nsegs, i, cluster;
1345 nsegs = 0;
1346 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1349 * for each bio in rq
1351 bvprv = NULL;
1352 rq_for_each_bio(bio, rq) {
1354 * for each segment in bio
1356 bio_for_each_segment(bvec, bio, i) {
1357 int nbytes = bvec->bv_len;
1359 if (bvprv && cluster) {
1360 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1361 goto new_segment;
1363 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1364 goto new_segment;
1365 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1366 goto new_segment;
1368 sg[nsegs - 1].length += nbytes;
1369 } else {
1370 new_segment:
1371 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1372 sg[nsegs].page = bvec->bv_page;
1373 sg[nsegs].length = nbytes;
1374 sg[nsegs].offset = bvec->bv_offset;
1376 nsegs++;
1378 bvprv = bvec;
1379 } /* segments in bio */
1380 } /* bios in rq */
1382 return nsegs;
1385 EXPORT_SYMBOL(blk_rq_map_sg);
1388 * the standard queue merge functions, can be overridden with device
1389 * specific ones if so desired
1392 static inline int ll_new_mergeable(request_queue_t *q,
1393 struct request *req,
1394 struct bio *bio)
1396 int nr_phys_segs = bio_phys_segments(q, bio);
1398 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1399 req->cmd_flags |= REQ_NOMERGE;
1400 if (req == q->last_merge)
1401 q->last_merge = NULL;
1402 return 0;
1406 * A hw segment is just getting larger, bump just the phys
1407 * counter.
1409 req->nr_phys_segments += nr_phys_segs;
1410 return 1;
1413 static inline int ll_new_hw_segment(request_queue_t *q,
1414 struct request *req,
1415 struct bio *bio)
1417 int nr_hw_segs = bio_hw_segments(q, bio);
1418 int nr_phys_segs = bio_phys_segments(q, bio);
1420 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1421 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1422 req->cmd_flags |= REQ_NOMERGE;
1423 if (req == q->last_merge)
1424 q->last_merge = NULL;
1425 return 0;
1429 * This will form the start of a new hw segment. Bump both
1430 * counters.
1432 req->nr_hw_segments += nr_hw_segs;
1433 req->nr_phys_segments += nr_phys_segs;
1434 return 1;
1437 int ll_back_merge_fn(request_queue_t *q, struct request *req, struct bio *bio)
1439 unsigned short max_sectors;
1440 int len;
1442 if (unlikely(blk_pc_request(req)))
1443 max_sectors = q->max_hw_sectors;
1444 else
1445 max_sectors = q->max_sectors;
1447 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1448 req->cmd_flags |= REQ_NOMERGE;
1449 if (req == q->last_merge)
1450 q->last_merge = NULL;
1451 return 0;
1453 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1454 blk_recount_segments(q, req->biotail);
1455 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1456 blk_recount_segments(q, bio);
1457 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1458 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1459 !BIOVEC_VIRT_OVERSIZE(len)) {
1460 int mergeable = ll_new_mergeable(q, req, bio);
1462 if (mergeable) {
1463 if (req->nr_hw_segments == 1)
1464 req->bio->bi_hw_front_size = len;
1465 if (bio->bi_hw_segments == 1)
1466 bio->bi_hw_back_size = len;
1468 return mergeable;
1471 return ll_new_hw_segment(q, req, bio);
1473 EXPORT_SYMBOL(ll_back_merge_fn);
1475 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1476 struct bio *bio)
1478 unsigned short max_sectors;
1479 int len;
1481 if (unlikely(blk_pc_request(req)))
1482 max_sectors = q->max_hw_sectors;
1483 else
1484 max_sectors = q->max_sectors;
1487 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1488 req->cmd_flags |= REQ_NOMERGE;
1489 if (req == q->last_merge)
1490 q->last_merge = NULL;
1491 return 0;
1493 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1494 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1495 blk_recount_segments(q, bio);
1496 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1497 blk_recount_segments(q, req->bio);
1498 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1499 !BIOVEC_VIRT_OVERSIZE(len)) {
1500 int mergeable = ll_new_mergeable(q, req, bio);
1502 if (mergeable) {
1503 if (bio->bi_hw_segments == 1)
1504 bio->bi_hw_front_size = len;
1505 if (req->nr_hw_segments == 1)
1506 req->biotail->bi_hw_back_size = len;
1508 return mergeable;
1511 return ll_new_hw_segment(q, req, bio);
1514 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1515 struct request *next)
1517 int total_phys_segments;
1518 int total_hw_segments;
1521 * First check if the either of the requests are re-queued
1522 * requests. Can't merge them if they are.
1524 if (req->special || next->special)
1525 return 0;
1528 * Will it become too large?
1530 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1531 return 0;
1533 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1534 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1535 total_phys_segments--;
1537 if (total_phys_segments > q->max_phys_segments)
1538 return 0;
1540 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1541 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1542 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1544 * propagate the combined length to the end of the requests
1546 if (req->nr_hw_segments == 1)
1547 req->bio->bi_hw_front_size = len;
1548 if (next->nr_hw_segments == 1)
1549 next->biotail->bi_hw_back_size = len;
1550 total_hw_segments--;
1553 if (total_hw_segments > q->max_hw_segments)
1554 return 0;
1556 /* Merge is OK... */
1557 req->nr_phys_segments = total_phys_segments;
1558 req->nr_hw_segments = total_hw_segments;
1559 return 1;
1563 * "plug" the device if there are no outstanding requests: this will
1564 * force the transfer to start only after we have put all the requests
1565 * on the list.
1567 * This is called with interrupts off and no requests on the queue and
1568 * with the queue lock held.
1570 void blk_plug_device(request_queue_t *q)
1572 WARN_ON(!irqs_disabled());
1575 * don't plug a stopped queue, it must be paired with blk_start_queue()
1576 * which will restart the queueing
1578 if (blk_queue_stopped(q))
1579 return;
1581 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1582 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1583 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1587 EXPORT_SYMBOL(blk_plug_device);
1590 * remove the queue from the plugged list, if present. called with
1591 * queue lock held and interrupts disabled.
1593 int blk_remove_plug(request_queue_t *q)
1595 WARN_ON(!irqs_disabled());
1597 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1598 return 0;
1600 del_timer(&q->unplug_timer);
1601 return 1;
1604 EXPORT_SYMBOL(blk_remove_plug);
1607 * remove the plug and let it rip..
1609 void __generic_unplug_device(request_queue_t *q)
1611 if (unlikely(blk_queue_stopped(q)))
1612 return;
1614 if (!blk_remove_plug(q))
1615 return;
1617 q->request_fn(q);
1619 EXPORT_SYMBOL(__generic_unplug_device);
1622 * generic_unplug_device - fire a request queue
1623 * @q: The &request_queue_t in question
1625 * Description:
1626 * Linux uses plugging to build bigger requests queues before letting
1627 * the device have at them. If a queue is plugged, the I/O scheduler
1628 * is still adding and merging requests on the queue. Once the queue
1629 * gets unplugged, the request_fn defined for the queue is invoked and
1630 * transfers started.
1632 void generic_unplug_device(request_queue_t *q)
1634 spin_lock_irq(q->queue_lock);
1635 __generic_unplug_device(q);
1636 spin_unlock_irq(q->queue_lock);
1638 EXPORT_SYMBOL(generic_unplug_device);
1640 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1641 struct page *page)
1643 request_queue_t *q = bdi->unplug_io_data;
1646 * devices don't necessarily have an ->unplug_fn defined
1648 if (q->unplug_fn) {
1649 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1650 q->rq.count[READ] + q->rq.count[WRITE]);
1652 q->unplug_fn(q);
1656 static void blk_unplug_work(struct work_struct *work)
1658 request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1660 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1661 q->rq.count[READ] + q->rq.count[WRITE]);
1663 q->unplug_fn(q);
1666 static void blk_unplug_timeout(unsigned long data)
1668 request_queue_t *q = (request_queue_t *)data;
1670 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1671 q->rq.count[READ] + q->rq.count[WRITE]);
1673 kblockd_schedule_work(&q->unplug_work);
1677 * blk_start_queue - restart a previously stopped queue
1678 * @q: The &request_queue_t in question
1680 * Description:
1681 * blk_start_queue() will clear the stop flag on the queue, and call
1682 * the request_fn for the queue if it was in a stopped state when
1683 * entered. Also see blk_stop_queue(). Queue lock must be held.
1685 void blk_start_queue(request_queue_t *q)
1687 WARN_ON(!irqs_disabled());
1689 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1692 * one level of recursion is ok and is much faster than kicking
1693 * the unplug handling
1695 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1696 q->request_fn(q);
1697 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1698 } else {
1699 blk_plug_device(q);
1700 kblockd_schedule_work(&q->unplug_work);
1704 EXPORT_SYMBOL(blk_start_queue);
1707 * blk_stop_queue - stop a queue
1708 * @q: The &request_queue_t in question
1710 * Description:
1711 * The Linux block layer assumes that a block driver will consume all
1712 * entries on the request queue when the request_fn strategy is called.
1713 * Often this will not happen, because of hardware limitations (queue
1714 * depth settings). If a device driver gets a 'queue full' response,
1715 * or if it simply chooses not to queue more I/O at one point, it can
1716 * call this function to prevent the request_fn from being called until
1717 * the driver has signalled it's ready to go again. This happens by calling
1718 * blk_start_queue() to restart queue operations. Queue lock must be held.
1720 void blk_stop_queue(request_queue_t *q)
1722 blk_remove_plug(q);
1723 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1725 EXPORT_SYMBOL(blk_stop_queue);
1728 * blk_sync_queue - cancel any pending callbacks on a queue
1729 * @q: the queue
1731 * Description:
1732 * The block layer may perform asynchronous callback activity
1733 * on a queue, such as calling the unplug function after a timeout.
1734 * A block device may call blk_sync_queue to ensure that any
1735 * such activity is cancelled, thus allowing it to release resources
1736 * that the callbacks might use. The caller must already have made sure
1737 * that its ->make_request_fn will not re-add plugging prior to calling
1738 * this function.
1741 void blk_sync_queue(struct request_queue *q)
1743 del_timer_sync(&q->unplug_timer);
1745 EXPORT_SYMBOL(blk_sync_queue);
1748 * blk_run_queue - run a single device queue
1749 * @q: The queue to run
1751 void blk_run_queue(struct request_queue *q)
1753 unsigned long flags;
1755 spin_lock_irqsave(q->queue_lock, flags);
1756 blk_remove_plug(q);
1759 * Only recurse once to avoid overrunning the stack, let the unplug
1760 * handling reinvoke the handler shortly if we already got there.
1762 if (!elv_queue_empty(q)) {
1763 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1764 q->request_fn(q);
1765 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1766 } else {
1767 blk_plug_device(q);
1768 kblockd_schedule_work(&q->unplug_work);
1772 spin_unlock_irqrestore(q->queue_lock, flags);
1774 EXPORT_SYMBOL(blk_run_queue);
1777 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1778 * @kobj: the kobj belonging of the request queue to be released
1780 * Description:
1781 * blk_cleanup_queue is the pair to blk_init_queue() or
1782 * blk_queue_make_request(). It should be called when a request queue is
1783 * being released; typically when a block device is being de-registered.
1784 * Currently, its primary task it to free all the &struct request
1785 * structures that were allocated to the queue and the queue itself.
1787 * Caveat:
1788 * Hopefully the low level driver will have finished any
1789 * outstanding requests first...
1791 static void blk_release_queue(struct kobject *kobj)
1793 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1794 struct request_list *rl = &q->rq;
1796 blk_sync_queue(q);
1798 if (rl->rq_pool)
1799 mempool_destroy(rl->rq_pool);
1801 if (q->queue_tags)
1802 __blk_queue_free_tags(q);
1804 blk_trace_shutdown(q);
1806 kmem_cache_free(requestq_cachep, q);
1809 void blk_put_queue(request_queue_t *q)
1811 kobject_put(&q->kobj);
1813 EXPORT_SYMBOL(blk_put_queue);
1815 void blk_cleanup_queue(request_queue_t * q)
1817 mutex_lock(&q->sysfs_lock);
1818 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1819 mutex_unlock(&q->sysfs_lock);
1821 if (q->elevator)
1822 elevator_exit(q->elevator);
1824 blk_put_queue(q);
1827 EXPORT_SYMBOL(blk_cleanup_queue);
1829 static int blk_init_free_list(request_queue_t *q)
1831 struct request_list *rl = &q->rq;
1833 rl->count[READ] = rl->count[WRITE] = 0;
1834 rl->starved[READ] = rl->starved[WRITE] = 0;
1835 rl->elvpriv = 0;
1836 init_waitqueue_head(&rl->wait[READ]);
1837 init_waitqueue_head(&rl->wait[WRITE]);
1839 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1840 mempool_free_slab, request_cachep, q->node);
1842 if (!rl->rq_pool)
1843 return -ENOMEM;
1845 return 0;
1848 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1850 return blk_alloc_queue_node(gfp_mask, -1);
1852 EXPORT_SYMBOL(blk_alloc_queue);
1854 static struct kobj_type queue_ktype;
1856 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1858 request_queue_t *q;
1860 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1861 if (!q)
1862 return NULL;
1864 memset(q, 0, sizeof(*q));
1865 init_timer(&q->unplug_timer);
1867 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1868 q->kobj.ktype = &queue_ktype;
1869 kobject_init(&q->kobj);
1871 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1872 q->backing_dev_info.unplug_io_data = q;
1874 mutex_init(&q->sysfs_lock);
1876 return q;
1878 EXPORT_SYMBOL(blk_alloc_queue_node);
1881 * blk_init_queue - prepare a request queue for use with a block device
1882 * @rfn: The function to be called to process requests that have been
1883 * placed on the queue.
1884 * @lock: Request queue spin lock
1886 * Description:
1887 * If a block device wishes to use the standard request handling procedures,
1888 * which sorts requests and coalesces adjacent requests, then it must
1889 * call blk_init_queue(). The function @rfn will be called when there
1890 * are requests on the queue that need to be processed. If the device
1891 * supports plugging, then @rfn may not be called immediately when requests
1892 * are available on the queue, but may be called at some time later instead.
1893 * Plugged queues are generally unplugged when a buffer belonging to one
1894 * of the requests on the queue is needed, or due to memory pressure.
1896 * @rfn is not required, or even expected, to remove all requests off the
1897 * queue, but only as many as it can handle at a time. If it does leave
1898 * requests on the queue, it is responsible for arranging that the requests
1899 * get dealt with eventually.
1901 * The queue spin lock must be held while manipulating the requests on the
1902 * request queue; this lock will be taken also from interrupt context, so irq
1903 * disabling is needed for it.
1905 * Function returns a pointer to the initialized request queue, or NULL if
1906 * it didn't succeed.
1908 * Note:
1909 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1910 * when the block device is deactivated (such as at module unload).
1913 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1915 return blk_init_queue_node(rfn, lock, -1);
1917 EXPORT_SYMBOL(blk_init_queue);
1919 request_queue_t *
1920 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1922 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1924 if (!q)
1925 return NULL;
1927 q->node = node_id;
1928 if (blk_init_free_list(q)) {
1929 kmem_cache_free(requestq_cachep, q);
1930 return NULL;
1934 * if caller didn't supply a lock, they get per-queue locking with
1935 * our embedded lock
1937 if (!lock) {
1938 spin_lock_init(&q->__queue_lock);
1939 lock = &q->__queue_lock;
1942 q->request_fn = rfn;
1943 q->prep_rq_fn = NULL;
1944 q->unplug_fn = generic_unplug_device;
1945 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1946 q->queue_lock = lock;
1948 blk_queue_segment_boundary(q, 0xffffffff);
1950 blk_queue_make_request(q, __make_request);
1951 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1953 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1954 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1956 q->sg_reserved_size = INT_MAX;
1959 * all done
1961 if (!elevator_init(q, NULL)) {
1962 blk_queue_congestion_threshold(q);
1963 return q;
1966 blk_put_queue(q);
1967 return NULL;
1969 EXPORT_SYMBOL(blk_init_queue_node);
1971 int blk_get_queue(request_queue_t *q)
1973 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1974 kobject_get(&q->kobj);
1975 return 0;
1978 return 1;
1981 EXPORT_SYMBOL(blk_get_queue);
1983 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1985 if (rq->cmd_flags & REQ_ELVPRIV)
1986 elv_put_request(q, rq);
1987 mempool_free(rq, q->rq.rq_pool);
1990 static struct request *
1991 blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1993 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1995 if (!rq)
1996 return NULL;
1999 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2000 * see bio.h and blkdev.h
2002 rq->cmd_flags = rw | REQ_ALLOCED;
2004 if (priv) {
2005 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2006 mempool_free(rq, q->rq.rq_pool);
2007 return NULL;
2009 rq->cmd_flags |= REQ_ELVPRIV;
2012 return rq;
2016 * ioc_batching returns true if the ioc is a valid batching request and
2017 * should be given priority access to a request.
2019 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2021 if (!ioc)
2022 return 0;
2025 * Make sure the process is able to allocate at least 1 request
2026 * even if the batch times out, otherwise we could theoretically
2027 * lose wakeups.
2029 return ioc->nr_batch_requests == q->nr_batching ||
2030 (ioc->nr_batch_requests > 0
2031 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2035 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2036 * will cause the process to be a "batcher" on all queues in the system. This
2037 * is the behaviour we want though - once it gets a wakeup it should be given
2038 * a nice run.
2040 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2042 if (!ioc || ioc_batching(q, ioc))
2043 return;
2045 ioc->nr_batch_requests = q->nr_batching;
2046 ioc->last_waited = jiffies;
2049 static void __freed_request(request_queue_t *q, int rw)
2051 struct request_list *rl = &q->rq;
2053 if (rl->count[rw] < queue_congestion_off_threshold(q))
2054 blk_clear_queue_congested(q, rw);
2056 if (rl->count[rw] + 1 <= q->nr_requests) {
2057 if (waitqueue_active(&rl->wait[rw]))
2058 wake_up(&rl->wait[rw]);
2060 blk_clear_queue_full(q, rw);
2065 * A request has just been released. Account for it, update the full and
2066 * congestion status, wake up any waiters. Called under q->queue_lock.
2068 static void freed_request(request_queue_t *q, int rw, int priv)
2070 struct request_list *rl = &q->rq;
2072 rl->count[rw]--;
2073 if (priv)
2074 rl->elvpriv--;
2076 __freed_request(q, rw);
2078 if (unlikely(rl->starved[rw ^ 1]))
2079 __freed_request(q, rw ^ 1);
2082 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2084 * Get a free request, queue_lock must be held.
2085 * Returns NULL on failure, with queue_lock held.
2086 * Returns !NULL on success, with queue_lock *not held*.
2088 static struct request *get_request(request_queue_t *q, int rw_flags,
2089 struct bio *bio, gfp_t gfp_mask)
2091 struct request *rq = NULL;
2092 struct request_list *rl = &q->rq;
2093 struct io_context *ioc = NULL;
2094 const int rw = rw_flags & 0x01;
2095 int may_queue, priv;
2097 may_queue = elv_may_queue(q, rw_flags);
2098 if (may_queue == ELV_MQUEUE_NO)
2099 goto rq_starved;
2101 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2102 if (rl->count[rw]+1 >= q->nr_requests) {
2103 ioc = current_io_context(GFP_ATOMIC, q->node);
2105 * The queue will fill after this allocation, so set
2106 * it as full, and mark this process as "batching".
2107 * This process will be allowed to complete a batch of
2108 * requests, others will be blocked.
2110 if (!blk_queue_full(q, rw)) {
2111 ioc_set_batching(q, ioc);
2112 blk_set_queue_full(q, rw);
2113 } else {
2114 if (may_queue != ELV_MQUEUE_MUST
2115 && !ioc_batching(q, ioc)) {
2117 * The queue is full and the allocating
2118 * process is not a "batcher", and not
2119 * exempted by the IO scheduler
2121 goto out;
2125 blk_set_queue_congested(q, rw);
2129 * Only allow batching queuers to allocate up to 50% over the defined
2130 * limit of requests, otherwise we could have thousands of requests
2131 * allocated with any setting of ->nr_requests
2133 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2134 goto out;
2136 rl->count[rw]++;
2137 rl->starved[rw] = 0;
2139 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2140 if (priv)
2141 rl->elvpriv++;
2143 spin_unlock_irq(q->queue_lock);
2145 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2146 if (unlikely(!rq)) {
2148 * Allocation failed presumably due to memory. Undo anything
2149 * we might have messed up.
2151 * Allocating task should really be put onto the front of the
2152 * wait queue, but this is pretty rare.
2154 spin_lock_irq(q->queue_lock);
2155 freed_request(q, rw, priv);
2158 * in the very unlikely event that allocation failed and no
2159 * requests for this direction was pending, mark us starved
2160 * so that freeing of a request in the other direction will
2161 * notice us. another possible fix would be to split the
2162 * rq mempool into READ and WRITE
2164 rq_starved:
2165 if (unlikely(rl->count[rw] == 0))
2166 rl->starved[rw] = 1;
2168 goto out;
2172 * ioc may be NULL here, and ioc_batching will be false. That's
2173 * OK, if the queue is under the request limit then requests need
2174 * not count toward the nr_batch_requests limit. There will always
2175 * be some limit enforced by BLK_BATCH_TIME.
2177 if (ioc_batching(q, ioc))
2178 ioc->nr_batch_requests--;
2180 rq_init(q, rq);
2182 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2183 out:
2184 return rq;
2188 * No available requests for this queue, unplug the device and wait for some
2189 * requests to become available.
2191 * Called with q->queue_lock held, and returns with it unlocked.
2193 static struct request *get_request_wait(request_queue_t *q, int rw_flags,
2194 struct bio *bio)
2196 const int rw = rw_flags & 0x01;
2197 struct request *rq;
2199 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2200 while (!rq) {
2201 DEFINE_WAIT(wait);
2202 struct request_list *rl = &q->rq;
2204 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2205 TASK_UNINTERRUPTIBLE);
2207 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2209 if (!rq) {
2210 struct io_context *ioc;
2212 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2214 __generic_unplug_device(q);
2215 spin_unlock_irq(q->queue_lock);
2216 io_schedule();
2219 * After sleeping, we become a "batching" process and
2220 * will be able to allocate at least one request, and
2221 * up to a big batch of them for a small period time.
2222 * See ioc_batching, ioc_set_batching
2224 ioc = current_io_context(GFP_NOIO, q->node);
2225 ioc_set_batching(q, ioc);
2227 spin_lock_irq(q->queue_lock);
2229 finish_wait(&rl->wait[rw], &wait);
2232 return rq;
2235 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2237 struct request *rq;
2239 BUG_ON(rw != READ && rw != WRITE);
2241 spin_lock_irq(q->queue_lock);
2242 if (gfp_mask & __GFP_WAIT) {
2243 rq = get_request_wait(q, rw, NULL);
2244 } else {
2245 rq = get_request(q, rw, NULL, gfp_mask);
2246 if (!rq)
2247 spin_unlock_irq(q->queue_lock);
2249 /* q->queue_lock is unlocked at this point */
2251 return rq;
2253 EXPORT_SYMBOL(blk_get_request);
2256 * blk_start_queueing - initiate dispatch of requests to device
2257 * @q: request queue to kick into gear
2259 * This is basically a helper to remove the need to know whether a queue
2260 * is plugged or not if someone just wants to initiate dispatch of requests
2261 * for this queue.
2263 * The queue lock must be held with interrupts disabled.
2265 void blk_start_queueing(request_queue_t *q)
2267 if (!blk_queue_plugged(q))
2268 q->request_fn(q);
2269 else
2270 __generic_unplug_device(q);
2272 EXPORT_SYMBOL(blk_start_queueing);
2275 * blk_requeue_request - put a request back on queue
2276 * @q: request queue where request should be inserted
2277 * @rq: request to be inserted
2279 * Description:
2280 * Drivers often keep queueing requests until the hardware cannot accept
2281 * more, when that condition happens we need to put the request back
2282 * on the queue. Must be called with queue lock held.
2284 void blk_requeue_request(request_queue_t *q, struct request *rq)
2286 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2288 if (blk_rq_tagged(rq))
2289 blk_queue_end_tag(q, rq);
2291 elv_requeue_request(q, rq);
2294 EXPORT_SYMBOL(blk_requeue_request);
2297 * blk_insert_request - insert a special request in to a request queue
2298 * @q: request queue where request should be inserted
2299 * @rq: request to be inserted
2300 * @at_head: insert request at head or tail of queue
2301 * @data: private data
2303 * Description:
2304 * Many block devices need to execute commands asynchronously, so they don't
2305 * block the whole kernel from preemption during request execution. This is
2306 * accomplished normally by inserting aritficial requests tagged as
2307 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2308 * scheduled for actual execution by the request queue.
2310 * We have the option of inserting the head or the tail of the queue.
2311 * Typically we use the tail for new ioctls and so forth. We use the head
2312 * of the queue for things like a QUEUE_FULL message from a device, or a
2313 * host that is unable to accept a particular command.
2315 void blk_insert_request(request_queue_t *q, struct request *rq,
2316 int at_head, void *data)
2318 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2319 unsigned long flags;
2322 * tell I/O scheduler that this isn't a regular read/write (ie it
2323 * must not attempt merges on this) and that it acts as a soft
2324 * barrier
2326 rq->cmd_type = REQ_TYPE_SPECIAL;
2327 rq->cmd_flags |= REQ_SOFTBARRIER;
2329 rq->special = data;
2331 spin_lock_irqsave(q->queue_lock, flags);
2334 * If command is tagged, release the tag
2336 if (blk_rq_tagged(rq))
2337 blk_queue_end_tag(q, rq);
2339 drive_stat_acct(rq, rq->nr_sectors, 1);
2340 __elv_add_request(q, rq, where, 0);
2341 blk_start_queueing(q);
2342 spin_unlock_irqrestore(q->queue_lock, flags);
2345 EXPORT_SYMBOL(blk_insert_request);
2347 static int __blk_rq_unmap_user(struct bio *bio)
2349 int ret = 0;
2351 if (bio) {
2352 if (bio_flagged(bio, BIO_USER_MAPPED))
2353 bio_unmap_user(bio);
2354 else
2355 ret = bio_uncopy_user(bio);
2358 return ret;
2361 static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
2362 void __user *ubuf, unsigned int len)
2364 unsigned long uaddr;
2365 struct bio *bio, *orig_bio;
2366 int reading, ret;
2368 reading = rq_data_dir(rq) == READ;
2371 * if alignment requirement is satisfied, map in user pages for
2372 * direct dma. else, set up kernel bounce buffers
2374 uaddr = (unsigned long) ubuf;
2375 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2376 bio = bio_map_user(q, NULL, uaddr, len, reading);
2377 else
2378 bio = bio_copy_user(q, uaddr, len, reading);
2380 if (IS_ERR(bio))
2381 return PTR_ERR(bio);
2383 orig_bio = bio;
2384 blk_queue_bounce(q, &bio);
2387 * We link the bounce buffer in and could have to traverse it
2388 * later so we have to get a ref to prevent it from being freed
2390 bio_get(bio);
2392 if (!rq->bio)
2393 blk_rq_bio_prep(q, rq, bio);
2394 else if (!ll_back_merge_fn(q, rq, bio)) {
2395 ret = -EINVAL;
2396 goto unmap_bio;
2397 } else {
2398 rq->biotail->bi_next = bio;
2399 rq->biotail = bio;
2401 rq->data_len += bio->bi_size;
2404 return bio->bi_size;
2406 unmap_bio:
2407 /* if it was boucned we must call the end io function */
2408 bio_endio(bio, bio->bi_size, 0);
2409 __blk_rq_unmap_user(orig_bio);
2410 bio_put(bio);
2411 return ret;
2415 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2416 * @q: request queue where request should be inserted
2417 * @rq: request structure to fill
2418 * @ubuf: the user buffer
2419 * @len: length of user data
2421 * Description:
2422 * Data will be mapped directly for zero copy io, if possible. Otherwise
2423 * a kernel bounce buffer is used.
2425 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2426 * still in process context.
2428 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2429 * before being submitted to the device, as pages mapped may be out of
2430 * reach. It's the callers responsibility to make sure this happens. The
2431 * original bio must be passed back in to blk_rq_unmap_user() for proper
2432 * unmapping.
2434 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2435 unsigned long len)
2437 unsigned long bytes_read = 0;
2438 struct bio *bio = NULL;
2439 int ret;
2441 if (len > (q->max_hw_sectors << 9))
2442 return -EINVAL;
2443 if (!len || !ubuf)
2444 return -EINVAL;
2446 while (bytes_read != len) {
2447 unsigned long map_len, end, start;
2449 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2450 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2451 >> PAGE_SHIFT;
2452 start = (unsigned long)ubuf >> PAGE_SHIFT;
2455 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2456 * pages. If this happens we just lower the requested
2457 * mapping len by a page so that we can fit
2459 if (end - start > BIO_MAX_PAGES)
2460 map_len -= PAGE_SIZE;
2462 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2463 if (ret < 0)
2464 goto unmap_rq;
2465 if (!bio)
2466 bio = rq->bio;
2467 bytes_read += ret;
2468 ubuf += ret;
2471 rq->buffer = rq->data = NULL;
2472 return 0;
2473 unmap_rq:
2474 blk_rq_unmap_user(bio);
2475 return ret;
2478 EXPORT_SYMBOL(blk_rq_map_user);
2481 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2482 * @q: request queue where request should be inserted
2483 * @rq: request to map data to
2484 * @iov: pointer to the iovec
2485 * @iov_count: number of elements in the iovec
2486 * @len: I/O byte count
2488 * Description:
2489 * Data will be mapped directly for zero copy io, if possible. Otherwise
2490 * a kernel bounce buffer is used.
2492 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2493 * still in process context.
2495 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2496 * before being submitted to the device, as pages mapped may be out of
2497 * reach. It's the callers responsibility to make sure this happens. The
2498 * original bio must be passed back in to blk_rq_unmap_user() for proper
2499 * unmapping.
2501 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2502 struct sg_iovec *iov, int iov_count, unsigned int len)
2504 struct bio *bio;
2506 if (!iov || iov_count <= 0)
2507 return -EINVAL;
2509 /* we don't allow misaligned data like bio_map_user() does. If the
2510 * user is using sg, they're expected to know the alignment constraints
2511 * and respect them accordingly */
2512 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2513 if (IS_ERR(bio))
2514 return PTR_ERR(bio);
2516 if (bio->bi_size != len) {
2517 bio_endio(bio, bio->bi_size, 0);
2518 bio_unmap_user(bio);
2519 return -EINVAL;
2522 bio_get(bio);
2523 blk_rq_bio_prep(q, rq, bio);
2524 rq->buffer = rq->data = NULL;
2525 return 0;
2528 EXPORT_SYMBOL(blk_rq_map_user_iov);
2531 * blk_rq_unmap_user - unmap a request with user data
2532 * @bio: start of bio list
2534 * Description:
2535 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2536 * supply the original rq->bio from the blk_rq_map_user() return, since
2537 * the io completion may have changed rq->bio.
2539 int blk_rq_unmap_user(struct bio *bio)
2541 struct bio *mapped_bio;
2542 int ret = 0, ret2;
2544 while (bio) {
2545 mapped_bio = bio;
2546 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2547 mapped_bio = bio->bi_private;
2549 ret2 = __blk_rq_unmap_user(mapped_bio);
2550 if (ret2 && !ret)
2551 ret = ret2;
2553 mapped_bio = bio;
2554 bio = bio->bi_next;
2555 bio_put(mapped_bio);
2558 return ret;
2561 EXPORT_SYMBOL(blk_rq_unmap_user);
2564 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2565 * @q: request queue where request should be inserted
2566 * @rq: request to fill
2567 * @kbuf: the kernel buffer
2568 * @len: length of user data
2569 * @gfp_mask: memory allocation flags
2571 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2572 unsigned int len, gfp_t gfp_mask)
2574 struct bio *bio;
2576 if (len > (q->max_hw_sectors << 9))
2577 return -EINVAL;
2578 if (!len || !kbuf)
2579 return -EINVAL;
2581 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2582 if (IS_ERR(bio))
2583 return PTR_ERR(bio);
2585 if (rq_data_dir(rq) == WRITE)
2586 bio->bi_rw |= (1 << BIO_RW);
2588 blk_rq_bio_prep(q, rq, bio);
2589 blk_queue_bounce(q, &rq->bio);
2590 rq->buffer = rq->data = NULL;
2591 return 0;
2594 EXPORT_SYMBOL(blk_rq_map_kern);
2597 * blk_execute_rq_nowait - insert a request into queue for execution
2598 * @q: queue to insert the request in
2599 * @bd_disk: matching gendisk
2600 * @rq: request to insert
2601 * @at_head: insert request at head or tail of queue
2602 * @done: I/O completion handler
2604 * Description:
2605 * Insert a fully prepared request at the back of the io scheduler queue
2606 * for execution. Don't wait for completion.
2608 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2609 struct request *rq, int at_head,
2610 rq_end_io_fn *done)
2612 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2614 rq->rq_disk = bd_disk;
2615 rq->cmd_flags |= REQ_NOMERGE;
2616 rq->end_io = done;
2617 WARN_ON(irqs_disabled());
2618 spin_lock_irq(q->queue_lock);
2619 __elv_add_request(q, rq, where, 1);
2620 __generic_unplug_device(q);
2621 spin_unlock_irq(q->queue_lock);
2623 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2626 * blk_execute_rq - insert a request into queue for execution
2627 * @q: queue to insert the request in
2628 * @bd_disk: matching gendisk
2629 * @rq: request to insert
2630 * @at_head: insert request at head or tail of queue
2632 * Description:
2633 * Insert a fully prepared request at the back of the io scheduler queue
2634 * for execution and wait for completion.
2636 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2637 struct request *rq, int at_head)
2639 DECLARE_COMPLETION_ONSTACK(wait);
2640 char sense[SCSI_SENSE_BUFFERSIZE];
2641 int err = 0;
2644 * we need an extra reference to the request, so we can look at
2645 * it after io completion
2647 rq->ref_count++;
2649 if (!rq->sense) {
2650 memset(sense, 0, sizeof(sense));
2651 rq->sense = sense;
2652 rq->sense_len = 0;
2655 rq->end_io_data = &wait;
2656 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2657 wait_for_completion(&wait);
2659 if (rq->errors)
2660 err = -EIO;
2662 return err;
2665 EXPORT_SYMBOL(blk_execute_rq);
2668 * blkdev_issue_flush - queue a flush
2669 * @bdev: blockdev to issue flush for
2670 * @error_sector: error sector
2672 * Description:
2673 * Issue a flush for the block device in question. Caller can supply
2674 * room for storing the error offset in case of a flush error, if they
2675 * wish to. Caller must run wait_for_completion() on its own.
2677 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2679 request_queue_t *q;
2681 if (bdev->bd_disk == NULL)
2682 return -ENXIO;
2684 q = bdev_get_queue(bdev);
2685 if (!q)
2686 return -ENXIO;
2687 if (!q->issue_flush_fn)
2688 return -EOPNOTSUPP;
2690 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2693 EXPORT_SYMBOL(blkdev_issue_flush);
2695 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2697 int rw = rq_data_dir(rq);
2699 if (!blk_fs_request(rq) || !rq->rq_disk)
2700 return;
2702 if (!new_io) {
2703 __disk_stat_inc(rq->rq_disk, merges[rw]);
2704 } else {
2705 disk_round_stats(rq->rq_disk);
2706 rq->rq_disk->in_flight++;
2711 * add-request adds a request to the linked list.
2712 * queue lock is held and interrupts disabled, as we muck with the
2713 * request queue list.
2715 static inline void add_request(request_queue_t * q, struct request * req)
2717 drive_stat_acct(req, req->nr_sectors, 1);
2720 * elevator indicated where it wants this request to be
2721 * inserted at elevator_merge time
2723 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2727 * disk_round_stats() - Round off the performance stats on a struct
2728 * disk_stats.
2730 * The average IO queue length and utilisation statistics are maintained
2731 * by observing the current state of the queue length and the amount of
2732 * time it has been in this state for.
2734 * Normally, that accounting is done on IO completion, but that can result
2735 * in more than a second's worth of IO being accounted for within any one
2736 * second, leading to >100% utilisation. To deal with that, we call this
2737 * function to do a round-off before returning the results when reading
2738 * /proc/diskstats. This accounts immediately for all queue usage up to
2739 * the current jiffies and restarts the counters again.
2741 void disk_round_stats(struct gendisk *disk)
2743 unsigned long now = jiffies;
2745 if (now == disk->stamp)
2746 return;
2748 if (disk->in_flight) {
2749 __disk_stat_add(disk, time_in_queue,
2750 disk->in_flight * (now - disk->stamp));
2751 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2753 disk->stamp = now;
2756 EXPORT_SYMBOL_GPL(disk_round_stats);
2759 * queue lock must be held
2761 void __blk_put_request(request_queue_t *q, struct request *req)
2763 if (unlikely(!q))
2764 return;
2765 if (unlikely(--req->ref_count))
2766 return;
2768 elv_completed_request(q, req);
2771 * Request may not have originated from ll_rw_blk. if not,
2772 * it didn't come out of our reserved rq pools
2774 if (req->cmd_flags & REQ_ALLOCED) {
2775 int rw = rq_data_dir(req);
2776 int priv = req->cmd_flags & REQ_ELVPRIV;
2778 BUG_ON(!list_empty(&req->queuelist));
2779 BUG_ON(!hlist_unhashed(&req->hash));
2781 blk_free_request(q, req);
2782 freed_request(q, rw, priv);
2786 EXPORT_SYMBOL_GPL(__blk_put_request);
2788 void blk_put_request(struct request *req)
2790 unsigned long flags;
2791 request_queue_t *q = req->q;
2794 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2795 * following if (q) test.
2797 if (q) {
2798 spin_lock_irqsave(q->queue_lock, flags);
2799 __blk_put_request(q, req);
2800 spin_unlock_irqrestore(q->queue_lock, flags);
2804 EXPORT_SYMBOL(blk_put_request);
2807 * blk_end_sync_rq - executes a completion event on a request
2808 * @rq: request to complete
2809 * @error: end io status of the request
2811 void blk_end_sync_rq(struct request *rq, int error)
2813 struct completion *waiting = rq->end_io_data;
2815 rq->end_io_data = NULL;
2816 __blk_put_request(rq->q, rq);
2819 * complete last, if this is a stack request the process (and thus
2820 * the rq pointer) could be invalid right after this complete()
2822 complete(waiting);
2824 EXPORT_SYMBOL(blk_end_sync_rq);
2827 * Has to be called with the request spinlock acquired
2829 static int attempt_merge(request_queue_t *q, struct request *req,
2830 struct request *next)
2832 if (!rq_mergeable(req) || !rq_mergeable(next))
2833 return 0;
2836 * not contiguous
2838 if (req->sector + req->nr_sectors != next->sector)
2839 return 0;
2841 if (rq_data_dir(req) != rq_data_dir(next)
2842 || req->rq_disk != next->rq_disk
2843 || next->special)
2844 return 0;
2847 * If we are allowed to merge, then append bio list
2848 * from next to rq and release next. merge_requests_fn
2849 * will have updated segment counts, update sector
2850 * counts here.
2852 if (!ll_merge_requests_fn(q, req, next))
2853 return 0;
2856 * At this point we have either done a back merge
2857 * or front merge. We need the smaller start_time of
2858 * the merged requests to be the current request
2859 * for accounting purposes.
2861 if (time_after(req->start_time, next->start_time))
2862 req->start_time = next->start_time;
2864 req->biotail->bi_next = next->bio;
2865 req->biotail = next->biotail;
2867 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2869 elv_merge_requests(q, req, next);
2871 if (req->rq_disk) {
2872 disk_round_stats(req->rq_disk);
2873 req->rq_disk->in_flight--;
2876 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2878 __blk_put_request(q, next);
2879 return 1;
2882 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2884 struct request *next = elv_latter_request(q, rq);
2886 if (next)
2887 return attempt_merge(q, rq, next);
2889 return 0;
2892 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2894 struct request *prev = elv_former_request(q, rq);
2896 if (prev)
2897 return attempt_merge(q, prev, rq);
2899 return 0;
2902 static void init_request_from_bio(struct request *req, struct bio *bio)
2904 req->cmd_type = REQ_TYPE_FS;
2907 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2909 if (bio_rw_ahead(bio) || bio_failfast(bio))
2910 req->cmd_flags |= REQ_FAILFAST;
2913 * REQ_BARRIER implies no merging, but lets make it explicit
2915 if (unlikely(bio_barrier(bio)))
2916 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2918 if (bio_sync(bio))
2919 req->cmd_flags |= REQ_RW_SYNC;
2920 if (bio_rw_meta(bio))
2921 req->cmd_flags |= REQ_RW_META;
2923 req->errors = 0;
2924 req->hard_sector = req->sector = bio->bi_sector;
2925 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2926 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2927 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2928 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2929 req->buffer = bio_data(bio); /* see ->buffer comment above */
2930 req->bio = req->biotail = bio;
2931 req->ioprio = bio_prio(bio);
2932 req->rq_disk = bio->bi_bdev->bd_disk;
2933 req->start_time = jiffies;
2936 static int __make_request(request_queue_t *q, struct bio *bio)
2938 struct request *req;
2939 int el_ret, nr_sectors, barrier, err;
2940 const unsigned short prio = bio_prio(bio);
2941 const int sync = bio_sync(bio);
2942 int rw_flags;
2944 nr_sectors = bio_sectors(bio);
2947 * low level driver can indicate that it wants pages above a
2948 * certain limit bounced to low memory (ie for highmem, or even
2949 * ISA dma in theory)
2951 blk_queue_bounce(q, &bio);
2953 barrier = bio_barrier(bio);
2954 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2955 err = -EOPNOTSUPP;
2956 goto end_io;
2959 spin_lock_irq(q->queue_lock);
2961 if (unlikely(barrier) || elv_queue_empty(q))
2962 goto get_rq;
2964 el_ret = elv_merge(q, &req, bio);
2965 switch (el_ret) {
2966 case ELEVATOR_BACK_MERGE:
2967 BUG_ON(!rq_mergeable(req));
2969 if (!ll_back_merge_fn(q, req, bio))
2970 break;
2972 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2974 req->biotail->bi_next = bio;
2975 req->biotail = bio;
2976 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2977 req->ioprio = ioprio_best(req->ioprio, prio);
2978 drive_stat_acct(req, nr_sectors, 0);
2979 if (!attempt_back_merge(q, req))
2980 elv_merged_request(q, req, el_ret);
2981 goto out;
2983 case ELEVATOR_FRONT_MERGE:
2984 BUG_ON(!rq_mergeable(req));
2986 if (!ll_front_merge_fn(q, req, bio))
2987 break;
2989 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2991 bio->bi_next = req->bio;
2992 req->bio = bio;
2995 * may not be valid. if the low level driver said
2996 * it didn't need a bounce buffer then it better
2997 * not touch req->buffer either...
2999 req->buffer = bio_data(bio);
3000 req->current_nr_sectors = bio_cur_sectors(bio);
3001 req->hard_cur_sectors = req->current_nr_sectors;
3002 req->sector = req->hard_sector = bio->bi_sector;
3003 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3004 req->ioprio = ioprio_best(req->ioprio, prio);
3005 drive_stat_acct(req, nr_sectors, 0);
3006 if (!attempt_front_merge(q, req))
3007 elv_merged_request(q, req, el_ret);
3008 goto out;
3010 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3011 default:
3015 get_rq:
3017 * This sync check and mask will be re-done in init_request_from_bio(),
3018 * but we need to set it earlier to expose the sync flag to the
3019 * rq allocator and io schedulers.
3021 rw_flags = bio_data_dir(bio);
3022 if (sync)
3023 rw_flags |= REQ_RW_SYNC;
3026 * Grab a free request. This is might sleep but can not fail.
3027 * Returns with the queue unlocked.
3029 req = get_request_wait(q, rw_flags, bio);
3032 * After dropping the lock and possibly sleeping here, our request
3033 * may now be mergeable after it had proven unmergeable (above).
3034 * We don't worry about that case for efficiency. It won't happen
3035 * often, and the elevators are able to handle it.
3037 init_request_from_bio(req, bio);
3039 spin_lock_irq(q->queue_lock);
3040 if (elv_queue_empty(q))
3041 blk_plug_device(q);
3042 add_request(q, req);
3043 out:
3044 if (sync)
3045 __generic_unplug_device(q);
3047 spin_unlock_irq(q->queue_lock);
3048 return 0;
3050 end_io:
3051 bio_endio(bio, nr_sectors << 9, err);
3052 return 0;
3056 * If bio->bi_dev is a partition, remap the location
3058 static inline void blk_partition_remap(struct bio *bio)
3060 struct block_device *bdev = bio->bi_bdev;
3062 if (bdev != bdev->bd_contains) {
3063 struct hd_struct *p = bdev->bd_part;
3064 const int rw = bio_data_dir(bio);
3066 p->sectors[rw] += bio_sectors(bio);
3067 p->ios[rw]++;
3069 bio->bi_sector += p->start_sect;
3070 bio->bi_bdev = bdev->bd_contains;
3074 static void handle_bad_sector(struct bio *bio)
3076 char b[BDEVNAME_SIZE];
3078 printk(KERN_INFO "attempt to access beyond end of device\n");
3079 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3080 bdevname(bio->bi_bdev, b),
3081 bio->bi_rw,
3082 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3083 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3085 set_bit(BIO_EOF, &bio->bi_flags);
3088 #ifdef CONFIG_FAIL_MAKE_REQUEST
3090 static DECLARE_FAULT_ATTR(fail_make_request);
3092 static int __init setup_fail_make_request(char *str)
3094 return setup_fault_attr(&fail_make_request, str);
3096 __setup("fail_make_request=", setup_fail_make_request);
3098 static int should_fail_request(struct bio *bio)
3100 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3101 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3102 return should_fail(&fail_make_request, bio->bi_size);
3104 return 0;
3107 static int __init fail_make_request_debugfs(void)
3109 return init_fault_attr_dentries(&fail_make_request,
3110 "fail_make_request");
3113 late_initcall(fail_make_request_debugfs);
3115 #else /* CONFIG_FAIL_MAKE_REQUEST */
3117 static inline int should_fail_request(struct bio *bio)
3119 return 0;
3122 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3125 * generic_make_request: hand a buffer to its device driver for I/O
3126 * @bio: The bio describing the location in memory and on the device.
3128 * generic_make_request() is used to make I/O requests of block
3129 * devices. It is passed a &struct bio, which describes the I/O that needs
3130 * to be done.
3132 * generic_make_request() does not return any status. The
3133 * success/failure status of the request, along with notification of
3134 * completion, is delivered asynchronously through the bio->bi_end_io
3135 * function described (one day) else where.
3137 * The caller of generic_make_request must make sure that bi_io_vec
3138 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3139 * set to describe the device address, and the
3140 * bi_end_io and optionally bi_private are set to describe how
3141 * completion notification should be signaled.
3143 * generic_make_request and the drivers it calls may use bi_next if this
3144 * bio happens to be merged with someone else, and may change bi_dev and
3145 * bi_sector for remaps as it sees fit. So the values of these fields
3146 * should NOT be depended on after the call to generic_make_request.
3148 static inline void __generic_make_request(struct bio *bio)
3150 request_queue_t *q;
3151 sector_t maxsector;
3152 sector_t old_sector;
3153 int ret, nr_sectors = bio_sectors(bio);
3154 dev_t old_dev;
3156 might_sleep();
3157 /* Test device or partition size, when known. */
3158 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3159 if (maxsector) {
3160 sector_t sector = bio->bi_sector;
3162 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3164 * This may well happen - the kernel calls bread()
3165 * without checking the size of the device, e.g., when
3166 * mounting a device.
3168 handle_bad_sector(bio);
3169 goto end_io;
3174 * Resolve the mapping until finished. (drivers are
3175 * still free to implement/resolve their own stacking
3176 * by explicitly returning 0)
3178 * NOTE: we don't repeat the blk_size check for each new device.
3179 * Stacking drivers are expected to know what they are doing.
3181 old_sector = -1;
3182 old_dev = 0;
3183 do {
3184 char b[BDEVNAME_SIZE];
3186 q = bdev_get_queue(bio->bi_bdev);
3187 if (!q) {
3188 printk(KERN_ERR
3189 "generic_make_request: Trying to access "
3190 "nonexistent block-device %s (%Lu)\n",
3191 bdevname(bio->bi_bdev, b),
3192 (long long) bio->bi_sector);
3193 end_io:
3194 bio_endio(bio, bio->bi_size, -EIO);
3195 break;
3198 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3199 printk("bio too big device %s (%u > %u)\n",
3200 bdevname(bio->bi_bdev, b),
3201 bio_sectors(bio),
3202 q->max_hw_sectors);
3203 goto end_io;
3206 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3207 goto end_io;
3209 if (should_fail_request(bio))
3210 goto end_io;
3213 * If this device has partitions, remap block n
3214 * of partition p to block n+start(p) of the disk.
3216 blk_partition_remap(bio);
3218 if (old_sector != -1)
3219 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3220 old_sector);
3222 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3224 old_sector = bio->bi_sector;
3225 old_dev = bio->bi_bdev->bd_dev;
3227 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3228 if (maxsector) {
3229 sector_t sector = bio->bi_sector;
3231 if (maxsector < nr_sectors ||
3232 maxsector - nr_sectors < sector) {
3234 * This may well happen - partitions are not
3235 * checked to make sure they are within the size
3236 * of the whole device.
3238 handle_bad_sector(bio);
3239 goto end_io;
3243 ret = q->make_request_fn(q, bio);
3244 } while (ret);
3248 * We only want one ->make_request_fn to be active at a time,
3249 * else stack usage with stacked devices could be a problem.
3250 * So use current->bio_{list,tail} to keep a list of requests
3251 * submited by a make_request_fn function.
3252 * current->bio_tail is also used as a flag to say if
3253 * generic_make_request is currently active in this task or not.
3254 * If it is NULL, then no make_request is active. If it is non-NULL,
3255 * then a make_request is active, and new requests should be added
3256 * at the tail
3258 void generic_make_request(struct bio *bio)
3260 if (current->bio_tail) {
3261 /* make_request is active */
3262 *(current->bio_tail) = bio;
3263 bio->bi_next = NULL;
3264 current->bio_tail = &bio->bi_next;
3265 return;
3267 /* following loop may be a bit non-obvious, and so deserves some
3268 * explanation.
3269 * Before entering the loop, bio->bi_next is NULL (as all callers
3270 * ensure that) so we have a list with a single bio.
3271 * We pretend that we have just taken it off a longer list, so
3272 * we assign bio_list to the next (which is NULL) and bio_tail
3273 * to &bio_list, thus initialising the bio_list of new bios to be
3274 * added. __generic_make_request may indeed add some more bios
3275 * through a recursive call to generic_make_request. If it
3276 * did, we find a non-NULL value in bio_list and re-enter the loop
3277 * from the top. In this case we really did just take the bio
3278 * of the top of the list (no pretending) and so fixup bio_list and
3279 * bio_tail or bi_next, and call into __generic_make_request again.
3281 * The loop was structured like this to make only one call to
3282 * __generic_make_request (which is important as it is large and
3283 * inlined) and to keep the structure simple.
3285 BUG_ON(bio->bi_next);
3286 do {
3287 current->bio_list = bio->bi_next;
3288 if (bio->bi_next == NULL)
3289 current->bio_tail = &current->bio_list;
3290 else
3291 bio->bi_next = NULL;
3292 __generic_make_request(bio);
3293 bio = current->bio_list;
3294 } while (bio);
3295 current->bio_tail = NULL; /* deactivate */
3298 EXPORT_SYMBOL(generic_make_request);
3301 * submit_bio: submit a bio to the block device layer for I/O
3302 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3303 * @bio: The &struct bio which describes the I/O
3305 * submit_bio() is very similar in purpose to generic_make_request(), and
3306 * uses that function to do most of the work. Both are fairly rough
3307 * interfaces, @bio must be presetup and ready for I/O.
3310 void submit_bio(int rw, struct bio *bio)
3312 int count = bio_sectors(bio);
3314 BIO_BUG_ON(!bio->bi_size);
3315 BIO_BUG_ON(!bio->bi_io_vec);
3316 bio->bi_rw |= rw;
3317 if (rw & WRITE) {
3318 count_vm_events(PGPGOUT, count);
3319 } else {
3320 task_io_account_read(bio->bi_size);
3321 count_vm_events(PGPGIN, count);
3324 if (unlikely(block_dump)) {
3325 char b[BDEVNAME_SIZE];
3326 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3327 current->comm, current->pid,
3328 (rw & WRITE) ? "WRITE" : "READ",
3329 (unsigned long long)bio->bi_sector,
3330 bdevname(bio->bi_bdev,b));
3333 generic_make_request(bio);
3336 EXPORT_SYMBOL(submit_bio);
3338 static void blk_recalc_rq_segments(struct request *rq)
3340 struct bio *bio, *prevbio = NULL;
3341 int nr_phys_segs, nr_hw_segs;
3342 unsigned int phys_size, hw_size;
3343 request_queue_t *q = rq->q;
3345 if (!rq->bio)
3346 return;
3348 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3349 rq_for_each_bio(bio, rq) {
3350 /* Force bio hw/phys segs to be recalculated. */
3351 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3353 nr_phys_segs += bio_phys_segments(q, bio);
3354 nr_hw_segs += bio_hw_segments(q, bio);
3355 if (prevbio) {
3356 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3357 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3359 if (blk_phys_contig_segment(q, prevbio, bio) &&
3360 pseg <= q->max_segment_size) {
3361 nr_phys_segs--;
3362 phys_size += prevbio->bi_size + bio->bi_size;
3363 } else
3364 phys_size = 0;
3366 if (blk_hw_contig_segment(q, prevbio, bio) &&
3367 hseg <= q->max_segment_size) {
3368 nr_hw_segs--;
3369 hw_size += prevbio->bi_size + bio->bi_size;
3370 } else
3371 hw_size = 0;
3373 prevbio = bio;
3376 rq->nr_phys_segments = nr_phys_segs;
3377 rq->nr_hw_segments = nr_hw_segs;
3380 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3382 if (blk_fs_request(rq)) {
3383 rq->hard_sector += nsect;
3384 rq->hard_nr_sectors -= nsect;
3387 * Move the I/O submission pointers ahead if required.
3389 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3390 (rq->sector <= rq->hard_sector)) {
3391 rq->sector = rq->hard_sector;
3392 rq->nr_sectors = rq->hard_nr_sectors;
3393 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3394 rq->current_nr_sectors = rq->hard_cur_sectors;
3395 rq->buffer = bio_data(rq->bio);
3399 * if total number of sectors is less than the first segment
3400 * size, something has gone terribly wrong
3402 if (rq->nr_sectors < rq->current_nr_sectors) {
3403 printk("blk: request botched\n");
3404 rq->nr_sectors = rq->current_nr_sectors;
3410 * __end_that_request_first - end I/O on a request
3411 * @req: the request being processed
3412 * @error: 0 for success, < 0 for error
3413 * @nr_bytes: number of bytes to complete
3415 * Description:
3416 * Ends I/O on a number of bytes attached to @req, and sets it up
3417 * for the next range of segments (if any) in the cluster.
3419 * Return:
3420 * 0 - we are done with this request, call end_that_request_last()
3421 * 1 - still buffers pending for this request
3423 static int __end_that_request_first(struct request *req, int error,
3424 int nr_bytes)
3426 int total_bytes, bio_nbytes, next_idx = 0;
3427 struct bio *bio;
3429 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3432 * for a REQ_BLOCK_PC request, we want to carry any eventual
3433 * sense key with us all the way through
3435 if (!blk_pc_request(req))
3436 req->errors = 0;
3438 if (error) {
3439 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3440 printk("end_request: I/O error, dev %s, sector %llu\n",
3441 req->rq_disk ? req->rq_disk->disk_name : "?",
3442 (unsigned long long)req->sector);
3445 if (blk_fs_request(req) && req->rq_disk) {
3446 const int rw = rq_data_dir(req);
3448 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3451 total_bytes = bio_nbytes = 0;
3452 while ((bio = req->bio) != NULL) {
3453 int nbytes;
3455 if (nr_bytes >= bio->bi_size) {
3456 req->bio = bio->bi_next;
3457 nbytes = bio->bi_size;
3458 if (!ordered_bio_endio(req, bio, nbytes, error))
3459 bio_endio(bio, nbytes, error);
3460 next_idx = 0;
3461 bio_nbytes = 0;
3462 } else {
3463 int idx = bio->bi_idx + next_idx;
3465 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3466 blk_dump_rq_flags(req, "__end_that");
3467 printk("%s: bio idx %d >= vcnt %d\n",
3468 __FUNCTION__,
3469 bio->bi_idx, bio->bi_vcnt);
3470 break;
3473 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3474 BIO_BUG_ON(nbytes > bio->bi_size);
3477 * not a complete bvec done
3479 if (unlikely(nbytes > nr_bytes)) {
3480 bio_nbytes += nr_bytes;
3481 total_bytes += nr_bytes;
3482 break;
3486 * advance to the next vector
3488 next_idx++;
3489 bio_nbytes += nbytes;
3492 total_bytes += nbytes;
3493 nr_bytes -= nbytes;
3495 if ((bio = req->bio)) {
3497 * end more in this run, or just return 'not-done'
3499 if (unlikely(nr_bytes <= 0))
3500 break;
3505 * completely done
3507 if (!req->bio)
3508 return 0;
3511 * if the request wasn't completed, update state
3513 if (bio_nbytes) {
3514 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3515 bio_endio(bio, bio_nbytes, error);
3516 bio->bi_idx += next_idx;
3517 bio_iovec(bio)->bv_offset += nr_bytes;
3518 bio_iovec(bio)->bv_len -= nr_bytes;
3521 blk_recalc_rq_sectors(req, total_bytes >> 9);
3522 blk_recalc_rq_segments(req);
3523 return 1;
3527 * splice the completion data to a local structure and hand off to
3528 * process_completion_queue() to complete the requests
3530 static void blk_done_softirq(struct softirq_action *h)
3532 struct list_head *cpu_list, local_list;
3534 local_irq_disable();
3535 cpu_list = &__get_cpu_var(blk_cpu_done);
3536 list_replace_init(cpu_list, &local_list);
3537 local_irq_enable();
3539 while (!list_empty(&local_list)) {
3540 struct request *rq = list_entry(local_list.next, struct request, donelist);
3542 list_del_init(&rq->donelist);
3543 rq->q->softirq_done_fn(rq);
3547 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3548 void *hcpu)
3551 * If a CPU goes away, splice its entries to the current CPU
3552 * and trigger a run of the softirq
3554 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3555 int cpu = (unsigned long) hcpu;
3557 local_irq_disable();
3558 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3559 &__get_cpu_var(blk_cpu_done));
3560 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3561 local_irq_enable();
3564 return NOTIFY_OK;
3568 static struct notifier_block __devinitdata blk_cpu_notifier = {
3569 .notifier_call = blk_cpu_notify,
3573 * blk_complete_request - end I/O on a request
3574 * @req: the request being processed
3576 * Description:
3577 * Ends all I/O on a request. It does not handle partial completions,
3578 * unless the driver actually implements this in its completion callback
3579 * through requeueing. Theh actual completion happens out-of-order,
3580 * through a softirq handler. The user must have registered a completion
3581 * callback through blk_queue_softirq_done().
3584 void blk_complete_request(struct request *req)
3586 struct list_head *cpu_list;
3587 unsigned long flags;
3589 BUG_ON(!req->q->softirq_done_fn);
3591 local_irq_save(flags);
3593 cpu_list = &__get_cpu_var(blk_cpu_done);
3594 list_add_tail(&req->donelist, cpu_list);
3595 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3597 local_irq_restore(flags);
3600 EXPORT_SYMBOL(blk_complete_request);
3603 * queue lock must be held
3605 static void end_that_request_last(struct request *req, int error)
3607 struct gendisk *disk = req->rq_disk;
3609 if (blk_rq_tagged(req))
3610 blk_queue_end_tag(req->q, req);
3612 if (blk_queued_rq(req))
3613 blkdev_dequeue_request(req);
3615 if (unlikely(laptop_mode) && blk_fs_request(req))
3616 laptop_io_completion();
3619 * Account IO completion. bar_rq isn't accounted as a normal
3620 * IO on queueing nor completion. Accounting the containing
3621 * request is enough.
3623 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3624 unsigned long duration = jiffies - req->start_time;
3625 const int rw = rq_data_dir(req);
3627 __disk_stat_inc(disk, ios[rw]);
3628 __disk_stat_add(disk, ticks[rw], duration);
3629 disk_round_stats(disk);
3630 disk->in_flight--;
3633 if (req->end_io)
3634 req->end_io(req, error);
3635 else {
3636 __blk_put_request(req->q, req);
3640 static inline void __end_request(struct request *rq, int uptodate,
3641 unsigned int nr_bytes)
3643 int error = 0;
3645 if (uptodate <= 0)
3646 error = uptodate ? uptodate : -EIO;
3648 __blk_end_request(rq, error, nr_bytes);
3652 * blk_rq_bytes - Returns bytes left to complete in the entire request
3654 unsigned int blk_rq_bytes(struct request *rq)
3656 if (blk_fs_request(rq))
3657 return rq->hard_nr_sectors << 9;
3659 return rq->data_len;
3661 EXPORT_SYMBOL_GPL(blk_rq_bytes);
3664 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
3666 unsigned int blk_rq_cur_bytes(struct request *rq)
3668 if (blk_fs_request(rq))
3669 return rq->current_nr_sectors << 9;
3671 if (rq->bio)
3672 return rq->bio->bi_size;
3674 return rq->data_len;
3676 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
3679 * end_queued_request - end all I/O on a queued request
3680 * @rq: the request being processed
3681 * @uptodate: error value or 0/1 uptodate flag
3683 * Description:
3684 * Ends all I/O on a request, and removes it from the block layer queues.
3685 * Not suitable for normal IO completion, unless the driver still has
3686 * the request attached to the block layer.
3689 void end_queued_request(struct request *rq, int uptodate)
3691 __end_request(rq, uptodate, blk_rq_bytes(rq));
3693 EXPORT_SYMBOL(end_queued_request);
3696 * end_dequeued_request - end all I/O on a dequeued request
3697 * @rq: the request being processed
3698 * @uptodate: error value or 0/1 uptodate flag
3700 * Description:
3701 * Ends all I/O on a request. The request must already have been
3702 * dequeued using blkdev_dequeue_request(), as is normally the case
3703 * for most drivers.
3706 void end_dequeued_request(struct request *rq, int uptodate)
3708 __end_request(rq, uptodate, blk_rq_bytes(rq));
3710 EXPORT_SYMBOL(end_dequeued_request);
3714 * end_request - end I/O on the current segment of the request
3715 * @rq: the request being processed
3716 * @uptodate: error value or 0/1 uptodate flag
3718 * Description:
3719 * Ends I/O on the current segment of a request. If that is the only
3720 * remaining segment, the request is also completed and freed.
3722 * This is a remnant of how older block drivers handled IO completions.
3723 * Modern drivers typically end IO on the full request in one go, unless
3724 * they have a residual value to account for. For that case this function
3725 * isn't really useful, unless the residual just happens to be the
3726 * full current segment. In other words, don't use this function in new
3727 * code. Either use end_request_completely(), or the
3728 * end_that_request_chunk() (along with end_that_request_last()) for
3729 * partial completions.
3732 void end_request(struct request *req, int uptodate)
3734 __end_request(req, uptodate, req->hard_cur_sectors << 9);
3736 EXPORT_SYMBOL(end_request);
3739 * blk_end_request - Helper function for drivers to complete the request.
3740 * @rq: the request being processed
3741 * @error: 0 for success, < 0 for error
3742 * @nr_bytes: number of bytes to complete
3744 * Description:
3745 * Ends I/O on a number of bytes attached to @rq.
3746 * If @rq has leftover, sets it up for the next range of segments.
3748 * Return:
3749 * 0 - we are done with this request
3750 * 1 - still buffers pending for this request
3752 int blk_end_request(struct request *rq, int error, int nr_bytes)
3754 struct request_queue *q = rq->q;
3755 unsigned long flags = 0UL;
3757 if (blk_fs_request(rq) || blk_pc_request(rq)) {
3758 if (__end_that_request_first(rq, error, nr_bytes))
3759 return 1;
3762 add_disk_randomness(rq->rq_disk);
3764 spin_lock_irqsave(q->queue_lock, flags);
3765 end_that_request_last(rq, error);
3766 spin_unlock_irqrestore(q->queue_lock, flags);
3768 return 0;
3770 EXPORT_SYMBOL_GPL(blk_end_request);
3773 * __blk_end_request - Helper function for drivers to complete the request.
3774 * @rq: the request being processed
3775 * @error: 0 for success, < 0 for error
3776 * @nr_bytes: number of bytes to complete
3778 * Description:
3779 * Must be called with queue lock held unlike blk_end_request().
3781 * Return:
3782 * 0 - we are done with this request
3783 * 1 - still buffers pending for this request
3785 int __blk_end_request(struct request *rq, int error, int nr_bytes)
3787 if (blk_fs_request(rq) || blk_pc_request(rq)) {
3788 if (__end_that_request_first(rq, error, nr_bytes))
3789 return 1;
3792 add_disk_randomness(rq->rq_disk);
3794 end_that_request_last(rq, error);
3796 return 0;
3798 EXPORT_SYMBOL_GPL(__blk_end_request);
3800 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3802 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3803 rq->cmd_flags |= (bio->bi_rw & 3);
3805 rq->nr_phys_segments = bio_phys_segments(q, bio);
3806 rq->nr_hw_segments = bio_hw_segments(q, bio);
3807 rq->current_nr_sectors = bio_cur_sectors(bio);
3808 rq->hard_cur_sectors = rq->current_nr_sectors;
3809 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3810 rq->buffer = bio_data(bio);
3811 rq->data_len = bio->bi_size;
3813 rq->bio = rq->biotail = bio;
3816 EXPORT_SYMBOL(blk_rq_bio_prep);
3818 int kblockd_schedule_work(struct work_struct *work)
3820 return queue_work(kblockd_workqueue, work);
3823 EXPORT_SYMBOL(kblockd_schedule_work);
3825 void kblockd_flush_work(struct work_struct *work)
3827 cancel_work_sync(work);
3829 EXPORT_SYMBOL(kblockd_flush_work);
3831 int __init blk_dev_init(void)
3833 int i;
3835 kblockd_workqueue = create_workqueue("kblockd");
3836 if (!kblockd_workqueue)
3837 panic("Failed to create kblockd\n");
3839 request_cachep = kmem_cache_create("blkdev_requests",
3840 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3842 requestq_cachep = kmem_cache_create("blkdev_queue",
3843 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3845 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3846 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3848 for_each_possible_cpu(i)
3849 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3851 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3852 register_hotcpu_notifier(&blk_cpu_notifier);
3854 blk_max_low_pfn = max_low_pfn - 1;
3855 blk_max_pfn = max_pfn - 1;
3857 return 0;
3861 * IO Context helper functions
3863 void put_io_context(struct io_context *ioc)
3865 if (ioc == NULL)
3866 return;
3868 BUG_ON(atomic_read(&ioc->refcount) == 0);
3870 if (atomic_dec_and_test(&ioc->refcount)) {
3871 struct cfq_io_context *cic;
3873 rcu_read_lock();
3874 if (ioc->aic && ioc->aic->dtor)
3875 ioc->aic->dtor(ioc->aic);
3876 if (ioc->cic_root.rb_node != NULL) {
3877 struct rb_node *n = rb_first(&ioc->cic_root);
3879 cic = rb_entry(n, struct cfq_io_context, rb_node);
3880 cic->dtor(ioc);
3882 rcu_read_unlock();
3884 kmem_cache_free(iocontext_cachep, ioc);
3887 EXPORT_SYMBOL(put_io_context);
3889 /* Called by the exitting task */
3890 void exit_io_context(void)
3892 struct io_context *ioc;
3893 struct cfq_io_context *cic;
3895 task_lock(current);
3896 ioc = current->io_context;
3897 current->io_context = NULL;
3898 task_unlock(current);
3900 ioc->task = NULL;
3901 if (ioc->aic && ioc->aic->exit)
3902 ioc->aic->exit(ioc->aic);
3903 if (ioc->cic_root.rb_node != NULL) {
3904 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3905 cic->exit(ioc);
3908 put_io_context(ioc);
3912 * If the current task has no IO context then create one and initialise it.
3913 * Otherwise, return its existing IO context.
3915 * This returned IO context doesn't have a specifically elevated refcount,
3916 * but since the current task itself holds a reference, the context can be
3917 * used in general code, so long as it stays within `current` context.
3919 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3921 struct task_struct *tsk = current;
3922 struct io_context *ret;
3924 ret = tsk->io_context;
3925 if (likely(ret))
3926 return ret;
3928 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3929 if (ret) {
3930 atomic_set(&ret->refcount, 1);
3931 ret->task = current;
3932 ret->ioprio_changed = 0;
3933 ret->last_waited = jiffies; /* doesn't matter... */
3934 ret->nr_batch_requests = 0; /* because this is 0 */
3935 ret->aic = NULL;
3936 ret->cic_root.rb_node = NULL;
3937 ret->ioc_data = NULL;
3938 /* make sure set_task_ioprio() sees the settings above */
3939 smp_wmb();
3940 tsk->io_context = ret;
3943 return ret;
3947 * If the current task has no IO context then create one and initialise it.
3948 * If it does have a context, take a ref on it.
3950 * This is always called in the context of the task which submitted the I/O.
3952 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3954 struct io_context *ret;
3955 ret = current_io_context(gfp_flags, node);
3956 if (likely(ret))
3957 atomic_inc(&ret->refcount);
3958 return ret;
3960 EXPORT_SYMBOL(get_io_context);
3962 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3964 struct io_context *src = *psrc;
3965 struct io_context *dst = *pdst;
3967 if (src) {
3968 BUG_ON(atomic_read(&src->refcount) == 0);
3969 atomic_inc(&src->refcount);
3970 put_io_context(dst);
3971 *pdst = src;
3974 EXPORT_SYMBOL(copy_io_context);
3976 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3978 struct io_context *temp;
3979 temp = *ioc1;
3980 *ioc1 = *ioc2;
3981 *ioc2 = temp;
3983 EXPORT_SYMBOL(swap_io_context);
3986 * sysfs parts below
3988 struct queue_sysfs_entry {
3989 struct attribute attr;
3990 ssize_t (*show)(struct request_queue *, char *);
3991 ssize_t (*store)(struct request_queue *, const char *, size_t);
3994 static ssize_t
3995 queue_var_show(unsigned int var, char *page)
3997 return sprintf(page, "%d\n", var);
4000 static ssize_t
4001 queue_var_store(unsigned long *var, const char *page, size_t count)
4003 char *p = (char *) page;
4005 *var = simple_strtoul(p, &p, 10);
4006 return count;
4009 static ssize_t queue_requests_show(struct request_queue *q, char *page)
4011 return queue_var_show(q->nr_requests, (page));
4014 static ssize_t
4015 queue_requests_store(struct request_queue *q, const char *page, size_t count)
4017 struct request_list *rl = &q->rq;
4018 unsigned long nr;
4019 int ret = queue_var_store(&nr, page, count);
4020 if (nr < BLKDEV_MIN_RQ)
4021 nr = BLKDEV_MIN_RQ;
4023 spin_lock_irq(q->queue_lock);
4024 q->nr_requests = nr;
4025 blk_queue_congestion_threshold(q);
4027 if (rl->count[READ] >= queue_congestion_on_threshold(q))
4028 blk_set_queue_congested(q, READ);
4029 else if (rl->count[READ] < queue_congestion_off_threshold(q))
4030 blk_clear_queue_congested(q, READ);
4032 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
4033 blk_set_queue_congested(q, WRITE);
4034 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
4035 blk_clear_queue_congested(q, WRITE);
4037 if (rl->count[READ] >= q->nr_requests) {
4038 blk_set_queue_full(q, READ);
4039 } else if (rl->count[READ]+1 <= q->nr_requests) {
4040 blk_clear_queue_full(q, READ);
4041 wake_up(&rl->wait[READ]);
4044 if (rl->count[WRITE] >= q->nr_requests) {
4045 blk_set_queue_full(q, WRITE);
4046 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4047 blk_clear_queue_full(q, WRITE);
4048 wake_up(&rl->wait[WRITE]);
4050 spin_unlock_irq(q->queue_lock);
4051 return ret;
4054 static ssize_t queue_ra_show(struct request_queue *q, char *page)
4056 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4058 return queue_var_show(ra_kb, (page));
4061 static ssize_t
4062 queue_ra_store(struct request_queue *q, const char *page, size_t count)
4064 unsigned long ra_kb;
4065 ssize_t ret = queue_var_store(&ra_kb, page, count);
4067 spin_lock_irq(q->queue_lock);
4068 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4069 spin_unlock_irq(q->queue_lock);
4071 return ret;
4074 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4076 int max_sectors_kb = q->max_sectors >> 1;
4078 return queue_var_show(max_sectors_kb, (page));
4081 static ssize_t
4082 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4084 unsigned long max_sectors_kb,
4085 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4086 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4087 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
4088 int ra_kb;
4090 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4091 return -EINVAL;
4093 * Take the queue lock to update the readahead and max_sectors
4094 * values synchronously:
4096 spin_lock_irq(q->queue_lock);
4098 * Trim readahead window as well, if necessary:
4100 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4101 if (ra_kb > max_sectors_kb)
4102 q->backing_dev_info.ra_pages =
4103 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
4105 q->max_sectors = max_sectors_kb << 1;
4106 spin_unlock_irq(q->queue_lock);
4108 return ret;
4111 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4113 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4115 return queue_var_show(max_hw_sectors_kb, (page));
4119 static struct queue_sysfs_entry queue_requests_entry = {
4120 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4121 .show = queue_requests_show,
4122 .store = queue_requests_store,
4125 static struct queue_sysfs_entry queue_ra_entry = {
4126 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4127 .show = queue_ra_show,
4128 .store = queue_ra_store,
4131 static struct queue_sysfs_entry queue_max_sectors_entry = {
4132 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4133 .show = queue_max_sectors_show,
4134 .store = queue_max_sectors_store,
4137 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4138 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4139 .show = queue_max_hw_sectors_show,
4142 static struct queue_sysfs_entry queue_iosched_entry = {
4143 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4144 .show = elv_iosched_show,
4145 .store = elv_iosched_store,
4148 static struct attribute *default_attrs[] = {
4149 &queue_requests_entry.attr,
4150 &queue_ra_entry.attr,
4151 &queue_max_hw_sectors_entry.attr,
4152 &queue_max_sectors_entry.attr,
4153 &queue_iosched_entry.attr,
4154 NULL,
4157 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4159 static ssize_t
4160 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4162 struct queue_sysfs_entry *entry = to_queue(attr);
4163 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
4164 ssize_t res;
4166 if (!entry->show)
4167 return -EIO;
4168 mutex_lock(&q->sysfs_lock);
4169 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4170 mutex_unlock(&q->sysfs_lock);
4171 return -ENOENT;
4173 res = entry->show(q, page);
4174 mutex_unlock(&q->sysfs_lock);
4175 return res;
4178 static ssize_t
4179 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4180 const char *page, size_t length)
4182 struct queue_sysfs_entry *entry = to_queue(attr);
4183 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
4185 ssize_t res;
4187 if (!entry->store)
4188 return -EIO;
4189 mutex_lock(&q->sysfs_lock);
4190 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4191 mutex_unlock(&q->sysfs_lock);
4192 return -ENOENT;
4194 res = entry->store(q, page, length);
4195 mutex_unlock(&q->sysfs_lock);
4196 return res;
4199 static struct sysfs_ops queue_sysfs_ops = {
4200 .show = queue_attr_show,
4201 .store = queue_attr_store,
4204 static struct kobj_type queue_ktype = {
4205 .sysfs_ops = &queue_sysfs_ops,
4206 .default_attrs = default_attrs,
4207 .release = blk_release_queue,
4210 int blk_register_queue(struct gendisk *disk)
4212 int ret;
4214 request_queue_t *q = disk->queue;
4216 if (!q || !q->request_fn)
4217 return -ENXIO;
4219 q->kobj.parent = kobject_get(&disk->kobj);
4221 ret = kobject_add(&q->kobj);
4222 if (ret < 0)
4223 return ret;
4225 kobject_uevent(&q->kobj, KOBJ_ADD);
4227 ret = elv_register_queue(q);
4228 if (ret) {
4229 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4230 kobject_del(&q->kobj);
4231 return ret;
4234 return 0;
4237 void blk_unregister_queue(struct gendisk *disk)
4239 request_queue_t *q = disk->queue;
4241 if (q && q->request_fn) {
4242 elv_unregister_queue(q);
4244 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4245 kobject_del(&q->kobj);
4246 kobject_put(&disk->kobj);