BCM WL 6.30.102.9 (r366174)
[tomato.git] / release / src-rt / tools / misc / lzma_src / C / LzmaEnc.c
blobadb81048d88ba6c9e872aaeb72d0e3c0f6b62f67
1 /* LzmaEnc.c -- LZMA Encoder
2 2008-10-04 : Igor Pavlov : Public domain */
4 #include <string.h>
6 /* #define SHOW_STAT */
7 /* #define SHOW_STAT2 */
9 #if defined(SHOW_STAT) || defined(SHOW_STAT2)
10 #include <stdio.h>
11 #endif
13 #include "LzmaEnc.h"
15 #include "LzFind.h"
16 #ifdef COMPRESS_MF_MT
17 #include "LzFindMt.h"
18 #endif
20 #ifdef SHOW_STAT
21 static int ttt = 0;
22 #endif
24 #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
26 #define kBlockSize (9 << 10)
27 #define kUnpackBlockSize (1 << 18)
28 #define kMatchArraySize (1 << 21)
29 #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
31 #define kNumMaxDirectBits (31)
33 #define kNumTopBits 24
34 #define kTopValue ((UInt32)1 << kNumTopBits)
36 #define kNumBitModelTotalBits 11
37 #define kBitModelTotal (1 << kNumBitModelTotalBits)
38 #define kNumMoveBits 5
39 #define kProbInitValue (kBitModelTotal >> 1)
41 #define kNumMoveReducingBits 4
42 #define kNumBitPriceShiftBits 4
43 #define kBitPrice (1 << kNumBitPriceShiftBits)
45 void LzmaEncProps_Init(CLzmaEncProps *p)
47 /* The default dictionary size is 16M, it is too big for CFE heap memory size (400K).
48 * The lzma_compression_level is between 1 to 5 and dictionary size is
49 * (1<< (lzma_compression_level*2+14)).
51 p->level = 1;
52 p->dictSize = p->mc = 0;
53 p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
54 p->writeEndMark = 0;
57 void LzmaEncProps_Normalize(CLzmaEncProps *p)
59 int level = p->level;
60 if (level < 0) level = 5;
61 p->level = level;
62 if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
63 if (p->lc < 0) p->lc = 3;
64 if (p->lp < 0) p->lp = 0;
65 if (p->pb < 0) p->pb = 2;
66 if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
67 if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
68 if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
69 if (p->numHashBytes < 0) p->numHashBytes = 4;
70 if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
71 if (p->numThreads < 0) p->numThreads = ((p->btMode && p->algo) ? 2 : 1);
74 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
76 CLzmaEncProps props = *props2;
77 LzmaEncProps_Normalize(&props);
78 return props.dictSize;
81 /* #define LZMA_LOG_BSR */
82 /* Define it for Intel's CPU */
85 #ifdef LZMA_LOG_BSR
87 #define kDicLogSizeMaxCompress 30
89 #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
91 UInt32 GetPosSlot1(UInt32 pos)
93 UInt32 res;
94 BSR2_RET(pos, res);
95 return res;
97 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
98 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
100 #else
102 #define kNumLogBits (9 + (int)sizeof(size_t) / 2)
103 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
105 void LzmaEnc_FastPosInit(Byte *g_FastPos)
107 int c = 2, slotFast;
108 g_FastPos[0] = 0;
109 g_FastPos[1] = 1;
111 for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
113 UInt32 k = (1 << ((slotFast >> 1) - 1));
114 UInt32 j;
115 for (j = 0; j < k; j++, c++)
116 g_FastPos[c] = (Byte)slotFast;
120 #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
121 (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
122 res = p->g_FastPos[pos >> i] + (i * 2); }
124 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
125 p->g_FastPos[pos >> 6] + 12 : \
126 p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
129 #define GetPosSlot1(pos) p->g_FastPos[pos]
130 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
131 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
133 #endif
136 #define LZMA_NUM_REPS 4
138 typedef unsigned CState;
140 typedef struct _COptimal
142 UInt32 price;
144 CState state;
145 int prev1IsChar;
146 int prev2;
148 UInt32 posPrev2;
149 UInt32 backPrev2;
151 UInt32 posPrev;
152 UInt32 backPrev;
153 UInt32 backs[LZMA_NUM_REPS];
154 } COptimal;
156 #define kNumOpts (1 << 12)
158 #define kNumLenToPosStates 4
159 #define kNumPosSlotBits 6
160 #define kDicLogSizeMin 0
161 #define kDicLogSizeMax 32
162 #define kDistTableSizeMax (kDicLogSizeMax * 2)
165 #define kNumAlignBits 4
166 #define kAlignTableSize (1 << kNumAlignBits)
167 #define kAlignMask (kAlignTableSize - 1)
169 #define kStartPosModelIndex 4
170 #define kEndPosModelIndex 14
171 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
173 #define kNumFullDistances (1 << (kEndPosModelIndex / 2))
175 #ifdef _LZMA_PROB32
176 #define CLzmaProb UInt32
177 #else
178 #define CLzmaProb UInt16
179 #endif
181 #define LZMA_PB_MAX 4
182 #define LZMA_LC_MAX 8
183 #define LZMA_LP_MAX 4
185 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
188 #define kLenNumLowBits 3
189 #define kLenNumLowSymbols (1 << kLenNumLowBits)
190 #define kLenNumMidBits 3
191 #define kLenNumMidSymbols (1 << kLenNumMidBits)
192 #define kLenNumHighBits 8
193 #define kLenNumHighSymbols (1 << kLenNumHighBits)
195 #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
197 #define LZMA_MATCH_LEN_MIN 2
198 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
200 #define kNumStates 12
202 typedef struct
204 CLzmaProb choice;
205 CLzmaProb choice2;
206 CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
207 CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
208 CLzmaProb high[kLenNumHighSymbols];
209 } CLenEnc;
211 typedef struct
213 CLenEnc p;
214 UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
215 UInt32 tableSize;
216 UInt32 counters[LZMA_NUM_PB_STATES_MAX];
217 } CLenPriceEnc;
219 typedef struct _CRangeEnc
221 UInt32 range;
222 Byte cache;
223 UInt64 low;
224 UInt64 cacheSize;
225 Byte *buf;
226 Byte *bufLim;
227 Byte *bufBase;
228 ISeqOutStream *outStream;
229 UInt64 processed;
230 SRes res;
231 } CRangeEnc;
233 typedef struct _CSeqInStreamBuf
235 ISeqInStream funcTable;
236 const Byte *data;
237 SizeT rem;
238 } CSeqInStreamBuf;
240 static SRes MyRead(void *pp, void *data, size_t *size)
242 size_t curSize = *size;
243 CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp;
244 if (p->rem < curSize)
245 curSize = p->rem;
246 memcpy(data, p->data, curSize);
247 p->rem -= curSize;
248 p->data += curSize;
249 *size = curSize;
250 return SZ_OK;
253 typedef struct
255 CLzmaProb *litProbs;
257 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
258 CLzmaProb isRep[kNumStates];
259 CLzmaProb isRepG0[kNumStates];
260 CLzmaProb isRepG1[kNumStates];
261 CLzmaProb isRepG2[kNumStates];
262 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
264 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
265 CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
266 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
268 CLenPriceEnc lenEnc;
269 CLenPriceEnc repLenEnc;
271 UInt32 reps[LZMA_NUM_REPS];
272 UInt32 state;
273 } CSaveState;
275 typedef struct _CLzmaEnc
277 IMatchFinder matchFinder;
278 void *matchFinderObj;
280 #ifdef COMPRESS_MF_MT
281 Bool mtMode;
282 CMatchFinderMt matchFinderMt;
283 #endif
285 CMatchFinder matchFinderBase;
287 #ifdef COMPRESS_MF_MT
288 Byte pad[128];
289 #endif
291 UInt32 optimumEndIndex;
292 UInt32 optimumCurrentIndex;
294 UInt32 longestMatchLength;
295 UInt32 numPairs;
296 UInt32 numAvail;
297 COptimal opt[kNumOpts];
299 #ifndef LZMA_LOG_BSR
300 Byte g_FastPos[1 << kNumLogBits];
301 #endif
303 UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
304 UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
305 UInt32 numFastBytes;
306 UInt32 additionalOffset;
307 UInt32 reps[LZMA_NUM_REPS];
308 UInt32 state;
310 UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
311 UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
312 UInt32 alignPrices[kAlignTableSize];
313 UInt32 alignPriceCount;
315 UInt32 distTableSize;
317 unsigned lc, lp, pb;
318 unsigned lpMask, pbMask;
320 CLzmaProb *litProbs;
322 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
323 CLzmaProb isRep[kNumStates];
324 CLzmaProb isRepG0[kNumStates];
325 CLzmaProb isRepG1[kNumStates];
326 CLzmaProb isRepG2[kNumStates];
327 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
329 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
330 CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
331 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
333 CLenPriceEnc lenEnc;
334 CLenPriceEnc repLenEnc;
336 unsigned lclp;
338 Bool fastMode;
340 CRangeEnc rc;
342 Bool writeEndMark;
343 UInt64 nowPos64;
344 UInt32 matchPriceCount;
345 Bool finished;
346 Bool multiThread;
348 SRes result;
349 UInt32 dictSize;
350 UInt32 matchFinderCycles;
352 ISeqInStream *inStream;
353 CSeqInStreamBuf seqBufInStream;
355 CSaveState saveState;
356 } CLzmaEnc;
358 void LzmaEnc_SaveState(CLzmaEncHandle pp)
360 CLzmaEnc *p = (CLzmaEnc *)pp;
361 CSaveState *dest = &p->saveState;
362 int i;
363 dest->lenEnc = p->lenEnc;
364 dest->repLenEnc = p->repLenEnc;
365 dest->state = p->state;
367 for (i = 0; i < kNumStates; i++)
369 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
370 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
372 for (i = 0; i < kNumLenToPosStates; i++)
373 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
374 memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
375 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
376 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
377 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
378 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
379 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
380 memcpy(dest->reps, p->reps, sizeof(p->reps));
381 memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
384 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
386 CLzmaEnc *dest = (CLzmaEnc *)pp;
387 const CSaveState *p = &dest->saveState;
388 int i;
389 dest->lenEnc = p->lenEnc;
390 dest->repLenEnc = p->repLenEnc;
391 dest->state = p->state;
393 for (i = 0; i < kNumStates; i++)
395 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
396 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
398 for (i = 0; i < kNumLenToPosStates; i++)
399 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
400 memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
401 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
402 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
403 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
404 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
405 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
406 memcpy(dest->reps, p->reps, sizeof(p->reps));
407 memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
410 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
412 CLzmaEnc *p = (CLzmaEnc *)pp;
413 CLzmaEncProps props = *props2;
414 LzmaEncProps_Normalize(&props);
416 if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
417 props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
418 return SZ_ERROR_PARAM;
419 p->dictSize = props.dictSize;
420 p->matchFinderCycles = props.mc;
422 unsigned fb = props.fb;
423 if (fb < 5)
424 fb = 5;
425 if (fb > LZMA_MATCH_LEN_MAX)
426 fb = LZMA_MATCH_LEN_MAX;
427 p->numFastBytes = fb;
429 p->lc = props.lc;
430 p->lp = props.lp;
431 p->pb = props.pb;
432 p->fastMode = (props.algo == 0);
433 p->matchFinderBase.btMode = props.btMode;
435 UInt32 numHashBytes = 4;
436 if (props.btMode)
438 if (props.numHashBytes < 2)
439 numHashBytes = 2;
440 else if (props.numHashBytes < 4)
441 numHashBytes = props.numHashBytes;
443 p->matchFinderBase.numHashBytes = numHashBytes;
446 p->matchFinderBase.cutValue = props.mc;
448 p->writeEndMark = props.writeEndMark;
450 #ifdef COMPRESS_MF_MT
452 if (newMultiThread != _multiThread)
454 ReleaseMatchFinder();
455 _multiThread = newMultiThread;
458 p->multiThread = (props.numThreads > 1);
459 #endif
461 return SZ_OK;
464 static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
465 static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
466 static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
467 static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
469 #define IsCharState(s) ((s) < 7)
471 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
473 #define kInfinityPrice (1 << 30)
475 static void RangeEnc_Construct(CRangeEnc *p)
477 p->outStream = 0;
478 p->bufBase = 0;
481 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
483 #define RC_BUF_SIZE (1 << 16)
484 static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
486 if (p->bufBase == 0)
488 p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
489 if (p->bufBase == 0)
490 return 0;
491 p->bufLim = p->bufBase + RC_BUF_SIZE;
493 return 1;
496 static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
498 alloc->Free(alloc, p->bufBase);
499 p->bufBase = 0;
502 static void RangeEnc_Init(CRangeEnc *p)
504 /* Stream.Init(); */
505 p->low = 0;
506 p->range = 0xFFFFFFFF;
507 p->cacheSize = 1;
508 p->cache = 0;
510 p->buf = p->bufBase;
512 p->processed = 0;
513 p->res = SZ_OK;
516 static void RangeEnc_FlushStream(CRangeEnc *p)
518 size_t num;
519 if (p->res != SZ_OK)
520 return;
521 num = p->buf - p->bufBase;
522 if (num != p->outStream->Write(p->outStream, p->bufBase, num))
523 p->res = SZ_ERROR_WRITE;
524 p->processed += num;
525 p->buf = p->bufBase;
528 static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
530 if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
532 Byte temp = p->cache;
535 Byte *buf = p->buf;
536 *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
537 p->buf = buf;
538 if (buf == p->bufLim)
539 RangeEnc_FlushStream(p);
540 temp = 0xFF;
542 while (--p->cacheSize != 0);
543 p->cache = (Byte)((UInt32)p->low >> 24);
545 p->cacheSize++;
546 p->low = (UInt32)p->low << 8;
549 static void RangeEnc_FlushData(CRangeEnc *p)
551 int i;
552 for (i = 0; i < 5; i++)
553 RangeEnc_ShiftLow(p);
556 static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
560 p->range >>= 1;
561 p->low += p->range & (0 - ((value >> --numBits) & 1));
562 if (p->range < kTopValue)
564 p->range <<= 8;
565 RangeEnc_ShiftLow(p);
568 while (numBits != 0);
571 static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
573 UInt32 ttt = *prob;
574 UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
575 if (symbol == 0)
577 p->range = newBound;
578 ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
580 else
582 p->low += newBound;
583 p->range -= newBound;
584 ttt -= ttt >> kNumMoveBits;
586 *prob = (CLzmaProb)ttt;
587 if (p->range < kTopValue)
589 p->range <<= 8;
590 RangeEnc_ShiftLow(p);
594 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
596 symbol |= 0x100;
599 RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
600 symbol <<= 1;
602 while (symbol < 0x10000);
605 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
607 UInt32 offs = 0x100;
608 symbol |= 0x100;
611 matchByte <<= 1;
612 RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
613 symbol <<= 1;
614 offs &= ~(matchByte ^ symbol);
616 while (symbol < 0x10000);
619 void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
621 UInt32 i;
622 for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
624 const int kCyclesBits = kNumBitPriceShiftBits;
625 UInt32 w = i;
626 UInt32 bitCount = 0;
627 int j;
628 for (j = 0; j < kCyclesBits; j++)
630 w = w * w;
631 bitCount <<= 1;
632 while (w >= ((UInt32)1 << 16))
634 w >>= 1;
635 bitCount++;
638 ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
643 #define GET_PRICE(prob, symbol) \
644 p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
646 #define GET_PRICEa(prob, symbol) \
647 ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
649 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
650 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
652 #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
653 #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
655 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
657 UInt32 price = 0;
658 symbol |= 0x100;
661 price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
662 symbol <<= 1;
664 while (symbol < 0x10000);
665 return price;
668 static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
670 UInt32 price = 0;
671 UInt32 offs = 0x100;
672 symbol |= 0x100;
675 matchByte <<= 1;
676 price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
677 symbol <<= 1;
678 offs &= ~(matchByte ^ symbol);
680 while (symbol < 0x10000);
681 return price;
685 static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
687 UInt32 m = 1;
688 int i;
689 for (i = numBitLevels; i != 0;)
691 UInt32 bit;
692 i--;
693 bit = (symbol >> i) & 1;
694 RangeEnc_EncodeBit(rc, probs + m, bit);
695 m = (m << 1) | bit;
699 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
701 UInt32 m = 1;
702 int i;
703 for (i = 0; i < numBitLevels; i++)
705 UInt32 bit = symbol & 1;
706 RangeEnc_EncodeBit(rc, probs + m, bit);
707 m = (m << 1) | bit;
708 symbol >>= 1;
712 static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
714 UInt32 price = 0;
715 symbol |= (1 << numBitLevels);
716 while (symbol != 1)
718 price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
719 symbol >>= 1;
721 return price;
724 static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
726 UInt32 price = 0;
727 UInt32 m = 1;
728 int i;
729 for (i = numBitLevels; i != 0; i--)
731 UInt32 bit = symbol & 1;
732 symbol >>= 1;
733 price += GET_PRICEa(probs[m], bit);
734 m = (m << 1) | bit;
736 return price;
740 static void LenEnc_Init(CLenEnc *p)
742 unsigned i;
743 p->choice = p->choice2 = kProbInitValue;
744 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
745 p->low[i] = kProbInitValue;
746 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
747 p->mid[i] = kProbInitValue;
748 for (i = 0; i < kLenNumHighSymbols; i++)
749 p->high[i] = kProbInitValue;
752 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
754 if (symbol < kLenNumLowSymbols)
756 RangeEnc_EncodeBit(rc, &p->choice, 0);
757 RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
759 else
761 RangeEnc_EncodeBit(rc, &p->choice, 1);
762 if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
764 RangeEnc_EncodeBit(rc, &p->choice2, 0);
765 RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
767 else
769 RangeEnc_EncodeBit(rc, &p->choice2, 1);
770 RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
775 static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
777 UInt32 a0 = GET_PRICE_0a(p->choice);
778 UInt32 a1 = GET_PRICE_1a(p->choice);
779 UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
780 UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
781 UInt32 i = 0;
782 for (i = 0; i < kLenNumLowSymbols; i++)
784 if (i >= numSymbols)
785 return;
786 prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
788 for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
790 if (i >= numSymbols)
791 return;
792 prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
794 for (; i < numSymbols; i++)
795 prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
798 static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
800 LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
801 p->counters[posState] = p->tableSize;
804 static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
806 UInt32 posState;
807 for (posState = 0; posState < numPosStates; posState++)
808 LenPriceEnc_UpdateTable(p, posState, ProbPrices);
811 static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
813 LenEnc_Encode(&p->p, rc, symbol, posState);
814 if (updatePrice)
815 if (--p->counters[posState] == 0)
816 LenPriceEnc_UpdateTable(p, posState, ProbPrices);
822 static void MovePos(CLzmaEnc *p, UInt32 num)
824 #ifdef SHOW_STAT
825 ttt += num;
826 printf("\n MovePos %d", num);
827 #endif
828 if (num != 0)
830 p->additionalOffset += num;
831 p->matchFinder.Skip(p->matchFinderObj, num);
835 static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
837 UInt32 lenRes = 0, numPairs;
838 p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
839 numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
840 #ifdef SHOW_STAT
841 printf("\n i = %d numPairs = %d ", ttt, numPairs / 2);
842 ttt++;
844 UInt32 i;
845 for (i = 0; i < numPairs; i += 2)
846 printf("%2d %6d | ", p->matches[i], p->matches[i + 1]);
848 #endif
849 if (numPairs > 0)
851 lenRes = p->matches[numPairs - 2];
852 if (lenRes == p->numFastBytes)
854 const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
855 UInt32 distance = p->matches[numPairs - 1] + 1;
856 UInt32 numAvail = p->numAvail;
857 if (numAvail > LZMA_MATCH_LEN_MAX)
858 numAvail = LZMA_MATCH_LEN_MAX;
860 const Byte *pby2 = pby - distance;
861 for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
865 p->additionalOffset++;
866 *numDistancePairsRes = numPairs;
867 return lenRes;
871 #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
872 #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
873 #define IsShortRep(p) ((p)->backPrev == 0)
875 static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
877 return
878 GET_PRICE_0(p->isRepG0[state]) +
879 GET_PRICE_0(p->isRep0Long[state][posState]);
882 static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
884 UInt32 price;
885 if (repIndex == 0)
887 price = GET_PRICE_0(p->isRepG0[state]);
888 price += GET_PRICE_1(p->isRep0Long[state][posState]);
890 else
892 price = GET_PRICE_1(p->isRepG0[state]);
893 if (repIndex == 1)
894 price += GET_PRICE_0(p->isRepG1[state]);
895 else
897 price += GET_PRICE_1(p->isRepG1[state]);
898 price += GET_PRICE(p->isRepG2[state], repIndex - 2);
901 return price;
904 static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
906 return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
907 GetPureRepPrice(p, repIndex, state, posState);
910 static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
912 UInt32 posMem = p->opt[cur].posPrev;
913 UInt32 backMem = p->opt[cur].backPrev;
914 p->optimumEndIndex = cur;
917 if (p->opt[cur].prev1IsChar)
919 MakeAsChar(&p->opt[posMem])
920 p->opt[posMem].posPrev = posMem - 1;
921 if (p->opt[cur].prev2)
923 p->opt[posMem - 1].prev1IsChar = False;
924 p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
925 p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
929 UInt32 posPrev = posMem;
930 UInt32 backCur = backMem;
932 backMem = p->opt[posPrev].backPrev;
933 posMem = p->opt[posPrev].posPrev;
935 p->opt[posPrev].backPrev = backCur;
936 p->opt[posPrev].posPrev = cur;
937 cur = posPrev;
940 while (cur != 0);
941 *backRes = p->opt[0].backPrev;
942 p->optimumCurrentIndex = p->opt[0].posPrev;
943 return p->optimumCurrentIndex;
946 #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
948 static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
950 UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
951 UInt32 matchPrice, repMatchPrice, normalMatchPrice;
952 UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
953 UInt32 *matches;
954 const Byte *data;
955 Byte curByte, matchByte;
956 if (p->optimumEndIndex != p->optimumCurrentIndex)
958 const COptimal *opt = &p->opt[p->optimumCurrentIndex];
959 UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
960 *backRes = opt->backPrev;
961 p->optimumCurrentIndex = opt->posPrev;
962 return lenRes;
964 p->optimumCurrentIndex = p->optimumEndIndex = 0;
966 if (p->additionalOffset == 0)
967 mainLen = ReadMatchDistances(p, &numPairs);
968 else
970 mainLen = p->longestMatchLength;
971 numPairs = p->numPairs;
974 numAvail = p->numAvail;
975 if (numAvail < 2)
977 *backRes = (UInt32)(-1);
978 return 1;
980 if (numAvail > LZMA_MATCH_LEN_MAX)
981 numAvail = LZMA_MATCH_LEN_MAX;
983 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
984 repMaxIndex = 0;
985 for (i = 0; i < LZMA_NUM_REPS; i++)
987 UInt32 lenTest;
988 const Byte *data2;
989 reps[i] = p->reps[i];
990 data2 = data - (reps[i] + 1);
991 if (data[0] != data2[0] || data[1] != data2[1])
993 repLens[i] = 0;
994 continue;
996 for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
997 repLens[i] = lenTest;
998 if (lenTest > repLens[repMaxIndex])
999 repMaxIndex = i;
1001 if (repLens[repMaxIndex] >= p->numFastBytes)
1003 UInt32 lenRes;
1004 *backRes = repMaxIndex;
1005 lenRes = repLens[repMaxIndex];
1006 MovePos(p, lenRes - 1);
1007 return lenRes;
1010 matches = p->matches;
1011 if (mainLen >= p->numFastBytes)
1013 *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1014 MovePos(p, mainLen - 1);
1015 return mainLen;
1017 curByte = *data;
1018 matchByte = *(data - (reps[0] + 1));
1020 if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
1022 *backRes = (UInt32)-1;
1023 return 1;
1026 p->opt[0].state = (CState)p->state;
1028 posState = (position & p->pbMask);
1031 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1032 p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1033 (!IsCharState(p->state) ?
1034 LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1035 LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1038 MakeAsChar(&p->opt[1]);
1040 matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1041 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1043 if (matchByte == curByte)
1045 UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
1046 if (shortRepPrice < p->opt[1].price)
1048 p->opt[1].price = shortRepPrice;
1049 MakeAsShortRep(&p->opt[1]);
1052 lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
1054 if (lenEnd < 2)
1056 *backRes = p->opt[1].backPrev;
1057 return 1;
1060 p->opt[1].posPrev = 0;
1061 for (i = 0; i < LZMA_NUM_REPS; i++)
1062 p->opt[0].backs[i] = reps[i];
1064 len = lenEnd;
1066 p->opt[len--].price = kInfinityPrice;
1067 while (len >= 2);
1069 for (i = 0; i < LZMA_NUM_REPS; i++)
1071 UInt32 repLen = repLens[i];
1072 UInt32 price;
1073 if (repLen < 2)
1074 continue;
1075 price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
1078 UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
1079 COptimal *opt = &p->opt[repLen];
1080 if (curAndLenPrice < opt->price)
1082 opt->price = curAndLenPrice;
1083 opt->posPrev = 0;
1084 opt->backPrev = i;
1085 opt->prev1IsChar = False;
1088 while (--repLen >= 2);
1091 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1093 len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
1094 if (len <= mainLen)
1096 UInt32 offs = 0;
1097 while (len > matches[offs])
1098 offs += 2;
1099 for (; ; len++)
1101 COptimal *opt;
1102 UInt32 distance = matches[offs + 1];
1104 UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
1105 UInt32 lenToPosState = GetLenToPosState(len);
1106 if (distance < kNumFullDistances)
1107 curAndLenPrice += p->distancesPrices[lenToPosState][distance];
1108 else
1110 UInt32 slot;
1111 GetPosSlot2(distance, slot);
1112 curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
1114 opt = &p->opt[len];
1115 if (curAndLenPrice < opt->price)
1117 opt->price = curAndLenPrice;
1118 opt->posPrev = 0;
1119 opt->backPrev = distance + LZMA_NUM_REPS;
1120 opt->prev1IsChar = False;
1122 if (len == matches[offs])
1124 offs += 2;
1125 if (offs == numPairs)
1126 break;
1131 cur = 0;
1133 #ifdef SHOW_STAT2
1134 if (position >= 0)
1136 unsigned i;
1137 printf("\n pos = %4X", position);
1138 for (i = cur; i <= lenEnd; i++)
1139 printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
1141 #endif
1143 for (;;)
1145 UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
1146 UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
1147 Bool nextIsChar;
1148 Byte curByte, matchByte;
1149 const Byte *data;
1150 COptimal *curOpt;
1151 COptimal *nextOpt;
1153 cur++;
1154 if (cur == lenEnd)
1155 return Backward(p, backRes, cur);
1157 newLen = ReadMatchDistances(p, &numPairs);
1158 if (newLen >= p->numFastBytes)
1160 p->numPairs = numPairs;
1161 p->longestMatchLength = newLen;
1162 return Backward(p, backRes, cur);
1164 position++;
1165 curOpt = &p->opt[cur];
1166 posPrev = curOpt->posPrev;
1167 if (curOpt->prev1IsChar)
1169 posPrev--;
1170 if (curOpt->prev2)
1172 state = p->opt[curOpt->posPrev2].state;
1173 if (curOpt->backPrev2 < LZMA_NUM_REPS)
1174 state = kRepNextStates[state];
1175 else
1176 state = kMatchNextStates[state];
1178 else
1179 state = p->opt[posPrev].state;
1180 state = kLiteralNextStates[state];
1182 else
1183 state = p->opt[posPrev].state;
1184 if (posPrev == cur - 1)
1186 if (IsShortRep(curOpt))
1187 state = kShortRepNextStates[state];
1188 else
1189 state = kLiteralNextStates[state];
1191 else
1193 UInt32 pos;
1194 const COptimal *prevOpt;
1195 if (curOpt->prev1IsChar && curOpt->prev2)
1197 posPrev = curOpt->posPrev2;
1198 pos = curOpt->backPrev2;
1199 state = kRepNextStates[state];
1201 else
1203 pos = curOpt->backPrev;
1204 if (pos < LZMA_NUM_REPS)
1205 state = kRepNextStates[state];
1206 else
1207 state = kMatchNextStates[state];
1209 prevOpt = &p->opt[posPrev];
1210 if (pos < LZMA_NUM_REPS)
1212 UInt32 i;
1213 reps[0] = prevOpt->backs[pos];
1214 for (i = 1; i <= pos; i++)
1215 reps[i] = prevOpt->backs[i - 1];
1216 for (; i < LZMA_NUM_REPS; i++)
1217 reps[i] = prevOpt->backs[i];
1219 else
1221 UInt32 i;
1222 reps[0] = (pos - LZMA_NUM_REPS);
1223 for (i = 1; i < LZMA_NUM_REPS; i++)
1224 reps[i] = prevOpt->backs[i - 1];
1227 curOpt->state = (CState)state;
1229 curOpt->backs[0] = reps[0];
1230 curOpt->backs[1] = reps[1];
1231 curOpt->backs[2] = reps[2];
1232 curOpt->backs[3] = reps[3];
1234 curPrice = curOpt->price;
1235 nextIsChar = False;
1236 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1237 curByte = *data;
1238 matchByte = *(data - (reps[0] + 1));
1240 posState = (position & p->pbMask);
1242 curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
1244 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1245 curAnd1Price +=
1246 (!IsCharState(state) ?
1247 LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1248 LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1251 nextOpt = &p->opt[cur + 1];
1253 if (curAnd1Price < nextOpt->price)
1255 nextOpt->price = curAnd1Price;
1256 nextOpt->posPrev = cur;
1257 MakeAsChar(nextOpt);
1258 nextIsChar = True;
1261 matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
1262 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1264 if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
1266 UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
1267 if (shortRepPrice <= nextOpt->price)
1269 nextOpt->price = shortRepPrice;
1270 nextOpt->posPrev = cur;
1271 MakeAsShortRep(nextOpt);
1272 nextIsChar = True;
1275 numAvailFull = p->numAvail;
1277 UInt32 temp = kNumOpts - 1 - cur;
1278 if (temp < numAvailFull)
1279 numAvailFull = temp;
1282 if (numAvailFull < 2)
1283 continue;
1284 numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
1286 if (!nextIsChar && matchByte != curByte) /* speed optimization */
1288 /* try Literal + rep0 */
1289 UInt32 temp;
1290 UInt32 lenTest2;
1291 const Byte *data2 = data - (reps[0] + 1);
1292 UInt32 limit = p->numFastBytes + 1;
1293 if (limit > numAvailFull)
1294 limit = numAvailFull;
1296 for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
1297 lenTest2 = temp - 1;
1298 if (lenTest2 >= 2)
1300 UInt32 state2 = kLiteralNextStates[state];
1301 UInt32 posStateNext = (position + 1) & p->pbMask;
1302 UInt32 nextRepMatchPrice = curAnd1Price +
1303 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1304 GET_PRICE_1(p->isRep[state2]);
1305 /* for (; lenTest2 >= 2; lenTest2--) */
1307 UInt32 curAndLenPrice;
1308 COptimal *opt;
1309 UInt32 offset = cur + 1 + lenTest2;
1310 while (lenEnd < offset)
1311 p->opt[++lenEnd].price = kInfinityPrice;
1312 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1313 opt = &p->opt[offset];
1314 if (curAndLenPrice < opt->price)
1316 opt->price = curAndLenPrice;
1317 opt->posPrev = cur + 1;
1318 opt->backPrev = 0;
1319 opt->prev1IsChar = True;
1320 opt->prev2 = False;
1326 startLen = 2; /* speed optimization */
1328 UInt32 repIndex;
1329 for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
1331 UInt32 lenTest;
1332 UInt32 lenTestTemp;
1333 UInt32 price;
1334 const Byte *data2 = data - (reps[repIndex] + 1);
1335 if (data[0] != data2[0] || data[1] != data2[1])
1336 continue;
1337 for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
1338 while (lenEnd < cur + lenTest)
1339 p->opt[++lenEnd].price = kInfinityPrice;
1340 lenTestTemp = lenTest;
1341 price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
1344 UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
1345 COptimal *opt = &p->opt[cur + lenTest];
1346 if (curAndLenPrice < opt->price)
1348 opt->price = curAndLenPrice;
1349 opt->posPrev = cur;
1350 opt->backPrev = repIndex;
1351 opt->prev1IsChar = False;
1354 while (--lenTest >= 2);
1355 lenTest = lenTestTemp;
1357 if (repIndex == 0)
1358 startLen = lenTest + 1;
1360 /* if (_maxMode) */
1362 UInt32 lenTest2 = lenTest + 1;
1363 UInt32 limit = lenTest2 + p->numFastBytes;
1364 UInt32 nextRepMatchPrice;
1365 if (limit > numAvailFull)
1366 limit = numAvailFull;
1367 for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1368 lenTest2 -= lenTest + 1;
1369 if (lenTest2 >= 2)
1371 UInt32 state2 = kRepNextStates[state];
1372 UInt32 posStateNext = (position + lenTest) & p->pbMask;
1373 UInt32 curAndLenCharPrice =
1374 price + p->repLenEnc.prices[posState][lenTest - 2] +
1375 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1376 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1377 data[lenTest], data2[lenTest], p->ProbPrices);
1378 state2 = kLiteralNextStates[state2];
1379 posStateNext = (position + lenTest + 1) & p->pbMask;
1380 nextRepMatchPrice = curAndLenCharPrice +
1381 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1382 GET_PRICE_1(p->isRep[state2]);
1384 /* for (; lenTest2 >= 2; lenTest2--) */
1386 UInt32 curAndLenPrice;
1387 COptimal *opt;
1388 UInt32 offset = cur + lenTest + 1 + lenTest2;
1389 while (lenEnd < offset)
1390 p->opt[++lenEnd].price = kInfinityPrice;
1391 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1392 opt = &p->opt[offset];
1393 if (curAndLenPrice < opt->price)
1395 opt->price = curAndLenPrice;
1396 opt->posPrev = cur + lenTest + 1;
1397 opt->backPrev = 0;
1398 opt->prev1IsChar = True;
1399 opt->prev2 = True;
1400 opt->posPrev2 = cur;
1401 opt->backPrev2 = repIndex;
1408 /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
1409 if (newLen > numAvail)
1411 newLen = numAvail;
1412 for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1413 matches[numPairs] = newLen;
1414 numPairs += 2;
1416 if (newLen >= startLen)
1418 UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1419 UInt32 offs, curBack, posSlot;
1420 UInt32 lenTest;
1421 while (lenEnd < cur + newLen)
1422 p->opt[++lenEnd].price = kInfinityPrice;
1424 offs = 0;
1425 while (startLen > matches[offs])
1426 offs += 2;
1427 curBack = matches[offs + 1];
1428 GetPosSlot2(curBack, posSlot);
1429 for (lenTest = /*2*/ startLen; ; lenTest++)
1431 UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
1432 UInt32 lenToPosState = GetLenToPosState(lenTest);
1433 COptimal *opt;
1434 if (curBack < kNumFullDistances)
1435 curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
1436 else
1437 curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
1439 opt = &p->opt[cur + lenTest];
1440 if (curAndLenPrice < opt->price)
1442 opt->price = curAndLenPrice;
1443 opt->posPrev = cur;
1444 opt->backPrev = curBack + LZMA_NUM_REPS;
1445 opt->prev1IsChar = False;
1448 if (/*_maxMode && */lenTest == matches[offs])
1450 /* Try Match + Literal + Rep0 */
1451 const Byte *data2 = data - (curBack + 1);
1452 UInt32 lenTest2 = lenTest + 1;
1453 UInt32 limit = lenTest2 + p->numFastBytes;
1454 UInt32 nextRepMatchPrice;
1455 if (limit > numAvailFull)
1456 limit = numAvailFull;
1457 for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1458 lenTest2 -= lenTest + 1;
1459 if (lenTest2 >= 2)
1461 UInt32 state2 = kMatchNextStates[state];
1462 UInt32 posStateNext = (position + lenTest) & p->pbMask;
1463 UInt32 curAndLenCharPrice = curAndLenPrice +
1464 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1465 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1466 data[lenTest], data2[lenTest], p->ProbPrices);
1467 state2 = kLiteralNextStates[state2];
1468 posStateNext = (posStateNext + 1) & p->pbMask;
1469 nextRepMatchPrice = curAndLenCharPrice +
1470 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1471 GET_PRICE_1(p->isRep[state2]);
1473 /* for (; lenTest2 >= 2; lenTest2--) */
1475 UInt32 offset = cur + lenTest + 1 + lenTest2;
1476 UInt32 curAndLenPrice;
1477 COptimal *opt;
1478 while (lenEnd < offset)
1479 p->opt[++lenEnd].price = kInfinityPrice;
1480 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1481 opt = &p->opt[offset];
1482 if (curAndLenPrice < opt->price)
1484 opt->price = curAndLenPrice;
1485 opt->posPrev = cur + lenTest + 1;
1486 opt->backPrev = 0;
1487 opt->prev1IsChar = True;
1488 opt->prev2 = True;
1489 opt->posPrev2 = cur;
1490 opt->backPrev2 = curBack + LZMA_NUM_REPS;
1494 offs += 2;
1495 if (offs == numPairs)
1496 break;
1497 curBack = matches[offs + 1];
1498 if (curBack >= kNumFullDistances)
1499 GetPosSlot2(curBack, posSlot);
1506 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1508 static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
1510 UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
1511 const Byte *data;
1512 const UInt32 *matches;
1514 if (p->additionalOffset == 0)
1515 mainLen = ReadMatchDistances(p, &numPairs);
1516 else
1518 mainLen = p->longestMatchLength;
1519 numPairs = p->numPairs;
1522 numAvail = p->numAvail;
1523 *backRes = (UInt32)-1;
1524 if (numAvail < 2)
1525 return 1;
1526 if (numAvail > LZMA_MATCH_LEN_MAX)
1527 numAvail = LZMA_MATCH_LEN_MAX;
1528 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1530 repLen = repIndex = 0;
1531 for (i = 0; i < LZMA_NUM_REPS; i++)
1533 UInt32 len;
1534 const Byte *data2 = data - (p->reps[i] + 1);
1535 if (data[0] != data2[0] || data[1] != data2[1])
1536 continue;
1537 for (len = 2; len < numAvail && data[len] == data2[len]; len++);
1538 if (len >= p->numFastBytes)
1540 *backRes = i;
1541 MovePos(p, len - 1);
1542 return len;
1544 if (len > repLen)
1546 repIndex = i;
1547 repLen = len;
1551 matches = p->matches;
1552 if (mainLen >= p->numFastBytes)
1554 *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1555 MovePos(p, mainLen - 1);
1556 return mainLen;
1559 mainDist = 0; /* for GCC */
1560 if (mainLen >= 2)
1562 mainDist = matches[numPairs - 1];
1563 while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
1565 if (!ChangePair(matches[numPairs - 3], mainDist))
1566 break;
1567 numPairs -= 2;
1568 mainLen = matches[numPairs - 2];
1569 mainDist = matches[numPairs - 1];
1571 if (mainLen == 2 && mainDist >= 0x80)
1572 mainLen = 1;
1575 if (repLen >= 2 && (
1576 (repLen + 1 >= mainLen) ||
1577 (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
1578 (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
1580 *backRes = repIndex;
1581 MovePos(p, repLen - 1);
1582 return repLen;
1585 if (mainLen < 2 || numAvail <= 2)
1586 return 1;
1588 p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
1589 if (p->longestMatchLength >= 2)
1591 UInt32 newDistance = matches[p->numPairs - 1];
1592 if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
1593 (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
1594 (p->longestMatchLength > mainLen + 1) ||
1595 (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
1596 return 1;
1599 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1600 for (i = 0; i < LZMA_NUM_REPS; i++)
1602 UInt32 len, limit;
1603 const Byte *data2 = data - (p->reps[i] + 1);
1604 if (data[0] != data2[0] || data[1] != data2[1])
1605 continue;
1606 limit = mainLen - 1;
1607 for (len = 2; len < limit && data[len] == data2[len]; len++);
1608 if (len >= limit)
1609 return 1;
1611 *backRes = mainDist + LZMA_NUM_REPS;
1612 MovePos(p, mainLen - 2);
1613 return mainLen;
1616 static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
1618 UInt32 len;
1619 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1620 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1621 p->state = kMatchNextStates[p->state];
1622 len = LZMA_MATCH_LEN_MIN;
1623 LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1624 RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
1625 RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
1626 RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
1629 static SRes CheckErrors(CLzmaEnc *p)
1631 if (p->result != SZ_OK)
1632 return p->result;
1633 if (p->rc.res != SZ_OK)
1634 p->result = SZ_ERROR_WRITE;
1635 if (p->matchFinderBase.result != SZ_OK)
1636 p->result = SZ_ERROR_READ;
1637 if (p->result != SZ_OK)
1638 p->finished = True;
1639 return p->result;
1642 static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
1644 /* ReleaseMFStream(); */
1645 p->finished = True;
1646 if (p->writeEndMark)
1647 WriteEndMarker(p, nowPos & p->pbMask);
1648 RangeEnc_FlushData(&p->rc);
1649 RangeEnc_FlushStream(&p->rc);
1650 return CheckErrors(p);
1653 static void FillAlignPrices(CLzmaEnc *p)
1655 UInt32 i;
1656 for (i = 0; i < kAlignTableSize; i++)
1657 p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
1658 p->alignPriceCount = 0;
1661 static void FillDistancesPrices(CLzmaEnc *p)
1663 UInt32 tempPrices[kNumFullDistances];
1664 UInt32 i, lenToPosState;
1665 for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
1667 UInt32 posSlot = GetPosSlot1(i);
1668 UInt32 footerBits = ((posSlot >> 1) - 1);
1669 UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1670 tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
1673 for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
1675 UInt32 posSlot;
1676 const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
1677 UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
1678 for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
1679 posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
1680 for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
1681 posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
1684 UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
1685 UInt32 i;
1686 for (i = 0; i < kStartPosModelIndex; i++)
1687 distancesPrices[i] = posSlotPrices[i];
1688 for (; i < kNumFullDistances; i++)
1689 distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
1692 p->matchPriceCount = 0;
1695 void LzmaEnc_Construct(CLzmaEnc *p)
1697 RangeEnc_Construct(&p->rc);
1698 MatchFinder_Construct(&p->matchFinderBase);
1699 #ifdef COMPRESS_MF_MT
1700 MatchFinderMt_Construct(&p->matchFinderMt);
1701 p->matchFinderMt.MatchFinder = &p->matchFinderBase;
1702 #endif
1705 CLzmaEncProps props;
1706 LzmaEncProps_Init(&props);
1707 LzmaEnc_SetProps(p, &props);
1710 #ifndef LZMA_LOG_BSR
1711 LzmaEnc_FastPosInit(p->g_FastPos);
1712 #endif
1714 LzmaEnc_InitPriceTables(p->ProbPrices);
1715 p->litProbs = 0;
1716 p->saveState.litProbs = 0;
1719 CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
1721 void *p;
1722 p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
1723 if (p != 0)
1724 LzmaEnc_Construct((CLzmaEnc *)p);
1725 return p;
1728 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
1730 alloc->Free(alloc, p->litProbs);
1731 alloc->Free(alloc, p->saveState.litProbs);
1732 p->litProbs = 0;
1733 p->saveState.litProbs = 0;
1736 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
1738 #ifdef COMPRESS_MF_MT
1739 MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
1740 #endif
1741 MatchFinder_Free(&p->matchFinderBase, allocBig);
1742 LzmaEnc_FreeLits(p, alloc);
1743 RangeEnc_Free(&p->rc, alloc);
1746 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
1748 LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
1749 alloc->Free(alloc, p);
1752 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
1754 UInt32 nowPos32, startPos32;
1755 if (p->inStream != 0)
1757 p->matchFinderBase.stream = p->inStream;
1758 p->matchFinder.Init(p->matchFinderObj);
1759 p->inStream = 0;
1762 if (p->finished)
1763 return p->result;
1764 RINOK(CheckErrors(p));
1766 nowPos32 = (UInt32)p->nowPos64;
1767 startPos32 = nowPos32;
1769 if (p->nowPos64 == 0)
1771 UInt32 numPairs;
1772 Byte curByte;
1773 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1774 return Flush(p, nowPos32);
1775 ReadMatchDistances(p, &numPairs);
1776 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
1777 p->state = kLiteralNextStates[p->state];
1778 curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
1779 LitEnc_Encode(&p->rc, p->litProbs, curByte);
1780 p->additionalOffset--;
1781 nowPos32++;
1784 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
1785 for (;;)
1787 UInt32 pos, len, posState;
1789 if (p->fastMode)
1790 len = GetOptimumFast(p, &pos);
1791 else
1792 len = GetOptimum(p, nowPos32, &pos);
1794 #ifdef SHOW_STAT2
1795 printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
1796 #endif
1798 posState = nowPos32 & p->pbMask;
1799 if (len == 1 && pos == (UInt32)-1)
1801 Byte curByte;
1802 CLzmaProb *probs;
1803 const Byte *data;
1805 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
1806 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
1807 curByte = *data;
1808 probs = LIT_PROBS(nowPos32, *(data - 1));
1809 if (IsCharState(p->state))
1810 LitEnc_Encode(&p->rc, probs, curByte);
1811 else
1812 LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
1813 p->state = kLiteralNextStates[p->state];
1815 else
1817 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1818 if (pos < LZMA_NUM_REPS)
1820 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
1821 if (pos == 0)
1823 RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
1824 RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
1826 else
1828 UInt32 distance = p->reps[pos];
1829 RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
1830 if (pos == 1)
1831 RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
1832 else
1834 RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
1835 RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
1836 if (pos == 3)
1837 p->reps[3] = p->reps[2];
1838 p->reps[2] = p->reps[1];
1840 p->reps[1] = p->reps[0];
1841 p->reps[0] = distance;
1843 if (len == 1)
1844 p->state = kShortRepNextStates[p->state];
1845 else
1847 LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1848 p->state = kRepNextStates[p->state];
1851 else
1853 UInt32 posSlot;
1854 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1855 p->state = kMatchNextStates[p->state];
1856 LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1857 pos -= LZMA_NUM_REPS;
1858 GetPosSlot(pos, posSlot);
1859 RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
1861 if (posSlot >= kStartPosModelIndex)
1863 UInt32 footerBits = ((posSlot >> 1) - 1);
1864 UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1865 UInt32 posReduced = pos - base;
1867 if (posSlot < kEndPosModelIndex)
1868 RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
1869 else
1871 RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
1872 RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
1873 p->alignPriceCount++;
1876 p->reps[3] = p->reps[2];
1877 p->reps[2] = p->reps[1];
1878 p->reps[1] = p->reps[0];
1879 p->reps[0] = pos;
1880 p->matchPriceCount++;
1883 p->additionalOffset -= len;
1884 nowPos32 += len;
1885 if (p->additionalOffset == 0)
1887 UInt32 processed;
1888 if (!p->fastMode)
1890 if (p->matchPriceCount >= (1 << 7))
1891 FillDistancesPrices(p);
1892 if (p->alignPriceCount >= kAlignTableSize)
1893 FillAlignPrices(p);
1895 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1896 break;
1897 processed = nowPos32 - startPos32;
1898 if (useLimits)
1900 if (processed + kNumOpts + 300 >= maxUnpackSize ||
1901 RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
1902 break;
1904 else if (processed >= (1 << 15))
1906 p->nowPos64 += nowPos32 - startPos32;
1907 return CheckErrors(p);
1911 p->nowPos64 += nowPos32 - startPos32;
1912 return Flush(p, nowPos32);
1915 #define kBigHashDicLimit ((UInt32)1 << 24)
1917 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
1919 UInt32 beforeSize = kNumOpts;
1920 Bool btMode;
1921 if (!RangeEnc_Alloc(&p->rc, alloc))
1922 return SZ_ERROR_MEM;
1923 btMode = (p->matchFinderBase.btMode != 0);
1924 #ifdef COMPRESS_MF_MT
1925 p->mtMode = (p->multiThread && !p->fastMode && btMode);
1926 #endif
1929 unsigned lclp = p->lc + p->lp;
1930 if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
1932 LzmaEnc_FreeLits(p, alloc);
1933 p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1934 p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1935 if (p->litProbs == 0 || p->saveState.litProbs == 0)
1937 LzmaEnc_FreeLits(p, alloc);
1938 return SZ_ERROR_MEM;
1940 p->lclp = lclp;
1944 p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
1946 if (beforeSize + p->dictSize < keepWindowSize)
1947 beforeSize = keepWindowSize - p->dictSize;
1949 #ifdef COMPRESS_MF_MT
1950 if (p->mtMode)
1952 RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
1953 p->matchFinderObj = &p->matchFinderMt;
1954 MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
1956 else
1957 #endif
1959 if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
1960 return SZ_ERROR_MEM;
1961 p->matchFinderObj = &p->matchFinderBase;
1962 MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
1964 return SZ_OK;
1967 void LzmaEnc_Init(CLzmaEnc *p)
1969 UInt32 i;
1970 p->state = 0;
1971 for (i = 0 ; i < LZMA_NUM_REPS; i++)
1972 p->reps[i] = 0;
1974 RangeEnc_Init(&p->rc);
1977 for (i = 0; i < kNumStates; i++)
1979 UInt32 j;
1980 for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
1982 p->isMatch[i][j] = kProbInitValue;
1983 p->isRep0Long[i][j] = kProbInitValue;
1985 p->isRep[i] = kProbInitValue;
1986 p->isRepG0[i] = kProbInitValue;
1987 p->isRepG1[i] = kProbInitValue;
1988 p->isRepG2[i] = kProbInitValue;
1992 UInt32 num = 0x300 << (p->lp + p->lc);
1993 for (i = 0; i < num; i++)
1994 p->litProbs[i] = kProbInitValue;
1998 for (i = 0; i < kNumLenToPosStates; i++)
2000 CLzmaProb *probs = p->posSlotEncoder[i];
2001 UInt32 j;
2002 for (j = 0; j < (1 << kNumPosSlotBits); j++)
2003 probs[j] = kProbInitValue;
2007 for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
2008 p->posEncoders[i] = kProbInitValue;
2011 LenEnc_Init(&p->lenEnc.p);
2012 LenEnc_Init(&p->repLenEnc.p);
2014 for (i = 0; i < (1 << kNumAlignBits); i++)
2015 p->posAlignEncoder[i] = kProbInitValue;
2017 p->optimumEndIndex = 0;
2018 p->optimumCurrentIndex = 0;
2019 p->additionalOffset = 0;
2021 p->pbMask = (1 << p->pb) - 1;
2022 p->lpMask = (1 << p->lp) - 1;
2025 void LzmaEnc_InitPrices(CLzmaEnc *p)
2027 if (!p->fastMode)
2029 FillDistancesPrices(p);
2030 FillAlignPrices(p);
2033 p->lenEnc.tableSize =
2034 p->repLenEnc.tableSize =
2035 p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2036 LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
2037 LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
2040 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2042 UInt32 i;
2043 for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
2044 if (p->dictSize <= ((UInt32)1 << i))
2045 break;
2046 p->distTableSize = i * 2;
2048 p->finished = False;
2049 p->result = SZ_OK;
2050 RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2051 LzmaEnc_Init(p);
2052 LzmaEnc_InitPrices(p);
2053 p->nowPos64 = 0;
2054 return SZ_OK;
2057 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream,
2058 ISzAlloc *alloc, ISzAlloc *allocBig)
2060 CLzmaEnc *p = (CLzmaEnc *)pp;
2061 p->inStream = inStream;
2062 p->rc.outStream = outStream;
2063 return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2066 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2067 ISeqInStream *inStream, UInt32 keepWindowSize,
2068 ISzAlloc *alloc, ISzAlloc *allocBig)
2070 CLzmaEnc *p = (CLzmaEnc *)pp;
2071 p->inStream = inStream;
2072 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2075 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2077 p->seqBufInStream.funcTable.Read = MyRead;
2078 p->seqBufInStream.data = src;
2079 p->seqBufInStream.rem = srcLen;
2082 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2083 UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2085 CLzmaEnc *p = (CLzmaEnc *)pp;
2086 LzmaEnc_SetInputBuf(p, src, srcLen);
2087 p->inStream = &p->seqBufInStream.funcTable;
2088 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2091 void LzmaEnc_Finish(CLzmaEncHandle pp)
2093 #ifdef COMPRESS_MF_MT
2094 CLzmaEnc *p = (CLzmaEnc *)pp;
2095 if (p->mtMode)
2096 MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2097 #else
2098 pp = pp;
2099 #endif
2102 typedef struct _CSeqOutStreamBuf
2104 ISeqOutStream funcTable;
2105 Byte *data;
2106 SizeT rem;
2107 Bool overflow;
2108 } CSeqOutStreamBuf;
2110 static size_t MyWrite(void *pp, const void *data, size_t size)
2112 CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
2113 if (p->rem < size)
2115 size = p->rem;
2116 p->overflow = True;
2118 memcpy(p->data, data, size);
2119 p->rem -= size;
2120 p->data += size;
2121 return size;
2125 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2127 const CLzmaEnc *p = (CLzmaEnc *)pp;
2128 return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2131 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2133 const CLzmaEnc *p = (CLzmaEnc *)pp;
2134 return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2137 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
2138 Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2140 CLzmaEnc *p = (CLzmaEnc *)pp;
2141 UInt64 nowPos64;
2142 SRes res;
2143 CSeqOutStreamBuf outStream;
2145 outStream.funcTable.Write = MyWrite;
2146 outStream.data = dest;
2147 outStream.rem = *destLen;
2148 outStream.overflow = False;
2150 p->writeEndMark = False;
2151 p->finished = False;
2152 p->result = SZ_OK;
2154 if (reInit)
2155 LzmaEnc_Init(p);
2156 LzmaEnc_InitPrices(p);
2157 nowPos64 = p->nowPos64;
2158 RangeEnc_Init(&p->rc);
2159 p->rc.outStream = &outStream.funcTable;
2161 res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
2163 *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2164 *destLen -= outStream.rem;
2165 if (outStream.overflow)
2166 return SZ_ERROR_OUTPUT_EOF;
2168 return res;
2171 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2172 ISzAlloc *alloc, ISzAlloc *allocBig)
2174 CLzmaEnc *p = (CLzmaEnc *)pp;
2175 SRes res = SZ_OK;
2177 #ifdef COMPRESS_MF_MT
2178 Byte allocaDummy[0x300];
2179 int i = 0;
2180 for (i = 0; i < 16; i++)
2181 allocaDummy[i] = (Byte)i;
2182 #endif
2184 RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig));
2186 for (;;)
2188 res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
2189 if (res != SZ_OK || p->finished != 0)
2190 break;
2191 if (progress != 0)
2193 res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2194 if (res != SZ_OK)
2196 res = SZ_ERROR_PROGRESS;
2197 break;
2201 LzmaEnc_Finish(pp);
2202 return res;
2205 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2207 CLzmaEnc *p = (CLzmaEnc *)pp;
2208 int i;
2209 UInt32 dictSize = p->dictSize;
2210 if (*size < LZMA_PROPS_SIZE)
2211 return SZ_ERROR_PARAM;
2212 *size = LZMA_PROPS_SIZE;
2213 props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2215 for (i = 11; i <= 30; i++)
2217 if (dictSize <= ((UInt32)2 << i))
2219 dictSize = (2 << i);
2220 break;
2222 if (dictSize <= ((UInt32)3 << i))
2224 dictSize = (3 << i);
2225 break;
2229 for (i = 0; i < 4; i++)
2230 props[1 + i] = (Byte)(dictSize >> (8 * i));
2231 return SZ_OK;
2234 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2235 int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2237 SRes res;
2238 CLzmaEnc *p = (CLzmaEnc *)pp;
2240 CSeqOutStreamBuf outStream;
2242 LzmaEnc_SetInputBuf(p, src, srcLen);
2244 outStream.funcTable.Write = MyWrite;
2245 outStream.data = dest;
2246 outStream.rem = *destLen;
2247 outStream.overflow = False;
2249 p->writeEndMark = writeEndMark;
2250 res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable,
2251 progress, alloc, allocBig);
2253 *destLen -= outStream.rem;
2254 if (outStream.overflow)
2255 return SZ_ERROR_OUTPUT_EOF;
2256 return res;
2259 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2260 const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2261 ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2263 CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2264 SRes res;
2265 if (p == 0)
2266 return SZ_ERROR_MEM;
2268 res = LzmaEnc_SetProps(p, props);
2269 if (res == SZ_OK)
2271 res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2272 if (res == SZ_OK)
2273 res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2274 writeEndMark, progress, alloc, allocBig);
2277 LzmaEnc_Destroy(p, alloc, allocBig);
2278 return res;