tccelf: fix warning
[tinycc.git] / x86_64-gen.c
blob10003d160e933940101104886e0beda0c1bac752
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 5
27 #define NB_ASM_REGS 8
29 /* a register can belong to several classes. The classes must be
30 sorted from more general to more precise (see gv2() code which does
31 assumptions on it). */
32 #define RC_INT 0x0001 /* generic integer register */
33 #define RC_FLOAT 0x0002 /* generic float register */
34 #define RC_RAX 0x0004
35 #define RC_RCX 0x0008
36 #define RC_RDX 0x0010
37 #define RC_R8 0x0100
38 #define RC_R9 0x0200
39 #define RC_XMM0 0x0020
40 #define RC_ST0 0x0040 /* only for long double */
41 #define RC_IRET RC_RAX /* function return: integer register */
42 #define RC_LRET RC_RDX /* function return: second integer register */
43 #define RC_FRET RC_XMM0 /* function return: float register */
45 /* pretty names for the registers */
46 enum {
47 TREG_RAX = 0,
48 TREG_RCX = 1,
49 TREG_RDX = 2,
50 TREG_XMM0 = 3,
51 TREG_ST0 = 4,
53 TREG_RSI = 6,
54 TREG_RDI = 7,
55 TREG_R8 = 8,
56 TREG_R9 = 9,
58 TREG_R10 = 10,
59 TREG_R11 = 11,
61 TREG_MEM = 0x10,
64 #define REX_BASE(reg) (((reg) >> 3) & 1)
65 #define REG_VALUE(reg) ((reg) & 7)
67 /* return registers for function */
68 #define REG_IRET TREG_RAX /* single word int return register */
69 #define REG_LRET TREG_RDX /* second word return register (for long long) */
70 #define REG_FRET TREG_XMM0 /* float return register */
72 /* defined if function parameters must be evaluated in reverse order */
73 #define INVERT_FUNC_PARAMS
75 /* pointer size, in bytes */
76 #define PTR_SIZE 8
78 /* long double size and alignment, in bytes */
79 #define LDOUBLE_SIZE 16
80 #define LDOUBLE_ALIGN 8
81 /* maximum alignment (for aligned attribute support) */
82 #define MAX_ALIGN 8
84 ST_FUNC void gen_opl(int op);
85 ST_FUNC void gen_le64(int64_t c);
87 /******************************************************/
88 /* ELF defines */
90 #define EM_TCC_TARGET EM_X86_64
92 /* relocation type for 32 bit data relocation */
93 #define R_DATA_32 R_X86_64_32
94 #define R_DATA_PTR R_X86_64_64
95 #define R_JMP_SLOT R_X86_64_JUMP_SLOT
96 #define R_COPY R_X86_64_COPY
98 #define ELF_START_ADDR 0x08048000
99 #define ELF_PAGE_SIZE 0x1000
101 /******************************************************/
102 #else /* ! TARGET_DEFS_ONLY */
103 /******************************************************/
104 #include "tcc.h"
105 #include <assert.h>
107 ST_DATA const int reg_classes[NB_REGS] = {
108 /* eax */ RC_INT | RC_RAX,
109 /* ecx */ RC_INT | RC_RCX,
110 /* edx */ RC_INT | RC_RDX,
111 /* xmm0 */ RC_FLOAT | RC_XMM0,
112 /* st0 */ RC_ST0,
113 #if NB_REGS == 10
117 RC_INT | RC_R8,
118 RC_INT | RC_R9,
119 #endif
122 static unsigned long func_sub_sp_offset;
123 static int func_ret_sub;
125 /* XXX: make it faster ? */
126 void g(int c)
128 int ind1;
129 ind1 = ind + 1;
130 if (ind1 > cur_text_section->data_allocated)
131 section_realloc(cur_text_section, ind1);
132 cur_text_section->data[ind] = c;
133 ind = ind1;
136 void o(unsigned int c)
138 while (c) {
139 g(c);
140 c = c >> 8;
144 void gen_le16(int v)
146 g(v);
147 g(v >> 8);
150 void gen_le32(int c)
152 g(c);
153 g(c >> 8);
154 g(c >> 16);
155 g(c >> 24);
158 void gen_le64(int64_t c)
160 g(c);
161 g(c >> 8);
162 g(c >> 16);
163 g(c >> 24);
164 g(c >> 32);
165 g(c >> 40);
166 g(c >> 48);
167 g(c >> 56);
170 void orex(int ll, int r, int r2, int b)
172 if ((r & VT_VALMASK) >= VT_CONST)
173 r = 0;
174 if ((r2 & VT_VALMASK) >= VT_CONST)
175 r2 = 0;
176 if (ll || REX_BASE(r) || REX_BASE(r2))
177 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
178 o(b);
181 /* output a symbol and patch all calls to it */
182 void gsym_addr(int t, int a)
184 int n, *ptr;
185 while (t) {
186 ptr = (int *)(cur_text_section->data + t);
187 n = *ptr; /* next value */
188 *ptr = a - t - 4;
189 t = n;
193 void gsym(int t)
195 gsym_addr(t, ind);
198 /* psym is used to put an instruction with a data field which is a
199 reference to a symbol. It is in fact the same as oad ! */
200 #define psym oad
202 static int is64_type(int t)
204 return ((t & VT_BTYPE) == VT_PTR ||
205 (t & VT_BTYPE) == VT_FUNC ||
206 (t & VT_BTYPE) == VT_LLONG);
209 static int is_sse_float(int t) {
210 int bt;
211 bt = t & VT_BTYPE;
212 return bt == VT_DOUBLE || bt == VT_FLOAT;
216 /* instruction + 4 bytes data. Return the address of the data */
217 ST_FUNC int oad(int c, int s)
219 int ind1;
221 o(c);
222 ind1 = ind + 4;
223 if (ind1 > cur_text_section->data_allocated)
224 section_realloc(cur_text_section, ind1);
225 *(int *)(cur_text_section->data + ind) = s;
226 s = ind;
227 ind = ind1;
228 return s;
231 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
233 if (r & VT_SYM)
234 greloc(cur_text_section, sym, ind, R_X86_64_32);
235 gen_le32(c);
238 /* output constant with relocation if 'r & VT_SYM' is true */
239 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
241 if (r & VT_SYM)
242 greloc(cur_text_section, sym, ind, R_X86_64_64);
243 gen_le64(c);
246 /* output constant with relocation if 'r & VT_SYM' is true */
247 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
249 if (r & VT_SYM)
250 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
251 gen_le32(c-4);
254 /* output got address with relocation */
255 static void gen_gotpcrel(int r, Sym *sym, int c)
257 #ifndef TCC_TARGET_PE
258 Section *sr;
259 ElfW(Rela) *rel;
260 greloc(cur_text_section, sym, ind, R_X86_64_GOTPCREL);
261 sr = cur_text_section->reloc;
262 rel = (ElfW(Rela) *)(sr->data + sr->data_offset - sizeof(ElfW(Rela)));
263 rel->r_addend = -4;
264 #else
265 printf("picpic: %s %x %x | %02x %02x %02x\n", get_tok_str(sym->v, NULL), c, r,
266 cur_text_section->data[ind-3],
267 cur_text_section->data[ind-2],
268 cur_text_section->data[ind-1]
270 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
271 #endif
272 gen_le32(0);
273 if (c) {
274 /* we use add c, %xxx for displacement */
275 orex(1, r, 0, 0x81);
276 o(0xc0 + REG_VALUE(r));
277 gen_le32(c);
281 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
283 op_reg = REG_VALUE(op_reg) << 3;
284 if ((r & VT_VALMASK) == VT_CONST) {
285 /* constant memory reference */
286 o(0x05 | op_reg);
287 if (is_got) {
288 gen_gotpcrel(r, sym, c);
289 } else {
290 gen_addrpc32(r, sym, c);
292 } else if ((r & VT_VALMASK) == VT_LOCAL) {
293 /* currently, we use only ebp as base */
294 if (c == (char)c) {
295 /* short reference */
296 o(0x45 | op_reg);
297 g(c);
298 } else {
299 oad(0x85 | op_reg, c);
301 } else if ((r & VT_VALMASK) >= TREG_MEM) {
302 if (c) {
303 g(0x80 | op_reg | REG_VALUE(r));
304 gen_le32(c);
305 } else {
306 g(0x00 | op_reg | REG_VALUE(r));
308 } else {
309 g(0x00 | op_reg | REG_VALUE(r));
313 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
314 opcode bits */
315 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
317 gen_modrm_impl(op_reg, r, sym, c, 0);
320 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
321 opcode bits */
322 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
324 int is_got;
325 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
326 orex(1, r, op_reg, opcode);
327 gen_modrm_impl(op_reg, r, sym, c, is_got);
331 /* load 'r' from value 'sv' */
332 void load(int r, SValue *sv)
334 int v, t, ft, fc, fr;
335 SValue v1;
337 #ifdef TCC_TARGET_PE
338 SValue v2;
339 sv = pe_getimport(sv, &v2);
340 #endif
342 fr = sv->r;
343 ft = sv->type.t;
344 fc = sv->c.ul;
346 #ifndef TCC_TARGET_PE
347 /* we use indirect access via got */
348 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
349 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
350 /* use the result register as a temporal register */
351 int tr = r | TREG_MEM;
352 if (is_float(ft)) {
353 /* we cannot use float registers as a temporal register */
354 tr = get_reg(RC_INT) | TREG_MEM;
356 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
358 /* load from the temporal register */
359 fr = tr | VT_LVAL;
361 #endif
363 v = fr & VT_VALMASK;
364 if (fr & VT_LVAL) {
365 int b, ll;
366 if (v == VT_LLOCAL) {
367 v1.type.t = VT_PTR;
368 v1.r = VT_LOCAL | VT_LVAL;
369 v1.c.ul = fc;
370 load(r, &v1);
371 fr = r;
373 ll = 0;
374 if ((ft & VT_BTYPE) == VT_FLOAT) {
375 b = 0x6e0f66, r = 0; /* movd */
376 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
377 b = 0x7e0ff3, r = 0; /* movq */
378 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
379 b = 0xdb, r = 5; /* fldt */
380 } else if ((ft & VT_TYPE) == VT_BYTE) {
381 b = 0xbe0f; /* movsbl */
382 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
383 b = 0xb60f; /* movzbl */
384 } else if ((ft & VT_TYPE) == VT_SHORT) {
385 b = 0xbf0f; /* movswl */
386 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
387 b = 0xb70f; /* movzwl */
388 } else {
389 ll = is64_type(ft);
390 b = 0x8b;
392 if (ll) {
393 gen_modrm64(b, r, fr, sv->sym, fc);
394 } else {
395 orex(ll, fr, r, b);
396 gen_modrm(r, fr, sv->sym, fc);
398 } else {
399 if (v == VT_CONST) {
400 if (fr & VT_SYM) {
401 #ifdef TCC_TARGET_PE
402 orex(1,0,r,0x8d);
403 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
404 gen_addrpc32(fr, sv->sym, fc);
405 #else
406 if (sv->sym->type.t & VT_STATIC) {
407 orex(1,0,r,0x8d);
408 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
409 gen_addrpc32(fr, sv->sym, fc);
410 } else {
411 orex(1,0,r,0x8b);
412 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
413 gen_gotpcrel(fr, sv->sym, fc);
415 #endif
416 } else if (is64_type(ft)) {
417 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
418 gen_le64(sv->c.ull);
419 } else {
420 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
421 gen_le32(fc);
423 } else if (v == VT_LOCAL) {
424 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
425 gen_modrm(r, VT_LOCAL, sv->sym, fc);
426 } else if (v == VT_CMP) {
427 orex(0,r,0,0);
428 oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */
429 orex(0,r,0, 0x0f); /* setxx %br */
430 o(fc);
431 o(0xc0 + REG_VALUE(r));
432 } else if (v == VT_JMP || v == VT_JMPI) {
433 t = v & 1;
434 orex(0,r,0,0);
435 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
436 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
437 gsym(fc);
438 orex(0,r,0,0);
439 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
440 } else if (v != r) {
441 if (r == TREG_XMM0) {
442 assert(v == TREG_ST0);
443 /* gen_cvt_ftof(VT_DOUBLE); */
444 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
445 /* movsd -0x10(%rsp),%xmm0 */
446 o(0x44100ff2);
447 o(0xf024);
448 } else if (r == TREG_ST0) {
449 assert(v == TREG_XMM0);
450 /* gen_cvt_ftof(VT_LDOUBLE); */
451 /* movsd %xmm0,-0x10(%rsp) */
452 o(0x44110ff2);
453 o(0xf024);
454 o(0xf02444dd); /* fldl -0x10(%rsp) */
455 } else {
456 orex(1,r,v, 0x89);
457 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
463 /* store register 'r' in lvalue 'v' */
464 void store(int r, SValue *v)
466 int fr, bt, ft, fc;
467 int op64 = 0;
468 /* store the REX prefix in this variable when PIC is enabled */
469 int pic = 0;
471 #ifdef TCC_TARGET_PE
472 SValue v2;
473 v = pe_getimport(v, &v2);
474 #endif
476 ft = v->type.t;
477 fc = v->c.ul;
478 fr = v->r & VT_VALMASK;
479 bt = ft & VT_BTYPE;
481 #ifndef TCC_TARGET_PE
482 /* we need to access the variable via got */
483 if (fr == VT_CONST && (v->r & VT_SYM)) {
484 /* mov xx(%rip), %r11 */
485 o(0x1d8b4c);
486 gen_gotpcrel(TREG_R11, v->sym, v->c.ul);
487 pic = is64_type(bt) ? 0x49 : 0x41;
489 #endif
491 /* XXX: incorrect if float reg to reg */
492 if (bt == VT_FLOAT) {
493 o(0x66);
494 o(pic);
495 o(0x7e0f); /* movd */
496 r = 0;
497 } else if (bt == VT_DOUBLE) {
498 o(0x66);
499 o(pic);
500 o(0xd60f); /* movq */
501 r = 0;
502 } else if (bt == VT_LDOUBLE) {
503 o(0xc0d9); /* fld %st(0) */
504 o(pic);
505 o(0xdb); /* fstpt */
506 r = 7;
507 } else {
508 if (bt == VT_SHORT)
509 o(0x66);
510 o(pic);
511 if (bt == VT_BYTE || bt == VT_BOOL)
512 orex(0, 0, r, 0x88);
513 else if (is64_type(bt))
514 op64 = 0x89;
515 else
516 orex(0, 0, r, 0x89);
518 if (pic) {
519 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
520 if (op64)
521 o(op64);
522 o(3 + (r << 3));
523 } else if (op64) {
524 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
525 gen_modrm64(op64, r, v->r, v->sym, fc);
526 } else if (fr != r) {
527 /* XXX: don't we really come here? */
528 abort();
529 o(0xc0 + fr + r * 8); /* mov r, fr */
531 } else {
532 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
533 gen_modrm(r, v->r, v->sym, fc);
534 } else if (fr != r) {
535 /* XXX: don't we really come here? */
536 abort();
537 o(0xc0 + fr + r * 8); /* mov r, fr */
542 /* 'is_jmp' is '1' if it is a jump */
543 static void gcall_or_jmp(int is_jmp)
545 int r;
546 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
547 /* constant case */
548 if (vtop->r & VT_SYM) {
549 /* relocation case */
550 greloc(cur_text_section, vtop->sym,
551 ind + 1, R_X86_64_PC32);
552 } else {
553 /* put an empty PC32 relocation */
554 put_elf_reloc(symtab_section, cur_text_section,
555 ind + 1, R_X86_64_PC32, 0);
557 oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */
558 } else {
559 /* otherwise, indirect call */
560 r = TREG_R11;
561 load(r, vtop);
562 o(0x41); /* REX */
563 o(0xff); /* call/jmp *r */
564 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
568 #ifdef TCC_TARGET_PE
570 #define REGN 4
571 static const uint8_t arg_regs[] = {
572 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
575 static int func_scratch;
577 /* Generate function call. The function address is pushed first, then
578 all the parameters in call order. This functions pops all the
579 parameters and the function address. */
581 void gen_offs_sp(int b, int r, int d)
583 orex(1,0,r & 0x100 ? 0 : r, b);
584 if (d == (char)d) {
585 o(0x2444 | (REG_VALUE(r) << 3));
586 g(d);
587 } else {
588 o(0x2484 | (REG_VALUE(r) << 3));
589 gen_le32(d);
593 void gfunc_call(int nb_args)
595 int size, align, r, args_size, i, d, j, bt;
596 int nb_reg_args, gen_reg;
598 /* calculate the number of integer/float arguments */
599 nb_reg_args = 0;
600 for(i = 0; i < nb_args; i++) {
601 bt = (vtop[-i].type.t & VT_BTYPE);
602 if (bt != VT_STRUCT && bt != VT_LDOUBLE)
603 nb_reg_args++;
606 args_size = (nb_reg_args < REGN ? REGN : nb_reg_args) * PTR_SIZE;
608 /* for struct arguments, we need to call memcpy and the function
609 call breaks register passing arguments we are preparing.
610 So, we process arguments which will be passed by stack first. */
611 for(i = 0; i < nb_args; i++) {
612 SValue *sv = &vtop[-i];
613 bt = (sv->type.t & VT_BTYPE);
614 if (bt == VT_STRUCT) {
615 size = type_size(&sv->type, &align);
616 /* align to stack align size */
617 size = (size + 15) & ~16;
618 /* generate structure store */
619 r = get_reg(RC_INT);
620 gen_offs_sp(0x8d, r, args_size);
621 args_size += size;
623 /* generate memcpy call */
624 vset(&sv->type, r | VT_LVAL, 0);
625 vpushv(sv);
626 vstore();
627 --vtop;
629 } else if (bt == VT_LDOUBLE) {
631 gv(RC_ST0);
632 gen_offs_sp(0xdb, 0x107, args_size);
633 args_size += 16;
638 if (func_scratch < args_size)
639 func_scratch = args_size;
641 for (i = 0; i < REGN; ++i)
642 save_reg(arg_regs[i]);
644 gen_reg = nb_reg_args;
645 for(i = 0; i < nb_args; i++) {
646 bt = (vtop->type.t & VT_BTYPE);
647 if (bt == VT_STRUCT || bt == VT_LDOUBLE) {
648 ; /* done */
649 } else if (is_sse_float(vtop->type.t)) {
650 gv(RC_FLOAT); /* only one float register */
651 j = --gen_reg;
652 if (j >= REGN) {
653 /* movq %xmm0, j*8(%rsp) */
654 gen_offs_sp(0xd60f66, 0x100, j*8);
655 } else {
656 /* movaps %xmm0, %xmmN */
657 o(0x280f);
658 o(0xc0 + (j << 3));
659 d = arg_regs[j];
660 /* mov %xmm0, %rxx */
661 o(0x66);
662 orex(1,d,0, 0x7e0f);
663 o(0xc0 + REG_VALUE(d));
665 } else {
666 j = --gen_reg;
667 if (j >= REGN) {
668 r = gv(RC_INT);
669 gen_offs_sp(0x89, r, j*8);
670 } else {
671 d = arg_regs[j];
672 if (d < NB_REGS) {
673 gv(reg_classes[d] & ~RC_INT);
674 } else {
675 r = gv(RC_INT);
676 if (d != r) {
677 orex(1,d,r, 0x89);
678 o(0xc0 + REG_VALUE(d) + REG_VALUE(r) * 8);
684 vtop--;
686 save_regs(0);
687 gcall_or_jmp(0);
688 vtop--;
692 #define FUNC_PROLOG_SIZE 11
694 /* generate function prolog of type 't' */
695 void gfunc_prolog(CType *func_type)
697 int addr, align, size, reg_param_index, bt;
698 Sym *sym;
699 CType *type;
701 func_ret_sub = 0;
702 func_scratch = 0;
703 loc = 0;
705 addr = PTR_SIZE * 2;
706 ind += FUNC_PROLOG_SIZE;
707 func_sub_sp_offset = ind;
708 reg_param_index = 0;
710 sym = func_type->ref;
712 /* if the function returns a structure, then add an
713 implicit pointer parameter */
714 func_vt = sym->type;
715 if ((func_vt.t & VT_BTYPE) == VT_STRUCT) {
716 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
717 reg_param_index++;
718 addr += PTR_SIZE;
721 /* define parameters */
722 while ((sym = sym->next) != NULL) {
723 type = &sym->type;
724 bt = type->t & VT_BTYPE;
725 if (bt == VT_STRUCT || bt == VT_LDOUBLE)
726 continue;
727 if (reg_param_index < REGN) {
728 /* save arguments passed by register */
729 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
731 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
732 reg_param_index++;
733 addr += PTR_SIZE;
736 while (reg_param_index < REGN) {
737 if (func_type->ref->c == FUNC_ELLIPSIS)
738 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
739 reg_param_index++;
740 addr += PTR_SIZE;
743 sym = func_type->ref;
744 while ((sym = sym->next) != NULL) {
745 type = &sym->type;
746 bt = type->t & VT_BTYPE;
747 if (bt == VT_STRUCT || bt == VT_LDOUBLE) {
748 size = type_size(type, &align);
749 size = (size + 15) & -16;
750 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
751 addr += size;
756 /* generate function epilog */
757 void gfunc_epilog(void)
759 int v, saved_ind;
761 o(0xc9); /* leave */
762 if (func_ret_sub == 0) {
763 o(0xc3); /* ret */
764 } else {
765 o(0xc2); /* ret n */
766 g(func_ret_sub);
767 g(func_ret_sub >> 8);
770 saved_ind = ind;
771 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
772 /* align local size to word & save local variables */
773 v = (func_scratch + -loc + 15) & -16;
775 pe_add_unwind_data(ind, saved_ind, v);
777 if (v >= 4096) {
778 Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
779 oad(0xb8, v); /* mov stacksize, %eax */
780 oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */
781 greloc(cur_text_section, sym, ind-4, R_X86_64_PC32);
782 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
783 } else {
784 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
785 o(0xec8148); /* sub rsp, stacksize */
786 gen_le32(v);
788 ind = saved_ind;
791 #else
793 static void gadd_sp(int val)
795 if (val == (char)val) {
796 o(0xc48348);
797 g(val);
798 } else {
799 oad(0xc48148, val); /* add $xxx, %rsp */
803 #define REGN 6
804 static const uint8_t arg_regs[REGN] = {
805 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
808 /* Generate function call. The function address is pushed first, then
809 all the parameters in call order. This functions pops all the
810 parameters and the function address. */
811 void gfunc_call(int nb_args)
813 int size, align, r, args_size, i;
814 SValue *orig_vtop;
815 int nb_reg_args = 0;
816 int nb_sse_args = 0;
817 int sse_reg, gen_reg;
819 /* calculate the number of integer/float arguments */
820 args_size = 0;
821 for(i = 0; i < nb_args; i++) {
822 if ((vtop[-i].type.t & VT_BTYPE) == VT_STRUCT) {
823 args_size += type_size(&vtop->type, &align);
824 } else if ((vtop[-i].type.t & VT_BTYPE) == VT_LDOUBLE) {
825 args_size += 16;
826 } else if (is_sse_float(vtop[-i].type.t)) {
827 nb_sse_args++;
828 if (nb_sse_args > 8) args_size += 8;
829 } else {
830 nb_reg_args++;
831 if (nb_reg_args > REGN) args_size += 8;
835 /* for struct arguments, we need to call memcpy and the function
836 call breaks register passing arguments we are preparing.
837 So, we process arguments which will be passed by stack first. */
838 orig_vtop = vtop;
839 gen_reg = nb_reg_args;
840 sse_reg = nb_sse_args;
842 /* adjust stack to align SSE boundary */
843 if (args_size &= 8) {
844 o(0x50); /* push $rax */
846 for(i = 0; i < nb_args; i++) {
847 if ((vtop->type.t & VT_BTYPE) == VT_STRUCT) {
848 size = type_size(&vtop->type, &align);
849 /* align to stack align size */
850 size = (size + 3) & ~3;
851 /* allocate the necessary size on stack */
852 o(0x48);
853 oad(0xec81, size); /* sub $xxx, %rsp */
854 /* generate structure store */
855 r = get_reg(RC_INT);
856 orex(1, r, 0, 0x89); /* mov %rsp, r */
857 o(0xe0 + REG_VALUE(r));
859 /* following code breaks vtop[1] */
860 SValue tmp = vtop[1];
861 vset(&vtop->type, r | VT_LVAL, 0);
862 vswap();
863 vstore();
864 vtop[1] = tmp;
866 args_size += size;
867 } else if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
868 gv(RC_ST0);
869 size = LDOUBLE_SIZE;
870 oad(0xec8148, size); /* sub $xxx, %rsp */
871 o(0x7cdb); /* fstpt 0(%rsp) */
872 g(0x24);
873 g(0x00);
874 args_size += size;
875 } else if (is_sse_float(vtop->type.t)) {
876 int j = --sse_reg;
877 if (j >= 8) {
878 gv(RC_FLOAT);
879 o(0x50); /* push $rax */
880 /* movq %xmm0, (%rsp) */
881 o(0x04d60f66);
882 o(0x24);
883 args_size += 8;
885 } else {
886 int j = --gen_reg;
887 /* simple type */
888 /* XXX: implicit cast ? */
889 if (j >= REGN) {
890 r = gv(RC_INT);
891 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
892 args_size += 8;
895 vtop--;
897 vtop = orig_vtop;
899 save_regs(0); /* save used temporary registers */
901 /* then, we prepare register passing arguments.
902 Note that we cannot set RDX and RCX in this loop because gv()
903 may break these temporary registers. Let's use R10 and R11
904 instead of them */
905 gen_reg = nb_reg_args;
906 sse_reg = nb_sse_args;
907 for(i = 0; i < nb_args; i++) {
908 if ((vtop->type.t & VT_BTYPE) == VT_STRUCT ||
909 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
910 } else if (is_sse_float(vtop->type.t)) {
911 int j = --sse_reg;
912 if (j < 8) {
913 gv(RC_FLOAT); /* only one float register */
914 /* movaps %xmm0, %xmmN */
915 o(0x280f);
916 o(0xc0 + (sse_reg << 3));
918 } else {
919 int j = --gen_reg;
920 /* simple type */
921 /* XXX: implicit cast ? */
922 if (j < REGN) {
923 int d = arg_regs[j];
924 r = gv(RC_INT);
925 if (j == 2 || j == 3)
926 /* j=2: r10, j=3: r11 */
927 d = j + 8;
928 orex(1,d,r,0x89); /* mov */
929 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
932 vtop--;
935 /* Copy R10 and R11 into RDX and RCX, respectively */
936 if (nb_reg_args > 2) {
937 o(0xd2894c); /* mov %r10, %rdx */
938 if (nb_reg_args > 3) {
939 o(0xd9894c); /* mov %r11, %rcx */
943 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
944 gcall_or_jmp(0);
945 if (args_size)
946 gadd_sp(args_size);
947 vtop--;
951 #define FUNC_PROLOG_SIZE 11
953 static void push_arg_reg(int i) {
954 loc -= 8;
955 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
958 /* generate function prolog of type 't' */
959 void gfunc_prolog(CType *func_type)
961 int i, addr, align, size;
962 int param_index, param_addr, reg_param_index, sse_param_index;
963 Sym *sym;
964 CType *type;
966 sym = func_type->ref;
967 addr = PTR_SIZE * 2;
968 loc = 0;
969 ind += FUNC_PROLOG_SIZE;
970 func_sub_sp_offset = ind;
971 func_ret_sub = 0;
973 if (func_type->ref->c == FUNC_ELLIPSIS) {
974 int seen_reg_num, seen_sse_num, seen_stack_size;
975 seen_reg_num = seen_sse_num = 0;
976 /* frame pointer and return address */
977 seen_stack_size = PTR_SIZE * 2;
978 /* count the number of seen parameters */
979 sym = func_type->ref;
980 while ((sym = sym->next) != NULL) {
981 type = &sym->type;
982 if (is_sse_float(type->t)) {
983 if (seen_sse_num < 8) {
984 seen_sse_num++;
985 } else {
986 seen_stack_size += 8;
988 } else if ((type->t & VT_BTYPE) == VT_STRUCT) {
989 size = type_size(type, &align);
990 size = (size + 3) & ~3;
991 seen_stack_size += size;
992 } else if ((type->t & VT_BTYPE) == VT_LDOUBLE) {
993 seen_stack_size += LDOUBLE_SIZE;
994 } else {
995 if (seen_reg_num < REGN) {
996 seen_reg_num++;
997 } else {
998 seen_stack_size += 8;
1003 loc -= 16;
1004 /* movl $0x????????, -0x10(%rbp) */
1005 o(0xf045c7);
1006 gen_le32(seen_reg_num * 8);
1007 /* movl $0x????????, -0xc(%rbp) */
1008 o(0xf445c7);
1009 gen_le32(seen_sse_num * 16 + 48);
1010 /* movl $0x????????, -0x8(%rbp) */
1011 o(0xf845c7);
1012 gen_le32(seen_stack_size);
1014 /* save all register passing arguments */
1015 for (i = 0; i < 8; i++) {
1016 loc -= 16;
1017 o(0xd60f66); /* movq */
1018 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1019 /* movq $0, loc+8(%rbp) */
1020 o(0x85c748);
1021 gen_le32(loc + 8);
1022 gen_le32(0);
1024 for (i = 0; i < REGN; i++) {
1025 push_arg_reg(REGN-1-i);
1029 sym = func_type->ref;
1030 param_index = 0;
1031 reg_param_index = 0;
1032 sse_param_index = 0;
1034 /* if the function returns a structure, then add an
1035 implicit pointer parameter */
1036 func_vt = sym->type;
1037 if ((func_vt.t & VT_BTYPE) == VT_STRUCT) {
1038 push_arg_reg(reg_param_index);
1039 param_addr = loc;
1041 func_vc = loc;
1042 param_index++;
1043 reg_param_index++;
1045 /* define parameters */
1046 while ((sym = sym->next) != NULL) {
1047 type = &sym->type;
1048 size = type_size(type, &align);
1049 size = (size + 3) & ~3;
1050 if (is_sse_float(type->t)) {
1051 if (sse_param_index < 8) {
1052 /* save arguments passed by register */
1053 loc -= 8;
1054 o(0xd60f66); /* movq */
1055 gen_modrm(sse_param_index, VT_LOCAL, NULL, loc);
1056 param_addr = loc;
1057 } else {
1058 param_addr = addr;
1059 addr += size;
1061 sse_param_index++;
1063 } else if ((type->t & VT_BTYPE) == VT_STRUCT ||
1064 (type->t & VT_BTYPE) == VT_LDOUBLE) {
1065 param_addr = addr;
1066 addr += size;
1067 } else {
1068 if (reg_param_index < REGN) {
1069 /* save arguments passed by register */
1070 push_arg_reg(reg_param_index);
1071 param_addr = loc;
1072 } else {
1073 param_addr = addr;
1074 addr += 8;
1076 reg_param_index++;
1078 sym_push(sym->v & ~SYM_FIELD, type,
1079 VT_LOCAL | VT_LVAL, param_addr);
1080 param_index++;
1084 /* generate function epilog */
1085 void gfunc_epilog(void)
1087 int v, saved_ind;
1089 o(0xc9); /* leave */
1090 if (func_ret_sub == 0) {
1091 o(0xc3); /* ret */
1092 } else {
1093 o(0xc2); /* ret n */
1094 g(func_ret_sub);
1095 g(func_ret_sub >> 8);
1097 /* align local size to word & save local variables */
1098 v = (-loc + 15) & -16;
1099 saved_ind = ind;
1100 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1101 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1102 o(0xec8148); /* sub rsp, stacksize */
1103 gen_le32(v);
1104 ind = saved_ind;
1107 #endif /* not PE */
1109 /* generate a jump to a label */
1110 int gjmp(int t)
1112 return psym(0xe9, t);
1115 /* generate a jump to a fixed address */
1116 void gjmp_addr(int a)
1118 int r;
1119 r = a - ind - 2;
1120 if (r == (char)r) {
1121 g(0xeb);
1122 g(r);
1123 } else {
1124 oad(0xe9, a - ind - 5);
1128 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1129 int gtst(int inv, int t)
1131 int v, *p;
1133 v = vtop->r & VT_VALMASK;
1134 if (v == VT_CMP) {
1135 /* fast case : can jump directly since flags are set */
1136 g(0x0f);
1137 t = psym((vtop->c.i - 16) ^ inv, t);
1138 } else if (v == VT_JMP || v == VT_JMPI) {
1139 /* && or || optimization */
1140 if ((v & 1) == inv) {
1141 /* insert vtop->c jump list in t */
1142 p = &vtop->c.i;
1143 while (*p != 0)
1144 p = (int *)(cur_text_section->data + *p);
1145 *p = t;
1146 t = vtop->c.i;
1147 } else {
1148 t = gjmp(t);
1149 gsym(vtop->c.i);
1151 } else {
1152 if (is_float(vtop->type.t) ||
1153 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
1154 vpushi(0);
1155 gen_op(TOK_NE);
1157 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
1158 /* constant jmp optimization */
1159 if ((vtop->c.i != 0) != inv)
1160 t = gjmp(t);
1161 } else {
1162 v = gv(RC_INT);
1163 orex(0,v,v,0x85);
1164 o(0xc0 + REG_VALUE(v) * 9);
1165 g(0x0f);
1166 t = psym(0x85 ^ inv, t);
1169 vtop--;
1170 return t;
1173 /* generate an integer binary operation */
1174 void gen_opi(int op)
1176 int r, fr, opc, c;
1177 int ll, uu, cc;
1179 ll = is64_type(vtop[-1].type.t);
1180 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1181 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1183 switch(op) {
1184 case '+':
1185 case TOK_ADDC1: /* add with carry generation */
1186 opc = 0;
1187 gen_op8:
1188 if (cc && (!ll || (int)vtop->c.ll == vtop->c.ll)) {
1189 /* constant case */
1190 vswap();
1191 r = gv(RC_INT);
1192 vswap();
1193 c = vtop->c.i;
1194 if (c == (char)c) {
1195 /* XXX: generate inc and dec for smaller code ? */
1196 orex(ll, r, 0, 0x83);
1197 o(0xc0 | (opc << 3) | REG_VALUE(r));
1198 g(c);
1199 } else {
1200 orex(ll, r, 0, 0x81);
1201 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1203 } else {
1204 gv2(RC_INT, RC_INT);
1205 r = vtop[-1].r;
1206 fr = vtop[0].r;
1207 orex(ll, r, fr, (opc << 3) | 0x01);
1208 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1210 vtop--;
1211 if (op >= TOK_ULT && op <= TOK_GT) {
1212 vtop->r = VT_CMP;
1213 vtop->c.i = op;
1215 break;
1216 case '-':
1217 case TOK_SUBC1: /* sub with carry generation */
1218 opc = 5;
1219 goto gen_op8;
1220 case TOK_ADDC2: /* add with carry use */
1221 opc = 2;
1222 goto gen_op8;
1223 case TOK_SUBC2: /* sub with carry use */
1224 opc = 3;
1225 goto gen_op8;
1226 case '&':
1227 opc = 4;
1228 goto gen_op8;
1229 case '^':
1230 opc = 6;
1231 goto gen_op8;
1232 case '|':
1233 opc = 1;
1234 goto gen_op8;
1235 case '*':
1236 gv2(RC_INT, RC_INT);
1237 r = vtop[-1].r;
1238 fr = vtop[0].r;
1239 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1240 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1241 vtop--;
1242 break;
1243 case TOK_SHL:
1244 opc = 4;
1245 goto gen_shift;
1246 case TOK_SHR:
1247 opc = 5;
1248 goto gen_shift;
1249 case TOK_SAR:
1250 opc = 7;
1251 gen_shift:
1252 opc = 0xc0 | (opc << 3);
1253 if (cc) {
1254 /* constant case */
1255 vswap();
1256 r = gv(RC_INT);
1257 vswap();
1258 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1259 o(opc | REG_VALUE(r));
1260 g(vtop->c.i & (ll ? 63 : 31));
1261 } else {
1262 /* we generate the shift in ecx */
1263 gv2(RC_INT, RC_RCX);
1264 r = vtop[-1].r;
1265 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1266 o(opc | REG_VALUE(r));
1268 vtop--;
1269 break;
1270 case TOK_UDIV:
1271 case TOK_UMOD:
1272 uu = 1;
1273 goto divmod;
1274 case '/':
1275 case '%':
1276 case TOK_PDIV:
1277 uu = 0;
1278 divmod:
1279 /* first operand must be in eax */
1280 /* XXX: need better constraint for second operand */
1281 gv2(RC_RAX, RC_RCX);
1282 r = vtop[-1].r;
1283 fr = vtop[0].r;
1284 vtop--;
1285 save_reg(TREG_RDX);
1286 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1287 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1288 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1289 if (op == '%' || op == TOK_UMOD)
1290 r = TREG_RDX;
1291 else
1292 r = TREG_RAX;
1293 vtop->r = r;
1294 break;
1295 default:
1296 opc = 7;
1297 goto gen_op8;
1301 void gen_opl(int op)
1303 gen_opi(op);
1306 /* generate a floating point operation 'v = t1 op t2' instruction. The
1307 two operands are guaranted to have the same floating point type */
1308 /* XXX: need to use ST1 too */
1309 void gen_opf(int op)
1311 int a, ft, fc, swapped, r;
1312 int float_type =
1313 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1315 /* convert constants to memory references */
1316 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1317 vswap();
1318 gv(float_type);
1319 vswap();
1321 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1322 gv(float_type);
1324 /* must put at least one value in the floating point register */
1325 if ((vtop[-1].r & VT_LVAL) &&
1326 (vtop[0].r & VT_LVAL)) {
1327 vswap();
1328 gv(float_type);
1329 vswap();
1331 swapped = 0;
1332 /* swap the stack if needed so that t1 is the register and t2 is
1333 the memory reference */
1334 if (vtop[-1].r & VT_LVAL) {
1335 vswap();
1336 swapped = 1;
1338 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1339 if (op >= TOK_ULT && op <= TOK_GT) {
1340 /* load on stack second operand */
1341 load(TREG_ST0, vtop);
1342 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1343 if (op == TOK_GE || op == TOK_GT)
1344 swapped = !swapped;
1345 else if (op == TOK_EQ || op == TOK_NE)
1346 swapped = 0;
1347 if (swapped)
1348 o(0xc9d9); /* fxch %st(1) */
1349 o(0xe9da); /* fucompp */
1350 o(0xe0df); /* fnstsw %ax */
1351 if (op == TOK_EQ) {
1352 o(0x45e480); /* and $0x45, %ah */
1353 o(0x40fC80); /* cmp $0x40, %ah */
1354 } else if (op == TOK_NE) {
1355 o(0x45e480); /* and $0x45, %ah */
1356 o(0x40f480); /* xor $0x40, %ah */
1357 op = TOK_NE;
1358 } else if (op == TOK_GE || op == TOK_LE) {
1359 o(0x05c4f6); /* test $0x05, %ah */
1360 op = TOK_EQ;
1361 } else {
1362 o(0x45c4f6); /* test $0x45, %ah */
1363 op = TOK_EQ;
1365 vtop--;
1366 vtop->r = VT_CMP;
1367 vtop->c.i = op;
1368 } else {
1369 /* no memory reference possible for long double operations */
1370 load(TREG_ST0, vtop);
1371 swapped = !swapped;
1373 switch(op) {
1374 default:
1375 case '+':
1376 a = 0;
1377 break;
1378 case '-':
1379 a = 4;
1380 if (swapped)
1381 a++;
1382 break;
1383 case '*':
1384 a = 1;
1385 break;
1386 case '/':
1387 a = 6;
1388 if (swapped)
1389 a++;
1390 break;
1392 ft = vtop->type.t;
1393 fc = vtop->c.ul;
1394 o(0xde); /* fxxxp %st, %st(1) */
1395 o(0xc1 + (a << 3));
1396 vtop--;
1398 } else {
1399 if (op >= TOK_ULT && op <= TOK_GT) {
1400 /* if saved lvalue, then we must reload it */
1401 r = vtop->r;
1402 fc = vtop->c.ul;
1403 if ((r & VT_VALMASK) == VT_LLOCAL) {
1404 SValue v1;
1405 r = get_reg(RC_INT);
1406 v1.type.t = VT_INT;
1407 v1.r = VT_LOCAL | VT_LVAL;
1408 v1.c.ul = fc;
1409 load(r, &v1);
1410 fc = 0;
1413 if (op == TOK_EQ || op == TOK_NE) {
1414 swapped = 0;
1415 } else {
1416 if (op == TOK_LE || op == TOK_LT)
1417 swapped = !swapped;
1418 if (op == TOK_LE || op == TOK_GE) {
1419 op = 0x93; /* setae */
1420 } else {
1421 op = 0x97; /* seta */
1425 if (swapped) {
1426 o(0x7e0ff3); /* movq */
1427 gen_modrm(1, r, vtop->sym, fc);
1429 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE) {
1430 o(0x66);
1432 o(0x2e0f); /* ucomisd %xmm0, %xmm1 */
1433 o(0xc8);
1434 } else {
1435 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE) {
1436 o(0x66);
1438 o(0x2e0f); /* ucomisd */
1439 gen_modrm(0, r, vtop->sym, fc);
1442 vtop--;
1443 vtop->r = VT_CMP;
1444 vtop->c.i = op;
1445 } else {
1446 /* no memory reference possible for long double operations */
1447 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1448 load(TREG_XMM0, vtop);
1449 swapped = !swapped;
1451 switch(op) {
1452 default:
1453 case '+':
1454 a = 0;
1455 break;
1456 case '-':
1457 a = 4;
1458 break;
1459 case '*':
1460 a = 1;
1461 break;
1462 case '/':
1463 a = 6;
1464 break;
1466 ft = vtop->type.t;
1467 fc = vtop->c.ul;
1468 if ((ft & VT_BTYPE) == VT_LDOUBLE) {
1469 o(0xde); /* fxxxp %st, %st(1) */
1470 o(0xc1 + (a << 3));
1471 } else {
1472 /* if saved lvalue, then we must reload it */
1473 r = vtop->r;
1474 if ((r & VT_VALMASK) == VT_LLOCAL) {
1475 SValue v1;
1476 r = get_reg(RC_INT);
1477 v1.type.t = VT_INT;
1478 v1.r = VT_LOCAL | VT_LVAL;
1479 v1.c.ul = fc;
1480 load(r, &v1);
1481 fc = 0;
1483 if (swapped) {
1484 /* movq %xmm0,%xmm1 */
1485 o(0x7e0ff3);
1486 o(0xc8);
1487 load(TREG_XMM0, vtop);
1488 /* subsd %xmm1,%xmm0 (f2 0f 5c c1) */
1489 if ((ft & VT_BTYPE) == VT_DOUBLE) {
1490 o(0xf2);
1491 } else {
1492 o(0xf3);
1494 o(0x0f);
1495 o(0x58 + a);
1496 o(0xc1);
1497 } else {
1498 if ((ft & VT_BTYPE) == VT_DOUBLE) {
1499 o(0xf2);
1500 } else {
1501 o(0xf3);
1503 o(0x0f);
1504 o(0x58 + a);
1505 gen_modrm(0, r, vtop->sym, fc);
1508 vtop--;
1513 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
1514 and 'long long' cases. */
1515 void gen_cvt_itof(int t)
1517 if ((t & VT_BTYPE) == VT_LDOUBLE) {
1518 save_reg(TREG_ST0);
1519 gv(RC_INT);
1520 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
1521 /* signed long long to float/double/long double (unsigned case
1522 is handled generically) */
1523 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
1524 o(0x242cdf); /* fildll (%rsp) */
1525 o(0x08c48348); /* add $8, %rsp */
1526 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
1527 (VT_INT | VT_UNSIGNED)) {
1528 /* unsigned int to float/double/long double */
1529 o(0x6a); /* push $0 */
1530 g(0x00);
1531 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
1532 o(0x242cdf); /* fildll (%rsp) */
1533 o(0x10c48348); /* add $16, %rsp */
1534 } else {
1535 /* int to float/double/long double */
1536 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
1537 o(0x2404db); /* fildl (%rsp) */
1538 o(0x08c48348); /* add $8, %rsp */
1540 vtop->r = TREG_ST0;
1541 } else {
1542 save_reg(TREG_XMM0);
1543 gv(RC_INT);
1544 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT));
1545 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
1546 (VT_INT | VT_UNSIGNED) ||
1547 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
1548 o(0x48); /* REX */
1550 o(0x2a0f);
1551 o(0xc0 + (vtop->r & VT_VALMASK)); /* cvtsi2sd */
1552 vtop->r = TREG_XMM0;
1556 /* convert from one floating point type to another */
1557 void gen_cvt_ftof(int t)
1559 int ft, bt, tbt;
1561 ft = vtop->type.t;
1562 bt = ft & VT_BTYPE;
1563 tbt = t & VT_BTYPE;
1565 if (bt == VT_FLOAT) {
1566 gv(RC_FLOAT);
1567 if (tbt == VT_DOUBLE) {
1568 o(0xc0140f); /* unpcklps */
1569 o(0xc05a0f); /* cvtps2pd */
1570 } else if (tbt == VT_LDOUBLE) {
1571 /* movss %xmm0,-0x10(%rsp) */
1572 o(0x44110ff3);
1573 o(0xf024);
1574 o(0xf02444d9); /* flds -0x10(%rsp) */
1575 vtop->r = TREG_ST0;
1577 } else if (bt == VT_DOUBLE) {
1578 gv(RC_FLOAT);
1579 if (tbt == VT_FLOAT) {
1580 o(0xc0140f66); /* unpcklpd */
1581 o(0xc05a0f66); /* cvtpd2ps */
1582 } else if (tbt == VT_LDOUBLE) {
1583 /* movsd %xmm0,-0x10(%rsp) */
1584 o(0x44110ff2);
1585 o(0xf024);
1586 o(0xf02444dd); /* fldl -0x10(%rsp) */
1587 vtop->r = TREG_ST0;
1589 } else {
1590 gv(RC_ST0);
1591 if (tbt == VT_DOUBLE) {
1592 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
1593 /* movsd -0x10(%rsp),%xmm0 */
1594 o(0x44100ff2);
1595 o(0xf024);
1596 vtop->r = TREG_XMM0;
1597 } else if (tbt == VT_FLOAT) {
1598 o(0xf0245cd9); /* fstps -0x10(%rsp) */
1599 /* movss -0x10(%rsp),%xmm0 */
1600 o(0x44100ff3);
1601 o(0xf024);
1602 vtop->r = TREG_XMM0;
1607 /* convert fp to int 't' type */
1608 void gen_cvt_ftoi(int t)
1610 int ft, bt, size, r;
1611 ft = vtop->type.t;
1612 bt = ft & VT_BTYPE;
1613 if (bt == VT_LDOUBLE) {
1614 gen_cvt_ftof(VT_DOUBLE);
1615 bt = VT_DOUBLE;
1618 gv(RC_FLOAT);
1619 if (t != VT_INT)
1620 size = 8;
1621 else
1622 size = 4;
1624 r = get_reg(RC_INT);
1625 if (bt == VT_FLOAT) {
1626 o(0xf3);
1627 } else if (bt == VT_DOUBLE) {
1628 o(0xf2);
1629 } else {
1630 assert(0);
1632 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
1633 o(0xc0 + (REG_VALUE(r) << 3));
1634 vtop->r = r;
1637 /* computed goto support */
1638 void ggoto(void)
1640 gcall_or_jmp(1);
1641 vtop--;
1644 /* end of x86-64 code generator */
1645 /*************************************************************/
1646 #endif /* ! TARGET_DEFS_ONLY */
1647 /******************************************************/