Fix for Microsoft compilers
[tinycc.git] / x86_64-gen.c
blob0083f8b0b01cb5a10dba6a32ea2258f782c047e8
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 25
27 #define NB_ASM_REGS 8
29 /* a register can belong to several classes. The classes must be
30 sorted from more general to more precise (see gv2() code which does
31 assumptions on it). */
32 #define RC_INT 0x0001 /* generic integer register */
33 #define RC_FLOAT 0x0002 /* generic float register */
34 #define RC_RAX 0x0004
35 #define RC_RCX 0x0008
36 #define RC_RDX 0x0010
37 #define RC_ST0 0x0080 /* only for long double */
38 #define RC_R8 0x0100
39 #define RC_R9 0x0200
40 #define RC_R10 0x0400
41 #define RC_R11 0x0800
42 #define RC_XMM0 0x1000
43 #define RC_XMM1 0x2000
44 #define RC_XMM2 0x4000
45 #define RC_XMM3 0x8000
46 #define RC_XMM4 0x10000
47 #define RC_XMM5 0x20000
48 #define RC_XMM6 0x40000
49 #define RC_XMM7 0x80000
50 #define RC_IRET RC_RAX /* function return: integer register */
51 #define RC_LRET RC_RDX /* function return: second integer register */
52 #define RC_FRET RC_XMM0 /* function return: float register */
53 #define RC_QRET RC_XMM1 /* function return: second float register */
55 /* pretty names for the registers */
56 enum {
57 TREG_RAX = 0,
58 TREG_RCX = 1,
59 TREG_RDX = 2,
60 TREG_RSP = 4,
61 TREG_RSI = 6,
62 TREG_RDI = 7,
64 TREG_R8 = 8,
65 TREG_R9 = 9,
66 TREG_R10 = 10,
67 TREG_R11 = 11,
69 TREG_XMM0 = 16,
70 TREG_XMM1 = 17,
71 TREG_XMM2 = 18,
72 TREG_XMM3 = 19,
73 TREG_XMM4 = 20,
74 TREG_XMM5 = 21,
75 TREG_XMM6 = 22,
76 TREG_XMM7 = 23,
78 TREG_ST0 = 24,
80 TREG_MEM = 0x20,
83 #define REX_BASE(reg) (((reg) >> 3) & 1)
84 #define REG_VALUE(reg) ((reg) & 7)
86 /* return registers for function */
87 #define REG_IRET TREG_RAX /* single word int return register */
88 #define REG_LRET TREG_RDX /* second word return register (for long long) */
89 #define REG_FRET TREG_XMM0 /* float return register */
90 #define REG_QRET TREG_XMM1 /* second float return register */
92 /* defined if function parameters must be evaluated in reverse order */
93 #define INVERT_FUNC_PARAMS
95 /* pointer size, in bytes */
96 #define PTR_SIZE 8
98 /* long double size and alignment, in bytes */
99 #define LDOUBLE_SIZE 16
100 #define LDOUBLE_ALIGN 16
101 /* maximum alignment (for aligned attribute support) */
102 #define MAX_ALIGN 16
104 /******************************************************/
105 /* ELF defines */
107 #define EM_TCC_TARGET EM_X86_64
109 /* relocation type for 32 bit data relocation */
110 #define R_DATA_32 R_X86_64_32
111 #define R_DATA_PTR R_X86_64_64
112 #define R_JMP_SLOT R_X86_64_JUMP_SLOT
113 #define R_COPY R_X86_64_COPY
115 #define ELF_START_ADDR 0x400000
116 #define ELF_PAGE_SIZE 0x200000
118 /******************************************************/
119 #else /* ! TARGET_DEFS_ONLY */
120 /******************************************************/
121 #include "tcc.h"
122 #include <assert.h>
124 ST_DATA const int reg_classes[NB_REGS] = {
125 /* eax */ RC_INT | RC_RAX,
126 /* ecx */ RC_INT | RC_RCX,
127 /* edx */ RC_INT | RC_RDX,
133 RC_R8,
134 RC_R9,
135 RC_R10,
136 RC_R11,
141 /* xmm0 */ RC_FLOAT | RC_XMM0,
142 /* xmm1 */ RC_FLOAT | RC_XMM1,
143 /* xmm2 */ RC_FLOAT | RC_XMM2,
144 /* xmm3 */ RC_FLOAT | RC_XMM3,
145 /* xmm4 */ RC_FLOAT | RC_XMM4,
146 /* xmm5 */ RC_FLOAT | RC_XMM5,
147 /* xmm6 an xmm7 are included so gv() can be used on them,
148 but they are not tagged with RC_FLOAT because they are
149 callee saved on Windows */
150 RC_XMM6,
151 RC_XMM7,
152 /* st0 */ RC_ST0
155 static unsigned long func_sub_sp_offset;
156 static int func_ret_sub;
158 /* XXX: make it faster ? */
159 void g(int c)
161 int ind1;
162 ind1 = ind + 1;
163 if (ind1 > cur_text_section->data_allocated)
164 section_realloc(cur_text_section, ind1);
165 cur_text_section->data[ind] = c;
166 ind = ind1;
169 void o(unsigned int c)
171 while (c) {
172 g(c);
173 c = c >> 8;
177 void gen_le16(int v)
179 g(v);
180 g(v >> 8);
183 void gen_le32(int c)
185 g(c);
186 g(c >> 8);
187 g(c >> 16);
188 g(c >> 24);
191 void gen_le64(int64_t c)
193 g(c);
194 g(c >> 8);
195 g(c >> 16);
196 g(c >> 24);
197 g(c >> 32);
198 g(c >> 40);
199 g(c >> 48);
200 g(c >> 56);
203 void orex(int ll, int r, int r2, int b)
205 if ((r & VT_VALMASK) >= VT_CONST)
206 r = 0;
207 if ((r2 & VT_VALMASK) >= VT_CONST)
208 r2 = 0;
209 if (ll || REX_BASE(r) || REX_BASE(r2))
210 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
211 o(b);
214 /* output a symbol and patch all calls to it */
215 void gsym_addr(int t, int a)
217 int n, *ptr;
218 while (t) {
219 ptr = (int *)(cur_text_section->data + t);
220 n = *ptr; /* next value */
221 *ptr = a - t - 4;
222 t = n;
226 void gsym(int t)
228 gsym_addr(t, ind);
231 /* psym is used to put an instruction with a data field which is a
232 reference to a symbol. It is in fact the same as oad ! */
233 #define psym oad
235 static int is64_type(int t)
237 return ((t & VT_BTYPE) == VT_PTR ||
238 (t & VT_BTYPE) == VT_FUNC ||
239 (t & VT_BTYPE) == VT_LLONG);
242 /* instruction + 4 bytes data. Return the address of the data */
243 ST_FUNC int oad(int c, int s)
245 int ind1;
247 o(c);
248 ind1 = ind + 4;
249 if (ind1 > cur_text_section->data_allocated)
250 section_realloc(cur_text_section, ind1);
251 *(int *)(cur_text_section->data + ind) = s;
252 s = ind;
253 ind = ind1;
254 return s;
257 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
259 if (r & VT_SYM)
260 greloc(cur_text_section, sym, ind, R_X86_64_32);
261 gen_le32(c);
264 /* output constant with relocation if 'r & VT_SYM' is true */
265 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
267 if (r & VT_SYM)
268 greloc(cur_text_section, sym, ind, R_X86_64_64);
269 gen_le64(c);
272 /* output constant with relocation if 'r & VT_SYM' is true */
273 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
275 if (r & VT_SYM)
276 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
277 gen_le32(c-4);
280 /* output got address with relocation */
281 static void gen_gotpcrel(int r, Sym *sym, int c)
283 #ifndef TCC_TARGET_PE
284 Section *sr;
285 ElfW(Rela) *rel;
286 greloc(cur_text_section, sym, ind, R_X86_64_GOTPCREL);
287 sr = cur_text_section->reloc;
288 rel = (ElfW(Rela) *)(sr->data + sr->data_offset - sizeof(ElfW(Rela)));
289 rel->r_addend = -4;
290 #else
291 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
292 get_tok_str(sym->v, NULL), c, r,
293 cur_text_section->data[ind-3],
294 cur_text_section->data[ind-2],
295 cur_text_section->data[ind-1]
297 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
298 #endif
299 gen_le32(0);
300 if (c) {
301 /* we use add c, %xxx for displacement */
302 orex(1, r, 0, 0x81);
303 o(0xc0 + REG_VALUE(r));
304 gen_le32(c);
308 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
310 op_reg = REG_VALUE(op_reg) << 3;
311 if ((r & VT_VALMASK) == VT_CONST) {
312 /* constant memory reference */
313 o(0x05 | op_reg);
314 if (is_got) {
315 gen_gotpcrel(r, sym, c);
316 } else {
317 gen_addrpc32(r, sym, c);
319 } else if ((r & VT_VALMASK) == VT_LOCAL) {
320 /* currently, we use only ebp as base */
321 if (c == (char)c) {
322 /* short reference */
323 o(0x45 | op_reg);
324 g(c);
325 } else {
326 oad(0x85 | op_reg, c);
328 } else if ((r & VT_VALMASK) >= TREG_MEM) {
329 if (c) {
330 g(0x80 | op_reg | REG_VALUE(r));
331 gen_le32(c);
332 } else {
333 g(0x00 | op_reg | REG_VALUE(r));
335 } else {
336 g(0x00 | op_reg | REG_VALUE(r));
340 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
341 opcode bits */
342 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
344 gen_modrm_impl(op_reg, r, sym, c, 0);
347 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
348 opcode bits */
349 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
351 int is_got;
352 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
353 orex(1, r, op_reg, opcode);
354 gen_modrm_impl(op_reg, r, sym, c, is_got);
358 /* load 'r' from value 'sv' */
359 void load(int r, SValue *sv)
361 int v, t, ft, fc, fr;
362 SValue v1;
364 #ifdef TCC_TARGET_PE
365 SValue v2;
366 sv = pe_getimport(sv, &v2);
367 #endif
369 fr = sv->r;
370 ft = sv->type.t & ~VT_DEFSIGN;
371 fc = sv->c.ul;
373 #ifndef TCC_TARGET_PE
374 /* we use indirect access via got */
375 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
376 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
377 /* use the result register as a temporal register */
378 int tr = r | TREG_MEM;
379 if (is_float(ft)) {
380 /* we cannot use float registers as a temporal register */
381 tr = get_reg(RC_INT) | TREG_MEM;
383 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
385 /* load from the temporal register */
386 fr = tr | VT_LVAL;
388 #endif
390 v = fr & VT_VALMASK;
391 if (fr & VT_LVAL) {
392 int b, ll;
393 if (v == VT_LLOCAL) {
394 v1.type.t = VT_PTR;
395 v1.r = VT_LOCAL | VT_LVAL;
396 v1.c.ul = fc;
397 fr = r;
398 if (!(reg_classes[fr] & RC_INT))
399 fr = get_reg(RC_INT);
400 load(fr, &v1);
402 ll = 0;
403 if ((ft & VT_BTYPE) == VT_FLOAT) {
404 b = 0x6e0f66;
405 r = REG_VALUE(r); /* movd */
406 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
407 b = 0x7e0ff3; /* movq */
408 r = REG_VALUE(r);
409 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
410 b = 0xdb, r = 5; /* fldt */
411 } else if ((ft & VT_TYPE) == VT_BYTE || (ft & VT_TYPE) == VT_BOOL) {
412 b = 0xbe0f; /* movsbl */
413 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
414 b = 0xb60f; /* movzbl */
415 } else if ((ft & VT_TYPE) == VT_SHORT) {
416 b = 0xbf0f; /* movswl */
417 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
418 b = 0xb70f; /* movzwl */
419 } else {
420 assert(((ft & VT_BTYPE) == VT_INT) || ((ft & VT_BTYPE) == VT_LLONG)
421 || ((ft & VT_BTYPE) == VT_PTR) || ((ft & VT_BTYPE) == VT_ENUM)
422 || ((ft & VT_BTYPE) == VT_FUNC));
423 ll = is64_type(ft);
424 b = 0x8b;
426 if (ll) {
427 gen_modrm64(b, r, fr, sv->sym, fc);
428 } else {
429 orex(ll, fr, r, b);
430 gen_modrm(r, fr, sv->sym, fc);
432 } else {
433 if (v == VT_CONST) {
434 if (fr & VT_SYM) {
435 #ifdef TCC_TARGET_PE
436 orex(1,0,r,0x8d);
437 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
438 gen_addrpc32(fr, sv->sym, fc);
439 #else
440 if (sv->sym->type.t & VT_STATIC) {
441 orex(1,0,r,0x8d);
442 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
443 gen_addrpc32(fr, sv->sym, fc);
444 } else {
445 orex(1,0,r,0x8b);
446 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
447 gen_gotpcrel(r, sv->sym, fc);
449 #endif
450 } else if (is64_type(ft)) {
451 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
452 gen_le64(sv->c.ull);
453 } else {
454 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
455 gen_le32(fc);
457 } else if (v == VT_LOCAL) {
458 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
459 gen_modrm(r, VT_LOCAL, sv->sym, fc);
460 } else if (v == VT_CMP) {
461 orex(0,r,0,0);
462 if ((fc & ~0x100) != TOK_NE)
463 oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */
464 else
465 oad(0xb8 + REG_VALUE(r), 1); /* mov $1, r */
466 if (fc & 0x100)
468 /* This was a float compare. If the parity bit is
469 set the result was unordered, meaning false for everything
470 except TOK_NE, and true for TOK_NE. */
471 fc &= ~0x100;
472 o(0x037a + (REX_BASE(r) << 8));
474 orex(0,r,0, 0x0f); /* setxx %br */
475 o(fc);
476 o(0xc0 + REG_VALUE(r));
477 } else if (v == VT_JMP || v == VT_JMPI) {
478 t = v & 1;
479 orex(0,r,0,0);
480 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
481 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
482 gsym(fc);
483 orex(0,r,0,0);
484 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
485 } else if (v != r) {
486 if ((r >= TREG_XMM0) && (r <= TREG_XMM7)) {
487 if (v == TREG_ST0) {
488 /* gen_cvt_ftof(VT_DOUBLE); */
489 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
490 /* movsd -0x10(%rsp),%xmmN */
491 o(0x100ff2);
492 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
493 o(0xf024);
494 } else {
495 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
496 if ((ft & VT_BTYPE) == VT_FLOAT) {
497 o(0x100ff3);
498 } else {
499 assert((ft & VT_BTYPE) == VT_DOUBLE);
500 o(0x100ff2);
502 o(0xc0 + REG_VALUE(v) + REG_VALUE(r)*8);
504 } else if (r == TREG_ST0) {
505 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
506 /* gen_cvt_ftof(VT_LDOUBLE); */
507 /* movsd %xmmN,-0x10(%rsp) */
508 o(0x110ff2);
509 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
510 o(0xf024);
511 o(0xf02444dd); /* fldl -0x10(%rsp) */
512 } else {
513 orex(1,r,v, 0x89);
514 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
520 /* store register 'r' in lvalue 'v' */
521 void store(int r, SValue *v)
523 int fr, bt, ft, fc;
524 int op64 = 0;
525 /* store the REX prefix in this variable when PIC is enabled */
526 int pic = 0;
528 #ifdef TCC_TARGET_PE
529 SValue v2;
530 v = pe_getimport(v, &v2);
531 #endif
533 ft = v->type.t;
534 fc = v->c.ul;
535 fr = v->r & VT_VALMASK;
536 bt = ft & VT_BTYPE;
538 #ifndef TCC_TARGET_PE
539 /* we need to access the variable via got */
540 if (fr == VT_CONST && (v->r & VT_SYM)) {
541 /* mov xx(%rip), %r11 */
542 o(0x1d8b4c);
543 gen_gotpcrel(TREG_R11, v->sym, v->c.ul);
544 pic = is64_type(bt) ? 0x49 : 0x41;
546 #endif
548 /* XXX: incorrect if float reg to reg */
549 if (bt == VT_FLOAT) {
550 o(0x66);
551 o(pic);
552 o(0x7e0f); /* movd */
553 r = REG_VALUE(r);
554 } else if (bt == VT_DOUBLE) {
555 o(0x66);
556 o(pic);
557 o(0xd60f); /* movq */
558 r = REG_VALUE(r);
559 } else if (bt == VT_LDOUBLE) {
560 o(0xc0d9); /* fld %st(0) */
561 o(pic);
562 o(0xdb); /* fstpt */
563 r = 7;
564 } else {
565 if (bt == VT_SHORT)
566 o(0x66);
567 o(pic);
568 if (bt == VT_BYTE || bt == VT_BOOL)
569 orex(0, 0, r, 0x88);
570 else if (is64_type(bt))
571 op64 = 0x89;
572 else
573 orex(0, 0, r, 0x89);
575 if (pic) {
576 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
577 if (op64)
578 o(op64);
579 o(3 + (r << 3));
580 } else if (op64) {
581 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
582 gen_modrm64(op64, r, v->r, v->sym, fc);
583 } else if (fr != r) {
584 /* XXX: don't we really come here? */
585 abort();
586 o(0xc0 + fr + r * 8); /* mov r, fr */
588 } else {
589 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
590 gen_modrm(r, v->r, v->sym, fc);
591 } else if (fr != r) {
592 /* XXX: don't we really come here? */
593 abort();
594 o(0xc0 + fr + r * 8); /* mov r, fr */
599 /* 'is_jmp' is '1' if it is a jump */
600 static void gcall_or_jmp(int is_jmp)
602 int r;
603 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
604 /* constant case */
605 if (vtop->r & VT_SYM) {
606 /* relocation case */
607 #ifdef TCC_TARGET_PE
608 greloc(cur_text_section, vtop->sym, ind + 1, R_X86_64_PC32);
609 #else
610 greloc(cur_text_section, vtop->sym, ind + 1, R_X86_64_PLT32);
611 #endif
612 } else {
613 /* put an empty PC32 relocation */
614 put_elf_reloc(symtab_section, cur_text_section,
615 ind + 1, R_X86_64_PC32, 0);
617 oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */
618 } else {
619 /* otherwise, indirect call */
620 r = TREG_R11;
621 load(r, vtop);
622 o(0x41); /* REX */
623 o(0xff); /* call/jmp *r */
624 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
628 #if defined(CONFIG_TCC_BCHECK)
629 #ifndef TCC_TARGET_PE
630 static addr_t func_bound_offset;
631 static unsigned long func_bound_ind;
632 #endif
634 static void gen_static_call(int v)
636 Sym *sym = external_global_sym(v, &func_old_type, 0);
637 oad(0xe8, -4);
638 greloc(cur_text_section, sym, ind-4, R_X86_64_PC32);
641 /* generate a bounded pointer addition */
642 ST_FUNC void gen_bounded_ptr_add(void)
644 /* save all temporary registers */
645 save_regs(0);
647 /* prepare fast x86_64 function call */
648 gv(RC_RAX);
649 o(0xc68948); // mov %rax,%rsi ## second arg in %rsi, this must be size
650 vtop--;
652 gv(RC_RAX);
653 o(0xc78948); // mov %rax,%rdi ## first arg in %rdi, this must be ptr
654 vtop--;
656 /* do a fast function call */
657 gen_static_call(TOK___bound_ptr_add);
659 /* returned pointer is in rax */
660 vtop++;
661 vtop->r = TREG_RAX | VT_BOUNDED;
664 /* relocation offset of the bounding function call point */
665 vtop->c.ull = (cur_text_section->reloc->data_offset - sizeof(ElfW(Rela)));
668 /* patch pointer addition in vtop so that pointer dereferencing is
669 also tested */
670 ST_FUNC void gen_bounded_ptr_deref(void)
672 addr_t func;
673 int size, align;
674 ElfW(Rela) *rel;
675 Sym *sym;
677 size = 0;
678 /* XXX: put that code in generic part of tcc */
679 if (!is_float(vtop->type.t)) {
680 if (vtop->r & VT_LVAL_BYTE)
681 size = 1;
682 else if (vtop->r & VT_LVAL_SHORT)
683 size = 2;
685 if (!size)
686 size = type_size(&vtop->type, &align);
687 switch(size) {
688 case 1: func = TOK___bound_ptr_indir1; break;
689 case 2: func = TOK___bound_ptr_indir2; break;
690 case 4: func = TOK___bound_ptr_indir4; break;
691 case 8: func = TOK___bound_ptr_indir8; break;
692 case 12: func = TOK___bound_ptr_indir12; break;
693 case 16: func = TOK___bound_ptr_indir16; break;
694 default:
695 tcc_error("unhandled size when dereferencing bounded pointer");
696 func = 0;
697 break;
700 sym = external_global_sym(func, &func_old_type, 0);
701 if (!sym->c)
702 put_extern_sym(sym, NULL, 0, 0);
704 /* patch relocation */
705 /* XXX: find a better solution ? */
707 rel = (ElfW(Rela) *)(cur_text_section->reloc->data + vtop->c.ull);
708 rel->r_info = ELF64_R_INFO(sym->c, ELF64_R_TYPE(rel->r_info));
710 #endif
712 #ifdef TCC_TARGET_PE
714 #define REGN 4
715 static const uint8_t arg_regs[REGN] = {
716 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
719 /* Prepare arguments in R10 and R11 rather than RCX and RDX
720 because gv() will not ever use these */
721 static int arg_prepare_reg(int idx) {
722 if (idx == 0 || idx == 1)
723 /* idx=0: r10, idx=1: r11 */
724 return idx + 10;
725 else
726 return arg_regs[idx];
729 static int func_scratch;
731 /* Generate function call. The function address is pushed first, then
732 all the parameters in call order. This functions pops all the
733 parameters and the function address. */
735 void gen_offs_sp(int b, int r, int d)
737 orex(1,0,r & 0x100 ? 0 : r, b);
738 if (d == (char)d) {
739 o(0x2444 | (REG_VALUE(r) << 3));
740 g(d);
741 } else {
742 o(0x2484 | (REG_VALUE(r) << 3));
743 gen_le32(d);
747 /* Return the number of registers needed to return the struct, or 0 if
748 returning via struct pointer. */
749 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
751 int size, align;
752 *regsize = 8;
753 *ret_align = 1; // Never have to re-align return values for x86-64
754 size = type_size(vt, &align);
755 ret->ref = NULL;
756 if (size > 8) {
757 return 0;
758 } else if (size > 4) {
759 ret->t = VT_LLONG;
760 return 1;
761 } else if (size > 2) {
762 ret->t = VT_INT;
763 return 1;
764 } else if (size > 1) {
765 ret->t = VT_SHORT;
766 return 1;
767 } else {
768 ret->t = VT_BYTE;
769 return 1;
773 static int is_sse_float(int t) {
774 int bt;
775 bt = t & VT_BTYPE;
776 return bt == VT_DOUBLE || bt == VT_FLOAT;
779 int gfunc_arg_size(CType *type) {
780 int align;
781 if (type->t & (VT_ARRAY|VT_BITFIELD))
782 return 8;
783 return type_size(type, &align);
786 void gfunc_call(int nb_args)
788 int size, r, args_size, i, d, bt, struct_size;
789 int arg;
791 args_size = (nb_args < REGN ? REGN : nb_args) * PTR_SIZE;
792 arg = nb_args;
794 /* for struct arguments, we need to call memcpy and the function
795 call breaks register passing arguments we are preparing.
796 So, we process arguments which will be passed by stack first. */
797 struct_size = args_size;
798 for(i = 0; i < nb_args; i++) {
799 SValue *sv;
801 --arg;
802 sv = &vtop[-i];
803 bt = (sv->type.t & VT_BTYPE);
804 size = gfunc_arg_size(&sv->type);
806 if (size <= 8)
807 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
809 if (bt == VT_STRUCT) {
810 /* align to stack align size */
811 size = (size + 15) & ~15;
812 /* generate structure store */
813 r = get_reg(RC_INT);
814 gen_offs_sp(0x8d, r, struct_size);
815 struct_size += size;
817 /* generate memcpy call */
818 vset(&sv->type, r | VT_LVAL, 0);
819 vpushv(sv);
820 vstore();
821 --vtop;
822 } else if (bt == VT_LDOUBLE) {
823 gv(RC_ST0);
824 gen_offs_sp(0xdb, 0x107, struct_size);
825 struct_size += 16;
829 if (func_scratch < struct_size)
830 func_scratch = struct_size;
832 arg = nb_args;
833 struct_size = args_size;
835 for(i = 0; i < nb_args; i++) {
836 --arg;
837 bt = (vtop->type.t & VT_BTYPE);
839 size = gfunc_arg_size(&vtop->type);
840 if (size > 8) {
841 /* align to stack align size */
842 size = (size + 15) & ~15;
843 if (arg >= REGN) {
844 d = get_reg(RC_INT);
845 gen_offs_sp(0x8d, d, struct_size);
846 gen_offs_sp(0x89, d, arg*8);
847 } else {
848 d = arg_prepare_reg(arg);
849 gen_offs_sp(0x8d, d, struct_size);
851 struct_size += size;
852 } else {
853 if (is_sse_float(vtop->type.t)) {
854 gv(RC_XMM0); /* only use one float register */
855 if (arg >= REGN) {
856 /* movq %xmm0, j*8(%rsp) */
857 gen_offs_sp(0xd60f66, 0x100, arg*8);
858 } else {
859 /* movaps %xmm0, %xmmN */
860 o(0x280f);
861 o(0xc0 + (arg << 3));
862 d = arg_prepare_reg(arg);
863 /* mov %xmm0, %rxx */
864 o(0x66);
865 orex(1,d,0, 0x7e0f);
866 o(0xc0 + REG_VALUE(d));
868 } else {
869 if (bt == VT_STRUCT) {
870 vtop->type.ref = NULL;
871 vtop->type.t = size > 4 ? VT_LLONG : size > 2 ? VT_INT
872 : size > 1 ? VT_SHORT : VT_BYTE;
875 r = gv(RC_INT);
876 if (arg >= REGN) {
877 gen_offs_sp(0x89, r, arg*8);
878 } else {
879 d = arg_prepare_reg(arg);
880 orex(1,d,r,0x89); /* mov */
881 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
885 vtop--;
887 save_regs(0);
889 /* Copy R10 and R11 into RCX and RDX, respectively */
890 if (nb_args > 0) {
891 o(0xd1894c); /* mov %r10, %rcx */
892 if (nb_args > 1) {
893 o(0xda894c); /* mov %r11, %rdx */
897 gcall_or_jmp(0);
898 vtop--;
902 #define FUNC_PROLOG_SIZE 11
904 /* generate function prolog of type 't' */
905 void gfunc_prolog(CType *func_type)
907 int addr, reg_param_index, bt, size;
908 Sym *sym;
909 CType *type;
911 func_ret_sub = 0;
912 func_scratch = 0;
913 loc = 0;
915 addr = PTR_SIZE * 2;
916 ind += FUNC_PROLOG_SIZE;
917 func_sub_sp_offset = ind;
918 reg_param_index = 0;
920 sym = func_type->ref;
922 /* if the function returns a structure, then add an
923 implicit pointer parameter */
924 func_vt = sym->type;
925 func_var = (sym->c == FUNC_ELLIPSIS);
926 size = gfunc_arg_size(&func_vt);
927 if (size > 8) {
928 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
929 func_vc = addr;
930 reg_param_index++;
931 addr += 8;
934 /* define parameters */
935 while ((sym = sym->next) != NULL) {
936 type = &sym->type;
937 bt = type->t & VT_BTYPE;
938 size = gfunc_arg_size(type);
939 if (size > 8) {
940 if (reg_param_index < REGN) {
941 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
943 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL | VT_REF, addr);
944 } else {
945 if (reg_param_index < REGN) {
946 /* save arguments passed by register */
947 if ((bt == VT_FLOAT) || (bt == VT_DOUBLE)) {
948 o(0xd60f66); /* movq */
949 gen_modrm(reg_param_index, VT_LOCAL, NULL, addr);
950 } else {
951 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
954 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
956 addr += 8;
957 reg_param_index++;
960 while (reg_param_index < REGN) {
961 if (func_type->ref->c == FUNC_ELLIPSIS) {
962 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
963 addr += 8;
965 reg_param_index++;
969 /* generate function epilog */
970 void gfunc_epilog(void)
972 int v, saved_ind;
974 o(0xc9); /* leave */
975 if (func_ret_sub == 0) {
976 o(0xc3); /* ret */
977 } else {
978 o(0xc2); /* ret n */
979 g(func_ret_sub);
980 g(func_ret_sub >> 8);
983 saved_ind = ind;
984 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
985 /* align local size to word & save local variables */
986 v = (func_scratch + -loc + 15) & -16;
988 if (v >= 4096) {
989 Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
990 oad(0xb8, v); /* mov stacksize, %eax */
991 oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */
992 greloc(cur_text_section, sym, ind-4, R_X86_64_PC32);
993 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
994 } else {
995 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
996 o(0xec8148); /* sub rsp, stacksize */
997 gen_le32(v);
1000 cur_text_section->data_offset = saved_ind;
1001 pe_add_unwind_data(ind, saved_ind, v);
1002 ind = cur_text_section->data_offset;
1005 #else
1007 static void gadd_sp(int val)
1009 if (val == (char)val) {
1010 o(0xc48348);
1011 g(val);
1012 } else {
1013 oad(0xc48148, val); /* add $xxx, %rsp */
1017 typedef enum X86_64_Mode {
1018 x86_64_mode_none,
1019 x86_64_mode_memory,
1020 x86_64_mode_integer,
1021 x86_64_mode_sse,
1022 x86_64_mode_x87
1023 } X86_64_Mode;
1025 static X86_64_Mode classify_x86_64_merge(X86_64_Mode a, X86_64_Mode b)
1027 if (a == b)
1028 return a;
1029 else if (a == x86_64_mode_none)
1030 return b;
1031 else if (b == x86_64_mode_none)
1032 return a;
1033 else if ((a == x86_64_mode_memory) || (b == x86_64_mode_memory))
1034 return x86_64_mode_memory;
1035 else if ((a == x86_64_mode_integer) || (b == x86_64_mode_integer))
1036 return x86_64_mode_integer;
1037 else if ((a == x86_64_mode_x87) || (b == x86_64_mode_x87))
1038 return x86_64_mode_memory;
1039 else
1040 return x86_64_mode_sse;
1043 static X86_64_Mode classify_x86_64_inner(CType *ty)
1045 X86_64_Mode mode;
1046 Sym *f;
1048 switch (ty->t & VT_BTYPE) {
1049 case VT_VOID: return x86_64_mode_none;
1051 case VT_INT:
1052 case VT_BYTE:
1053 case VT_SHORT:
1054 case VT_LLONG:
1055 case VT_BOOL:
1056 case VT_PTR:
1057 case VT_FUNC:
1058 case VT_ENUM: return x86_64_mode_integer;
1060 case VT_FLOAT:
1061 case VT_DOUBLE: return x86_64_mode_sse;
1063 case VT_LDOUBLE: return x86_64_mode_x87;
1065 case VT_STRUCT:
1066 f = ty->ref;
1068 // Detect union
1069 if (f->next && (f->c == f->next->c))
1070 return x86_64_mode_memory;
1072 mode = x86_64_mode_none;
1073 for (; f; f = f->next)
1074 mode = classify_x86_64_merge(mode, classify_x86_64_inner(&f->type));
1076 return mode;
1079 assert(0);
1082 static X86_64_Mode classify_x86_64_arg(CType *ty, CType *ret, int *psize, int *palign, int *reg_count)
1084 X86_64_Mode mode;
1085 int size, align, ret_t = 0;
1087 if (ty->t & (VT_BITFIELD|VT_ARRAY)) {
1088 *psize = 8;
1089 *palign = 8;
1090 *reg_count = 1;
1091 ret_t = ty->t;
1092 mode = x86_64_mode_integer;
1093 } else {
1094 size = type_size(ty, &align);
1095 *psize = (size + 7) & ~7;
1096 *palign = (align + 7) & ~7;
1098 if (size > 16) {
1099 mode = x86_64_mode_memory;
1100 } else {
1101 mode = classify_x86_64_inner(ty);
1102 switch (mode) {
1103 case x86_64_mode_integer:
1104 if (size > 8) {
1105 *reg_count = 2;
1106 ret_t = VT_QLONG;
1107 } else {
1108 *reg_count = 1;
1109 ret_t = (size > 4) ? VT_LLONG : VT_INT;
1111 break;
1113 case x86_64_mode_x87:
1114 *reg_count = 1;
1115 ret_t = VT_LDOUBLE;
1116 break;
1118 case x86_64_mode_sse:
1119 if (size > 8) {
1120 *reg_count = 2;
1121 ret_t = VT_QFLOAT;
1122 } else {
1123 *reg_count = 1;
1124 ret_t = (size > 4) ? VT_DOUBLE : VT_FLOAT;
1126 break;
1127 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1132 if (ret) {
1133 ret->ref = NULL;
1134 ret->t = ret_t;
1137 return mode;
1140 ST_FUNC int classify_x86_64_va_arg(CType *ty)
1142 /* This definition must be synced with stdarg.h */
1143 enum __va_arg_type {
1144 __va_gen_reg, __va_float_reg, __va_stack
1146 int size, align, reg_count;
1147 X86_64_Mode mode = classify_x86_64_arg(ty, NULL, &size, &align, &reg_count);
1148 switch (mode) {
1149 default: return __va_stack;
1150 case x86_64_mode_integer: return __va_gen_reg;
1151 case x86_64_mode_sse: return __va_float_reg;
1155 /* Return the number of registers needed to return the struct, or 0 if
1156 returning via struct pointer. */
1157 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
1159 int size, align, reg_count;
1160 *ret_align = 1; // Never have to re-align return values for x86-64
1161 *regsize = 8;
1162 return (classify_x86_64_arg(vt, ret, &size, &align, &reg_count) != x86_64_mode_memory);
1165 #define REGN 6
1166 static const uint8_t arg_regs[REGN] = {
1167 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
1170 static int arg_prepare_reg(int idx) {
1171 if (idx == 2 || idx == 3)
1172 /* idx=2: r10, idx=3: r11 */
1173 return idx + 8;
1174 else
1175 return arg_regs[idx];
1178 /* Generate function call. The function address is pushed first, then
1179 all the parameters in call order. This functions pops all the
1180 parameters and the function address. */
1181 void gfunc_call(int nb_args)
1183 X86_64_Mode mode;
1184 CType type;
1185 int size, align, r, args_size, stack_adjust, run_start, run_end, i, reg_count;
1186 int nb_reg_args = 0;
1187 int nb_sse_args = 0;
1188 int sse_reg, gen_reg;
1190 /* calculate the number of integer/float register arguments */
1191 for(i = 0; i < nb_args; i++) {
1192 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1193 if (mode == x86_64_mode_sse)
1194 nb_sse_args += reg_count;
1195 else if (mode == x86_64_mode_integer)
1196 nb_reg_args += reg_count;
1199 /* arguments are collected in runs. Each run is a collection of 8-byte aligned arguments
1200 and ended by a 16-byte aligned argument. This is because, from the point of view of
1201 the callee, argument alignment is computed from the bottom up. */
1202 /* for struct arguments, we need to call memcpy and the function
1203 call breaks register passing arguments we are preparing.
1204 So, we process arguments which will be passed by stack first. */
1205 gen_reg = nb_reg_args;
1206 sse_reg = nb_sse_args;
1207 run_start = 0;
1208 args_size = 0;
1209 while (run_start != nb_args) {
1210 int run_gen_reg = gen_reg, run_sse_reg = sse_reg;
1212 run_end = nb_args;
1213 stack_adjust = 0;
1214 for(i = run_start; (i < nb_args) && (run_end == nb_args); i++) {
1215 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1216 switch (mode) {
1217 case x86_64_mode_memory:
1218 case x86_64_mode_x87:
1219 stack_arg:
1220 if (align == 16)
1221 run_end = i;
1222 else
1223 stack_adjust += size;
1224 break;
1226 case x86_64_mode_sse:
1227 sse_reg -= reg_count;
1228 if (sse_reg + reg_count > 8) goto stack_arg;
1229 break;
1231 case x86_64_mode_integer:
1232 gen_reg -= reg_count;
1233 if (gen_reg + reg_count > REGN) goto stack_arg;
1234 break;
1235 default: break; /* nothing to be done for x86_64_mode_none */
1239 gen_reg = run_gen_reg;
1240 sse_reg = run_sse_reg;
1242 /* adjust stack to align SSE boundary */
1243 if (stack_adjust &= 15) {
1244 /* fetch cpu flag before the following sub will change the value */
1245 if (vtop >= vstack && (vtop->r & VT_VALMASK) == VT_CMP)
1246 gv(RC_INT);
1248 stack_adjust = 16 - stack_adjust;
1249 o(0x48);
1250 oad(0xec81, stack_adjust); /* sub $xxx, %rsp */
1251 args_size += stack_adjust;
1254 for(i = run_start; i < run_end;) {
1255 /* Swap argument to top, it will possibly be changed here,
1256 and might use more temps. At the end of the loop we keep
1257 in on the stack and swap it back to its original position
1258 if it is a register. */
1259 SValue tmp = vtop[0];
1260 vtop[0] = vtop[-i];
1261 vtop[-i] = tmp;
1263 mode = classify_x86_64_arg(&vtop->type, NULL, &size, &align, &reg_count);
1265 int arg_stored = 1;
1266 switch (vtop->type.t & VT_BTYPE) {
1267 case VT_STRUCT:
1268 if (mode == x86_64_mode_sse) {
1269 if (sse_reg > 8)
1270 sse_reg -= reg_count;
1271 else
1272 arg_stored = 0;
1273 } else if (mode == x86_64_mode_integer) {
1274 if (gen_reg > REGN)
1275 gen_reg -= reg_count;
1276 else
1277 arg_stored = 0;
1280 if (arg_stored) {
1281 /* allocate the necessary size on stack */
1282 o(0x48);
1283 oad(0xec81, size); /* sub $xxx, %rsp */
1284 /* generate structure store */
1285 r = get_reg(RC_INT);
1286 orex(1, r, 0, 0x89); /* mov %rsp, r */
1287 o(0xe0 + REG_VALUE(r));
1288 vset(&vtop->type, r | VT_LVAL, 0);
1289 vswap();
1290 vstore();
1291 args_size += size;
1293 break;
1295 case VT_LDOUBLE:
1296 assert(0);
1297 break;
1299 case VT_FLOAT:
1300 case VT_DOUBLE:
1301 assert(mode == x86_64_mode_sse);
1302 if (sse_reg > 8) {
1303 --sse_reg;
1304 r = gv(RC_FLOAT);
1305 o(0x50); /* push $rax */
1306 /* movq %xmmN, (%rsp) */
1307 o(0xd60f66);
1308 o(0x04 + REG_VALUE(r)*8);
1309 o(0x24);
1310 args_size += size;
1311 } else {
1312 arg_stored = 0;
1314 break;
1316 default:
1317 assert(mode == x86_64_mode_integer);
1318 /* simple type */
1319 /* XXX: implicit cast ? */
1320 if (gen_reg > REGN) {
1321 --gen_reg;
1322 r = gv(RC_INT);
1323 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
1324 args_size += size;
1325 } else {
1326 arg_stored = 0;
1328 break;
1331 /* And swap the argument back to it's original position. */
1332 tmp = vtop[0];
1333 vtop[0] = vtop[-i];
1334 vtop[-i] = tmp;
1336 if (arg_stored) {
1337 vrotb(i+1);
1338 assert((vtop->type.t == tmp.type.t) && (vtop->r == tmp.r));
1339 vpop();
1340 --nb_args;
1341 --run_end;
1342 } else {
1343 ++i;
1347 /* handle 16 byte aligned arguments at end of run */
1348 run_start = i = run_end;
1349 while (i < nb_args) {
1350 /* Rotate argument to top since it will always be popped */
1351 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1352 if (align != 16)
1353 break;
1355 vrotb(i+1);
1357 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1358 gv(RC_ST0);
1359 oad(0xec8148, size); /* sub $xxx, %rsp */
1360 o(0x7cdb); /* fstpt 0(%rsp) */
1361 g(0x24);
1362 g(0x00);
1363 args_size += size;
1364 } else {
1365 assert(mode == x86_64_mode_memory);
1367 /* allocate the necessary size on stack */
1368 o(0x48);
1369 oad(0xec81, size); /* sub $xxx, %rsp */
1370 /* generate structure store */
1371 r = get_reg(RC_INT);
1372 orex(1, r, 0, 0x89); /* mov %rsp, r */
1373 o(0xe0 + REG_VALUE(r));
1374 vset(&vtop->type, r | VT_LVAL, 0);
1375 vswap();
1376 vstore();
1377 args_size += size;
1380 vpop();
1381 --nb_args;
1385 /* XXX This should be superfluous. */
1386 save_regs(0); /* save used temporary registers */
1388 /* then, we prepare register passing arguments.
1389 Note that we cannot set RDX and RCX in this loop because gv()
1390 may break these temporary registers. Let's use R10 and R11
1391 instead of them */
1392 assert(gen_reg <= REGN);
1393 assert(sse_reg <= 8);
1394 for(i = 0; i < nb_args; i++) {
1395 mode = classify_x86_64_arg(&vtop->type, &type, &size, &align, &reg_count);
1396 /* Alter stack entry type so that gv() knows how to treat it */
1397 vtop->type = type;
1398 if (mode == x86_64_mode_sse) {
1399 if (reg_count == 2) {
1400 sse_reg -= 2;
1401 gv(RC_FRET); /* Use pair load into xmm0 & xmm1 */
1402 if (sse_reg) { /* avoid redundant movaps %xmm0, %xmm0 */
1403 /* movaps %xmm0, %xmmN */
1404 o(0x280f);
1405 o(0xc0 + (sse_reg << 3));
1406 /* movaps %xmm1, %xmmN */
1407 o(0x280f);
1408 o(0xc1 + ((sse_reg+1) << 3));
1410 } else {
1411 assert(reg_count == 1);
1412 --sse_reg;
1413 /* Load directly to register */
1414 gv(RC_XMM0 << sse_reg);
1416 } else if (mode == x86_64_mode_integer) {
1417 /* simple type */
1418 /* XXX: implicit cast ? */
1419 gen_reg -= reg_count;
1420 r = gv(RC_INT);
1421 int d = arg_prepare_reg(gen_reg);
1422 orex(1,d,r,0x89); /* mov */
1423 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
1424 if (reg_count == 2) {
1425 d = arg_prepare_reg(gen_reg+1);
1426 orex(1,d,vtop->r2,0x89); /* mov */
1427 o(0xc0 + REG_VALUE(vtop->r2) * 8 + REG_VALUE(d));
1430 vtop--;
1432 assert(gen_reg == 0);
1433 assert(sse_reg == 0);
1435 /* We shouldn't have many operands on the stack anymore, but the
1436 call address itself is still there, and it might be in %eax
1437 (or edx/ecx) currently, which the below writes would clobber.
1438 So evict all remaining operands here. */
1439 save_regs(0);
1441 /* Copy R10 and R11 into RDX and RCX, respectively */
1442 if (nb_reg_args > 2) {
1443 o(0xd2894c); /* mov %r10, %rdx */
1444 if (nb_reg_args > 3) {
1445 o(0xd9894c); /* mov %r11, %rcx */
1449 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
1450 gcall_or_jmp(0);
1451 if (args_size)
1452 gadd_sp(args_size);
1453 vtop--;
1457 #define FUNC_PROLOG_SIZE 11
1459 static void push_arg_reg(int i) {
1460 loc -= 8;
1461 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
1464 /* generate function prolog of type 't' */
1465 void gfunc_prolog(CType *func_type)
1467 X86_64_Mode mode;
1468 int i, addr, align, size, reg_count;
1469 int param_addr = 0, reg_param_index, sse_param_index;
1470 Sym *sym;
1471 CType *type;
1473 sym = func_type->ref;
1474 addr = PTR_SIZE * 2;
1475 loc = 0;
1476 ind += FUNC_PROLOG_SIZE;
1477 func_sub_sp_offset = ind;
1478 func_ret_sub = 0;
1480 if (func_type->ref->c == FUNC_ELLIPSIS) {
1481 int seen_reg_num, seen_sse_num, seen_stack_size;
1482 seen_reg_num = seen_sse_num = 0;
1483 /* frame pointer and return address */
1484 seen_stack_size = PTR_SIZE * 2;
1485 /* count the number of seen parameters */
1486 sym = func_type->ref;
1487 while ((sym = sym->next) != NULL) {
1488 type = &sym->type;
1489 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1490 switch (mode) {
1491 default:
1492 stack_arg:
1493 seen_stack_size = ((seen_stack_size + align - 1) & -align) + size;
1494 break;
1496 case x86_64_mode_integer:
1497 if (seen_reg_num + reg_count <= 8) {
1498 seen_reg_num += reg_count;
1499 } else {
1500 seen_reg_num = 8;
1501 goto stack_arg;
1503 break;
1505 case x86_64_mode_sse:
1506 if (seen_sse_num + reg_count <= 8) {
1507 seen_sse_num += reg_count;
1508 } else {
1509 seen_sse_num = 8;
1510 goto stack_arg;
1512 break;
1516 loc -= 16;
1517 /* movl $0x????????, -0x10(%rbp) */
1518 o(0xf045c7);
1519 gen_le32(seen_reg_num * 8);
1520 /* movl $0x????????, -0xc(%rbp) */
1521 o(0xf445c7);
1522 gen_le32(seen_sse_num * 16 + 48);
1523 /* movl $0x????????, -0x8(%rbp) */
1524 o(0xf845c7);
1525 gen_le32(seen_stack_size);
1527 /* save all register passing arguments */
1528 for (i = 0; i < 8; i++) {
1529 loc -= 16;
1530 o(0xd60f66); /* movq */
1531 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1532 /* movq $0, loc+8(%rbp) */
1533 o(0x85c748);
1534 gen_le32(loc + 8);
1535 gen_le32(0);
1537 for (i = 0; i < REGN; i++) {
1538 push_arg_reg(REGN-1-i);
1542 sym = func_type->ref;
1543 reg_param_index = 0;
1544 sse_param_index = 0;
1546 /* if the function returns a structure, then add an
1547 implicit pointer parameter */
1548 func_vt = sym->type;
1549 mode = classify_x86_64_arg(&func_vt, NULL, &size, &align, &reg_count);
1550 if (mode == x86_64_mode_memory) {
1551 push_arg_reg(reg_param_index);
1552 func_vc = loc;
1553 reg_param_index++;
1555 /* define parameters */
1556 while ((sym = sym->next) != NULL) {
1557 type = &sym->type;
1558 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1559 switch (mode) {
1560 case x86_64_mode_sse:
1561 if (sse_param_index + reg_count <= 8) {
1562 /* save arguments passed by register */
1563 loc -= reg_count * 8;
1564 param_addr = loc;
1565 for (i = 0; i < reg_count; ++i) {
1566 o(0xd60f66); /* movq */
1567 gen_modrm(sse_param_index, VT_LOCAL, NULL, param_addr + i*8);
1568 ++sse_param_index;
1570 } else {
1571 addr = (addr + align - 1) & -align;
1572 param_addr = addr;
1573 addr += size;
1574 sse_param_index += reg_count;
1576 break;
1578 case x86_64_mode_memory:
1579 case x86_64_mode_x87:
1580 addr = (addr + align - 1) & -align;
1581 param_addr = addr;
1582 addr += size;
1583 break;
1585 case x86_64_mode_integer: {
1586 if (reg_param_index + reg_count <= REGN) {
1587 /* save arguments passed by register */
1588 loc -= reg_count * 8;
1589 param_addr = loc;
1590 for (i = 0; i < reg_count; ++i) {
1591 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, param_addr + i*8);
1592 ++reg_param_index;
1594 } else {
1595 addr = (addr + align - 1) & -align;
1596 param_addr = addr;
1597 addr += size;
1598 reg_param_index += reg_count;
1600 break;
1602 default: break; /* nothing to be done for x86_64_mode_none */
1604 sym_push(sym->v & ~SYM_FIELD, type,
1605 VT_LOCAL | VT_LVAL, param_addr);
1608 #ifdef CONFIG_TCC_BCHECK
1609 /* leave some room for bound checking code */
1610 if (tcc_state->do_bounds_check) {
1611 func_bound_offset = lbounds_section->data_offset;
1612 func_bound_ind = ind;
1613 oad(0xb8, 0); /* lbound section pointer */
1614 o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
1615 oad(0xb8, 0); /* call to function */
1617 #endif
1620 /* generate function epilog */
1621 void gfunc_epilog(void)
1623 int v, saved_ind;
1625 #ifdef CONFIG_TCC_BCHECK
1626 if (tcc_state->do_bounds_check
1627 && func_bound_offset != lbounds_section->data_offset)
1629 addr_t saved_ind;
1630 addr_t *bounds_ptr;
1631 Sym *sym_data;
1633 /* add end of table info */
1634 bounds_ptr = section_ptr_add(lbounds_section, sizeof(addr_t));
1635 *bounds_ptr = 0;
1637 /* generate bound local allocation */
1638 sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
1639 func_bound_offset, lbounds_section->data_offset);
1640 saved_ind = ind;
1641 ind = func_bound_ind;
1642 greloc(cur_text_section, sym_data, ind + 1, R_386_32);
1643 ind = ind + 5 + 3;
1644 gen_static_call(TOK___bound_local_new);
1645 ind = saved_ind;
1647 /* generate bound check local freeing */
1648 o(0x5250); /* save returned value, if any */
1649 greloc(cur_text_section, sym_data, ind + 1, R_386_32);
1650 oad(0xb8, 0); /* mov xxx, %rax */
1651 o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
1652 gen_static_call(TOK___bound_local_delete);
1653 o(0x585a); /* restore returned value, if any */
1655 #endif
1656 o(0xc9); /* leave */
1657 if (func_ret_sub == 0) {
1658 o(0xc3); /* ret */
1659 } else {
1660 o(0xc2); /* ret n */
1661 g(func_ret_sub);
1662 g(func_ret_sub >> 8);
1664 /* align local size to word & save local variables */
1665 v = (-loc + 15) & -16;
1666 saved_ind = ind;
1667 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1668 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1669 o(0xec8148); /* sub rsp, stacksize */
1670 gen_le32(v);
1671 ind = saved_ind;
1674 #endif /* not PE */
1676 /* generate a jump to a label */
1677 int gjmp(int t)
1679 return psym(0xe9, t);
1682 /* generate a jump to a fixed address */
1683 void gjmp_addr(int a)
1685 int r;
1686 r = a - ind - 2;
1687 if (r == (char)r) {
1688 g(0xeb);
1689 g(r);
1690 } else {
1691 oad(0xe9, a - ind - 5);
1695 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1696 int gtst(int inv, int t)
1698 int v, *p;
1700 v = vtop->r & VT_VALMASK;
1701 if (v == VT_CMP) {
1702 /* fast case : can jump directly since flags are set */
1703 if (vtop->c.i & 0x100)
1705 /* This was a float compare. If the parity flag is set
1706 the result was unordered. For anything except != this
1707 means false and we don't jump (anding both conditions).
1708 For != this means true (oring both).
1709 Take care about inverting the test. We need to jump
1710 to our target if the result was unordered and test wasn't NE,
1711 otherwise if unordered we don't want to jump. */
1712 vtop->c.i &= ~0x100;
1713 if (!inv == (vtop->c.i != TOK_NE))
1714 o(0x067a); /* jp +6 */
1715 else
1717 g(0x0f);
1718 t = psym(0x8a, t); /* jp t */
1721 g(0x0f);
1722 t = psym((vtop->c.i - 16) ^ inv, t);
1723 } else if (v == VT_JMP || v == VT_JMPI) {
1724 /* && or || optimization */
1725 if ((v & 1) == inv) {
1726 /* insert vtop->c jump list in t */
1727 p = &vtop->c.i;
1728 while (*p != 0)
1729 p = (int *)(cur_text_section->data + *p);
1730 *p = t;
1731 t = vtop->c.i;
1732 } else {
1733 t = gjmp(t);
1734 gsym(vtop->c.i);
1737 vtop--;
1738 return t;
1741 /* generate an integer binary operation */
1742 void gen_opi(int op)
1744 int r, fr, opc, c;
1745 int ll, uu, cc;
1747 ll = is64_type(vtop[-1].type.t);
1748 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1749 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1751 switch(op) {
1752 case '+':
1753 case TOK_ADDC1: /* add with carry generation */
1754 opc = 0;
1755 gen_op8:
1756 if (cc && (!ll || (int)vtop->c.ll == vtop->c.ll)) {
1757 /* constant case */
1758 vswap();
1759 r = gv(RC_INT);
1760 vswap();
1761 c = vtop->c.i;
1762 if (c == (char)c) {
1763 /* XXX: generate inc and dec for smaller code ? */
1764 orex(ll, r, 0, 0x83);
1765 o(0xc0 | (opc << 3) | REG_VALUE(r));
1766 g(c);
1767 } else {
1768 orex(ll, r, 0, 0x81);
1769 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1771 } else {
1772 gv2(RC_INT, RC_INT);
1773 r = vtop[-1].r;
1774 fr = vtop[0].r;
1775 orex(ll, r, fr, (opc << 3) | 0x01);
1776 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1778 vtop--;
1779 if (op >= TOK_ULT && op <= TOK_GT) {
1780 vtop->r = VT_CMP;
1781 vtop->c.i = op;
1783 break;
1784 case '-':
1785 case TOK_SUBC1: /* sub with carry generation */
1786 opc = 5;
1787 goto gen_op8;
1788 case TOK_ADDC2: /* add with carry use */
1789 opc = 2;
1790 goto gen_op8;
1791 case TOK_SUBC2: /* sub with carry use */
1792 opc = 3;
1793 goto gen_op8;
1794 case '&':
1795 opc = 4;
1796 goto gen_op8;
1797 case '^':
1798 opc = 6;
1799 goto gen_op8;
1800 case '|':
1801 opc = 1;
1802 goto gen_op8;
1803 case '*':
1804 gv2(RC_INT, RC_INT);
1805 r = vtop[-1].r;
1806 fr = vtop[0].r;
1807 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1808 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1809 vtop--;
1810 break;
1811 case TOK_SHL:
1812 opc = 4;
1813 goto gen_shift;
1814 case TOK_SHR:
1815 opc = 5;
1816 goto gen_shift;
1817 case TOK_SAR:
1818 opc = 7;
1819 gen_shift:
1820 opc = 0xc0 | (opc << 3);
1821 if (cc) {
1822 /* constant case */
1823 vswap();
1824 r = gv(RC_INT);
1825 vswap();
1826 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1827 o(opc | REG_VALUE(r));
1828 g(vtop->c.i & (ll ? 63 : 31));
1829 } else {
1830 /* we generate the shift in ecx */
1831 gv2(RC_INT, RC_RCX);
1832 r = vtop[-1].r;
1833 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1834 o(opc | REG_VALUE(r));
1836 vtop--;
1837 break;
1838 case TOK_UDIV:
1839 case TOK_UMOD:
1840 uu = 1;
1841 goto divmod;
1842 case '/':
1843 case '%':
1844 case TOK_PDIV:
1845 uu = 0;
1846 divmod:
1847 /* first operand must be in eax */
1848 /* XXX: need better constraint for second operand */
1849 gv2(RC_RAX, RC_RCX);
1850 r = vtop[-1].r;
1851 fr = vtop[0].r;
1852 vtop--;
1853 save_reg(TREG_RDX);
1854 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1855 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1856 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1857 if (op == '%' || op == TOK_UMOD)
1858 r = TREG_RDX;
1859 else
1860 r = TREG_RAX;
1861 vtop->r = r;
1862 break;
1863 default:
1864 opc = 7;
1865 goto gen_op8;
1869 void gen_opl(int op)
1871 gen_opi(op);
1874 /* generate a floating point operation 'v = t1 op t2' instruction. The
1875 two operands are guaranted to have the same floating point type */
1876 /* XXX: need to use ST1 too */
1877 void gen_opf(int op)
1879 int a, ft, fc, swapped, r;
1880 int float_type =
1881 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1883 /* convert constants to memory references */
1884 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1885 vswap();
1886 gv(float_type);
1887 vswap();
1889 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1890 gv(float_type);
1892 /* must put at least one value in the floating point register */
1893 if ((vtop[-1].r & VT_LVAL) &&
1894 (vtop[0].r & VT_LVAL)) {
1895 vswap();
1896 gv(float_type);
1897 vswap();
1899 swapped = 0;
1900 /* swap the stack if needed so that t1 is the register and t2 is
1901 the memory reference */
1902 if (vtop[-1].r & VT_LVAL) {
1903 vswap();
1904 swapped = 1;
1906 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1907 if (op >= TOK_ULT && op <= TOK_GT) {
1908 /* load on stack second operand */
1909 load(TREG_ST0, vtop);
1910 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1911 if (op == TOK_GE || op == TOK_GT)
1912 swapped = !swapped;
1913 else if (op == TOK_EQ || op == TOK_NE)
1914 swapped = 0;
1915 if (swapped)
1916 o(0xc9d9); /* fxch %st(1) */
1917 if (op == TOK_EQ || op == TOK_NE)
1918 o(0xe9da); /* fucompp */
1919 else
1920 o(0xd9de); /* fcompp */
1921 o(0xe0df); /* fnstsw %ax */
1922 if (op == TOK_EQ) {
1923 o(0x45e480); /* and $0x45, %ah */
1924 o(0x40fC80); /* cmp $0x40, %ah */
1925 } else if (op == TOK_NE) {
1926 o(0x45e480); /* and $0x45, %ah */
1927 o(0x40f480); /* xor $0x40, %ah */
1928 op = TOK_NE;
1929 } else if (op == TOK_GE || op == TOK_LE) {
1930 o(0x05c4f6); /* test $0x05, %ah */
1931 op = TOK_EQ;
1932 } else {
1933 o(0x45c4f6); /* test $0x45, %ah */
1934 op = TOK_EQ;
1936 vtop--;
1937 vtop->r = VT_CMP;
1938 vtop->c.i = op;
1939 } else {
1940 /* no memory reference possible for long double operations */
1941 load(TREG_ST0, vtop);
1942 swapped = !swapped;
1944 switch(op) {
1945 default:
1946 case '+':
1947 a = 0;
1948 break;
1949 case '-':
1950 a = 4;
1951 if (swapped)
1952 a++;
1953 break;
1954 case '*':
1955 a = 1;
1956 break;
1957 case '/':
1958 a = 6;
1959 if (swapped)
1960 a++;
1961 break;
1963 ft = vtop->type.t;
1964 fc = vtop->c.ul;
1965 o(0xde); /* fxxxp %st, %st(1) */
1966 o(0xc1 + (a << 3));
1967 vtop--;
1969 } else {
1970 if (op >= TOK_ULT && op <= TOK_GT) {
1971 /* if saved lvalue, then we must reload it */
1972 r = vtop->r;
1973 fc = vtop->c.ul;
1974 if ((r & VT_VALMASK) == VT_LLOCAL) {
1975 SValue v1;
1976 r = get_reg(RC_INT);
1977 v1.type.t = VT_PTR;
1978 v1.r = VT_LOCAL | VT_LVAL;
1979 v1.c.ul = fc;
1980 load(r, &v1);
1981 fc = 0;
1984 if (op == TOK_EQ || op == TOK_NE) {
1985 swapped = 0;
1986 } else {
1987 if (op == TOK_LE || op == TOK_LT)
1988 swapped = !swapped;
1989 if (op == TOK_LE || op == TOK_GE) {
1990 op = 0x93; /* setae */
1991 } else {
1992 op = 0x97; /* seta */
1996 if (swapped) {
1997 gv(RC_FLOAT);
1998 vswap();
2000 assert(!(vtop[-1].r & VT_LVAL));
2002 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
2003 o(0x66);
2004 if (op == TOK_EQ || op == TOK_NE)
2005 o(0x2e0f); /* ucomisd */
2006 else
2007 o(0x2f0f); /* comisd */
2009 if (vtop->r & VT_LVAL) {
2010 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2011 } else {
2012 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2015 vtop--;
2016 vtop->r = VT_CMP;
2017 vtop->c.i = op | 0x100;
2018 } else {
2019 assert((vtop->type.t & VT_BTYPE) != VT_LDOUBLE);
2020 switch(op) {
2021 default:
2022 case '+':
2023 a = 0;
2024 break;
2025 case '-':
2026 a = 4;
2027 break;
2028 case '*':
2029 a = 1;
2030 break;
2031 case '/':
2032 a = 6;
2033 break;
2035 ft = vtop->type.t;
2036 fc = vtop->c.ul;
2037 assert((ft & VT_BTYPE) != VT_LDOUBLE);
2039 r = vtop->r;
2040 /* if saved lvalue, then we must reload it */
2041 if ((vtop->r & VT_VALMASK) == VT_LLOCAL) {
2042 SValue v1;
2043 r = get_reg(RC_INT);
2044 v1.type.t = VT_PTR;
2045 v1.r = VT_LOCAL | VT_LVAL;
2046 v1.c.ul = fc;
2047 load(r, &v1);
2048 fc = 0;
2051 assert(!(vtop[-1].r & VT_LVAL));
2052 if (swapped) {
2053 assert(vtop->r & VT_LVAL);
2054 gv(RC_FLOAT);
2055 vswap();
2058 if ((ft & VT_BTYPE) == VT_DOUBLE) {
2059 o(0xf2);
2060 } else {
2061 o(0xf3);
2063 o(0x0f);
2064 o(0x58 + a);
2066 if (vtop->r & VT_LVAL) {
2067 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2068 } else {
2069 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2072 vtop--;
2077 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2078 and 'long long' cases. */
2079 void gen_cvt_itof(int t)
2081 if ((t & VT_BTYPE) == VT_LDOUBLE) {
2082 save_reg(TREG_ST0);
2083 gv(RC_INT);
2084 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
2085 /* signed long long to float/double/long double (unsigned case
2086 is handled generically) */
2087 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2088 o(0x242cdf); /* fildll (%rsp) */
2089 o(0x08c48348); /* add $8, %rsp */
2090 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2091 (VT_INT | VT_UNSIGNED)) {
2092 /* unsigned int to float/double/long double */
2093 o(0x6a); /* push $0 */
2094 g(0x00);
2095 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2096 o(0x242cdf); /* fildll (%rsp) */
2097 o(0x10c48348); /* add $16, %rsp */
2098 } else {
2099 /* int to float/double/long double */
2100 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2101 o(0x2404db); /* fildl (%rsp) */
2102 o(0x08c48348); /* add $8, %rsp */
2104 vtop->r = TREG_ST0;
2105 } else {
2106 int r = get_reg(RC_FLOAT);
2107 gv(RC_INT);
2108 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT?1:0));
2109 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2110 (VT_INT | VT_UNSIGNED) ||
2111 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
2112 o(0x48); /* REX */
2114 o(0x2a0f);
2115 o(0xc0 + (vtop->r & VT_VALMASK) + REG_VALUE(r)*8); /* cvtsi2sd */
2116 vtop->r = r;
2120 /* convert from one floating point type to another */
2121 void gen_cvt_ftof(int t)
2123 int ft, bt, tbt;
2125 ft = vtop->type.t;
2126 bt = ft & VT_BTYPE;
2127 tbt = t & VT_BTYPE;
2129 if (bt == VT_FLOAT) {
2130 gv(RC_FLOAT);
2131 if (tbt == VT_DOUBLE) {
2132 o(0x140f); /* unpcklps */
2133 o(0xc0 + REG_VALUE(vtop->r)*9);
2134 o(0x5a0f); /* cvtps2pd */
2135 o(0xc0 + REG_VALUE(vtop->r)*9);
2136 } else if (tbt == VT_LDOUBLE) {
2137 save_reg(RC_ST0);
2138 /* movss %xmm0,-0x10(%rsp) */
2139 o(0x110ff3);
2140 o(0x44 + REG_VALUE(vtop->r)*8);
2141 o(0xf024);
2142 o(0xf02444d9); /* flds -0x10(%rsp) */
2143 vtop->r = TREG_ST0;
2145 } else if (bt == VT_DOUBLE) {
2146 gv(RC_FLOAT);
2147 if (tbt == VT_FLOAT) {
2148 o(0x140f66); /* unpcklpd */
2149 o(0xc0 + REG_VALUE(vtop->r)*9);
2150 o(0x5a0f66); /* cvtpd2ps */
2151 o(0xc0 + REG_VALUE(vtop->r)*9);
2152 } else if (tbt == VT_LDOUBLE) {
2153 save_reg(RC_ST0);
2154 /* movsd %xmm0,-0x10(%rsp) */
2155 o(0x110ff2);
2156 o(0x44 + REG_VALUE(vtop->r)*8);
2157 o(0xf024);
2158 o(0xf02444dd); /* fldl -0x10(%rsp) */
2159 vtop->r = TREG_ST0;
2161 } else {
2162 int r;
2163 gv(RC_ST0);
2164 r = get_reg(RC_FLOAT);
2165 if (tbt == VT_DOUBLE) {
2166 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2167 /* movsd -0x10(%rsp),%xmm0 */
2168 o(0x100ff2);
2169 o(0x44 + REG_VALUE(r)*8);
2170 o(0xf024);
2171 vtop->r = r;
2172 } else if (tbt == VT_FLOAT) {
2173 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2174 /* movss -0x10(%rsp),%xmm0 */
2175 o(0x100ff3);
2176 o(0x44 + REG_VALUE(r)*8);
2177 o(0xf024);
2178 vtop->r = r;
2183 /* convert fp to int 't' type */
2184 void gen_cvt_ftoi(int t)
2186 int ft, bt, size, r;
2187 ft = vtop->type.t;
2188 bt = ft & VT_BTYPE;
2189 if (bt == VT_LDOUBLE) {
2190 gen_cvt_ftof(VT_DOUBLE);
2191 bt = VT_DOUBLE;
2194 gv(RC_FLOAT);
2195 if (t != VT_INT)
2196 size = 8;
2197 else
2198 size = 4;
2200 r = get_reg(RC_INT);
2201 if (bt == VT_FLOAT) {
2202 o(0xf3);
2203 } else if (bt == VT_DOUBLE) {
2204 o(0xf2);
2205 } else {
2206 assert(0);
2208 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2209 o(0xc0 + REG_VALUE(vtop->r) + REG_VALUE(r)*8);
2210 vtop->r = r;
2213 /* computed goto support */
2214 void ggoto(void)
2216 gcall_or_jmp(1);
2217 vtop--;
2220 /* Save the stack pointer onto the stack and return the location of its address */
2221 ST_FUNC void gen_vla_sp_save(int addr) {
2222 /* mov %rsp,addr(%rbp)*/
2223 gen_modrm64(0x89, TREG_RSP, VT_LOCAL, NULL, addr);
2226 /* Restore the SP from a location on the stack */
2227 ST_FUNC void gen_vla_sp_restore(int addr) {
2228 gen_modrm64(0x8b, TREG_RSP, VT_LOCAL, NULL, addr);
2231 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2232 ST_FUNC void gen_vla_alloc(CType *type, int align) {
2233 #ifdef TCC_TARGET_PE
2234 /* alloca does more than just adjust %rsp on Windows */
2235 vpush_global_sym(&func_old_type, TOK_alloca);
2236 vswap(); /* Move alloca ref past allocation size */
2237 gfunc_call(1);
2238 vset(type, REG_IRET, 0);
2239 #else
2240 int r;
2241 r = gv(RC_INT); /* allocation size */
2242 /* sub r,%rsp */
2243 o(0x2b48);
2244 o(0xe0 | REG_VALUE(r));
2245 /* We align to 16 bytes rather than align */
2246 /* and ~15, %rsp */
2247 o(0xf0e48348);
2248 /* mov %rsp, r */
2249 o(0x8948);
2250 o(0xe0 | REG_VALUE(r));
2251 vpop();
2252 vset(type, r, 0);
2253 #endif
2257 /* end of x86-64 code generator */
2258 /*************************************************************/
2259 #endif /* ! TARGET_DEFS_ONLY */
2260 /******************************************************/