Relaxed Move comparison.
[tagua/yd.git] / lua / doc / manual.html
blob6b137ff6e6f4e00a56af8ca196c48aec314e398a
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
2 <html>
4 <head>
5 <title>Lua 5.1 Reference Manual</title>
6 <link rel="stylesheet" href="lua.css">
7 <link rel="stylesheet" href="manual.css">
8 </head>
10 <body>
12 <hr>
13 <h1>
14 <a href="http://www.lua.org/"><img src="logo.gif" alt="" border="0"></a>
15 Lua 5.1 Reference Manual
16 </h1>
18 by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes
19 <p>
20 <small>
21 Copyright &copy; 2006-2007 Lua.org, PUC-Rio.
22 Freely available under the terms of the
23 <a href="http://www.lua.org/license.html#5">Lua license</a>.
24 </small>
25 <hr>
26 <p>
28 <a href="contents.html#contents">contents</A>
29 &middot;
30 <a href="contents.html#index">index</A>
32 <!-- ====================================================================== -->
33 <p>
39 <h1>1 - <a name="1">Introduction</a></h1>
41 <p>
42 Lua is an extension programming language designed to support
43 general procedural programming with data description
44 facilities.
45 It also offers good support for object-oriented programming,
46 functional programming, and data-driven programming.
47 Lua is intended to be used as a powerful, light-weight
48 scripting language for any program that needs one.
49 Lua is implemented as a library, written in <em>clean</em> C
50 (that is, in the common subset of ANSI&nbsp;C and C++).
53 <p>
54 Being an extension language, Lua has no notion of a "main" program:
55 it only works <em>embedded</em> in a host client,
56 called the <em>embedding program</em> or simply the <em>host</em>.
57 This host program can invoke functions to execute a piece of Lua code,
58 can write and read Lua variables,
59 and can register C&nbsp;functions to be called by Lua code.
60 Through the use of C&nbsp;functions, Lua can be augmented to cope with
61 a wide range of different domains,
62 thus creating customized programming languages sharing a syntactical framework.
63 The Lua distribution includes a sample host program called <code>lua</code>,
64 which uses the Lua library to offer a complete, stand-alone Lua interpreter.
67 <p>
68 Lua is free software,
69 and is provided as usual with no guarantees,
70 as stated in its license.
71 The implementation described in this manual is available
72 at Lua's official web site, <code>www.lua.org</code>.
75 <p>
76 Like any other reference manual,
77 this document is dry in places.
78 For a discussion of the decisions behind the design of Lua,
79 see the technical papers available at Lua's web site.
80 For a detailed introduction to programming in Lua,
81 see Roberto's book, <em>Programming in Lua (Second Edition)</em>.
85 <h1>2 - <a name="2">The Language</a></h1>
87 <p>
88 This section describes the lexis, the syntax, and the semantics of Lua.
89 In other words,
90 this section describes
91 which tokens are valid,
92 how they can be combined,
93 and what their combinations mean.
96 <p>
97 The language constructs will be explained using the usual extended BNF notation,
98 in which
99 {<em>a</em>}&nbsp;means&nbsp;0 or more <em>a</em>'s, and
100 [<em>a</em>]&nbsp;means an optional <em>a</em>.
101 Non-terminals are shown like non-terminal,
102 keywords are shown like <b>kword</b>,
103 and other terminal symbols are shown like `<b>=</b>&acute;.
104 The complete syntax of Lua can be found at the end of this manual.
108 <h2>2.1 - <a name="2.1">Lexical Conventions</a></h2>
111 <em>Names</em>
112 (also called <em>identifiers</em>)
113 in Lua can be any string of letters,
114 digits, and underscores,
115 not beginning with a digit.
116 This coincides with the definition of names in most languages.
117 (The definition of letter depends on the current locale:
118 any character considered alphabetic by the current locale
119 can be used in an identifier.)
120 Identifiers are used to name variables and table fields.
124 The following <em>keywords</em> are reserved
125 and cannot be used as names:
128 <pre>
129 and break do else elseif
130 end false for function if
131 in local nil not or
132 repeat return then true until while
133 </pre>
136 Lua is a case-sensitive language:
137 <code>and</code> is a reserved word, but <code>And</code> and <code>AND</code>
138 are two different, valid names.
139 As a convention, names starting with an underscore followed by
140 uppercase letters (such as <code>_VERSION</code>)
141 are reserved for internal global variables used by Lua.
145 The following strings denote other tokens:
147 <pre>
148 + - * / % ^ #
149 == ~= &lt;= &gt;= &lt; &gt; =
150 ( ) { } [ ]
151 ; : , . .. ...
152 </pre>
155 <em>Literal strings</em>
156 can be delimited by matching single or double quotes,
157 and can contain the following C-like escape sequences:
158 '<code>\a</code>' (bell),
159 '<code>\b</code>' (backspace),
160 '<code>\f</code>' (form feed),
161 '<code>\n</code>' (newline),
162 '<code>\r</code>' (carriage return),
163 '<code>\t</code>' (horizontal tab),
164 '<code>\v</code>' (vertical tab),
165 '<code>\\</code>' (backslash),
166 '<code>\"</code>' (quotation mark [double quote]),
167 and '<code>\'</code>' (apostrophe [single quote]).
168 Moreover, a backslash followed by a real newline
169 results in a newline in the string.
170 A character in a string may also be specified by its numerical value
171 using the escape sequence <code>\<em>ddd</em></code>,
172 where <em>ddd</em> is a sequence of up to three decimal digits.
173 (Note that if a numerical escape is to be followed by a digit,
174 it must be expressed using exactly three digits.)
175 Strings in Lua may contain any 8-bit value, including embedded zeros,
176 which can be specified as '<code>\0</code>'.
180 To put a double (single) quote, a newline, a backslash,
181 or an embedded zero
182 inside a literal string enclosed by double (single) quotes
183 you must use an escape sequence.
184 Any other character may be directly inserted into the literal.
185 (Some control characters may cause problems for the file system,
186 but Lua has no problem with them.)
190 Literal strings can also be defined using a long format
191 enclosed by <em>long brackets</em>.
192 We define an <em>opening long bracket of level <em>n</em></em> as an opening
193 square bracket followed by <em>n</em> equal signs followed by another
194 opening square bracket.
195 So, an opening long bracket of level&nbsp;0 is written as <code>[[</code>,
196 an opening long bracket of level&nbsp;1 is written as <code>[=[</code>,
197 and so on.
198 A <em>closing long bracket</em> is defined similarly;
199 for instance, a closing long bracket of level&nbsp;4 is written as <code>]====]</code>.
200 A long string starts with an opening long bracket of any level and
201 ends at the first closing long bracket of the same level.
202 Literals in this bracketed form may run for several lines,
203 do not interpret any escape sequences,
204 and ignore long brackets of any other level.
205 They may contain anything except a closing bracket of the proper level.
209 For convenience,
210 when the opening long bracket is immediately followed by a newline,
211 the newline is not included in the string.
212 As an example, in a system using ASCII
213 (in which '<code>a</code>' is coded as&nbsp;97,
214 newline is coded as&nbsp;10, and '<code>1</code>' is coded as&nbsp;49),
215 the five literals below denote the same string:
217 <pre>
218 a = 'alo\n123"'
219 a = "alo\n123\""
220 a = '\97lo\10\04923"'
221 a = [[alo
222 123"]]
223 a = [==[
225 123"]==]
226 </pre>
229 A <em>numerical constant</em> may be written with an optional decimal part
230 and an optional decimal exponent.
231 Lua also accepts integer hexadecimal constants,
232 by prefixing them with <code>0x</code>.
233 Examples of valid numerical constants are
235 <pre>
236 3 3.0 3.1416 314.16e-2 0.31416E1 0xff 0x56
237 </pre>
240 A <em>comment</em> starts with a double hyphen (<code>--</code>)
241 anywhere outside a string.
242 If the text immediately after <code>--</code> is not an opening long bracket,
243 the comment is a <em>short comment</em>,
244 which runs until the end of the line.
245 Otherwise, it is a <em>long comment</em>,
246 which runs until the corresponding closing long bracket.
247 Long comments are frequently used to disable code temporarily.
253 <h2>2.2 - <a name="2.2">Values and Types</a></h2>
256 Lua is a <em>dynamically typed language</em>.
257 This means that
258 variables do not have types; only values do.
259 There are no type definitions in the language.
260 All values carry their own type.
264 All values in Lua are <em>first-class values</em>.
265 This means that all values can be stored in variables,
266 passed as arguments to other functions, and returned as results.
270 There are eight basic types in Lua:
271 <em>nil</em>, <em>boolean</em>, <em>number</em>,
272 <em>string</em>, <em>function</em>, <em>userdata</em>,
273 <em>thread</em>, and <em>table</em>.
274 <em>Nil</em> is the type of the value <b>nil</b>,
275 whose main property is to be different from any other value;
276 it usually represents the absence of a useful value.
277 <em>Boolean</em> is the type of the values <b>false</b> and <b>true</b>.
278 Both <b>nil</b> and <b>false</b> make a condition false;
279 any other value makes it true.
280 <em>Number</em> represents real (double-precision floating-point) numbers.
281 (It is easy to build Lua interpreters that use other
282 internal representations for numbers,
283 such as single-precision float or long integers;
284 see file <code>luaconf.h</code>.)
285 <em>String</em> represents arrays of characters.
287 Lua is 8-bit clean:
288 strings may contain any 8-bit character,
289 including embedded zeros ('<code>\0</code>') (see <a href="#2.1">&sect;2.1</a>).
293 Lua can call (and manipulate) functions written in Lua and
294 functions written in C
295 (see <a href="#2.5.8">&sect;2.5.8</a>).
299 The type <em>userdata</em> is provided to allow arbitrary C&nbsp;data to
300 be stored in Lua variables.
301 This type corresponds to a block of raw memory
302 and has no pre-defined operations in Lua,
303 except assignment and identity test.
304 However, by using <em>metatables</em>,
305 the programmer can define operations for userdata values
306 (see <a href="#2.8">&sect;2.8</a>).
307 Userdata values cannot be created or modified in Lua,
308 only through the C&nbsp;API.
309 This guarantees the integrity of data owned by the host program.
313 The type <em>thread</em> represents independent threads of execution
314 and it is used to implement coroutines (see <a href="#2.11">&sect;2.11</a>).
315 Do not confuse Lua threads with operating-system threads.
316 Lua supports coroutines on all systems,
317 even those that do not support threads.
321 The type <em>table</em> implements associative arrays,
322 that is, arrays that can be indexed not only with numbers,
323 but with any value (except <b>nil</b>).
324 Tables can be <em>heterogeneous</em>;
325 that is, they can contain values of all types (except <b>nil</b>).
326 Tables are the sole data structuring mechanism in Lua;
327 they may be used to represent ordinary arrays,
328 symbol tables, sets, records, graphs, trees, etc.
329 To represent records, Lua uses the field name as an index.
330 The language supports this representation by
331 providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>.
332 There are several convenient ways to create tables in Lua
333 (see <a href="#2.5.7">&sect;2.5.7</a>).
337 Like indices,
338 the value of a table field can be of any type (except <b>nil</b>).
339 In particular,
340 because functions are first-class values,
341 table fields may contain functions.
342 Thus tables may also carry <em>methods</em> (see <a href="#2.5.9">&sect;2.5.9</a>).
346 Tables, functions, threads, and (full) userdata values are <em>objects</em>:
347 variables do not actually <em>contain</em> these values,
348 only <em>references</em> to them.
349 Assignment, parameter passing, and function returns
350 always manipulate references to such values;
351 these operations do not imply any kind of copy.
355 The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type
356 of a given value.
360 <h3>2.2.1 - <a name="2.2.1">Coercion</a></h3>
363 Lua provides automatic conversion between
364 string and number values at run time.
365 Any arithmetic operation applied to a string tries to convert
366 this string to a number, following the usual conversion rules.
367 Conversely, whenever a number is used where a string is expected,
368 the number is converted to a string, in a reasonable format.
369 For complete control over how numbers are converted to strings,
370 use the <code>format</code> function from the string library
371 (see <a href="#pdf-string.format"><code>string.format</code></a>).
379 <h2>2.3 - <a name="2.3">Variables</a></h2>
382 Variables are places that store values.
384 There are three kinds of variables in Lua:
385 global variables, local variables, and table fields.
389 A single name can denote a global variable or a local variable
390 (or a function's formal parameter,
391 which is a particular kind of local variable):
393 <pre>
394 var ::= Name
395 </pre><p>
396 Name denotes identifiers, as defined in <a href="#2.1">&sect;2.1</a>.
400 Any variable is assumed to be global unless explicitly declared
401 as a local (see <a href="#2.4.7">&sect;2.4.7</a>).
402 Local variables are <em>lexically scoped</em>:
403 local variables can be freely accessed by functions
404 defined inside their scope (see <a href="#2.6">&sect;2.6</a>).
408 Before the first assignment to a variable, its value is <b>nil</b>.
412 Square brackets are used to index a table:
414 <pre>
415 var ::= prefixexp `<b>[</b>&acute; exp `<b>]</b>&acute;
416 </pre><p>
417 The meaning of accesses to global variables
418 and table fields can be changed via metatables.
419 An access to an indexed variable <code>t[i]</code> is equivalent to
420 a call <code>gettable_event(t,i)</code>.
421 (See <a href="#2.8">&sect;2.8</a> for a complete description of the
422 <code>gettable_event</code> function.
423 This function is not defined or callable in Lua.
424 We use it here only for explanatory purposes.)
428 The syntax <code>var.Name</code> is just syntactic sugar for
429 <code>var["Name"]</code>:
431 <pre>
432 var ::= prefixexp `<b>.</b>&acute; Name
433 </pre>
436 All global variables live as fields in ordinary Lua tables,
437 called <em>environment tables</em> or simply
438 <em>environments</em> (see <a href="#2.9">&sect;2.9</a>).
439 Each function has its own reference to an environment,
440 so that all global variables in this function
441 will refer to this environment table.
442 When a function is created,
443 it inherits the environment from the function that created it.
444 To get the environment table of a Lua function,
445 you call <a href="#pdf-getfenv"><code>getfenv</code></a>.
446 To replace it,
447 you call <a href="#pdf-setfenv"><code>setfenv</code></a>.
448 (You can only manipulate the environment of C&nbsp;functions
449 through the debug library; (see <a href="#5.9">&sect;5.9</a>).)
453 An access to a global variable <code>x</code>
454 is equivalent to <code>_env.x</code>,
455 which in turn is equivalent to
457 <pre>
458 gettable_event(_env, "x")
459 </pre><p>
460 where <code>_env</code> is the environment of the running function.
461 (See <a href="#2.8">&sect;2.8</a> for a complete description of the
462 <code>gettable_event</code> function.
463 This function is not defined or callable in Lua.
464 Similarly, the <code>_env</code> variable is not defined in Lua.
465 We use them here only for explanatory purposes.)
471 <h2>2.4 - <a name="2.4">Statements</a></h2>
474 Lua supports an almost conventional set of statements,
475 similar to those in Pascal or C.
476 This set includes
477 assignment, control structures, function calls,
478 and variable declarations.
482 <h3>2.4.1 - <a name="2.4.1">Chunks</a></h3>
485 The unit of execution of Lua is called a <em>chunk</em>.
486 A chunk is simply a sequence of statements,
487 which are executed sequentially.
488 Each statement can be optionally followed by a semicolon:
490 <pre>
491 chunk ::= {stat [`<b>;</b>&acute;]}
492 </pre><p>
493 There are no empty statements and thus '<code>;;</code>' is not legal.
497 Lua handles a chunk as the body of an anonymous function
498 with a variable number of arguments
499 (see <a href="#2.5.9">&sect;2.5.9</a>).
500 As such, chunks can define local variables,
501 receive arguments, and return values.
505 A chunk may be stored in a file or in a string inside the host program.
506 When a chunk is executed, first it is pre-compiled into instructions for
507 a virtual machine,
508 and then the compiled code is executed
509 by an interpreter for the virtual machine.
513 Chunks may also be pre-compiled into binary form;
514 see program <code>luac</code> for details.
515 Programs in source and compiled forms are interchangeable;
516 Lua automatically detects the file type and acts accordingly.
523 <h3>2.4.2 - <a name="2.4.2">Blocks</a></h3><p>
524 A block is a list of statements;
525 syntactically, a block is the same as a chunk:
527 <pre>
528 block ::= chunk
529 </pre>
532 A block may be explicitly delimited to produce a single statement:
534 <pre>
535 stat ::= <b>do</b> block <b>end</b>
536 </pre><p>
537 Explicit blocks are useful
538 to control the scope of variable declarations.
539 Explicit blocks are also sometimes used to
540 add a <b>return</b> or <b>break</b> statement in the middle
541 of another block (see <a href="#2.4.4">&sect;2.4.4</a>).
547 <h3>2.4.3 - <a name="2.4.3">Assignment</a></h3>
550 Lua allows multiple assignment.
551 Therefore, the syntax for assignment
552 defines a list of variables on the left side
553 and a list of expressions on the right side.
554 The elements in both lists are separated by commas:
556 <pre>
557 stat ::= varlist1 `<b>=</b>&acute; explist1
558 varlist1 ::= var {`<b>,</b>&acute; var}
559 explist1 ::= exp {`<b>,</b>&acute; exp}
560 </pre><p>
561 Expressions are discussed in <a href="#2.5">&sect;2.5</a>.
565 Before the assignment,
566 the list of values is <em>adjusted</em> to the length of
567 the list of variables.
568 If there are more values than needed,
569 the excess values are thrown away.
570 If there are fewer values than needed,
571 the list is extended with as many <b>nil</b>'s as needed.
572 If the list of expressions ends with a function call,
573 then all values returned by this call enter in the list of values,
574 before the adjustment
575 (except when the call is enclosed in parentheses; see <a href="#2.5">&sect;2.5</a>).
579 The assignment statement first evaluates all its expressions
580 and only then are the assignments performed.
581 Thus the code
583 <pre>
584 i = 3
585 i, a[i] = i+1, 20
586 </pre><p>
587 sets <code>a[3]</code> to 20, without affecting <code>a[4]</code>
588 because the <code>i</code> in <code>a[i]</code> is evaluated (to 3)
589 before it is assigned&nbsp;4.
590 Similarly, the line
592 <pre>
593 x, y = y, x
594 </pre><p>
595 exchanges the values of <code>x</code> and <code>y</code>.
599 The meaning of assignments to global variables
600 and table fields can be changed via metatables.
601 An assignment to an indexed variable <code>t[i] = val</code> is equivalent to
602 <code>settable_event(t,i,val)</code>.
603 (See <a href="#2.8">&sect;2.8</a> for a complete description of the
604 <code>settable_event</code> function.
605 This function is not defined or callable in Lua.
606 We use it here only for explanatory purposes.)
610 An assignment to a global variable <code>x = val</code>
611 is equivalent to the assignment
612 <code>_env.x = val</code>,
613 which in turn is equivalent to
615 <pre>
616 settable_event(_env, "x", val)
617 </pre><p>
618 where <code>_env</code> is the environment of the running function.
619 (The <code>_env</code> variable is not defined in Lua.
620 We use it here only for explanatory purposes.)
626 <h3>2.4.4 - <a name="2.4.4">Control Structures</a></h3><p>
627 The control structures
628 <b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and
629 familiar syntax:
634 <pre>
635 stat ::= <b>while</b> exp <b>do</b> block <b>end</b>
636 stat ::= <b>repeat</b> block <b>until</b> exp
637 stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>
638 </pre><p>
639 Lua also has a <b>for</b> statement, in two flavors (see <a href="#2.4.5">&sect;2.4.5</a>).
643 The condition expression of a
644 control structure may return any value.
645 Both <b>false</b> and <b>nil</b> are considered false.
646 All values different from <b>nil</b> and <b>false</b> are considered true
647 (in particular, the number 0 and the empty string are also true).
651 In the <b>repeat</b>&ndash;<b>until</b> loop,
652 the inner block does not end at the <b>until</b> keyword,
653 but only after the condition.
654 So, the condition can refer to local variables
655 declared inside the loop block.
659 The <b>return</b> statement is used to return values
660 from a function or a chunk (which is just a function).
662 Functions and chunks may return more than one value,
663 so the syntax for the <b>return</b> statement is
665 <pre>
666 stat ::= <b>return</b> [explist1]
667 </pre>
670 The <b>break</b> statement is used to terminate the execution of a
671 <b>while</b>, <b>repeat</b>, or <b>for</b> loop,
672 skipping to the next statement after the loop:
675 <pre>
676 stat ::= <b>break</b>
677 </pre><p>
678 A <b>break</b> ends the innermost enclosing loop.
682 The <b>return</b> and <b>break</b>
683 statements can only be written as the <em>last</em> statement of a block.
684 If it is really necessary to <b>return</b> or <b>break</b> in the
685 middle of a block,
686 then an explicit inner block can be used,
687 as in the idioms
688 <code>do return end</code> and <code>do break end</code>,
689 because now <b>return</b> and <b>break</b> are the last statements in
690 their (inner) blocks.
696 <h3>2.4.5 - <a name="2.4.5">For Statement</a></h3>
700 The <b>for</b> statement has two forms:
701 one numeric and one generic.
705 The numeric <b>for</b> loop repeats a block of code while a
706 control variable runs through an arithmetic progression.
707 It has the following syntax:
709 <pre>
710 stat ::= <b>for</b> Name `<b>=</b>&acute; exp `<b>,</b>&acute; exp [`<b>,</b>&acute; exp] <b>do</b> block <b>end</b>
711 </pre><p>
712 The <em>block</em> is repeated for <em>name</em> starting at the value of
713 the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the
714 third <em>exp</em>.
715 More precisely, a <b>for</b> statement like
717 <pre>
718 for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end
719 </pre><p>
720 is equivalent to the code:
722 <pre>
724 local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>)
725 if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end
726 while (<em>step</em> &gt; 0 and <em>var</em> &lt;= <em>limit</em>) or (<em>step</em> &lt;= 0 and <em>var</em> &gt;= <em>limit</em>) do
727 local v = <em>var</em>
728 <em>block</em>
729 <em>var</em> = <em>var</em> + <em>step</em>
732 </pre><p>
733 Note the following:
735 <ul>
737 <li>
738 All three control expressions are evaluated only once,
739 before the loop starts.
740 They must all result in numbers.
741 </li>
743 <li>
744 <code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables.
745 The names are here for explanatory purposes only.
746 </li>
748 <li>
749 If the third expression (the step) is absent,
750 then a step of&nbsp;1 is used.
751 </li>
753 <li>
754 You can use <b>break</b> to exit a <b>for</b> loop.
755 </li>
757 <li>
758 The loop variable <code>v</code> is local to the loop;
759 you cannot use its value after the <b>for</b> ends or is broken.
760 If you need this value,
761 assign it to another variable before breaking or exiting the loop.
762 </li>
764 </ul>
767 The generic <b>for</b> statement works over functions,
768 called <em>iterators</em>.
769 On each iteration, the iterator function is called to produce a new value,
770 stopping when this new value is <b>nil</b>.
771 The generic <b>for</b> loop has the following syntax:
773 <pre>
774 stat ::= <b>for</b> namelist <b>in</b> explist1 <b>do</b> block <b>end</b>
775 namelist ::= Name {`<b>,</b>&acute; Name}
776 </pre><p>
777 A <b>for</b> statement like
779 <pre>
780 for <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> in <em>explist</em> do <em>block</em> end
781 </pre><p>
782 is equivalent to the code:
784 <pre>
786 local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em>
787 while true do
788 local <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>)
789 <em>var</em> = <em>var_1</em>
790 if <em>var</em> == nil then break end
791 <em>block</em>
794 </pre><p>
795 Note the following:
797 <ul>
799 <li>
800 <code><em>explist</em></code> is evaluated only once.
801 Its results are an <em>iterator</em> function,
802 a <em>state</em>,
803 and an initial value for the first <em>iterator variable</em>.
804 </li>
806 <li>
807 <code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables.
808 The names are here for explanatory purposes only.
809 </li>
811 <li>
812 You can use <b>break</b> to exit a <b>for</b> loop.
813 </li>
815 <li>
816 The loop variables <code><em>var_i</em></code> are local to the loop;
817 you cannot use their values after the <b>for</b> ends.
818 If you need these values,
819 then assign them to other variables before breaking or exiting the loop.
820 </li>
822 </ul>
827 <h3>2.4.6 - <a name="2.4.6">Function Calls as Statements</a></h3><p>
828 To allow possible side-effects,
829 function calls can be executed as statements:
831 <pre>
832 stat ::= functioncall
833 </pre><p>
834 In this case, all returned values are thrown away.
835 Function calls are explained in <a href="#2.5.8">&sect;2.5.8</a>.
841 <h3>2.4.7 - <a name="2.4.7">Local Declarations</a></h3><p>
842 Local variables may be declared anywhere inside a block.
843 The declaration may include an initial assignment:
845 <pre>
846 stat ::= <b>local</b> namelist [`<b>=</b>&acute; explist1]
847 </pre><p>
848 If present, an initial assignment has the same semantics
849 of a multiple assignment (see <a href="#2.4.3">&sect;2.4.3</a>).
850 Otherwise, all variables are initialized with <b>nil</b>.
854 A chunk is also a block (see <a href="#2.4.1">&sect;2.4.1</a>),
855 and so local variables can be declared in a chunk outside any explicit block.
856 The scope of such local variables extends until the end of the chunk.
860 The visibility rules for local variables are explained in <a href="#2.6">&sect;2.6</a>.
868 <h2>2.5 - <a name="2.5">Expressions</a></h2>
871 The basic expressions in Lua are the following:
873 <pre>
874 exp ::= prefixexp
875 exp ::= <b>nil</b> | <b>false</b> | <b>true</b>
876 exp ::= Number
877 exp ::= String
878 exp ::= function
879 exp ::= tableconstructor
880 exp ::= `<b>...</b>&acute;
881 exp ::= exp binop exp
882 exp ::= unop exp
883 prefixexp ::= var | functioncall | `<b>(</b>&acute; exp `<b>)</b>&acute;
884 </pre>
887 Numbers and literal strings are explained in <a href="#2.1">&sect;2.1</a>;
888 variables are explained in <a href="#2.3">&sect;2.3</a>;
889 function definitions are explained in <a href="#2.5.9">&sect;2.5.9</a>;
890 function calls are explained in <a href="#2.5.8">&sect;2.5.8</a>;
891 table constructors are explained in <a href="#2.5.7">&sect;2.5.7</a>.
892 Vararg expressions,
893 denoted by three dots ('<code>...</code>'), can only be used when
894 directly inside a vararg function;
895 they are explained in <a href="#2.5.9">&sect;2.5.9</a>.
899 Binary operators comprise arithmetic operators (see <a href="#2.5.1">&sect;2.5.1</a>),
900 relational operators (see <a href="#2.5.2">&sect;2.5.2</a>), logical operators (see <a href="#2.5.3">&sect;2.5.3</a>),
901 and the concatenation operator (see <a href="#2.5.4">&sect;2.5.4</a>).
902 Unary operators comprise the unary minus (see <a href="#2.5.1">&sect;2.5.1</a>),
903 the unary <b>not</b> (see <a href="#2.5.3">&sect;2.5.3</a>),
904 and the unary <em>length operator</em> (see <a href="#2.5.5">&sect;2.5.5</a>).
908 Both function calls and vararg expressions may result in multiple values.
909 If the expression is used as a statement (see <a href="#2.4.6">&sect;2.4.6</a>)
910 (only possible for function calls),
911 then its return list is adjusted to zero elements,
912 thus discarding all returned values.
913 If the expression is used as the last (or the only) element
914 of a list of expressions,
915 then no adjustment is made
916 (unless the call is enclosed in parentheses).
917 In all other contexts,
918 Lua adjusts the result list to one element,
919 discarding all values except the first one.
923 Here are some examples:
925 <pre>
926 f() -- adjusted to 0 results
927 g(f(), x) -- f() is adjusted to 1 result
928 g(x, f()) -- g gets x plus all results from f()
929 a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil)
930 a,b = ... -- a gets the first vararg parameter, b gets
931 -- the second (both a and b may get nil if there
932 -- is no corresponding vararg parameter)
934 a,b,c = x, f() -- f() is adjusted to 2 results
935 a,b,c = f() -- f() is adjusted to 3 results
936 return f() -- returns all results from f()
937 return ... -- returns all received vararg parameters
938 return x,y,f() -- returns x, y, and all results from f()
939 {f()} -- creates a list with all results from f()
940 {...} -- creates a list with all vararg parameters
941 {f(), nil} -- f() is adjusted to 1 result
942 </pre>
945 An expression enclosed in parentheses always results in only one value.
946 Thus,
947 <code>(f(x,y,z))</code> is always a single value,
948 even if <code>f</code> returns several values.
949 (The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code>
950 or <b>nil</b> if <code>f</code> does not return any values.)
954 <h3>2.5.1 - <a name="2.5.1">Arithmetic Operators</a></h3><p>
955 Lua supports the usual arithmetic operators:
956 the binary <code>+</code> (addition),
957 <code>-</code> (subtraction), <code>*</code> (multiplication),
958 <code>/</code> (division), <code>%</code> (modulo), and <code>^</code> (exponentiation);
959 and unary <code>-</code> (negation).
960 If the operands are numbers, or strings that can be converted to
961 numbers (see <a href="#2.2.1">&sect;2.2.1</a>),
962 then all operations have the usual meaning.
963 Exponentiation works for any exponent.
964 For instance, <code>x^(-0.5)</code> computes the inverse of the square root of <code>x</code>.
965 Modulo is defined as
967 <pre>
968 a % b == a - math.floor(a/b)*b
969 </pre><p>
970 That is, it is the remainder of a division that rounds
971 the quotient towards minus infinity.
977 <h3>2.5.2 - <a name="2.5.2">Relational Operators</a></h3><p>
978 The relational operators in Lua are
980 <pre>
981 == ~= &lt; &gt; &lt;= &gt;=
982 </pre><p>
983 These operators always result in <b>false</b> or <b>true</b>.
987 Equality (<code>==</code>) first compares the type of its operands.
988 If the types are different, then the result is <b>false</b>.
989 Otherwise, the values of the operands are compared.
990 Numbers and strings are compared in the usual way.
991 Objects (tables, userdata, threads, and functions)
992 are compared by <em>reference</em>:
993 two objects are considered equal only if they are the <em>same</em> object.
994 Every time you create a new object
995 (a table, userdata, thread, or function),
996 this new object is different from any previously existing object.
1000 You can change the way that Lua compares tables and userdata
1001 by using the "eq" metamethod (see <a href="#2.8">&sect;2.8</a>).
1005 The conversion rules of <a href="#2.2.1">&sect;2.2.1</a>
1006 <em>do not</em> apply to equality comparisons.
1007 Thus, <code>"0"==0</code> evaluates to <b>false</b>,
1008 and <code>t[0]</code> and <code>t["0"]</code> denote different
1009 entries in a table.
1013 The operator <code>~=</code> is exactly the negation of equality (<code>==</code>).
1017 The order operators work as follows.
1018 If both arguments are numbers, then they are compared as such.
1019 Otherwise, if both arguments are strings,
1020 then their values are compared according to the current locale.
1021 Otherwise, Lua tries to call the "lt" or the "le"
1022 metamethod (see <a href="#2.8">&sect;2.8</a>).
1028 <h3>2.5.3 - <a name="2.5.3">Logical Operators</a></h3><p>
1029 The logical operators in Lua are
1030 <b>and</b>, <b>or</b>, and <b>not</b>.
1031 Like the control structures (see <a href="#2.4.4">&sect;2.4.4</a>),
1032 all logical operators consider both <b>false</b> and <b>nil</b> as false
1033 and anything else as true.
1037 The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>.
1038 The conjunction operator <b>and</b> returns its first argument
1039 if this value is <b>false</b> or <b>nil</b>;
1040 otherwise, <b>and</b> returns its second argument.
1041 The disjunction operator <b>or</b> returns its first argument
1042 if this value is different from <b>nil</b> and <b>false</b>;
1043 otherwise, <b>or</b> returns its second argument.
1044 Both <b>and</b> and <b>or</b> use short-cut evaluation;
1045 that is,
1046 the second operand is evaluated only if necessary.
1047 Here are some examples:
1049 <pre>
1050 10 or 20 --&gt; 10
1051 10 or error() --&gt; 10
1052 nil or "a" --&gt; "a"
1053 nil and 10 --&gt; nil
1054 false and error() --&gt; false
1055 false and nil --&gt; false
1056 false or nil --&gt; nil
1057 10 and 20 --&gt; 20
1058 </pre><p>
1059 (In this manual,
1060 --> indicates the result of the preceding expression.)
1066 <h3>2.5.4 - <a name="2.5.4">Concatenation</a></h3><p>
1067 The string concatenation operator in Lua is
1068 denoted by two dots ('<code>..</code>').
1069 If both operands are strings or numbers, then they are converted to
1070 strings according to the rules mentioned in <a href="#2.2.1">&sect;2.2.1</a>.
1071 Otherwise, the "concat" metamethod is called (see <a href="#2.8">&sect;2.8</a>).
1077 <h3>2.5.5 - <a name="2.5.5">The Length Operator</a></h3>
1080 The length operator is denoted by the unary operator <code>#</code>.
1081 The length of a string is its number of bytes
1082 (that is, the usual meaning of string length when each
1083 character is one byte).
1087 The length of a table <code>t</code> is defined to be any
1088 integer index <code>n</code>
1089 such that <code>t[n]</code> is not <b>nil</b> and <code>t[n+1]</code> is <b>nil</b>;
1090 moreover, if <code>t[1]</code> is <b>nil</b>, <code>n</code> may be zero.
1091 For a regular array, with non-nil values from 1 to a given <code>n</code>,
1092 its length is exactly that <code>n</code>,
1093 the index of its last value.
1094 If the array has "holes"
1095 (that is, <b>nil</b> values between other non-nil values),
1096 then <code>#t</code> may be any of the indices that
1097 directly precedes a <b>nil</b> value
1098 (that is, it may consider any such <b>nil</b> value as the end of
1099 the array).
1105 <h3>2.5.6 - <a name="2.5.6">Precedence</a></h3><p>
1106 Operator precedence in Lua follows the table below,
1107 from lower to higher priority:
1109 <pre>
1112 &lt; &gt; &lt;= &gt;= ~= ==
1115 * / %
1116 not # - (unary)
1118 </pre><p>
1119 As usual,
1120 you can use parentheses to change the precedences of an expression.
1121 The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>')
1122 operators are right associative.
1123 All other binary operators are left associative.
1129 <h3>2.5.7 - <a name="2.5.7">Table Constructors</a></h3><p>
1130 Table constructors are expressions that create tables.
1131 Every time a constructor is evaluated, a new table is created.
1132 Constructors can be used to create empty tables,
1133 or to create a table and initialize some of its fields.
1134 The general syntax for constructors is
1136 <pre>
1137 tableconstructor ::= `<b>{</b>&acute; [fieldlist] `<b>}</b>&acute;
1138 fieldlist ::= field {fieldsep field} [fieldsep]
1139 field ::= `<b>[</b>&acute; exp `<b>]</b>&acute; `<b>=</b>&acute; exp | Name `<b>=</b>&acute; exp | exp
1140 fieldsep ::= `<b>,</b>&acute; | `<b>;</b>&acute;
1141 </pre>
1144 Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry
1145 with key <code>exp1</code> and value <code>exp2</code>.
1146 A field of the form <code>name = exp</code> is equivalent to
1147 <code>["name"] = exp</code>.
1148 Finally, fields of the form <code>exp</code> are equivalent to
1149 <code>[i] = exp</code>, where <code>i</code> are consecutive numerical integers,
1150 starting with 1.
1151 Fields in the other formats do not affect this counting.
1152 For example,
1154 <pre>
1155 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }
1156 </pre><p>
1157 is equivalent to
1159 <pre>
1161 local t = {}
1162 t[f(1)] = g
1163 t[1] = "x" -- 1st exp
1164 t[2] = "y" -- 2nd exp
1165 t.x = 1 -- t["x"] = 1
1166 t[3] = f(x) -- 3rd exp
1167 t[30] = 23
1168 t[4] = 45 -- 4th exp
1169 a = t
1171 </pre>
1174 If the last field in the list has the form <code>exp</code>
1175 and the expression is a function call or a vararg expression,
1176 then all values returned by this expression enter the list consecutively
1177 (see <a href="#2.5.8">&sect;2.5.8</a>).
1178 To avoid this,
1179 enclose the function call (or the vararg expression)
1180 in parentheses (see <a href="#2.5">&sect;2.5</a>).
1184 The field list may have an optional trailing separator,
1185 as a convenience for machine-generated code.
1191 <h3>2.5.8 - <a name="2.5.8">Function Calls</a></h3><p>
1192 A function call in Lua has the following syntax:
1194 <pre>
1195 functioncall ::= prefixexp args
1196 </pre><p>
1197 In a function call,
1198 first prefixexp and args are evaluated.
1199 If the value of prefixexp has type <em>function</em>,
1200 then this function is called
1201 with the given arguments.
1202 Otherwise, the prefixexp "call" metamethod is called,
1203 having as first parameter the value of prefixexp,
1204 followed by the original call arguments
1205 (see <a href="#2.8">&sect;2.8</a>).
1209 The form
1211 <pre>
1212 functioncall ::= prefixexp `<b>:</b>&acute; Name args
1213 </pre><p>
1214 can be used to call "methods".
1215 A call <code>v:name(<em>args</em>)</code>
1216 is syntactic sugar for <code>v.name(v,<em>args</em>)</code>,
1217 except that <code>v</code> is evaluated only once.
1221 Arguments have the following syntax:
1223 <pre>
1224 args ::= `<b>(</b>&acute; [explist1] `<b>)</b>&acute;
1225 args ::= tableconstructor
1226 args ::= String
1227 </pre><p>
1228 All argument expressions are evaluated before the call.
1229 A call of the form <code>f{<em>fields</em>}</code> is
1230 syntactic sugar for <code>f({<em>fields</em>})</code>;
1231 that is, the argument list is a single new table.
1232 A call of the form <code>f'<em>string</em>'</code>
1233 (or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>)
1234 is syntactic sugar for <code>f('<em>string</em>')</code>;
1235 that is, the argument list is a single literal string.
1239 As an exception to the free-format syntax of Lua,
1240 you cannot put a line break before the '<code>(</code>' in a function call.
1241 This restriction avoids some ambiguities in the language.
1242 If you write
1244 <pre>
1245 a = f
1246 (g).x(a)
1247 </pre><p>
1248 Lua would see that as a single statement, <code>a = f(g).x(a)</code>.
1249 So, if you want two statements, you must add a semi-colon between them.
1250 If you actually want to call <code>f</code>,
1251 you must remove the line break before <code>(g)</code>.
1255 A call of the form <code>return</code> <em>functioncall</em> is called
1256 a <em>tail call</em>.
1257 Lua implements <em>proper tail calls</em>
1258 (or <em>proper tail recursion</em>):
1259 in a tail call,
1260 the called function reuses the stack entry of the calling function.
1261 Therefore, there is no limit on the number of nested tail calls that
1262 a program can execute.
1263 However, a tail call erases any debug information about the
1264 calling function.
1265 Note that a tail call only happens with a particular syntax,
1266 where the <b>return</b> has one single function call as argument;
1267 this syntax makes the calling function return exactly
1268 the returns of the called function.
1269 So, none of the following examples are tail calls:
1271 <pre>
1272 return (f(x)) -- results adjusted to 1
1273 return 2 * f(x)
1274 return x, f(x) -- additional results
1275 f(x); return -- results discarded
1276 return x or f(x) -- results adjusted to 1
1277 </pre>
1282 <h3>2.5.9 - <a name="2.5.9">Function Definitions</a></h3>
1285 The syntax for function definition is
1287 <pre>
1288 function ::= <b>function</b> funcbody
1289 funcbody ::= `<b>(</b>&acute; [parlist1] `<b>)</b>&acute; block <b>end</b>
1290 </pre>
1293 The following syntactic sugar simplifies function definitions:
1295 <pre>
1296 stat ::= <b>function</b> funcname funcbody
1297 stat ::= <b>local</b> <b>function</b> Name funcbody
1298 funcname ::= Name {`<b>.</b>&acute; Name} [`<b>:</b>&acute; Name]
1299 </pre><p>
1300 The statement
1302 <pre>
1303 function f () <em>body</em> end
1304 </pre><p>
1305 translates to
1307 <pre>
1308 f = function () <em>body</em> end
1309 </pre><p>
1310 The statement
1312 <pre>
1313 function t.a.b.c.f () <em>body</em> end
1314 </pre><p>
1315 translates to
1317 <pre>
1318 t.a.b.c.f = function () <em>body</em> end
1319 </pre><p>
1320 The statement
1322 <pre>
1323 local function f () <em>body</em> end
1324 </pre><p>
1325 translates to
1327 <pre>
1328 local f; f = function () <em>body</em> end
1329 </pre><p>
1330 <em>not</em> to
1332 <pre>
1333 local f = function () <em>body</em> end
1334 </pre><p>
1335 (This only makes a difference when the body of the function
1336 contains references to <code>f</code>.)
1340 A function definition is an executable expression,
1341 whose value has type <em>function</em>.
1342 When Lua pre-compiles a chunk,
1343 all its function bodies are pre-compiled too.
1344 Then, whenever Lua executes the function definition,
1345 the function is <em>instantiated</em> (or <em>closed</em>).
1346 This function instance (or <em>closure</em>)
1347 is the final value of the expression.
1348 Different instances of the same function
1349 may refer to different external local variables
1350 and may have different environment tables.
1354 Parameters act as local variables that are
1355 initialized with the argument values:
1357 <pre>
1358 parlist1 ::= namelist [`<b>,</b>&acute; `<b>...</b>&acute;] | `<b>...</b>&acute;
1359 </pre><p>
1360 When a function is called,
1361 the list of arguments is adjusted to
1362 the length of the list of parameters,
1363 unless the function is a variadic or <em>vararg function</em>,
1364 which is
1365 indicated by three dots ('<code>...</code>') at the end of its parameter list.
1366 A vararg function does not adjust its argument list;
1367 instead, it collects all extra arguments and supplies them
1368 to the function through a <em>vararg expression</em>,
1369 which is also written as three dots.
1370 The value of this expression is a list of all actual extra arguments,
1371 similar to a function with multiple results.
1372 If a vararg expression is used inside another expression
1373 or in the middle of a list of expressions,
1374 then its return list is adjusted to one element.
1375 If the expression is used as the last element of a list of expressions,
1376 then no adjustment is made
1377 (unless the call is enclosed in parentheses).
1381 As an example, consider the following definitions:
1383 <pre>
1384 function f(a, b) end
1385 function g(a, b, ...) end
1386 function r() return 1,2,3 end
1387 </pre><p>
1388 Then, we have the following mapping from arguments to parameters and
1389 to the vararg expression:
1391 <pre>
1392 CALL PARAMETERS
1394 f(3) a=3, b=nil
1395 f(3, 4) a=3, b=4
1396 f(3, 4, 5) a=3, b=4
1397 f(r(), 10) a=1, b=10
1398 f(r()) a=1, b=2
1400 g(3) a=3, b=nil, ... --&gt; (nothing)
1401 g(3, 4) a=3, b=4, ... --&gt; (nothing)
1402 g(3, 4, 5, 8) a=3, b=4, ... --&gt; 5 8
1403 g(5, r()) a=5, b=1, ... --&gt; 2 3
1404 </pre>
1407 Results are returned using the <b>return</b> statement (see <a href="#2.4.4">&sect;2.4.4</a>).
1408 If control reaches the end of a function
1409 without encountering a <b>return</b> statement,
1410 then the function returns with no results.
1414 The <em>colon</em> syntax
1415 is used for defining <em>methods</em>,
1416 that is, functions that have an implicit extra parameter <code>self</code>.
1417 Thus, the statement
1419 <pre>
1420 function t.a.b.c:f (<em>params</em>) <em>body</em> end
1421 </pre><p>
1422 is syntactic sugar for
1424 <pre>
1425 t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end
1426 </pre>
1433 <h2>2.6 - <a name="2.6">Visibility Rules</a></h2>
1437 Lua is a lexically scoped language.
1438 The scope of variables begins at the first statement <em>after</em>
1439 their declaration and lasts until the end of the innermost block that
1440 includes the declaration.
1441 Consider the following example:
1443 <pre>
1444 x = 10 -- global variable
1445 do -- new block
1446 local x = x -- new 'x', with value 10
1447 print(x) --&gt; 10
1448 x = x+1
1449 do -- another block
1450 local x = x+1 -- another 'x'
1451 print(x) --&gt; 12
1453 print(x) --&gt; 11
1455 print(x) --&gt; 10 (the global one)
1456 </pre>
1459 Notice that, in a declaration like <code>local x = x</code>,
1460 the new <code>x</code> being declared is not in scope yet,
1461 and so the second <code>x</code> refers to the outside variable.
1465 Because of the lexical scoping rules,
1466 local variables can be freely accessed by functions
1467 defined inside their scope.
1468 A local variable used by an inner function is called
1469 an <em>upvalue</em>, or <em>external local variable</em>,
1470 inside the inner function.
1474 Notice that each execution of a <b>local</b> statement
1475 defines new local variables.
1476 Consider the following example:
1478 <pre>
1479 a = {}
1480 local x = 20
1481 for i=1,10 do
1482 local y = 0
1483 a[i] = function () y=y+1; return x+y end
1485 </pre><p>
1486 The loop creates ten closures
1487 (that is, ten instances of the anonymous function).
1488 Each of these closures uses a different <code>y</code> variable,
1489 while all of them share the same <code>x</code>.
1495 <h2>2.7 - <a name="2.7">Error Handling</a></h2>
1498 Because Lua is an embedded extension language,
1499 all Lua actions start from C&nbsp;code in the host program
1500 calling a function from the Lua library (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
1501 Whenever an error occurs during Lua compilation or execution,
1502 control returns to C,
1503 which can take appropriate measures
1504 (such as printing an error message).
1508 Lua code can explicitly generate an error by calling the
1509 <a href="#pdf-error"><code>error</code></a> function.
1510 If you need to catch errors in Lua,
1511 you can use the <a href="#pdf-pcall"><code>pcall</code></a> function.
1517 <h2>2.8 - <a name="2.8">Metatables</a></h2>
1520 Every value in Lua may have a <em>metatable</em>.
1521 This <em>metatable</em> is an ordinary Lua table
1522 that defines the behavior of the original value
1523 under certain special operations.
1524 You can change several aspects of the behavior
1525 of operations over a value by setting specific fields in its metatable.
1526 For instance, when a non-numeric value is the operand of an addition,
1527 Lua checks for a function in the field <code>"__add"</code> in its metatable.
1528 If it finds one,
1529 Lua calls this function to perform the addition.
1533 We call the keys in a metatable <em>events</em>
1534 and the values <em>metamethods</em>.
1535 In the previous example, the event is <code>"add"</code>
1536 and the metamethod is the function that performs the addition.
1540 You can query the metatable of any value
1541 through the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function.
1545 You can replace the metatable of tables
1546 through the <a href="#pdf-setmetatable"><code>setmetatable</code></a>
1547 function.
1548 You cannot change the metatable of other types from Lua
1549 (except using the debug library);
1550 you must use the C&nbsp;API for that.
1554 Tables and userdata have individual metatables
1555 (although multiple tables and userdata can share their metatables);
1556 values of all other types share one single metatable per type.
1557 So, there is one single metatable for all numbers,
1558 and for all strings, etc.
1562 A metatable may control how an object behaves in arithmetic operations,
1563 order comparisons, concatenation, length operation, and indexing.
1564 A metatable can also define a function to be called when a userdata
1565 is garbage collected.
1566 For each of these operations Lua associates a specific key
1567 called an <em>event</em>.
1568 When Lua performs one of these operations over a value,
1569 it checks whether this value has a metatable with the corresponding event.
1570 If so, the value associated with that key (the metamethod)
1571 controls how Lua will perform the operation.
1575 Metatables control the operations listed next.
1576 Each operation is identified by its corresponding name.
1577 The key for each operation is a string with its name prefixed by
1578 two underscores, '<code>__</code>';
1579 for instance, the key for operation "add" is the
1580 string <code>"__add"</code>.
1581 The semantics of these operations is better explained by a Lua function
1582 describing how the interpreter executes the operation.
1586 The code shown here in Lua is only illustrative;
1587 the real behavior is hard coded in the interpreter
1588 and it is much more efficient than this simulation.
1589 All functions used in these descriptions
1590 (<a href="#pdf-rawget"><code>rawget</code></a>, <a href="#pdf-tonumber"><code>tonumber</code></a>, etc.)
1591 are described in <a href="#5.1">&sect;5.1</a>.
1592 In particular, to retrieve the metamethod of a given object,
1593 we use the expression
1595 <pre>
1596 metatable(obj)[event]
1597 </pre><p>
1598 This should be read as
1600 <pre>
1601 rawget(getmetatable(obj) or {}, event)
1602 </pre><p>
1604 That is, the access to a metamethod does not invoke other metamethods,
1605 and the access to objects with no metatables does not fail
1606 (it simply results in <b>nil</b>).
1610 <ul>
1612 <li><b>"add":</b>
1613 the <code>+</code> operation.
1618 The function <code>getbinhandler</code> below defines how Lua chooses a handler
1619 for a binary operation.
1620 First, Lua tries the first operand.
1621 If its type does not define a handler for the operation,
1622 then Lua tries the second operand.
1624 <pre>
1625 function getbinhandler (op1, op2, event)
1626 return metatable(op1)[event] or metatable(op2)[event]
1628 </pre><p>
1629 By using this function,
1630 the behavior of the <code>op1 + op2</code> is
1632 <pre>
1633 function add_event (op1, op2)
1634 local o1, o2 = tonumber(op1), tonumber(op2)
1635 if o1 and o2 then -- both operands are numeric?
1636 return o1 + o2 -- '+' here is the primitive 'add'
1637 else -- at least one of the operands is not numeric
1638 local h = getbinhandler(op1, op2, "__add")
1639 if h then
1640 -- call the handler with both operands
1641 return h(op1, op2)
1642 else -- no handler available: default behavior
1643 error(&middot;&middot;&middot;)
1647 </pre><p>
1648 </li>
1650 <li><b>"sub":</b>
1651 the <code>-</code> operation.
1653 Behavior similar to the "add" operation.
1654 </li>
1656 <li><b>"mul":</b>
1657 the <code>*</code> operation.
1659 Behavior similar to the "add" operation.
1660 </li>
1662 <li><b>"div":</b>
1663 the <code>/</code> operation.
1665 Behavior similar to the "add" operation.
1666 </li>
1668 <li><b>"mod":</b>
1669 the <code>%</code> operation.
1671 Behavior similar to the "add" operation,
1672 with the operation
1673 <code>o1 - floor(o1/o2)*o2</code> as the primitive operation.
1674 </li>
1676 <li><b>"pow":</b>
1677 the <code>^</code> (exponentiation) operation.
1679 Behavior similar to the "add" operation,
1680 with the function <code>pow</code> (from the C&nbsp;math library)
1681 as the primitive operation.
1682 </li>
1684 <li><b>"unm":</b>
1685 the unary <code>-</code> operation.
1688 <pre>
1689 function unm_event (op)
1690 local o = tonumber(op)
1691 if o then -- operand is numeric?
1692 return -o -- '-' here is the primitive 'unm'
1693 else -- the operand is not numeric.
1694 -- Try to get a handler from the operand
1695 local h = metatable(op).__unm
1696 if h then
1697 -- call the handler with the operand
1698 return h(op)
1699 else -- no handler available: default behavior
1700 error(&middot;&middot;&middot;)
1704 </pre><p>
1705 </li>
1707 <li><b>"concat":</b>
1708 the <code>..</code> (concatenation) operation.
1711 <pre>
1712 function concat_event (op1, op2)
1713 if (type(op1) == "string" or type(op1) == "number") and
1714 (type(op2) == "string" or type(op2) == "number") then
1715 return op1 .. op2 -- primitive string concatenation
1716 else
1717 local h = getbinhandler(op1, op2, "__concat")
1718 if h then
1719 return h(op1, op2)
1720 else
1721 error(&middot;&middot;&middot;)
1725 </pre><p>
1726 </li>
1728 <li><b>"len":</b>
1729 the <code>#</code> operation.
1732 <pre>
1733 function len_event (op)
1734 if type(op) == "string" then
1735 return strlen(op) -- primitive string length
1736 elseif type(op) == "table" then
1737 return #op -- primitive table length
1738 else
1739 local h = metatable(op).__len
1740 if h then
1741 -- call the handler with the operand
1742 return h(op)
1743 else -- no handler available: default behavior
1744 error(&middot;&middot;&middot;)
1748 </pre><p>
1749 See <a href="#2.5.5">&sect;2.5.5</a> for a description of the length of a table.
1750 </li>
1752 <li><b>"eq":</b>
1753 the <code>==</code> operation.
1755 The function <code>getcomphandler</code> defines how Lua chooses a metamethod
1756 for comparison operators.
1757 A metamethod only is selected when both objects
1758 being compared have the same type
1759 and the same metamethod for the selected operation.
1761 <pre>
1762 function getcomphandler (op1, op2, event)
1763 if type(op1) ~= type(op2) then return nil end
1764 local mm1 = metatable(op1)[event]
1765 local mm2 = metatable(op2)[event]
1766 if mm1 == mm2 then return mm1 else return nil end
1768 </pre><p>
1769 The "eq" event is defined as follows:
1771 <pre>
1772 function eq_event (op1, op2)
1773 if type(op1) ~= type(op2) then -- different types?
1774 return false -- different objects
1776 if op1 == op2 then -- primitive equal?
1777 return true -- objects are equal
1779 -- try metamethod
1780 local h = getcomphandler(op1, op2, "__eq")
1781 if h then
1782 return h(op1, op2)
1783 else
1784 return false
1787 </pre><p>
1788 <code>a ~= b</code> is equivalent to <code>not (a == b)</code>.
1789 </li>
1791 <li><b>"lt":</b>
1792 the <code>&lt;</code> operation.
1795 <pre>
1796 function lt_event (op1, op2)
1797 if type(op1) == "number" and type(op2) == "number" then
1798 return op1 &lt; op2 -- numeric comparison
1799 elseif type(op1) == "string" and type(op2) == "string" then
1800 return op1 &lt; op2 -- lexicographic comparison
1801 else
1802 local h = getcomphandler(op1, op2, "__lt")
1803 if h then
1804 return h(op1, op2)
1805 else
1806 error(&middot;&middot;&middot;);
1810 </pre><p>
1811 <code>a &gt; b</code> is equivalent to <code>b &lt; a</code>.
1812 </li>
1814 <li><b>"le":</b>
1815 the <code>&lt;=</code> operation.
1818 <pre>
1819 function le_event (op1, op2)
1820 if type(op1) == "number" and type(op2) == "number" then
1821 return op1 &lt;= op2 -- numeric comparison
1822 elseif type(op1) == "string" and type(op2) == "string" then
1823 return op1 &lt;= op2 -- lexicographic comparison
1824 else
1825 local h = getcomphandler(op1, op2, "__le")
1826 if h then
1827 return h(op1, op2)
1828 else
1829 h = getcomphandler(op1, op2, "__lt")
1830 if h then
1831 return not h(op2, op1)
1832 else
1833 error(&middot;&middot;&middot;);
1838 </pre><p>
1839 <code>a &gt;= b</code> is equivalent to <code>b &lt;= a</code>.
1840 Note that, in the absence of a "le" metamethod,
1841 Lua tries the "lt", assuming that <code>a &lt;= b</code> is
1842 equivalent to <code>not (b &lt; a)</code>.
1843 </li>
1845 <li><b>"index":</b>
1846 The indexing access <code>table[key]</code>.
1849 <pre>
1850 function gettable_event (table, key)
1851 local h
1852 if type(table) == "table" then
1853 local v = rawget(table, key)
1854 if v ~= nil then return v end
1855 h = metatable(table).__index
1856 if h == nil then return nil end
1857 else
1858 h = metatable(table).__index
1859 if h == nil then
1860 error(&middot;&middot;&middot;);
1863 if type(h) == "function" then
1864 return h(table, key) -- call the handler
1865 else return h[key] -- or repeat operation on it
1868 </pre><p>
1869 </li>
1871 <li><b>"newindex":</b>
1872 The indexing assignment <code>table[key] = value</code>.
1875 <pre>
1876 function settable_event (table, key, value)
1877 local h
1878 if type(table) == "table" then
1879 local v = rawget(table, key)
1880 if v ~= nil then rawset(table, key, value); return end
1881 h = metatable(table).__newindex
1882 if h == nil then rawset(table, key, value); return end
1883 else
1884 h = metatable(table).__newindex
1885 if h == nil then
1886 error(&middot;&middot;&middot;);
1889 if type(h) == "function" then
1890 return h(table, key,value) -- call the handler
1891 else h[key] = value -- or repeat operation on it
1894 </pre><p>
1895 </li>
1897 <li><b>"call":</b>
1898 called when Lua calls a value.
1901 <pre>
1902 function function_event (func, ...)
1903 if type(func) == "function" then
1904 return func(...) -- primitive call
1905 else
1906 local h = metatable(func).__call
1907 if h then
1908 return h(func, ...)
1909 else
1910 error(&middot;&middot;&middot;)
1914 </pre><p>
1915 </li>
1917 </ul>
1922 <h2>2.9 - <a name="2.9">Environments</a></h2>
1925 Besides metatables,
1926 objects of types thread, function, and userdata
1927 have another table associated with them,
1928 called their <em>environment</em>.
1929 Like metatables, environments are regular tables and
1930 multiple objects can share the same environment.
1934 Environments associated with userdata have no meaning for Lua.
1935 It is only a convenience feature for programmers to associate a table to
1936 a userdata.
1940 Environments associated with threads are called
1941 <em>global environments</em>.
1942 They are used as the default environment for their threads and
1943 non-nested functions created by the thread
1944 (through <a href="#pdf-loadfile"><code>loadfile</code></a>, <a href="#pdf-loadstring"><code>loadstring</code></a> or <a href="#pdf-load"><code>load</code></a>)
1945 and can be directly accessed by C&nbsp;code (see <a href="#3.3">&sect;3.3</a>).
1949 Environments associated with C&nbsp;functions can be directly
1950 accessed by C&nbsp;code (see <a href="#3.3">&sect;3.3</a>).
1951 They are used as the default environment for other C&nbsp;functions
1952 created by the function.
1956 Environments associated with Lua functions are used to resolve
1957 all accesses to global variables within the function (see <a href="#2.3">&sect;2.3</a>).
1958 They are used as the default environment for other Lua functions
1959 created by the function.
1963 You can change the environment of a Lua function or the
1964 running thread by calling <a href="#pdf-setfenv"><code>setfenv</code></a>.
1965 You can get the environment of a Lua function or the running thread
1966 by calling <a href="#pdf-getfenv"><code>getfenv</code></a>.
1967 To manipulate the environment of other objects
1968 (userdata, C&nbsp;functions, other threads) you must
1969 use the C&nbsp;API.
1975 <h2>2.10 - <a name="2.10">Garbage Collection</a></h2>
1978 Lua performs automatic memory management.
1979 This means that
1980 you have to worry neither about allocating memory for new objects
1981 nor about freeing it when the objects are no longer needed.
1982 Lua manages memory automatically by running
1983 a <em>garbage collector</em> from time to time
1984 to collect all <em>dead objects</em>
1985 (that is, these objects that are no longer accessible from Lua).
1986 All objects in Lua are subject to automatic management:
1987 tables, userdata, functions, threads, and strings.
1991 Lua implements an incremental mark-and-sweep collector.
1992 It uses two numbers to control its garbage-collection cycles:
1993 the <em>garbage-collector pause</em> and
1994 the <em>garbage-collector step multiplier</em>.
1998 The garbage-collector pause
1999 controls how long the collector waits before starting a new cycle.
2000 Larger values make the collector less aggressive.
2001 Values smaller than 1 mean the collector will not wait to
2002 start a new cycle.
2003 A value of 2 means that the collector waits for the total memory in use
2004 to double before starting a new cycle.
2008 The step multiplier
2009 controls the relative speed of the collector relative to
2010 memory allocation.
2011 Larger values make the collector more aggressive but also increase
2012 the size of each incremental step.
2013 Values smaller than 1 make the collector too slow and
2014 may result in the collector never finishing a cycle.
2015 The default, 2, means that the collector runs at "twice"
2016 the speed of memory allocation.
2020 You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C
2021 or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua.
2022 Both get percentage points as arguments
2023 (so an argument of 100 means a real value of 1).
2024 With these functions you can also control
2025 the collector directly (e.g., stop and restart it).
2029 <h3>2.10.1 - <a name="2.10.1">Garbage-Collection Metamethods</a></h3>
2032 Using the C&nbsp;API,
2033 you can set garbage-collector metamethods for userdata (see <a href="#2.8">&sect;2.8</a>).
2034 These metamethods are also called <em>finalizers</em>.
2035 Finalizers allow you to coordinate Lua's garbage collection
2036 with external resource management
2037 (such as closing files, network or database connections,
2038 or freeing your own memory).
2042 Garbage userdata with a field <code>__gc</code> in their metatables are not
2043 collected immediately by the garbage collector.
2044 Instead, Lua puts them in a list.
2045 After the collection,
2046 Lua does the equivalent of the following function
2047 for each userdata in that list:
2049 <pre>
2050 function gc_event (udata)
2051 local h = metatable(udata).__gc
2052 if h then
2053 h(udata)
2056 </pre>
2059 At the end of each garbage-collection cycle,
2060 the finalizers for userdata are called in <em>reverse</em>
2061 order of their creation,
2062 among those collected in that cycle.
2063 That is, the first finalizer to be called is the one associated
2064 with the userdata created last in the program.
2070 <h3>2.10.2 - <a name="2.10.2">Weak Tables</a></h3>
2073 A <em>weak table</em> is a table whose elements are
2074 <em>weak references</em>.
2075 A weak reference is ignored by the garbage collector.
2076 In other words,
2077 if the only references to an object are weak references,
2078 then the garbage collector will collect this object.
2082 A weak table can have weak keys, weak values, or both.
2083 A table with weak keys allows the collection of its keys,
2084 but prevents the collection of its values.
2085 A table with both weak keys and weak values allows the collection of
2086 both keys and values.
2087 In any case, if either the key or the value is collected,
2088 the whole pair is removed from the table.
2089 The weakness of a table is controlled by the
2090 <code>__mode</code> field of its metatable.
2091 If the <code>__mode</code> field is a string containing the character&nbsp;'<code>k</code>',
2092 the keys in the table are weak.
2093 If <code>__mode</code> contains '<code>v</code>',
2094 the values in the table are weak.
2098 After you use a table as a metatable,
2099 you should not change the value of its field <code>__mode</code>.
2100 Otherwise, the weak behavior of the tables controlled by this
2101 metatable is undefined.
2109 <h2>2.11 - <a name="2.11">Coroutines</a></h2>
2112 Lua supports coroutines,
2113 also called <em>collaborative multithreading</em>.
2114 A coroutine in Lua represents an independent thread of execution.
2115 Unlike threads in multithread systems, however,
2116 a coroutine only suspends its execution by explicitly calling
2117 a yield function.
2121 You create a coroutine with a call to <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>.
2122 Its sole argument is a function
2123 that is the main function of the coroutine.
2124 The <code>create</code> function only creates a new coroutine and
2125 returns a handle to it (an object of type <em>thread</em>);
2126 it does not start the coroutine execution.
2130 When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
2131 passing as its first argument
2132 the thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
2133 the coroutine starts its execution,
2134 at the first line of its main function.
2135 Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed on
2136 to the coroutine main function.
2137 After the coroutine starts running,
2138 it runs until it terminates or <em>yields</em>.
2142 A coroutine can terminate its execution in two ways:
2143 normally, when its main function returns
2144 (explicitly or implicitly, after the last instruction);
2145 and abnormally, if there is an unprotected error.
2146 In the first case, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>,
2147 plus any values returned by the coroutine main function.
2148 In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b>
2149 plus an error message.
2153 A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
2154 When a coroutine yields,
2155 the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately,
2156 even if the yield happens inside nested function calls
2157 (that is, not in the main function,
2158 but in a function directly or indirectly called by the main function).
2159 In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>,
2160 plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
2161 The next time you resume the same coroutine,
2162 it continues its execution from the point where it yielded,
2163 with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra
2164 arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
2168 Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
2169 the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine,
2170 but instead of returning the coroutine itself,
2171 it returns a function that, when called, resumes the coroutine.
2172 Any arguments passed to this function
2173 go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
2174 <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
2175 except the first one (the boolean error code).
2176 Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
2177 <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors;
2178 any error is propagated to the caller.
2182 As an example,
2183 consider the following code:
2185 <pre>
2186 function foo (a)
2187 print("foo", a)
2188 return coroutine.yield(2*a)
2191 co = coroutine.create(function (a,b)
2192 print("co-body", a, b)
2193 local r = foo(a+1)
2194 print("co-body", r)
2195 local r, s = coroutine.yield(a+b, a-b)
2196 print("co-body", r, s)
2197 return b, "end"
2198 end)
2200 print("main", coroutine.resume(co, 1, 10))
2201 print("main", coroutine.resume(co, "r"))
2202 print("main", coroutine.resume(co, "x", "y"))
2203 print("main", coroutine.resume(co, "x", "y"))
2204 </pre><p>
2205 When you run it, it produces the following output:
2207 <pre>
2208 co-body 1 10
2209 foo 2
2211 main true 4
2212 co-body r
2213 main true 11 -9
2214 co-body x y
2215 main true 10 end
2216 main false cannot resume dead coroutine
2217 </pre>
2222 <h1>3 - <a name="3">The Application Program Interface</a></h1>
2226 This section describes the C&nbsp;API for Lua, that is,
2227 the set of C&nbsp;functions available to the host program to communicate
2228 with Lua.
2229 All API functions and related types and constants
2230 are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>.
2234 Even when we use the term "function",
2235 any facility in the API may be provided as a macro instead.
2236 All such macros use each of their arguments exactly once
2237 (except for the first argument, which is always a Lua state),
2238 and so do not generate any hidden side-effects.
2242 As in most C&nbsp;libraries,
2243 the Lua API functions do not check their arguments for validity or consistency.
2244 However, you can change this behavior by compiling Lua
2245 with a proper definition for the macro <a name="pdf-luai_apicheck"><code>luai_apicheck</code></a>,
2246 in file <code>luaconf.h</code>.
2250 <h2>3.1 - <a name="3.1">The Stack</a></h2>
2253 Lua uses a <em>virtual stack</em> to pass values to and from C.
2254 Each element in this stack represents a Lua value
2255 (<b>nil</b>, number, string, etc.).
2259 Whenever Lua calls C, the called function gets a new stack,
2260 which is independent of previous stacks and of stacks of
2261 C&nbsp;functions that are still active.
2262 This stack initially contains any arguments to the C&nbsp;function
2263 and it is where the C&nbsp;function pushes its results
2264 to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
2268 For convenience,
2269 most query operations in the API do not follow a strict stack discipline.
2270 Instead, they can refer to any element in the stack
2271 by using an <em>index</em>:
2272 A positive index represents an <em>absolute</em> stack position
2273 (starting at&nbsp;1);
2274 a negative index represents an <em>offset</em> relative to the top of the stack.
2275 More specifically, if the stack has <em>n</em> elements,
2276 then index&nbsp;1 represents the first element
2277 (that is, the element that was pushed onto the stack first)
2279 index&nbsp;<em>n</em> represents the last element;
2280 index&nbsp;-1 also represents the last element
2281 (that is, the element at the&nbsp;top)
2282 and index <em>-n</em> represents the first element.
2283 We say that an index is <em>valid</em>
2284 if it lies between&nbsp;1 and the stack top
2285 (that is, if <code>1 &le; abs(index) &le; top</code>).
2292 <h2>3.2 - <a name="3.2">Stack Size</a></h2>
2295 When you interact with Lua API,
2296 you are responsible for ensuring consistency.
2297 In particular,
2298 <em>you are responsible for controlling stack overflow</em>.
2299 You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
2300 to grow the stack size.
2304 Whenever Lua calls C,
2305 it ensures that at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> stack positions are available.
2306 <code>LUA_MINSTACK</code> is defined as 20,
2307 so that usually you do not have to worry about stack space
2308 unless your code has loops pushing elements onto the stack.
2312 Most query functions accept as indices any value inside the
2313 available stack space, that is, indices up to the maximum stack size
2314 you have set through <a href="#lua_checkstack"><code>lua_checkstack</code></a>.
2315 Such indices are called <em>acceptable indices</em>.
2316 More formally, we define an <em>acceptable index</em>
2317 as follows:
2319 <pre>
2320 (index &lt; 0 &amp;&amp; abs(index) &lt;= top) ||
2321 (index &gt; 0 &amp;&amp; index &lt;= stackspace)
2322 </pre><p>
2323 Note that 0 is never an acceptable index.
2329 <h2>3.3 - <a name="3.3">Pseudo-Indices</a></h2>
2332 Unless otherwise noted,
2333 any function that accepts valid indices can also be called with
2334 <em>pseudo-indices</em>,
2335 which represent some Lua values that are accessible to C&nbsp;code
2336 but which are not in the stack.
2337 Pseudo-indices are used to access the thread environment,
2338 the function environment,
2339 the registry,
2340 and the upvalues of a C&nbsp;function (see <a href="#3.4">&sect;3.4</a>).
2344 The thread environment (where global variables live) is
2345 always at pseudo-index <a name="pdf-LUA_GLOBALSINDEX"><code>LUA_GLOBALSINDEX</code></a>.
2346 The environment of the running C&nbsp;function is always
2347 at pseudo-index <a name="pdf-LUA_ENVIRONINDEX"><code>LUA_ENVIRONINDEX</code></a>.
2351 To access and change the value of global variables,
2352 you can use regular table operations over an environment table.
2353 For instance, to access the value of a global variable, do
2355 <pre>
2356 lua_getfield(L, LUA_GLOBALSINDEX, varname);
2357 </pre>
2362 <h2>3.4 - <a name="3.4">C Closures</a></h2>
2365 When a C&nbsp;function is created,
2366 it is possible to associate some values with it,
2367 thus creating a <em>C&nbsp;closure</em>;
2368 these values are called <em>upvalues</em> and are
2369 accessible to the function whenever it is called
2370 (see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>).
2374 Whenever a C&nbsp;function is called,
2375 its upvalues are located at specific pseudo-indices.
2376 These pseudo-indices are produced by the macro
2377 <a name="lua_upvalueindex"><code>lua_upvalueindex</code></a>.
2378 The first value associated with a function is at position
2379 <code>lua_upvalueindex(1)</code>, and so on.
2380 Any access to <code>lua_upvalueindex(<em>n</em>)</code>,
2381 where <em>n</em> is greater than the number of upvalues of the
2382 current function,
2383 produces an acceptable (but invalid) index.
2389 <h2>3.5 - <a name="3.5">Registry</a></h2>
2392 Lua provides a <em>registry</em>,
2393 a pre-defined table that can be used by any C&nbsp;code to
2394 store whatever Lua value it needs to store.
2395 This table is always located at pseudo-index
2396 <a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>.
2397 Any C&nbsp;library can store data into this table,
2398 but it should take care to choose keys different from those used
2399 by other libraries, to avoid collisions.
2400 Typically, you should use as key a string containing your library name
2401 or a light userdata with the address of a C&nbsp;object in your code.
2405 The integer keys in the registry are used by the reference mechanism,
2406 implemented by the auxiliary library,
2407 and therefore should not be used for other purposes.
2413 <h2>3.6 - <a name="3.6">Error Handling in C</a></h2>
2416 Internally, Lua uses the C <code>longjmp</code> facility to handle errors.
2417 (You can also choose to use exceptions if you use C++;
2418 see file <code>luaconf.h</code>.)
2419 When Lua faces any error
2420 (such as memory allocation errors, type errors, syntax errors,
2421 and runtime errors)
2422 it <em>raises</em> an error;
2423 that is, it does a long jump.
2424 A <em>protected environment</em> uses <code>setjmp</code>
2425 to set a recover point;
2426 any error jumps to the most recent active recover point.
2430 Almost any function in the API may raise an error,
2431 for instance due to a memory allocation error.
2432 The following functions run in protected mode
2433 (that is, they create a protected environment to run),
2434 so they never raise an error:
2435 <a href="#lua_newstate"><code>lua_newstate</code></a>, <a href="#lua_close"><code>lua_close</code></a>, <a href="#lua_load"><code>lua_load</code></a>,
2436 <a href="#lua_pcall"><code>lua_pcall</code></a>, and <a href="#lua_cpcall"><code>lua_cpcall</code></a>.
2440 Inside a C&nbsp;function you can raise an error by calling <a href="#lua_error"><code>lua_error</code></a>.
2446 <h2>3.7 - <a name="3.7">Functions and Types</a></h2>
2449 Here we list all functions and types from the C&nbsp;API in
2450 alphabetical order.
2454 <hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3>
2455 <pre>typedef void * (*lua_Alloc) (void *ud,
2456 void *ptr,
2457 size_t osize,
2458 size_t nsize);</pre>
2461 The type of the memory-allocation function used by Lua states.
2462 The allocator function must provide a
2463 functionality similar to <code>realloc</code>,
2464 but not exactly the same.
2465 Its arguments are
2466 <code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>;
2467 <code>ptr</code>, a pointer to the block being allocated/reallocated/freed;
2468 <code>osize</code>, the original size of the block;
2469 <code>nsize</code>, the new size of the block.
2470 <code>ptr</code> is <code>NULL</code> if and only if <code>osize</code> is zero.
2471 When <code>nsize</code> is zero, the allocator must return <code>NULL</code>;
2472 if <code>osize</code> is not zero,
2473 it should free the block pointed to by <code>ptr</code>.
2474 When <code>nsize</code> is not zero, the allocator returns <code>NULL</code>
2475 if and only if it cannot fill the request.
2476 When <code>nsize</code> is not zero and <code>osize</code> is zero,
2477 the allocator should behave like <code>malloc</code>.
2478 When <code>nsize</code> and <code>osize</code> are not zero,
2479 the allocator behaves like <code>realloc</code>.
2480 Lua assumes that the allocator never fails when
2481 <code>osize &gt;= nsize</code>.
2485 Here is a simple implementation for the allocator function.
2486 It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>.
2488 <pre>
2489 static void *l_alloc (void *ud, void *ptr, size_t osize,
2490 size_t nsize) {
2491 (void)ud; (void)osize; /* not used */
2492 if (nsize == 0) {
2493 free(ptr);
2494 return NULL;
2496 else
2497 return realloc(ptr, nsize);
2499 </pre><p>
2500 This code assumes
2501 that <code>free(NULL)</code> has no effect and that
2502 <code>realloc(NULL, size)</code> is equivalent to <code>malloc(size)</code>.
2503 ANSI&nbsp;C ensures both behaviors.
2509 <hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3>
2510 <pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre>
2513 Sets a new panic function and returns the old one.
2517 If an error happens outside any protected environment,
2518 Lua calls a <em>panic function</em>
2519 and then calls <code>exit(EXIT_FAILURE)</code>,
2520 thus exiting the host application.
2521 Your panic function may avoid this exit by
2522 never returning (e.g., doing a long jump).
2526 The panic function can access the error message at the top of the stack.
2532 <hr><h3><a name="lua_call"><code>lua_call</code></a></h3>
2533 <pre>void lua_call (lua_State *L, int nargs, int nresults);</pre>
2536 Calls a function.
2540 To call a function you must use the following protocol:
2541 first, the function to be called is pushed onto the stack;
2542 then, the arguments to the function are pushed
2543 in direct order;
2544 that is, the first argument is pushed first.
2545 Finally you call <a href="#lua_call"><code>lua_call</code></a>;
2546 <code>nargs</code> is the number of arguments that you pushed onto the stack.
2547 All arguments and the function value are popped from the stack
2548 when the function is called.
2549 The function results are pushed onto the stack when the function returns.
2550 The number of results is adjusted to <code>nresults</code>,
2551 unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>.
2552 In this case, <em>all</em> results from the function are pushed.
2553 Lua takes care that the returned values fit into the stack space.
2554 The function results are pushed onto the stack in direct order
2555 (the first result is pushed first),
2556 so that after the call the last result is on the top of the stack.
2560 Any error inside the called function is propagated upwards
2561 (with a <code>longjmp</code>).
2565 The following example shows how the host program may do the
2566 equivalent to this Lua code:
2568 <pre>
2569 a = f("how", t.x, 14)
2570 </pre><p>
2571 Here it is in&nbsp;C:
2573 <pre>
2574 lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* function to be called */
2575 lua_pushstring(L, "how"); /* 1st argument */
2576 lua_getfield(L, LUA_GLOBALSINDEX, "t"); /* table to be indexed */
2577 lua_getfield(L, -1, "x"); /* push result of t.x (2nd arg) */
2578 lua_remove(L, -2); /* remove 't' from the stack */
2579 lua_pushinteger(L, 14); /* 3rd argument */
2580 lua_call(L, 3, 1); /* call 'f' with 3 arguments and 1 result */
2581 lua_setfield(L, LUA_GLOBALSINDEX, "a"); /* set global 'a' */
2582 </pre><p>
2583 Note that the code above is "balanced":
2584 at its end, the stack is back to its original configuration.
2585 This is considered good programming practice.
2591 <hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3>
2592 <pre>typedef int (*lua_CFunction) (lua_State *L);</pre>
2595 Type for C&nbsp;functions.
2599 In order to communicate properly with Lua,
2600 a C&nbsp;function must use the following protocol,
2601 which defines the way parameters and results are passed:
2602 a C&nbsp;function receives its arguments from Lua in its stack
2603 in direct order (the first argument is pushed first).
2604 So, when the function starts,
2605 <code>lua_gettop(L)</code> returns the number of arguments received by the function.
2606 The first argument (if any) is at index 1
2607 and its last argument is at index <code>lua_gettop(L)</code>.
2608 To return values to Lua, a C&nbsp;function just pushes them onto the stack,
2609 in direct order (the first result is pushed first),
2610 and returns the number of results.
2611 Any other value in the stack below the results will be properly
2612 discarded by Lua.
2613 Like a Lua function, a C&nbsp;function called by Lua can also return
2614 many results.
2618 As an example, the following function receives a variable number
2619 of numerical arguments and returns their average and sum:
2621 <pre>
2622 static int foo (lua_State *L) {
2623 int n = lua_gettop(L); /* number of arguments */
2624 lua_Number sum = 0;
2625 int i;
2626 for (i = 1; i &lt;= n; i++) {
2627 if (!lua_isnumber(L, i)) {
2628 lua_pushstring(L, "incorrect argument");
2629 lua_error(L);
2631 sum += lua_tonumber(L, i);
2633 lua_pushnumber(L, sum/n); /* first result */
2634 lua_pushnumber(L, sum); /* second result */
2635 return 2; /* number of results */
2637 </pre>
2642 <hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3>
2643 <pre>int lua_checkstack (lua_State *L, int extra);</pre>
2646 Ensures that there are at least <code>extra</code> free stack slots in the stack.
2647 It returns false if it cannot grow the stack to that size.
2648 This function never shrinks the stack;
2649 if the stack is already larger than the new size,
2650 it is left unchanged.
2656 <hr><h3><a name="lua_close"><code>lua_close</code></a></h3>
2657 <pre>void lua_close (lua_State *L);</pre>
2660 Destroys all objects in the given Lua state
2661 (calling the corresponding garbage-collection metamethods, if any)
2662 and frees all dynamic memory used by this state.
2663 On several platforms, you may not need to call this function,
2664 because all resources are naturally released when the host program ends.
2665 On the other hand, long-running programs,
2666 such as a daemon or a web server,
2667 might need to release states as soon as they are not needed,
2668 to avoid growing too large.
2674 <hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3>
2675 <pre>void lua_concat (lua_State *L, int n);</pre>
2678 Concatenates the <code>n</code> values at the top of the stack,
2679 pops them, and leaves the result at the top.
2680 If <code>n</code>&nbsp;is&nbsp;1, the result is the single string on the stack
2681 (that is, the function does nothing);
2682 if <code>n</code> is 0, the result is the empty string.
2683 Concatenation is done following the usual semantics of Lua
2684 (see <a href="#2.5.4">&sect;2.5.4</a>).
2690 <hr><h3><a name="lua_cpcall"><code>lua_cpcall</code></a></h3>
2691 <pre>int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);</pre>
2694 Calls the C&nbsp;function <code>func</code> in protected mode.
2695 <code>func</code> starts with only one element in its stack,
2696 a light userdata containing <code>ud</code>.
2697 In case of errors,
2698 <a href="#lua_cpcall"><code>lua_cpcall</code></a> returns the same error codes as <a href="#lua_pcall"><code>lua_pcall</code></a>,
2699 plus the error object on the top of the stack;
2700 otherwise, it returns zero, and does not change the stack.
2701 All values returned by <code>func</code> are discarded.
2707 <hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3>
2708 <pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre>
2711 Creates a new empty table and pushes it onto the stack.
2712 The new table has space pre-allocated
2713 for <code>narr</code> array elements and <code>nrec</code> non-array elements.
2714 This pre-allocation is useful when you know exactly how many elements
2715 the table will have.
2716 Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>.
2722 <hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3>
2723 <pre>int lua_dump (lua_State *L, lua_Writer writer, void *data);</pre>
2726 Dumps a function as a binary chunk.
2727 Receives a Lua function on the top of the stack
2728 and produces a binary chunk that,
2729 if loaded again,
2730 results in a function equivalent to the one dumped.
2731 As it produces parts of the chunk,
2732 <a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>)
2733 with the given <code>data</code>
2734 to write them.
2738 The value returned is the error code returned by the last
2739 call to the writer;
2740 0&nbsp;means no errors.
2744 This function does not pop the Lua function from the stack.
2750 <hr><h3><a name="lua_equal"><code>lua_equal</code></a></h3>
2751 <pre>int lua_equal (lua_State *L, int index1, int index2);</pre>
2754 Returns 1 if the two values in acceptable indices <code>index1</code> and
2755 <code>index2</code> are equal,
2756 following the semantics of the Lua <code>==</code> operator
2757 (that is, may call metamethods).
2758 Otherwise returns&nbsp;0.
2759 Also returns&nbsp;0 if any of the indices is non valid.
2765 <hr><h3><a name="lua_error"><code>lua_error</code></a></h3>
2766 <pre>int lua_error (lua_State *L);</pre>
2769 Generates a Lua error.
2770 The error message (which can actually be a Lua value of any type)
2771 must be on the stack top.
2772 This function does a long jump,
2773 and therefore never returns.
2774 (see <a href="#luaL_error"><code>luaL_error</code></a>).
2780 <hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3>
2781 <pre>int lua_gc (lua_State *L, int what, int data);</pre>
2784 Controls the garbage collector.
2788 This function performs several tasks,
2789 according to the value of the parameter <code>what</code>:
2791 <ul>
2793 <li><b><code>LUA_GCSTOP</code>:</b>
2794 stops the garbage collector.
2795 </li>
2797 <li><b><code>LUA_GCRESTART</code>:</b>
2798 restarts the garbage collector.
2799 </li>
2801 <li><b><code>LUA_GCCOLLECT</code>:</b>
2802 performs a full garbage-collection cycle.
2803 </li>
2805 <li><b><code>LUA_GCCOUNT</code>:</b>
2806 returns the current amount of memory (in Kbytes) in use by Lua.
2807 </li>
2809 <li><b><code>LUA_GCCOUNTB</code>:</b>
2810 returns the remainder of dividing the current amount of bytes of
2811 memory in use by Lua by 1024.
2812 </li>
2814 <li><b><code>LUA_GCSTEP</code>:</b>
2815 performs an incremental step of garbage collection.
2816 The step "size" is controlled by <code>data</code>
2817 (larger values mean more steps) in a non-specified way.
2818 If you want to control the step size
2819 you must experimentally tune the value of <code>data</code>.
2820 The function returns 1 if the step finished a
2821 garbage-collection cycle.
2822 </li>
2824 <li><b><code>LUA_GCSETPAUSE</code>:</b>
2825 sets <code>data</code>/100 as the new value
2826 for the <em>pause</em> of the collector (see <a href="#2.10">&sect;2.10</a>).
2827 The function returns the previous value of the pause.
2828 </li>
2830 <li><b><code>LUA_GCSETSTEPMUL</code>:</b>
2831 sets <code>data</code>/100 as the new value for the <em>step multiplier</em> of
2832 the collector (see <a href="#2.10">&sect;2.10</a>).
2833 The function returns the previous value of the step multiplier.
2834 </li>
2836 </ul>
2841 <hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3>
2842 <pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre>
2845 Returns the memory-allocation function of a given state.
2846 If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the
2847 opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>.
2853 <hr><h3><a name="lua_getfenv"><code>lua_getfenv</code></a></h3>
2854 <pre>void lua_getfenv (lua_State *L, int index);</pre>
2857 Pushes onto the stack the environment table of
2858 the value at the given index.
2864 <hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3>
2865 <pre>void lua_getfield (lua_State *L, int index, const char *k);</pre>
2868 Pushes onto the stack the value <code>t[k]</code>,
2869 where <code>t</code> is the value at the given valid index <code>index</code>.
2870 As in Lua, this function may trigger a metamethod
2871 for the "index" event (see <a href="#2.8">&sect;2.8</a>).
2877 <hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3>
2878 <pre>void lua_getglobal (lua_State *L, const char *name);</pre>
2881 Pushes onto the stack the value of the global <code>name</code>.
2882 It is defined as a macro:
2884 <pre>
2885 #define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, s)
2886 </pre>
2891 <hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3>
2892 <pre>int lua_getmetatable (lua_State *L, int index);</pre>
2895 Pushes onto the stack the metatable of the value at the given
2896 acceptable index.
2897 If the index is not valid,
2898 or if the value does not have a metatable,
2899 the function returns&nbsp;0 and pushes nothing on the stack.
2905 <hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3>
2906 <pre>void lua_gettable (lua_State *L, int index);</pre>
2909 Pushes onto the stack the value <code>t[k]</code>,
2910 where <code>t</code> is the value at the given valid index <code>index</code>
2911 and <code>k</code> is the value at the top of the stack.
2915 This function pops the key from the stack
2916 (putting the resulting value in its place).
2917 As in Lua, this function may trigger a metamethod
2918 for the "index" event (see <a href="#2.8">&sect;2.8</a>).
2924 <hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3>
2925 <pre>int lua_gettop (lua_State *L);</pre>
2928 Returns the index of the top element in the stack.
2929 Because indices start at&nbsp;1,
2930 this result is equal to the number of elements in the stack
2931 (and so 0&nbsp;means an empty stack).
2937 <hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3>
2938 <pre>void lua_insert (lua_State *L, int index);</pre>
2941 Moves the top element into the given valid index,
2942 shifting up the elements above this index to open space.
2943 Cannot be called with a pseudo-index,
2944 because a pseudo-index is not an actual stack position.
2950 <hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3>
2951 <pre>typedef ptrdiff_t lua_Integer;</pre>
2954 The type used by the Lua API to represent integral values.
2958 By default it is a <code>ptrdiff_t</code>,
2959 which is usually the largest signed integral type the machine handles
2960 "comfortably".
2966 <hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3>
2967 <pre>int lua_isboolean (lua_State *L, int index);</pre>
2970 Returns 1 if the value at the given acceptable index has type boolean,
2971 and 0&nbsp;otherwise.
2977 <hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3>
2978 <pre>int lua_iscfunction (lua_State *L, int index);</pre>
2981 Returns 1 if the value at the given acceptable index is a C&nbsp;function,
2982 and 0&nbsp;otherwise.
2988 <hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3>
2989 <pre>int lua_isfunction (lua_State *L, int index);</pre>
2992 Returns 1 if the value at the given acceptable index is a function
2993 (either C or Lua), and 0&nbsp;otherwise.
2999 <hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3>
3000 <pre>int lua_islightuserdata (lua_State *L, int index);</pre>
3003 Returns 1 if the value at the given acceptable index is a light userdata,
3004 and 0&nbsp;otherwise.
3010 <hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3>
3011 <pre>int lua_isnil (lua_State *L, int index);</pre>
3014 Returns 1 if the value at the given acceptable index is <b>nil</b>,
3015 and 0&nbsp;otherwise.
3021 <hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3>
3022 <pre>int lua_isnone (lua_State *L, int index);</pre>
3025 Returns 1 if the the given acceptable index is not valid
3026 (that is, it refers to an element outside the current stack),
3027 and 0&nbsp;otherwise.
3033 <hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3>
3034 <pre>int lua_isnoneornil (lua_State *L, int index);</pre>
3037 Returns 1 if the the given acceptable index is not valid
3038 (that is, it refers to an element outside the current stack)
3039 or if the value at this index is <b>nil</b>,
3040 and 0&nbsp;otherwise.
3046 <hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3>
3047 <pre>int lua_isnumber (lua_State *L, int index);</pre>
3050 Returns 1 if the value at the given acceptable index is a number
3051 or a string convertible to a number,
3052 and 0&nbsp;otherwise.
3058 <hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3>
3059 <pre>int lua_isstring (lua_State *L, int index);</pre>
3062 Returns 1 if the value at the given acceptable index is a string
3063 or a number (which is always convertible to a string),
3064 and 0&nbsp;otherwise.
3070 <hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3>
3071 <pre>int lua_istable (lua_State *L, int index);</pre>
3074 Returns 1 if the value at the given acceptable index is a table,
3075 and 0&nbsp;otherwise.
3081 <hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3>
3082 <pre>int lua_isthread (lua_State *L, int index);</pre>
3085 Returns 1 if the value at the given acceptable index is a thread,
3086 and 0&nbsp;otherwise.
3092 <hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3>
3093 <pre>int lua_isuserdata (lua_State *L, int index);</pre>
3096 Returns 1 if the value at the given acceptable index is a userdata
3097 (either full or light), and 0&nbsp;otherwise.
3103 <hr><h3><a name="lua_lessthan"><code>lua_lessthan</code></a></h3>
3104 <pre>int lua_lessthan (lua_State *L, int index1, int index2);</pre>
3107 Returns 1 if the value at acceptable index <code>index1</code> is smaller
3108 than the value at acceptable index <code>index2</code>,
3109 following the semantics of the Lua <code>&lt;</code> operator
3110 (that is, may call metamethods).
3111 Otherwise returns&nbsp;0.
3112 Also returns&nbsp;0 if any of the indices is non valid.
3118 <hr><h3><a name="lua_load"><code>lua_load</code></a></h3>
3119 <pre>int lua_load (lua_State *L,
3120 lua_Reader reader,
3121 void *data,
3122 const char *chunkname);</pre>
3125 Loads a Lua chunk.
3126 If there are no errors,
3127 <a href="#lua_load"><code>lua_load</code></a> pushes the compiled chunk as a Lua
3128 function on top of the stack.
3129 Otherwise, it pushes an error message.
3130 The return values of <a href="#lua_load"><code>lua_load</code></a> are:
3132 <ul>
3134 <li><b>0:</b> no errors;</li>
3136 <li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>:</b>
3137 syntax error during pre-compilation;</li>
3139 <li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>:</b>
3140 memory allocation error.</li>
3142 </ul>
3145 This function only loads a chunk;
3146 it does not run it.
3150 <a href="#lua_load"><code>lua_load</code></a> automatically detects whether the chunk is text or binary,
3151 and loads it accordingly (see program <code>luac</code>).
3155 The <a href="#lua_load"><code>lua_load</code></a> function uses a user-supplied <code>reader</code> function
3156 to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>).
3157 The <code>data</code> argument is an opaque value passed to the reader function.
3161 The <code>chunkname</code> argument gives a name to the chunk,
3162 which is used for error messages and in debug information (see <a href="#3.8">&sect;3.8</a>).
3168 <hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3>
3169 <pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre>
3172 Creates a new, independent state.
3173 Returns <code>NULL</code> if cannot create the state
3174 (due to lack of memory).
3175 The argument <code>f</code> is the allocator function;
3176 Lua does all memory allocation for this state through this function.
3177 The second argument, <code>ud</code>, is an opaque pointer that Lua
3178 simply passes to the allocator in every call.
3184 <hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3>
3185 <pre>void lua_newtable (lua_State *L);</pre>
3188 Creates a new empty table and pushes it onto the stack.
3189 It is equivalent to <code>lua_createtable(L, 0, 0)</code>.
3195 <hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3>
3196 <pre>lua_State *lua_newthread (lua_State *L);</pre>
3199 Creates a new thread, pushes it on the stack,
3200 and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread.
3201 The new state returned by this function shares with the original state
3202 all global objects (such as tables),
3203 but has an independent execution stack.
3207 There is no explicit function to close or to destroy a thread.
3208 Threads are subject to garbage collection,
3209 like any Lua object.
3215 <hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3>
3216 <pre>void *lua_newuserdata (lua_State *L, size_t size);</pre>
3219 This function allocates a new block of memory with the given size,
3220 pushes onto the stack a new full userdata with the block address,
3221 and returns this address.
3225 Userdata represent C&nbsp;values in Lua.
3226 A <em>full userdata</em> represents a block of memory.
3227 It is an object (like a table):
3228 you must create it, it can have its own metatable,
3229 and you can detect when it is being collected.
3230 A full userdata is only equal to itself (under raw equality).
3234 When Lua collects a full userdata with a <code>gc</code> metamethod,
3235 Lua calls the metamethod and marks the userdata as finalized.
3236 When this userdata is collected again then
3237 Lua frees its corresponding memory.
3243 <hr><h3><a name="lua_next"><code>lua_next</code></a></h3>
3244 <pre>int lua_next (lua_State *L, int index);</pre>
3247 Pops a key from the stack,
3248 and pushes a key-value pair from the table at the given index
3249 (the "next" pair after the given key).
3250 If there are no more elements in the table,
3251 then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing).
3255 A typical traversal looks like this:
3257 <pre>
3258 /* table is in the stack at index 't' */
3259 lua_pushnil(L); /* first key */
3260 while (lua_next(L, t) != 0) {
3261 /* uses 'key' (at index -2) and 'value' (at index -1) */
3262 printf("%s - %s\n",
3263 lua_typename(L, lua_type(L, -2)),
3264 lua_typename(L, lua_type(L, -1)));
3265 /* removes 'value'; keeps 'key' for next iteration */
3266 lua_pop(L, 1);
3268 </pre>
3271 While traversing a table,
3272 do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key,
3273 unless you know that the key is actually a string.
3274 Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> <em>changes</em>
3275 the value at the given index;
3276 this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>.
3282 <hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3>
3283 <pre>typedef double lua_Number;</pre>
3286 The type of numbers in Lua.
3287 By default, it is double, but that can be changed in <code>luaconf.h</code>.
3291 Through the configuration file you can change
3292 Lua to operate with another type for numbers (e.g., float or long).
3298 <hr><h3><a name="lua_objlen"><code>lua_objlen</code></a></h3>
3299 <pre>size_t lua_objlen (lua_State *L, int index);</pre>
3302 Returns the "length" of the value at the given acceptable index:
3303 for strings, this is the string length;
3304 for tables, this is the result of the length operator ('<code>#</code>');
3305 for userdata, this is the size of the block of memory allocated
3306 for the userdata;
3307 for other values, it is&nbsp;0.
3313 <hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3>
3314 <pre>int lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);</pre>
3317 Calls a function in protected mode.
3321 Both <code>nargs</code> and <code>nresults</code> have the same meaning as
3322 in <a href="#lua_call"><code>lua_call</code></a>.
3323 If there are no errors during the call,
3324 <a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>.
3325 However, if there is any error,
3326 <a href="#lua_pcall"><code>lua_pcall</code></a> catches it,
3327 pushes a single value on the stack (the error message),
3328 and returns an error code.
3329 Like <a href="#lua_call"><code>lua_call</code></a>,
3330 <a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function
3331 and its arguments from the stack.
3335 If <code>errfunc</code> is 0,
3336 then the error message returned on the stack
3337 is exactly the original error message.
3338 Otherwise, <code>errfunc</code> is the stack index of an
3339 <em>error handler function</em>.
3340 (In the current implementation, this index cannot be a pseudo-index.)
3341 In case of runtime errors,
3342 this function will be called with the error message
3343 and its return value will be the message returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>.
3347 Typically, the error handler function is used to add more debug
3348 information to the error message, such as a stack traceback.
3349 Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>,
3350 since by then the stack has unwound.
3354 The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns 0 in case of success
3355 or one of the following error codes
3356 (defined in <code>lua.h</code>):
3358 <ul>
3360 <li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>:</b>
3361 a runtime error.
3362 </li>
3364 <li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>:</b>
3365 memory allocation error.
3366 For such errors, Lua does not call the error handler function.
3367 </li>
3369 <li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>:</b>
3370 error while running the error handler function.
3371 </li>
3373 </ul>
3378 <hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3>
3379 <pre>void lua_pop (lua_State *L, int n);</pre>
3382 Pops <code>n</code> elements from the stack.
3388 <hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3>
3389 <pre>void lua_pushboolean (lua_State *L, int b);</pre>
3392 Pushes a boolean value with value <code>b</code> onto the stack.
3398 <hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3>
3399 <pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre>
3402 Pushes a new C&nbsp;closure onto the stack.
3406 When a C&nbsp;function is created,
3407 it is possible to associate some values with it,
3408 thus creating a C&nbsp;closure (see <a href="#3.4">&sect;3.4</a>);
3409 these values are then accessible to the function whenever it is called.
3410 To associate values with a C&nbsp;function,
3411 first these values should be pushed onto the stack
3412 (when there are multiple values, the first value is pushed first).
3413 Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>
3414 is called to create and push the C&nbsp;function onto the stack,
3415 with the argument <code>n</code> telling how many values should be
3416 associated with the function.
3417 <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack.
3423 <hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3>
3424 <pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre>
3427 Pushes a C&nbsp;function onto the stack.
3428 This function receives a pointer to a C function
3429 and pushes onto the stack a Lua value of type <code>function</code> that,
3430 when called, invokes the corresponding C&nbsp;function.
3434 Any function to be registered in Lua must
3435 follow the correct protocol to receive its parameters
3436 and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
3440 <code>lua_pushcfunction</code> is defined as a macro:
3442 <pre>
3443 #define lua_pushcfunction(L,f) lua_pushcclosure(L,f,0)
3444 </pre>
3449 <hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3>
3450 <pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre>
3453 Pushes onto the stack a formatted string
3454 and returns a pointer to this string.
3455 It is similar to the C&nbsp;function <code>sprintf</code>,
3456 but has some important differences:
3458 <ul>
3460 <li>
3461 You do not have to allocate space for the result:
3462 the result is a Lua string and Lua takes care of memory allocation
3463 (and deallocation, through garbage collection).
3464 </li>
3466 <li>
3467 The conversion specifiers are quite restricted.
3468 There are no flags, widths, or precisions.
3469 The conversion specifiers can only be
3470 '<code>%%</code>' (inserts a '<code>%</code>' in the string),
3471 '<code>%s</code>' (inserts a zero-terminated string, with no size restrictions),
3472 '<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>),
3473 '<code>%p</code>' (inserts a pointer as a hexadecimal numeral),
3474 '<code>%d</code>' (inserts an <code>int</code>), and
3475 '<code>%c</code>' (inserts an <code>int</code> as a character).
3476 </li>
3478 </ul>
3483 <hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3>
3484 <pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre>
3487 Pushes a number with value <code>n</code> onto the stack.
3493 <hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3>
3494 <pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre>
3497 Pushes a light userdata onto the stack.
3501 Userdata represent C&nbsp;values in Lua.
3502 A <em>light userdata</em> represents a pointer.
3503 It is a value (like a number):
3504 you do not create it, it has no individual metatable,
3505 and it is not collected (as it was never created).
3506 A light userdata is equal to "any"
3507 light userdata with the same C&nbsp;address.
3513 <hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3>
3514 <pre>void lua_pushlstring (lua_State *L, const char *s, size_t len);</pre>
3517 Pushes the string pointed to by <code>s</code> with size <code>len</code>
3518 onto the stack.
3519 Lua makes (or reuses) an internal copy of the given string,
3520 so the memory at <code>s</code> can be freed or reused immediately after
3521 the function returns.
3522 The string can contain embedded zeros.
3528 <hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3>
3529 <pre>void lua_pushnil (lua_State *L);</pre>
3532 Pushes a nil value onto the stack.
3538 <hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3>
3539 <pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre>
3542 Pushes a number with value <code>n</code> onto the stack.
3548 <hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3>
3549 <pre>void lua_pushstring (lua_State *L, const char *s);</pre>
3552 Pushes the zero-terminated string pointed to by <code>s</code>
3553 onto the stack.
3554 Lua makes (or reuses) an internal copy of the given string,
3555 so the memory at <code>s</code> can be freed or reused immediately after
3556 the function returns.
3557 The string cannot contain embedded zeros;
3558 it is assumed to end at the first zero.
3564 <hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3>
3565 <pre>int lua_pushthread (lua_State *L);</pre>
3568 Pushes the thread represented by <code>L</code> onto the stack.
3569 Returns 1 if this thread is the main thread of its state.
3575 <hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3>
3576 <pre>void lua_pushvalue (lua_State *L, int index);</pre>
3579 Pushes a copy of the element at the given valid index
3580 onto the stack.
3586 <hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3>
3587 <pre>const char *lua_pushvfstring (lua_State *L,
3588 const char *fmt,
3589 va_list argp);</pre>
3592 Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code>
3593 instead of a variable number of arguments.
3599 <hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3>
3600 <pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre>
3603 Returns 1 if the two values in acceptable indices <code>index1</code> and
3604 <code>index2</code> are primitively equal
3605 (that is, without calling metamethods).
3606 Otherwise returns&nbsp;0.
3607 Also returns&nbsp;0 if any of the indices are non valid.
3613 <hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3>
3614 <pre>void lua_rawget (lua_State *L, int index);</pre>
3617 Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access
3618 (i.e., without metamethods).
3624 <hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3>
3625 <pre>void lua_rawgeti (lua_State *L, int index, int n);</pre>
3628 Pushes onto the stack the value <code>t[n]</code>,
3629 where <code>t</code> is the value at the given valid index <code>index</code>.
3630 The access is raw;
3631 that is, it does not invoke metamethods.
3637 <hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3>
3638 <pre>void lua_rawset (lua_State *L, int index);</pre>
3641 Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment
3642 (i.e., without metamethods).
3648 <hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3>
3649 <pre>void lua_rawseti (lua_State *L, int index, int n);</pre>
3652 Does the equivalent of <code>t[n] = v</code>,
3653 where <code>t</code> is the value at the given valid index <code>index</code>
3654 and <code>v</code> is the value at the top of the stack,
3658 This function pops the value from the stack.
3659 The assignment is raw;
3660 that is, it does not invoke metamethods.
3666 <hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3>
3667 <pre>typedef const char * (*lua_Reader) (lua_State *L,
3668 void *data,
3669 size_t *size);</pre>
3672 The reader function used by <a href="#lua_load"><code>lua_load</code></a>.
3673 Every time it needs another piece of the chunk,
3674 <a href="#lua_load"><code>lua_load</code></a> calls the reader,
3675 passing along its <code>data</code> parameter.
3676 The reader must return a pointer to a block of memory
3677 with a new piece of the chunk
3678 and set <code>size</code> to the block size.
3679 The block must exist until the reader function is called again.
3680 To signal the end of the chunk, the reader must return <code>NULL</code>.
3681 The reader function may return pieces of any size greater than zero.
3687 <hr><h3><a name="lua_register"><code>lua_register</code></a></h3>
3688 <pre>void lua_register (lua_State *L,
3689 const char *name,
3690 lua_CFunction f);</pre>
3693 Sets the C function <code>f</code> as the new value of global <code>name</code>.
3694 It is defined as a macro:
3696 <pre>
3697 #define lua_register(L,n,f) \
3698 (lua_pushcfunction(L, f), lua_setglobal(L, n))
3699 </pre>
3704 <hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3>
3705 <pre>void lua_remove (lua_State *L, int index);</pre>
3708 Removes the element at the given valid index,
3709 shifting down the elements above this index to fill the gap.
3710 Cannot be called with a pseudo-index,
3711 because a pseudo-index is not an actual stack position.
3717 <hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3>
3718 <pre>void lua_replace (lua_State *L, int index);</pre>
3721 Moves the top element into the given position (and pops it),
3722 without shifting any element
3723 (therefore replacing the value at the given position).
3729 <hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3>
3730 <pre>int lua_resume (lua_State *L, int narg);</pre>
3733 Starts and resumes a coroutine in a given thread.
3737 To start a coroutine, you first create a new thread
3738 (see <a href="#lua_newthread"><code>lua_newthread</code></a>);
3739 then you push onto its stack the main function plus any arguments;
3740 then you call <a href="#lua_resume"><code>lua_resume</code></a>,
3741 with <code>narg</code> being the number of arguments.
3742 This call returns when the coroutine suspends or finishes its execution.
3743 When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>,
3744 or all values returned by the body function.
3745 <a href="#lua_resume"><code>lua_resume</code></a> returns
3746 <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields,
3747 0 if the coroutine finishes its execution
3748 without errors,
3749 or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
3750 In case of errors,
3751 the stack is not unwound,
3752 so you can use the debug API over it.
3753 The error message is on the top of the stack.
3754 To restart a coroutine, you put on its stack only the values to
3755 be passed as results from <code>yield</code>,
3756 and then call <a href="#lua_resume"><code>lua_resume</code></a>.
3762 <hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3>
3763 <pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre>
3766 Changes the allocator function of a given state to <code>f</code>
3767 with user data <code>ud</code>.
3773 <hr><h3><a name="lua_setfenv"><code>lua_setfenv</code></a></h3>
3774 <pre>int lua_setfenv (lua_State *L, int index);</pre>
3777 Pops a table from the stack and sets it as
3778 the new environment for the value at the given index.
3779 If the value at the given index is
3780 neither a function nor a thread nor a userdata,
3781 <a href="#lua_setfenv"><code>lua_setfenv</code></a> returns 0.
3782 Otherwise it returns 1.
3788 <hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3>
3789 <pre>void lua_setfield (lua_State *L, int index, const char *k);</pre>
3792 Does the equivalent to <code>t[k] = v</code>,
3793 where <code>t</code> is the value at the given valid index <code>index</code>
3794 and <code>v</code> is the value at the top of the stack,
3798 This function pops the value from the stack.
3799 As in Lua, this function may trigger a metamethod
3800 for the "newindex" event (see <a href="#2.8">&sect;2.8</a>).
3806 <hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3>
3807 <pre>void lua_setglobal (lua_State *L, const char *name);</pre>
3810 Pops a value from the stack and
3811 sets it as the new value of global <code>name</code>.
3812 It is defined as a macro:
3814 <pre>
3815 #define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, s)
3816 </pre>
3821 <hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3>
3822 <pre>int lua_setmetatable (lua_State *L, int index);</pre>
3825 Pops a table from the stack and
3826 sets it as the new metatable for the value at the given
3827 acceptable index.
3833 <hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3>
3834 <pre>void lua_settable (lua_State *L, int index);</pre>
3837 Does the equivalent to <code>t[k] = v</code>,
3838 where <code>t</code> is the value at the given valid index <code>index</code>,
3839 <code>v</code> is the value at the top of the stack,
3840 and <code>k</code> is the value just below the top.
3844 This function pops both the key and the value from the stack.
3845 As in Lua, this function may trigger a metamethod
3846 for the "newindex" event (see <a href="#2.8">&sect;2.8</a>).
3852 <hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3>
3853 <pre>void lua_settop (lua_State *L, int index);</pre>
3856 Accepts any acceptable index, or&nbsp;0,
3857 and sets the stack top to this index.
3858 If the new top is larger than the old one,
3859 then the new elements are filled with <b>nil</b>.
3860 If <code>index</code> is&nbsp;0, then all stack elements are removed.
3866 <hr><h3><a name="lua_State"><code>lua_State</code></a></h3>
3867 <pre>typedef struct lua_State lua_State;</pre>
3870 Opaque structure that keeps the whole state of a Lua interpreter.
3871 The Lua library is fully reentrant:
3872 it has no global variables.
3873 All information about a state is kept in this structure.
3877 A pointer to this state must be passed as the first argument to
3878 every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
3879 which creates a Lua state from scratch.
3885 <hr><h3><a name="lua_status"><code>lua_status</code></a></h3>
3886 <pre>int lua_status (lua_State *L);</pre>
3889 Returns the status of the thread <code>L</code>.
3893 The status can be 0 for a normal thread,
3894 an error code if the thread finished its execution with an error,
3895 or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended.
3901 <hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3>
3902 <pre>int lua_toboolean (lua_State *L, int index);</pre>
3905 Converts the Lua value at the given acceptable index to a C&nbsp;boolean
3906 value (0&nbsp;or&nbsp;1).
3907 Like all tests in Lua,
3908 <a href="#lua_toboolean"><code>lua_toboolean</code></a> returns 1 for any Lua value
3909 different from <b>false</b> and <b>nil</b>;
3910 otherwise it returns 0.
3911 It also returns 0 when called with a non-valid index.
3912 (If you want to accept only actual boolean values,
3913 use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.)
3919 <hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3>
3920 <pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre>
3923 Converts a value at the given acceptable index to a C&nbsp;function.
3924 That value must be a C&nbsp;function;
3925 otherwise, returns <code>NULL</code>.
3931 <hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3>
3932 <pre>lua_Integer lua_tointeger (lua_State *L, int idx);</pre>
3935 Converts the Lua value at the given acceptable index
3936 to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>.
3937 The Lua value must be a number or a string convertible to a number
3938 (see <a href="#2.2.1">&sect;2.2.1</a>);
3939 otherwise, <a href="#lua_tointeger"><code>lua_tointeger</code></a> returns&nbsp;0.
3943 If the number is not an integer,
3944 it is truncated in some non-specified way.
3950 <hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3>
3951 <pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre>
3954 Converts the Lua value at the given acceptable index to a C&nbsp;string.
3955 If <code>len</code> is not <code>NULL</code>,
3956 it also sets <code>*len</code> with the string length.
3957 The Lua value must be a string or a number;
3958 otherwise, the function returns <code>NULL</code>.
3959 If the value is a number,
3960 then <a href="#lua_tolstring"><code>lua_tolstring</code></a> also
3961 <em>changes the actual value in the stack to a string</em>.
3962 (This change confuses <a href="#lua_next"><code>lua_next</code></a>
3963 when <a href="#lua_tolstring"><code>lua_tolstring</code></a> is applied to keys during a table traversal.)
3967 <a href="#lua_tolstring"><code>lua_tolstring</code></a> returns a fully aligned pointer
3968 to a string inside the Lua state.
3969 This string always has a zero ('<code>\0</code>')
3970 after its last character (as in&nbsp;C),
3971 but may contain other zeros in its body.
3972 Because Lua has garbage collection,
3973 there is no guarantee that the pointer returned by <a href="#lua_tolstring"><code>lua_tolstring</code></a>
3974 will be valid after the corresponding value is removed from the stack.
3980 <hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3>
3981 <pre>lua_Number lua_tonumber (lua_State *L, int index);</pre>
3984 Converts the Lua value at the given acceptable index
3985 to the C&nbsp;type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>).
3986 The Lua value must be a number or a string convertible to a number
3987 (see <a href="#2.2.1">&sect;2.2.1</a>);
3988 otherwise, <a href="#lua_tonumber"><code>lua_tonumber</code></a> returns&nbsp;0.
3994 <hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3>
3995 <pre>const void *lua_topointer (lua_State *L, int index);</pre>
3998 Converts the value at the given acceptable index to a generic
3999 C&nbsp;pointer (<code>void*</code>).
4000 The value may be a userdata, a table, a thread, or a function;
4001 otherwise, <a href="#lua_topointer"><code>lua_topointer</code></a> returns <code>NULL</code>.
4002 Different objects will give different pointers.
4003 There is no way to convert the pointer back to its original value.
4007 Typically this function is used only for debug information.
4013 <hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3>
4014 <pre>const char *lua_tostring (lua_State *L, int index);</pre>
4017 Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>.
4023 <hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3>
4024 <pre>lua_State *lua_tothread (lua_State *L, int index);</pre>
4027 Converts the value at the given acceptable index to a Lua thread
4028 (represented as <code>lua_State*</code>).
4029 This value must be a thread;
4030 otherwise, the function returns <code>NULL</code>.
4036 <hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3>
4037 <pre>void *lua_touserdata (lua_State *L, int index);</pre>
4040 If the value at the given acceptable index is a full userdata,
4041 returns its block address.
4042 If the value is a light userdata,
4043 returns its pointer.
4044 Otherwise, returns <code>NULL</code>.
4050 <hr><h3><a name="lua_type"><code>lua_type</code></a></h3>
4051 <pre>int lua_type (lua_State *L, int index);</pre>
4054 Returns the type of the value in the given acceptable index,
4055 or <code>LUA_TNONE</code> for a non-valid index
4056 (that is, an index to an "empty" stack position).
4057 The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants
4058 defined in <code>lua.h</code>:
4059 <code>LUA_TNIL</code>,
4060 <code>LUA_TNUMBER</code>,
4061 <code>LUA_TBOOLEAN</code>,
4062 <code>LUA_TSTRING</code>,
4063 <code>LUA_TTABLE</code>,
4064 <code>LUA_TFUNCTION</code>,
4065 <code>LUA_TUSERDATA</code>,
4066 <code>LUA_TTHREAD</code>,
4068 <code>LUA_TLIGHTUSERDATA</code>.
4074 <hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3>
4075 <pre>const char *lua_typename (lua_State *L, int tp);</pre>
4078 Returns the name of the type encoded by the value <code>tp</code>,
4079 which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>.
4085 <hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3>
4086 <pre>typedef int (*lua_Writer) (lua_State *L,
4087 const void* p,
4088 size_t sz,
4089 void* ud);</pre>
4092 The writer function used by <a href="#lua_dump"><code>lua_dump</code></a>.
4093 Every time it produces another piece of chunk,
4094 <a href="#lua_dump"><code>lua_dump</code></a> calls the writer,
4095 passing along the buffer to be written (<code>p</code>),
4096 its size (<code>sz</code>),
4097 and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>.
4101 The writer returns an error code:
4102 0&nbsp;means no errors;
4103 any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from
4104 calling the writer again.
4110 <hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3>
4111 <pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre>
4114 Exchange values between different threads of the <em>same</em> global state.
4118 This function pops <code>n</code> values from the stack <code>from</code>,
4119 and pushes them onto the stack <code>to</code>.
4125 <hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3>
4126 <pre>int lua_yield (lua_State *L, int nresults);</pre>
4129 Yields a coroutine.
4133 This function should only be called as the
4134 return expression of a C&nbsp;function, as follows:
4136 <pre>
4137 return lua_yield (L, nresults);
4138 </pre><p>
4139 When a C&nbsp;function calls <a href="#lua_yield"><code>lua_yield</code></a> in that way,
4140 the running coroutine suspends its execution,
4141 and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns.
4142 The parameter <code>nresults</code> is the number of values from the stack
4143 that are passed as results to <a href="#lua_resume"><code>lua_resume</code></a>.
4151 <h2>3.8 - <a name="3.8">The Debug Interface</a></h2>
4154 Lua has no built-in debugging facilities.
4155 Instead, it offers a special interface
4156 by means of functions and <em>hooks</em>.
4157 This interface allows the construction of different
4158 kinds of debuggers, profilers, and other tools
4159 that need "inside information" from the interpreter.
4163 <hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3>
4164 <pre>typedef struct lua_Debug {
4165 int event;
4166 const char *name; /* (n) */
4167 const char *namewhat; /* (n) */
4168 const char *what; /* (S) */
4169 const char *source; /* (S) */
4170 int currentline; /* (l) */
4171 int nups; /* (u) number of upvalues */
4172 int linedefined; /* (S) */
4173 int lastlinedefined; /* (S) */
4174 char short_src[LUA_IDSIZE]; /* (S) */
4175 /* private part */
4176 <em>other fields</em>
4177 } lua_Debug;</pre>
4180 A structure used to carry different pieces of
4181 information about an active function.
4182 <a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part
4183 of this structure, for later use.
4184 To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information,
4185 call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
4189 The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning:
4191 <ul>
4193 <li><b><code>source</code>:</b>
4194 If the function was defined in a string,
4195 then <code>source</code> is that string.
4196 If the function was defined in a file,
4197 then <code>source</code> starts with a '<code>@</code>' followed by the file name.
4198 </li>
4200 <li><b><code>short_src</code>:</b>
4201 a "printable" version of <code>source</code>, to be used in error messages.
4202 </li>
4204 <li><b><code>linedefined</code>:</b>
4205 the line number where the definition of the function starts.
4206 </li>
4208 <li><b><code>lastlinedefined</code>:</b>
4209 the line number where the definition of the function ends.
4210 </li>
4212 <li><b><code>what</code>:</b>
4213 the string <code>"Lua"</code> if the function is a Lua function,
4214 <code>"C"</code> if it is a C&nbsp;function,
4215 <code>"main"</code> if it is the main part of a chunk,
4216 and <code>"tail"</code> if it was a function that did a tail call.
4217 In the latter case,
4218 Lua has no other information about the function.
4219 </li>
4221 <li><b><code>currentline</code>:</b>
4222 the current line where the given function is executing.
4223 When no line information is available,
4224 <code>currentline</code> is set to -1.
4225 </li>
4227 <li><b><code>name</code>:</b>
4228 a reasonable name for the given function.
4229 Because functions in Lua are first-class values,
4230 they do not have a fixed name:
4231 some functions may be the value of multiple global variables,
4232 while others may be stored only in a table field.
4233 The <code>lua_getinfo</code> function checks how the function was
4234 called to find a suitable name.
4235 If it cannot find a name,
4236 then <code>name</code> is set to <code>NULL</code>.
4237 </li>
4239 <li><b><code>namewhat</code>:</b>
4240 explains the <code>name</code> field.
4241 The value of <code>namewhat</code> can be
4242 <code>"global"</code>, <code>"local"</code>, <code>"method"</code>,
4243 <code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string),
4244 according to how the function was called.
4245 (Lua uses the empty string when no other option seems to apply.)
4246 </li>
4248 <li><b><code>nups</code>:</b>
4249 the number of upvalues of the function.
4250 </li>
4252 </ul>
4257 <hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3>
4258 <pre>lua_Hook lua_gethook (lua_State *L);</pre>
4261 Returns the current hook function.
4267 <hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3>
4268 <pre>int lua_gethookcount (lua_State *L);</pre>
4271 Returns the current hook count.
4277 <hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3>
4278 <pre>int lua_gethookmask (lua_State *L);</pre>
4281 Returns the current hook mask.
4287 <hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3>
4288 <pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre>
4291 Returns information about a specific function or function invocation.
4295 To get information about a function invocation,
4296 the parameter <code>ar</code> must be a valid activation record that was
4297 filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
4298 given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
4302 To get information about a function you push it onto the stack
4303 and start the <code>what</code> string with the character '<code>&gt;</code>'.
4304 (In that case,
4305 <code>lua_getinfo</code> pops the function in the top of the stack.)
4306 For instance, to know in which line a function <code>f</code> was defined,
4307 you can write the following code:
4309 <pre>
4310 lua_Debug ar;
4311 lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* get global 'f' */
4312 lua_getinfo(L, "&gt;S", &amp;ar);
4313 printf("%d\n", ar.linedefined);
4314 </pre>
4317 Each character in the string <code>what</code>
4318 selects some fields of the structure <code>ar</code> to be filled or
4319 a value to be pushed on the stack:
4321 <ul>
4323 <li><b>'<code>n</code>':</b> fills in the field <code>name</code> and <code>namewhat</code>;
4324 </li>
4326 <li><b>'<code>S</code>':</b>
4327 fills in the fields <code>source</code>, <code>short_src</code>,
4328 <code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>;
4329 </li>
4331 <li><b>'<code>l</code>':</b> fills in the field <code>currentline</code>;
4332 </li>
4334 <li><b>'<code>u</code>':</b> fills in the field <code>nups</code>;
4335 </li>
4337 <li><b>'<code>f</code>':</b>
4338 pushes onto the stack the function that is
4339 running at the given level;
4340 </li>
4342 <li><b>'<code>L</code>':</b>
4343 pushes onto the stack a table whose indices are the
4344 numbers of the lines that are valid on the function.
4345 (A <em>valid line</em> is a line with some associated code,
4346 that is, a line where you can put a break point.
4347 Non-valid lines include empty lines and comments.)
4348 </li>
4350 </ul>
4353 This function returns 0 on error
4354 (for instance, an invalid option in <code>what</code>).
4360 <hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3>
4361 <pre>const char *lua_getlocal (lua_State *L, lua_Debug *ar, int n);</pre>
4364 Gets information about a local variable of a given activation record.
4365 The parameter <code>ar</code> must be a valid activation record that was
4366 filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
4367 given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
4368 The index <code>n</code> selects which local variable to inspect
4369 (1 is the first parameter or active local variable, and so on,
4370 until the last active local variable).
4371 <a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack
4372 and returns its name.
4376 Variable names starting with '<code>(</code>' (open parentheses)
4377 represent internal variables
4378 (loop control variables, temporaries, and C&nbsp;function locals).
4382 Returns <code>NULL</code> (and pushes nothing)
4383 when the index is greater than
4384 the number of active local variables.
4390 <hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3>
4391 <pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre>
4394 Get information about the interpreter runtime stack.
4398 This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with
4399 an identification of the <em>activation record</em>
4400 of the function executing at a given level.
4401 Level&nbsp;0 is the current running function,
4402 whereas level <em>n+1</em> is the function that has called level <em>n</em>.
4403 When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1;
4404 when called with a level greater than the stack depth,
4405 it returns 0.
4411 <hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3>
4412 <pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre>
4415 Gets information about a closure's upvalue.
4416 (For Lua functions,
4417 upvalues are the external local variables that the function uses,
4418 and that are consequently included in its closure.)
4419 <a href="#lua_getupvalue"><code>lua_getupvalue</code></a> gets the index <code>n</code> of an upvalue,
4420 pushes the upvalue's value onto the stack,
4421 and returns its name.
4422 <code>funcindex</code> points to the closure in the stack.
4423 (Upvalues have no particular order,
4424 as they are active through the whole function.
4425 So, they are numbered in an arbitrary order.)
4429 Returns <code>NULL</code> (and pushes nothing)
4430 when the index is greater than the number of upvalues.
4431 For C&nbsp;functions, this function uses the empty string <code>""</code>
4432 as a name for all upvalues.
4438 <hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3>
4439 <pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre>
4442 Type for debugging hook functions.
4446 Whenever a hook is called, its <code>ar</code> argument has its field
4447 <code>event</code> set to the specific event that triggered the hook.
4448 Lua identifies these events with the following constants:
4449 <a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>,
4450 <a name="pdf-LUA_HOOKTAILRET"><code>LUA_HOOKTAILRET</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>,
4451 and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>.
4452 Moreover, for line events, the field <code>currentline</code> is also set.
4453 To get the value of any other field in <code>ar</code>,
4454 the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
4455 For return events, <code>event</code> may be <code>LUA_HOOKRET</code>,
4456 the normal value, or <code>LUA_HOOKTAILRET</code>.
4457 In the latter case, Lua is simulating a return from
4458 a function that did a tail call;
4459 in this case, it is useless to call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
4463 While Lua is running a hook, it disables other calls to hooks.
4464 Therefore, if a hook calls back Lua to execute a function or a chunk,
4465 this execution occurs without any calls to hooks.
4471 <hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3>
4472 <pre>int lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre>
4475 Sets the debugging hook function.
4479 Argument <code>f</code> is the hook function.
4480 <code>mask</code> specifies on which events the hook will be called:
4481 it is formed by a bitwise or of the constants
4482 <a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>,
4483 <a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>,
4484 <a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>,
4485 and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>.
4486 The <code>count</code> argument is only meaningful when the mask
4487 includes <code>LUA_MASKCOUNT</code>.
4488 For each event, the hook is called as explained below:
4490 <ul>
4492 <li><b>The call hook:</b> is called when the interpreter calls a function.
4493 The hook is called just after Lua enters the new function,
4494 before the function gets its arguments.
4495 </li>
4497 <li><b>The return hook:</b> is called when the interpreter returns from a function.
4498 The hook is called just before Lua leaves the function.
4499 You have no access to the values to be returned by the function.
4500 </li>
4502 <li><b>The line hook:</b> is called when the interpreter is about to
4503 start the execution of a new line of code,
4504 or when it jumps back in the code (even to the same line).
4505 (This event only happens while Lua is executing a Lua function.)
4506 </li>
4508 <li><b>The count hook:</b> is called after the interpreter executes every
4509 <code>count</code> instructions.
4510 (This event only happens while Lua is executing a Lua function.)
4511 </li>
4513 </ul>
4516 A hook is disabled by setting <code>mask</code> to zero.
4522 <hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3>
4523 <pre>const char *lua_setlocal (lua_State *L, lua_Debug *ar, int n);</pre>
4526 Sets the value of a local variable of a given activation record.
4527 Parameters <code>ar</code> and <code>n</code> are as in <a href="#lua_getlocal"><code>lua_getlocal</code></a>
4528 (see <a href="#lua_getlocal"><code>lua_getlocal</code></a>).
4529 <a href="#lua_setlocal"><code>lua_setlocal</code></a> assigns the value at the top of the stack
4530 to the variable and returns its name.
4531 It also pops the value from the stack.
4535 Returns <code>NULL</code> (and pops nothing)
4536 when the index is greater than
4537 the number of active local variables.
4543 <hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3>
4544 <pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre>
4547 Sets the value of a closure's upvalue.
4548 It assigns the value at the top of the stack
4549 to the upvalue and returns its name.
4550 It also pops the value from the stack.
4551 Parameters <code>funcindex</code> and <code>n</code> are as in the <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>
4552 (see <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>).
4556 Returns <code>NULL</code> (and pops nothing)
4557 when the index is greater than the number of upvalues.
4565 <h1>4 - <a name="4">The Auxiliary Library</a></h1>
4569 The <em>auxiliary library</em> provides several convenient functions
4570 to interface C with Lua.
4571 While the basic API provides the primitive functions for all
4572 interactions between C and Lua,
4573 the auxiliary library provides higher-level functions for some
4574 common tasks.
4578 All functions from the auxiliary library
4579 are defined in header file <code>lauxlib.h</code> and
4580 have a prefix <code>luaL_</code>.
4584 All functions in the auxiliary library are built on
4585 top of the basic API,
4586 and so they provide nothing that cannot be done with this API.
4590 Several functions in the auxiliary library are used to
4591 check C&nbsp;function arguments.
4592 Their names are always <code>luaL_check*</code> or <code>luaL_opt*</code>.
4593 All of these functions raise an error if the check is not satisfied.
4594 Because the error message is formatted for arguments
4595 (e.g., "<code>bad argument #1</code>"),
4596 you should not use these functions for other stack values.
4600 <h2>4.1 - <a name="4.1">Functions and Types</a></h2>
4603 Here we list all functions and types from the auxiliary library
4604 in alphabetical order.
4608 <hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3>
4609 <pre>void luaL_addchar (luaL_Buffer *B, char c);</pre>
4612 Adds the character <code>c</code> to the buffer <code>B</code>
4613 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
4619 <hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3>
4620 <pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre>
4623 Adds the string pointed to by <code>s</code> with length <code>l</code> to
4624 the buffer <code>B</code>
4625 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
4626 The string may contain embedded zeros.
4632 <hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3>
4633 <pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre>
4636 Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>)
4637 a string of length <code>n</code> previously copied to the
4638 buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>).
4644 <hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3>
4645 <pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre>
4648 Adds the zero-terminated string pointed to by <code>s</code>
4649 to the buffer <code>B</code>
4650 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
4651 The string may not contain embedded zeros.
4657 <hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3>
4658 <pre>void luaL_addvalue (luaL_Buffer *B);</pre>
4661 Adds the value at the top of the stack
4662 to the buffer <code>B</code>
4663 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
4664 Pops the value.
4668 This is the only function on string buffers that can (and must)
4669 be called with an extra element on the stack,
4670 which is the value to be added to the buffer.
4676 <hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3>
4677 <pre>void luaL_argcheck (lua_State *L,
4678 int cond,
4679 int narg,
4680 const char *extramsg);</pre>
4683 Checks whether <code>cond</code> is true.
4684 If not, raises an error with the following message,
4685 where <code>func</code> is retrieved from the call stack:
4687 <pre>
4688 bad argument #&lt;narg&gt; to &lt;func&gt; (&lt;extramsg&gt;)
4689 </pre>
4694 <hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3>
4695 <pre>int luaL_argerror (lua_State *L, int narg, const char *extramsg);</pre>
4698 Raises an error with the following message,
4699 where <code>func</code> is retrieved from the call stack:
4701 <pre>
4702 bad argument #&lt;narg&gt; to &lt;func&gt; (&lt;extramsg&gt;)
4703 </pre>
4706 This function never returns,
4707 but it is an idiom to use it in C&nbsp;functions
4708 as <code>return luaL_argerror(<em>args</em>)</code>.
4714 <hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3>
4715 <pre>typedef struct luaL_Buffer luaL_Buffer;</pre>
4718 Type for a <em>string buffer</em>.
4722 A string buffer allows C&nbsp;code to build Lua strings piecemeal.
4723 Its pattern of use is as follows:
4725 <ul>
4727 <li>First you declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
4729 <li>Then you initialize it with a call <code>luaL_buffinit(L, &amp;b)</code>.</li>
4731 <li>
4732 Then you add string pieces to the buffer calling any of
4733 the <code>luaL_add*</code> functions.
4734 </li>
4736 <li>
4737 You finish by calling <code>luaL_pushresult(&amp;b)</code>.
4738 This call leaves the final string on the top of the stack.
4739 </li>
4741 </ul>
4744 During its normal operation,
4745 a string buffer uses a variable number of stack slots.
4746 So, while using a buffer, you cannot assume that you know where
4747 the top of the stack is.
4748 You can use the stack between successive calls to buffer operations
4749 as long as that use is balanced;
4750 that is,
4751 when you call a buffer operation,
4752 the stack is at the same level
4753 it was immediately after the previous buffer operation.
4754 (The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.)
4755 After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its
4756 level when the buffer was initialized,
4757 plus the final string on its top.
4763 <hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3>
4764 <pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre>
4767 Initializes a buffer <code>B</code>.
4768 This function does not allocate any space;
4769 the buffer must be declared as a variable
4770 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
4776 <hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3>
4777 <pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre>
4780 Calls a metamethod.
4784 If the object at index <code>obj</code> has a metatable and this
4785 metatable has a field <code>e</code>,
4786 this function calls this field and passes the object as its only argument.
4787 In this case this function returns 1 and pushes onto the
4788 stack the value returned by the call.
4789 If there is no metatable or no metamethod,
4790 this function returns 0 (without pushing any value on the stack).
4796 <hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3>
4797 <pre>void luaL_checkany (lua_State *L, int narg);</pre>
4800 Checks whether the function has an argument
4801 of any type (including <b>nil</b>) at position <code>narg</code>.
4807 <hr><h3><a name="luaL_checkint"><code>luaL_checkint</code></a></h3>
4808 <pre>int luaL_checkint (lua_State *L, int narg);</pre>
4811 Checks whether the function argument <code>narg</code> is a number
4812 and returns this number cast to an <code>int</code>.
4818 <hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3>
4819 <pre>lua_Integer luaL_checkinteger (lua_State *L, int narg);</pre>
4822 Checks whether the function argument <code>narg</code> is a number
4823 and returns this number cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.
4829 <hr><h3><a name="luaL_checklong"><code>luaL_checklong</code></a></h3>
4830 <pre>long luaL_checklong (lua_State *L, int narg);</pre>
4833 Checks whether the function argument <code>narg</code> is a number
4834 and returns this number cast to a <code>long</code>.
4840 <hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3>
4841 <pre>const char *luaL_checklstring (lua_State *L, int narg, size_t *l);</pre>
4844 Checks whether the function argument <code>narg</code> is a string
4845 and returns this string;
4846 if <code>l</code> is not <code>NULL</code> fills <code>*l</code>
4847 with the string's length.
4853 <hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3>
4854 <pre>lua_Number luaL_checknumber (lua_State *L, int narg);</pre>
4857 Checks whether the function argument <code>narg</code> is a number
4858 and returns this number.
4864 <hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3>
4865 <pre>int luaL_checkoption (lua_State *L,
4866 int narg,
4867 const char *def,
4868 const char *const lst[]);</pre>
4871 Checks whether the function argument <code>narg</code> is a string and
4872 searches for this string in the array <code>lst</code>
4873 (which must be NULL-terminated).
4874 Returns the index in the array where the string was found.
4875 Raises an error if the argument is not a string or
4876 if the string cannot be found.
4880 If <code>def</code> is not <code>NULL</code>,
4881 the function uses <code>def</code> as a default value when
4882 there is no argument <code>narg</code> or if this argument is <b>nil</b>.
4886 This is a useful function for mapping strings to C&nbsp;enums.
4887 (The usual convention in Lua libraries is
4888 to use strings instead of numbers to select options.)
4894 <hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3>
4895 <pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre>
4898 Grows the stack size to <code>top + sz</code> elements,
4899 raising an error if the stack cannot grow to that size.
4900 <code>msg</code> is an additional text to go into the error message.
4906 <hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3>
4907 <pre>const char *luaL_checkstring (lua_State *L, int narg);</pre>
4910 Checks whether the function argument <code>narg</code> is a string
4911 and returns this string.
4917 <hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3>
4918 <pre>void luaL_checktype (lua_State *L, int narg, int t);</pre>
4921 Checks whether the function argument <code>narg</code> has type <code>t</code>.
4927 <hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3>
4928 <pre>void *luaL_checkudata (lua_State *L, int narg, const char *tname);</pre>
4931 Checks whether the function argument <code>narg</code> is a userdata
4932 of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
4938 <hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3>
4939 <pre>int luaL_dofile (lua_State *L, const char *filename);</pre>
4942 Loads and runs the given file.
4943 It is defined as the following macro:
4945 <pre>
4946 (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))
4947 </pre><p>
4948 It returns 0 if there are no errors
4949 or 1 in case of errors.
4955 <hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3>
4956 <pre>int luaL_dostring (lua_State *L, const char *str);</pre>
4959 Loads and runs the given string.
4960 It is defined as the following macro:
4962 <pre>
4963 (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))
4964 </pre><p>
4965 It returns 0 if there are no errors
4966 or 1 in case of errors.
4972 <hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3>
4973 <pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre>
4976 Raises an error.
4977 The error message format is given by <code>fmt</code>
4978 plus any extra arguments,
4979 following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>.
4980 It also adds at the beginning of the message the file name and
4981 the line number where the error occurred,
4982 if this information is available.
4986 This function never returns,
4987 but it is an idiom to use it in C&nbsp;functions
4988 as <code>return luaL_error(<em>args</em>)</code>.
4994 <hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3>
4995 <pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre>
4998 Pushes onto the stack the field <code>e</code> from the metatable
4999 of the object at index <code>obj</code>.
5000 If the object does not have a metatable,
5001 or if the metatable does not have this field,
5002 returns 0 and pushes nothing.
5008 <hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3>
5009 <pre>void luaL_getmetatable (lua_State *L, const char *tname);</pre>
5012 Pushes onto the stack the metatable associated with name <code>tname</code>
5013 in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
5019 <hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3>
5020 <pre>const char *luaL_gsub (lua_State *L,
5021 const char *s,
5022 const char *p,
5023 const char *r);</pre>
5026 Creates a copy of string <code>s</code> by replacing
5027 any occurrence of the string <code>p</code>
5028 with the string <code>r</code>.
5029 Pushes the resulting string on the stack and returns it.
5035 <hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3>
5036 <pre>int luaL_loadbuffer (lua_State *L,
5037 const char *buff,
5038 size_t sz,
5039 const char *name);</pre>
5042 Loads a buffer as a Lua chunk.
5043 This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the
5044 buffer pointed to by <code>buff</code> with size <code>sz</code>.
5048 This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
5049 <code>name</code> is the chunk name,
5050 used for debug information and error messages.
5056 <hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3>
5057 <pre>int luaL_loadfile (lua_State *L, const char *filename);</pre>
5060 Loads a file as a Lua chunk.
5061 This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file
5062 named <code>filename</code>.
5063 If <code>filename</code> is <code>NULL</code>,
5064 then it loads from the standard input.
5065 The first line in the file is ignored if it starts with a <code>#</code>.
5069 This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>,
5070 but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a>
5071 if it cannot open/read the file.
5075 As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
5076 it does not run it.
5082 <hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3>
5083 <pre>int luaL_loadstring (lua_State *L, const char *s);</pre>
5086 Loads a string as a Lua chunk.
5087 This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in
5088 the zero-terminated string <code>s</code>.
5092 This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
5096 Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
5097 it does not run it.
5103 <hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3>
5104 <pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre>
5107 If the registry already has the key <code>tname</code>,
5108 returns 0.
5109 Otherwise,
5110 creates a new table to be used as a metatable for userdata,
5111 adds it to the registry with key <code>tname</code>,
5112 and returns 1.
5116 In both cases pushes onto the stack the final value associated
5117 with <code>tname</code> in the registry.
5123 <hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3>
5124 <pre>lua_State *luaL_newstate (void);</pre>
5127 Creates a new Lua state.
5128 It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an
5129 allocator based on the standard&nbsp;C <code>realloc</code> function
5130 and then sets a panic function (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>) that prints
5131 an error message to the standard error output in case of fatal
5132 errors.
5136 Returns the new state,
5137 or <code>NULL</code> if there is a memory allocation error.
5143 <hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3>
5144 <pre>void luaL_openlibs (lua_State *L);</pre>
5147 Opens all standard Lua libraries into the given state.
5153 <hr><h3><a name="luaL_optint"><code>luaL_optint</code></a></h3>
5154 <pre>int luaL_optint (lua_State *L, int narg, int d);</pre>
5157 If the function argument <code>narg</code> is a number,
5158 returns this number cast to an <code>int</code>.
5159 If this argument is absent or is <b>nil</b>,
5160 returns <code>d</code>.
5161 Otherwise, raises an error.
5167 <hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3>
5168 <pre>lua_Integer luaL_optinteger (lua_State *L,
5169 int narg,
5170 lua_Integer d);</pre>
5173 If the function argument <code>narg</code> is a number,
5174 returns this number cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.
5175 If this argument is absent or is <b>nil</b>,
5176 returns <code>d</code>.
5177 Otherwise, raises an error.
5183 <hr><h3><a name="luaL_optlong"><code>luaL_optlong</code></a></h3>
5184 <pre>long luaL_optlong (lua_State *L, int narg, long d);</pre>
5187 If the function argument <code>narg</code> is a number,
5188 returns this number cast to a <code>long</code>.
5189 If this argument is absent or is <b>nil</b>,
5190 returns <code>d</code>.
5191 Otherwise, raises an error.
5197 <hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3>
5198 <pre>const char *luaL_optlstring (lua_State *L,
5199 int narg,
5200 const char *d,
5201 size_t *l);</pre>
5204 If the function argument <code>narg</code> is a string,
5205 returns this string.
5206 If this argument is absent or is <b>nil</b>,
5207 returns <code>d</code>.
5208 Otherwise, raises an error.
5212 If <code>l</code> is not <code>NULL</code>,
5213 fills the position <code>*l</code> with the results's length.
5219 <hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3>
5220 <pre>lua_Number luaL_optnumber (lua_State *L, int narg, lua_Number d);</pre>
5223 If the function argument <code>narg</code> is a number,
5224 returns this number.
5225 If this argument is absent or is <b>nil</b>,
5226 returns <code>d</code>.
5227 Otherwise, raises an error.
5233 <hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3>
5234 <pre>const char *luaL_optstring (lua_State *L,
5235 int narg,
5236 const char *d);</pre>
5239 If the function argument <code>narg</code> is a string,
5240 returns this string.
5241 If this argument is absent or is <b>nil</b>,
5242 returns <code>d</code>.
5243 Otherwise, raises an error.
5249 <hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3>
5250 <pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre>
5253 Returns an address to a space of size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>
5254 where you can copy a string to be added to buffer <code>B</code>
5255 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
5256 After copying the string into this space you must call
5257 <a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add
5258 it to the buffer.
5264 <hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3>
5265 <pre>void luaL_pushresult (luaL_Buffer *B);</pre>
5268 Finishes the use of buffer <code>B</code> leaving the final string on
5269 the top of the stack.
5275 <hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3>
5276 <pre>int luaL_ref (lua_State *L, int t);</pre>
5279 Creates and returns a <em>reference</em>,
5280 in the table at index <code>t</code>,
5281 for the object at the top of the stack (and pops the object).
5285 A reference is a unique integer key.
5286 As long as you do not manually add integer keys into table <code>t</code>,
5287 <a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns.
5288 You can retrieve an object referred by reference <code>r</code>
5289 by calling <code>lua_rawgeti(L, t, r)</code>.
5290 Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object.
5294 If the object at the top of the stack is <b>nil</b>,
5295 <a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>.
5296 The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different
5297 from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>.
5303 <hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3>
5304 <pre>typedef struct luaL_Reg {
5305 const char *name;
5306 lua_CFunction func;
5307 } luaL_Reg;</pre>
5310 Type for arrays of functions to be registered by
5311 <a href="#luaL_register"><code>luaL_register</code></a>.
5312 <code>name</code> is the function name and <code>func</code> is a pointer to
5313 the function.
5314 Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with an sentinel entry
5315 in which both <code>name</code> and <code>func</code> are <code>NULL</code>.
5321 <hr><h3><a name="luaL_register"><code>luaL_register</code></a></h3>
5322 <pre>void luaL_register (lua_State *L,
5323 const char *libname,
5324 const luaL_Reg *l);</pre>
5327 Opens a library.
5331 When called with <code>libname</code> equal to <code>NULL</code>,
5332 it simply registers all functions in the list <code>l</code>
5333 (see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack.
5337 When called with a non-null <code>libname</code>,
5338 <code>luaL_register</code> creates a new table <code>t</code>,
5339 sets it as the value of the global variable <code>libname</code>,
5340 sets it as the value of <code>package.loaded[libname]</code>,
5341 and registers on it all functions in the list <code>l</code>.
5342 If there is a table in <code>package.loaded[libname]</code> or in
5343 variable <code>libname</code>,
5344 reuses this table instead of creating a new one.
5348 In any case the function leaves the table
5349 on the top of the stack.
5355 <hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3>
5356 <pre>const char *luaL_typename (lua_State *L, int idx);</pre>
5359 Returns the name of the type of the value at index <code>idx</code>.
5365 <hr><h3><a name="luaL_typerror"><code>luaL_typerror</code></a></h3>
5366 <pre>int luaL_typerror (lua_State *L, int narg, const char *tname);</pre>
5369 Generates an error with a message like the following:
5371 <pre>
5372 <em>location</em>: bad argument <em>narg</em> to '<em>func</em>' (<em>tname</em> expected, got <em>rt</em>)
5373 </pre><p>
5374 where <code><em>location</em></code> is produced by <a href="#luaL_where"><code>luaL_where</code></a>,
5375 <code><em>func</em></code> is the name of the current function,
5376 and <code><em>rt</em></code> is the type name of the actual argument.
5382 <hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3>
5383 <pre>void luaL_unref (lua_State *L, int t, int ref);</pre>
5386 Releases reference <code>ref</code> from the table at index <code>t</code>
5387 (see <a href="#luaL_ref"><code>luaL_ref</code></a>).
5388 The entry is removed from the table,
5389 so that the referred object can be collected.
5390 The reference <code>ref</code> is also freed to be used again.
5394 If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>,
5395 <a href="#luaL_unref"><code>luaL_unref</code></a> does nothing.
5401 <hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3>
5402 <pre>void luaL_where (lua_State *L, int lvl);</pre>
5405 Pushes onto the stack a string identifying the current position
5406 of the control at level <code>lvl</code> in the call stack.
5407 Typically this string has the following format:
5409 <pre>
5410 <em>chunkname</em>:<em>currentline</em>:
5411 </pre><p>
5412 Level&nbsp;0 is the running function,
5413 level&nbsp;1 is the function that called the running function,
5414 etc.
5418 This function is used to build a prefix for error messages.
5426 <h1>5 - <a name="5">Standard Libraries</a></h1>
5429 The standard Lua libraries provide useful functions
5430 that are implemented directly through the C&nbsp;API.
5431 Some of these functions provide essential services to the language
5432 (e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>);
5433 others provide access to "outside" services (e.g., I/O);
5434 and others could be implemented in Lua itself,
5435 but are quite useful or have critical performance requirements that
5436 deserve an implementation in C (e.g., <code>sort</code>).
5440 All libraries are implemented through the official C&nbsp;API
5441 and are provided as separate C&nbsp;modules.
5442 Currently, Lua has the following standard libraries:
5444 <ul>
5446 <li>basic library;</li>
5448 <li>package library;</li>
5450 <li>string manipulation;</li>
5452 <li>table manipulation;</li>
5454 <li>mathematical functions (sin, log, etc.);</li>
5456 <li>input and output;</li>
5458 <li>operating system facilities;</li>
5460 <li>debug facilities.</li>
5462 </ul><p>
5463 Except for the basic and package libraries,
5464 each library provides all its functions as fields of a global table
5465 or as methods of its objects.
5469 To have access to these libraries,
5470 the C&nbsp;host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function,
5471 which opens all standard libraries.
5472 Alternatively,
5473 it can open them individually by calling
5474 <a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library),
5475 <a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library),
5476 <a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library),
5477 <a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library),
5478 <a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library),
5479 <a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O and the Operating System libraries),
5480 and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library).
5481 These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>
5482 and should not be called directly:
5483 you must call them like any other Lua C&nbsp;function,
5484 e.g., by using <a href="#lua_call"><code>lua_call</code></a>.
5488 <h2>5.1 - <a name="5.1">Basic Functions</a></h2>
5491 The basic library provides some core functions to Lua.
5492 If you do not include this library in your application,
5493 you should check carefully whether you need to provide
5494 implementations for some of its facilities.
5498 <hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3>
5499 Issues an error when
5500 the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>);
5501 otherwise, returns all its arguments.
5502 <code>message</code> is an error message;
5503 when absent, it defaults to "assertion failed!"
5509 <hr><h3><a name="pdf-collectgarbage"><code>collectgarbage (opt [, arg])</code></a></h3>
5513 This function is a generic interface to the garbage collector.
5514 It performs different functions according to its first argument, <code>opt</code>:
5516 <ul>
5518 <li><b>"stop":</b>
5519 stops the garbage collector.
5520 </li>
5522 <li><b>"restart":</b>
5523 restarts the garbage collector.
5524 </li>
5526 <li><b>"collect":</b>
5527 performs a full garbage-collection cycle.
5528 </li>
5530 <li><b>"count":</b>
5531 returns the total memory in use by Lua (in Kbytes).
5532 </li>
5534 <li><b>"step":</b>
5535 performs a garbage-collection step.
5536 The step "size" is controlled by <code>arg</code>
5537 (larger values mean more steps) in a non-specified way.
5538 If you want to control the step size
5539 you must experimentally tune the value of <code>arg</code>.
5540 Returns <b>true</b> if the step finished a collection cycle.
5541 </li>
5543 <li><b>"setpause":</b>
5544 sets <code>arg</code>/100 as the new value for the <em>pause</em> of
5545 the collector (see <a href="#2.10">&sect;2.10</a>).
5546 </li>
5548 <li><b>"setstepmul":</b>
5549 sets <code>arg</code>/100 as the new value for the <em>step multiplier</em> of
5550 the collector (see <a href="#2.10">&sect;2.10</a>).
5551 </li>
5553 </ul>
5558 <hr><h3><a name="pdf-dofile"><code>dofile (filename)</code></a></h3>
5559 Opens the named file and executes its contents as a Lua chunk.
5560 When called without arguments,
5561 <code>dofile</code> executes the contents of the standard input (<code>stdin</code>).
5562 Returns all values returned by the chunk.
5563 In case of errors, <code>dofile</code> propagates the error
5564 to its caller (that is, <code>dofile</code> does not run in protected mode).
5570 <hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3>
5571 Terminates the last protected function called
5572 and returns <code>message</code> as the error message.
5573 Function <code>error</code> never returns.
5577 Usually, <code>error</code> adds some information about the error position
5578 at the beginning of the message.
5579 The <code>level</code> argument specifies how to get the error position.
5580 With level&nbsp;1 (the default), the error position is where the
5581 <code>error</code> function was called.
5582 Level&nbsp;2 points the error to where the function
5583 that called <code>error</code> was called; and so on.
5584 Passing a level&nbsp;0 avoids the addition of error position information
5585 to the message.
5591 <hr><h3><a name="pdf-_G"><code>_G</code></a></h3>
5592 A global variable (not a function) that
5593 holds the global environment (that is, <code>_G._G = _G</code>).
5594 Lua itself does not use this variable;
5595 changing its value does not affect any environment,
5596 nor vice-versa.
5597 (Use <a href="#pdf-setfenv"><code>setfenv</code></a> to change environments.)
5603 <hr><h3><a name="pdf-getfenv"><code>getfenv ([f])</code></a></h3>
5604 Returns the current environment in use by the function.
5605 <code>f</code> can be a Lua function or a number
5606 that specifies the function at that stack level:
5607 Level&nbsp;1 is the function calling <code>getfenv</code>.
5608 If the given function is not a Lua function,
5609 or if <code>f</code> is 0,
5610 <code>getfenv</code> returns the global environment.
5611 The default for <code>f</code> is 1.
5617 <hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3>
5621 If <code>object</code> does not have a metatable, returns <b>nil</b>.
5622 Otherwise,
5623 if the object's metatable has a <code>"__metatable"</code> field,
5624 returns the associated value.
5625 Otherwise, returns the metatable of the given object.
5631 <hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3>
5635 Returns three values: an iterator function, the table <code>t</code>, and 0,
5636 so that the construction
5638 <pre>
5639 for i,v in ipairs(t) do <em>body</em> end
5640 </pre><p>
5641 will iterate over the pairs (<code>1,t[1]</code>), (<code>2,t[2]</code>), &middot;&middot;&middot;,
5642 up to the first integer key absent from the table.
5648 <hr><h3><a name="pdf-load"><code>load (func [, chunkname])</code></a></h3>
5652 Loads a chunk using function <code>func</code> to get its pieces.
5653 Each call to <code>func</code> must return a string that concatenates
5654 with previous results.
5655 A return of <b>nil</b> (or no value) signals the end of the chunk.
5659 If there are no errors,
5660 returns the compiled chunk as a function;
5661 otherwise, returns <b>nil</b> plus the error message.
5662 The environment of the returned function is the global environment.
5666 <code>chunkname</code> is used as the chunk name for error messages
5667 and debug information.
5673 <hr><h3><a name="pdf-loadfile"><code>loadfile ([filename])</code></a></h3>
5677 Similar to <a href="#pdf-load"><code>load</code></a>,
5678 but gets the chunk from file <code>filename</code>
5679 or from the standard input,
5680 if no file name is given.
5686 <hr><h3><a name="pdf-loadstring"><code>loadstring (string [, chunkname])</code></a></h3>
5690 Similar to <a href="#pdf-load"><code>load</code></a>,
5691 but gets the chunk from the given string.
5695 To load and run a given string, use the idiom
5697 <pre>
5698 assert(loadstring(s))()
5699 </pre>
5704 <hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3>
5708 Allows a program to traverse all fields of a table.
5709 Its first argument is a table and its second argument
5710 is an index in this table.
5711 <code>next</code> returns the next index of the table
5712 and its associated value.
5713 When called with <b>nil</b> as its second argument,
5714 <code>next</code> returns an initial index
5715 and its associated value.
5716 When called with the last index,
5717 or with <b>nil</b> in an empty table,
5718 <code>next</code> returns <b>nil</b>.
5719 If the second argument is absent, then it is interpreted as <b>nil</b>.
5720 In particular,
5721 you can use <code>next(t)</code> to check whether a table is empty.
5725 The order in which the indices are enumerated is not specified,
5726 <em>even for numeric indices</em>.
5727 (To traverse a table in numeric order,
5728 use a numerical <b>for</b> or the <a href="#pdf-ipairs"><code>ipairs</code></a> function.)
5732 The behavior of <code>next</code> is <em>undefined</em> if,
5733 during the traversal,
5734 you assign any value to a non-existent field in the table.
5735 You may however modify existing fields.
5736 In particular, you may clear existing fields.
5742 <hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3>
5746 Returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>,
5747 so that the construction
5749 <pre>
5750 for k,v in pairs(t) do <em>body</em> end
5751 </pre><p>
5752 will iterate over all key&ndash;value pairs of table <code>t</code>.
5756 See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
5757 the table during its traversal.
5763 <hr><h3><a name="pdf-pcall"><code>pcall (f, arg1, &middot;&middot;&middot;)</code></a></h3>
5767 Calls function <code>f</code> with
5768 the given arguments in <em>protected mode</em>.
5769 This means that any error inside&nbsp;<code>f</code> is not propagated;
5770 instead, <code>pcall</code> catches the error
5771 and returns a status code.
5772 Its first result is the status code (a boolean),
5773 which is true if the call succeeds without errors.
5774 In such case, <code>pcall</code> also returns all results from the call,
5775 after this first result.
5776 In case of any error, <code>pcall</code> returns <b>false</b> plus the error message.
5782 <hr><h3><a name="pdf-print"><code>print (&middot;&middot;&middot;)</code></a></h3>
5783 Receives any number of arguments,
5784 and prints their values to <code>stdout</code>,
5785 using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert them to strings.
5786 <code>print</code> is not intended for formatted output,
5787 but only as a quick way to show a value,
5788 typically for debugging.
5789 For formatted output, use <a href="#pdf-string.format"><code>string.format</code></a>.
5795 <hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3>
5796 Checks whether <code>v1</code> is equal to <code>v2</code>,
5797 without invoking any metamethod.
5798 Returns a boolean.
5804 <hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3>
5805 Gets the real value of <code>table[index]</code>,
5806 without invoking any metamethod.
5807 <code>table</code> must be a table;
5808 <code>index</code> may be any value.
5814 <hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3>
5815 Sets the real value of <code>table[index]</code> to <code>value</code>,
5816 without invoking any metamethod.
5817 <code>table</code> must be a table,
5818 <code>index</code> any value different from <b>nil</b>,
5819 and <code>value</code> any Lua value.
5823 This function returns <code>table</code>.
5829 <hr><h3><a name="pdf-select"><code>select (index, &middot;&middot;&middot;)</code></a></h3>
5833 If <code>index</code> is a number,
5834 returns all arguments after argument number <code>index</code>.
5835 Otherwise, <code>index</code> must be the string <code>"#"</code>,
5836 and <code>select</code> returns the total number of extra arguments it received.
5842 <hr><h3><a name="pdf-setfenv"><code>setfenv (f, table)</code></a></h3>
5846 Sets the environment to be used by the given function.
5847 <code>f</code> can be a Lua function or a number
5848 that specifies the function at that stack level:
5849 Level&nbsp;1 is the function calling <code>setfenv</code>.
5850 <code>setfenv</code> returns the given function.
5854 As a special case, when <code>f</code> is 0 <code>setfenv</code> changes
5855 the environment of the running thread.
5856 In this case, <code>setfenv</code> returns no values.
5862 <hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3>
5866 Sets the metatable for the given table.
5867 (You cannot change the metatable of other types from Lua, only from&nbsp;C.)
5868 If <code>metatable</code> is <b>nil</b>,
5869 removes the metatable of the given table.
5870 If the original metatable has a <code>"__metatable"</code> field,
5871 raises an error.
5875 This function returns <code>table</code>.
5881 <hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3>
5882 Tries to convert its argument to a number.
5883 If the argument is already a number or a string convertible
5884 to a number, then <code>tonumber</code> returns this number;
5885 otherwise, it returns <b>nil</b>.
5889 An optional argument specifies the base to interpret the numeral.
5890 The base may be any integer between 2 and 36, inclusive.
5891 In bases above&nbsp;10, the letter '<code>A</code>' (in either upper or lower case)
5892 represents&nbsp;10, '<code>B</code>' represents&nbsp;11, and so forth,
5893 with '<code>Z</code>' representing 35.
5894 In base 10 (the default), the number may have a decimal part,
5895 as well as an optional exponent part (see <a href="#2.1">&sect;2.1</a>).
5896 In other bases, only unsigned integers are accepted.
5902 <hr><h3><a name="pdf-tostring"><code>tostring (e)</code></a></h3>
5903 Receives an argument of any type and
5904 converts it to a string in a reasonable format.
5905 For complete control of how numbers are converted,
5906 use <a href="#pdf-string.format"><code>string.format</code></a>.
5910 If the metatable of <code>e</code> has a <code>"__tostring"</code> field,
5911 then <code>tostring</code> calls the corresponding value
5912 with <code>e</code> as argument,
5913 and uses the result of the call as its result.
5919 <hr><h3><a name="pdf-type"><code>type (v)</code></a></h3>
5920 Returns the type of its only argument, coded as a string.
5921 The possible results of this function are
5922 "<code>nil</code>" (a string, not the value <b>nil</b>),
5923 "<code>number</code>",
5924 "<code>string</code>",
5925 "<code>boolean</code>",
5926 "<code>table</code>",
5927 "<code>function</code>",
5928 "<code>thread</code>",
5929 and "<code>userdata</code>".
5935 <hr><h3><a name="pdf-unpack"><code>unpack (list [, i [, j]])</code></a></h3>
5936 Returns the elements from the given table.
5937 This function is equivalent to
5939 <pre>
5940 return list[i], list[i+1], &middot;&middot;&middot;, list[j]
5941 </pre><p>
5942 except that the above code can be written only for a fixed number
5943 of elements.
5944 By default, <code>i</code> is&nbsp;1 and <code>j</code> is the length of the list,
5945 as defined by the length operator (see <a href="#2.5.5">&sect;2.5.5</a>).
5951 <hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3>
5952 A global variable (not a function) that
5953 holds a string containing the current interpreter version.
5954 The current contents of this variable is "<code>Lua 5.1</code>".
5960 <hr><h3><a name="pdf-xpcall"><code>xpcall (f, err)</code></a></h3>
5964 This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>,
5965 except that you can set a new error handler.
5969 <code>xpcall</code> calls function <code>f</code> in protected mode,
5970 using <code>err</code> as the error handler.
5971 Any error inside <code>f</code> is not propagated;
5972 instead, <code>xpcall</code> catches the error,
5973 calls the <code>err</code> function with the original error object,
5974 and returns a status code.
5975 Its first result is the status code (a boolean),
5976 which is true if the call succeeds without errors.
5977 In this case, <code>xpcall</code> also returns all results from the call,
5978 after this first result.
5979 In case of any error,
5980 <code>xpcall</code> returns <b>false</b> plus the result from <code>err</code>.
5988 <h2>5.2 - <a name="5.2">Coroutine Manipulation</a></h2>
5991 The operations related to coroutines comprise a sub-library of
5992 the basic library and come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>.
5993 See <a href="#2.11">&sect;2.11</a> for a general description of coroutines.
5997 <hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3>
6001 Creates a new coroutine, with body <code>f</code>.
6002 <code>f</code> must be a Lua function.
6003 Returns this new coroutine,
6004 an object with type <code>"thread"</code>.
6010 <hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, &middot;&middot;&middot;])</code></a></h3>
6014 Starts or continues the execution of coroutine <code>co</code>.
6015 The first time you resume a coroutine,
6016 it starts running its body.
6017 The values <code>val1</code>, &middot;&middot;&middot; are passed
6018 as the arguments to the body function.
6019 If the coroutine has yielded,
6020 <code>resume</code> restarts it;
6021 the values <code>val1</code>, &middot;&middot;&middot; are passed
6022 as the results from the yield.
6026 If the coroutine runs without any errors,
6027 <code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code>
6028 (if the coroutine yields) or any values returned by the body function
6029 (if the coroutine terminates).
6030 If there is any error,
6031 <code>resume</code> returns <b>false</b> plus the error message.
6037 <hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3>
6041 Returns the running coroutine,
6042 or <b>nil</b> when called by the main thread.
6048 <hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3>
6052 Returns the status of coroutine <code>co</code>, as a string:
6053 <code>"running"</code>,
6054 if the coroutine is running (that is, it called <code>status</code>);
6055 <code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>,
6056 or if it has not started running yet;
6057 <code>"normal"</code> if the coroutine is active but not running
6058 (that is, it has resumed another coroutine);
6059 and <code>"dead"</code> if the coroutine has finished its body function,
6060 or if it has stopped with an error.
6066 <hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3>
6070 Creates a new coroutine, with body <code>f</code>.
6071 <code>f</code> must be a Lua function.
6072 Returns a function that resumes the coroutine each time it is called.
6073 Any arguments passed to the function behave as the
6074 extra arguments to <code>resume</code>.
6075 Returns the same values returned by <code>resume</code>,
6076 except the first boolean.
6077 In case of error, propagates the error.
6083 <hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (&middot;&middot;&middot;)</code></a></h3>
6087 Suspends the execution of the calling coroutine.
6088 The coroutine cannot be running a C&nbsp;function,
6089 a metamethod, or an iterator.
6090 Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>.
6098 <h2>5.3 - <a name="5.3">Modules</a></h2>
6101 The package library provides basic
6102 facilities for loading and building modules in Lua.
6103 It exports two of its functions directly in the global environment:
6104 <a href="#pdf-require"><code>require</code></a> and <a href="#pdf-module"><code>module</code></a>.
6105 Everything else is exported in a table <a name="pdf-package"><code>package</code></a>.
6109 <hr><h3><a name="pdf-module"><code>module (name [, &middot;&middot;&middot;])</code></a></h3>
6113 Creates a module.
6114 If there is a table in <code>package.loaded[name]</code>,
6115 this table is the module.
6116 Otherwise, if there is a global table <code>t</code> with the given name,
6117 this table is the module.
6118 Otherwise creates a new table <code>t</code> and
6119 sets it as the value of the global <code>name</code> and
6120 the value of <code>package.loaded[name]</code>.
6121 This function also initializes <code>t._NAME</code> with the given name,
6122 <code>t._M</code> with the module (<code>t</code> itself),
6123 and <code>t._PACKAGE</code> with the package name
6124 (the full module name minus last component; see below).
6125 Finally, <code>module</code> sets <code>t</code> as the new environment
6126 of the current function and the new value of <code>package.loaded[name]</code>,
6127 so that <a href="#pdf-require"><code>require</code></a> returns <code>t</code>.
6131 If <code>name</code> is a compound name
6132 (that is, one with components separated by dots),
6133 <code>module</code> creates (or reuses, if they already exist)
6134 tables for each component.
6135 For instance, if <code>name</code> is <code>a.b.c</code>,
6136 then <code>module</code> stores the module table in field <code>c</code> of
6137 field <code>b</code> of global <code>a</code>.
6141 This function may receive optional <em>options</em> after
6142 the module name,
6143 where each option is a function to be applied over the module.
6149 <hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3>
6153 Loads the given module.
6154 The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table
6155 to determine whether <code>modname</code> is already loaded.
6156 If it is, then <code>require</code> returns the value stored
6157 at <code>package.loaded[modname]</code>.
6158 Otherwise, it tries to find a <em>loader</em> for the module.
6162 To find a loader,
6163 first <code>require</code> queries <code>package.preload[modname]</code>.
6164 If it has a value,
6165 this value (which should be a function) is the loader.
6166 Otherwise <code>require</code> searches for a Lua loader using the
6167 path stored in <a href="#pdf-package.path"><code>package.path</code></a>.
6168 If that also fails, it searches for a C&nbsp;loader using the
6169 path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
6170 If that also fails,
6171 it tries an <em>all-in-one</em> loader (see below).
6175 When loading a C&nbsp;library,
6176 <code>require</code> first uses a dynamic link facility to link the
6177 application with the library.
6178 Then it tries to find a C&nbsp;function inside this library to
6179 be used as the loader.
6180 The name of this C&nbsp;function is the string "<code>luaopen_</code>"
6181 concatenated with a copy of the module name where each dot
6182 is replaced by an underscore.
6183 Moreover, if the module name has a hyphen,
6184 its prefix up to (and including) the first hyphen is removed.
6185 For instance, if the module name is <code>a.v1-b.c</code>,
6186 the function name will be <code>luaopen_b_c</code>.
6190 If <code>require</code> finds neither a Lua library nor a
6191 C&nbsp;library for a module,
6192 it calls the <em>all-in-one loader</em>.
6193 This loader searches the C&nbsp;path for a library for
6194 the root name of the given module.
6195 For instance, when requiring <code>a.b.c</code>,
6196 it will search for a C&nbsp;library for <code>a</code>.
6197 If found, it looks into it for an open function for
6198 the submodule;
6199 in our example, that would be <code>luaopen_a_b_c</code>.
6200 With this facility, a package can pack several C&nbsp;submodules
6201 into one single library,
6202 with each submodule keeping its original open function.
6206 Once a loader is found,
6207 <code>require</code> calls the loader with a single argument, <code>modname</code>.
6208 If the loader returns any value,
6209 <code>require</code> assigns the returned value to <code>package.loaded[modname]</code>.
6210 If the loader returns no value and
6211 has not assigned any value to <code>package.loaded[modname]</code>,
6212 then <code>require</code> assigns <b>true</b> to this entry.
6213 In any case, <code>require</code> returns the
6214 final value of <code>package.loaded[modname]</code>.
6218 If there is any error loading or running the module,
6219 or if it cannot find any loader for the module,
6220 then <code>require</code> signals an error.
6226 <hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3>
6230 The path used by <a href="#pdf-require"><code>require</code></a> to search for a C&nbsp;loader.
6234 Lua initializes the C&nbsp;path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way
6235 it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>,
6236 using the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a>
6237 (plus another default path defined in <code>luaconf.h</code>).
6244 <hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3>
6248 A table used by <a href="#pdf-require"><code>require</code></a> to control which
6249 modules are already loaded.
6250 When you require a module <code>modname</code> and
6251 <code>package.loaded[modname]</code> is not false,
6252 <a href="#pdf-require"><code>require</code></a> simply returns the value stored there.
6258 <hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3>
6262 Dynamically links the host program with the C&nbsp;library <code>libname</code>.
6263 Inside this library, looks for a function <code>funcname</code>
6264 and returns this function as a C&nbsp;function.
6265 (So, <code>funcname</code> must follow the protocol (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>)).
6269 This is a low-level function.
6270 It completely bypasses the package and module system.
6271 Unlike <a href="#pdf-require"><code>require</code></a>,
6272 it does not perform any path searching and
6273 does not automatically adds extensions.
6274 <code>libname</code> must be the complete file name of the C&nbsp;library,
6275 including if necessary a path and extension.
6276 <code>funcname</code> must be the exact name exported by the C&nbsp;library
6277 (which may depend on the C&nbsp;compiler and linker used).
6281 This function is not supported by ANSI C.
6282 As such, it is only available on some platforms
6283 (Windows, Linux, Mac OS X, Solaris, BSD,
6284 plus other Unix systems that support the <code>dlfcn</code> standard).
6290 <hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3>
6294 The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader.
6298 At start-up, Lua initializes this variable with
6299 the value of the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or
6300 with a default path defined in <code>luaconf.h</code>,
6301 if the environment variable is not defined.
6302 Any "<code>;;</code>" in the value of the environment variable
6303 is replaced by the default path.
6307 A path is a sequence of <em>templates</em> separated by semicolons.
6308 For each template, <a href="#pdf-require"><code>require</code></a> will change each interrogation
6309 mark in the template by <code>filename</code>,
6310 which is <code>modname</code> with each dot replaced by a
6311 "directory separator" (such as "<code>/</code>" in Unix);
6312 then it will try to load the resulting file name.
6313 So, for instance, if the Lua path is
6315 <pre>
6316 "./?.lua;./?.lc;/usr/local/?/init.lua"
6317 </pre><p>
6318 the search for a Lua loader for module <code>foo</code>
6319 will try to load the files
6320 <code>./foo.lua</code>, <code>./foo.lc</code>, and
6321 <code>/usr/local/foo/init.lua</code>, in that order.
6327 <hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3>
6331 A table to store loaders for specific modules
6332 (see <a href="#pdf-require"><code>require</code></a>).
6338 <hr><h3><a name="pdf-package.seeall"><code>package.seeall (module)</code></a></h3>
6342 Sets a metatable for <code>module</code> with
6343 its <code>__index</code> field referring to the global environment,
6344 so that this module inherits values
6345 from the global environment.
6346 To be used as an option to function <a href="#pdf-module"><code>module</code></a>.
6354 <h2>5.4 - <a name="5.4">String Manipulation</a></h2>
6357 This library provides generic functions for string manipulation,
6358 such as finding and extracting substrings, and pattern matching.
6359 When indexing a string in Lua, the first character is at position&nbsp;1
6360 (not at&nbsp;0, as in C).
6361 Indices are allowed to be negative and are interpreted as indexing backwards,
6362 from the end of the string.
6363 Thus, the last character is at position -1, and so on.
6367 The string library provides all its functions inside the table
6368 <a name="pdf-string"><code>string</code></a>.
6369 It also sets a metatable for strings
6370 where the <code>__index</code> field points to the <code>string</code> table.
6371 Therefore, you can use the string functions in object-oriented style.
6372 For instance, <code>string.byte(s, i)</code>
6373 can be written as <code>s:byte(i)</code>.
6377 <hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3>
6378 Returns the internal numerical codes of the characters <code>s[i]</code>,
6379 <code>s[i+1]</code>, &middot;&middot;&middot;, <code>s[j]</code>.
6380 The default value for <code>i</code> is&nbsp;1;
6381 the default value for <code>j</code> is&nbsp;<code>i</code>.
6385 Note that numerical codes are not necessarily portable across platforms.
6391 <hr><h3><a name="pdf-string.char"><code>string.char (&middot;&middot;&middot;)</code></a></h3>
6392 Receives zero or more integers.
6393 Returns a string with length equal to the number of arguments,
6394 in which each character has the internal numerical code equal
6395 to its corresponding argument.
6399 Note that numerical codes are not necessarily portable across platforms.
6405 <hr><h3><a name="pdf-string.dump"><code>string.dump (function)</code></a></h3>
6409 Returns a string containing a binary representation of the given function,
6410 so that a later <a href="#pdf-loadstring"><code>loadstring</code></a> on this string returns
6411 a copy of the function.
6412 <code>function</code> must be a Lua function without upvalues.
6418 <hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3>
6419 Looks for the first match of
6420 <code>pattern</code> in the string <code>s</code>.
6421 If it finds a match, then <code>find</code> returns the indices of&nbsp;<code>s</code>
6422 where this occurrence starts and ends;
6423 otherwise, it returns <b>nil</b>.
6424 A third, optional numerical argument <code>init</code> specifies
6425 where to start the search;
6426 its default value is&nbsp;1 and may be negative.
6427 A value of <b>true</b> as a fourth, optional argument <code>plain</code>
6428 turns off the pattern matching facilities,
6429 so the function does a plain "find substring" operation,
6430 with no characters in <code>pattern</code> being considered "magic".
6431 Note that if <code>plain</code> is given, then <code>init</code> must be given as well.
6435 If the pattern has captures,
6436 then in a successful match
6437 the captured values are also returned,
6438 after the two indices.
6444 <hr><h3><a name="pdf-string.format"><code>string.format (formatstring, &middot;&middot;&middot;)</code></a></h3>
6445 Returns a formatted version of its variable number of arguments
6446 following the description given in its first argument (which must be a string).
6447 The format string follows the same rules as the <code>printf</code> family of
6448 standard C&nbsp;functions.
6449 The only differences are that the options/modifiers
6450 <code>*</code>, <code>l</code>, <code>L</code>, <code>n</code>, <code>p</code>,
6451 and <code>h</code> are not supported
6452 and that there is an extra option, <code>q</code>.
6453 The <code>q</code> option formats a string in a form suitable to be safely read
6454 back by the Lua interpreter:
6455 the string is written between double quotes,
6456 and all double quotes, newlines, embedded zeros,
6457 and backslashes in the string
6458 are correctly escaped when written.
6459 For instance, the call
6461 <pre>
6462 string.format('%q', 'a string with "quotes" and \n new line')
6463 </pre><p>
6464 will produce the string:
6466 <pre>
6467 "a string with \"quotes\" and \
6468 new line"
6469 </pre>
6472 The options <code>c</code>, <code>d</code>, <code>E</code>, <code>e</code>, <code>f</code>,
6473 <code>g</code>, <code>G</code>, <code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code> all
6474 expect a number as argument,
6475 whereas <code>q</code> and <code>s</code> expect a string.
6479 This function does not accept string values
6480 containing embedded zeros,
6481 except as arguments to the <code>q</code> option.
6487 <hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3>
6488 Returns an iterator function that,
6489 each time it is called,
6490 returns the next captures from <code>pattern</code> over string <code>s</code>.
6491 If <code>pattern</code> specifies no captures,
6492 then the whole match is produced in each call.
6496 As an example, the following loop
6498 <pre>
6499 s = "hello world from Lua"
6500 for w in string.gmatch(s, "%a+") do
6501 print(w)
6503 </pre><p>
6504 will iterate over all the words from string <code>s</code>,
6505 printing one per line.
6506 The next example collects all pairs <code>key=value</code> from the
6507 given string into a table:
6509 <pre>
6510 t = {}
6511 s = "from=world, to=Lua"
6512 for k, v in string.gmatch(s, "(%w+)=(%w+)") do
6513 t[k] = v
6515 </pre>
6518 For this function, a '<code>^</code>' at the start of a pattern does not
6519 work as an anchor, as this would prevent the iteration.
6525 <hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3>
6526 Returns a copy of <code>s</code>
6527 in which all occurrences of the <code>pattern</code> have been
6528 replaced by a replacement string specified by <code>repl</code>,
6529 which may be a string, a table, or a function.
6530 <code>gsub</code> also returns, as its second value,
6531 the total number of substitutions made.
6535 If <code>repl</code> is a string, then its value is used for replacement.
6536 The character&nbsp;<code>%</code> works as an escape character:
6537 any sequence in <code>repl</code> of the form <code>%<em>n</em></code>,
6538 with <em>n</em> between 1 and 9,
6539 stands for the value of the <em>n</em>-th captured substring (see below).
6540 The sequence <code>%0</code> stands for the whole match.
6541 The sequence <code>%%</code> stands for a single&nbsp;<code>%</code>.
6545 If <code>repl</code> is a table, then the table is queried for every match,
6546 using the first capture as the key;
6547 if the pattern specifies no captures,
6548 then the whole match is used as the key.
6552 If <code>repl</code> is a function, then this function is called every time a
6553 match occurs, with all captured substrings passed as arguments,
6554 in order;
6555 if the pattern specifies no captures,
6556 then the whole match is passed as a sole argument.
6560 If the value returned by the table query or by the function call
6561 is a string or a number,
6562 then it is used as the replacement string;
6563 otherwise, if it is <b>false</b> or <b>nil</b>,
6564 then there is no replacement
6565 (that is, the original match is kept in the string).
6569 The optional last parameter <code>n</code> limits
6570 the maximum number of substitutions to occur.
6571 For instance, when <code>n</code> is 1 only the first occurrence of
6572 <code>pattern</code> is replaced.
6576 Here are some examples:
6578 <pre>
6579 x = string.gsub("hello world", "(%w+)", "%1 %1")
6580 --&gt; x="hello hello world world"
6582 x = string.gsub("hello world", "%w+", "%0 %0", 1)
6583 --&gt; x="hello hello world"
6585 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
6586 --&gt; x="world hello Lua from"
6588 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
6589 --&gt; x="home = /home/roberto, user = roberto"
6591 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
6592 return loadstring(s)()
6593 end)
6594 --&gt; x="4+5 = 9"
6596 local t = {name="lua", version="5.1"}
6597 x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)
6598 --&gt; x="lua-5.1.tar.gz"
6599 </pre>
6604 <hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3>
6605 Receives a string and returns its length.
6606 The empty string <code>""</code> has length 0.
6607 Embedded zeros are counted,
6608 so <code>"a\000bc\000"</code> has length 5.
6614 <hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3>
6615 Receives a string and returns a copy of this string with all
6616 uppercase letters changed to lowercase.
6617 All other characters are left unchanged.
6618 The definition of what an uppercase letter is depends on the current locale.
6624 <hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3>
6625 Looks for the first <em>match</em> of
6626 <code>pattern</code> in the string <code>s</code>.
6627 If it finds one, then <code>match</code> returns
6628 the captures from the pattern;
6629 otherwise it returns <b>nil</b>.
6630 If <code>pattern</code> specifies no captures,
6631 then the whole match is returned.
6632 A third, optional numerical argument <code>init</code> specifies
6633 where to start the search;
6634 its default value is&nbsp;1 and may be negative.
6640 <hr><h3><a name="pdf-string.rep"><code>string.rep (s, n)</code></a></h3>
6641 Returns a string that is the concatenation of <code>n</code> copies of
6642 the string <code>s</code>.
6648 <hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3>
6649 Returns a string that is the string <code>s</code> reversed.
6655 <hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3>
6656 Returns the substring of <code>s</code> that
6657 starts at <code>i</code> and continues until <code>j</code>;
6658 <code>i</code> and <code>j</code> may be negative.
6659 If <code>j</code> is absent, then it is assumed to be equal to -1
6660 (which is the same as the string length).
6661 In particular,
6662 the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code>
6663 with length <code>j</code>,
6664 and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code>
6665 with length <code>i</code>.
6671 <hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3>
6672 Receives a string and returns a copy of this string with all
6673 lowercase letters changed to uppercase.
6674 All other characters are left unchanged.
6675 The definition of what a lowercase letter is depends on the current locale.
6679 <h3>5.4.1 - <a name="5.4.1">Patterns</a></h3>
6682 <h4>Character Class:</h4><p>
6683 A <em>character class</em> is used to represent a set of characters.
6684 The following combinations are allowed in describing a character class:
6686 <ul>
6688 <li><b><em>x</em>:</b>
6689 (where <em>x</em> is not one of the <em>magic characters</em>
6690 <code>^$()%.[]*+-?</code>)
6691 represents the character <em>x</em> itself.
6692 </li>
6694 <li><b><code>.</code>:</b> (a dot) represents all characters.</li>
6696 <li><b><code>%a</code>:</b> represents all letters.</li>
6698 <li><b><code>%c</code>:</b> represents all control characters.</li>
6700 <li><b><code>%d</code>:</b> represents all digits.</li>
6702 <li><b><code>%l</code>:</b> represents all lowercase letters.</li>
6704 <li><b><code>%p</code>:</b> represents all punctuation characters.</li>
6706 <li><b><code>%s</code>:</b> represents all space characters.</li>
6708 <li><b><code>%u</code>:</b> represents all uppercase letters.</li>
6710 <li><b><code>%w</code>:</b> represents all alphanumeric characters.</li>
6712 <li><b><code>%x</code>:</b> represents all hexadecimal digits.</li>
6714 <li><b><code>%z</code>:</b> represents the character with representation 0.</li>
6716 <li><b><code>%<em>x</em></code>:</b> (where <em>x</em> is any non-alphanumeric character)
6717 represents the character <em>x</em>.
6718 This is the standard way to escape the magic characters.
6719 Any punctuation character (even the non magic)
6720 can be preceded by a '<code>%</code>'
6721 when used to represent itself in a pattern.
6722 </li>
6724 <li><b><code>[<em>set</em>]</code>:</b>
6725 represents the class which is the union of all
6726 characters in <em>set</em>.
6727 A range of characters may be specified by
6728 separating the end characters of the range with a '<code>-</code>'.
6729 All classes <code>%</code><em>x</em> described above may also be used as
6730 components in <em>set</em>.
6731 All other characters in <em>set</em> represent themselves.
6732 For example, <code>[%w_]</code> (or <code>[_%w]</code>)
6733 represents all alphanumeric characters plus the underscore,
6734 <code>[0-7]</code> represents the octal digits,
6735 and <code>[0-7%l%-]</code> represents the octal digits plus
6736 the lowercase letters plus the '<code>-</code>' character.
6740 The interaction between ranges and classes is not defined.
6741 Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code>
6742 have no meaning.
6743 </li>
6745 <li><b><code>[^<em>set</em>]</code>:</b>
6746 represents the complement of <em>set</em>,
6747 where <em>set</em> is interpreted as above.
6748 </li>
6750 </ul><p>
6751 For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.),
6752 the corresponding uppercase letter represents the complement of the class.
6753 For instance, <code>%S</code> represents all non-space characters.
6757 The definitions of letter, space, and other character groups
6758 depend on the current locale.
6759 In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>.
6765 <h4>Pattern Item:</h4><p>
6766 A <em>pattern item</em> may be
6768 <ul>
6770 <li>
6771 a single character class,
6772 which matches any single character in the class;
6773 </li>
6775 <li>
6776 a single character class followed by '<code>*</code>',
6777 which matches 0 or more repetitions of characters in the class.
6778 These repetition items will always match the longest possible sequence;
6779 </li>
6781 <li>
6782 a single character class followed by '<code>+</code>',
6783 which matches 1 or more repetitions of characters in the class.
6784 These repetition items will always match the longest possible sequence;
6785 </li>
6787 <li>
6788 a single character class followed by '<code>-</code>',
6789 which also matches 0 or more repetitions of characters in the class.
6790 Unlike '<code>*</code>',
6791 these repetition items will always match the <em>shortest</em> possible sequence;
6792 </li>
6794 <li>
6795 a single character class followed by '<code>?</code>',
6796 which matches 0 or 1 occurrence of a character in the class;
6797 </li>
6799 <li>
6800 <code>%<em>n</em></code>, for <em>n</em> between 1 and 9;
6801 such item matches a substring equal to the <em>n</em>-th captured string
6802 (see below);
6803 </li>
6805 <li>
6806 <code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters;
6807 such item matches strings that start with&nbsp;<em>x</em>, end with&nbsp;<em>y</em>,
6808 and where the <em>x</em> and <em>y</em> are <em>balanced</em>.
6809 This means that, if one reads the string from left to right,
6810 counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>,
6811 the ending <em>y</em> is the first <em>y</em> where the count reaches 0.
6812 For instance, the item <code>%b()</code> matches expressions with
6813 balanced parentheses.
6814 </li>
6816 </ul>
6821 <h4>Pattern:</h4><p>
6822 A <em>pattern</em> is a sequence of pattern items.
6823 A '<code>^</code>' at the beginning of a pattern anchors the match at the
6824 beginning of the subject string.
6825 A '<code>$</code>' at the end of a pattern anchors the match at the
6826 end of the subject string.
6827 At other positions,
6828 '<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves.
6834 <h4>Captures:</h4><p>
6835 A pattern may contain sub-patterns enclosed in parentheses;
6836 they describe <em>captures</em>.
6837 When a match succeeds, the substrings of the subject string
6838 that match captures are stored (<em>captured</em>) for future use.
6839 Captures are numbered according to their left parentheses.
6840 For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>,
6841 the part of the string matching <code>"a*(.)%w(%s*)"</code> is
6842 stored as the first capture (and therefore has number&nbsp;1);
6843 the character matching "<code>.</code>" is captured with number&nbsp;2,
6844 and the part matching "<code>%s*</code>" has number&nbsp;3.
6848 As a special case, the empty capture <code>()</code> captures
6849 the current string position (a number).
6850 For instance, if we apply the pattern <code>"()aa()"</code> on the
6851 string <code>"flaaap"</code>, there will be two captures: 3&nbsp;and&nbsp;5.
6855 A pattern cannot contain embedded zeros. Use <code>%z</code> instead.
6867 <h2>5.5 - <a name="5.5">Table Manipulation</a></h2><p>
6868 This library provides generic functions for table manipulation.
6869 It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>.
6873 Most functions in the table library assume that the table
6874 represents an array or a list.
6875 For these functions, when we talk about the "length" of a table
6876 we mean the result of the length operator.
6880 <hr><h3><a name="pdf-table.concat"><code>table.concat (table [, sep [, i [, j]]])</code></a></h3>
6881 Given an array where all elements are strings or numbers,
6882 returns <code>table[i]..sep..table[i+1] &middot;&middot;&middot; sep..table[j]</code>.
6883 The default value for <code>sep</code> is the empty string,
6884 the default for <code>i</code> is 1,
6885 and the default for <code>j</code> is the length of the table.
6886 If <code>i</code> is greater than <code>j</code>, returns the empty string.
6892 <hr><h3><a name="pdf-table.insert"><code>table.insert (table, [pos,] value)</code></a></h3>
6896 Inserts element <code>value</code> at position <code>pos</code> in <code>table</code>,
6897 shifting up other elements to open space, if necessary.
6898 The default value for <code>pos</code> is <code>n+1</code>,
6899 where <code>n</code> is the length of the table (see <a href="#2.5.5">&sect;2.5.5</a>),
6900 so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end
6901 of table <code>t</code>.
6907 <hr><h3><a name="pdf-table.maxn"><code>table.maxn (table)</code></a></h3>
6911 Returns the largest positive numerical index of the given table,
6912 or zero if the table has no positive numerical indices.
6913 (To do its job this function does a linear traversal of
6914 the whole table.)
6920 <hr><h3><a name="pdf-table.remove"><code>table.remove (table [, pos])</code></a></h3>
6924 Removes from <code>table</code> the element at position <code>pos</code>,
6925 shifting down other elements to close the space, if necessary.
6926 Returns the value of the removed element.
6927 The default value for <code>pos</code> is <code>n</code>,
6928 where <code>n</code> is the length of the table,
6929 so that a call <code>table.remove(t)</code> removes the last element
6930 of table <code>t</code>.
6936 <hr><h3><a name="pdf-table.sort"><code>table.sort (table [, comp])</code></a></h3>
6937 Sorts table elements in a given order, <em>in-place</em>,
6938 from <code>table[1]</code> to <code>table[n]</code>,
6939 where <code>n</code> is the length of the table.
6940 If <code>comp</code> is given,
6941 then it must be a function that receives two table elements,
6942 and returns true
6943 when the first is less than the second
6944 (so that <code>not comp(a[i+1],a[i])</code> will be true after the sort).
6945 If <code>comp</code> is not given,
6946 then the standard Lua operator <code>&lt;</code> is used instead.
6950 The sort algorithm is not stable;
6951 that is, elements considered equal by the given order
6952 may have their relative positions changed by the sort.
6960 <h2>5.6 - <a name="5.6">Mathematical Functions</a></h2>
6963 This library is an interface to the standard C&nbsp;math library.
6964 It provides all its functions inside the table <a name="pdf-math"><code>math</code></a>.
6968 <hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3>
6972 Returns the absolute value of <code>x</code>.
6978 <hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3>
6982 Returns the arc cosine of <code>x</code> (in radians).
6988 <hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3>
6992 Returns the arc sine of <code>x</code> (in radians).
6998 <hr><h3><a name="pdf-math.atan"><code>math.atan (x)</code></a></h3>
7002 Returns the arc tangent of <code>x</code> (in radians).
7008 <hr><h3><a name="pdf-math.atan2"><code>math.atan2 (x, y)</code></a></h3>
7012 Returns the arc tangent of <code>x/y</code> (in radians),
7013 but uses the signs of both parameters to find the
7014 quadrant of the result.
7015 (It also handles correctly the case of <code>y</code> being zero.)
7021 <hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3>
7025 Returns the smallest integer larger than or equal to <code>x</code>.
7031 <hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3>
7035 Returns the cosine of <code>x</code> (assumed to be in radians).
7041 <hr><h3><a name="pdf-math.cosh"><code>math.cosh (x)</code></a></h3>
7045 Returns the hyperbolic cosine of <code>x</code>.
7051 <hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3>
7055 Returns the angle <code>x</code> (given in radians) in degrees.
7061 <hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3>
7065 Returns the the value <em>e<sup>x</sup></em>.
7071 <hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3>
7075 Returns the largest integer smaller than or equal to <code>x</code>.
7081 <hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3>
7085 Returns the remainder of the division of <code>x</code> by <code>y</code>.
7091 <hr><h3><a name="pdf-math.frexp"><code>math.frexp (x)</code></a></h3>
7095 Returns <code>m</code> and <code>e</code> such that <em>x = m2<sup>e</sup></em>,
7096 <code>e</code> is an integer and the absolute value of <code>m</code> is
7097 in the range <em>[0.5, 1)</em>
7098 (or zero when <code>x</code> is zero).
7104 <hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3>
7108 The value <code>HUGE_VAL</code>,
7109 a value larger than or equal to any other numerical value.
7115 <hr><h3><a name="pdf-math.ldexp"><code>math.ldexp (m, e)</code></a></h3>
7119 Returns <em>m2<sup>e</sup></em> (<code>e</code> should be an integer).
7125 <hr><h3><a name="pdf-math.log"><code>math.log (x)</code></a></h3>
7129 Returns the natural logarithm of <code>x</code>.
7135 <hr><h3><a name="pdf-math.log10"><code>math.log10 (x)</code></a></h3>
7139 Returns the base-10 logarithm of <code>x</code>.
7145 <hr><h3><a name="pdf-math.max"><code>math.max (x, &middot;&middot;&middot;)</code></a></h3>
7149 Returns the maximum value among its arguments.
7155 <hr><h3><a name="pdf-math.min"><code>math.min (x, &middot;&middot;&middot;)</code></a></h3>
7159 Returns the minimum value among its arguments.
7165 <hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3>
7169 Returns two numbers,
7170 the integral part of <code>x</code> and the fractional part of <code>x</code>.
7176 <hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3>
7180 The value of <em>pi</em>.
7186 <hr><h3><a name="pdf-math.pow"><code>math.pow (x, y)</code></a></h3>
7190 Returns <em>x<sup>y</sup></em>.
7191 (You can also use the expression <code>x^y</code> to compute this value.)
7197 <hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3>
7201 Returns the angle <code>x</code> (given in degrees) in radians.
7207 <hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3>
7211 This function is an interface to the simple
7212 pseudo-random generator function <code>rand</code> provided by ANSI&nbsp;C.
7213 (No guarantees can be given for its statistical properties.)
7217 When called without arguments,
7218 returns a pseudo-random real number
7219 in the range <em>[0,1)</em>.
7220 When called with a number <code>m</code>,
7221 <code>math.random</code> returns
7222 a pseudo-random integer in the range <em>[1, m]</em>.
7223 When called with two numbers <code>m</code> and <code>n</code>,
7224 <code>math.random</code> returns a pseudo-random
7225 integer in the range <em>[m, n]</em>.
7231 <hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3>
7235 Sets <code>x</code> as the "seed"
7236 for the pseudo-random generator:
7237 equal seeds produce equal sequences of numbers.
7243 <hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3>
7247 Returns the sine of <code>x</code> (assumed to be in radians).
7253 <hr><h3><a name="pdf-math.sinh"><code>math.sinh (x)</code></a></h3>
7257 Returns the hyperbolic sine of <code>x</code>.
7263 <hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3>
7267 Returns the square root of <code>x</code>.
7268 (You can also use the expression <code>x^0.5</code> to compute this value.)
7274 <hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3>
7278 Returns the tangent of <code>x</code> (assumed to be in radians).
7284 <hr><h3><a name="pdf-math.tanh"><code>math.tanh (x)</code></a></h3>
7288 Returns the hyperbolic tangent of <code>x</code>.
7296 <h2>5.7 - <a name="5.7">Input and Output Facilities</a></h2>
7299 The I/O library provides two different styles for file manipulation.
7300 The first one uses implicit file descriptors;
7301 that is, there are operations to set a default input file and a
7302 default output file,
7303 and all input/output operations are over these default files.
7304 The second style uses explicit file descriptors.
7308 When using implicit file descriptors,
7309 all operations are supplied by table <a name="pdf-io"><code>io</code></a>.
7310 When using explicit file descriptors,
7311 the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file descriptor
7312 and then all operations are supplied as methods of the file descriptor.
7316 The table <code>io</code> also provides
7317 three predefined file descriptors with their usual meanings from C:
7318 <a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>.
7322 Unless otherwise stated,
7323 all I/O functions return <b>nil</b> on failure
7324 (plus an error message as a second result and
7325 a system-dependent error code as a third result)
7326 and some value different from <b>nil</b> on success.
7330 <hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3>
7334 Equivalent to <code>file:close()</code>.
7335 Without a <code>file</code>, closes the default output file.
7341 <hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3>
7345 Equivalent to <code>file:flush</code> over the default output file.
7351 <hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3>
7355 When called with a file name, it opens the named file (in text mode),
7356 and sets its handle as the default input file.
7357 When called with a file handle,
7358 it simply sets this file handle as the default input file.
7359 When called without parameters,
7360 it returns the current default input file.
7364 In case of errors this function raises the error,
7365 instead of returning an error code.
7371 <hr><h3><a name="pdf-io.lines"><code>io.lines ([filename])</code></a></h3>
7375 Opens the given file name in read mode
7376 and returns an iterator function that,
7377 each time it is called,
7378 returns a new line from the file.
7379 Therefore, the construction
7381 <pre>
7382 for line in io.lines(filename) do <em>body</em> end
7383 </pre><p>
7384 will iterate over all lines of the file.
7385 When the iterator function detects the end of file,
7386 it returns <b>nil</b> (to finish the loop) and automatically closes the file.
7390 The call <code>io.lines()</code> (with no file name) is equivalent
7391 to <code>io.input():lines()</code>;
7392 that is, it iterates over the lines of the default input file.
7393 In this case it does not close the file when the loop ends.
7399 <hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3>
7403 This function opens a file,
7404 in the mode specified in the string <code>mode</code>.
7405 It returns a new file handle,
7406 or, in case of errors, <b>nil</b> plus an error message.
7410 The <code>mode</code> string can be any of the following:
7412 <ul>
7413 <li><b>"r":</b> read mode (the default);</li>
7414 <li><b>"w":</b> write mode;</li>
7415 <li><b>"a":</b> append mode;</li>
7416 <li><b>"r+":</b> update mode, all previous data is preserved;</li>
7417 <li><b>"w+":</b> update mode, all previous data is erased;</li>
7418 <li><b>"a+":</b> append update mode, previous data is preserved,
7419 writing is only allowed at the end of file.</li>
7420 </ul><p>
7421 The <code>mode</code> string may also have a '<code>b</code>' at the end,
7422 which is needed in some systems to open the file in binary mode.
7423 This string is exactly what is used in the
7424 standard&nbsp;C function <code>fopen</code>.
7430 <hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3>
7434 Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file.
7440 <hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3>
7444 Starts program <code>prog</code> in a separated process and returns
7445 a file handle that you can use to read data from this program
7446 (if <code>mode</code> is <code>"r"</code>, the default)
7447 or to write data to this program
7448 (if <code>mode</code> is <code>"w"</code>).
7452 This function is system dependent and is not available
7453 on all platforms.
7459 <hr><h3><a name="pdf-io.read"><code>io.read (&middot;&middot;&middot;)</code></a></h3>
7463 Equivalent to <code>io.input():read</code>.
7469 <hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3>
7473 Returns a handle for a temporary file.
7474 This file is opened in update mode
7475 and it is automatically removed when the program ends.
7481 <hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3>
7485 Checks whether <code>obj</code> is a valid file handle.
7486 Returns the string <code>"file"</code> if <code>obj</code> is an open file handle,
7487 <code>"closed file"</code> if <code>obj</code> is a closed file handle,
7488 or <b>nil</b> if <code>obj</code> is not a file handle.
7494 <hr><h3><a name="pdf-io.write"><code>io.write (&middot;&middot;&middot;)</code></a></h3>
7498 Equivalent to <code>io.output():write</code>.
7504 <hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3>
7508 Closes <code>file</code>.
7509 Note that files are automatically closed when
7510 their handles are garbage collected,
7511 but that takes an unpredictable amount of time to happen.
7517 <hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3>
7521 Saves any written data to <code>file</code>.
7527 <hr><h3><a name="pdf-file:lines"><code>file:lines ()</code></a></h3>
7531 Returns an iterator function that,
7532 each time it is called,
7533 returns a new line from the file.
7534 Therefore, the construction
7536 <pre>
7537 for line in file:lines() do <em>body</em> end
7538 </pre><p>
7539 will iterate over all lines of the file.
7540 (Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file
7541 when the loop ends.)
7547 <hr><h3><a name="pdf-file:read"><code>file:read (&middot;&middot;&middot;)</code></a></h3>
7551 Reads the file <code>file</code>,
7552 according to the given formats, which specify what to read.
7553 For each format,
7554 the function returns a string (or a number) with the characters read,
7555 or <b>nil</b> if it cannot read data with the specified format.
7556 When called without formats,
7557 it uses a default format that reads the entire next line
7558 (see below).
7562 The available formats are
7564 <ul>
7566 <li><b>"*n":</b>
7567 reads a number;
7568 this is the only format that returns a number instead of a string.
7569 </li>
7571 <li><b>"*a":</b>
7572 reads the whole file, starting at the current position.
7573 On end of file, it returns the empty string.
7574 </li>
7576 <li><b>"*l":</b>
7577 reads the next line (skipping the end of line),
7578 returning <b>nil</b> on end of file.
7579 This is the default format.
7580 </li>
7582 <li><b><em>number</em>:</b>
7583 reads a string with up to this number of characters,
7584 returning <b>nil</b> on end of file.
7585 If number is zero,
7586 it reads nothing and returns an empty string,
7587 or <b>nil</b> on end of file.
7588 </li>
7590 </ul>
7595 <hr><h3><a name="pdf-file:seek"><code>file:seek ([whence] [, offset])</code></a></h3>
7599 Sets and gets the file position,
7600 measured from the beginning of the file,
7601 to the position given by <code>offset</code> plus a base
7602 specified by the string <code>whence</code>, as follows:
7604 <ul>
7605 <li><b>"set":</b> base is position 0 (beginning of the file);</li>
7606 <li><b>"cur":</b> base is current position;</li>
7607 <li><b>"end":</b> base is end of file;</li>
7608 </ul><p>
7609 In case of success, function <code>seek</code> returns the final file position,
7610 measured in bytes from the beginning of the file.
7611 If this function fails, it returns <b>nil</b>,
7612 plus a string describing the error.
7616 The default value for <code>whence</code> is <code>"cur"</code>,
7617 and for <code>offset</code> is 0.
7618 Therefore, the call <code>file:seek()</code> returns the current
7619 file position, without changing it;
7620 the call <code>file:seek("set")</code> sets the position to the
7621 beginning of the file (and returns 0);
7622 and the call <code>file:seek("end")</code> sets the position to the
7623 end of the file, and returns its size.
7629 <hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3>
7633 Sets the buffering mode for an output file.
7634 There are three available modes:
7636 <ul>
7638 <li><b>"no":</b>
7639 no buffering; the result of any output operation appears immediately.
7640 </li>
7642 <li><b>"full":</b>
7643 full buffering; output operation is performed only
7644 when the buffer is full (or when you explicitly <code>flush</code> the file
7645 (see <a href="#pdf-io.flush"><code>io.flush</code></a>)).
7646 </li>
7648 <li><b>"line":</b>
7649 line buffering; output is buffered until a newline is output
7650 or there is any input from some special files
7651 (such as a terminal device).
7652 </li>
7654 </ul><p>
7655 For the last two cases, <code>size</code>
7656 specifies the size of the buffer, in bytes.
7657 The default is an appropriate size.
7663 <hr><h3><a name="pdf-file:write"><code>file:write (&middot;&middot;&middot;)</code></a></h3>
7667 Writes the value of each of its arguments to
7668 the <code>file</code>.
7669 The arguments must be strings or numbers.
7670 To write other values,
7671 use <a href="#pdf-tostring"><code>tostring</code></a> or <a href="#pdf-string.format"><code>string.format</code></a> before <code>write</code>.
7679 <h2>5.8 - <a name="5.8">Operating System Facilities</a></h2>
7682 This library is implemented through table <a name="pdf-os"><code>os</code></a>.
7686 <hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3>
7690 Returns an approximation of the amount in seconds of CPU time
7691 used by the program.
7697 <hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3>
7701 Returns a string or a table containing date and time,
7702 formatted according to the given string <code>format</code>.
7706 If the <code>time</code> argument is present,
7707 this is the time to be formatted
7708 (see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value).
7709 Otherwise, <code>date</code> formats the current time.
7713 If <code>format</code> starts with '<code>!</code>',
7714 then the date is formatted in Coordinated Universal Time.
7715 After this optional character,
7716 if <code>format</code> is the string "<code>*t</code>",
7717 then <code>date</code> returns a table with the following fields:
7718 <code>year</code> (four digits), <code>month</code> (1--12), <code>day</code> (1--31),
7719 <code>hour</code> (0--23), <code>min</code> (0--59), <code>sec</code> (0--61),
7720 <code>wday</code> (weekday, Sunday is&nbsp;1),
7721 <code>yday</code> (day of the year),
7722 and <code>isdst</code> (daylight saving flag, a boolean).
7726 If <code>format</code> is not "<code>*t</code>",
7727 then <code>date</code> returns the date as a string,
7728 formatted according to the same rules as the C&nbsp;function <code>strftime</code>.
7732 When called without arguments,
7733 <code>date</code> returns a reasonable date and time representation that depends on
7734 the host system and on the current locale
7735 (that is, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>).
7741 <hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3>
7745 Returns the number of seconds from time <code>t1</code> to time <code>t2</code>.
7746 In POSIX, Windows, and some other systems,
7747 this value is exactly <code>t2</code><em>-</em><code>t1</code>.
7753 <hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3>
7757 This function is equivalent to the C&nbsp;function <code>system</code>.
7758 It passes <code>command</code> to be executed by an operating system shell.
7759 It returns a status code, which is system-dependent.
7760 If <code>command</code> is absent, then it returns nonzero if a shell is available
7761 and zero otherwise.
7767 <hr><h3><a name="pdf-os.exit"><code>os.exit ([code])</code></a></h3>
7771 Calls the C&nbsp;function <code>exit</code>,
7772 with an optional <code>code</code>,
7773 to terminate the host program.
7774 The default value for <code>code</code> is the success code.
7780 <hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3>
7784 Returns the value of the process environment variable <code>varname</code>,
7785 or <b>nil</b> if the variable is not defined.
7791 <hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3>
7795 Deletes the file or directory with the given name.
7796 Directories must be empty to be removed.
7797 If this function fails, it returns <b>nil</b>,
7798 plus a string describing the error.
7804 <hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3>
7808 Renames file or directory named <code>oldname</code> to <code>newname</code>.
7809 If this function fails, it returns <b>nil</b>,
7810 plus a string describing the error.
7816 <hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3>
7820 Sets the current locale of the program.
7821 <code>locale</code> is a string specifying a locale;
7822 <code>category</code> is an optional string describing which category to change:
7823 <code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>,
7824 <code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>;
7825 the default category is <code>"all"</code>.
7826 The function returns the name of the new locale,
7827 or <b>nil</b> if the request cannot be honored.
7831 If <code>locale</code> is the empty string,
7832 the current locate is set to an implementation-defined native locale.
7833 If <code>locate</code> is the string "<code>C</code>",
7834 the current locate is set to the standard C locale.
7838 When called with <b>nil</b> as the first argument,
7839 this function only returns the name of the current locale
7840 for the given category.
7846 <hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3>
7850 Returns the current time when called without arguments,
7851 or a time representing the date and time specified by the given table.
7852 This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>,
7853 and may have fields <code>hour</code>, <code>min</code>, <code>sec</code>, and <code>isdst</code>
7854 (for a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function).
7858 The returned value is a number, whose meaning depends on your system.
7859 In POSIX, Windows, and some other systems, this number counts the number
7860 of seconds since some given start time (the "epoch").
7861 In other systems, the meaning is not specified,
7862 and the number returned by <code>time</code> can be used only as an argument to
7863 <code>date</code> and <code>difftime</code>.
7869 <hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3>
7873 Returns a string with a file name that can
7874 be used for a temporary file.
7875 The file must be explicitly opened before its use
7876 and explicitly removed when no longer needed.
7884 <h2>5.9 - <a name="5.9">The Debug Library</a></h2>
7887 This library provides
7888 the functionality of the debug interface to Lua programs.
7889 You should exert care when using this library.
7890 The functions provided here should be used exclusively for debugging
7891 and similar tasks, such as profiling.
7892 Please resist the temptation to use them as a
7893 usual programming tool:
7894 they can be very slow.
7895 Moreover, several of its functions
7896 violate some assumptions about Lua code
7897 (e.g., that variables local to a function
7898 cannot be accessed from outside or
7899 that userdata metatables cannot be changed by Lua code)
7900 and therefore can compromise otherwise secure code.
7904 All functions in this library are provided
7905 inside the <a name="pdf-debug"><code>debug</code></a> table.
7906 All functions that operate over a thread
7907 have an optional first argument which is the
7908 thread to operate over.
7909 The default is always the current thread.
7913 <hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3>
7917 Enters an interactive mode with the user,
7918 running each string that the user enters.
7919 Using simple commands and other debug facilities,
7920 the user can inspect global and local variables,
7921 change their values, evaluate expressions, and so on.
7922 A line containing only the word <code>cont</code> finishes this function,
7923 so that the caller continues its execution.
7927 Note that commands for <code>debug.debug</code> are not lexically nested
7928 within any function, and so have no direct access to local variables.
7934 <hr><h3><a name="pdf-debug.getfenv"><code>debug.getfenv (o)</code></a></h3>
7935 Returns the environment of object <code>o</code>.
7941 <hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3>
7945 Returns the current hook settings of the thread, as three values:
7946 the current hook function, the current hook mask,
7947 and the current hook count
7948 (as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function).
7954 <hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] function [, what])</code></a></h3>
7958 Returns a table with information about a function.
7959 You can give the function directly,
7960 or you can give a number as the value of <code>function</code>,
7961 which means the function running at level <code>function</code> of the call stack
7962 of the given thread:
7963 level&nbsp;0 is the current function (<code>getinfo</code> itself);
7964 level&nbsp;1 is the function that called <code>getinfo</code>;
7965 and so on.
7966 If <code>function</code> is a number larger than the number of active functions,
7967 then <code>getinfo</code> returns <b>nil</b>.
7971 The returned table may contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>,
7972 with the string <code>what</code> describing which fields to fill in.
7973 The default for <code>what</code> is to get all information available,
7974 except the table of valid lines.
7975 If present,
7976 the option '<code>f</code>'
7977 adds a field named <code>func</code> with the function itself.
7978 If present,
7979 the option '<code>L</code>'
7980 adds a field named <code>activelines</code> with the table of
7981 valid lines.
7985 For instance, the expression <code>debug.getinfo(1,"n").name</code> returns
7986 a name of the current function, if a reasonable name can be found,
7987 and the expression <code>debug.getinfo(print)</code>
7988 returns a table with all available information
7989 about the <a href="#pdf-print"><code>print</code></a> function.
7995 <hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] level, local)</code></a></h3>
7999 This function returns the name and the value of the local variable
8000 with index <code>local</code> of the function at level <code>level</code> of the stack.
8001 (The first parameter or local variable has index&nbsp;1, and so on,
8002 until the last active local variable.)
8003 The function returns <b>nil</b> if there is no local
8004 variable with the given index,
8005 and raises an error when called with a <code>level</code> out of range.
8006 (You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.)
8010 Variable names starting with '<code>(</code>' (open parentheses)
8011 represent internal variables
8012 (loop control variables, temporaries, and C&nbsp;function locals).
8018 <hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (object)</code></a></h3>
8022 Returns the metatable of the given <code>object</code>
8023 or <b>nil</b> if it does not have a metatable.
8029 <hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3>
8033 Returns the registry table (see <a href="#3.5">&sect;3.5</a>).
8039 <hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (func, up)</code></a></h3>
8043 This function returns the name and the value of the upvalue
8044 with index <code>up</code> of the function <code>func</code>.
8045 The function returns <b>nil</b> if there is no upvalue with the given index.
8051 <hr><h3><a name="pdf-debug.setfenv"><code>debug.setfenv (object, table)</code></a></h3>
8055 Sets the environment of the given <code>object</code> to the given <code>table</code>.
8056 Returns <code>object</code>.
8062 <hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3>
8066 Sets the given function as a hook.
8067 The string <code>mask</code> and the number <code>count</code> describe
8068 when the hook will be called.
8069 The string mask may have the following characters,
8070 with the given meaning:
8072 <ul>
8073 <li><b><code>"c"</code>:</b> The hook is called every time Lua calls a function;</li>
8074 <li><b><code>"r"</code>:</b> The hook is called every time Lua returns from a function;</li>
8075 <li><b><code>"l"</code>:</b> The hook is called every time Lua enters a new line of code.</li>
8076 </ul><p>
8077 With a <code>count</code> different from zero,
8078 the hook is called after every <code>count</code> instructions.
8082 When called without arguments,
8083 <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook.
8087 When the hook is called, its first parameter is a string
8088 describing the event that has triggered its call:
8089 <code>"call"</code>, <code>"return"</code> (or <code>"tail return"</code>),
8090 <code>"line"</code>, and <code>"count"</code>.
8091 For line events,
8092 the hook also gets the new line number as its second parameter.
8093 Inside a hook,
8094 you can call <code>getinfo</code> with level&nbsp;2 to get more information about
8095 the running function
8096 (level&nbsp;0 is the <code>getinfo</code> function,
8097 and level&nbsp;1 is the hook function),
8098 unless the event is <code>"tail return"</code>.
8099 In this case, Lua is only simulating the return,
8100 and a call to <code>getinfo</code> will return invalid data.
8106 <hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3>
8110 This function assigns the value <code>value</code> to the local variable
8111 with index <code>local</code> of the function at level <code>level</code> of the stack.
8112 The function returns <b>nil</b> if there is no local
8113 variable with the given index,
8114 and raises an error when called with a <code>level</code> out of range.
8115 (You can call <code>getinfo</code> to check whether the level is valid.)
8116 Otherwise, it returns the name of the local variable.
8122 <hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (object, table)</code></a></h3>
8126 Sets the metatable for the given <code>object</code> to the given <code>table</code>
8127 (which can be <b>nil</b>).
8133 <hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (func, up, value)</code></a></h3>
8137 This function assigns the value <code>value</code> to the upvalue
8138 with index <code>up</code> of the function <code>func</code>.
8139 The function returns <b>nil</b> if there is no upvalue
8140 with the given index.
8141 Otherwise, it returns the name of the upvalue.
8147 <hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message] [, level])</code></a></h3>
8151 Returns a string with a traceback of the call stack.
8152 An optional <code>message</code> string is appended
8153 at the beginning of the traceback.
8154 An optional <code>level</code> number tells at which level
8155 to start the traceback
8156 (default is 1, the function calling <code>traceback</code>).
8164 <h1>6 - <a name="6">Lua Stand-alone</a></h1>
8167 Although Lua has been designed as an extension language,
8168 to be embedded in a host C&nbsp;program,
8169 it is also frequently used as a stand-alone language.
8170 An interpreter for Lua as a stand-alone language,
8171 called simply <code>lua</code>,
8172 is provided with the standard distribution.
8173 The stand-alone interpreter includes
8174 all standard libraries, including the debug library.
8175 Its usage is:
8177 <pre>
8178 lua [options] [script [args]]
8179 </pre><p>
8180 The options are:
8182 <ul>
8183 <li><b><code>-e <em>stat</em></code>:</b> executes string <em>stat</em>;</li>
8184 <li><b><code>-l <em>mod</em></code>:</b> "requires" <em>mod</em>;</li>
8185 <li><b><code>-i</code>:</b> enters interactive mode after running <em>script</em>;</li>
8186 <li><b><code>-v</code>:</b> prints version information;</li>
8187 <li><b><code>--</code>:</b> stops handling options;</li>
8188 <li><b><code>-</code>:</b> executes <code>stdin</code> as a file and stops handling options.</li>
8189 </ul><p>
8190 After handling its options, <code>lua</code> runs the given <em>script</em>,
8191 passing to it the given <em>args</em> as string arguments.
8192 When called without arguments,
8193 <code>lua</code> behaves as <code>lua -v -i</code>
8194 when the standard input (<code>stdin</code>) is a terminal,
8195 and as <code>lua -</code> otherwise.
8199 Before running any argument,
8200 the interpreter checks for an environment variable <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a>.
8201 If its format is <code>@<em>filename</em></code>,
8202 then <code>lua</code> executes the file.
8203 Otherwise, <code>lua</code> executes the string itself.
8207 All options are handled in order, except <code>-i</code>.
8208 For instance, an invocation like
8210 <pre>
8211 $ lua -e'a=1' -e 'print(a)' script.lua
8212 </pre><p>
8213 will first set <code>a</code> to 1, then print the value of <code>a</code> (which is '<code>1</code>'),
8214 and finally run the file <code>script.lua</code> with no arguments.
8215 (Here <code>$</code> is the shell prompt. Your prompt may be different.)
8219 Before starting to run the script,
8220 <code>lua</code> collects all arguments in the command line
8221 in a global table called <code>arg</code>.
8222 The script name is stored at index 0,
8223 the first argument after the script name goes to index 1,
8224 and so on.
8225 Any arguments before the script name
8226 (that is, the interpreter name plus the options)
8227 go to negative indices.
8228 For instance, in the call
8230 <pre>
8231 $ lua -la b.lua t1 t2
8232 </pre><p>
8233 the interpreter first runs the file <code>a.lua</code>,
8234 then creates a table
8236 <pre>
8237 arg = { [-2] = "lua", [-1] = "-la",
8238 [0] = "b.lua",
8239 [1] = "t1", [2] = "t2" }
8240 </pre><p>
8241 and finally runs the file <code>b.lua</code>.
8242 The script is called with <code>arg[1]</code>, <code>arg[2]</code>, &middot;&middot;&middot;
8243 as arguments;
8244 it can also access these arguments with the vararg expression '<code>...</code>'.
8248 In interactive mode,
8249 if you write an incomplete statement,
8250 the interpreter waits for its completion
8251 by issuing a different prompt.
8255 If the global variable <a name="pdf-_PROMPT"><code>_PROMPT</code></a> contains a string,
8256 then its value is used as the prompt.
8257 Similarly, if the global variable <a name="pdf-_PROMPT2"><code>_PROMPT2</code></a> contains a string,
8258 its value is used as the secondary prompt
8259 (issued during incomplete statements).
8260 Therefore, both prompts can be changed directly on the command line.
8261 For instance,
8263 <pre>
8264 $ lua -e"_PROMPT='myprompt&gt; '" -i
8265 </pre><p>
8266 (the outer pair of quotes is for the shell,
8267 the inner pair is for Lua),
8268 or in any Lua programs by assigning to <code>_PROMPT</code>.
8269 Note the use of <code>-i</code> to enter interactive mode; otherwise,
8270 the program would just end silently right after the assignment to <code>_PROMPT</code>.
8274 To allow the use of Lua as a
8275 script interpreter in Unix systems,
8276 the stand-alone interpreter skips
8277 the first line of a chunk if it starts with <code>#</code>.
8278 Therefore, Lua scripts can be made into executable programs
8279 by using <code>chmod +x</code> and the&nbsp;<code>#!</code> form,
8280 as in
8282 <pre>
8283 #!/usr/local/bin/lua
8284 </pre><p>
8285 (Of course,
8286 the location of the Lua interpreter may be different in your machine.
8287 If <code>lua</code> is in your <code>PATH</code>,
8288 then
8290 <pre>
8291 #!/usr/bin/env lua
8292 </pre><p>
8293 is a more portable solution.)
8297 <h1>7 - <a name="7">Incompatibilities with the Previous Version</a></h1>
8300 Here we list the incompatibilities that you may found when moving a program
8301 from Lua&nbsp;5.0 to Lua&nbsp;5.1.
8302 You can avoid most of the incompatibilities compiling Lua with
8303 appropriate options (see file <code>luaconf.h</code>).
8304 However,
8305 all these compatibility options will be removed in the next version of Lua.
8309 <h2>7.1 - <a name="7.1">Changes in the Language</a></h2>
8310 <ul>
8312 <li>
8313 The vararg system changed from the pseudo-argument <code>arg</code> with a
8314 table with the extra arguments to the vararg expression.
8315 (See compile-time option <code>LUA_COMPAT_VARARG</code> in <code>luaconf.h</code>.)
8316 </li>
8318 <li>
8319 There was a subtle change in the scope of the implicit
8320 variables of the <b>for</b> statement and for the <b>repeat</b> statement.
8321 </li>
8323 <li>
8324 The long string/long comment syntax (<code>[[<em>string</em>]]</code>)
8325 does not allow nesting.
8326 You can use the new syntax (<code>[=[<em>string</em>]=]</code>) in these cases.
8327 (See compile-time option <code>LUA_COMPAT_LSTR</code> in <code>luaconf.h</code>.)
8328 </li>
8330 </ul>
8335 <h2>7.2 - <a name="7.2">Changes in the Libraries</a></h2>
8336 <ul>
8338 <li>
8339 Function <code>string.gfind</code> was renamed <a href="#pdf-string.gmatch"><code>string.gmatch</code></a>.
8340 (See compile-time option <code>LUA_COMPAT_GFIND</code> in <code>luaconf.h</code>.)
8341 </li>
8343 <li>
8344 When <a href="#pdf-string.gsub"><code>string.gsub</code></a> is called with a function as its
8345 third argument,
8346 whenever this function returns <b>nil</b> or <b>false</b> the
8347 replacement string is the whole match,
8348 instead of the empty string.
8349 </li>
8351 <li>
8352 Function <code>table.setn</code> was deprecated.
8353 Function <code>table.getn</code> corresponds
8354 to the new length operator (<code>#</code>);
8355 use the operator instead of the function.
8356 (See compile-time option <code>LUA_COMPAT_GETN</code> in <code>luaconf.h</code>.)
8357 </li>
8359 <li>
8360 Function <code>loadlib</code> was renamed <a href="#pdf-package.loadlib"><code>package.loadlib</code></a>.
8361 (See compile-time option <code>LUA_COMPAT_LOADLIB</code> in <code>luaconf.h</code>.)
8362 </li>
8364 <li>
8365 Function <code>math.mod</code> was renamed <a href="#pdf-math.fmod"><code>math.fmod</code></a>.
8366 (See compile-time option <code>LUA_COMPAT_MOD</code> in <code>luaconf.h</code>.)
8367 </li>
8369 <li>
8370 Functions <code>table.foreach</code> and <code>table.foreachi</code> are deprecated.
8371 You can use a for loop with <code>pairs</code> or <code>ipairs</code> instead.
8372 </li>
8374 <li>
8375 There were substantial changes in function <a href="#pdf-require"><code>require</code></a> due to
8376 the new module system.
8377 However, the new behavior is mostly compatible with the old,
8378 but <code>require</code> gets the path from <a href="#pdf-package.path"><code>package.path</code></a> instead
8379 of from <code>LUA_PATH</code>.
8380 </li>
8382 <li>
8383 Function <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> has different arguments.
8384 Function <code>gcinfo</code> is deprecated;
8385 use <code>collectgarbage("count")</code> instead.
8386 </li>
8388 </ul>
8393 <h2>7.3 - <a name="7.3">Changes in the API</a></h2>
8394 <ul>
8396 <li>
8397 The <code>luaopen_*</code> functions (to open libraries)
8398 cannot be called directly,
8399 like a regular C function.
8400 They must be called through Lua,
8401 like a Lua function.
8402 </li>
8404 <li>
8405 Function <code>lua_open</code> was replaced by <a href="#lua_newstate"><code>lua_newstate</code></a> to
8406 allow the user to set a memory-allocation function.
8407 You can use <a href="#luaL_newstate"><code>luaL_newstate</code></a> from the standard library to
8408 create a state with a standard allocation function
8409 (based on <code>realloc</code>).
8410 </li>
8412 <li>
8413 Functions <code>luaL_getn</code> and <code>luaL_setn</code>
8414 (from the auxiliary library) are deprecated.
8415 Use <a href="#lua_objlen"><code>lua_objlen</code></a> instead of <code>luaL_getn</code>
8416 and nothing instead of <code>luaL_setn</code>.
8417 </li>
8419 <li>
8420 Function <code>luaL_openlib</code> was replaced by <a href="#luaL_register"><code>luaL_register</code></a>.
8421 </li>
8423 <li>
8424 Function <code>luaL_checkudata</code> now throws an error when the given value
8425 is not a userdata of the expected type.
8426 (In Lua&nbsp;5.0 it returned <code>NULL</code>.)
8427 </li>
8429 </ul>
8434 <h1>8 - <a name="8">The Complete Syntax of Lua</a></h1>
8437 Here is the complete syntax of Lua in extended BNF.
8438 (It does not describe operator precedences.)
8443 <pre>
8445 chunk ::= {stat [`<b>;</b>&acute;]} [laststat [`<b>;</b>&acute;]]
8447 block ::= chunk
8449 stat ::= varlist1 `<b>=</b>&acute; explist1 |
8450 functioncall |
8451 <b>do</b> block <b>end</b> |
8452 <b>while</b> exp <b>do</b> block <b>end</b> |
8453 <b>repeat</b> block <b>until</b> exp |
8454 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> |
8455 <b>for</b> Name `<b>=</b>&acute; exp `<b>,</b>&acute; exp [`<b>,</b>&acute; exp] <b>do</b> block <b>end</b> |
8456 <b>for</b> namelist <b>in</b> explist1 <b>do</b> block <b>end</b> |
8457 <b>function</b> funcname funcbody |
8458 <b>local</b> <b>function</b> Name funcbody |
8459 <b>local</b> namelist [`<b>=</b>&acute; explist1]
8461 laststat ::= <b>return</b> [explist1] | <b>break</b>
8463 funcname ::= Name {`<b>.</b>&acute; Name} [`<b>:</b>&acute; Name]
8465 varlist1 ::= var {`<b>,</b>&acute; var}
8467 var ::= Name | prefixexp `<b>[</b>&acute; exp `<b>]</b>&acute; | prefixexp `<b>.</b>&acute; Name
8469 namelist ::= Name {`<b>,</b>&acute; Name}
8471 explist1 ::= {exp `<b>,</b>&acute;} exp
8473 exp ::= <b>nil</b> | <b>false</b> | <b>true</b> | Number | String | `<b>...</b>&acute; | function |
8474 prefixexp | tableconstructor | exp binop exp | unop exp
8476 prefixexp ::= var | functioncall | `<b>(</b>&acute; exp `<b>)</b>&acute;
8478 functioncall ::= prefixexp args | prefixexp `<b>:</b>&acute; Name args
8480 args ::= `<b>(</b>&acute; [explist1] `<b>)</b>&acute; | tableconstructor | String
8482 function ::= <b>function</b> funcbody
8484 funcbody ::= `<b>(</b>&acute; [parlist1] `<b>)</b>&acute; block <b>end</b>
8486 parlist1 ::= namelist [`<b>,</b>&acute; `<b>...</b>&acute;] | `<b>...</b>&acute;
8488 tableconstructor ::= `<b>{</b>&acute; [fieldlist] `<b>}</b>&acute;
8490 fieldlist ::= field {fieldsep field} [fieldsep]
8492 field ::= `<b>[</b>&acute; exp `<b>]</b>&acute; `<b>=</b>&acute; exp | Name `<b>=</b>&acute; exp | exp
8494 fieldsep ::= `<b>,</b>&acute; | `<b>;</b>&acute;
8496 binop ::= `<b>+</b>&acute; | `<b>-</b>&acute; | `<b>*</b>&acute; | `<b>/</b>&acute; | `<b>^</b>&acute; | `<b>%</b>&acute; | `<b>..</b>&acute; |
8497 `<b>&lt;</b>&acute; | `<b>&lt;=</b>&acute; | `<b>&gt;</b>&acute; | `<b>&gt;=</b>&acute; | `<b>==</b>&acute; | `<b>~=</b>&acute; |
8498 <b>and</b> | <b>or</b>
8500 unop ::= `<b>-</b>&acute; | <b>not</b> | `<b>#</b>&acute;
8502 </pre>
8511 <HR>
8512 <SMALL>
8513 Last update:
8514 Mon Mar 26 12:59:26 BRT 2007
8515 </SMALL>
8516 <!--
8517 Last change: ready for Lua 5.1.2
8520 </body></html>