Enhance the command-line completion extension to return the names of
[sqlite.git] / src / select.c
blob4ceca44a8d09c1b74b9cf30117631a18efd475fd
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s/%p: ",(P)->nSelectIndent*2-2,"",\
25 (S)->zSelName,(S)),\
26 sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39 u8 isTnct; /* True if the DISTINCT keyword is present */
40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
41 int tabTnct; /* Ephemeral table used for DISTINCT processing */
42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
53 int iECursor; /* Cursor number for the sorter */
54 int regReturn; /* Register holding block-output return address */
55 int labelBkOut; /* Start label for the block-output subroutine */
56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57 int labelDone; /* Jump here when done, ex: LIMIT reached */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
64 ** Delete all the content of a Select structure. Deallocate the structure
65 ** itself only if bFree is true.
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68 while( p ){
69 Select *pPrior = p->pPrior;
70 sqlite3ExprListDelete(db, p->pEList);
71 sqlite3SrcListDelete(db, p->pSrc);
72 sqlite3ExprDelete(db, p->pWhere);
73 sqlite3ExprListDelete(db, p->pGroupBy);
74 sqlite3ExprDelete(db, p->pHaving);
75 sqlite3ExprListDelete(db, p->pOrderBy);
76 sqlite3ExprDelete(db, p->pLimit);
77 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
78 if( bFree ) sqlite3DbFreeNN(db, p);
79 p = pPrior;
80 bFree = 1;
85 ** Initialize a SelectDest structure.
87 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
88 pDest->eDest = (u8)eDest;
89 pDest->iSDParm = iParm;
90 pDest->zAffSdst = 0;
91 pDest->iSdst = 0;
92 pDest->nSdst = 0;
97 ** Allocate a new Select structure and return a pointer to that
98 ** structure.
100 Select *sqlite3SelectNew(
101 Parse *pParse, /* Parsing context */
102 ExprList *pEList, /* which columns to include in the result */
103 SrcList *pSrc, /* the FROM clause -- which tables to scan */
104 Expr *pWhere, /* the WHERE clause */
105 ExprList *pGroupBy, /* the GROUP BY clause */
106 Expr *pHaving, /* the HAVING clause */
107 ExprList *pOrderBy, /* the ORDER BY clause */
108 u32 selFlags, /* Flag parameters, such as SF_Distinct */
109 Expr *pLimit /* LIMIT value. NULL means not used */
111 Select *pNew;
112 Select standin;
113 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
114 if( pNew==0 ){
115 assert( pParse->db->mallocFailed );
116 pNew = &standin;
118 if( pEList==0 ){
119 pEList = sqlite3ExprListAppend(pParse, 0,
120 sqlite3Expr(pParse->db,TK_ASTERISK,0));
122 pNew->pEList = pEList;
123 pNew->op = TK_SELECT;
124 pNew->selFlags = selFlags;
125 pNew->iLimit = 0;
126 pNew->iOffset = 0;
127 #if SELECTTRACE_ENABLED
128 pNew->zSelName[0] = 0;
129 #endif
130 pNew->addrOpenEphm[0] = -1;
131 pNew->addrOpenEphm[1] = -1;
132 pNew->nSelectRow = 0;
133 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
134 pNew->pSrc = pSrc;
135 pNew->pWhere = pWhere;
136 pNew->pGroupBy = pGroupBy;
137 pNew->pHaving = pHaving;
138 pNew->pOrderBy = pOrderBy;
139 pNew->pPrior = 0;
140 pNew->pNext = 0;
141 pNew->pLimit = pLimit;
142 pNew->pWith = 0;
143 if( pParse->db->mallocFailed ) {
144 clearSelect(pParse->db, pNew, pNew!=&standin);
145 pNew = 0;
146 }else{
147 assert( pNew->pSrc!=0 || pParse->nErr>0 );
149 assert( pNew!=&standin );
150 return pNew;
153 #if SELECTTRACE_ENABLED
155 ** Set the name of a Select object
157 void sqlite3SelectSetName(Select *p, const char *zName){
158 if( p && zName ){
159 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
162 #endif
166 ** Delete the given Select structure and all of its substructures.
168 void sqlite3SelectDelete(sqlite3 *db, Select *p){
169 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
173 ** Return a pointer to the right-most SELECT statement in a compound.
175 static Select *findRightmost(Select *p){
176 while( p->pNext ) p = p->pNext;
177 return p;
181 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
182 ** type of join. Return an integer constant that expresses that type
183 ** in terms of the following bit values:
185 ** JT_INNER
186 ** JT_CROSS
187 ** JT_OUTER
188 ** JT_NATURAL
189 ** JT_LEFT
190 ** JT_RIGHT
192 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
194 ** If an illegal or unsupported join type is seen, then still return
195 ** a join type, but put an error in the pParse structure.
197 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
198 int jointype = 0;
199 Token *apAll[3];
200 Token *p;
201 /* 0123456789 123456789 123456789 123 */
202 static const char zKeyText[] = "naturaleftouterightfullinnercross";
203 static const struct {
204 u8 i; /* Beginning of keyword text in zKeyText[] */
205 u8 nChar; /* Length of the keyword in characters */
206 u8 code; /* Join type mask */
207 } aKeyword[] = {
208 /* natural */ { 0, 7, JT_NATURAL },
209 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
210 /* outer */ { 10, 5, JT_OUTER },
211 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
212 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
213 /* inner */ { 23, 5, JT_INNER },
214 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
216 int i, j;
217 apAll[0] = pA;
218 apAll[1] = pB;
219 apAll[2] = pC;
220 for(i=0; i<3 && apAll[i]; i++){
221 p = apAll[i];
222 for(j=0; j<ArraySize(aKeyword); j++){
223 if( p->n==aKeyword[j].nChar
224 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
225 jointype |= aKeyword[j].code;
226 break;
229 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
230 if( j>=ArraySize(aKeyword) ){
231 jointype |= JT_ERROR;
232 break;
236 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
237 (jointype & JT_ERROR)!=0
239 const char *zSp = " ";
240 assert( pB!=0 );
241 if( pC==0 ){ zSp++; }
242 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
243 "%T %T%s%T", pA, pB, zSp, pC);
244 jointype = JT_INNER;
245 }else if( (jointype & JT_OUTER)!=0
246 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
247 sqlite3ErrorMsg(pParse,
248 "RIGHT and FULL OUTER JOINs are not currently supported");
249 jointype = JT_INNER;
251 return jointype;
255 ** Return the index of a column in a table. Return -1 if the column
256 ** is not contained in the table.
258 static int columnIndex(Table *pTab, const char *zCol){
259 int i;
260 for(i=0; i<pTab->nCol; i++){
261 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
263 return -1;
267 ** Search the first N tables in pSrc, from left to right, looking for a
268 ** table that has a column named zCol.
270 ** When found, set *piTab and *piCol to the table index and column index
271 ** of the matching column and return TRUE.
273 ** If not found, return FALSE.
275 static int tableAndColumnIndex(
276 SrcList *pSrc, /* Array of tables to search */
277 int N, /* Number of tables in pSrc->a[] to search */
278 const char *zCol, /* Name of the column we are looking for */
279 int *piTab, /* Write index of pSrc->a[] here */
280 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
282 int i; /* For looping over tables in pSrc */
283 int iCol; /* Index of column matching zCol */
285 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
286 for(i=0; i<N; i++){
287 iCol = columnIndex(pSrc->a[i].pTab, zCol);
288 if( iCol>=0 ){
289 if( piTab ){
290 *piTab = i;
291 *piCol = iCol;
293 return 1;
296 return 0;
300 ** This function is used to add terms implied by JOIN syntax to the
301 ** WHERE clause expression of a SELECT statement. The new term, which
302 ** is ANDed with the existing WHERE clause, is of the form:
304 ** (tab1.col1 = tab2.col2)
306 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
307 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
308 ** column iColRight of tab2.
310 static void addWhereTerm(
311 Parse *pParse, /* Parsing context */
312 SrcList *pSrc, /* List of tables in FROM clause */
313 int iLeft, /* Index of first table to join in pSrc */
314 int iColLeft, /* Index of column in first table */
315 int iRight, /* Index of second table in pSrc */
316 int iColRight, /* Index of column in second table */
317 int isOuterJoin, /* True if this is an OUTER join */
318 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
320 sqlite3 *db = pParse->db;
321 Expr *pE1;
322 Expr *pE2;
323 Expr *pEq;
325 assert( iLeft<iRight );
326 assert( pSrc->nSrc>iRight );
327 assert( pSrc->a[iLeft].pTab );
328 assert( pSrc->a[iRight].pTab );
330 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
331 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
333 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
334 if( pEq && isOuterJoin ){
335 ExprSetProperty(pEq, EP_FromJoin);
336 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
337 ExprSetVVAProperty(pEq, EP_NoReduce);
338 pEq->iRightJoinTable = (i16)pE2->iTable;
340 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
344 ** Set the EP_FromJoin property on all terms of the given expression.
345 ** And set the Expr.iRightJoinTable to iTable for every term in the
346 ** expression.
348 ** The EP_FromJoin property is used on terms of an expression to tell
349 ** the LEFT OUTER JOIN processing logic that this term is part of the
350 ** join restriction specified in the ON or USING clause and not a part
351 ** of the more general WHERE clause. These terms are moved over to the
352 ** WHERE clause during join processing but we need to remember that they
353 ** originated in the ON or USING clause.
355 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
356 ** expression depends on table iRightJoinTable even if that table is not
357 ** explicitly mentioned in the expression. That information is needed
358 ** for cases like this:
360 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
362 ** The where clause needs to defer the handling of the t1.x=5
363 ** term until after the t2 loop of the join. In that way, a
364 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
365 ** defer the handling of t1.x=5, it will be processed immediately
366 ** after the t1 loop and rows with t1.x!=5 will never appear in
367 ** the output, which is incorrect.
369 static void setJoinExpr(Expr *p, int iTable){
370 while( p ){
371 ExprSetProperty(p, EP_FromJoin);
372 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
373 ExprSetVVAProperty(p, EP_NoReduce);
374 p->iRightJoinTable = (i16)iTable;
375 if( p->op==TK_FUNCTION && p->x.pList ){
376 int i;
377 for(i=0; i<p->x.pList->nExpr; i++){
378 setJoinExpr(p->x.pList->a[i].pExpr, iTable);
381 setJoinExpr(p->pLeft, iTable);
382 p = p->pRight;
387 ** This routine processes the join information for a SELECT statement.
388 ** ON and USING clauses are converted into extra terms of the WHERE clause.
389 ** NATURAL joins also create extra WHERE clause terms.
391 ** The terms of a FROM clause are contained in the Select.pSrc structure.
392 ** The left most table is the first entry in Select.pSrc. The right-most
393 ** table is the last entry. The join operator is held in the entry to
394 ** the left. Thus entry 0 contains the join operator for the join between
395 ** entries 0 and 1. Any ON or USING clauses associated with the join are
396 ** also attached to the left entry.
398 ** This routine returns the number of errors encountered.
400 static int sqliteProcessJoin(Parse *pParse, Select *p){
401 SrcList *pSrc; /* All tables in the FROM clause */
402 int i, j; /* Loop counters */
403 struct SrcList_item *pLeft; /* Left table being joined */
404 struct SrcList_item *pRight; /* Right table being joined */
406 pSrc = p->pSrc;
407 pLeft = &pSrc->a[0];
408 pRight = &pLeft[1];
409 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
410 Table *pRightTab = pRight->pTab;
411 int isOuter;
413 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
414 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
416 /* When the NATURAL keyword is present, add WHERE clause terms for
417 ** every column that the two tables have in common.
419 if( pRight->fg.jointype & JT_NATURAL ){
420 if( pRight->pOn || pRight->pUsing ){
421 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
422 "an ON or USING clause", 0);
423 return 1;
425 for(j=0; j<pRightTab->nCol; j++){
426 char *zName; /* Name of column in the right table */
427 int iLeft; /* Matching left table */
428 int iLeftCol; /* Matching column in the left table */
430 zName = pRightTab->aCol[j].zName;
431 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
432 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
433 isOuter, &p->pWhere);
438 /* Disallow both ON and USING clauses in the same join
440 if( pRight->pOn && pRight->pUsing ){
441 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
442 "clauses in the same join");
443 return 1;
446 /* Add the ON clause to the end of the WHERE clause, connected by
447 ** an AND operator.
449 if( pRight->pOn ){
450 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
451 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
452 pRight->pOn = 0;
455 /* Create extra terms on the WHERE clause for each column named
456 ** in the USING clause. Example: If the two tables to be joined are
457 ** A and B and the USING clause names X, Y, and Z, then add this
458 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
459 ** Report an error if any column mentioned in the USING clause is
460 ** not contained in both tables to be joined.
462 if( pRight->pUsing ){
463 IdList *pList = pRight->pUsing;
464 for(j=0; j<pList->nId; j++){
465 char *zName; /* Name of the term in the USING clause */
466 int iLeft; /* Table on the left with matching column name */
467 int iLeftCol; /* Column number of matching column on the left */
468 int iRightCol; /* Column number of matching column on the right */
470 zName = pList->a[j].zName;
471 iRightCol = columnIndex(pRightTab, zName);
472 if( iRightCol<0
473 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
475 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
476 "not present in both tables", zName);
477 return 1;
479 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
480 isOuter, &p->pWhere);
484 return 0;
487 /* Forward reference */
488 static KeyInfo *keyInfoFromExprList(
489 Parse *pParse, /* Parsing context */
490 ExprList *pList, /* Form the KeyInfo object from this ExprList */
491 int iStart, /* Begin with this column of pList */
492 int nExtra /* Add this many extra columns to the end */
496 ** Generate code that will push the record in registers regData
497 ** through regData+nData-1 onto the sorter.
499 static void pushOntoSorter(
500 Parse *pParse, /* Parser context */
501 SortCtx *pSort, /* Information about the ORDER BY clause */
502 Select *pSelect, /* The whole SELECT statement */
503 int regData, /* First register holding data to be sorted */
504 int regOrigData, /* First register holding data before packing */
505 int nData, /* Number of elements in the data array */
506 int nPrefixReg /* No. of reg prior to regData available for use */
508 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
509 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
510 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
511 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
512 int regBase; /* Regs for sorter record */
513 int regRecord = ++pParse->nMem; /* Assembled sorter record */
514 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
515 int op; /* Opcode to add sorter record to sorter */
516 int iLimit; /* LIMIT counter */
518 assert( bSeq==0 || bSeq==1 );
519 assert( nData==1 || regData==regOrigData || regOrigData==0 );
520 if( nPrefixReg ){
521 assert( nPrefixReg==nExpr+bSeq );
522 regBase = regData - nExpr - bSeq;
523 }else{
524 regBase = pParse->nMem + 1;
525 pParse->nMem += nBase;
527 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
528 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
529 pSort->labelDone = sqlite3VdbeMakeLabel(v);
530 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
531 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
532 if( bSeq ){
533 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
535 if( nPrefixReg==0 && nData>0 ){
536 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
538 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
539 if( nOBSat>0 ){
540 int regPrevKey; /* The first nOBSat columns of the previous row */
541 int addrFirst; /* Address of the OP_IfNot opcode */
542 int addrJmp; /* Address of the OP_Jump opcode */
543 VdbeOp *pOp; /* Opcode that opens the sorter */
544 int nKey; /* Number of sorting key columns, including OP_Sequence */
545 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
547 regPrevKey = pParse->nMem+1;
548 pParse->nMem += pSort->nOBSat;
549 nKey = nExpr - pSort->nOBSat + bSeq;
550 if( bSeq ){
551 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
552 }else{
553 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
555 VdbeCoverage(v);
556 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
557 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
558 if( pParse->db->mallocFailed ) return;
559 pOp->p2 = nKey + nData;
560 pKI = pOp->p4.pKeyInfo;
561 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
562 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
563 testcase( pKI->nAllField > pKI->nKeyField+2 );
564 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
565 pKI->nAllField-pKI->nKeyField-1);
566 addrJmp = sqlite3VdbeCurrentAddr(v);
567 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
568 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
569 pSort->regReturn = ++pParse->nMem;
570 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
571 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
572 if( iLimit ){
573 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
574 VdbeCoverage(v);
576 sqlite3VdbeJumpHere(v, addrFirst);
577 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
578 sqlite3VdbeJumpHere(v, addrJmp);
580 if( pSort->sortFlags & SORTFLAG_UseSorter ){
581 op = OP_SorterInsert;
582 }else{
583 op = OP_IdxInsert;
585 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
586 regBase+nOBSat, nBase-nOBSat);
587 if( iLimit ){
588 int addr;
589 int r1 = 0;
590 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit
591 ** register is initialized with value of LIMIT+OFFSET.) After the sorter
592 ** fills up, delete the least entry in the sorter after each insert.
593 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
594 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
595 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
596 if( pSort->bOrderedInnerLoop ){
597 r1 = ++pParse->nMem;
598 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
599 VdbeComment((v, "seq"));
601 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
602 if( pSort->bOrderedInnerLoop ){
603 /* If the inner loop is driven by an index such that values from
604 ** the same iteration of the inner loop are in sorted order, then
605 ** immediately jump to the next iteration of an inner loop if the
606 ** entry from the current iteration does not fit into the top
607 ** LIMIT+OFFSET entries of the sorter. */
608 int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
609 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
610 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
611 VdbeCoverage(v);
613 sqlite3VdbeJumpHere(v, addr);
618 ** Add code to implement the OFFSET
620 static void codeOffset(
621 Vdbe *v, /* Generate code into this VM */
622 int iOffset, /* Register holding the offset counter */
623 int iContinue /* Jump here to skip the current record */
625 if( iOffset>0 ){
626 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
627 VdbeComment((v, "OFFSET"));
632 ** Add code that will check to make sure the N registers starting at iMem
633 ** form a distinct entry. iTab is a sorting index that holds previously
634 ** seen combinations of the N values. A new entry is made in iTab
635 ** if the current N values are new.
637 ** A jump to addrRepeat is made and the N+1 values are popped from the
638 ** stack if the top N elements are not distinct.
640 static void codeDistinct(
641 Parse *pParse, /* Parsing and code generating context */
642 int iTab, /* A sorting index used to test for distinctness */
643 int addrRepeat, /* Jump to here if not distinct */
644 int N, /* Number of elements */
645 int iMem /* First element */
647 Vdbe *v;
648 int r1;
650 v = pParse->pVdbe;
651 r1 = sqlite3GetTempReg(pParse);
652 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
653 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
654 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
655 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
656 sqlite3ReleaseTempReg(pParse, r1);
660 ** This routine generates the code for the inside of the inner loop
661 ** of a SELECT.
663 ** If srcTab is negative, then the p->pEList expressions
664 ** are evaluated in order to get the data for this row. If srcTab is
665 ** zero or more, then data is pulled from srcTab and p->pEList is used only
666 ** to get the number of columns and the collation sequence for each column.
668 static void selectInnerLoop(
669 Parse *pParse, /* The parser context */
670 Select *p, /* The complete select statement being coded */
671 int srcTab, /* Pull data from this table if non-negative */
672 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
673 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
674 SelectDest *pDest, /* How to dispose of the results */
675 int iContinue, /* Jump here to continue with next row */
676 int iBreak /* Jump here to break out of the inner loop */
678 Vdbe *v = pParse->pVdbe;
679 int i;
680 int hasDistinct; /* True if the DISTINCT keyword is present */
681 int eDest = pDest->eDest; /* How to dispose of results */
682 int iParm = pDest->iSDParm; /* First argument to disposal method */
683 int nResultCol; /* Number of result columns */
684 int nPrefixReg = 0; /* Number of extra registers before regResult */
686 /* Usually, regResult is the first cell in an array of memory cells
687 ** containing the current result row. In this case regOrig is set to the
688 ** same value. However, if the results are being sent to the sorter, the
689 ** values for any expressions that are also part of the sort-key are omitted
690 ** from this array. In this case regOrig is set to zero. */
691 int regResult; /* Start of memory holding current results */
692 int regOrig; /* Start of memory holding full result (or 0) */
694 assert( v );
695 assert( p->pEList!=0 );
696 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
697 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
698 if( pSort==0 && !hasDistinct ){
699 assert( iContinue!=0 );
700 codeOffset(v, p->iOffset, iContinue);
703 /* Pull the requested columns.
705 nResultCol = p->pEList->nExpr;
707 if( pDest->iSdst==0 ){
708 if( pSort ){
709 nPrefixReg = pSort->pOrderBy->nExpr;
710 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
711 pParse->nMem += nPrefixReg;
713 pDest->iSdst = pParse->nMem+1;
714 pParse->nMem += nResultCol;
715 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
716 /* This is an error condition that can result, for example, when a SELECT
717 ** on the right-hand side of an INSERT contains more result columns than
718 ** there are columns in the table on the left. The error will be caught
719 ** and reported later. But we need to make sure enough memory is allocated
720 ** to avoid other spurious errors in the meantime. */
721 pParse->nMem += nResultCol;
723 pDest->nSdst = nResultCol;
724 regOrig = regResult = pDest->iSdst;
725 if( srcTab>=0 ){
726 for(i=0; i<nResultCol; i++){
727 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
728 VdbeComment((v, "%s", p->pEList->a[i].zName));
730 }else if( eDest!=SRT_Exists ){
731 /* If the destination is an EXISTS(...) expression, the actual
732 ** values returned by the SELECT are not required.
734 u8 ecelFlags;
735 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
736 ecelFlags = SQLITE_ECEL_DUP;
737 }else{
738 ecelFlags = 0;
740 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
741 /* For each expression in p->pEList that is a copy of an expression in
742 ** the ORDER BY clause (pSort->pOrderBy), set the associated
743 ** iOrderByCol value to one more than the index of the ORDER BY
744 ** expression within the sort-key that pushOntoSorter() will generate.
745 ** This allows the p->pEList field to be omitted from the sorted record,
746 ** saving space and CPU cycles. */
747 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
748 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
749 int j;
750 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
751 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
754 regOrig = 0;
755 assert( eDest==SRT_Set || eDest==SRT_Mem
756 || eDest==SRT_Coroutine || eDest==SRT_Output );
758 nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,
759 0,ecelFlags);
762 /* If the DISTINCT keyword was present on the SELECT statement
763 ** and this row has been seen before, then do not make this row
764 ** part of the result.
766 if( hasDistinct ){
767 switch( pDistinct->eTnctType ){
768 case WHERE_DISTINCT_ORDERED: {
769 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
770 int iJump; /* Jump destination */
771 int regPrev; /* Previous row content */
773 /* Allocate space for the previous row */
774 regPrev = pParse->nMem+1;
775 pParse->nMem += nResultCol;
777 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
778 ** sets the MEM_Cleared bit on the first register of the
779 ** previous value. This will cause the OP_Ne below to always
780 ** fail on the first iteration of the loop even if the first
781 ** row is all NULLs.
783 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
784 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
785 pOp->opcode = OP_Null;
786 pOp->p1 = 1;
787 pOp->p2 = regPrev;
789 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
790 for(i=0; i<nResultCol; i++){
791 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
792 if( i<nResultCol-1 ){
793 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
794 VdbeCoverage(v);
795 }else{
796 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
797 VdbeCoverage(v);
799 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
800 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
802 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
803 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
804 break;
807 case WHERE_DISTINCT_UNIQUE: {
808 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
809 break;
812 default: {
813 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
814 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
815 regResult);
816 break;
819 if( pSort==0 ){
820 codeOffset(v, p->iOffset, iContinue);
824 switch( eDest ){
825 /* In this mode, write each query result to the key of the temporary
826 ** table iParm.
828 #ifndef SQLITE_OMIT_COMPOUND_SELECT
829 case SRT_Union: {
830 int r1;
831 r1 = sqlite3GetTempReg(pParse);
832 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
833 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
834 sqlite3ReleaseTempReg(pParse, r1);
835 break;
838 /* Construct a record from the query result, but instead of
839 ** saving that record, use it as a key to delete elements from
840 ** the temporary table iParm.
842 case SRT_Except: {
843 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
844 break;
846 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
848 /* Store the result as data using a unique key.
850 case SRT_Fifo:
851 case SRT_DistFifo:
852 case SRT_Table:
853 case SRT_EphemTab: {
854 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
855 testcase( eDest==SRT_Table );
856 testcase( eDest==SRT_EphemTab );
857 testcase( eDest==SRT_Fifo );
858 testcase( eDest==SRT_DistFifo );
859 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
860 #ifndef SQLITE_OMIT_CTE
861 if( eDest==SRT_DistFifo ){
862 /* If the destination is DistFifo, then cursor (iParm+1) is open
863 ** on an ephemeral index. If the current row is already present
864 ** in the index, do not write it to the output. If not, add the
865 ** current row to the index and proceed with writing it to the
866 ** output table as well. */
867 int addr = sqlite3VdbeCurrentAddr(v) + 4;
868 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
869 VdbeCoverage(v);
870 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
871 assert( pSort==0 );
873 #endif
874 if( pSort ){
875 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
876 }else{
877 int r2 = sqlite3GetTempReg(pParse);
878 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
879 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
880 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
881 sqlite3ReleaseTempReg(pParse, r2);
883 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
884 break;
887 #ifndef SQLITE_OMIT_SUBQUERY
888 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
889 ** then there should be a single item on the stack. Write this
890 ** item into the set table with bogus data.
892 case SRT_Set: {
893 if( pSort ){
894 /* At first glance you would think we could optimize out the
895 ** ORDER BY in this case since the order of entries in the set
896 ** does not matter. But there might be a LIMIT clause, in which
897 ** case the order does matter */
898 pushOntoSorter(
899 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
900 }else{
901 int r1 = sqlite3GetTempReg(pParse);
902 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
903 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
904 r1, pDest->zAffSdst, nResultCol);
905 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
906 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
907 sqlite3ReleaseTempReg(pParse, r1);
909 break;
912 /* If any row exist in the result set, record that fact and abort.
914 case SRT_Exists: {
915 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
916 /* The LIMIT clause will terminate the loop for us */
917 break;
920 /* If this is a scalar select that is part of an expression, then
921 ** store the results in the appropriate memory cell or array of
922 ** memory cells and break out of the scan loop.
924 case SRT_Mem: {
925 if( pSort ){
926 assert( nResultCol<=pDest->nSdst );
927 pushOntoSorter(
928 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
929 }else{
930 assert( nResultCol==pDest->nSdst );
931 assert( regResult==iParm );
932 /* The LIMIT clause will jump out of the loop for us */
934 break;
936 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
938 case SRT_Coroutine: /* Send data to a co-routine */
939 case SRT_Output: { /* Return the results */
940 testcase( eDest==SRT_Coroutine );
941 testcase( eDest==SRT_Output );
942 if( pSort ){
943 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
944 nPrefixReg);
945 }else if( eDest==SRT_Coroutine ){
946 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
947 }else{
948 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
949 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
951 break;
954 #ifndef SQLITE_OMIT_CTE
955 /* Write the results into a priority queue that is order according to
956 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
957 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
958 ** pSO->nExpr columns, then make sure all keys are unique by adding a
959 ** final OP_Sequence column. The last column is the record as a blob.
961 case SRT_DistQueue:
962 case SRT_Queue: {
963 int nKey;
964 int r1, r2, r3;
965 int addrTest = 0;
966 ExprList *pSO;
967 pSO = pDest->pOrderBy;
968 assert( pSO );
969 nKey = pSO->nExpr;
970 r1 = sqlite3GetTempReg(pParse);
971 r2 = sqlite3GetTempRange(pParse, nKey+2);
972 r3 = r2+nKey+1;
973 if( eDest==SRT_DistQueue ){
974 /* If the destination is DistQueue, then cursor (iParm+1) is open
975 ** on a second ephemeral index that holds all values every previously
976 ** added to the queue. */
977 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
978 regResult, nResultCol);
979 VdbeCoverage(v);
981 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
982 if( eDest==SRT_DistQueue ){
983 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
984 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
986 for(i=0; i<nKey; i++){
987 sqlite3VdbeAddOp2(v, OP_SCopy,
988 regResult + pSO->a[i].u.x.iOrderByCol - 1,
989 r2+i);
991 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
992 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
993 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
994 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
995 sqlite3ReleaseTempReg(pParse, r1);
996 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
997 break;
999 #endif /* SQLITE_OMIT_CTE */
1003 #if !defined(SQLITE_OMIT_TRIGGER)
1004 /* Discard the results. This is used for SELECT statements inside
1005 ** the body of a TRIGGER. The purpose of such selects is to call
1006 ** user-defined functions that have side effects. We do not care
1007 ** about the actual results of the select.
1009 default: {
1010 assert( eDest==SRT_Discard );
1011 break;
1013 #endif
1016 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1017 ** there is a sorter, in which case the sorter has already limited
1018 ** the output for us.
1020 if( pSort==0 && p->iLimit ){
1021 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1026 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1027 ** X extra columns.
1029 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1030 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1031 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1032 if( p ){
1033 p->aSortOrder = (u8*)&p->aColl[N+X];
1034 p->nKeyField = (u16)N;
1035 p->nAllField = (u16)(N+X);
1036 p->enc = ENC(db);
1037 p->db = db;
1038 p->nRef = 1;
1039 memset(&p[1], 0, nExtra);
1040 }else{
1041 sqlite3OomFault(db);
1043 return p;
1047 ** Deallocate a KeyInfo object
1049 void sqlite3KeyInfoUnref(KeyInfo *p){
1050 if( p ){
1051 assert( p->nRef>0 );
1052 p->nRef--;
1053 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1058 ** Make a new pointer to a KeyInfo object
1060 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1061 if( p ){
1062 assert( p->nRef>0 );
1063 p->nRef++;
1065 return p;
1068 #ifdef SQLITE_DEBUG
1070 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1071 ** can only be changed if this is just a single reference to the object.
1073 ** This routine is used only inside of assert() statements.
1075 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1076 #endif /* SQLITE_DEBUG */
1079 ** Given an expression list, generate a KeyInfo structure that records
1080 ** the collating sequence for each expression in that expression list.
1082 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1083 ** KeyInfo structure is appropriate for initializing a virtual index to
1084 ** implement that clause. If the ExprList is the result set of a SELECT
1085 ** then the KeyInfo structure is appropriate for initializing a virtual
1086 ** index to implement a DISTINCT test.
1088 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1089 ** function is responsible for seeing that this structure is eventually
1090 ** freed.
1092 static KeyInfo *keyInfoFromExprList(
1093 Parse *pParse, /* Parsing context */
1094 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1095 int iStart, /* Begin with this column of pList */
1096 int nExtra /* Add this many extra columns to the end */
1098 int nExpr;
1099 KeyInfo *pInfo;
1100 struct ExprList_item *pItem;
1101 sqlite3 *db = pParse->db;
1102 int i;
1104 nExpr = pList->nExpr;
1105 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1106 if( pInfo ){
1107 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1108 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1109 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1110 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1113 return pInfo;
1117 ** Name of the connection operator, used for error messages.
1119 static const char *selectOpName(int id){
1120 char *z;
1121 switch( id ){
1122 case TK_ALL: z = "UNION ALL"; break;
1123 case TK_INTERSECT: z = "INTERSECT"; break;
1124 case TK_EXCEPT: z = "EXCEPT"; break;
1125 default: z = "UNION"; break;
1127 return z;
1130 #ifndef SQLITE_OMIT_EXPLAIN
1132 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1133 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1134 ** where the caption is of the form:
1136 ** "USE TEMP B-TREE FOR xxx"
1138 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1139 ** is determined by the zUsage argument.
1141 static void explainTempTable(Parse *pParse, const char *zUsage){
1142 if( pParse->explain==2 ){
1143 Vdbe *v = pParse->pVdbe;
1144 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1145 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1150 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1151 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1152 ** in sqlite3Select() to assign values to structure member variables that
1153 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1154 ** code with #ifndef directives.
1156 # define explainSetInteger(a, b) a = b
1158 #else
1159 /* No-op versions of the explainXXX() functions and macros. */
1160 # define explainTempTable(y,z)
1161 # define explainSetInteger(y,z)
1162 #endif
1164 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1166 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1167 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1168 ** where the caption is of one of the two forms:
1170 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1171 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1173 ** where iSub1 and iSub2 are the integers passed as the corresponding
1174 ** function parameters, and op is the text representation of the parameter
1175 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1176 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1177 ** false, or the second form if it is true.
1179 static void explainComposite(
1180 Parse *pParse, /* Parse context */
1181 int op, /* One of TK_UNION, TK_EXCEPT etc. */
1182 int iSub1, /* Subquery id 1 */
1183 int iSub2, /* Subquery id 2 */
1184 int bUseTmp /* True if a temp table was used */
1186 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1187 if( pParse->explain==2 ){
1188 Vdbe *v = pParse->pVdbe;
1189 char *zMsg = sqlite3MPrintf(
1190 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1191 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1193 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1196 #else
1197 /* No-op versions of the explainXXX() functions and macros. */
1198 # define explainComposite(v,w,x,y,z)
1199 #endif
1202 ** If the inner loop was generated using a non-null pOrderBy argument,
1203 ** then the results were placed in a sorter. After the loop is terminated
1204 ** we need to run the sorter and output the results. The following
1205 ** routine generates the code needed to do that.
1207 static void generateSortTail(
1208 Parse *pParse, /* Parsing context */
1209 Select *p, /* The SELECT statement */
1210 SortCtx *pSort, /* Information on the ORDER BY clause */
1211 int nColumn, /* Number of columns of data */
1212 SelectDest *pDest /* Write the sorted results here */
1214 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1215 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1216 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
1217 int addr;
1218 int addrOnce = 0;
1219 int iTab;
1220 ExprList *pOrderBy = pSort->pOrderBy;
1221 int eDest = pDest->eDest;
1222 int iParm = pDest->iSDParm;
1223 int regRow;
1224 int regRowid;
1225 int iCol;
1226 int nKey;
1227 int iSortTab; /* Sorter cursor to read from */
1228 int nSortData; /* Trailing values to read from sorter */
1229 int i;
1230 int bSeq; /* True if sorter record includes seq. no. */
1231 struct ExprList_item *aOutEx = p->pEList->a;
1233 assert( addrBreak<0 );
1234 if( pSort->labelBkOut ){
1235 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1236 sqlite3VdbeGoto(v, addrBreak);
1237 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1239 iTab = pSort->iECursor;
1240 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1241 regRowid = 0;
1242 regRow = pDest->iSdst;
1243 nSortData = nColumn;
1244 }else{
1245 regRowid = sqlite3GetTempReg(pParse);
1246 regRow = sqlite3GetTempRange(pParse, nColumn);
1247 nSortData = nColumn;
1249 nKey = pOrderBy->nExpr - pSort->nOBSat;
1250 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1251 int regSortOut = ++pParse->nMem;
1252 iSortTab = pParse->nTab++;
1253 if( pSort->labelBkOut ){
1254 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1256 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1257 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1258 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1259 VdbeCoverage(v);
1260 codeOffset(v, p->iOffset, addrContinue);
1261 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1262 bSeq = 0;
1263 }else{
1264 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1265 codeOffset(v, p->iOffset, addrContinue);
1266 iSortTab = iTab;
1267 bSeq = 1;
1269 for(i=0, iCol=nKey+bSeq-1; i<nSortData; i++){
1270 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1272 for(i=nSortData-1; i>=0; i--){
1273 int iRead;
1274 if( aOutEx[i].u.x.iOrderByCol ){
1275 iRead = aOutEx[i].u.x.iOrderByCol-1;
1276 }else{
1277 iRead = iCol--;
1279 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1280 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1282 switch( eDest ){
1283 case SRT_Table:
1284 case SRT_EphemTab: {
1285 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1286 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1287 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1288 break;
1290 #ifndef SQLITE_OMIT_SUBQUERY
1291 case SRT_Set: {
1292 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1293 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1294 pDest->zAffSdst, nColumn);
1295 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1296 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1297 break;
1299 case SRT_Mem: {
1300 /* The LIMIT clause will terminate the loop for us */
1301 break;
1303 #endif
1304 default: {
1305 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1306 testcase( eDest==SRT_Output );
1307 testcase( eDest==SRT_Coroutine );
1308 if( eDest==SRT_Output ){
1309 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1310 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1311 }else{
1312 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1314 break;
1317 if( regRowid ){
1318 if( eDest==SRT_Set ){
1319 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1320 }else{
1321 sqlite3ReleaseTempReg(pParse, regRow);
1323 sqlite3ReleaseTempReg(pParse, regRowid);
1325 /* The bottom of the loop
1327 sqlite3VdbeResolveLabel(v, addrContinue);
1328 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1329 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1330 }else{
1331 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1333 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1334 sqlite3VdbeResolveLabel(v, addrBreak);
1338 ** Return a pointer to a string containing the 'declaration type' of the
1339 ** expression pExpr. The string may be treated as static by the caller.
1341 ** Also try to estimate the size of the returned value and return that
1342 ** result in *pEstWidth.
1344 ** The declaration type is the exact datatype definition extracted from the
1345 ** original CREATE TABLE statement if the expression is a column. The
1346 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1347 ** is considered a column can be complex in the presence of subqueries. The
1348 ** result-set expression in all of the following SELECT statements is
1349 ** considered a column by this function.
1351 ** SELECT col FROM tbl;
1352 ** SELECT (SELECT col FROM tbl;
1353 ** SELECT (SELECT col FROM tbl);
1354 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1356 ** The declaration type for any expression other than a column is NULL.
1358 ** This routine has either 3 or 6 parameters depending on whether or not
1359 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1361 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1362 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1363 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1364 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1365 #endif
1366 static const char *columnTypeImpl(
1367 NameContext *pNC,
1368 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1369 Expr *pExpr
1370 #else
1371 Expr *pExpr,
1372 const char **pzOrigDb,
1373 const char **pzOrigTab,
1374 const char **pzOrigCol
1375 #endif
1377 char const *zType = 0;
1378 int j;
1379 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1380 char const *zOrigDb = 0;
1381 char const *zOrigTab = 0;
1382 char const *zOrigCol = 0;
1383 #endif
1385 assert( pExpr!=0 );
1386 assert( pNC->pSrcList!=0 );
1387 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates
1388 ** are processed */
1389 switch( pExpr->op ){
1390 case TK_COLUMN: {
1391 /* The expression is a column. Locate the table the column is being
1392 ** extracted from in NameContext.pSrcList. This table may be real
1393 ** database table or a subquery.
1395 Table *pTab = 0; /* Table structure column is extracted from */
1396 Select *pS = 0; /* Select the column is extracted from */
1397 int iCol = pExpr->iColumn; /* Index of column in pTab */
1398 while( pNC && !pTab ){
1399 SrcList *pTabList = pNC->pSrcList;
1400 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1401 if( j<pTabList->nSrc ){
1402 pTab = pTabList->a[j].pTab;
1403 pS = pTabList->a[j].pSelect;
1404 }else{
1405 pNC = pNC->pNext;
1409 if( pTab==0 ){
1410 /* At one time, code such as "SELECT new.x" within a trigger would
1411 ** cause this condition to run. Since then, we have restructured how
1412 ** trigger code is generated and so this condition is no longer
1413 ** possible. However, it can still be true for statements like
1414 ** the following:
1416 ** CREATE TABLE t1(col INTEGER);
1417 ** SELECT (SELECT t1.col) FROM FROM t1;
1419 ** when columnType() is called on the expression "t1.col" in the
1420 ** sub-select. In this case, set the column type to NULL, even
1421 ** though it should really be "INTEGER".
1423 ** This is not a problem, as the column type of "t1.col" is never
1424 ** used. When columnType() is called on the expression
1425 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1426 ** branch below. */
1427 break;
1430 assert( pTab && pExpr->pTab==pTab );
1431 if( pS ){
1432 /* The "table" is actually a sub-select or a view in the FROM clause
1433 ** of the SELECT statement. Return the declaration type and origin
1434 ** data for the result-set column of the sub-select.
1436 if( iCol>=0 && iCol<pS->pEList->nExpr ){
1437 /* If iCol is less than zero, then the expression requests the
1438 ** rowid of the sub-select or view. This expression is legal (see
1439 ** test case misc2.2.2) - it always evaluates to NULL.
1441 NameContext sNC;
1442 Expr *p = pS->pEList->a[iCol].pExpr;
1443 sNC.pSrcList = pS->pSrc;
1444 sNC.pNext = pNC;
1445 sNC.pParse = pNC->pParse;
1446 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1448 }else{
1449 /* A real table or a CTE table */
1450 assert( !pS );
1451 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1452 if( iCol<0 ) iCol = pTab->iPKey;
1453 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1454 if( iCol<0 ){
1455 zType = "INTEGER";
1456 zOrigCol = "rowid";
1457 }else{
1458 zOrigCol = pTab->aCol[iCol].zName;
1459 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1461 zOrigTab = pTab->zName;
1462 if( pNC->pParse && pTab->pSchema ){
1463 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1464 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1466 #else
1467 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1468 if( iCol<0 ){
1469 zType = "INTEGER";
1470 }else{
1471 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1473 #endif
1475 break;
1477 #ifndef SQLITE_OMIT_SUBQUERY
1478 case TK_SELECT: {
1479 /* The expression is a sub-select. Return the declaration type and
1480 ** origin info for the single column in the result set of the SELECT
1481 ** statement.
1483 NameContext sNC;
1484 Select *pS = pExpr->x.pSelect;
1485 Expr *p = pS->pEList->a[0].pExpr;
1486 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1487 sNC.pSrcList = pS->pSrc;
1488 sNC.pNext = pNC;
1489 sNC.pParse = pNC->pParse;
1490 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1491 break;
1493 #endif
1496 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1497 if( pzOrigDb ){
1498 assert( pzOrigTab && pzOrigCol );
1499 *pzOrigDb = zOrigDb;
1500 *pzOrigTab = zOrigTab;
1501 *pzOrigCol = zOrigCol;
1503 #endif
1504 return zType;
1508 ** Generate code that will tell the VDBE the declaration types of columns
1509 ** in the result set.
1511 static void generateColumnTypes(
1512 Parse *pParse, /* Parser context */
1513 SrcList *pTabList, /* List of tables */
1514 ExprList *pEList /* Expressions defining the result set */
1516 #ifndef SQLITE_OMIT_DECLTYPE
1517 Vdbe *v = pParse->pVdbe;
1518 int i;
1519 NameContext sNC;
1520 sNC.pSrcList = pTabList;
1521 sNC.pParse = pParse;
1522 sNC.pNext = 0;
1523 for(i=0; i<pEList->nExpr; i++){
1524 Expr *p = pEList->a[i].pExpr;
1525 const char *zType;
1526 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1527 const char *zOrigDb = 0;
1528 const char *zOrigTab = 0;
1529 const char *zOrigCol = 0;
1530 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1532 /* The vdbe must make its own copy of the column-type and other
1533 ** column specific strings, in case the schema is reset before this
1534 ** virtual machine is deleted.
1536 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1537 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1538 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1539 #else
1540 zType = columnType(&sNC, p, 0, 0, 0);
1541 #endif
1542 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1544 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1549 ** Compute the column names for a SELECT statement.
1551 ** The only guarantee that SQLite makes about column names is that if the
1552 ** column has an AS clause assigning it a name, that will be the name used.
1553 ** That is the only documented guarantee. However, countless applications
1554 ** developed over the years have made baseless assumptions about column names
1555 ** and will break if those assumptions changes. Hence, use extreme caution
1556 ** when modifying this routine to avoid breaking legacy.
1558 ** See Also: sqlite3ColumnsFromExprList()
1560 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1561 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1562 ** applications should operate this way. Nevertheless, we need to support the
1563 ** other modes for legacy:
1565 ** short=OFF, full=OFF: Column name is the text of the expression has it
1566 ** originally appears in the SELECT statement. In
1567 ** other words, the zSpan of the result expression.
1569 ** short=ON, full=OFF: (This is the default setting). If the result
1570 ** refers directly to a table column, then the
1571 ** result column name is just the table column
1572 ** name: COLUMN. Otherwise use zSpan.
1574 ** full=ON, short=ANY: If the result refers directly to a table column,
1575 ** then the result column name with the table name
1576 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1578 static void generateColumnNames(
1579 Parse *pParse, /* Parser context */
1580 Select *pSelect /* Generate column names for this SELECT statement */
1582 Vdbe *v = pParse->pVdbe;
1583 int i;
1584 Table *pTab;
1585 SrcList *pTabList;
1586 ExprList *pEList;
1587 sqlite3 *db = pParse->db;
1588 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1589 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1591 #ifndef SQLITE_OMIT_EXPLAIN
1592 /* If this is an EXPLAIN, skip this step */
1593 if( pParse->explain ){
1594 return;
1596 #endif
1598 if( pParse->colNamesSet || db->mallocFailed ) return;
1599 /* Column names are determined by the left-most term of a compound select */
1600 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1601 SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1602 pTabList = pSelect->pSrc;
1603 pEList = pSelect->pEList;
1604 assert( v!=0 );
1605 assert( pTabList!=0 );
1606 pParse->colNamesSet = 1;
1607 fullName = (db->flags & SQLITE_FullColNames)!=0;
1608 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1609 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1610 for(i=0; i<pEList->nExpr; i++){
1611 Expr *p = pEList->a[i].pExpr;
1613 assert( p!=0 );
1614 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
1615 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1616 if( pEList->a[i].zName ){
1617 /* An AS clause always takes first priority */
1618 char *zName = pEList->a[i].zName;
1619 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1620 }else if( srcName && p->op==TK_COLUMN ){
1621 char *zCol;
1622 int iCol = p->iColumn;
1623 pTab = p->pTab;
1624 assert( pTab!=0 );
1625 if( iCol<0 ) iCol = pTab->iPKey;
1626 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1627 if( iCol<0 ){
1628 zCol = "rowid";
1629 }else{
1630 zCol = pTab->aCol[iCol].zName;
1632 if( fullName ){
1633 char *zName = 0;
1634 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1635 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1636 }else{
1637 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1639 }else{
1640 const char *z = pEList->a[i].zSpan;
1641 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1642 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1645 generateColumnTypes(pParse, pTabList, pEList);
1649 ** Given an expression list (which is really the list of expressions
1650 ** that form the result set of a SELECT statement) compute appropriate
1651 ** column names for a table that would hold the expression list.
1653 ** All column names will be unique.
1655 ** Only the column names are computed. Column.zType, Column.zColl,
1656 ** and other fields of Column are zeroed.
1658 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1659 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1661 ** The only guarantee that SQLite makes about column names is that if the
1662 ** column has an AS clause assigning it a name, that will be the name used.
1663 ** That is the only documented guarantee. However, countless applications
1664 ** developed over the years have made baseless assumptions about column names
1665 ** and will break if those assumptions changes. Hence, use extreme caution
1666 ** when modifying this routine to avoid breaking legacy.
1668 ** See Also: generateColumnNames()
1670 int sqlite3ColumnsFromExprList(
1671 Parse *pParse, /* Parsing context */
1672 ExprList *pEList, /* Expr list from which to derive column names */
1673 i16 *pnCol, /* Write the number of columns here */
1674 Column **paCol /* Write the new column list here */
1676 sqlite3 *db = pParse->db; /* Database connection */
1677 int i, j; /* Loop counters */
1678 u32 cnt; /* Index added to make the name unique */
1679 Column *aCol, *pCol; /* For looping over result columns */
1680 int nCol; /* Number of columns in the result set */
1681 char *zName; /* Column name */
1682 int nName; /* Size of name in zName[] */
1683 Hash ht; /* Hash table of column names */
1685 sqlite3HashInit(&ht);
1686 if( pEList ){
1687 nCol = pEList->nExpr;
1688 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1689 testcase( aCol==0 );
1690 if( nCol>32767 ) nCol = 32767;
1691 }else{
1692 nCol = 0;
1693 aCol = 0;
1695 assert( nCol==(i16)nCol );
1696 *pnCol = nCol;
1697 *paCol = aCol;
1699 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1700 /* Get an appropriate name for the column
1702 if( (zName = pEList->a[i].zName)!=0 ){
1703 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1704 }else{
1705 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1706 while( pColExpr->op==TK_DOT ){
1707 pColExpr = pColExpr->pRight;
1708 assert( pColExpr!=0 );
1710 assert( pColExpr->op!=TK_AGG_COLUMN );
1711 if( pColExpr->op==TK_COLUMN ){
1712 /* For columns use the column name name */
1713 int iCol = pColExpr->iColumn;
1714 Table *pTab = pColExpr->pTab;
1715 assert( pTab!=0 );
1716 if( iCol<0 ) iCol = pTab->iPKey;
1717 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1718 }else if( pColExpr->op==TK_ID ){
1719 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1720 zName = pColExpr->u.zToken;
1721 }else{
1722 /* Use the original text of the column expression as its name */
1723 zName = pEList->a[i].zSpan;
1726 if( zName ){
1727 zName = sqlite3DbStrDup(db, zName);
1728 }else{
1729 zName = sqlite3MPrintf(db,"column%d",i+1);
1732 /* Make sure the column name is unique. If the name is not unique,
1733 ** append an integer to the name so that it becomes unique.
1735 cnt = 0;
1736 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1737 nName = sqlite3Strlen30(zName);
1738 if( nName>0 ){
1739 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1740 if( zName[j]==':' ) nName = j;
1742 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1743 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1745 pCol->zName = zName;
1746 sqlite3ColumnPropertiesFromName(0, pCol);
1747 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1748 sqlite3OomFault(db);
1751 sqlite3HashClear(&ht);
1752 if( db->mallocFailed ){
1753 for(j=0; j<i; j++){
1754 sqlite3DbFree(db, aCol[j].zName);
1756 sqlite3DbFree(db, aCol);
1757 *paCol = 0;
1758 *pnCol = 0;
1759 return SQLITE_NOMEM_BKPT;
1761 return SQLITE_OK;
1765 ** Add type and collation information to a column list based on
1766 ** a SELECT statement.
1768 ** The column list presumably came from selectColumnNamesFromExprList().
1769 ** The column list has only names, not types or collations. This
1770 ** routine goes through and adds the types and collations.
1772 ** This routine requires that all identifiers in the SELECT
1773 ** statement be resolved.
1775 void sqlite3SelectAddColumnTypeAndCollation(
1776 Parse *pParse, /* Parsing contexts */
1777 Table *pTab, /* Add column type information to this table */
1778 Select *pSelect /* SELECT used to determine types and collations */
1780 sqlite3 *db = pParse->db;
1781 NameContext sNC;
1782 Column *pCol;
1783 CollSeq *pColl;
1784 int i;
1785 Expr *p;
1786 struct ExprList_item *a;
1788 assert( pSelect!=0 );
1789 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1790 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1791 if( db->mallocFailed ) return;
1792 memset(&sNC, 0, sizeof(sNC));
1793 sNC.pSrcList = pSelect->pSrc;
1794 a = pSelect->pEList->a;
1795 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1796 const char *zType;
1797 int n, m;
1798 p = a[i].pExpr;
1799 zType = columnType(&sNC, p, 0, 0, 0);
1800 /* pCol->szEst = ... // Column size est for SELECT tables never used */
1801 pCol->affinity = sqlite3ExprAffinity(p);
1802 if( zType ){
1803 m = sqlite3Strlen30(zType);
1804 n = sqlite3Strlen30(pCol->zName);
1805 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1806 if( pCol->zName ){
1807 memcpy(&pCol->zName[n+1], zType, m+1);
1808 pCol->colFlags |= COLFLAG_HASTYPE;
1811 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1812 pColl = sqlite3ExprCollSeq(pParse, p);
1813 if( pColl && pCol->zColl==0 ){
1814 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1817 pTab->szTabRow = 1; /* Any non-zero value works */
1821 ** Given a SELECT statement, generate a Table structure that describes
1822 ** the result set of that SELECT.
1824 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1825 Table *pTab;
1826 sqlite3 *db = pParse->db;
1827 int savedFlags;
1829 savedFlags = db->flags;
1830 db->flags &= ~SQLITE_FullColNames;
1831 db->flags |= SQLITE_ShortColNames;
1832 sqlite3SelectPrep(pParse, pSelect, 0);
1833 if( pParse->nErr ) return 0;
1834 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1835 db->flags = savedFlags;
1836 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1837 if( pTab==0 ){
1838 return 0;
1840 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1841 ** is disabled */
1842 assert( db->lookaside.bDisable );
1843 pTab->nTabRef = 1;
1844 pTab->zName = 0;
1845 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1846 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1847 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1848 pTab->iPKey = -1;
1849 if( db->mallocFailed ){
1850 sqlite3DeleteTable(db, pTab);
1851 return 0;
1853 return pTab;
1857 ** Get a VDBE for the given parser context. Create a new one if necessary.
1858 ** If an error occurs, return NULL and leave a message in pParse.
1860 Vdbe *sqlite3GetVdbe(Parse *pParse){
1861 if( pParse->pVdbe ){
1862 return pParse->pVdbe;
1864 if( pParse->pToplevel==0
1865 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1867 pParse->okConstFactor = 1;
1869 return sqlite3VdbeCreate(pParse);
1874 ** Compute the iLimit and iOffset fields of the SELECT based on the
1875 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
1876 ** that appear in the original SQL statement after the LIMIT and OFFSET
1877 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1878 ** are the integer memory register numbers for counters used to compute
1879 ** the limit and offset. If there is no limit and/or offset, then
1880 ** iLimit and iOffset are negative.
1882 ** This routine changes the values of iLimit and iOffset only if
1883 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
1884 ** and iOffset should have been preset to appropriate default values (zero)
1885 ** prior to calling this routine.
1887 ** The iOffset register (if it exists) is initialized to the value
1888 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1889 ** iOffset+1 is initialized to LIMIT+OFFSET.
1891 ** Only if pLimit->pLeft!=0 do the limit registers get
1892 ** redefined. The UNION ALL operator uses this property to force
1893 ** the reuse of the same limit and offset registers across multiple
1894 ** SELECT statements.
1896 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1897 Vdbe *v = 0;
1898 int iLimit = 0;
1899 int iOffset;
1900 int n;
1901 Expr *pLimit = p->pLimit;
1903 if( p->iLimit ) return;
1906 ** "LIMIT -1" always shows all rows. There is some
1907 ** controversy about what the correct behavior should be.
1908 ** The current implementation interprets "LIMIT 0" to mean
1909 ** no rows.
1911 sqlite3ExprCacheClear(pParse);
1912 if( pLimit ){
1913 assert( pLimit->op==TK_LIMIT );
1914 assert( pLimit->pLeft!=0 );
1915 p->iLimit = iLimit = ++pParse->nMem;
1916 v = sqlite3GetVdbe(pParse);
1917 assert( v!=0 );
1918 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
1919 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1920 VdbeComment((v, "LIMIT counter"));
1921 if( n==0 ){
1922 sqlite3VdbeGoto(v, iBreak);
1923 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1924 p->nSelectRow = sqlite3LogEst((u64)n);
1925 p->selFlags |= SF_FixedLimit;
1927 }else{
1928 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
1929 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1930 VdbeComment((v, "LIMIT counter"));
1931 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1933 if( pLimit->pRight ){
1934 p->iOffset = iOffset = ++pParse->nMem;
1935 pParse->nMem++; /* Allocate an extra register for limit+offset */
1936 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
1937 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1938 VdbeComment((v, "OFFSET counter"));
1939 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1940 VdbeComment((v, "LIMIT+OFFSET"));
1945 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1947 ** Return the appropriate collating sequence for the iCol-th column of
1948 ** the result set for the compound-select statement "p". Return NULL if
1949 ** the column has no default collating sequence.
1951 ** The collating sequence for the compound select is taken from the
1952 ** left-most term of the select that has a collating sequence.
1954 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1955 CollSeq *pRet;
1956 if( p->pPrior ){
1957 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1958 }else{
1959 pRet = 0;
1961 assert( iCol>=0 );
1962 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
1963 ** have been thrown during name resolution and we would not have gotten
1964 ** this far */
1965 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1966 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1968 return pRet;
1972 ** The select statement passed as the second parameter is a compound SELECT
1973 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1974 ** structure suitable for implementing the ORDER BY.
1976 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1977 ** function is responsible for ensuring that this structure is eventually
1978 ** freed.
1980 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1981 ExprList *pOrderBy = p->pOrderBy;
1982 int nOrderBy = p->pOrderBy->nExpr;
1983 sqlite3 *db = pParse->db;
1984 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1985 if( pRet ){
1986 int i;
1987 for(i=0; i<nOrderBy; i++){
1988 struct ExprList_item *pItem = &pOrderBy->a[i];
1989 Expr *pTerm = pItem->pExpr;
1990 CollSeq *pColl;
1992 if( pTerm->flags & EP_Collate ){
1993 pColl = sqlite3ExprCollSeq(pParse, pTerm);
1994 }else{
1995 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1996 if( pColl==0 ) pColl = db->pDfltColl;
1997 pOrderBy->a[i].pExpr =
1998 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2000 assert( sqlite3KeyInfoIsWriteable(pRet) );
2001 pRet->aColl[i] = pColl;
2002 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2006 return pRet;
2009 #ifndef SQLITE_OMIT_CTE
2011 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2012 ** query of the form:
2014 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2015 ** \___________/ \_______________/
2016 ** p->pPrior p
2019 ** There is exactly one reference to the recursive-table in the FROM clause
2020 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2022 ** The setup-query runs once to generate an initial set of rows that go
2023 ** into a Queue table. Rows are extracted from the Queue table one by
2024 ** one. Each row extracted from Queue is output to pDest. Then the single
2025 ** extracted row (now in the iCurrent table) becomes the content of the
2026 ** recursive-table for a recursive-query run. The output of the recursive-query
2027 ** is added back into the Queue table. Then another row is extracted from Queue
2028 ** and the iteration continues until the Queue table is empty.
2030 ** If the compound query operator is UNION then no duplicate rows are ever
2031 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2032 ** that have ever been inserted into Queue and causes duplicates to be
2033 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2035 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2036 ** ORDER BY order and the first entry is extracted for each cycle. Without
2037 ** an ORDER BY, the Queue table is just a FIFO.
2039 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2040 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2041 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2042 ** with a positive value, then the first OFFSET outputs are discarded rather
2043 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2044 ** rows have been skipped.
2046 static void generateWithRecursiveQuery(
2047 Parse *pParse, /* Parsing context */
2048 Select *p, /* The recursive SELECT to be coded */
2049 SelectDest *pDest /* What to do with query results */
2051 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2052 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2053 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2054 Select *pSetup = p->pPrior; /* The setup query */
2055 int addrTop; /* Top of the loop */
2056 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2057 int iCurrent = 0; /* The Current table */
2058 int regCurrent; /* Register holding Current table */
2059 int iQueue; /* The Queue table */
2060 int iDistinct = 0; /* To ensure unique results if UNION */
2061 int eDest = SRT_Fifo; /* How to write to Queue */
2062 SelectDest destQueue; /* SelectDest targetting the Queue table */
2063 int i; /* Loop counter */
2064 int rc; /* Result code */
2065 ExprList *pOrderBy; /* The ORDER BY clause */
2066 Expr *pLimit; /* Saved LIMIT and OFFSET */
2067 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2069 /* Obtain authorization to do a recursive query */
2070 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2072 /* Process the LIMIT and OFFSET clauses, if they exist */
2073 addrBreak = sqlite3VdbeMakeLabel(v);
2074 p->nSelectRow = 320; /* 4 billion rows */
2075 computeLimitRegisters(pParse, p, addrBreak);
2076 pLimit = p->pLimit;
2077 regLimit = p->iLimit;
2078 regOffset = p->iOffset;
2079 p->pLimit = 0;
2080 p->iLimit = p->iOffset = 0;
2081 pOrderBy = p->pOrderBy;
2083 /* Locate the cursor number of the Current table */
2084 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2085 if( pSrc->a[i].fg.isRecursive ){
2086 iCurrent = pSrc->a[i].iCursor;
2087 break;
2091 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2092 ** the Distinct table must be exactly one greater than Queue in order
2093 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2094 iQueue = pParse->nTab++;
2095 if( p->op==TK_UNION ){
2096 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2097 iDistinct = pParse->nTab++;
2098 }else{
2099 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2101 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2103 /* Allocate cursors for Current, Queue, and Distinct. */
2104 regCurrent = ++pParse->nMem;
2105 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2106 if( pOrderBy ){
2107 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2108 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2109 (char*)pKeyInfo, P4_KEYINFO);
2110 destQueue.pOrderBy = pOrderBy;
2111 }else{
2112 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2114 VdbeComment((v, "Queue table"));
2115 if( iDistinct ){
2116 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2117 p->selFlags |= SF_UsesEphemeral;
2120 /* Detach the ORDER BY clause from the compound SELECT */
2121 p->pOrderBy = 0;
2123 /* Store the results of the setup-query in Queue. */
2124 pSetup->pNext = 0;
2125 rc = sqlite3Select(pParse, pSetup, &destQueue);
2126 pSetup->pNext = p;
2127 if( rc ) goto end_of_recursive_query;
2129 /* Find the next row in the Queue and output that row */
2130 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2132 /* Transfer the next row in Queue over to Current */
2133 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2134 if( pOrderBy ){
2135 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2136 }else{
2137 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2139 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2141 /* Output the single row in Current */
2142 addrCont = sqlite3VdbeMakeLabel(v);
2143 codeOffset(v, regOffset, addrCont);
2144 selectInnerLoop(pParse, p, iCurrent,
2145 0, 0, pDest, addrCont, addrBreak);
2146 if( regLimit ){
2147 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2148 VdbeCoverage(v);
2150 sqlite3VdbeResolveLabel(v, addrCont);
2152 /* Execute the recursive SELECT taking the single row in Current as
2153 ** the value for the recursive-table. Store the results in the Queue.
2155 if( p->selFlags & SF_Aggregate ){
2156 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2157 }else{
2158 p->pPrior = 0;
2159 sqlite3Select(pParse, p, &destQueue);
2160 assert( p->pPrior==0 );
2161 p->pPrior = pSetup;
2164 /* Keep running the loop until the Queue is empty */
2165 sqlite3VdbeGoto(v, addrTop);
2166 sqlite3VdbeResolveLabel(v, addrBreak);
2168 end_of_recursive_query:
2169 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2170 p->pOrderBy = pOrderBy;
2171 p->pLimit = pLimit;
2172 return;
2174 #endif /* SQLITE_OMIT_CTE */
2176 /* Forward references */
2177 static int multiSelectOrderBy(
2178 Parse *pParse, /* Parsing context */
2179 Select *p, /* The right-most of SELECTs to be coded */
2180 SelectDest *pDest /* What to do with query results */
2184 ** Handle the special case of a compound-select that originates from a
2185 ** VALUES clause. By handling this as a special case, we avoid deep
2186 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2187 ** on a VALUES clause.
2189 ** Because the Select object originates from a VALUES clause:
2190 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2191 ** (2) All terms are UNION ALL
2192 ** (3) There is no ORDER BY clause
2194 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2195 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2196 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2197 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2199 static int multiSelectValues(
2200 Parse *pParse, /* Parsing context */
2201 Select *p, /* The right-most of SELECTs to be coded */
2202 SelectDest *pDest /* What to do with query results */
2204 Select *pPrior;
2205 Select *pRightmost = p;
2206 int nRow = 1;
2207 int rc = 0;
2208 assert( p->selFlags & SF_MultiValue );
2210 assert( p->selFlags & SF_Values );
2211 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2212 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2213 if( p->pPrior==0 ) break;
2214 assert( p->pPrior->pNext==p );
2215 p = p->pPrior;
2216 nRow++;
2217 }while(1);
2218 while( p ){
2219 pPrior = p->pPrior;
2220 p->pPrior = 0;
2221 rc = sqlite3Select(pParse, p, pDest);
2222 p->pPrior = pPrior;
2223 if( rc || pRightmost->pLimit ) break;
2224 p->nSelectRow = nRow;
2225 p = p->pNext;
2227 return rc;
2231 ** This routine is called to process a compound query form from
2232 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2233 ** INTERSECT
2235 ** "p" points to the right-most of the two queries. the query on the
2236 ** left is p->pPrior. The left query could also be a compound query
2237 ** in which case this routine will be called recursively.
2239 ** The results of the total query are to be written into a destination
2240 ** of type eDest with parameter iParm.
2242 ** Example 1: Consider a three-way compound SQL statement.
2244 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2246 ** This statement is parsed up as follows:
2248 ** SELECT c FROM t3
2249 ** |
2250 ** `-----> SELECT b FROM t2
2251 ** |
2252 ** `------> SELECT a FROM t1
2254 ** The arrows in the diagram above represent the Select.pPrior pointer.
2255 ** So if this routine is called with p equal to the t3 query, then
2256 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2258 ** Notice that because of the way SQLite parses compound SELECTs, the
2259 ** individual selects always group from left to right.
2261 static int multiSelect(
2262 Parse *pParse, /* Parsing context */
2263 Select *p, /* The right-most of SELECTs to be coded */
2264 SelectDest *pDest /* What to do with query results */
2266 int rc = SQLITE_OK; /* Success code from a subroutine */
2267 Select *pPrior; /* Another SELECT immediately to our left */
2268 Vdbe *v; /* Generate code to this VDBE */
2269 SelectDest dest; /* Alternative data destination */
2270 Select *pDelete = 0; /* Chain of simple selects to delete */
2271 sqlite3 *db; /* Database connection */
2272 #ifndef SQLITE_OMIT_EXPLAIN
2273 int iSub1 = 0; /* EQP id of left-hand query */
2274 int iSub2 = 0; /* EQP id of right-hand query */
2275 #endif
2277 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2278 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2280 assert( p && p->pPrior ); /* Calling function guarantees this much */
2281 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2282 db = pParse->db;
2283 pPrior = p->pPrior;
2284 dest = *pDest;
2285 if( pPrior->pOrderBy || pPrior->pLimit ){
2286 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2287 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2288 rc = 1;
2289 goto multi_select_end;
2292 v = sqlite3GetVdbe(pParse);
2293 assert( v!=0 ); /* The VDBE already created by calling function */
2295 /* Create the destination temporary table if necessary
2297 if( dest.eDest==SRT_EphemTab ){
2298 assert( p->pEList );
2299 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2300 dest.eDest = SRT_Table;
2303 /* Special handling for a compound-select that originates as a VALUES clause.
2305 if( p->selFlags & SF_MultiValue ){
2306 rc = multiSelectValues(pParse, p, &dest);
2307 goto multi_select_end;
2310 /* Make sure all SELECTs in the statement have the same number of elements
2311 ** in their result sets.
2313 assert( p->pEList && pPrior->pEList );
2314 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2316 #ifndef SQLITE_OMIT_CTE
2317 if( p->selFlags & SF_Recursive ){
2318 generateWithRecursiveQuery(pParse, p, &dest);
2319 }else
2320 #endif
2322 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2324 if( p->pOrderBy ){
2325 return multiSelectOrderBy(pParse, p, pDest);
2326 }else
2328 /* Generate code for the left and right SELECT statements.
2330 switch( p->op ){
2331 case TK_ALL: {
2332 int addr = 0;
2333 int nLimit;
2334 assert( !pPrior->pLimit );
2335 pPrior->iLimit = p->iLimit;
2336 pPrior->iOffset = p->iOffset;
2337 pPrior->pLimit = p->pLimit;
2338 explainSetInteger(iSub1, pParse->iNextSelectId);
2339 rc = sqlite3Select(pParse, pPrior, &dest);
2340 p->pLimit = 0;
2341 if( rc ){
2342 goto multi_select_end;
2344 p->pPrior = 0;
2345 p->iLimit = pPrior->iLimit;
2346 p->iOffset = pPrior->iOffset;
2347 if( p->iLimit ){
2348 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2349 VdbeComment((v, "Jump ahead if LIMIT reached"));
2350 if( p->iOffset ){
2351 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2352 p->iLimit, p->iOffset+1, p->iOffset);
2355 explainSetInteger(iSub2, pParse->iNextSelectId);
2356 rc = sqlite3Select(pParse, p, &dest);
2357 testcase( rc!=SQLITE_OK );
2358 pDelete = p->pPrior;
2359 p->pPrior = pPrior;
2360 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2361 if( pPrior->pLimit
2362 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2363 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2365 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2367 if( addr ){
2368 sqlite3VdbeJumpHere(v, addr);
2370 break;
2372 case TK_EXCEPT:
2373 case TK_UNION: {
2374 int unionTab; /* Cursor number of the temporary table holding result */
2375 u8 op = 0; /* One of the SRT_ operations to apply to self */
2376 int priorOp; /* The SRT_ operation to apply to prior selects */
2377 Expr *pLimit; /* Saved values of p->nLimit */
2378 int addr;
2379 SelectDest uniondest;
2381 testcase( p->op==TK_EXCEPT );
2382 testcase( p->op==TK_UNION );
2383 priorOp = SRT_Union;
2384 if( dest.eDest==priorOp ){
2385 /* We can reuse a temporary table generated by a SELECT to our
2386 ** right.
2388 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2389 unionTab = dest.iSDParm;
2390 }else{
2391 /* We will need to create our own temporary table to hold the
2392 ** intermediate results.
2394 unionTab = pParse->nTab++;
2395 assert( p->pOrderBy==0 );
2396 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2397 assert( p->addrOpenEphm[0] == -1 );
2398 p->addrOpenEphm[0] = addr;
2399 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2400 assert( p->pEList );
2403 /* Code the SELECT statements to our left
2405 assert( !pPrior->pOrderBy );
2406 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2407 explainSetInteger(iSub1, pParse->iNextSelectId);
2408 rc = sqlite3Select(pParse, pPrior, &uniondest);
2409 if( rc ){
2410 goto multi_select_end;
2413 /* Code the current SELECT statement
2415 if( p->op==TK_EXCEPT ){
2416 op = SRT_Except;
2417 }else{
2418 assert( p->op==TK_UNION );
2419 op = SRT_Union;
2421 p->pPrior = 0;
2422 pLimit = p->pLimit;
2423 p->pLimit = 0;
2424 uniondest.eDest = op;
2425 explainSetInteger(iSub2, pParse->iNextSelectId);
2426 rc = sqlite3Select(pParse, p, &uniondest);
2427 testcase( rc!=SQLITE_OK );
2428 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2429 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2430 sqlite3ExprListDelete(db, p->pOrderBy);
2431 pDelete = p->pPrior;
2432 p->pPrior = pPrior;
2433 p->pOrderBy = 0;
2434 if( p->op==TK_UNION ){
2435 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2437 sqlite3ExprDelete(db, p->pLimit);
2438 p->pLimit = pLimit;
2439 p->iLimit = 0;
2440 p->iOffset = 0;
2442 /* Convert the data in the temporary table into whatever form
2443 ** it is that we currently need.
2445 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2446 if( dest.eDest!=priorOp ){
2447 int iCont, iBreak, iStart;
2448 assert( p->pEList );
2449 iBreak = sqlite3VdbeMakeLabel(v);
2450 iCont = sqlite3VdbeMakeLabel(v);
2451 computeLimitRegisters(pParse, p, iBreak);
2452 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2453 iStart = sqlite3VdbeCurrentAddr(v);
2454 selectInnerLoop(pParse, p, unionTab,
2455 0, 0, &dest, iCont, iBreak);
2456 sqlite3VdbeResolveLabel(v, iCont);
2457 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2458 sqlite3VdbeResolveLabel(v, iBreak);
2459 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2461 break;
2463 default: assert( p->op==TK_INTERSECT ); {
2464 int tab1, tab2;
2465 int iCont, iBreak, iStart;
2466 Expr *pLimit;
2467 int addr;
2468 SelectDest intersectdest;
2469 int r1;
2471 /* INTERSECT is different from the others since it requires
2472 ** two temporary tables. Hence it has its own case. Begin
2473 ** by allocating the tables we will need.
2475 tab1 = pParse->nTab++;
2476 tab2 = pParse->nTab++;
2477 assert( p->pOrderBy==0 );
2479 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2480 assert( p->addrOpenEphm[0] == -1 );
2481 p->addrOpenEphm[0] = addr;
2482 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2483 assert( p->pEList );
2485 /* Code the SELECTs to our left into temporary table "tab1".
2487 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2488 explainSetInteger(iSub1, pParse->iNextSelectId);
2489 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2490 if( rc ){
2491 goto multi_select_end;
2494 /* Code the current SELECT into temporary table "tab2"
2496 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2497 assert( p->addrOpenEphm[1] == -1 );
2498 p->addrOpenEphm[1] = addr;
2499 p->pPrior = 0;
2500 pLimit = p->pLimit;
2501 p->pLimit = 0;
2502 intersectdest.iSDParm = tab2;
2503 explainSetInteger(iSub2, pParse->iNextSelectId);
2504 rc = sqlite3Select(pParse, p, &intersectdest);
2505 testcase( rc!=SQLITE_OK );
2506 pDelete = p->pPrior;
2507 p->pPrior = pPrior;
2508 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2509 sqlite3ExprDelete(db, p->pLimit);
2510 p->pLimit = pLimit;
2512 /* Generate code to take the intersection of the two temporary
2513 ** tables.
2515 assert( p->pEList );
2516 iBreak = sqlite3VdbeMakeLabel(v);
2517 iCont = sqlite3VdbeMakeLabel(v);
2518 computeLimitRegisters(pParse, p, iBreak);
2519 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2520 r1 = sqlite3GetTempReg(pParse);
2521 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2522 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2523 sqlite3ReleaseTempReg(pParse, r1);
2524 selectInnerLoop(pParse, p, tab1,
2525 0, 0, &dest, iCont, iBreak);
2526 sqlite3VdbeResolveLabel(v, iCont);
2527 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2528 sqlite3VdbeResolveLabel(v, iBreak);
2529 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2530 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2531 break;
2535 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2537 /* Compute collating sequences used by
2538 ** temporary tables needed to implement the compound select.
2539 ** Attach the KeyInfo structure to all temporary tables.
2541 ** This section is run by the right-most SELECT statement only.
2542 ** SELECT statements to the left always skip this part. The right-most
2543 ** SELECT might also skip this part if it has no ORDER BY clause and
2544 ** no temp tables are required.
2546 if( p->selFlags & SF_UsesEphemeral ){
2547 int i; /* Loop counter */
2548 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2549 Select *pLoop; /* For looping through SELECT statements */
2550 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2551 int nCol; /* Number of columns in result set */
2553 assert( p->pNext==0 );
2554 nCol = p->pEList->nExpr;
2555 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2556 if( !pKeyInfo ){
2557 rc = SQLITE_NOMEM_BKPT;
2558 goto multi_select_end;
2560 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2561 *apColl = multiSelectCollSeq(pParse, p, i);
2562 if( 0==*apColl ){
2563 *apColl = db->pDfltColl;
2567 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2568 for(i=0; i<2; i++){
2569 int addr = pLoop->addrOpenEphm[i];
2570 if( addr<0 ){
2571 /* If [0] is unused then [1] is also unused. So we can
2572 ** always safely abort as soon as the first unused slot is found */
2573 assert( pLoop->addrOpenEphm[1]<0 );
2574 break;
2576 sqlite3VdbeChangeP2(v, addr, nCol);
2577 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2578 P4_KEYINFO);
2579 pLoop->addrOpenEphm[i] = -1;
2582 sqlite3KeyInfoUnref(pKeyInfo);
2585 multi_select_end:
2586 pDest->iSdst = dest.iSdst;
2587 pDest->nSdst = dest.nSdst;
2588 sqlite3SelectDelete(db, pDelete);
2589 return rc;
2591 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2594 ** Error message for when two or more terms of a compound select have different
2595 ** size result sets.
2597 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2598 if( p->selFlags & SF_Values ){
2599 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2600 }else{
2601 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2602 " do not have the same number of result columns", selectOpName(p->op));
2607 ** Code an output subroutine for a coroutine implementation of a
2608 ** SELECT statment.
2610 ** The data to be output is contained in pIn->iSdst. There are
2611 ** pIn->nSdst columns to be output. pDest is where the output should
2612 ** be sent.
2614 ** regReturn is the number of the register holding the subroutine
2615 ** return address.
2617 ** If regPrev>0 then it is the first register in a vector that
2618 ** records the previous output. mem[regPrev] is a flag that is false
2619 ** if there has been no previous output. If regPrev>0 then code is
2620 ** generated to suppress duplicates. pKeyInfo is used for comparing
2621 ** keys.
2623 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2624 ** iBreak.
2626 static int generateOutputSubroutine(
2627 Parse *pParse, /* Parsing context */
2628 Select *p, /* The SELECT statement */
2629 SelectDest *pIn, /* Coroutine supplying data */
2630 SelectDest *pDest, /* Where to send the data */
2631 int regReturn, /* The return address register */
2632 int regPrev, /* Previous result register. No uniqueness if 0 */
2633 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2634 int iBreak /* Jump here if we hit the LIMIT */
2636 Vdbe *v = pParse->pVdbe;
2637 int iContinue;
2638 int addr;
2640 addr = sqlite3VdbeCurrentAddr(v);
2641 iContinue = sqlite3VdbeMakeLabel(v);
2643 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2645 if( regPrev ){
2646 int addr1, addr2;
2647 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2648 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2649 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2650 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2651 sqlite3VdbeJumpHere(v, addr1);
2652 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2653 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2655 if( pParse->db->mallocFailed ) return 0;
2657 /* Suppress the first OFFSET entries if there is an OFFSET clause
2659 codeOffset(v, p->iOffset, iContinue);
2661 assert( pDest->eDest!=SRT_Exists );
2662 assert( pDest->eDest!=SRT_Table );
2663 switch( pDest->eDest ){
2664 /* Store the result as data using a unique key.
2666 case SRT_EphemTab: {
2667 int r1 = sqlite3GetTempReg(pParse);
2668 int r2 = sqlite3GetTempReg(pParse);
2669 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2670 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2671 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2672 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2673 sqlite3ReleaseTempReg(pParse, r2);
2674 sqlite3ReleaseTempReg(pParse, r1);
2675 break;
2678 #ifndef SQLITE_OMIT_SUBQUERY
2679 /* If we are creating a set for an "expr IN (SELECT ...)".
2681 case SRT_Set: {
2682 int r1;
2683 testcase( pIn->nSdst>1 );
2684 r1 = sqlite3GetTempReg(pParse);
2685 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2686 r1, pDest->zAffSdst, pIn->nSdst);
2687 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2688 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2689 pIn->iSdst, pIn->nSdst);
2690 sqlite3ReleaseTempReg(pParse, r1);
2691 break;
2694 /* If this is a scalar select that is part of an expression, then
2695 ** store the results in the appropriate memory cell and break out
2696 ** of the scan loop.
2698 case SRT_Mem: {
2699 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 );
2700 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2701 /* The LIMIT clause will jump out of the loop for us */
2702 break;
2704 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2706 /* The results are stored in a sequence of registers
2707 ** starting at pDest->iSdst. Then the co-routine yields.
2709 case SRT_Coroutine: {
2710 if( pDest->iSdst==0 ){
2711 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2712 pDest->nSdst = pIn->nSdst;
2714 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2715 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2716 break;
2719 /* If none of the above, then the result destination must be
2720 ** SRT_Output. This routine is never called with any other
2721 ** destination other than the ones handled above or SRT_Output.
2723 ** For SRT_Output, results are stored in a sequence of registers.
2724 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2725 ** return the next row of result.
2727 default: {
2728 assert( pDest->eDest==SRT_Output );
2729 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2730 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2731 break;
2735 /* Jump to the end of the loop if the LIMIT is reached.
2737 if( p->iLimit ){
2738 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2741 /* Generate the subroutine return
2743 sqlite3VdbeResolveLabel(v, iContinue);
2744 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2746 return addr;
2750 ** Alternative compound select code generator for cases when there
2751 ** is an ORDER BY clause.
2753 ** We assume a query of the following form:
2755 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2757 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2758 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2759 ** co-routines. Then run the co-routines in parallel and merge the results
2760 ** into the output. In addition to the two coroutines (called selectA and
2761 ** selectB) there are 7 subroutines:
2763 ** outA: Move the output of the selectA coroutine into the output
2764 ** of the compound query.
2766 ** outB: Move the output of the selectB coroutine into the output
2767 ** of the compound query. (Only generated for UNION and
2768 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2769 ** appears only in B.)
2771 ** AltB: Called when there is data from both coroutines and A<B.
2773 ** AeqB: Called when there is data from both coroutines and A==B.
2775 ** AgtB: Called when there is data from both coroutines and A>B.
2777 ** EofA: Called when data is exhausted from selectA.
2779 ** EofB: Called when data is exhausted from selectB.
2781 ** The implementation of the latter five subroutines depend on which
2782 ** <operator> is used:
2785 ** UNION ALL UNION EXCEPT INTERSECT
2786 ** ------------- ----------------- -------------- -----------------
2787 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2789 ** AeqB: outA, nextA nextA nextA outA, nextA
2791 ** AgtB: outB, nextB outB, nextB nextB nextB
2793 ** EofA: outB, nextB outB, nextB halt halt
2795 ** EofB: outA, nextA outA, nextA outA, nextA halt
2797 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2798 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2799 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2800 ** following nextX causes a jump to the end of the select processing.
2802 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2803 ** within the output subroutine. The regPrev register set holds the previously
2804 ** output value. A comparison is made against this value and the output
2805 ** is skipped if the next results would be the same as the previous.
2807 ** The implementation plan is to implement the two coroutines and seven
2808 ** subroutines first, then put the control logic at the bottom. Like this:
2810 ** goto Init
2811 ** coA: coroutine for left query (A)
2812 ** coB: coroutine for right query (B)
2813 ** outA: output one row of A
2814 ** outB: output one row of B (UNION and UNION ALL only)
2815 ** EofA: ...
2816 ** EofB: ...
2817 ** AltB: ...
2818 ** AeqB: ...
2819 ** AgtB: ...
2820 ** Init: initialize coroutine registers
2821 ** yield coA
2822 ** if eof(A) goto EofA
2823 ** yield coB
2824 ** if eof(B) goto EofB
2825 ** Cmpr: Compare A, B
2826 ** Jump AltB, AeqB, AgtB
2827 ** End: ...
2829 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2830 ** actually called using Gosub and they do not Return. EofA and EofB loop
2831 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2832 ** and AgtB jump to either L2 or to one of EofA or EofB.
2834 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2835 static int multiSelectOrderBy(
2836 Parse *pParse, /* Parsing context */
2837 Select *p, /* The right-most of SELECTs to be coded */
2838 SelectDest *pDest /* What to do with query results */
2840 int i, j; /* Loop counters */
2841 Select *pPrior; /* Another SELECT immediately to our left */
2842 Vdbe *v; /* Generate code to this VDBE */
2843 SelectDest destA; /* Destination for coroutine A */
2844 SelectDest destB; /* Destination for coroutine B */
2845 int regAddrA; /* Address register for select-A coroutine */
2846 int regAddrB; /* Address register for select-B coroutine */
2847 int addrSelectA; /* Address of the select-A coroutine */
2848 int addrSelectB; /* Address of the select-B coroutine */
2849 int regOutA; /* Address register for the output-A subroutine */
2850 int regOutB; /* Address register for the output-B subroutine */
2851 int addrOutA; /* Address of the output-A subroutine */
2852 int addrOutB = 0; /* Address of the output-B subroutine */
2853 int addrEofA; /* Address of the select-A-exhausted subroutine */
2854 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
2855 int addrEofB; /* Address of the select-B-exhausted subroutine */
2856 int addrAltB; /* Address of the A<B subroutine */
2857 int addrAeqB; /* Address of the A==B subroutine */
2858 int addrAgtB; /* Address of the A>B subroutine */
2859 int regLimitA; /* Limit register for select-A */
2860 int regLimitB; /* Limit register for select-A */
2861 int regPrev; /* A range of registers to hold previous output */
2862 int savedLimit; /* Saved value of p->iLimit */
2863 int savedOffset; /* Saved value of p->iOffset */
2864 int labelCmpr; /* Label for the start of the merge algorithm */
2865 int labelEnd; /* Label for the end of the overall SELECT stmt */
2866 int addr1; /* Jump instructions that get retargetted */
2867 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2868 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2869 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
2870 sqlite3 *db; /* Database connection */
2871 ExprList *pOrderBy; /* The ORDER BY clause */
2872 int nOrderBy; /* Number of terms in the ORDER BY clause */
2873 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
2874 #ifndef SQLITE_OMIT_EXPLAIN
2875 int iSub1; /* EQP id of left-hand query */
2876 int iSub2; /* EQP id of right-hand query */
2877 #endif
2879 assert( p->pOrderBy!=0 );
2880 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
2881 db = pParse->db;
2882 v = pParse->pVdbe;
2883 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
2884 labelEnd = sqlite3VdbeMakeLabel(v);
2885 labelCmpr = sqlite3VdbeMakeLabel(v);
2888 /* Patch up the ORDER BY clause
2890 op = p->op;
2891 pPrior = p->pPrior;
2892 assert( pPrior->pOrderBy==0 );
2893 pOrderBy = p->pOrderBy;
2894 assert( pOrderBy );
2895 nOrderBy = pOrderBy->nExpr;
2897 /* For operators other than UNION ALL we have to make sure that
2898 ** the ORDER BY clause covers every term of the result set. Add
2899 ** terms to the ORDER BY clause as necessary.
2901 if( op!=TK_ALL ){
2902 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2903 struct ExprList_item *pItem;
2904 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2905 assert( pItem->u.x.iOrderByCol>0 );
2906 if( pItem->u.x.iOrderByCol==i ) break;
2908 if( j==nOrderBy ){
2909 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2910 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2911 pNew->flags |= EP_IntValue;
2912 pNew->u.iValue = i;
2913 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2914 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2919 /* Compute the comparison permutation and keyinfo that is used with
2920 ** the permutation used to determine if the next
2921 ** row of results comes from selectA or selectB. Also add explicit
2922 ** collations to the ORDER BY clause terms so that when the subqueries
2923 ** to the right and the left are evaluated, they use the correct
2924 ** collation.
2926 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2927 if( aPermute ){
2928 struct ExprList_item *pItem;
2929 aPermute[0] = nOrderBy;
2930 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2931 assert( pItem->u.x.iOrderByCol>0 );
2932 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2933 aPermute[i] = pItem->u.x.iOrderByCol - 1;
2935 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2936 }else{
2937 pKeyMerge = 0;
2940 /* Reattach the ORDER BY clause to the query.
2942 p->pOrderBy = pOrderBy;
2943 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2945 /* Allocate a range of temporary registers and the KeyInfo needed
2946 ** for the logic that removes duplicate result rows when the
2947 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2949 if( op==TK_ALL ){
2950 regPrev = 0;
2951 }else{
2952 int nExpr = p->pEList->nExpr;
2953 assert( nOrderBy>=nExpr || db->mallocFailed );
2954 regPrev = pParse->nMem+1;
2955 pParse->nMem += nExpr+1;
2956 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2957 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2958 if( pKeyDup ){
2959 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2960 for(i=0; i<nExpr; i++){
2961 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2962 pKeyDup->aSortOrder[i] = 0;
2967 /* Separate the left and the right query from one another
2969 p->pPrior = 0;
2970 pPrior->pNext = 0;
2971 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2972 if( pPrior->pPrior==0 ){
2973 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2976 /* Compute the limit registers */
2977 computeLimitRegisters(pParse, p, labelEnd);
2978 if( p->iLimit && op==TK_ALL ){
2979 regLimitA = ++pParse->nMem;
2980 regLimitB = ++pParse->nMem;
2981 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2982 regLimitA);
2983 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2984 }else{
2985 regLimitA = regLimitB = 0;
2987 sqlite3ExprDelete(db, p->pLimit);
2988 p->pLimit = 0;
2990 regAddrA = ++pParse->nMem;
2991 regAddrB = ++pParse->nMem;
2992 regOutA = ++pParse->nMem;
2993 regOutB = ++pParse->nMem;
2994 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2995 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2997 /* Generate a coroutine to evaluate the SELECT statement to the
2998 ** left of the compound operator - the "A" select.
3000 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3001 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3002 VdbeComment((v, "left SELECT"));
3003 pPrior->iLimit = regLimitA;
3004 explainSetInteger(iSub1, pParse->iNextSelectId);
3005 sqlite3Select(pParse, pPrior, &destA);
3006 sqlite3VdbeEndCoroutine(v, regAddrA);
3007 sqlite3VdbeJumpHere(v, addr1);
3009 /* Generate a coroutine to evaluate the SELECT statement on
3010 ** the right - the "B" select
3012 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3013 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3014 VdbeComment((v, "right SELECT"));
3015 savedLimit = p->iLimit;
3016 savedOffset = p->iOffset;
3017 p->iLimit = regLimitB;
3018 p->iOffset = 0;
3019 explainSetInteger(iSub2, pParse->iNextSelectId);
3020 sqlite3Select(pParse, p, &destB);
3021 p->iLimit = savedLimit;
3022 p->iOffset = savedOffset;
3023 sqlite3VdbeEndCoroutine(v, regAddrB);
3025 /* Generate a subroutine that outputs the current row of the A
3026 ** select as the next output row of the compound select.
3028 VdbeNoopComment((v, "Output routine for A"));
3029 addrOutA = generateOutputSubroutine(pParse,
3030 p, &destA, pDest, regOutA,
3031 regPrev, pKeyDup, labelEnd);
3033 /* Generate a subroutine that outputs the current row of the B
3034 ** select as the next output row of the compound select.
3036 if( op==TK_ALL || op==TK_UNION ){
3037 VdbeNoopComment((v, "Output routine for B"));
3038 addrOutB = generateOutputSubroutine(pParse,
3039 p, &destB, pDest, regOutB,
3040 regPrev, pKeyDup, labelEnd);
3042 sqlite3KeyInfoUnref(pKeyDup);
3044 /* Generate a subroutine to run when the results from select A
3045 ** are exhausted and only data in select B remains.
3047 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3048 addrEofA_noB = addrEofA = labelEnd;
3049 }else{
3050 VdbeNoopComment((v, "eof-A subroutine"));
3051 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3052 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3053 VdbeCoverage(v);
3054 sqlite3VdbeGoto(v, addrEofA);
3055 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3058 /* Generate a subroutine to run when the results from select B
3059 ** are exhausted and only data in select A remains.
3061 if( op==TK_INTERSECT ){
3062 addrEofB = addrEofA;
3063 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3064 }else{
3065 VdbeNoopComment((v, "eof-B subroutine"));
3066 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3067 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3068 sqlite3VdbeGoto(v, addrEofB);
3071 /* Generate code to handle the case of A<B
3073 VdbeNoopComment((v, "A-lt-B subroutine"));
3074 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3075 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3076 sqlite3VdbeGoto(v, labelCmpr);
3078 /* Generate code to handle the case of A==B
3080 if( op==TK_ALL ){
3081 addrAeqB = addrAltB;
3082 }else if( op==TK_INTERSECT ){
3083 addrAeqB = addrAltB;
3084 addrAltB++;
3085 }else{
3086 VdbeNoopComment((v, "A-eq-B subroutine"));
3087 addrAeqB =
3088 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3089 sqlite3VdbeGoto(v, labelCmpr);
3092 /* Generate code to handle the case of A>B
3094 VdbeNoopComment((v, "A-gt-B subroutine"));
3095 addrAgtB = sqlite3VdbeCurrentAddr(v);
3096 if( op==TK_ALL || op==TK_UNION ){
3097 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3099 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3100 sqlite3VdbeGoto(v, labelCmpr);
3102 /* This code runs once to initialize everything.
3104 sqlite3VdbeJumpHere(v, addr1);
3105 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3106 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3108 /* Implement the main merge loop
3110 sqlite3VdbeResolveLabel(v, labelCmpr);
3111 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3112 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3113 (char*)pKeyMerge, P4_KEYINFO);
3114 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3115 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3117 /* Jump to the this point in order to terminate the query.
3119 sqlite3VdbeResolveLabel(v, labelEnd);
3121 /* Reassembly the compound query so that it will be freed correctly
3122 ** by the calling function */
3123 if( p->pPrior ){
3124 sqlite3SelectDelete(db, p->pPrior);
3126 p->pPrior = pPrior;
3127 pPrior->pNext = p;
3129 /*** TBD: Insert subroutine calls to close cursors on incomplete
3130 **** subqueries ****/
3131 explainComposite(pParse, p->op, iSub1, iSub2, 0);
3132 return pParse->nErr!=0;
3134 #endif
3136 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3138 /* An instance of the SubstContext object describes an substitution edit
3139 ** to be performed on a parse tree.
3141 ** All references to columns in table iTable are to be replaced by corresponding
3142 ** expressions in pEList.
3144 typedef struct SubstContext {
3145 Parse *pParse; /* The parsing context */
3146 int iTable; /* Replace references to this table */
3147 int iNewTable; /* New table number */
3148 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3149 ExprList *pEList; /* Replacement expressions */
3150 } SubstContext;
3152 /* Forward Declarations */
3153 static void substExprList(SubstContext*, ExprList*);
3154 static void substSelect(SubstContext*, Select*, int);
3157 ** Scan through the expression pExpr. Replace every reference to
3158 ** a column in table number iTable with a copy of the iColumn-th
3159 ** entry in pEList. (But leave references to the ROWID column
3160 ** unchanged.)
3162 ** This routine is part of the flattening procedure. A subquery
3163 ** whose result set is defined by pEList appears as entry in the
3164 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3165 ** FORM clause entry is iTable. This routine makes the necessary
3166 ** changes to pExpr so that it refers directly to the source table
3167 ** of the subquery rather the result set of the subquery.
3169 static Expr *substExpr(
3170 SubstContext *pSubst, /* Description of the substitution */
3171 Expr *pExpr /* Expr in which substitution occurs */
3173 if( pExpr==0 ) return 0;
3174 if( ExprHasProperty(pExpr, EP_FromJoin)
3175 && pExpr->iRightJoinTable==pSubst->iTable
3177 pExpr->iRightJoinTable = pSubst->iNewTable;
3179 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3180 if( pExpr->iColumn<0 ){
3181 pExpr->op = TK_NULL;
3182 }else{
3183 Expr *pNew;
3184 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3185 Expr ifNullRow;
3186 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3187 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3188 if( sqlite3ExprIsVector(pCopy) ){
3189 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3190 }else{
3191 sqlite3 *db = pSubst->pParse->db;
3192 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3193 memset(&ifNullRow, 0, sizeof(ifNullRow));
3194 ifNullRow.op = TK_IF_NULL_ROW;
3195 ifNullRow.pLeft = pCopy;
3196 ifNullRow.iTable = pSubst->iNewTable;
3197 pCopy = &ifNullRow;
3199 pNew = sqlite3ExprDup(db, pCopy, 0);
3200 if( pNew && pSubst->isLeftJoin ){
3201 ExprSetProperty(pNew, EP_CanBeNull);
3203 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3204 pNew->iRightJoinTable = pExpr->iRightJoinTable;
3205 ExprSetProperty(pNew, EP_FromJoin);
3207 sqlite3ExprDelete(db, pExpr);
3208 pExpr = pNew;
3211 }else{
3212 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3213 pExpr->iTable = pSubst->iNewTable;
3215 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3216 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3217 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3218 substSelect(pSubst, pExpr->x.pSelect, 1);
3219 }else{
3220 substExprList(pSubst, pExpr->x.pList);
3223 return pExpr;
3225 static void substExprList(
3226 SubstContext *pSubst, /* Description of the substitution */
3227 ExprList *pList /* List to scan and in which to make substitutes */
3229 int i;
3230 if( pList==0 ) return;
3231 for(i=0; i<pList->nExpr; i++){
3232 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3235 static void substSelect(
3236 SubstContext *pSubst, /* Description of the substitution */
3237 Select *p, /* SELECT statement in which to make substitutions */
3238 int doPrior /* Do substitutes on p->pPrior too */
3240 SrcList *pSrc;
3241 struct SrcList_item *pItem;
3242 int i;
3243 if( !p ) return;
3245 substExprList(pSubst, p->pEList);
3246 substExprList(pSubst, p->pGroupBy);
3247 substExprList(pSubst, p->pOrderBy);
3248 p->pHaving = substExpr(pSubst, p->pHaving);
3249 p->pWhere = substExpr(pSubst, p->pWhere);
3250 pSrc = p->pSrc;
3251 assert( pSrc!=0 );
3252 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3253 substSelect(pSubst, pItem->pSelect, 1);
3254 if( pItem->fg.isTabFunc ){
3255 substExprList(pSubst, pItem->u1.pFuncArg);
3258 }while( doPrior && (p = p->pPrior)!=0 );
3260 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3262 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3264 ** This routine attempts to flatten subqueries as a performance optimization.
3265 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3267 ** To understand the concept of flattening, consider the following
3268 ** query:
3270 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3272 ** The default way of implementing this query is to execute the
3273 ** subquery first and store the results in a temporary table, then
3274 ** run the outer query on that temporary table. This requires two
3275 ** passes over the data. Furthermore, because the temporary table
3276 ** has no indices, the WHERE clause on the outer query cannot be
3277 ** optimized.
3279 ** This routine attempts to rewrite queries such as the above into
3280 ** a single flat select, like this:
3282 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3284 ** The code generated for this simplification gives the same result
3285 ** but only has to scan the data once. And because indices might
3286 ** exist on the table t1, a complete scan of the data might be
3287 ** avoided.
3289 ** Flattening is subject to the following constraints:
3291 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3292 ** The subquery and the outer query cannot both be aggregates.
3294 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3295 ** (2) If the subquery is an aggregate then
3296 ** (2a) the outer query must not be a join and
3297 ** (2b) the outer query must not use subqueries
3298 ** other than the one FROM-clause subquery that is a candidate
3299 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3300 ** from 2015-02-09.)
3302 ** (3) If the subquery is the right operand of a LEFT JOIN then
3303 ** (3a) the subquery may not be a join and
3304 ** (3b) the FROM clause of the subquery may not contain a virtual
3305 ** table and
3306 ** (3c) the outer query may not be an aggregate.
3308 ** (4) The subquery can not be DISTINCT.
3310 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3311 ** sub-queries that were excluded from this optimization. Restriction
3312 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3314 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3315 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3317 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3318 ** A FROM clause, consider adding a FROM clause with the special
3319 ** table sqlite_once that consists of a single row containing a
3320 ** single NULL.
3322 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3324 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3326 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3327 ** accidently carried the comment forward until 2014-09-15. Original
3328 ** constraint: "If the subquery is aggregate then the outer query
3329 ** may not use LIMIT."
3331 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3333 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3334 ** a separate restriction deriving from ticket #350.
3336 ** (13) The subquery and outer query may not both use LIMIT.
3338 ** (14) The subquery may not use OFFSET.
3340 ** (15) If the outer query is part of a compound select, then the
3341 ** subquery may not use LIMIT.
3342 ** (See ticket #2339 and ticket [02a8e81d44]).
3344 ** (16) If the outer query is aggregate, then the subquery may not
3345 ** use ORDER BY. (Ticket #2942) This used to not matter
3346 ** until we introduced the group_concat() function.
3348 ** (17) If the subquery is a compound select, then
3349 ** (17a) all compound operators must be a UNION ALL, and
3350 ** (17b) no terms within the subquery compound may be aggregate
3351 ** or DISTINCT, and
3352 ** (17c) every term within the subquery compound must have a FROM clause
3353 ** (17d) the outer query may not be
3354 ** (17d1) aggregate, or
3355 ** (17d2) DISTINCT, or
3356 ** (17d3) a join.
3358 ** The parent and sub-query may contain WHERE clauses. Subject to
3359 ** rules (11), (13) and (14), they may also contain ORDER BY,
3360 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3361 ** operator other than UNION ALL because all the other compound
3362 ** operators have an implied DISTINCT which is disallowed by
3363 ** restriction (4).
3365 ** Also, each component of the sub-query must return the same number
3366 ** of result columns. This is actually a requirement for any compound
3367 ** SELECT statement, but all the code here does is make sure that no
3368 ** such (illegal) sub-query is flattened. The caller will detect the
3369 ** syntax error and return a detailed message.
3371 ** (18) If the sub-query is a compound select, then all terms of the
3372 ** ORDER BY clause of the parent must be simple references to
3373 ** columns of the sub-query.
3375 ** (19) If the subquery uses LIMIT then the outer query may not
3376 ** have a WHERE clause.
3378 ** (20) If the sub-query is a compound select, then it must not use
3379 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3380 ** somewhat by saying that the terms of the ORDER BY clause must
3381 ** appear as unmodified result columns in the outer query. But we
3382 ** have other optimizations in mind to deal with that case.
3384 ** (21) If the subquery uses LIMIT then the outer query may not be
3385 ** DISTINCT. (See ticket [752e1646fc]).
3387 ** (22) The subquery may not be a recursive CTE.
3389 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3390 ** a recursive CTE, then the sub-query may not be a compound query.
3391 ** This restriction is because transforming the
3392 ** parent to a compound query confuses the code that handles
3393 ** recursive queries in multiSelect().
3395 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3396 ** The subquery may not be an aggregate that uses the built-in min() or
3397 ** or max() functions. (Without this restriction, a query like:
3398 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3399 ** return the value X for which Y was maximal.)
3402 ** In this routine, the "p" parameter is a pointer to the outer query.
3403 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3404 ** uses aggregates.
3406 ** If flattening is not attempted, this routine is a no-op and returns 0.
3407 ** If flattening is attempted this routine returns 1.
3409 ** All of the expression analysis must occur on both the outer query and
3410 ** the subquery before this routine runs.
3412 static int flattenSubquery(
3413 Parse *pParse, /* Parsing context */
3414 Select *p, /* The parent or outer SELECT statement */
3415 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3416 int isAgg /* True if outer SELECT uses aggregate functions */
3418 const char *zSavedAuthContext = pParse->zAuthContext;
3419 Select *pParent; /* Current UNION ALL term of the other query */
3420 Select *pSub; /* The inner query or "subquery" */
3421 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3422 SrcList *pSrc; /* The FROM clause of the outer query */
3423 SrcList *pSubSrc; /* The FROM clause of the subquery */
3424 int iParent; /* VDBE cursor number of the pSub result set temp table */
3425 int iNewParent = -1;/* Replacement table for iParent */
3426 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3427 int i; /* Loop counter */
3428 Expr *pWhere; /* The WHERE clause */
3429 struct SrcList_item *pSubitem; /* The subquery */
3430 sqlite3 *db = pParse->db;
3432 /* Check to see if flattening is permitted. Return 0 if not.
3434 assert( p!=0 );
3435 assert( p->pPrior==0 );
3436 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3437 pSrc = p->pSrc;
3438 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3439 pSubitem = &pSrc->a[iFrom];
3440 iParent = pSubitem->iCursor;
3441 pSub = pSubitem->pSelect;
3442 assert( pSub!=0 );
3444 pSubSrc = pSub->pSrc;
3445 assert( pSubSrc );
3446 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3447 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3448 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3449 ** became arbitrary expressions, we were forced to add restrictions (13)
3450 ** and (14). */
3451 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3452 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
3453 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3454 return 0; /* Restriction (15) */
3456 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3457 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
3458 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3459 return 0; /* Restrictions (8)(9) */
3461 if( p->pOrderBy && pSub->pOrderBy ){
3462 return 0; /* Restriction (11) */
3464 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3465 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3466 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3467 return 0; /* Restriction (21) */
3469 if( pSub->selFlags & (SF_Recursive) ){
3470 return 0; /* Restrictions (22) */
3474 ** If the subquery is the right operand of a LEFT JOIN, then the
3475 ** subquery may not be a join itself (3a). Example of why this is not
3476 ** allowed:
3478 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3480 ** If we flatten the above, we would get
3482 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3484 ** which is not at all the same thing.
3486 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3487 ** query cannot be an aggregate. (3c) This is an artifact of the way
3488 ** aggregates are processed - there is no mechanism to determine if
3489 ** the LEFT JOIN table should be all-NULL.
3491 ** See also tickets #306, #350, and #3300.
3493 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3494 isLeftJoin = 1;
3495 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3496 /* (3a) (3c) (3b) */
3497 return 0;
3500 #ifdef SQLITE_EXTRA_IFNULLROW
3501 else if( iFrom>0 && !isAgg ){
3502 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3503 ** every reference to any result column from subquery in a join, even
3504 ** though they are not necessary. This will stress-test the OP_IfNullRow
3505 ** opcode. */
3506 isLeftJoin = -1;
3508 #endif
3510 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3511 ** use only the UNION ALL operator. And none of the simple select queries
3512 ** that make up the compound SELECT are allowed to be aggregate or distinct
3513 ** queries.
3515 if( pSub->pPrior ){
3516 if( pSub->pOrderBy ){
3517 return 0; /* Restriction (20) */
3519 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3520 return 0; /* (17d1), (17d2), or (17d3) */
3522 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3523 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3524 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3525 assert( pSub->pSrc!=0 );
3526 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3527 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
3528 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
3529 || pSub1->pSrc->nSrc<1 /* (17c) */
3531 return 0;
3533 testcase( pSub1->pSrc->nSrc>1 );
3536 /* Restriction (18). */
3537 if( p->pOrderBy ){
3538 int ii;
3539 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3540 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3545 /* Ex-restriction (23):
3546 ** The only way that the recursive part of a CTE can contain a compound
3547 ** subquery is for the subquery to be one term of a join. But if the
3548 ** subquery is a join, then the flattening has already been stopped by
3549 ** restriction (17d3)
3551 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3553 /***** If we reach this point, flattening is permitted. *****/
3554 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3555 pSub->zSelName, pSub, iFrom));
3557 /* Authorize the subquery */
3558 pParse->zAuthContext = pSubitem->zName;
3559 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3560 testcase( i==SQLITE_DENY );
3561 pParse->zAuthContext = zSavedAuthContext;
3563 /* If the sub-query is a compound SELECT statement, then (by restrictions
3564 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3565 ** be of the form:
3567 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3569 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3570 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3571 ** OFFSET clauses and joins them to the left-hand-side of the original
3572 ** using UNION ALL operators. In this case N is the number of simple
3573 ** select statements in the compound sub-query.
3575 ** Example:
3577 ** SELECT a+1 FROM (
3578 ** SELECT x FROM tab
3579 ** UNION ALL
3580 ** SELECT y FROM tab
3581 ** UNION ALL
3582 ** SELECT abs(z*2) FROM tab2
3583 ** ) WHERE a!=5 ORDER BY 1
3585 ** Transformed into:
3587 ** SELECT x+1 FROM tab WHERE x+1!=5
3588 ** UNION ALL
3589 ** SELECT y+1 FROM tab WHERE y+1!=5
3590 ** UNION ALL
3591 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3592 ** ORDER BY 1
3594 ** We call this the "compound-subquery flattening".
3596 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3597 Select *pNew;
3598 ExprList *pOrderBy = p->pOrderBy;
3599 Expr *pLimit = p->pLimit;
3600 Select *pPrior = p->pPrior;
3601 p->pOrderBy = 0;
3602 p->pSrc = 0;
3603 p->pPrior = 0;
3604 p->pLimit = 0;
3605 pNew = sqlite3SelectDup(db, p, 0);
3606 sqlite3SelectSetName(pNew, pSub->zSelName);
3607 p->pLimit = pLimit;
3608 p->pOrderBy = pOrderBy;
3609 p->pSrc = pSrc;
3610 p->op = TK_ALL;
3611 if( pNew==0 ){
3612 p->pPrior = pPrior;
3613 }else{
3614 pNew->pPrior = pPrior;
3615 if( pPrior ) pPrior->pNext = pNew;
3616 pNew->pNext = p;
3617 p->pPrior = pNew;
3618 SELECTTRACE(2,pParse,p,
3619 ("compound-subquery flattener creates %s.%p as peer\n",
3620 pNew->zSelName, pNew));
3622 if( db->mallocFailed ) return 1;
3625 /* Begin flattening the iFrom-th entry of the FROM clause
3626 ** in the outer query.
3628 pSub = pSub1 = pSubitem->pSelect;
3630 /* Delete the transient table structure associated with the
3631 ** subquery
3633 sqlite3DbFree(db, pSubitem->zDatabase);
3634 sqlite3DbFree(db, pSubitem->zName);
3635 sqlite3DbFree(db, pSubitem->zAlias);
3636 pSubitem->zDatabase = 0;
3637 pSubitem->zName = 0;
3638 pSubitem->zAlias = 0;
3639 pSubitem->pSelect = 0;
3641 /* Defer deleting the Table object associated with the
3642 ** subquery until code generation is
3643 ** complete, since there may still exist Expr.pTab entries that
3644 ** refer to the subquery even after flattening. Ticket #3346.
3646 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3648 if( ALWAYS(pSubitem->pTab!=0) ){
3649 Table *pTabToDel = pSubitem->pTab;
3650 if( pTabToDel->nTabRef==1 ){
3651 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3652 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3653 pToplevel->pZombieTab = pTabToDel;
3654 }else{
3655 pTabToDel->nTabRef--;
3657 pSubitem->pTab = 0;
3660 /* The following loop runs once for each term in a compound-subquery
3661 ** flattening (as described above). If we are doing a different kind
3662 ** of flattening - a flattening other than a compound-subquery flattening -
3663 ** then this loop only runs once.
3665 ** This loop moves all of the FROM elements of the subquery into the
3666 ** the FROM clause of the outer query. Before doing this, remember
3667 ** the cursor number for the original outer query FROM element in
3668 ** iParent. The iParent cursor will never be used. Subsequent code
3669 ** will scan expressions looking for iParent references and replace
3670 ** those references with expressions that resolve to the subquery FROM
3671 ** elements we are now copying in.
3673 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3674 int nSubSrc;
3675 u8 jointype = 0;
3676 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3677 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3678 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3680 if( pSrc ){
3681 assert( pParent==p ); /* First time through the loop */
3682 jointype = pSubitem->fg.jointype;
3683 }else{
3684 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3685 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3686 if( pSrc==0 ){
3687 assert( db->mallocFailed );
3688 break;
3692 /* The subquery uses a single slot of the FROM clause of the outer
3693 ** query. If the subquery has more than one element in its FROM clause,
3694 ** then expand the outer query to make space for it to hold all elements
3695 ** of the subquery.
3697 ** Example:
3699 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3701 ** The outer query has 3 slots in its FROM clause. One slot of the
3702 ** outer query (the middle slot) is used by the subquery. The next
3703 ** block of code will expand the outer query FROM clause to 4 slots.
3704 ** The middle slot is expanded to two slots in order to make space
3705 ** for the two elements in the FROM clause of the subquery.
3707 if( nSubSrc>1 ){
3708 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3709 if( db->mallocFailed ){
3710 break;
3714 /* Transfer the FROM clause terms from the subquery into the
3715 ** outer query.
3717 for(i=0; i<nSubSrc; i++){
3718 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3719 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3720 pSrc->a[i+iFrom] = pSubSrc->a[i];
3721 iNewParent = pSubSrc->a[i].iCursor;
3722 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3724 pSrc->a[iFrom].fg.jointype = jointype;
3726 /* Now begin substituting subquery result set expressions for
3727 ** references to the iParent in the outer query.
3729 ** Example:
3731 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3732 ** \ \_____________ subquery __________/ /
3733 ** \_____________________ outer query ______________________________/
3735 ** We look at every expression in the outer query and every place we see
3736 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3738 if( pSub->pOrderBy ){
3739 /* At this point, any non-zero iOrderByCol values indicate that the
3740 ** ORDER BY column expression is identical to the iOrderByCol'th
3741 ** expression returned by SELECT statement pSub. Since these values
3742 ** do not necessarily correspond to columns in SELECT statement pParent,
3743 ** zero them before transfering the ORDER BY clause.
3745 ** Not doing this may cause an error if a subsequent call to this
3746 ** function attempts to flatten a compound sub-query into pParent
3747 ** (the only way this can happen is if the compound sub-query is
3748 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3749 ExprList *pOrderBy = pSub->pOrderBy;
3750 for(i=0; i<pOrderBy->nExpr; i++){
3751 pOrderBy->a[i].u.x.iOrderByCol = 0;
3753 assert( pParent->pOrderBy==0 );
3754 assert( pSub->pPrior==0 );
3755 pParent->pOrderBy = pOrderBy;
3756 pSub->pOrderBy = 0;
3758 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3759 if( isLeftJoin>0 ){
3760 setJoinExpr(pWhere, iNewParent);
3762 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3763 if( db->mallocFailed==0 ){
3764 SubstContext x;
3765 x.pParse = pParse;
3766 x.iTable = iParent;
3767 x.iNewTable = iNewParent;
3768 x.isLeftJoin = isLeftJoin;
3769 x.pEList = pSub->pEList;
3770 substSelect(&x, pParent, 0);
3773 /* The flattened query is distinct if either the inner or the
3774 ** outer query is distinct.
3776 pParent->selFlags |= pSub->selFlags & SF_Distinct;
3779 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3781 ** One is tempted to try to add a and b to combine the limits. But this
3782 ** does not work if either limit is negative.
3784 if( pSub->pLimit ){
3785 pParent->pLimit = pSub->pLimit;
3786 pSub->pLimit = 0;
3790 /* Finially, delete what is left of the subquery and return
3791 ** success.
3793 sqlite3SelectDelete(db, pSub1);
3795 #if SELECTTRACE_ENABLED
3796 if( sqlite3SelectTrace & 0x100 ){
3797 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3798 sqlite3TreeViewSelect(0, p, 0);
3800 #endif
3802 return 1;
3804 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3808 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3810 ** Make copies of relevant WHERE clause terms of the outer query into
3811 ** the WHERE clause of subquery. Example:
3813 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3815 ** Transformed into:
3817 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3818 ** WHERE x=5 AND y=10;
3820 ** The hope is that the terms added to the inner query will make it more
3821 ** efficient.
3823 ** Do not attempt this optimization if:
3825 ** (1) (** This restriction was removed on 2017-09-29. We used to
3826 ** disallow this optimization for aggregate subqueries, but now
3827 ** it is allowed by putting the extra terms on the HAVING clause.
3828 ** The added HAVING clause is pointless if the subquery lacks
3829 ** a GROUP BY clause. But such a HAVING clause is also harmless
3830 ** so there does not appear to be any reason to add extra logic
3831 ** to suppress it. **)
3833 ** (2) The inner query is the recursive part of a common table expression.
3835 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
3836 ** close would change the meaning of the LIMIT).
3838 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller
3839 ** enforces this restriction since this routine does not have enough
3840 ** information to know.)
3842 ** (5) The WHERE clause expression originates in the ON or USING clause
3843 ** of a LEFT JOIN.
3845 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3846 ** terms are duplicated into the subquery.
3848 static int pushDownWhereTerms(
3849 Parse *pParse, /* Parse context (for malloc() and error reporting) */
3850 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
3851 Expr *pWhere, /* The WHERE clause of the outer query */
3852 int iCursor /* Cursor number of the subquery */
3854 Expr *pNew;
3855 int nChng = 0;
3856 if( pWhere==0 ) return 0;
3857 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */
3859 #ifdef SQLITE_DEBUG
3860 /* Only the first term of a compound can have a WITH clause. But make
3861 ** sure no other terms are marked SF_Recursive in case something changes
3862 ** in the future.
3865 Select *pX;
3866 for(pX=pSubq; pX; pX=pX->pPrior){
3867 assert( (pX->selFlags & (SF_Recursive))==0 );
3870 #endif
3872 if( pSubq->pLimit!=0 ){
3873 return 0; /* restriction (3) */
3875 while( pWhere->op==TK_AND ){
3876 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
3877 pWhere = pWhere->pLeft;
3879 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction (5) */
3880 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3881 nChng++;
3882 while( pSubq ){
3883 SubstContext x;
3884 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3885 x.pParse = pParse;
3886 x.iTable = iCursor;
3887 x.iNewTable = iCursor;
3888 x.isLeftJoin = 0;
3889 x.pEList = pSubq->pEList;
3890 pNew = substExpr(&x, pNew);
3891 if( pSubq->selFlags & SF_Aggregate ){
3892 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
3893 }else{
3894 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3896 pSubq = pSubq->pPrior;
3899 return nChng;
3901 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3904 ** The pFunc is the only aggregate function in the query. Check to see
3905 ** if the query is a candidate for the min/max optimization.
3907 ** If the query is a candidate for the min/max optimization, then set
3908 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
3909 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
3910 ** whether pFunc is a min() or max() function.
3912 ** If the query is not a candidate for the min/max optimization, return
3913 ** WHERE_ORDERBY_NORMAL (which must be zero).
3915 ** This routine must be called after aggregate functions have been
3916 ** located but before their arguments have been subjected to aggregate
3917 ** analysis.
3919 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
3920 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
3921 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */
3922 const char *zFunc; /* Name of aggregate function pFunc */
3923 ExprList *pOrderBy;
3924 u8 sortOrder;
3926 assert( *ppMinMax==0 );
3927 assert( pFunc->op==TK_AGG_FUNCTION );
3928 if( pEList==0 || pEList->nExpr!=1 ) return eRet;
3929 zFunc = pFunc->u.zToken;
3930 if( sqlite3StrICmp(zFunc, "min")==0 ){
3931 eRet = WHERE_ORDERBY_MIN;
3932 sortOrder = SQLITE_SO_ASC;
3933 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3934 eRet = WHERE_ORDERBY_MAX;
3935 sortOrder = SQLITE_SO_DESC;
3936 }else{
3937 return eRet;
3939 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
3940 assert( pOrderBy!=0 || db->mallocFailed );
3941 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
3942 return eRet;
3946 ** The select statement passed as the first argument is an aggregate query.
3947 ** The second argument is the associated aggregate-info object. This
3948 ** function tests if the SELECT is of the form:
3950 ** SELECT count(*) FROM <tbl>
3952 ** where table is a database table, not a sub-select or view. If the query
3953 ** does match this pattern, then a pointer to the Table object representing
3954 ** <tbl> is returned. Otherwise, 0 is returned.
3956 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3957 Table *pTab;
3958 Expr *pExpr;
3960 assert( !p->pGroupBy );
3962 if( p->pWhere || p->pEList->nExpr!=1
3963 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3965 return 0;
3967 pTab = p->pSrc->a[0].pTab;
3968 pExpr = p->pEList->a[0].pExpr;
3969 assert( pTab && !pTab->pSelect && pExpr );
3971 if( IsVirtual(pTab) ) return 0;
3972 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3973 if( NEVER(pAggInfo->nFunc==0) ) return 0;
3974 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3975 if( pExpr->flags&EP_Distinct ) return 0;
3977 return pTab;
3981 ** If the source-list item passed as an argument was augmented with an
3982 ** INDEXED BY clause, then try to locate the specified index. If there
3983 ** was such a clause and the named index cannot be found, return
3984 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3985 ** pFrom->pIndex and return SQLITE_OK.
3987 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3988 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3989 Table *pTab = pFrom->pTab;
3990 char *zIndexedBy = pFrom->u1.zIndexedBy;
3991 Index *pIdx;
3992 for(pIdx=pTab->pIndex;
3993 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3994 pIdx=pIdx->pNext
3996 if( !pIdx ){
3997 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3998 pParse->checkSchema = 1;
3999 return SQLITE_ERROR;
4001 pFrom->pIBIndex = pIdx;
4003 return SQLITE_OK;
4006 ** Detect compound SELECT statements that use an ORDER BY clause with
4007 ** an alternative collating sequence.
4009 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4011 ** These are rewritten as a subquery:
4013 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4014 ** ORDER BY ... COLLATE ...
4016 ** This transformation is necessary because the multiSelectOrderBy() routine
4017 ** above that generates the code for a compound SELECT with an ORDER BY clause
4018 ** uses a merge algorithm that requires the same collating sequence on the
4019 ** result columns as on the ORDER BY clause. See ticket
4020 ** http://www.sqlite.org/src/info/6709574d2a
4022 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4023 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4024 ** there are COLLATE terms in the ORDER BY.
4026 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4027 int i;
4028 Select *pNew;
4029 Select *pX;
4030 sqlite3 *db;
4031 struct ExprList_item *a;
4032 SrcList *pNewSrc;
4033 Parse *pParse;
4034 Token dummy;
4036 if( p->pPrior==0 ) return WRC_Continue;
4037 if( p->pOrderBy==0 ) return WRC_Continue;
4038 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4039 if( pX==0 ) return WRC_Continue;
4040 a = p->pOrderBy->a;
4041 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4042 if( a[i].pExpr->flags & EP_Collate ) break;
4044 if( i<0 ) return WRC_Continue;
4046 /* If we reach this point, that means the transformation is required. */
4048 pParse = pWalker->pParse;
4049 db = pParse->db;
4050 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4051 if( pNew==0 ) return WRC_Abort;
4052 memset(&dummy, 0, sizeof(dummy));
4053 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4054 if( pNewSrc==0 ) return WRC_Abort;
4055 *pNew = *p;
4056 p->pSrc = pNewSrc;
4057 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4058 p->op = TK_SELECT;
4059 p->pWhere = 0;
4060 pNew->pGroupBy = 0;
4061 pNew->pHaving = 0;
4062 pNew->pOrderBy = 0;
4063 p->pPrior = 0;
4064 p->pNext = 0;
4065 p->pWith = 0;
4066 p->selFlags &= ~SF_Compound;
4067 assert( (p->selFlags & SF_Converted)==0 );
4068 p->selFlags |= SF_Converted;
4069 assert( pNew->pPrior!=0 );
4070 pNew->pPrior->pNext = pNew;
4071 pNew->pLimit = 0;
4072 return WRC_Continue;
4076 ** Check to see if the FROM clause term pFrom has table-valued function
4077 ** arguments. If it does, leave an error message in pParse and return
4078 ** non-zero, since pFrom is not allowed to be a table-valued function.
4080 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4081 if( pFrom->fg.isTabFunc ){
4082 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4083 return 1;
4085 return 0;
4088 #ifndef SQLITE_OMIT_CTE
4090 ** Argument pWith (which may be NULL) points to a linked list of nested
4091 ** WITH contexts, from inner to outermost. If the table identified by
4092 ** FROM clause element pItem is really a common-table-expression (CTE)
4093 ** then return a pointer to the CTE definition for that table. Otherwise
4094 ** return NULL.
4096 ** If a non-NULL value is returned, set *ppContext to point to the With
4097 ** object that the returned CTE belongs to.
4099 static struct Cte *searchWith(
4100 With *pWith, /* Current innermost WITH clause */
4101 struct SrcList_item *pItem, /* FROM clause element to resolve */
4102 With **ppContext /* OUT: WITH clause return value belongs to */
4104 const char *zName;
4105 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4106 With *p;
4107 for(p=pWith; p; p=p->pOuter){
4108 int i;
4109 for(i=0; i<p->nCte; i++){
4110 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4111 *ppContext = p;
4112 return &p->a[i];
4117 return 0;
4120 /* The code generator maintains a stack of active WITH clauses
4121 ** with the inner-most WITH clause being at the top of the stack.
4123 ** This routine pushes the WITH clause passed as the second argument
4124 ** onto the top of the stack. If argument bFree is true, then this
4125 ** WITH clause will never be popped from the stack. In this case it
4126 ** should be freed along with the Parse object. In other cases, when
4127 ** bFree==0, the With object will be freed along with the SELECT
4128 ** statement with which it is associated.
4130 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4131 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4132 if( pWith ){
4133 assert( pParse->pWith!=pWith );
4134 pWith->pOuter = pParse->pWith;
4135 pParse->pWith = pWith;
4136 if( bFree ) pParse->pWithToFree = pWith;
4141 ** This function checks if argument pFrom refers to a CTE declared by
4142 ** a WITH clause on the stack currently maintained by the parser. And,
4143 ** if currently processing a CTE expression, if it is a recursive
4144 ** reference to the current CTE.
4146 ** If pFrom falls into either of the two categories above, pFrom->pTab
4147 ** and other fields are populated accordingly. The caller should check
4148 ** (pFrom->pTab!=0) to determine whether or not a successful match
4149 ** was found.
4151 ** Whether or not a match is found, SQLITE_OK is returned if no error
4152 ** occurs. If an error does occur, an error message is stored in the
4153 ** parser and some error code other than SQLITE_OK returned.
4155 static int withExpand(
4156 Walker *pWalker,
4157 struct SrcList_item *pFrom
4159 Parse *pParse = pWalker->pParse;
4160 sqlite3 *db = pParse->db;
4161 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4162 With *pWith; /* WITH clause that pCte belongs to */
4164 assert( pFrom->pTab==0 );
4166 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4167 if( pCte ){
4168 Table *pTab;
4169 ExprList *pEList;
4170 Select *pSel;
4171 Select *pLeft; /* Left-most SELECT statement */
4172 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4173 With *pSavedWith; /* Initial value of pParse->pWith */
4175 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4176 ** recursive reference to CTE pCte. Leave an error in pParse and return
4177 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4178 ** In this case, proceed. */
4179 if( pCte->zCteErr ){
4180 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4181 return SQLITE_ERROR;
4183 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4185 assert( pFrom->pTab==0 );
4186 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4187 if( pTab==0 ) return WRC_Abort;
4188 pTab->nTabRef = 1;
4189 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4190 pTab->iPKey = -1;
4191 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4192 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4193 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4194 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4195 assert( pFrom->pSelect );
4197 /* Check if this is a recursive CTE. */
4198 pSel = pFrom->pSelect;
4199 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4200 if( bMayRecursive ){
4201 int i;
4202 SrcList *pSrc = pFrom->pSelect->pSrc;
4203 for(i=0; i<pSrc->nSrc; i++){
4204 struct SrcList_item *pItem = &pSrc->a[i];
4205 if( pItem->zDatabase==0
4206 && pItem->zName!=0
4207 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4209 pItem->pTab = pTab;
4210 pItem->fg.isRecursive = 1;
4211 pTab->nTabRef++;
4212 pSel->selFlags |= SF_Recursive;
4217 /* Only one recursive reference is permitted. */
4218 if( pTab->nTabRef>2 ){
4219 sqlite3ErrorMsg(
4220 pParse, "multiple references to recursive table: %s", pCte->zName
4222 return SQLITE_ERROR;
4224 assert( pTab->nTabRef==1 ||
4225 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4227 pCte->zCteErr = "circular reference: %s";
4228 pSavedWith = pParse->pWith;
4229 pParse->pWith = pWith;
4230 if( bMayRecursive ){
4231 Select *pPrior = pSel->pPrior;
4232 assert( pPrior->pWith==0 );
4233 pPrior->pWith = pSel->pWith;
4234 sqlite3WalkSelect(pWalker, pPrior);
4235 pPrior->pWith = 0;
4236 }else{
4237 sqlite3WalkSelect(pWalker, pSel);
4239 pParse->pWith = pWith;
4241 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4242 pEList = pLeft->pEList;
4243 if( pCte->pCols ){
4244 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4245 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4246 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4248 pParse->pWith = pSavedWith;
4249 return SQLITE_ERROR;
4251 pEList = pCte->pCols;
4254 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4255 if( bMayRecursive ){
4256 if( pSel->selFlags & SF_Recursive ){
4257 pCte->zCteErr = "multiple recursive references: %s";
4258 }else{
4259 pCte->zCteErr = "recursive reference in a subquery: %s";
4261 sqlite3WalkSelect(pWalker, pSel);
4263 pCte->zCteErr = 0;
4264 pParse->pWith = pSavedWith;
4267 return SQLITE_OK;
4269 #endif
4271 #ifndef SQLITE_OMIT_CTE
4273 ** If the SELECT passed as the second argument has an associated WITH
4274 ** clause, pop it from the stack stored as part of the Parse object.
4276 ** This function is used as the xSelectCallback2() callback by
4277 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4278 ** names and other FROM clause elements.
4280 static void selectPopWith(Walker *pWalker, Select *p){
4281 Parse *pParse = pWalker->pParse;
4282 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4283 With *pWith = findRightmost(p)->pWith;
4284 if( pWith!=0 ){
4285 assert( pParse->pWith==pWith );
4286 pParse->pWith = pWith->pOuter;
4290 #else
4291 #define selectPopWith 0
4292 #endif
4295 ** This routine is a Walker callback for "expanding" a SELECT statement.
4296 ** "Expanding" means to do the following:
4298 ** (1) Make sure VDBE cursor numbers have been assigned to every
4299 ** element of the FROM clause.
4301 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4302 ** defines FROM clause. When views appear in the FROM clause,
4303 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4304 ** that implements the view. A copy is made of the view's SELECT
4305 ** statement so that we can freely modify or delete that statement
4306 ** without worrying about messing up the persistent representation
4307 ** of the view.
4309 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4310 ** on joins and the ON and USING clause of joins.
4312 ** (4) Scan the list of columns in the result set (pEList) looking
4313 ** for instances of the "*" operator or the TABLE.* operator.
4314 ** If found, expand each "*" to be every column in every table
4315 ** and TABLE.* to be every column in TABLE.
4318 static int selectExpander(Walker *pWalker, Select *p){
4319 Parse *pParse = pWalker->pParse;
4320 int i, j, k;
4321 SrcList *pTabList;
4322 ExprList *pEList;
4323 struct SrcList_item *pFrom;
4324 sqlite3 *db = pParse->db;
4325 Expr *pE, *pRight, *pExpr;
4326 u16 selFlags = p->selFlags;
4327 u32 elistFlags = 0;
4329 p->selFlags |= SF_Expanded;
4330 if( db->mallocFailed ){
4331 return WRC_Abort;
4333 assert( p->pSrc!=0 );
4334 if( (selFlags & SF_Expanded)!=0 ){
4335 return WRC_Prune;
4337 pTabList = p->pSrc;
4338 pEList = p->pEList;
4339 if( OK_IF_ALWAYS_TRUE(p->pWith) ){
4340 sqlite3WithPush(pParse, p->pWith, 0);
4343 /* Make sure cursor numbers have been assigned to all entries in
4344 ** the FROM clause of the SELECT statement.
4346 sqlite3SrcListAssignCursors(pParse, pTabList);
4348 /* Look up every table named in the FROM clause of the select. If
4349 ** an entry of the FROM clause is a subquery instead of a table or view,
4350 ** then create a transient table structure to describe the subquery.
4352 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4353 Table *pTab;
4354 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4355 if( pFrom->fg.isRecursive ) continue;
4356 assert( pFrom->pTab==0 );
4357 #ifndef SQLITE_OMIT_CTE
4358 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4359 if( pFrom->pTab ) {} else
4360 #endif
4361 if( pFrom->zName==0 ){
4362 #ifndef SQLITE_OMIT_SUBQUERY
4363 Select *pSel = pFrom->pSelect;
4364 /* A sub-query in the FROM clause of a SELECT */
4365 assert( pSel!=0 );
4366 assert( pFrom->pTab==0 );
4367 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4368 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4369 if( pTab==0 ) return WRC_Abort;
4370 pTab->nTabRef = 1;
4371 if( pFrom->zAlias ){
4372 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias);
4373 }else{
4374 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab);
4376 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4377 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4378 pTab->iPKey = -1;
4379 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4380 pTab->tabFlags |= TF_Ephemeral;
4381 #endif
4382 }else{
4383 /* An ordinary table or view name in the FROM clause */
4384 assert( pFrom->pTab==0 );
4385 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4386 if( pTab==0 ) return WRC_Abort;
4387 if( pTab->nTabRef>=0xffff ){
4388 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4389 pTab->zName);
4390 pFrom->pTab = 0;
4391 return WRC_Abort;
4393 pTab->nTabRef++;
4394 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4395 return WRC_Abort;
4397 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4398 if( IsVirtual(pTab) || pTab->pSelect ){
4399 i16 nCol;
4400 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4401 assert( pFrom->pSelect==0 );
4402 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4403 sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4404 nCol = pTab->nCol;
4405 pTab->nCol = -1;
4406 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4407 pTab->nCol = nCol;
4409 #endif
4412 /* Locate the index named by the INDEXED BY clause, if any. */
4413 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4414 return WRC_Abort;
4418 /* Process NATURAL keywords, and ON and USING clauses of joins.
4420 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4421 return WRC_Abort;
4424 /* For every "*" that occurs in the column list, insert the names of
4425 ** all columns in all tables. And for every TABLE.* insert the names
4426 ** of all columns in TABLE. The parser inserted a special expression
4427 ** with the TK_ASTERISK operator for each "*" that it found in the column
4428 ** list. The following code just has to locate the TK_ASTERISK
4429 ** expressions and expand each one to the list of all columns in
4430 ** all tables.
4432 ** The first loop just checks to see if there are any "*" operators
4433 ** that need expanding.
4435 for(k=0; k<pEList->nExpr; k++){
4436 pE = pEList->a[k].pExpr;
4437 if( pE->op==TK_ASTERISK ) break;
4438 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4439 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4440 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4441 elistFlags |= pE->flags;
4443 if( k<pEList->nExpr ){
4445 ** If we get here it means the result set contains one or more "*"
4446 ** operators that need to be expanded. Loop through each expression
4447 ** in the result set and expand them one by one.
4449 struct ExprList_item *a = pEList->a;
4450 ExprList *pNew = 0;
4451 int flags = pParse->db->flags;
4452 int longNames = (flags & SQLITE_FullColNames)!=0
4453 && (flags & SQLITE_ShortColNames)==0;
4455 for(k=0; k<pEList->nExpr; k++){
4456 pE = a[k].pExpr;
4457 elistFlags |= pE->flags;
4458 pRight = pE->pRight;
4459 assert( pE->op!=TK_DOT || pRight!=0 );
4460 if( pE->op!=TK_ASTERISK
4461 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4463 /* This particular expression does not need to be expanded.
4465 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4466 if( pNew ){
4467 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4468 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4469 a[k].zName = 0;
4470 a[k].zSpan = 0;
4472 a[k].pExpr = 0;
4473 }else{
4474 /* This expression is a "*" or a "TABLE.*" and needs to be
4475 ** expanded. */
4476 int tableSeen = 0; /* Set to 1 when TABLE matches */
4477 char *zTName = 0; /* text of name of TABLE */
4478 if( pE->op==TK_DOT ){
4479 assert( pE->pLeft!=0 );
4480 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4481 zTName = pE->pLeft->u.zToken;
4483 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4484 Table *pTab = pFrom->pTab;
4485 Select *pSub = pFrom->pSelect;
4486 char *zTabName = pFrom->zAlias;
4487 const char *zSchemaName = 0;
4488 int iDb;
4489 if( zTabName==0 ){
4490 zTabName = pTab->zName;
4492 if( db->mallocFailed ) break;
4493 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4494 pSub = 0;
4495 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4496 continue;
4498 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4499 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4501 for(j=0; j<pTab->nCol; j++){
4502 char *zName = pTab->aCol[j].zName;
4503 char *zColname; /* The computed column name */
4504 char *zToFree; /* Malloced string that needs to be freed */
4505 Token sColname; /* Computed column name as a token */
4507 assert( zName );
4508 if( zTName && pSub
4509 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4511 continue;
4514 /* If a column is marked as 'hidden', omit it from the expanded
4515 ** result-set list unless the SELECT has the SF_IncludeHidden
4516 ** bit set.
4518 if( (p->selFlags & SF_IncludeHidden)==0
4519 && IsHiddenColumn(&pTab->aCol[j])
4521 continue;
4523 tableSeen = 1;
4525 if( i>0 && zTName==0 ){
4526 if( (pFrom->fg.jointype & JT_NATURAL)!=0
4527 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4529 /* In a NATURAL join, omit the join columns from the
4530 ** table to the right of the join */
4531 continue;
4533 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4534 /* In a join with a USING clause, omit columns in the
4535 ** using clause from the table on the right. */
4536 continue;
4539 pRight = sqlite3Expr(db, TK_ID, zName);
4540 zColname = zName;
4541 zToFree = 0;
4542 if( longNames || pTabList->nSrc>1 ){
4543 Expr *pLeft;
4544 pLeft = sqlite3Expr(db, TK_ID, zTabName);
4545 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4546 if( zSchemaName ){
4547 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4548 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4550 if( longNames ){
4551 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4552 zToFree = zColname;
4554 }else{
4555 pExpr = pRight;
4557 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4558 sqlite3TokenInit(&sColname, zColname);
4559 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4560 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4561 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4562 if( pSub ){
4563 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4564 testcase( pX->zSpan==0 );
4565 }else{
4566 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4567 zSchemaName, zTabName, zColname);
4568 testcase( pX->zSpan==0 );
4570 pX->bSpanIsTab = 1;
4572 sqlite3DbFree(db, zToFree);
4575 if( !tableSeen ){
4576 if( zTName ){
4577 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4578 }else{
4579 sqlite3ErrorMsg(pParse, "no tables specified");
4584 sqlite3ExprListDelete(db, pEList);
4585 p->pEList = pNew;
4587 if( p->pEList ){
4588 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4589 sqlite3ErrorMsg(pParse, "too many columns in result set");
4590 return WRC_Abort;
4592 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4593 p->selFlags |= SF_ComplexResult;
4596 return WRC_Continue;
4600 ** No-op routine for the parse-tree walker.
4602 ** When this routine is the Walker.xExprCallback then expression trees
4603 ** are walked without any actions being taken at each node. Presumably,
4604 ** when this routine is used for Walker.xExprCallback then
4605 ** Walker.xSelectCallback is set to do something useful for every
4606 ** subquery in the parser tree.
4608 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4609 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4610 return WRC_Continue;
4614 ** No-op routine for the parse-tree walker for SELECT statements.
4615 ** subquery in the parser tree.
4617 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4618 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4619 return WRC_Continue;
4622 #if SQLITE_DEBUG
4624 ** Always assert. This xSelectCallback2 implementation proves that the
4625 ** xSelectCallback2 is never invoked.
4627 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4628 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4629 assert( 0 );
4631 #endif
4633 ** This routine "expands" a SELECT statement and all of its subqueries.
4634 ** For additional information on what it means to "expand" a SELECT
4635 ** statement, see the comment on the selectExpand worker callback above.
4637 ** Expanding a SELECT statement is the first step in processing a
4638 ** SELECT statement. The SELECT statement must be expanded before
4639 ** name resolution is performed.
4641 ** If anything goes wrong, an error message is written into pParse.
4642 ** The calling function can detect the problem by looking at pParse->nErr
4643 ** and/or pParse->db->mallocFailed.
4645 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4646 Walker w;
4647 w.xExprCallback = sqlite3ExprWalkNoop;
4648 w.pParse = pParse;
4649 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4650 w.xSelectCallback = convertCompoundSelectToSubquery;
4651 w.xSelectCallback2 = 0;
4652 sqlite3WalkSelect(&w, pSelect);
4654 w.xSelectCallback = selectExpander;
4655 w.xSelectCallback2 = selectPopWith;
4656 sqlite3WalkSelect(&w, pSelect);
4660 #ifndef SQLITE_OMIT_SUBQUERY
4662 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4663 ** interface.
4665 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4666 ** information to the Table structure that represents the result set
4667 ** of that subquery.
4669 ** The Table structure that represents the result set was constructed
4670 ** by selectExpander() but the type and collation information was omitted
4671 ** at that point because identifiers had not yet been resolved. This
4672 ** routine is called after identifier resolution.
4674 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4675 Parse *pParse;
4676 int i;
4677 SrcList *pTabList;
4678 struct SrcList_item *pFrom;
4680 assert( p->selFlags & SF_Resolved );
4681 assert( (p->selFlags & SF_HasTypeInfo)==0 );
4682 p->selFlags |= SF_HasTypeInfo;
4683 pParse = pWalker->pParse;
4684 pTabList = p->pSrc;
4685 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4686 Table *pTab = pFrom->pTab;
4687 assert( pTab!=0 );
4688 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4689 /* A sub-query in the FROM clause of a SELECT */
4690 Select *pSel = pFrom->pSelect;
4691 if( pSel ){
4692 while( pSel->pPrior ) pSel = pSel->pPrior;
4693 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4698 #endif
4702 ** This routine adds datatype and collating sequence information to
4703 ** the Table structures of all FROM-clause subqueries in a
4704 ** SELECT statement.
4706 ** Use this routine after name resolution.
4708 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4709 #ifndef SQLITE_OMIT_SUBQUERY
4710 Walker w;
4711 w.xSelectCallback = sqlite3SelectWalkNoop;
4712 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4713 w.xExprCallback = sqlite3ExprWalkNoop;
4714 w.pParse = pParse;
4715 sqlite3WalkSelect(&w, pSelect);
4716 #endif
4721 ** This routine sets up a SELECT statement for processing. The
4722 ** following is accomplished:
4724 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4725 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4726 ** * ON and USING clauses are shifted into WHERE statements
4727 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4728 ** * Identifiers in expression are matched to tables.
4730 ** This routine acts recursively on all subqueries within the SELECT.
4732 void sqlite3SelectPrep(
4733 Parse *pParse, /* The parser context */
4734 Select *p, /* The SELECT statement being coded. */
4735 NameContext *pOuterNC /* Name context for container */
4737 assert( p!=0 || pParse->db->mallocFailed );
4738 if( pParse->db->mallocFailed ) return;
4739 if( p->selFlags & SF_HasTypeInfo ) return;
4740 sqlite3SelectExpand(pParse, p);
4741 if( pParse->nErr || pParse->db->mallocFailed ) return;
4742 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4743 if( pParse->nErr || pParse->db->mallocFailed ) return;
4744 sqlite3SelectAddTypeInfo(pParse, p);
4748 ** Reset the aggregate accumulator.
4750 ** The aggregate accumulator is a set of memory cells that hold
4751 ** intermediate results while calculating an aggregate. This
4752 ** routine generates code that stores NULLs in all of those memory
4753 ** cells.
4755 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4756 Vdbe *v = pParse->pVdbe;
4757 int i;
4758 struct AggInfo_func *pFunc;
4759 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4760 if( nReg==0 ) return;
4761 #ifdef SQLITE_DEBUG
4762 /* Verify that all AggInfo registers are within the range specified by
4763 ** AggInfo.mnReg..AggInfo.mxReg */
4764 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4765 for(i=0; i<pAggInfo->nColumn; i++){
4766 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4767 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4769 for(i=0; i<pAggInfo->nFunc; i++){
4770 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4771 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4773 #endif
4774 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4775 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4776 if( pFunc->iDistinct>=0 ){
4777 Expr *pE = pFunc->pExpr;
4778 assert( !ExprHasProperty(pE, EP_xIsSelect) );
4779 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4780 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4781 "argument");
4782 pFunc->iDistinct = -1;
4783 }else{
4784 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4785 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4786 (char*)pKeyInfo, P4_KEYINFO);
4793 ** Invoke the OP_AggFinalize opcode for every aggregate function
4794 ** in the AggInfo structure.
4796 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4797 Vdbe *v = pParse->pVdbe;
4798 int i;
4799 struct AggInfo_func *pF;
4800 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4801 ExprList *pList = pF->pExpr->x.pList;
4802 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4803 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4804 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4809 ** Update the accumulator memory cells for an aggregate based on
4810 ** the current cursor position.
4812 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4813 Vdbe *v = pParse->pVdbe;
4814 int i;
4815 int regHit = 0;
4816 int addrHitTest = 0;
4817 struct AggInfo_func *pF;
4818 struct AggInfo_col *pC;
4820 pAggInfo->directMode = 1;
4821 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4822 int nArg;
4823 int addrNext = 0;
4824 int regAgg;
4825 ExprList *pList = pF->pExpr->x.pList;
4826 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4827 if( pList ){
4828 nArg = pList->nExpr;
4829 regAgg = sqlite3GetTempRange(pParse, nArg);
4830 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4831 }else{
4832 nArg = 0;
4833 regAgg = 0;
4835 if( pF->iDistinct>=0 ){
4836 addrNext = sqlite3VdbeMakeLabel(v);
4837 testcase( nArg==0 ); /* Error condition */
4838 testcase( nArg>1 ); /* Also an error */
4839 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4841 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4842 CollSeq *pColl = 0;
4843 struct ExprList_item *pItem;
4844 int j;
4845 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4846 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4847 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4849 if( !pColl ){
4850 pColl = pParse->db->pDfltColl;
4852 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4853 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4855 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4856 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4857 sqlite3VdbeChangeP5(v, (u8)nArg);
4858 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4859 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4860 if( addrNext ){
4861 sqlite3VdbeResolveLabel(v, addrNext);
4862 sqlite3ExprCacheClear(pParse);
4866 /* Before populating the accumulator registers, clear the column cache.
4867 ** Otherwise, if any of the required column values are already present
4868 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4869 ** to pC->iMem. But by the time the value is used, the original register
4870 ** may have been used, invalidating the underlying buffer holding the
4871 ** text or blob value. See ticket [883034dcb5].
4873 ** Another solution would be to change the OP_SCopy used to copy cached
4874 ** values to an OP_Copy.
4876 if( regHit ){
4877 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4879 sqlite3ExprCacheClear(pParse);
4880 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4881 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4883 pAggInfo->directMode = 0;
4884 sqlite3ExprCacheClear(pParse);
4885 if( addrHitTest ){
4886 sqlite3VdbeJumpHere(v, addrHitTest);
4891 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4892 ** count(*) query ("SELECT count(*) FROM pTab").
4894 #ifndef SQLITE_OMIT_EXPLAIN
4895 static void explainSimpleCount(
4896 Parse *pParse, /* Parse context */
4897 Table *pTab, /* Table being queried */
4898 Index *pIdx /* Index used to optimize scan, or NULL */
4900 if( pParse->explain==2 ){
4901 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4902 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4903 pTab->zName,
4904 bCover ? " USING COVERING INDEX " : "",
4905 bCover ? pIdx->zName : ""
4907 sqlite3VdbeAddOp4(
4908 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4912 #else
4913 # define explainSimpleCount(a,b,c)
4914 #endif
4917 ** Context object for havingToWhereExprCb().
4919 struct HavingToWhereCtx {
4920 Expr **ppWhere;
4921 ExprList *pGroupBy;
4925 ** sqlite3WalkExpr() callback used by havingToWhere().
4927 ** If the node passed to the callback is a TK_AND node, return
4928 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4930 ** Otherwise, return WRC_Prune. In this case, also check if the
4931 ** sub-expression matches the criteria for being moved to the WHERE
4932 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4933 ** within the HAVING expression with a constant "1".
4935 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4936 if( pExpr->op!=TK_AND ){
4937 struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
4938 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
4939 sqlite3 *db = pWalker->pParse->db;
4940 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4941 if( pNew ){
4942 Expr *pWhere = *(p->ppWhere);
4943 SWAP(Expr, *pNew, *pExpr);
4944 pNew = sqlite3ExprAnd(db, pWhere, pNew);
4945 *(p->ppWhere) = pNew;
4948 return WRC_Prune;
4950 return WRC_Continue;
4954 ** Transfer eligible terms from the HAVING clause of a query, which is
4955 ** processed after grouping, to the WHERE clause, which is processed before
4956 ** grouping. For example, the query:
4958 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4960 ** can be rewritten as:
4962 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4964 ** A term of the HAVING expression is eligible for transfer if it consists
4965 ** entirely of constants and expressions that are also GROUP BY terms that
4966 ** use the "BINARY" collation sequence.
4968 static void havingToWhere(
4969 Parse *pParse,
4970 ExprList *pGroupBy,
4971 Expr *pHaving,
4972 Expr **ppWhere
4974 struct HavingToWhereCtx sCtx;
4975 Walker sWalker;
4977 sCtx.ppWhere = ppWhere;
4978 sCtx.pGroupBy = pGroupBy;
4980 memset(&sWalker, 0, sizeof(sWalker));
4981 sWalker.pParse = pParse;
4982 sWalker.xExprCallback = havingToWhereExprCb;
4983 sWalker.u.pHavingCtx = &sCtx;
4984 sqlite3WalkExpr(&sWalker, pHaving);
4988 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
4989 ** If it is, then return the SrcList_item for the prior view. If it is not,
4990 ** then return 0.
4992 static struct SrcList_item *isSelfJoinView(
4993 SrcList *pTabList, /* Search for self-joins in this FROM clause */
4994 struct SrcList_item *pThis /* Search for prior reference to this subquery */
4996 struct SrcList_item *pItem;
4997 for(pItem = pTabList->a; pItem<pThis; pItem++){
4998 if( pItem->pSelect==0 ) continue;
4999 if( pItem->fg.viaCoroutine ) continue;
5000 if( pItem->zName==0 ) continue;
5001 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5002 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5003 if( sqlite3ExprCompare(0,
5004 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5006 /* The view was modified by some other optimization such as
5007 ** pushDownWhereTerms() */
5008 continue;
5010 return pItem;
5012 return 0;
5015 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5017 ** Attempt to transform a query of the form
5019 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5021 ** Into this:
5023 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5025 ** The transformation only works if all of the following are true:
5027 ** * The subquery is a UNION ALL of two or more terms
5028 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5029 ** * The outer query is a simple count(*)
5031 ** Return TRUE if the optimization is undertaken.
5033 static int countOfViewOptimization(Parse *pParse, Select *p){
5034 Select *pSub, *pPrior;
5035 Expr *pExpr;
5036 Expr *pCount;
5037 sqlite3 *db;
5038 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
5039 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
5040 pExpr = p->pEList->a[0].pExpr;
5041 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
5042 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
5043 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
5044 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
5045 pSub = p->pSrc->a[0].pSelect;
5046 if( pSub==0 ) return 0; /* The FROM is a subquery */
5047 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
5049 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
5050 if( pSub->pWhere ) return 0; /* No WHERE clause */
5051 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
5052 pSub = pSub->pPrior; /* Repeat over compound */
5053 }while( pSub );
5055 /* If we reach this point then it is OK to perform the transformation */
5057 db = pParse->db;
5058 pCount = pExpr;
5059 pExpr = 0;
5060 pSub = p->pSrc->a[0].pSelect;
5061 p->pSrc->a[0].pSelect = 0;
5062 sqlite3SrcListDelete(db, p->pSrc);
5063 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5064 while( pSub ){
5065 Expr *pTerm;
5066 pPrior = pSub->pPrior;
5067 pSub->pPrior = 0;
5068 pSub->pNext = 0;
5069 pSub->selFlags |= SF_Aggregate;
5070 pSub->selFlags &= ~SF_Compound;
5071 pSub->nSelectRow = 0;
5072 sqlite3ExprListDelete(db, pSub->pEList);
5073 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5074 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5075 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5076 sqlite3PExprAddSelect(pParse, pTerm, pSub);
5077 if( pExpr==0 ){
5078 pExpr = pTerm;
5079 }else{
5080 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5082 pSub = pPrior;
5084 p->pEList->a[0].pExpr = pExpr;
5085 p->selFlags &= ~SF_Aggregate;
5087 #if SELECTTRACE_ENABLED
5088 if( sqlite3SelectTrace & 0x400 ){
5089 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5090 sqlite3TreeViewSelect(0, p, 0);
5092 #endif
5093 return 1;
5095 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5098 ** Generate code for the SELECT statement given in the p argument.
5100 ** The results are returned according to the SelectDest structure.
5101 ** See comments in sqliteInt.h for further information.
5103 ** This routine returns the number of errors. If any errors are
5104 ** encountered, then an appropriate error message is left in
5105 ** pParse->zErrMsg.
5107 ** This routine does NOT free the Select structure passed in. The
5108 ** calling function needs to do that.
5110 int sqlite3Select(
5111 Parse *pParse, /* The parser context */
5112 Select *p, /* The SELECT statement being coded. */
5113 SelectDest *pDest /* What to do with the query results */
5115 int i, j; /* Loop counters */
5116 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
5117 Vdbe *v; /* The virtual machine under construction */
5118 int isAgg; /* True for select lists like "count(*)" */
5119 ExprList *pEList = 0; /* List of columns to extract. */
5120 SrcList *pTabList; /* List of tables to select from */
5121 Expr *pWhere; /* The WHERE clause. May be NULL */
5122 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
5123 Expr *pHaving; /* The HAVING clause. May be NULL */
5124 int rc = 1; /* Value to return from this function */
5125 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5126 SortCtx sSort; /* Info on how to code the ORDER BY clause */
5127 AggInfo sAggInfo; /* Information used by aggregate queries */
5128 int iEnd; /* Address of the end of the query */
5129 sqlite3 *db; /* The database connection */
5130 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
5131 u8 minMaxFlag; /* Flag for min/max queries */
5133 #ifndef SQLITE_OMIT_EXPLAIN
5134 int iRestoreSelectId = pParse->iSelectId;
5135 pParse->iSelectId = pParse->iNextSelectId++;
5136 #endif
5138 db = pParse->db;
5139 if( p==0 || db->mallocFailed || pParse->nErr ){
5140 return 1;
5142 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5143 memset(&sAggInfo, 0, sizeof(sAggInfo));
5144 #if SELECTTRACE_ENABLED
5145 pParse->nSelectIndent++;
5146 SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5147 if( sqlite3SelectTrace & 0x100 ){
5148 sqlite3TreeViewSelect(0, p, 0);
5150 #endif
5152 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5153 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5154 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5155 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5156 if( IgnorableOrderby(pDest) ){
5157 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5158 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5159 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
5160 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5161 /* If ORDER BY makes no difference in the output then neither does
5162 ** DISTINCT so it can be removed too. */
5163 sqlite3ExprListDelete(db, p->pOrderBy);
5164 p->pOrderBy = 0;
5165 p->selFlags &= ~SF_Distinct;
5167 sqlite3SelectPrep(pParse, p, 0);
5168 memset(&sSort, 0, sizeof(sSort));
5169 sSort.pOrderBy = p->pOrderBy;
5170 pTabList = p->pSrc;
5171 if( pParse->nErr || db->mallocFailed ){
5172 goto select_end;
5174 assert( p->pEList!=0 );
5175 isAgg = (p->selFlags & SF_Aggregate)!=0;
5176 #if SELECTTRACE_ENABLED
5177 if( sqlite3SelectTrace & 0x100 ){
5178 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5179 sqlite3TreeViewSelect(0, p, 0);
5181 #endif
5183 /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5184 ** does not already exist */
5185 v = sqlite3GetVdbe(pParse);
5186 if( v==0 ) goto select_end;
5187 if( pDest->eDest==SRT_Output ){
5188 generateColumnNames(pParse, p);
5191 /* Try to flatten subqueries in the FROM clause up into the main query
5193 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5194 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5195 struct SrcList_item *pItem = &pTabList->a[i];
5196 Select *pSub = pItem->pSelect;
5197 Table *pTab = pItem->pTab;
5198 if( pSub==0 ) continue;
5200 /* Catch mismatch in the declared columns of a view and the number of
5201 ** columns in the SELECT on the RHS */
5202 if( pTab->nCol!=pSub->pEList->nExpr ){
5203 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5204 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5205 goto select_end;
5208 /* Do not try to flatten an aggregate subquery.
5210 ** Flattening an aggregate subquery is only possible if the outer query
5211 ** is not a join. But if the outer query is not a join, then the subquery
5212 ** will be implemented as a co-routine and there is no advantage to
5213 ** flattening in that case.
5215 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5216 assert( pSub->pGroupBy==0 );
5218 /* If the outer query contains a "complex" result set (that is,
5219 ** if the result set of the outer query uses functions or subqueries)
5220 ** and if the subquery contains an ORDER BY clause and if
5221 ** it will be implemented as a co-routine, then do not flatten. This
5222 ** restriction allows SQL constructs like this:
5224 ** SELECT expensive_function(x)
5225 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5227 ** The expensive_function() is only computed on the 10 rows that
5228 ** are output, rather than every row of the table.
5230 ** The requirement that the outer query have a complex result set
5231 ** means that flattening does occur on simpler SQL constraints without
5232 ** the expensive_function() like:
5234 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5236 if( pSub->pOrderBy!=0
5237 && i==0
5238 && (p->selFlags & SF_ComplexResult)!=0
5239 && (pTabList->nSrc==1
5240 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5242 continue;
5245 if( flattenSubquery(pParse, p, i, isAgg) ){
5246 /* This subquery can be absorbed into its parent. */
5247 i = -1;
5249 pTabList = p->pSrc;
5250 if( db->mallocFailed ) goto select_end;
5251 if( !IgnorableOrderby(pDest) ){
5252 sSort.pOrderBy = p->pOrderBy;
5255 #endif
5257 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5258 /* Handle compound SELECT statements using the separate multiSelect()
5259 ** procedure.
5261 if( p->pPrior ){
5262 rc = multiSelect(pParse, p, pDest);
5263 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5264 #if SELECTTRACE_ENABLED
5265 SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5266 pParse->nSelectIndent--;
5267 #endif
5268 return rc;
5270 #endif
5272 /* For each term in the FROM clause, do two things:
5273 ** (1) Authorized unreferenced tables
5274 ** (2) Generate code for all sub-queries
5276 for(i=0; i<pTabList->nSrc; i++){
5277 struct SrcList_item *pItem = &pTabList->a[i];
5278 SelectDest dest;
5279 Select *pSub;
5280 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5281 const char *zSavedAuthContext;
5282 #endif
5284 /* Issue SQLITE_READ authorizations with a fake column name for any
5285 ** tables that are referenced but from which no values are extracted.
5286 ** Examples of where these kinds of null SQLITE_READ authorizations
5287 ** would occur:
5289 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5290 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5292 ** The fake column name is an empty string. It is possible for a table to
5293 ** have a column named by the empty string, in which case there is no way to
5294 ** distinguish between an unreferenced table and an actual reference to the
5295 ** "" column. The original design was for the fake column name to be a NULL,
5296 ** which would be unambiguous. But legacy authorization callbacks might
5297 ** assume the column name is non-NULL and segfault. The use of an empty
5298 ** string for the fake column name seems safer.
5300 if( pItem->colUsed==0 ){
5301 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5304 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5305 /* Generate code for all sub-queries in the FROM clause
5307 pSub = pItem->pSelect;
5308 if( pSub==0 ) continue;
5310 /* Sometimes the code for a subquery will be generated more than
5311 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5312 ** for example. In that case, do not regenerate the code to manifest
5313 ** a view or the co-routine to implement a view. The first instance
5314 ** is sufficient, though the subroutine to manifest the view does need
5315 ** to be invoked again. */
5316 if( pItem->addrFillSub ){
5317 if( pItem->fg.viaCoroutine==0 ){
5318 /* The subroutine that manifests the view might be a one-time routine,
5319 ** or it might need to be rerun on each iteration because it
5320 ** encodes a correlated subquery. */
5321 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5322 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5324 continue;
5327 /* Increment Parse.nHeight by the height of the largest expression
5328 ** tree referred to by this, the parent select. The child select
5329 ** may contain expression trees of at most
5330 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5331 ** more conservative than necessary, but much easier than enforcing
5332 ** an exact limit.
5334 pParse->nHeight += sqlite3SelectExprHeight(p);
5336 /* Make copies of constant WHERE-clause terms in the outer query down
5337 ** inside the subquery. This can help the subquery to run more efficiently.
5339 if( (pItem->fg.jointype & JT_OUTER)==0
5340 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor)
5342 #if SELECTTRACE_ENABLED
5343 if( sqlite3SelectTrace & 0x100 ){
5344 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5345 sqlite3TreeViewSelect(0, p, 0);
5347 #endif
5350 zSavedAuthContext = pParse->zAuthContext;
5351 pParse->zAuthContext = pItem->zName;
5353 /* Generate code to implement the subquery
5355 ** The subquery is implemented as a co-routine if the subquery is
5356 ** guaranteed to be the outer loop (so that it does not need to be
5357 ** computed more than once)
5359 ** TODO: Are there other reasons beside (1) to use a co-routine
5360 ** implementation?
5362 if( i==0
5363 && (pTabList->nSrc==1
5364 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
5366 /* Implement a co-routine that will return a single row of the result
5367 ** set on each invocation.
5369 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5371 pItem->regReturn = ++pParse->nMem;
5372 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5373 VdbeComment((v, "%s", pItem->pTab->zName));
5374 pItem->addrFillSub = addrTop;
5375 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5376 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5377 sqlite3Select(pParse, pSub, &dest);
5378 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5379 pItem->fg.viaCoroutine = 1;
5380 pItem->regResult = dest.iSdst;
5381 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5382 sqlite3VdbeJumpHere(v, addrTop-1);
5383 sqlite3ClearTempRegCache(pParse);
5384 }else{
5385 /* Generate a subroutine that will fill an ephemeral table with
5386 ** the content of this subquery. pItem->addrFillSub will point
5387 ** to the address of the generated subroutine. pItem->regReturn
5388 ** is a register allocated to hold the subroutine return address
5390 int topAddr;
5391 int onceAddr = 0;
5392 int retAddr;
5393 struct SrcList_item *pPrior;
5395 assert( pItem->addrFillSub==0 );
5396 pItem->regReturn = ++pParse->nMem;
5397 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5398 pItem->addrFillSub = topAddr+1;
5399 if( pItem->fg.isCorrelated==0 ){
5400 /* If the subquery is not correlated and if we are not inside of
5401 ** a trigger, then we only need to compute the value of the subquery
5402 ** once. */
5403 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5404 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5405 }else{
5406 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5408 pPrior = isSelfJoinView(pTabList, pItem);
5409 if( pPrior ){
5410 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5411 explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5412 assert( pPrior->pSelect!=0 );
5413 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5414 }else{
5415 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5416 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5417 sqlite3Select(pParse, pSub, &dest);
5419 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5420 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5421 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5422 VdbeComment((v, "end %s", pItem->pTab->zName));
5423 sqlite3VdbeChangeP1(v, topAddr, retAddr);
5424 sqlite3ClearTempRegCache(pParse);
5426 if( db->mallocFailed ) goto select_end;
5427 pParse->nHeight -= sqlite3SelectExprHeight(p);
5428 pParse->zAuthContext = zSavedAuthContext;
5429 #endif
5432 /* Various elements of the SELECT copied into local variables for
5433 ** convenience */
5434 pEList = p->pEList;
5435 pWhere = p->pWhere;
5436 pGroupBy = p->pGroupBy;
5437 pHaving = p->pHaving;
5438 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5440 #if SELECTTRACE_ENABLED
5441 if( sqlite3SelectTrace & 0x400 ){
5442 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5443 sqlite3TreeViewSelect(0, p, 0);
5445 #endif
5447 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5448 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5449 && countOfViewOptimization(pParse, p)
5451 if( db->mallocFailed ) goto select_end;
5452 pEList = p->pEList;
5453 pTabList = p->pSrc;
5455 #endif
5457 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5458 ** if the select-list is the same as the ORDER BY list, then this query
5459 ** can be rewritten as a GROUP BY. In other words, this:
5461 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5463 ** is transformed to:
5465 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5467 ** The second form is preferred as a single index (or temp-table) may be
5468 ** used for both the ORDER BY and DISTINCT processing. As originally
5469 ** written the query must use a temp-table for at least one of the ORDER
5470 ** BY and DISTINCT, and an index or separate temp-table for the other.
5472 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5473 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5475 p->selFlags &= ~SF_Distinct;
5476 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5477 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5478 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5479 ** original setting of the SF_Distinct flag, not the current setting */
5480 assert( sDistinct.isTnct );
5482 #if SELECTTRACE_ENABLED
5483 if( sqlite3SelectTrace & 0x400 ){
5484 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5485 sqlite3TreeViewSelect(0, p, 0);
5487 #endif
5490 /* If there is an ORDER BY clause, then create an ephemeral index to
5491 ** do the sorting. But this sorting ephemeral index might end up
5492 ** being unused if the data can be extracted in pre-sorted order.
5493 ** If that is the case, then the OP_OpenEphemeral instruction will be
5494 ** changed to an OP_Noop once we figure out that the sorting index is
5495 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5496 ** that change.
5498 if( sSort.pOrderBy ){
5499 KeyInfo *pKeyInfo;
5500 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5501 sSort.iECursor = pParse->nTab++;
5502 sSort.addrSortIndex =
5503 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5504 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5505 (char*)pKeyInfo, P4_KEYINFO
5507 }else{
5508 sSort.addrSortIndex = -1;
5511 /* If the output is destined for a temporary table, open that table.
5513 if( pDest->eDest==SRT_EphemTab ){
5514 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5517 /* Set the limiter.
5519 iEnd = sqlite3VdbeMakeLabel(v);
5520 if( (p->selFlags & SF_FixedLimit)==0 ){
5521 p->nSelectRow = 320; /* 4 billion rows */
5523 computeLimitRegisters(pParse, p, iEnd);
5524 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5525 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5526 sSort.sortFlags |= SORTFLAG_UseSorter;
5529 /* Open an ephemeral index to use for the distinct set.
5531 if( p->selFlags & SF_Distinct ){
5532 sDistinct.tabTnct = pParse->nTab++;
5533 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5534 sDistinct.tabTnct, 0, 0,
5535 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5536 P4_KEYINFO);
5537 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5538 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5539 }else{
5540 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5543 if( !isAgg && pGroupBy==0 ){
5544 /* No aggregate functions and no GROUP BY clause */
5545 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5546 assert( WHERE_USE_LIMIT==SF_FixedLimit );
5547 wctrlFlags |= p->selFlags & SF_FixedLimit;
5549 /* Begin the database scan. */
5550 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5551 p->pEList, wctrlFlags, p->nSelectRow);
5552 if( pWInfo==0 ) goto select_end;
5553 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5554 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5556 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5557 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5559 if( sSort.pOrderBy ){
5560 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5561 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5562 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5563 sSort.pOrderBy = 0;
5567 /* If sorting index that was created by a prior OP_OpenEphemeral
5568 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5569 ** into an OP_Noop.
5571 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5572 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5575 /* Use the standard inner loop. */
5576 assert( p->pEList==pEList );
5577 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5578 sqlite3WhereContinueLabel(pWInfo),
5579 sqlite3WhereBreakLabel(pWInfo));
5581 /* End the database scan loop.
5583 sqlite3WhereEnd(pWInfo);
5584 }else{
5585 /* This case when there exist aggregate functions or a GROUP BY clause
5586 ** or both */
5587 NameContext sNC; /* Name context for processing aggregate information */
5588 int iAMem; /* First Mem address for storing current GROUP BY */
5589 int iBMem; /* First Mem address for previous GROUP BY */
5590 int iUseFlag; /* Mem address holding flag indicating that at least
5591 ** one row of the input to the aggregator has been
5592 ** processed */
5593 int iAbortFlag; /* Mem address which causes query abort if positive */
5594 int groupBySort; /* Rows come from source in GROUP BY order */
5595 int addrEnd; /* End of processing for this SELECT */
5596 int sortPTab = 0; /* Pseudotable used to decode sorting results */
5597 int sortOut = 0; /* Output register from the sorter */
5598 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5600 /* Remove any and all aliases between the result set and the
5601 ** GROUP BY clause.
5603 if( pGroupBy ){
5604 int k; /* Loop counter */
5605 struct ExprList_item *pItem; /* For looping over expression in a list */
5607 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5608 pItem->u.x.iAlias = 0;
5610 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5611 pItem->u.x.iAlias = 0;
5613 assert( 66==sqlite3LogEst(100) );
5614 if( p->nSelectRow>66 ) p->nSelectRow = 66;
5615 }else{
5616 assert( 0==sqlite3LogEst(1) );
5617 p->nSelectRow = 0;
5620 /* If there is both a GROUP BY and an ORDER BY clause and they are
5621 ** identical, then it may be possible to disable the ORDER BY clause
5622 ** on the grounds that the GROUP BY will cause elements to come out
5623 ** in the correct order. It also may not - the GROUP BY might use a
5624 ** database index that causes rows to be grouped together as required
5625 ** but not actually sorted. Either way, record the fact that the
5626 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5627 ** variable. */
5628 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5629 orderByGrp = 1;
5632 /* Create a label to jump to when we want to abort the query */
5633 addrEnd = sqlite3VdbeMakeLabel(v);
5635 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5636 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5637 ** SELECT statement.
5639 memset(&sNC, 0, sizeof(sNC));
5640 sNC.pParse = pParse;
5641 sNC.pSrcList = pTabList;
5642 sNC.pAggInfo = &sAggInfo;
5643 sAggInfo.mnReg = pParse->nMem+1;
5644 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5645 sAggInfo.pGroupBy = pGroupBy;
5646 sqlite3ExprAnalyzeAggList(&sNC, pEList);
5647 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5648 if( pHaving ){
5649 if( pGroupBy ){
5650 assert( pWhere==p->pWhere );
5651 havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
5652 pWhere = p->pWhere;
5654 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5656 sAggInfo.nAccumulator = sAggInfo.nColumn;
5657 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
5658 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
5659 }else{
5660 minMaxFlag = WHERE_ORDERBY_NORMAL;
5662 for(i=0; i<sAggInfo.nFunc; i++){
5663 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5664 sNC.ncFlags |= NC_InAggFunc;
5665 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5666 sNC.ncFlags &= ~NC_InAggFunc;
5668 sAggInfo.mxReg = pParse->nMem;
5669 if( db->mallocFailed ) goto select_end;
5670 #if SELECTTRACE_ENABLED
5671 if( sqlite3SelectTrace & 0x400 ){
5672 int ii;
5673 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
5674 sqlite3TreeViewSelect(0, p, 0);
5675 for(ii=0; ii<sAggInfo.nColumn; ii++){
5676 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5677 ii, sAggInfo.aCol[ii].iMem);
5678 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
5680 for(ii=0; ii<sAggInfo.nFunc; ii++){
5681 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5682 ii, sAggInfo.aFunc[ii].iMem);
5683 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
5686 #endif
5689 /* Processing for aggregates with GROUP BY is very different and
5690 ** much more complex than aggregates without a GROUP BY.
5692 if( pGroupBy ){
5693 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
5694 int addr1; /* A-vs-B comparision jump */
5695 int addrOutputRow; /* Start of subroutine that outputs a result row */
5696 int regOutputRow; /* Return address register for output subroutine */
5697 int addrSetAbort; /* Set the abort flag and return */
5698 int addrTopOfLoop; /* Top of the input loop */
5699 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5700 int addrReset; /* Subroutine for resetting the accumulator */
5701 int regReset; /* Return address register for reset subroutine */
5703 /* If there is a GROUP BY clause we might need a sorting index to
5704 ** implement it. Allocate that sorting index now. If it turns out
5705 ** that we do not need it after all, the OP_SorterOpen instruction
5706 ** will be converted into a Noop.
5708 sAggInfo.sortingIdx = pParse->nTab++;
5709 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5710 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5711 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5712 0, (char*)pKeyInfo, P4_KEYINFO);
5714 /* Initialize memory locations used by GROUP BY aggregate processing
5716 iUseFlag = ++pParse->nMem;
5717 iAbortFlag = ++pParse->nMem;
5718 regOutputRow = ++pParse->nMem;
5719 addrOutputRow = sqlite3VdbeMakeLabel(v);
5720 regReset = ++pParse->nMem;
5721 addrReset = sqlite3VdbeMakeLabel(v);
5722 iAMem = pParse->nMem + 1;
5723 pParse->nMem += pGroupBy->nExpr;
5724 iBMem = pParse->nMem + 1;
5725 pParse->nMem += pGroupBy->nExpr;
5726 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5727 VdbeComment((v, "clear abort flag"));
5728 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5729 VdbeComment((v, "indicate accumulator empty"));
5730 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5732 /* Begin a loop that will extract all source rows in GROUP BY order.
5733 ** This might involve two separate loops with an OP_Sort in between, or
5734 ** it might be a single loop that uses an index to extract information
5735 ** in the right order to begin with.
5737 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5738 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5739 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5741 if( pWInfo==0 ) goto select_end;
5742 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5743 /* The optimizer is able to deliver rows in group by order so
5744 ** we do not have to sort. The OP_OpenEphemeral table will be
5745 ** cancelled later because we still need to use the pKeyInfo
5747 groupBySort = 0;
5748 }else{
5749 /* Rows are coming out in undetermined order. We have to push
5750 ** each row into a sorting index, terminate the first loop,
5751 ** then loop over the sorting index in order to get the output
5752 ** in sorted order
5754 int regBase;
5755 int regRecord;
5756 int nCol;
5757 int nGroupBy;
5759 explainTempTable(pParse,
5760 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5761 "DISTINCT" : "GROUP BY");
5763 groupBySort = 1;
5764 nGroupBy = pGroupBy->nExpr;
5765 nCol = nGroupBy;
5766 j = nGroupBy;
5767 for(i=0; i<sAggInfo.nColumn; i++){
5768 if( sAggInfo.aCol[i].iSorterColumn>=j ){
5769 nCol++;
5770 j++;
5773 regBase = sqlite3GetTempRange(pParse, nCol);
5774 sqlite3ExprCacheClear(pParse);
5775 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5776 j = nGroupBy;
5777 for(i=0; i<sAggInfo.nColumn; i++){
5778 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5779 if( pCol->iSorterColumn>=j ){
5780 int r1 = j + regBase;
5781 sqlite3ExprCodeGetColumnToReg(pParse,
5782 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5783 j++;
5786 regRecord = sqlite3GetTempReg(pParse);
5787 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5788 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5789 sqlite3ReleaseTempReg(pParse, regRecord);
5790 sqlite3ReleaseTempRange(pParse, regBase, nCol);
5791 sqlite3WhereEnd(pWInfo);
5792 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5793 sortOut = sqlite3GetTempReg(pParse);
5794 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5795 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5796 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5797 sAggInfo.useSortingIdx = 1;
5798 sqlite3ExprCacheClear(pParse);
5802 /* If the index or temporary table used by the GROUP BY sort
5803 ** will naturally deliver rows in the order required by the ORDER BY
5804 ** clause, cancel the ephemeral table open coded earlier.
5806 ** This is an optimization - the correct answer should result regardless.
5807 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5808 ** disable this optimization for testing purposes. */
5809 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5810 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5812 sSort.pOrderBy = 0;
5813 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5816 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5817 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5818 ** Then compare the current GROUP BY terms against the GROUP BY terms
5819 ** from the previous row currently stored in a0, a1, a2...
5821 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5822 sqlite3ExprCacheClear(pParse);
5823 if( groupBySort ){
5824 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5825 sortOut, sortPTab);
5827 for(j=0; j<pGroupBy->nExpr; j++){
5828 if( groupBySort ){
5829 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5830 }else{
5831 sAggInfo.directMode = 1;
5832 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5835 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5836 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5837 addr1 = sqlite3VdbeCurrentAddr(v);
5838 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5840 /* Generate code that runs whenever the GROUP BY changes.
5841 ** Changes in the GROUP BY are detected by the previous code
5842 ** block. If there were no changes, this block is skipped.
5844 ** This code copies current group by terms in b0,b1,b2,...
5845 ** over to a0,a1,a2. It then calls the output subroutine
5846 ** and resets the aggregate accumulator registers in preparation
5847 ** for the next GROUP BY batch.
5849 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5850 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5851 VdbeComment((v, "output one row"));
5852 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5853 VdbeComment((v, "check abort flag"));
5854 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5855 VdbeComment((v, "reset accumulator"));
5857 /* Update the aggregate accumulators based on the content of
5858 ** the current row
5860 sqlite3VdbeJumpHere(v, addr1);
5861 updateAccumulator(pParse, &sAggInfo);
5862 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5863 VdbeComment((v, "indicate data in accumulator"));
5865 /* End of the loop
5867 if( groupBySort ){
5868 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5869 VdbeCoverage(v);
5870 }else{
5871 sqlite3WhereEnd(pWInfo);
5872 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5875 /* Output the final row of result
5877 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5878 VdbeComment((v, "output final row"));
5880 /* Jump over the subroutines
5882 sqlite3VdbeGoto(v, addrEnd);
5884 /* Generate a subroutine that outputs a single row of the result
5885 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5886 ** is less than or equal to zero, the subroutine is a no-op. If
5887 ** the processing calls for the query to abort, this subroutine
5888 ** increments the iAbortFlag memory location before returning in
5889 ** order to signal the caller to abort.
5891 addrSetAbort = sqlite3VdbeCurrentAddr(v);
5892 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5893 VdbeComment((v, "set abort flag"));
5894 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5895 sqlite3VdbeResolveLabel(v, addrOutputRow);
5896 addrOutputRow = sqlite3VdbeCurrentAddr(v);
5897 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5898 VdbeCoverage(v);
5899 VdbeComment((v, "Groupby result generator entry point"));
5900 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5901 finalizeAggFunctions(pParse, &sAggInfo);
5902 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5903 selectInnerLoop(pParse, p, -1, &sSort,
5904 &sDistinct, pDest,
5905 addrOutputRow+1, addrSetAbort);
5906 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5907 VdbeComment((v, "end groupby result generator"));
5909 /* Generate a subroutine that will reset the group-by accumulator
5911 sqlite3VdbeResolveLabel(v, addrReset);
5912 resetAccumulator(pParse, &sAggInfo);
5913 sqlite3VdbeAddOp1(v, OP_Return, regReset);
5915 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5916 else {
5917 #ifndef SQLITE_OMIT_BTREECOUNT
5918 Table *pTab;
5919 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5920 /* If isSimpleCount() returns a pointer to a Table structure, then
5921 ** the SQL statement is of the form:
5923 ** SELECT count(*) FROM <tbl>
5925 ** where the Table structure returned represents table <tbl>.
5927 ** This statement is so common that it is optimized specially. The
5928 ** OP_Count instruction is executed either on the intkey table that
5929 ** contains the data for table <tbl> or on one of its indexes. It
5930 ** is better to execute the op on an index, as indexes are almost
5931 ** always spread across less pages than their corresponding tables.
5933 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5934 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
5935 Index *pIdx; /* Iterator variable */
5936 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
5937 Index *pBest = 0; /* Best index found so far */
5938 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
5940 sqlite3CodeVerifySchema(pParse, iDb);
5941 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5943 /* Search for the index that has the lowest scan cost.
5945 ** (2011-04-15) Do not do a full scan of an unordered index.
5947 ** (2013-10-03) Do not count the entries in a partial index.
5949 ** In practice the KeyInfo structure will not be used. It is only
5950 ** passed to keep OP_OpenRead happy.
5952 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5953 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5954 if( pIdx->bUnordered==0
5955 && pIdx->szIdxRow<pTab->szTabRow
5956 && pIdx->pPartIdxWhere==0
5957 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5959 pBest = pIdx;
5962 if( pBest ){
5963 iRoot = pBest->tnum;
5964 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5967 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5968 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5969 if( pKeyInfo ){
5970 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5972 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5973 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5974 explainSimpleCount(pParse, pTab, pBest);
5975 }else
5976 #endif /* SQLITE_OMIT_BTREECOUNT */
5978 /* This case runs if the aggregate has no GROUP BY clause. The
5979 ** processing is much simpler since there is only a single row
5980 ** of output.
5982 assert( p->pGroupBy==0 );
5983 resetAccumulator(pParse, &sAggInfo);
5985 /* If this query is a candidate for the min/max optimization, then
5986 ** minMaxFlag will have been previously set to either
5987 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
5988 ** be an appropriate ORDER BY expression for the optimization.
5990 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
5991 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
5993 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
5994 0, minMaxFlag, 0);
5995 if( pWInfo==0 ){
5996 goto select_end;
5998 updateAccumulator(pParse, &sAggInfo);
5999 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6000 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6001 VdbeComment((v, "%s() by index",
6002 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6004 sqlite3WhereEnd(pWInfo);
6005 finalizeAggFunctions(pParse, &sAggInfo);
6008 sSort.pOrderBy = 0;
6009 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6010 selectInnerLoop(pParse, p, -1, 0, 0,
6011 pDest, addrEnd, addrEnd);
6013 sqlite3VdbeResolveLabel(v, addrEnd);
6015 } /* endif aggregate query */
6017 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6018 explainTempTable(pParse, "DISTINCT");
6021 /* If there is an ORDER BY clause, then we need to sort the results
6022 ** and send them to the callback one by one.
6024 if( sSort.pOrderBy ){
6025 explainTempTable(pParse,
6026 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6027 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6030 /* Jump here to skip this query
6032 sqlite3VdbeResolveLabel(v, iEnd);
6034 /* The SELECT has been coded. If there is an error in the Parse structure,
6035 ** set the return code to 1. Otherwise 0. */
6036 rc = (pParse->nErr>0);
6038 /* Control jumps to here if an error is encountered above, or upon
6039 ** successful coding of the SELECT.
6041 select_end:
6042 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6043 sqlite3ExprListDelete(db, pMinMaxOrderBy);
6044 sqlite3DbFree(db, sAggInfo.aCol);
6045 sqlite3DbFree(db, sAggInfo.aFunc);
6046 #if SELECTTRACE_ENABLED
6047 SELECTTRACE(1,pParse,p,("end processing\n"));
6048 pParse->nSelectIndent--;
6049 #endif
6050 return rc;