Enhance the command-line completion extension to return the names of
[sqlite.git] / src / pcache1.c
blobfc3cbc5abe0a167dd80d3d802a09ad9ecae9d294
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
19 ** A Page cache line looks like this:
21 ** -------------------------------------------------------------
22 ** | database page content | PgHdr1 | MemPage | PgHdr |
23 ** -------------------------------------------------------------
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used. PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty". PgHdr1 is an extension added by this
31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
43 ** using a separate memory allocation from the database page content. This
44 ** seeks to overcome the "clownshoe" problem (also called "internal
45 ** fragmentation" in academic literature) of allocating a few bytes more
46 ** than a power of two with the memory allocator rounding up to the next
47 ** power of two, and leaving the rounded-up space unused.
49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates
50 ** with this module. Information is passed back and forth as PgHdr1 pointers.
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
53 ** The btree.c module deals with pointers to MemPage objects.
55 ** SOURCE OF PAGE CACHE MEMORY:
57 ** Memory for a page might come from any of three sources:
59 ** (1) The general-purpose memory allocator - sqlite3Malloc()
60 ** (2) Global page-cache memory provided using sqlite3_config() with
61 ** SQLITE_CONFIG_PAGECACHE.
62 ** (3) PCache-local bulk allocation.
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
65 ** that is allocated when the page cache is created. The size of the local
66 ** bulk allocation can be adjusted using
68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
70 ** If N is positive, then N pages worth of memory are allocated using a single
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
73 ** for as many pages as can be accomodated.
75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
77 ** memory allocator (1).
79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments
80 ** show that method (3) with N==100 provides about a 5% performance boost for
81 ** common workloads.
83 #include "sqliteInt.h"
85 typedef struct PCache1 PCache1;
86 typedef struct PgHdr1 PgHdr1;
87 typedef struct PgFreeslot PgFreeslot;
88 typedef struct PGroup PGroup;
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
96 struct PgHdr1 {
97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
98 unsigned int iKey; /* Key value (page number) */
99 u8 isBulkLocal; /* This page from bulk local storage */
100 u8 isAnchor; /* This is the PGroup.lru element */
101 PgHdr1 *pNext; /* Next in hash table chain */
102 PCache1 *pCache; /* Cache that currently owns this page */
103 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
104 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
108 ** A page is pinned if it is no on the LRU list
110 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0)
111 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0)
113 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
114 ** of one or more PCaches that are able to recycle each other's unpinned
115 ** pages when they are under memory pressure. A PGroup is an instance of
116 ** the following object.
118 ** This page cache implementation works in one of two modes:
120 ** (1) Every PCache is the sole member of its own PGroup. There is
121 ** one PGroup per PCache.
123 ** (2) There is a single global PGroup that all PCaches are a member
124 ** of.
126 ** Mode 1 uses more memory (since PCache instances are not able to rob
127 ** unused pages from other PCaches) but it also operates without a mutex,
128 ** and is therefore often faster. Mode 2 requires a mutex in order to be
129 ** threadsafe, but recycles pages more efficiently.
131 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
132 ** PGroup which is the pcache1.grp global variable and its mutex is
133 ** SQLITE_MUTEX_STATIC_LRU.
135 struct PGroup {
136 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
137 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
138 unsigned int nMinPage; /* Sum of nMin for purgeable caches */
139 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
140 unsigned int nPurgeable; /* Number of purgeable pages allocated */
141 PgHdr1 lru; /* The beginning and end of the LRU list */
144 /* Each page cache is an instance of the following object. Every
145 ** open database file (including each in-memory database and each
146 ** temporary or transient database) has a single page cache which
147 ** is an instance of this object.
149 ** Pointers to structures of this type are cast and returned as
150 ** opaque sqlite3_pcache* handles.
152 struct PCache1 {
153 /* Cache configuration parameters. Page size (szPage) and the purgeable
154 ** flag (bPurgeable) and the pnPurgeable pointer are all set when the
155 ** cache is created and are never changed thereafter. nMax may be
156 ** modified at any time by a call to the pcache1Cachesize() method.
157 ** The PGroup mutex must be held when accessing nMax.
159 PGroup *pGroup; /* PGroup this cache belongs to */
160 unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */
161 int szPage; /* Size of database content section */
162 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
163 int szAlloc; /* Total size of one pcache line */
164 int bPurgeable; /* True if cache is purgeable */
165 unsigned int nMin; /* Minimum number of pages reserved */
166 unsigned int nMax; /* Configured "cache_size" value */
167 unsigned int n90pct; /* nMax*9/10 */
168 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
170 /* Hash table of all pages. The following variables may only be accessed
171 ** when the accessor is holding the PGroup mutex.
173 unsigned int nRecyclable; /* Number of pages in the LRU list */
174 unsigned int nPage; /* Total number of pages in apHash */
175 unsigned int nHash; /* Number of slots in apHash[] */
176 PgHdr1 **apHash; /* Hash table for fast lookup by key */
177 PgHdr1 *pFree; /* List of unused pcache-local pages */
178 void *pBulk; /* Bulk memory used by pcache-local */
182 ** Free slots in the allocator used to divide up the global page cache
183 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
185 struct PgFreeslot {
186 PgFreeslot *pNext; /* Next free slot */
190 ** Global data used by this cache.
192 static SQLITE_WSD struct PCacheGlobal {
193 PGroup grp; /* The global PGroup for mode (2) */
195 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
196 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
197 ** fixed at sqlite3_initialize() time and do not require mutex protection.
198 ** The nFreeSlot and pFree values do require mutex protection.
200 int isInit; /* True if initialized */
201 int separateCache; /* Use a new PGroup for each PCache */
202 int nInitPage; /* Initial bulk allocation size */
203 int szSlot; /* Size of each free slot */
204 int nSlot; /* The number of pcache slots */
205 int nReserve; /* Try to keep nFreeSlot above this */
206 void *pStart, *pEnd; /* Bounds of global page cache memory */
207 /* Above requires no mutex. Use mutex below for variable that follow. */
208 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
209 PgFreeslot *pFree; /* Free page blocks */
210 int nFreeSlot; /* Number of unused pcache slots */
211 /* The following value requires a mutex to change. We skip the mutex on
212 ** reading because (1) most platforms read a 32-bit integer atomically and
213 ** (2) even if an incorrect value is read, no great harm is done since this
214 ** is really just an optimization. */
215 int bUnderPressure; /* True if low on PAGECACHE memory */
216 } pcache1_g;
219 ** All code in this file should access the global structure above via the
220 ** alias "pcache1". This ensures that the WSD emulation is used when
221 ** compiling for systems that do not support real WSD.
223 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
226 ** Macros to enter and leave the PCache LRU mutex.
228 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
229 # define pcache1EnterMutex(X) assert((X)->mutex==0)
230 # define pcache1LeaveMutex(X) assert((X)->mutex==0)
231 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
232 #else
233 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
234 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
235 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
236 #endif
238 /******************************************************************************/
239 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
243 ** This function is called during initialization if a static buffer is
244 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
245 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
246 ** enough to contain 'n' buffers of 'sz' bytes each.
248 ** This routine is called from sqlite3_initialize() and so it is guaranteed
249 ** to be serialized already. There is no need for further mutexing.
251 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
252 if( pcache1.isInit ){
253 PgFreeslot *p;
254 if( pBuf==0 ) sz = n = 0;
255 if( n==0 ) sz = 0;
256 sz = ROUNDDOWN8(sz);
257 pcache1.szSlot = sz;
258 pcache1.nSlot = pcache1.nFreeSlot = n;
259 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
260 pcache1.pStart = pBuf;
261 pcache1.pFree = 0;
262 pcache1.bUnderPressure = 0;
263 while( n-- ){
264 p = (PgFreeslot*)pBuf;
265 p->pNext = pcache1.pFree;
266 pcache1.pFree = p;
267 pBuf = (void*)&((char*)pBuf)[sz];
269 pcache1.pEnd = pBuf;
274 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
275 ** true if pCache->pFree ends up containing one or more free pages.
277 static int pcache1InitBulk(PCache1 *pCache){
278 i64 szBulk;
279 char *zBulk;
280 if( pcache1.nInitPage==0 ) return 0;
281 /* Do not bother with a bulk allocation if the cache size very small */
282 if( pCache->nMax<3 ) return 0;
283 sqlite3BeginBenignMalloc();
284 if( pcache1.nInitPage>0 ){
285 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
286 }else{
287 szBulk = -1024 * (i64)pcache1.nInitPage;
289 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
290 szBulk = pCache->szAlloc*(i64)pCache->nMax;
292 zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
293 sqlite3EndBenignMalloc();
294 if( zBulk ){
295 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
297 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
298 pX->page.pBuf = zBulk;
299 pX->page.pExtra = &pX[1];
300 pX->isBulkLocal = 1;
301 pX->isAnchor = 0;
302 pX->pNext = pCache->pFree;
303 pCache->pFree = pX;
304 zBulk += pCache->szAlloc;
305 }while( --nBulk );
307 return pCache->pFree!=0;
311 ** Malloc function used within this file to allocate space from the buffer
312 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
313 ** such buffer exists or there is no space left in it, this function falls
314 ** back to sqlite3Malloc().
316 ** Multiple threads can run this routine at the same time. Global variables
317 ** in pcache1 need to be protected via mutex.
319 static void *pcache1Alloc(int nByte){
320 void *p = 0;
321 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
322 if( nByte<=pcache1.szSlot ){
323 sqlite3_mutex_enter(pcache1.mutex);
324 p = (PgHdr1 *)pcache1.pFree;
325 if( p ){
326 pcache1.pFree = pcache1.pFree->pNext;
327 pcache1.nFreeSlot--;
328 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
329 assert( pcache1.nFreeSlot>=0 );
330 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
331 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
333 sqlite3_mutex_leave(pcache1.mutex);
335 if( p==0 ){
336 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
337 ** it from sqlite3Malloc instead.
339 p = sqlite3Malloc(nByte);
340 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
341 if( p ){
342 int sz = sqlite3MallocSize(p);
343 sqlite3_mutex_enter(pcache1.mutex);
344 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
345 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
346 sqlite3_mutex_leave(pcache1.mutex);
348 #endif
349 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
351 return p;
355 ** Free an allocated buffer obtained from pcache1Alloc().
357 static void pcache1Free(void *p){
358 if( p==0 ) return;
359 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
360 PgFreeslot *pSlot;
361 sqlite3_mutex_enter(pcache1.mutex);
362 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
363 pSlot = (PgFreeslot*)p;
364 pSlot->pNext = pcache1.pFree;
365 pcache1.pFree = pSlot;
366 pcache1.nFreeSlot++;
367 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
368 assert( pcache1.nFreeSlot<=pcache1.nSlot );
369 sqlite3_mutex_leave(pcache1.mutex);
370 }else{
371 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
372 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
373 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
375 int nFreed = 0;
376 nFreed = sqlite3MallocSize(p);
377 sqlite3_mutex_enter(pcache1.mutex);
378 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
379 sqlite3_mutex_leave(pcache1.mutex);
381 #endif
382 sqlite3_free(p);
386 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
388 ** Return the size of a pcache allocation
390 static int pcache1MemSize(void *p){
391 if( p>=pcache1.pStart && p<pcache1.pEnd ){
392 return pcache1.szSlot;
393 }else{
394 int iSize;
395 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
396 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
397 iSize = sqlite3MallocSize(p);
398 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
399 return iSize;
402 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
405 ** Allocate a new page object initially associated with cache pCache.
407 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
408 PgHdr1 *p = 0;
409 void *pPg;
411 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
412 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
413 p = pCache->pFree;
414 pCache->pFree = p->pNext;
415 p->pNext = 0;
416 }else{
417 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
418 /* The group mutex must be released before pcache1Alloc() is called. This
419 ** is because it might call sqlite3_release_memory(), which assumes that
420 ** this mutex is not held. */
421 assert( pcache1.separateCache==0 );
422 assert( pCache->pGroup==&pcache1.grp );
423 pcache1LeaveMutex(pCache->pGroup);
424 #endif
425 if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
426 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
427 pPg = pcache1Alloc(pCache->szPage);
428 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
429 if( !pPg || !p ){
430 pcache1Free(pPg);
431 sqlite3_free(p);
432 pPg = 0;
434 #else
435 pPg = pcache1Alloc(pCache->szAlloc);
436 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
437 #endif
438 if( benignMalloc ){ sqlite3EndBenignMalloc(); }
439 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
440 pcache1EnterMutex(pCache->pGroup);
441 #endif
442 if( pPg==0 ) return 0;
443 p->page.pBuf = pPg;
444 p->page.pExtra = &p[1];
445 p->isBulkLocal = 0;
446 p->isAnchor = 0;
448 (*pCache->pnPurgeable)++;
449 return p;
453 ** Free a page object allocated by pcache1AllocPage().
455 static void pcache1FreePage(PgHdr1 *p){
456 PCache1 *pCache;
457 assert( p!=0 );
458 pCache = p->pCache;
459 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
460 if( p->isBulkLocal ){
461 p->pNext = pCache->pFree;
462 pCache->pFree = p;
463 }else{
464 pcache1Free(p->page.pBuf);
465 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
466 sqlite3_free(p);
467 #endif
469 (*pCache->pnPurgeable)--;
473 ** Malloc function used by SQLite to obtain space from the buffer configured
474 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
475 ** exists, this function falls back to sqlite3Malloc().
477 void *sqlite3PageMalloc(int sz){
478 return pcache1Alloc(sz);
482 ** Free an allocated buffer obtained from sqlite3PageMalloc().
484 void sqlite3PageFree(void *p){
485 pcache1Free(p);
490 ** Return true if it desirable to avoid allocating a new page cache
491 ** entry.
493 ** If memory was allocated specifically to the page cache using
494 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
495 ** it is desirable to avoid allocating a new page cache entry because
496 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
497 ** for all page cache needs and we should not need to spill the
498 ** allocation onto the heap.
500 ** Or, the heap is used for all page cache memory but the heap is
501 ** under memory pressure, then again it is desirable to avoid
502 ** allocating a new page cache entry in order to avoid stressing
503 ** the heap even further.
505 static int pcache1UnderMemoryPressure(PCache1 *pCache){
506 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
507 return pcache1.bUnderPressure;
508 }else{
509 return sqlite3HeapNearlyFull();
513 /******************************************************************************/
514 /******** General Implementation Functions ************************************/
517 ** This function is used to resize the hash table used by the cache passed
518 ** as the first argument.
520 ** The PCache mutex must be held when this function is called.
522 static void pcache1ResizeHash(PCache1 *p){
523 PgHdr1 **apNew;
524 unsigned int nNew;
525 unsigned int i;
527 assert( sqlite3_mutex_held(p->pGroup->mutex) );
529 nNew = p->nHash*2;
530 if( nNew<256 ){
531 nNew = 256;
534 pcache1LeaveMutex(p->pGroup);
535 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
536 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
537 if( p->nHash ){ sqlite3EndBenignMalloc(); }
538 pcache1EnterMutex(p->pGroup);
539 if( apNew ){
540 for(i=0; i<p->nHash; i++){
541 PgHdr1 *pPage;
542 PgHdr1 *pNext = p->apHash[i];
543 while( (pPage = pNext)!=0 ){
544 unsigned int h = pPage->iKey % nNew;
545 pNext = pPage->pNext;
546 pPage->pNext = apNew[h];
547 apNew[h] = pPage;
550 sqlite3_free(p->apHash);
551 p->apHash = apNew;
552 p->nHash = nNew;
557 ** This function is used internally to remove the page pPage from the
558 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
559 ** LRU list, then this function is a no-op.
561 ** The PGroup mutex must be held when this function is called.
563 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
564 assert( pPage!=0 );
565 assert( PAGE_IS_UNPINNED(pPage) );
566 assert( pPage->pLruNext );
567 assert( pPage->pLruPrev );
568 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
569 pPage->pLruPrev->pLruNext = pPage->pLruNext;
570 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
571 pPage->pLruNext = 0;
572 pPage->pLruPrev = 0;
573 assert( pPage->isAnchor==0 );
574 assert( pPage->pCache->pGroup->lru.isAnchor==1 );
575 pPage->pCache->nRecyclable--;
576 return pPage;
581 ** Remove the page supplied as an argument from the hash table
582 ** (PCache1.apHash structure) that it is currently stored in.
583 ** Also free the page if freePage is true.
585 ** The PGroup mutex must be held when this function is called.
587 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
588 unsigned int h;
589 PCache1 *pCache = pPage->pCache;
590 PgHdr1 **pp;
592 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
593 h = pPage->iKey % pCache->nHash;
594 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
595 *pp = (*pp)->pNext;
597 pCache->nPage--;
598 if( freeFlag ) pcache1FreePage(pPage);
602 ** If there are currently more than nMaxPage pages allocated, try
603 ** to recycle pages to reduce the number allocated to nMaxPage.
605 static void pcache1EnforceMaxPage(PCache1 *pCache){
606 PGroup *pGroup = pCache->pGroup;
607 PgHdr1 *p;
608 assert( sqlite3_mutex_held(pGroup->mutex) );
609 while( pGroup->nPurgeable>pGroup->nMaxPage
610 && (p=pGroup->lru.pLruPrev)->isAnchor==0
612 assert( p->pCache->pGroup==pGroup );
613 assert( PAGE_IS_UNPINNED(p) );
614 pcache1PinPage(p);
615 pcache1RemoveFromHash(p, 1);
617 if( pCache->nPage==0 && pCache->pBulk ){
618 sqlite3_free(pCache->pBulk);
619 pCache->pBulk = pCache->pFree = 0;
624 ** Discard all pages from cache pCache with a page number (key value)
625 ** greater than or equal to iLimit. Any pinned pages that meet this
626 ** criteria are unpinned before they are discarded.
628 ** The PCache mutex must be held when this function is called.
630 static void pcache1TruncateUnsafe(
631 PCache1 *pCache, /* The cache to truncate */
632 unsigned int iLimit /* Drop pages with this pgno or larger */
634 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */
635 unsigned int h, iStop;
636 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
637 assert( pCache->iMaxKey >= iLimit );
638 assert( pCache->nHash > 0 );
639 if( pCache->iMaxKey - iLimit < pCache->nHash ){
640 /* If we are just shaving the last few pages off the end of the
641 ** cache, then there is no point in scanning the entire hash table.
642 ** Only scan those hash slots that might contain pages that need to
643 ** be removed. */
644 h = iLimit % pCache->nHash;
645 iStop = pCache->iMaxKey % pCache->nHash;
646 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */
647 }else{
648 /* This is the general case where many pages are being removed.
649 ** It is necessary to scan the entire hash table */
650 h = pCache->nHash/2;
651 iStop = h - 1;
653 for(;;){
654 PgHdr1 **pp;
655 PgHdr1 *pPage;
656 assert( h<pCache->nHash );
657 pp = &pCache->apHash[h];
658 while( (pPage = *pp)!=0 ){
659 if( pPage->iKey>=iLimit ){
660 pCache->nPage--;
661 *pp = pPage->pNext;
662 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
663 pcache1FreePage(pPage);
664 }else{
665 pp = &pPage->pNext;
666 TESTONLY( if( nPage>=0 ) nPage++; )
669 if( h==iStop ) break;
670 h = (h+1) % pCache->nHash;
672 assert( nPage<0 || pCache->nPage==(unsigned)nPage );
675 /******************************************************************************/
676 /******** sqlite3_pcache Methods **********************************************/
679 ** Implementation of the sqlite3_pcache.xInit method.
681 static int pcache1Init(void *NotUsed){
682 UNUSED_PARAMETER(NotUsed);
683 assert( pcache1.isInit==0 );
684 memset(&pcache1, 0, sizeof(pcache1));
688 ** The pcache1.separateCache variable is true if each PCache has its own
689 ** private PGroup (mode-1). pcache1.separateCache is false if the single
690 ** PGroup in pcache1.grp is used for all page caches (mode-2).
692 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
694 ** * Use a unified cache in single-threaded applications that have
695 ** configured a start-time buffer for use as page-cache memory using
696 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
697 ** pBuf argument.
699 ** * Otherwise use separate caches (mode-1)
701 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
702 pcache1.separateCache = 0;
703 #elif SQLITE_THREADSAFE
704 pcache1.separateCache = sqlite3GlobalConfig.pPage==0
705 || sqlite3GlobalConfig.bCoreMutex>0;
706 #else
707 pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
708 #endif
710 #if SQLITE_THREADSAFE
711 if( sqlite3GlobalConfig.bCoreMutex ){
712 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
713 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
715 #endif
716 if( pcache1.separateCache
717 && sqlite3GlobalConfig.nPage!=0
718 && sqlite3GlobalConfig.pPage==0
720 pcache1.nInitPage = sqlite3GlobalConfig.nPage;
721 }else{
722 pcache1.nInitPage = 0;
724 pcache1.grp.mxPinned = 10;
725 pcache1.isInit = 1;
726 return SQLITE_OK;
730 ** Implementation of the sqlite3_pcache.xShutdown method.
731 ** Note that the static mutex allocated in xInit does
732 ** not need to be freed.
734 static void pcache1Shutdown(void *NotUsed){
735 UNUSED_PARAMETER(NotUsed);
736 assert( pcache1.isInit!=0 );
737 memset(&pcache1, 0, sizeof(pcache1));
740 /* forward declaration */
741 static void pcache1Destroy(sqlite3_pcache *p);
744 ** Implementation of the sqlite3_pcache.xCreate method.
746 ** Allocate a new cache.
748 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
749 PCache1 *pCache; /* The newly created page cache */
750 PGroup *pGroup; /* The group the new page cache will belong to */
751 int sz; /* Bytes of memory required to allocate the new cache */
753 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
754 assert( szExtra < 300 );
756 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
757 pCache = (PCache1 *)sqlite3MallocZero(sz);
758 if( pCache ){
759 if( pcache1.separateCache ){
760 pGroup = (PGroup*)&pCache[1];
761 pGroup->mxPinned = 10;
762 }else{
763 pGroup = &pcache1.grp;
765 if( pGroup->lru.isAnchor==0 ){
766 pGroup->lru.isAnchor = 1;
767 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
769 pCache->pGroup = pGroup;
770 pCache->szPage = szPage;
771 pCache->szExtra = szExtra;
772 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
773 pCache->bPurgeable = (bPurgeable ? 1 : 0);
774 pcache1EnterMutex(pGroup);
775 pcache1ResizeHash(pCache);
776 if( bPurgeable ){
777 pCache->nMin = 10;
778 pGroup->nMinPage += pCache->nMin;
779 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
780 pCache->pnPurgeable = &pGroup->nPurgeable;
781 }else{
782 static unsigned int dummyCurrentPage;
783 pCache->pnPurgeable = &dummyCurrentPage;
785 pcache1LeaveMutex(pGroup);
786 if( pCache->nHash==0 ){
787 pcache1Destroy((sqlite3_pcache*)pCache);
788 pCache = 0;
791 return (sqlite3_pcache *)pCache;
795 ** Implementation of the sqlite3_pcache.xCachesize method.
797 ** Configure the cache_size limit for a cache.
799 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
800 PCache1 *pCache = (PCache1 *)p;
801 if( pCache->bPurgeable ){
802 PGroup *pGroup = pCache->pGroup;
803 pcache1EnterMutex(pGroup);
804 pGroup->nMaxPage += (nMax - pCache->nMax);
805 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
806 pCache->nMax = nMax;
807 pCache->n90pct = pCache->nMax*9/10;
808 pcache1EnforceMaxPage(pCache);
809 pcache1LeaveMutex(pGroup);
814 ** Implementation of the sqlite3_pcache.xShrink method.
816 ** Free up as much memory as possible.
818 static void pcache1Shrink(sqlite3_pcache *p){
819 PCache1 *pCache = (PCache1*)p;
820 if( pCache->bPurgeable ){
821 PGroup *pGroup = pCache->pGroup;
822 int savedMaxPage;
823 pcache1EnterMutex(pGroup);
824 savedMaxPage = pGroup->nMaxPage;
825 pGroup->nMaxPage = 0;
826 pcache1EnforceMaxPage(pCache);
827 pGroup->nMaxPage = savedMaxPage;
828 pcache1LeaveMutex(pGroup);
833 ** Implementation of the sqlite3_pcache.xPagecount method.
835 static int pcache1Pagecount(sqlite3_pcache *p){
836 int n;
837 PCache1 *pCache = (PCache1*)p;
838 pcache1EnterMutex(pCache->pGroup);
839 n = pCache->nPage;
840 pcache1LeaveMutex(pCache->pGroup);
841 return n;
846 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
847 ** in the header of the pcache1Fetch() procedure.
849 ** This steps are broken out into a separate procedure because they are
850 ** usually not needed, and by avoiding the stack initialization required
851 ** for these steps, the main pcache1Fetch() procedure can run faster.
853 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
854 PCache1 *pCache,
855 unsigned int iKey,
856 int createFlag
858 unsigned int nPinned;
859 PGroup *pGroup = pCache->pGroup;
860 PgHdr1 *pPage = 0;
862 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
863 assert( pCache->nPage >= pCache->nRecyclable );
864 nPinned = pCache->nPage - pCache->nRecyclable;
865 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
866 assert( pCache->n90pct == pCache->nMax*9/10 );
867 if( createFlag==1 && (
868 nPinned>=pGroup->mxPinned
869 || nPinned>=pCache->n90pct
870 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
872 return 0;
875 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
876 assert( pCache->nHash>0 && pCache->apHash );
878 /* Step 4. Try to recycle a page. */
879 if( pCache->bPurgeable
880 && !pGroup->lru.pLruPrev->isAnchor
881 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
883 PCache1 *pOther;
884 pPage = pGroup->lru.pLruPrev;
885 assert( PAGE_IS_UNPINNED(pPage) );
886 pcache1RemoveFromHash(pPage, 0);
887 pcache1PinPage(pPage);
888 pOther = pPage->pCache;
889 if( pOther->szAlloc != pCache->szAlloc ){
890 pcache1FreePage(pPage);
891 pPage = 0;
892 }else{
893 pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
897 /* Step 5. If a usable page buffer has still not been found,
898 ** attempt to allocate a new one.
900 if( !pPage ){
901 pPage = pcache1AllocPage(pCache, createFlag==1);
904 if( pPage ){
905 unsigned int h = iKey % pCache->nHash;
906 pCache->nPage++;
907 pPage->iKey = iKey;
908 pPage->pNext = pCache->apHash[h];
909 pPage->pCache = pCache;
910 pPage->pLruPrev = 0;
911 pPage->pLruNext = 0;
912 *(void **)pPage->page.pExtra = 0;
913 pCache->apHash[h] = pPage;
914 if( iKey>pCache->iMaxKey ){
915 pCache->iMaxKey = iKey;
918 return pPage;
922 ** Implementation of the sqlite3_pcache.xFetch method.
924 ** Fetch a page by key value.
926 ** Whether or not a new page may be allocated by this function depends on
927 ** the value of the createFlag argument. 0 means do not allocate a new
928 ** page. 1 means allocate a new page if space is easily available. 2
929 ** means to try really hard to allocate a new page.
931 ** For a non-purgeable cache (a cache used as the storage for an in-memory
932 ** database) there is really no difference between createFlag 1 and 2. So
933 ** the calling function (pcache.c) will never have a createFlag of 1 on
934 ** a non-purgeable cache.
936 ** There are three different approaches to obtaining space for a page,
937 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
939 ** 1. Regardless of the value of createFlag, the cache is searched for a
940 ** copy of the requested page. If one is found, it is returned.
942 ** 2. If createFlag==0 and the page is not already in the cache, NULL is
943 ** returned.
945 ** 3. If createFlag is 1, and the page is not already in the cache, then
946 ** return NULL (do not allocate a new page) if any of the following
947 ** conditions are true:
949 ** (a) the number of pages pinned by the cache is greater than
950 ** PCache1.nMax, or
952 ** (b) the number of pages pinned by the cache is greater than
953 ** the sum of nMax for all purgeable caches, less the sum of
954 ** nMin for all other purgeable caches, or
956 ** 4. If none of the first three conditions apply and the cache is marked
957 ** as purgeable, and if one of the following is true:
959 ** (a) The number of pages allocated for the cache is already
960 ** PCache1.nMax, or
962 ** (b) The number of pages allocated for all purgeable caches is
963 ** already equal to or greater than the sum of nMax for all
964 ** purgeable caches,
966 ** (c) The system is under memory pressure and wants to avoid
967 ** unnecessary pages cache entry allocations
969 ** then attempt to recycle a page from the LRU list. If it is the right
970 ** size, return the recycled buffer. Otherwise, free the buffer and
971 ** proceed to step 5.
973 ** 5. Otherwise, allocate and return a new page buffer.
975 ** There are two versions of this routine. pcache1FetchWithMutex() is
976 ** the general case. pcache1FetchNoMutex() is a faster implementation for
977 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
978 ** invokes the appropriate routine.
980 static PgHdr1 *pcache1FetchNoMutex(
981 sqlite3_pcache *p,
982 unsigned int iKey,
983 int createFlag
985 PCache1 *pCache = (PCache1 *)p;
986 PgHdr1 *pPage = 0;
988 /* Step 1: Search the hash table for an existing entry. */
989 pPage = pCache->apHash[iKey % pCache->nHash];
990 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
992 /* Step 2: If the page was found in the hash table, then return it.
993 ** If the page was not in the hash table and createFlag is 0, abort.
994 ** Otherwise (page not in hash and createFlag!=0) continue with
995 ** subsequent steps to try to create the page. */
996 if( pPage ){
997 if( PAGE_IS_UNPINNED(pPage) ){
998 return pcache1PinPage(pPage);
999 }else{
1000 return pPage;
1002 }else if( createFlag ){
1003 /* Steps 3, 4, and 5 implemented by this subroutine */
1004 return pcache1FetchStage2(pCache, iKey, createFlag);
1005 }else{
1006 return 0;
1009 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1010 static PgHdr1 *pcache1FetchWithMutex(
1011 sqlite3_pcache *p,
1012 unsigned int iKey,
1013 int createFlag
1015 PCache1 *pCache = (PCache1 *)p;
1016 PgHdr1 *pPage;
1018 pcache1EnterMutex(pCache->pGroup);
1019 pPage = pcache1FetchNoMutex(p, iKey, createFlag);
1020 assert( pPage==0 || pCache->iMaxKey>=iKey );
1021 pcache1LeaveMutex(pCache->pGroup);
1022 return pPage;
1024 #endif
1025 static sqlite3_pcache_page *pcache1Fetch(
1026 sqlite3_pcache *p,
1027 unsigned int iKey,
1028 int createFlag
1030 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1031 PCache1 *pCache = (PCache1 *)p;
1032 #endif
1034 assert( offsetof(PgHdr1,page)==0 );
1035 assert( pCache->bPurgeable || createFlag!=1 );
1036 assert( pCache->bPurgeable || pCache->nMin==0 );
1037 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1038 assert( pCache->nMin==0 || pCache->bPurgeable );
1039 assert( pCache->nHash>0 );
1040 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1041 if( pCache->pGroup->mutex ){
1042 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1043 }else
1044 #endif
1046 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1052 ** Implementation of the sqlite3_pcache.xUnpin method.
1054 ** Mark a page as unpinned (eligible for asynchronous recycling).
1056 static void pcache1Unpin(
1057 sqlite3_pcache *p,
1058 sqlite3_pcache_page *pPg,
1059 int reuseUnlikely
1061 PCache1 *pCache = (PCache1 *)p;
1062 PgHdr1 *pPage = (PgHdr1 *)pPg;
1063 PGroup *pGroup = pCache->pGroup;
1065 assert( pPage->pCache==pCache );
1066 pcache1EnterMutex(pGroup);
1068 /* It is an error to call this function if the page is already
1069 ** part of the PGroup LRU list.
1071 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
1072 assert( PAGE_IS_PINNED(pPage) );
1074 if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
1075 pcache1RemoveFromHash(pPage, 1);
1076 }else{
1077 /* Add the page to the PGroup LRU list. */
1078 PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1079 pPage->pLruPrev = &pGroup->lru;
1080 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1081 *ppFirst = pPage;
1082 pCache->nRecyclable++;
1085 pcache1LeaveMutex(pCache->pGroup);
1089 ** Implementation of the sqlite3_pcache.xRekey method.
1091 static void pcache1Rekey(
1092 sqlite3_pcache *p,
1093 sqlite3_pcache_page *pPg,
1094 unsigned int iOld,
1095 unsigned int iNew
1097 PCache1 *pCache = (PCache1 *)p;
1098 PgHdr1 *pPage = (PgHdr1 *)pPg;
1099 PgHdr1 **pp;
1100 unsigned int h;
1101 assert( pPage->iKey==iOld );
1102 assert( pPage->pCache==pCache );
1104 pcache1EnterMutex(pCache->pGroup);
1106 h = iOld%pCache->nHash;
1107 pp = &pCache->apHash[h];
1108 while( (*pp)!=pPage ){
1109 pp = &(*pp)->pNext;
1111 *pp = pPage->pNext;
1113 h = iNew%pCache->nHash;
1114 pPage->iKey = iNew;
1115 pPage->pNext = pCache->apHash[h];
1116 pCache->apHash[h] = pPage;
1117 if( iNew>pCache->iMaxKey ){
1118 pCache->iMaxKey = iNew;
1121 pcache1LeaveMutex(pCache->pGroup);
1125 ** Implementation of the sqlite3_pcache.xTruncate method.
1127 ** Discard all unpinned pages in the cache with a page number equal to
1128 ** or greater than parameter iLimit. Any pinned pages with a page number
1129 ** equal to or greater than iLimit are implicitly unpinned.
1131 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1132 PCache1 *pCache = (PCache1 *)p;
1133 pcache1EnterMutex(pCache->pGroup);
1134 if( iLimit<=pCache->iMaxKey ){
1135 pcache1TruncateUnsafe(pCache, iLimit);
1136 pCache->iMaxKey = iLimit-1;
1138 pcache1LeaveMutex(pCache->pGroup);
1142 ** Implementation of the sqlite3_pcache.xDestroy method.
1144 ** Destroy a cache allocated using pcache1Create().
1146 static void pcache1Destroy(sqlite3_pcache *p){
1147 PCache1 *pCache = (PCache1 *)p;
1148 PGroup *pGroup = pCache->pGroup;
1149 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1150 pcache1EnterMutex(pGroup);
1151 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
1152 assert( pGroup->nMaxPage >= pCache->nMax );
1153 pGroup->nMaxPage -= pCache->nMax;
1154 assert( pGroup->nMinPage >= pCache->nMin );
1155 pGroup->nMinPage -= pCache->nMin;
1156 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1157 pcache1EnforceMaxPage(pCache);
1158 pcache1LeaveMutex(pGroup);
1159 sqlite3_free(pCache->pBulk);
1160 sqlite3_free(pCache->apHash);
1161 sqlite3_free(pCache);
1165 ** This function is called during initialization (sqlite3_initialize()) to
1166 ** install the default pluggable cache module, assuming the user has not
1167 ** already provided an alternative.
1169 void sqlite3PCacheSetDefault(void){
1170 static const sqlite3_pcache_methods2 defaultMethods = {
1171 1, /* iVersion */
1172 0, /* pArg */
1173 pcache1Init, /* xInit */
1174 pcache1Shutdown, /* xShutdown */
1175 pcache1Create, /* xCreate */
1176 pcache1Cachesize, /* xCachesize */
1177 pcache1Pagecount, /* xPagecount */
1178 pcache1Fetch, /* xFetch */
1179 pcache1Unpin, /* xUnpin */
1180 pcache1Rekey, /* xRekey */
1181 pcache1Truncate, /* xTruncate */
1182 pcache1Destroy, /* xDestroy */
1183 pcache1Shrink /* xShrink */
1185 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1189 ** Return the size of the header on each page of this PCACHE implementation.
1191 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1194 ** Return the global mutex used by this PCACHE implementation. The
1195 ** sqlite3_status() routine needs access to this mutex.
1197 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1198 return pcache1.mutex;
1201 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1203 ** This function is called to free superfluous dynamically allocated memory
1204 ** held by the pager system. Memory in use by any SQLite pager allocated
1205 ** by the current thread may be sqlite3_free()ed.
1207 ** nReq is the number of bytes of memory required. Once this much has
1208 ** been released, the function returns. The return value is the total number
1209 ** of bytes of memory released.
1211 int sqlite3PcacheReleaseMemory(int nReq){
1212 int nFree = 0;
1213 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1214 assert( sqlite3_mutex_notheld(pcache1.mutex) );
1215 if( sqlite3GlobalConfig.pPage==0 ){
1216 PgHdr1 *p;
1217 pcache1EnterMutex(&pcache1.grp);
1218 while( (nReq<0 || nFree<nReq)
1219 && (p=pcache1.grp.lru.pLruPrev)!=0
1220 && p->isAnchor==0
1222 nFree += pcache1MemSize(p->page.pBuf);
1223 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1224 nFree += sqlite3MemSize(p);
1225 #endif
1226 assert( PAGE_IS_UNPINNED(p) );
1227 pcache1PinPage(p);
1228 pcache1RemoveFromHash(p, 1);
1230 pcache1LeaveMutex(&pcache1.grp);
1232 return nFree;
1234 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1236 #ifdef SQLITE_TEST
1238 ** This function is used by test procedures to inspect the internal state
1239 ** of the global cache.
1241 void sqlite3PcacheStats(
1242 int *pnCurrent, /* OUT: Total number of pages cached */
1243 int *pnMax, /* OUT: Global maximum cache size */
1244 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
1245 int *pnRecyclable /* OUT: Total number of pages available for recycling */
1247 PgHdr1 *p;
1248 int nRecyclable = 0;
1249 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1250 assert( PAGE_IS_UNPINNED(p) );
1251 nRecyclable++;
1253 *pnCurrent = pcache1.grp.nPurgeable;
1254 *pnMax = (int)pcache1.grp.nMaxPage;
1255 *pnMin = (int)pcache1.grp.nMinPage;
1256 *pnRecyclable = nRecyclable;
1258 #endif