Enhance the command-line completion extension to return the names of
[sqlite.git] / src / insert.c
blobe1514692cc2f7f41c2c76ef468870f039b834e6c
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse *pParse, /* Generate code into this VDBE */
28 int iCur, /* The cursor number of the table */
29 int iDb, /* The database index in sqlite3.aDb[] */
30 Table *pTab, /* The table to be opened */
31 int opcode /* OP_OpenRead or OP_OpenWrite */
33 Vdbe *v;
34 assert( !IsVirtual(pTab) );
35 v = sqlite3GetVdbe(pParse);
36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37 sqlite3TableLock(pParse, iDb, pTab->tnum,
38 (opcode==OP_OpenWrite)?1:0, pTab->zName);
39 if( HasRowid(pTab) ){
40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41 VdbeComment((v, "%s", pTab->zName));
42 }else{
43 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44 assert( pPk!=0 );
45 assert( pPk->tnum==pTab->tnum );
46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48 VdbeComment((v, "%s", pTab->zName));
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
57 ** Character Column affinity
58 ** ------------------------------
59 ** 'A' BLOB
60 ** 'B' TEXT
61 ** 'C' NUMERIC
62 ** 'D' INTEGER
63 ** 'F' REAL
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73 if( !pIdx->zColAff ){
74 /* The first time a column affinity string for a particular index is
75 ** required, it is allocated and populated here. It is then stored as
76 ** a member of the Index structure for subsequent use.
78 ** The column affinity string will eventually be deleted by
79 ** sqliteDeleteIndex() when the Index structure itself is cleaned
80 ** up.
82 int n;
83 Table *pTab = pIdx->pTable;
84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85 if( !pIdx->zColAff ){
86 sqlite3OomFault(db);
87 return 0;
89 for(n=0; n<pIdx->nColumn; n++){
90 i16 x = pIdx->aiColumn[n];
91 if( x>=0 ){
92 pIdx->zColAff[n] = pTab->aCol[x].affinity;
93 }else if( x==XN_ROWID ){
94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER;
95 }else{
96 char aff;
97 assert( x==XN_EXPR );
98 assert( pIdx->aColExpr!=0 );
99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
100 if( aff==0 ) aff = SQLITE_AFF_BLOB;
101 pIdx->zColAff[n] = aff;
104 pIdx->zColAff[n] = 0;
107 return pIdx->zColAff;
111 ** Compute the affinity string for table pTab, if it has not already been
112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
116 ** for register iReg and following. Or if affinities exists and iReg==0,
117 ** then just set the P4 operand of the previous opcode (which should be
118 ** an OP_MakeRecord) to the affinity string.
120 ** A column affinity string has one character per column:
122 ** Character Column affinity
123 ** ------------------------------
124 ** 'A' BLOB
125 ** 'B' TEXT
126 ** 'C' NUMERIC
127 ** 'D' INTEGER
128 ** 'E' REAL
130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
131 int i;
132 char *zColAff = pTab->zColAff;
133 if( zColAff==0 ){
134 sqlite3 *db = sqlite3VdbeDb(v);
135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
136 if( !zColAff ){
137 sqlite3OomFault(db);
138 return;
141 for(i=0; i<pTab->nCol; i++){
142 zColAff[i] = pTab->aCol[i].affinity;
145 zColAff[i--] = 0;
146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
147 pTab->zColAff = zColAff;
149 i = sqlite3Strlen30(zColAff);
150 if( i ){
151 if( iReg ){
152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
153 }else{
154 sqlite3VdbeChangeP4(v, -1, zColAff, i);
160 ** Return non-zero if the table pTab in database iDb or any of its indices
161 ** have been opened at any point in the VDBE program. This is used to see if
162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
163 ** run without using a temporary table for the results of the SELECT.
165 static int readsTable(Parse *p, int iDb, Table *pTab){
166 Vdbe *v = sqlite3GetVdbe(p);
167 int i;
168 int iEnd = sqlite3VdbeCurrentAddr(v);
169 #ifndef SQLITE_OMIT_VIRTUALTABLE
170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
171 #endif
173 for(i=1; i<iEnd; i++){
174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
175 assert( pOp!=0 );
176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
177 Index *pIndex;
178 int tnum = pOp->p2;
179 if( tnum==pTab->tnum ){
180 return 1;
182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
183 if( tnum==pIndex->tnum ){
184 return 1;
188 #ifndef SQLITE_OMIT_VIRTUALTABLE
189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
190 assert( pOp->p4.pVtab!=0 );
191 assert( pOp->p4type==P4_VTAB );
192 return 1;
194 #endif
196 return 0;
199 #ifndef SQLITE_OMIT_AUTOINCREMENT
201 ** Locate or create an AutoincInfo structure associated with table pTab
202 ** which is in database iDb. Return the register number for the register
203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
204 ** table. (Also return zero when doing a VACUUM since we do not want to
205 ** update the AUTOINCREMENT counters during a VACUUM.)
207 ** There is at most one AutoincInfo structure per table even if the
208 ** same table is autoincremented multiple times due to inserts within
209 ** triggers. A new AutoincInfo structure is created if this is the
210 ** first use of table pTab. On 2nd and subsequent uses, the original
211 ** AutoincInfo structure is used.
213 ** Three memory locations are allocated:
215 ** (1) Register to hold the name of the pTab table.
216 ** (2) Register to hold the maximum ROWID of pTab.
217 ** (3) Register to hold the rowid in sqlite_sequence of pTab
219 ** The 2nd register is the one that is returned. That is all the
220 ** insert routine needs to know about.
222 static int autoIncBegin(
223 Parse *pParse, /* Parsing context */
224 int iDb, /* Index of the database holding pTab */
225 Table *pTab /* The table we are writing to */
227 int memId = 0; /* Register holding maximum rowid */
228 if( (pTab->tabFlags & TF_Autoincrement)!=0
229 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
231 Parse *pToplevel = sqlite3ParseToplevel(pParse);
232 AutoincInfo *pInfo;
234 pInfo = pToplevel->pAinc;
235 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
236 if( pInfo==0 ){
237 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
238 if( pInfo==0 ) return 0;
239 pInfo->pNext = pToplevel->pAinc;
240 pToplevel->pAinc = pInfo;
241 pInfo->pTab = pTab;
242 pInfo->iDb = iDb;
243 pToplevel->nMem++; /* Register to hold name of table */
244 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
245 pToplevel->nMem++; /* Rowid in sqlite_sequence */
247 memId = pInfo->regCtr;
249 return memId;
253 ** This routine generates code that will initialize all of the
254 ** register used by the autoincrement tracker.
256 void sqlite3AutoincrementBegin(Parse *pParse){
257 AutoincInfo *p; /* Information about an AUTOINCREMENT */
258 sqlite3 *db = pParse->db; /* The database connection */
259 Db *pDb; /* Database only autoinc table */
260 int memId; /* Register holding max rowid */
261 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
263 /* This routine is never called during trigger-generation. It is
264 ** only called from the top-level */
265 assert( pParse->pTriggerTab==0 );
266 assert( sqlite3IsToplevel(pParse) );
268 assert( v ); /* We failed long ago if this is not so */
269 for(p = pParse->pAinc; p; p = p->pNext){
270 static const int iLn = VDBE_OFFSET_LINENO(2);
271 static const VdbeOpList autoInc[] = {
272 /* 0 */ {OP_Null, 0, 0, 0},
273 /* 1 */ {OP_Rewind, 0, 9, 0},
274 /* 2 */ {OP_Column, 0, 0, 0},
275 /* 3 */ {OP_Ne, 0, 7, 0},
276 /* 4 */ {OP_Rowid, 0, 0, 0},
277 /* 5 */ {OP_Column, 0, 1, 0},
278 /* 6 */ {OP_Goto, 0, 9, 0},
279 /* 7 */ {OP_Next, 0, 2, 0},
280 /* 8 */ {OP_Integer, 0, 0, 0},
281 /* 9 */ {OP_Close, 0, 0, 0}
283 VdbeOp *aOp;
284 pDb = &db->aDb[p->iDb];
285 memId = p->regCtr;
286 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
287 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
288 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
289 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
290 if( aOp==0 ) break;
291 aOp[0].p2 = memId;
292 aOp[0].p3 = memId+1;
293 aOp[2].p3 = memId;
294 aOp[3].p1 = memId-1;
295 aOp[3].p3 = memId;
296 aOp[3].p5 = SQLITE_JUMPIFNULL;
297 aOp[4].p2 = memId+1;
298 aOp[5].p3 = memId;
299 aOp[8].p2 = memId;
304 ** Update the maximum rowid for an autoincrement calculation.
306 ** This routine should be called when the regRowid register holds a
307 ** new rowid that is about to be inserted. If that new rowid is
308 ** larger than the maximum rowid in the memId memory cell, then the
309 ** memory cell is updated.
311 static void autoIncStep(Parse *pParse, int memId, int regRowid){
312 if( memId>0 ){
313 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
318 ** This routine generates the code needed to write autoincrement
319 ** maximum rowid values back into the sqlite_sequence register.
320 ** Every statement that might do an INSERT into an autoincrement
321 ** table (either directly or through triggers) needs to call this
322 ** routine just before the "exit" code.
324 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
325 AutoincInfo *p;
326 Vdbe *v = pParse->pVdbe;
327 sqlite3 *db = pParse->db;
329 assert( v );
330 for(p = pParse->pAinc; p; p = p->pNext){
331 static const int iLn = VDBE_OFFSET_LINENO(2);
332 static const VdbeOpList autoIncEnd[] = {
333 /* 0 */ {OP_NotNull, 0, 2, 0},
334 /* 1 */ {OP_NewRowid, 0, 0, 0},
335 /* 2 */ {OP_MakeRecord, 0, 2, 0},
336 /* 3 */ {OP_Insert, 0, 0, 0},
337 /* 4 */ {OP_Close, 0, 0, 0}
339 VdbeOp *aOp;
340 Db *pDb = &db->aDb[p->iDb];
341 int iRec;
342 int memId = p->regCtr;
344 iRec = sqlite3GetTempReg(pParse);
345 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
346 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
347 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
348 if( aOp==0 ) break;
349 aOp[0].p1 = memId+1;
350 aOp[1].p2 = memId+1;
351 aOp[2].p1 = memId-1;
352 aOp[2].p3 = iRec;
353 aOp[3].p2 = iRec;
354 aOp[3].p3 = memId+1;
355 aOp[3].p5 = OPFLAG_APPEND;
356 sqlite3ReleaseTempReg(pParse, iRec);
359 void sqlite3AutoincrementEnd(Parse *pParse){
360 if( pParse->pAinc ) autoIncrementEnd(pParse);
362 #else
364 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
365 ** above are all no-ops
367 # define autoIncBegin(A,B,C) (0)
368 # define autoIncStep(A,B,C)
369 #endif /* SQLITE_OMIT_AUTOINCREMENT */
372 /* Forward declaration */
373 static int xferOptimization(
374 Parse *pParse, /* Parser context */
375 Table *pDest, /* The table we are inserting into */
376 Select *pSelect, /* A SELECT statement to use as the data source */
377 int onError, /* How to handle constraint errors */
378 int iDbDest /* The database of pDest */
382 ** This routine is called to handle SQL of the following forms:
384 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
385 ** insert into TABLE (IDLIST) select
386 ** insert into TABLE (IDLIST) default values
388 ** The IDLIST following the table name is always optional. If omitted,
389 ** then a list of all (non-hidden) columns for the table is substituted.
390 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
391 ** is omitted.
393 ** For the pSelect parameter holds the values to be inserted for the
394 ** first two forms shown above. A VALUES clause is really just short-hand
395 ** for a SELECT statement that omits the FROM clause and everything else
396 ** that follows. If the pSelect parameter is NULL, that means that the
397 ** DEFAULT VALUES form of the INSERT statement is intended.
399 ** The code generated follows one of four templates. For a simple
400 ** insert with data coming from a single-row VALUES clause, the code executes
401 ** once straight down through. Pseudo-code follows (we call this
402 ** the "1st template"):
404 ** open write cursor to <table> and its indices
405 ** put VALUES clause expressions into registers
406 ** write the resulting record into <table>
407 ** cleanup
409 ** The three remaining templates assume the statement is of the form
411 ** INSERT INTO <table> SELECT ...
413 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
414 ** in other words if the SELECT pulls all columns from a single table
415 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
416 ** if <table2> and <table1> are distinct tables but have identical
417 ** schemas, including all the same indices, then a special optimization
418 ** is invoked that copies raw records from <table2> over to <table1>.
419 ** See the xferOptimization() function for the implementation of this
420 ** template. This is the 2nd template.
422 ** open a write cursor to <table>
423 ** open read cursor on <table2>
424 ** transfer all records in <table2> over to <table>
425 ** close cursors
426 ** foreach index on <table>
427 ** open a write cursor on the <table> index
428 ** open a read cursor on the corresponding <table2> index
429 ** transfer all records from the read to the write cursors
430 ** close cursors
431 ** end foreach
433 ** The 3rd template is for when the second template does not apply
434 ** and the SELECT clause does not read from <table> at any time.
435 ** The generated code follows this template:
437 ** X <- A
438 ** goto B
439 ** A: setup for the SELECT
440 ** loop over the rows in the SELECT
441 ** load values into registers R..R+n
442 ** yield X
443 ** end loop
444 ** cleanup after the SELECT
445 ** end-coroutine X
446 ** B: open write cursor to <table> and its indices
447 ** C: yield X, at EOF goto D
448 ** insert the select result into <table> from R..R+n
449 ** goto C
450 ** D: cleanup
452 ** The 4th template is used if the insert statement takes its
453 ** values from a SELECT but the data is being inserted into a table
454 ** that is also read as part of the SELECT. In the third form,
455 ** we have to use an intermediate table to store the results of
456 ** the select. The template is like this:
458 ** X <- A
459 ** goto B
460 ** A: setup for the SELECT
461 ** loop over the tables in the SELECT
462 ** load value into register R..R+n
463 ** yield X
464 ** end loop
465 ** cleanup after the SELECT
466 ** end co-routine R
467 ** B: open temp table
468 ** L: yield X, at EOF goto M
469 ** insert row from R..R+n into temp table
470 ** goto L
471 ** M: open write cursor to <table> and its indices
472 ** rewind temp table
473 ** C: loop over rows of intermediate table
474 ** transfer values form intermediate table into <table>
475 ** end loop
476 ** D: cleanup
478 void sqlite3Insert(
479 Parse *pParse, /* Parser context */
480 SrcList *pTabList, /* Name of table into which we are inserting */
481 Select *pSelect, /* A SELECT statement to use as the data source */
482 IdList *pColumn, /* Column names corresponding to IDLIST. */
483 int onError /* How to handle constraint errors */
485 sqlite3 *db; /* The main database structure */
486 Table *pTab; /* The table to insert into. aka TABLE */
487 int i, j; /* Loop counters */
488 Vdbe *v; /* Generate code into this virtual machine */
489 Index *pIdx; /* For looping over indices of the table */
490 int nColumn; /* Number of columns in the data */
491 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
492 int iDataCur = 0; /* VDBE cursor that is the main data repository */
493 int iIdxCur = 0; /* First index cursor */
494 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
495 int endOfLoop; /* Label for the end of the insertion loop */
496 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
497 int addrInsTop = 0; /* Jump to label "D" */
498 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
499 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
500 int iDb; /* Index of database holding TABLE */
501 u8 useTempTable = 0; /* Store SELECT results in intermediate table */
502 u8 appendFlag = 0; /* True if the insert is likely to be an append */
503 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
504 u8 bIdListInOrder; /* True if IDLIST is in table order */
505 ExprList *pList = 0; /* List of VALUES() to be inserted */
507 /* Register allocations */
508 int regFromSelect = 0;/* Base register for data coming from SELECT */
509 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
510 int regRowCount = 0; /* Memory cell used for the row counter */
511 int regIns; /* Block of regs holding rowid+data being inserted */
512 int regRowid; /* registers holding insert rowid */
513 int regData; /* register holding first column to insert */
514 int *aRegIdx = 0; /* One register allocated to each index */
516 #ifndef SQLITE_OMIT_TRIGGER
517 int isView; /* True if attempting to insert into a view */
518 Trigger *pTrigger; /* List of triggers on pTab, if required */
519 int tmask; /* Mask of trigger times */
520 #endif
522 db = pParse->db;
523 if( pParse->nErr || db->mallocFailed ){
524 goto insert_cleanup;
526 dest.iSDParm = 0; /* Suppress a harmless compiler warning */
528 /* If the Select object is really just a simple VALUES() list with a
529 ** single row (the common case) then keep that one row of values
530 ** and discard the other (unused) parts of the pSelect object
532 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
533 pList = pSelect->pEList;
534 pSelect->pEList = 0;
535 sqlite3SelectDelete(db, pSelect);
536 pSelect = 0;
539 /* Locate the table into which we will be inserting new information.
541 assert( pTabList->nSrc==1 );
542 pTab = sqlite3SrcListLookup(pParse, pTabList);
543 if( pTab==0 ){
544 goto insert_cleanup;
546 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
547 assert( iDb<db->nDb );
548 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
549 db->aDb[iDb].zDbSName) ){
550 goto insert_cleanup;
552 withoutRowid = !HasRowid(pTab);
554 /* Figure out if we have any triggers and if the table being
555 ** inserted into is a view
557 #ifndef SQLITE_OMIT_TRIGGER
558 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
559 isView = pTab->pSelect!=0;
560 #else
561 # define pTrigger 0
562 # define tmask 0
563 # define isView 0
564 #endif
565 #ifdef SQLITE_OMIT_VIEW
566 # undef isView
567 # define isView 0
568 #endif
569 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
571 /* If pTab is really a view, make sure it has been initialized.
572 ** ViewGetColumnNames() is a no-op if pTab is not a view.
574 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
575 goto insert_cleanup;
578 /* Cannot insert into a read-only table.
580 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
581 goto insert_cleanup;
584 /* Allocate a VDBE
586 v = sqlite3GetVdbe(pParse);
587 if( v==0 ) goto insert_cleanup;
588 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
589 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
591 #ifndef SQLITE_OMIT_XFER_OPT
592 /* If the statement is of the form
594 ** INSERT INTO <table1> SELECT * FROM <table2>;
596 ** Then special optimizations can be applied that make the transfer
597 ** very fast and which reduce fragmentation of indices.
599 ** This is the 2nd template.
601 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
602 assert( !pTrigger );
603 assert( pList==0 );
604 goto insert_end;
606 #endif /* SQLITE_OMIT_XFER_OPT */
608 /* If this is an AUTOINCREMENT table, look up the sequence number in the
609 ** sqlite_sequence table and store it in memory cell regAutoinc.
611 regAutoinc = autoIncBegin(pParse, iDb, pTab);
613 /* Allocate registers for holding the rowid of the new row,
614 ** the content of the new row, and the assembled row record.
616 regRowid = regIns = pParse->nMem+1;
617 pParse->nMem += pTab->nCol + 1;
618 if( IsVirtual(pTab) ){
619 regRowid++;
620 pParse->nMem++;
622 regData = regRowid+1;
624 /* If the INSERT statement included an IDLIST term, then make sure
625 ** all elements of the IDLIST really are columns of the table and
626 ** remember the column indices.
628 ** If the table has an INTEGER PRIMARY KEY column and that column
629 ** is named in the IDLIST, then record in the ipkColumn variable
630 ** the index into IDLIST of the primary key column. ipkColumn is
631 ** the index of the primary key as it appears in IDLIST, not as
632 ** is appears in the original table. (The index of the INTEGER
633 ** PRIMARY KEY in the original table is pTab->iPKey.)
635 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
636 if( pColumn ){
637 for(i=0; i<pColumn->nId; i++){
638 pColumn->a[i].idx = -1;
640 for(i=0; i<pColumn->nId; i++){
641 for(j=0; j<pTab->nCol; j++){
642 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
643 pColumn->a[i].idx = j;
644 if( i!=j ) bIdListInOrder = 0;
645 if( j==pTab->iPKey ){
646 ipkColumn = i; assert( !withoutRowid );
648 break;
651 if( j>=pTab->nCol ){
652 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
653 ipkColumn = i;
654 bIdListInOrder = 0;
655 }else{
656 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
657 pTabList, 0, pColumn->a[i].zName);
658 pParse->checkSchema = 1;
659 goto insert_cleanup;
665 /* Figure out how many columns of data are supplied. If the data
666 ** is coming from a SELECT statement, then generate a co-routine that
667 ** produces a single row of the SELECT on each invocation. The
668 ** co-routine is the common header to the 3rd and 4th templates.
670 if( pSelect ){
671 /* Data is coming from a SELECT or from a multi-row VALUES clause.
672 ** Generate a co-routine to run the SELECT. */
673 int regYield; /* Register holding co-routine entry-point */
674 int addrTop; /* Top of the co-routine */
675 int rc; /* Result code */
677 regYield = ++pParse->nMem;
678 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
679 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
680 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
681 dest.iSdst = bIdListInOrder ? regData : 0;
682 dest.nSdst = pTab->nCol;
683 rc = sqlite3Select(pParse, pSelect, &dest);
684 regFromSelect = dest.iSdst;
685 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
686 sqlite3VdbeEndCoroutine(v, regYield);
687 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
688 assert( pSelect->pEList );
689 nColumn = pSelect->pEList->nExpr;
691 /* Set useTempTable to TRUE if the result of the SELECT statement
692 ** should be written into a temporary table (template 4). Set to
693 ** FALSE if each output row of the SELECT can be written directly into
694 ** the destination table (template 3).
696 ** A temp table must be used if the table being updated is also one
697 ** of the tables being read by the SELECT statement. Also use a
698 ** temp table in the case of row triggers.
700 if( pTrigger || readsTable(pParse, iDb, pTab) ){
701 useTempTable = 1;
704 if( useTempTable ){
705 /* Invoke the coroutine to extract information from the SELECT
706 ** and add it to a transient table srcTab. The code generated
707 ** here is from the 4th template:
709 ** B: open temp table
710 ** L: yield X, goto M at EOF
711 ** insert row from R..R+n into temp table
712 ** goto L
713 ** M: ...
715 int regRec; /* Register to hold packed record */
716 int regTempRowid; /* Register to hold temp table ROWID */
717 int addrL; /* Label "L" */
719 srcTab = pParse->nTab++;
720 regRec = sqlite3GetTempReg(pParse);
721 regTempRowid = sqlite3GetTempReg(pParse);
722 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
723 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
724 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
725 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
726 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
727 sqlite3VdbeGoto(v, addrL);
728 sqlite3VdbeJumpHere(v, addrL);
729 sqlite3ReleaseTempReg(pParse, regRec);
730 sqlite3ReleaseTempReg(pParse, regTempRowid);
732 }else{
733 /* This is the case if the data for the INSERT is coming from a
734 ** single-row VALUES clause
736 NameContext sNC;
737 memset(&sNC, 0, sizeof(sNC));
738 sNC.pParse = pParse;
739 srcTab = -1;
740 assert( useTempTable==0 );
741 if( pList ){
742 nColumn = pList->nExpr;
743 if( sqlite3ResolveExprListNames(&sNC, pList) ){
744 goto insert_cleanup;
746 }else{
747 nColumn = 0;
751 /* If there is no IDLIST term but the table has an integer primary
752 ** key, the set the ipkColumn variable to the integer primary key
753 ** column index in the original table definition.
755 if( pColumn==0 && nColumn>0 ){
756 ipkColumn = pTab->iPKey;
759 /* Make sure the number of columns in the source data matches the number
760 ** of columns to be inserted into the table.
762 for(i=0; i<pTab->nCol; i++){
763 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
765 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
766 sqlite3ErrorMsg(pParse,
767 "table %S has %d columns but %d values were supplied",
768 pTabList, 0, pTab->nCol-nHidden, nColumn);
769 goto insert_cleanup;
771 if( pColumn!=0 && nColumn!=pColumn->nId ){
772 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
773 goto insert_cleanup;
776 /* Initialize the count of rows to be inserted
778 if( db->flags & SQLITE_CountRows ){
779 regRowCount = ++pParse->nMem;
780 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
783 /* If this is not a view, open the table and and all indices */
784 if( !isView ){
785 int nIdx;
786 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
787 &iDataCur, &iIdxCur);
788 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1));
789 if( aRegIdx==0 ){
790 goto insert_cleanup;
792 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
793 assert( pIdx );
794 aRegIdx[i] = ++pParse->nMem;
795 pParse->nMem += pIdx->nColumn;
799 /* This is the top of the main insertion loop */
800 if( useTempTable ){
801 /* This block codes the top of loop only. The complete loop is the
802 ** following pseudocode (template 4):
804 ** rewind temp table, if empty goto D
805 ** C: loop over rows of intermediate table
806 ** transfer values form intermediate table into <table>
807 ** end loop
808 ** D: ...
810 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
811 addrCont = sqlite3VdbeCurrentAddr(v);
812 }else if( pSelect ){
813 /* This block codes the top of loop only. The complete loop is the
814 ** following pseudocode (template 3):
816 ** C: yield X, at EOF goto D
817 ** insert the select result into <table> from R..R+n
818 ** goto C
819 ** D: ...
821 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
822 VdbeCoverage(v);
825 /* Run the BEFORE and INSTEAD OF triggers, if there are any
827 endOfLoop = sqlite3VdbeMakeLabel(v);
828 if( tmask & TRIGGER_BEFORE ){
829 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
831 /* build the NEW.* reference row. Note that if there is an INTEGER
832 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
833 ** translated into a unique ID for the row. But on a BEFORE trigger,
834 ** we do not know what the unique ID will be (because the insert has
835 ** not happened yet) so we substitute a rowid of -1
837 if( ipkColumn<0 ){
838 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
839 }else{
840 int addr1;
841 assert( !withoutRowid );
842 if( useTempTable ){
843 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
844 }else{
845 assert( pSelect==0 ); /* Otherwise useTempTable is true */
846 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
848 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
849 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
850 sqlite3VdbeJumpHere(v, addr1);
851 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
854 /* Cannot have triggers on a virtual table. If it were possible,
855 ** this block would have to account for hidden column.
857 assert( !IsVirtual(pTab) );
859 /* Create the new column data
861 for(i=j=0; i<pTab->nCol; i++){
862 if( pColumn ){
863 for(j=0; j<pColumn->nId; j++){
864 if( pColumn->a[j].idx==i ) break;
867 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId)
868 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){
869 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
870 }else if( useTempTable ){
871 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
872 }else{
873 assert( pSelect==0 ); /* Otherwise useTempTable is true */
874 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
876 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++;
879 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
880 ** do not attempt any conversions before assembling the record.
881 ** If this is a real table, attempt conversions as required by the
882 ** table column affinities.
884 if( !isView ){
885 sqlite3TableAffinity(v, pTab, regCols+1);
888 /* Fire BEFORE or INSTEAD OF triggers */
889 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
890 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
892 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
895 /* Compute the content of the next row to insert into a range of
896 ** registers beginning at regIns.
898 if( !isView ){
899 if( IsVirtual(pTab) ){
900 /* The row that the VUpdate opcode will delete: none */
901 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
903 if( ipkColumn>=0 ){
904 if( useTempTable ){
905 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
906 }else if( pSelect ){
907 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
908 }else{
909 VdbeOp *pOp;
910 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
911 pOp = sqlite3VdbeGetOp(v, -1);
912 assert( pOp!=0 );
913 if( pOp->opcode==OP_Null && !IsVirtual(pTab) ){
914 appendFlag = 1;
915 pOp->opcode = OP_NewRowid;
916 pOp->p1 = iDataCur;
917 pOp->p2 = regRowid;
918 pOp->p3 = regAutoinc;
921 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
922 ** to generate a unique primary key value.
924 if( !appendFlag ){
925 int addr1;
926 if( !IsVirtual(pTab) ){
927 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
928 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
929 sqlite3VdbeJumpHere(v, addr1);
930 }else{
931 addr1 = sqlite3VdbeCurrentAddr(v);
932 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
934 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
936 }else if( IsVirtual(pTab) || withoutRowid ){
937 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
938 }else{
939 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
940 appendFlag = 1;
942 autoIncStep(pParse, regAutoinc, regRowid);
944 /* Compute data for all columns of the new entry, beginning
945 ** with the first column.
947 nHidden = 0;
948 for(i=0; i<pTab->nCol; i++){
949 int iRegStore = regRowid+1+i;
950 if( i==pTab->iPKey ){
951 /* The value of the INTEGER PRIMARY KEY column is always a NULL.
952 ** Whenever this column is read, the rowid will be substituted
953 ** in its place. Hence, fill this column with a NULL to avoid
954 ** taking up data space with information that will never be used.
955 ** As there may be shallow copies of this value, make it a soft-NULL */
956 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
957 continue;
959 if( pColumn==0 ){
960 if( IsHiddenColumn(&pTab->aCol[i]) ){
961 j = -1;
962 nHidden++;
963 }else{
964 j = i - nHidden;
966 }else{
967 for(j=0; j<pColumn->nId; j++){
968 if( pColumn->a[j].idx==i ) break;
971 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
972 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
973 }else if( useTempTable ){
974 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
975 }else if( pSelect ){
976 if( regFromSelect!=regData ){
977 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
979 }else{
980 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
984 /* Generate code to check constraints and generate index keys and
985 ** do the insertion.
987 #ifndef SQLITE_OMIT_VIRTUALTABLE
988 if( IsVirtual(pTab) ){
989 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
990 sqlite3VtabMakeWritable(pParse, pTab);
991 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
992 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
993 sqlite3MayAbort(pParse);
994 }else
995 #endif
997 int isReplace; /* Set to true if constraints may cause a replace */
998 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */
999 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1000 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0
1002 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1004 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1005 ** constraints or (b) there are no triggers and this table is not a
1006 ** parent table in a foreign key constraint. It is safe to set the
1007 ** flag in the second case as if any REPLACE constraint is hit, an
1008 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1009 ** cursor that is disturbed. And these instructions both clear the
1010 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1011 ** functionality. */
1012 bUseSeek = (isReplace==0 || (pTrigger==0 &&
1013 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0)
1015 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1016 regIns, aRegIdx, 0, appendFlag, bUseSeek
1021 /* Update the count of rows that are inserted
1023 if( (db->flags & SQLITE_CountRows)!=0 ){
1024 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1027 if( pTrigger ){
1028 /* Code AFTER triggers */
1029 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1030 pTab, regData-2-pTab->nCol, onError, endOfLoop);
1033 /* The bottom of the main insertion loop, if the data source
1034 ** is a SELECT statement.
1036 sqlite3VdbeResolveLabel(v, endOfLoop);
1037 if( useTempTable ){
1038 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1039 sqlite3VdbeJumpHere(v, addrInsTop);
1040 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1041 }else if( pSelect ){
1042 sqlite3VdbeGoto(v, addrCont);
1043 sqlite3VdbeJumpHere(v, addrInsTop);
1046 insert_end:
1047 /* Update the sqlite_sequence table by storing the content of the
1048 ** maximum rowid counter values recorded while inserting into
1049 ** autoincrement tables.
1051 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1052 sqlite3AutoincrementEnd(pParse);
1056 ** Return the number of rows inserted. If this routine is
1057 ** generating code because of a call to sqlite3NestedParse(), do not
1058 ** invoke the callback function.
1060 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
1061 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1062 sqlite3VdbeSetNumCols(v, 1);
1063 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1066 insert_cleanup:
1067 sqlite3SrcListDelete(db, pTabList);
1068 sqlite3ExprListDelete(db, pList);
1069 sqlite3SelectDelete(db, pSelect);
1070 sqlite3IdListDelete(db, pColumn);
1071 sqlite3DbFree(db, aRegIdx);
1074 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1075 ** they may interfere with compilation of other functions in this file
1076 ** (or in another file, if this file becomes part of the amalgamation). */
1077 #ifdef isView
1078 #undef isView
1079 #endif
1080 #ifdef pTrigger
1081 #undef pTrigger
1082 #endif
1083 #ifdef tmask
1084 #undef tmask
1085 #endif
1088 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged()
1090 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1091 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1093 /* This is the Walker callback from checkConstraintUnchanged(). Set
1094 ** bit 0x01 of pWalker->eCode if
1095 ** pWalker->eCode to 0 if this expression node references any of the
1096 ** columns that are being modifed by an UPDATE statement.
1098 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1099 if( pExpr->op==TK_COLUMN ){
1100 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1101 if( pExpr->iColumn>=0 ){
1102 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1103 pWalker->eCode |= CKCNSTRNT_COLUMN;
1105 }else{
1106 pWalker->eCode |= CKCNSTRNT_ROWID;
1109 return WRC_Continue;
1113 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1114 ** only columns that are modified by the UPDATE are those for which
1115 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1117 ** Return true if CHECK constraint pExpr does not use any of the
1118 ** changing columns (or the rowid if it is changing). In other words,
1119 ** return true if this CHECK constraint can be skipped when validating
1120 ** the new row in the UPDATE statement.
1122 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){
1123 Walker w;
1124 memset(&w, 0, sizeof(w));
1125 w.eCode = 0;
1126 w.xExprCallback = checkConstraintExprNode;
1127 w.u.aiCol = aiChng;
1128 sqlite3WalkExpr(&w, pExpr);
1129 if( !chngRowid ){
1130 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1131 w.eCode &= ~CKCNSTRNT_ROWID;
1133 testcase( w.eCode==0 );
1134 testcase( w.eCode==CKCNSTRNT_COLUMN );
1135 testcase( w.eCode==CKCNSTRNT_ROWID );
1136 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1137 return !w.eCode;
1141 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1142 ** on table pTab.
1144 ** The regNewData parameter is the first register in a range that contains
1145 ** the data to be inserted or the data after the update. There will be
1146 ** pTab->nCol+1 registers in this range. The first register (the one
1147 ** that regNewData points to) will contain the new rowid, or NULL in the
1148 ** case of a WITHOUT ROWID table. The second register in the range will
1149 ** contain the content of the first table column. The third register will
1150 ** contain the content of the second table column. And so forth.
1152 ** The regOldData parameter is similar to regNewData except that it contains
1153 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1154 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1155 ** checking regOldData for zero.
1157 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1158 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1159 ** might be modified by the UPDATE. If pkChng is false, then the key of
1160 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1162 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1163 ** was explicitly specified as part of the INSERT statement. If pkChng
1164 ** is zero, it means that the either rowid is computed automatically or
1165 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1166 ** pkChng will only be true if the INSERT statement provides an integer
1167 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1169 ** The code generated by this routine will store new index entries into
1170 ** registers identified by aRegIdx[]. No index entry is created for
1171 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1172 ** the same as the order of indices on the linked list of indices
1173 ** at pTab->pIndex.
1175 ** The caller must have already opened writeable cursors on the main
1176 ** table and all applicable indices (that is to say, all indices for which
1177 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1178 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1179 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1180 ** for the first index in the pTab->pIndex list. Cursors for other indices
1181 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1183 ** This routine also generates code to check constraints. NOT NULL,
1184 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1185 ** then the appropriate action is performed. There are five possible
1186 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1188 ** Constraint type Action What Happens
1189 ** --------------- ---------- ----------------------------------------
1190 ** any ROLLBACK The current transaction is rolled back and
1191 ** sqlite3_step() returns immediately with a
1192 ** return code of SQLITE_CONSTRAINT.
1194 ** any ABORT Back out changes from the current command
1195 ** only (do not do a complete rollback) then
1196 ** cause sqlite3_step() to return immediately
1197 ** with SQLITE_CONSTRAINT.
1199 ** any FAIL Sqlite3_step() returns immediately with a
1200 ** return code of SQLITE_CONSTRAINT. The
1201 ** transaction is not rolled back and any
1202 ** changes to prior rows are retained.
1204 ** any IGNORE The attempt in insert or update the current
1205 ** row is skipped, without throwing an error.
1206 ** Processing continues with the next row.
1207 ** (There is an immediate jump to ignoreDest.)
1209 ** NOT NULL REPLACE The NULL value is replace by the default
1210 ** value for that column. If the default value
1211 ** is NULL, the action is the same as ABORT.
1213 ** UNIQUE REPLACE The other row that conflicts with the row
1214 ** being inserted is removed.
1216 ** CHECK REPLACE Illegal. The results in an exception.
1218 ** Which action to take is determined by the overrideError parameter.
1219 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1220 ** is used. Or if pParse->onError==OE_Default then the onError value
1221 ** for the constraint is used.
1223 void sqlite3GenerateConstraintChecks(
1224 Parse *pParse, /* The parser context */
1225 Table *pTab, /* The table being inserted or updated */
1226 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
1227 int iDataCur, /* Canonical data cursor (main table or PK index) */
1228 int iIdxCur, /* First index cursor */
1229 int regNewData, /* First register in a range holding values to insert */
1230 int regOldData, /* Previous content. 0 for INSERTs */
1231 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
1232 u8 overrideError, /* Override onError to this if not OE_Default */
1233 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
1234 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
1235 int *aiChng /* column i is unchanged if aiChng[i]<0 */
1237 Vdbe *v; /* VDBE under constrution */
1238 Index *pIdx; /* Pointer to one of the indices */
1239 Index *pPk = 0; /* The PRIMARY KEY index */
1240 sqlite3 *db; /* Database connection */
1241 int i; /* loop counter */
1242 int ix; /* Index loop counter */
1243 int nCol; /* Number of columns */
1244 int onError; /* Conflict resolution strategy */
1245 int addr1; /* Address of jump instruction */
1246 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1247 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1248 int ipkTop = 0; /* Top of the rowid change constraint check */
1249 int ipkBottom = 0; /* Bottom of the rowid change constraint check */
1250 u8 isUpdate; /* True if this is an UPDATE operation */
1251 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
1253 isUpdate = regOldData!=0;
1254 db = pParse->db;
1255 v = sqlite3GetVdbe(pParse);
1256 assert( v!=0 );
1257 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1258 nCol = pTab->nCol;
1260 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1261 ** normal rowid tables. nPkField is the number of key fields in the
1262 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1263 ** number of fields in the true primary key of the table. */
1264 if( HasRowid(pTab) ){
1265 pPk = 0;
1266 nPkField = 1;
1267 }else{
1268 pPk = sqlite3PrimaryKeyIndex(pTab);
1269 nPkField = pPk->nKeyCol;
1272 /* Record that this module has started */
1273 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1274 iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1276 /* Test all NOT NULL constraints.
1278 for(i=0; i<nCol; i++){
1279 if( i==pTab->iPKey ){
1280 continue; /* ROWID is never NULL */
1282 if( aiChng && aiChng[i]<0 ){
1283 /* Don't bother checking for NOT NULL on columns that do not change */
1284 continue;
1286 onError = pTab->aCol[i].notNull;
1287 if( onError==OE_None ) continue; /* This column is allowed to be NULL */
1288 if( overrideError!=OE_Default ){
1289 onError = overrideError;
1290 }else if( onError==OE_Default ){
1291 onError = OE_Abort;
1293 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1294 onError = OE_Abort;
1296 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1297 || onError==OE_Ignore || onError==OE_Replace );
1298 switch( onError ){
1299 case OE_Abort:
1300 sqlite3MayAbort(pParse);
1301 /* Fall through */
1302 case OE_Rollback:
1303 case OE_Fail: {
1304 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1305 pTab->aCol[i].zName);
1306 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1307 regNewData+1+i);
1308 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1309 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1310 VdbeCoverage(v);
1311 break;
1313 case OE_Ignore: {
1314 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1315 VdbeCoverage(v);
1316 break;
1318 default: {
1319 assert( onError==OE_Replace );
1320 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
1321 VdbeCoverage(v);
1322 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1323 sqlite3VdbeJumpHere(v, addr1);
1324 break;
1329 /* Test all CHECK constraints
1331 #ifndef SQLITE_OMIT_CHECK
1332 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1333 ExprList *pCheck = pTab->pCheck;
1334 pParse->iSelfTab = -(regNewData+1);
1335 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1336 for(i=0; i<pCheck->nExpr; i++){
1337 int allOk;
1338 Expr *pExpr = pCheck->a[i].pExpr;
1339 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue;
1340 allOk = sqlite3VdbeMakeLabel(v);
1341 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
1342 if( onError==OE_Ignore ){
1343 sqlite3VdbeGoto(v, ignoreDest);
1344 }else{
1345 char *zName = pCheck->a[i].zName;
1346 if( zName==0 ) zName = pTab->zName;
1347 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1348 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1349 onError, zName, P4_TRANSIENT,
1350 P5_ConstraintCheck);
1352 sqlite3VdbeResolveLabel(v, allOk);
1354 pParse->iSelfTab = 0;
1356 #endif /* !defined(SQLITE_OMIT_CHECK) */
1358 /* If rowid is changing, make sure the new rowid does not previously
1359 ** exist in the table.
1361 if( pkChng && pPk==0 ){
1362 int addrRowidOk = sqlite3VdbeMakeLabel(v);
1364 /* Figure out what action to take in case of a rowid collision */
1365 onError = pTab->keyConf;
1366 if( overrideError!=OE_Default ){
1367 onError = overrideError;
1368 }else if( onError==OE_Default ){
1369 onError = OE_Abort;
1372 if( isUpdate ){
1373 /* pkChng!=0 does not mean that the rowid has changed, only that
1374 ** it might have changed. Skip the conflict logic below if the rowid
1375 ** is unchanged. */
1376 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1377 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1378 VdbeCoverage(v);
1381 /* If the response to a rowid conflict is REPLACE but the response
1382 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1383 ** to defer the running of the rowid conflict checking until after
1384 ** the UNIQUE constraints have run.
1386 if( onError==OE_Replace && overrideError!=OE_Replace ){
1387 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1388 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1389 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1390 break;
1395 /* Check to see if the new rowid already exists in the table. Skip
1396 ** the following conflict logic if it does not. */
1397 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1398 VdbeCoverage(v);
1400 /* Generate code that deals with a rowid collision */
1401 switch( onError ){
1402 default: {
1403 onError = OE_Abort;
1404 /* Fall thru into the next case */
1406 case OE_Rollback:
1407 case OE_Abort:
1408 case OE_Fail: {
1409 sqlite3RowidConstraint(pParse, onError, pTab);
1410 break;
1412 case OE_Replace: {
1413 /* If there are DELETE triggers on this table and the
1414 ** recursive-triggers flag is set, call GenerateRowDelete() to
1415 ** remove the conflicting row from the table. This will fire
1416 ** the triggers and remove both the table and index b-tree entries.
1418 ** Otherwise, if there are no triggers or the recursive-triggers
1419 ** flag is not set, but the table has one or more indexes, call
1420 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1421 ** only. The table b-tree entry will be replaced by the new entry
1422 ** when it is inserted.
1424 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1425 ** also invoke MultiWrite() to indicate that this VDBE may require
1426 ** statement rollback (if the statement is aborted after the delete
1427 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1428 ** but being more selective here allows statements like:
1430 ** REPLACE INTO t(rowid) VALUES($newrowid)
1432 ** to run without a statement journal if there are no indexes on the
1433 ** table.
1435 Trigger *pTrigger = 0;
1436 if( db->flags&SQLITE_RecTriggers ){
1437 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1439 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1440 sqlite3MultiWrite(pParse);
1441 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1442 regNewData, 1, 0, OE_Replace, 1, -1);
1443 }else{
1444 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1445 if( HasRowid(pTab) ){
1446 /* This OP_Delete opcode fires the pre-update-hook only. It does
1447 ** not modify the b-tree. It is more efficient to let the coming
1448 ** OP_Insert replace the existing entry than it is to delete the
1449 ** existing entry and then insert a new one. */
1450 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1451 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1453 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1454 if( pTab->pIndex ){
1455 sqlite3MultiWrite(pParse);
1456 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1459 seenReplace = 1;
1460 break;
1462 case OE_Ignore: {
1463 /*assert( seenReplace==0 );*/
1464 sqlite3VdbeGoto(v, ignoreDest);
1465 break;
1468 sqlite3VdbeResolveLabel(v, addrRowidOk);
1469 if( ipkTop ){
1470 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1471 sqlite3VdbeJumpHere(v, ipkTop);
1475 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1476 ** index and making sure that duplicate entries do not already exist.
1477 ** Compute the revised record entries for indices as we go.
1479 ** This loop also handles the case of the PRIMARY KEY index for a
1480 ** WITHOUT ROWID table.
1482 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1483 int regIdx; /* Range of registers hold conent for pIdx */
1484 int regR; /* Range of registers holding conflicting PK */
1485 int iThisCur; /* Cursor for this UNIQUE index */
1486 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
1488 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
1489 if( bAffinityDone==0 ){
1490 sqlite3TableAffinity(v, pTab, regNewData+1);
1491 bAffinityDone = 1;
1493 iThisCur = iIdxCur+ix;
1494 addrUniqueOk = sqlite3VdbeMakeLabel(v);
1496 /* Skip partial indices for which the WHERE clause is not true */
1497 if( pIdx->pPartIdxWhere ){
1498 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1499 pParse->iSelfTab = -(regNewData+1);
1500 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1501 SQLITE_JUMPIFNULL);
1502 pParse->iSelfTab = 0;
1505 /* Create a record for this index entry as it should appear after
1506 ** the insert or update. Store that record in the aRegIdx[ix] register
1508 regIdx = aRegIdx[ix]+1;
1509 for(i=0; i<pIdx->nColumn; i++){
1510 int iField = pIdx->aiColumn[i];
1511 int x;
1512 if( iField==XN_EXPR ){
1513 pParse->iSelfTab = -(regNewData+1);
1514 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1515 pParse->iSelfTab = 0;
1516 VdbeComment((v, "%s column %d", pIdx->zName, i));
1517 }else{
1518 if( iField==XN_ROWID || iField==pTab->iPKey ){
1519 x = regNewData;
1520 }else{
1521 x = iField + regNewData + 1;
1523 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
1524 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1527 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1528 VdbeComment((v, "for %s", pIdx->zName));
1529 #ifdef SQLITE_ENABLE_NULL_TRIM
1530 if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable);
1531 #endif
1533 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1534 ** of a WITHOUT ROWID table and there has been no change the
1535 ** primary key, then no collision is possible. The collision detection
1536 ** logic below can all be skipped. */
1537 if( isUpdate && pPk==pIdx && pkChng==0 ){
1538 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1539 continue;
1542 /* Find out what action to take in case there is a uniqueness conflict */
1543 onError = pIdx->onError;
1544 if( onError==OE_None ){
1545 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1546 continue; /* pIdx is not a UNIQUE index */
1548 if( overrideError!=OE_Default ){
1549 onError = overrideError;
1550 }else if( onError==OE_Default ){
1551 onError = OE_Abort;
1554 /* Collision detection may be omitted if all of the following are true:
1555 ** (1) The conflict resolution algorithm is REPLACE
1556 ** (2) The table is a WITHOUT ROWID table
1557 ** (3) There are no secondary indexes on the table
1558 ** (4) No delete triggers need to be fired if there is a conflict
1559 ** (5) No FK constraint counters need to be updated if a conflict occurs.
1561 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */
1562 && pPk==pIdx /* Condition 2 */
1563 && onError==OE_Replace /* Condition 1 */
1564 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */
1565 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
1566 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */
1567 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
1569 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1570 continue;
1573 /* Check to see if the new index entry will be unique */
1574 sqlite3ExprCachePush(pParse);
1575 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1576 regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1578 /* Generate code to handle collisions */
1579 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1580 if( isUpdate || onError==OE_Replace ){
1581 if( HasRowid(pTab) ){
1582 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1583 /* Conflict only if the rowid of the existing index entry
1584 ** is different from old-rowid */
1585 if( isUpdate ){
1586 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1587 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1588 VdbeCoverage(v);
1590 }else{
1591 int x;
1592 /* Extract the PRIMARY KEY from the end of the index entry and
1593 ** store it in registers regR..regR+nPk-1 */
1594 if( pIdx!=pPk ){
1595 for(i=0; i<pPk->nKeyCol; i++){
1596 assert( pPk->aiColumn[i]>=0 );
1597 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1598 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1599 VdbeComment((v, "%s.%s", pTab->zName,
1600 pTab->aCol[pPk->aiColumn[i]].zName));
1603 if( isUpdate ){
1604 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1605 ** table, only conflict if the new PRIMARY KEY values are actually
1606 ** different from the old.
1608 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1609 ** of the matched index row are different from the original PRIMARY
1610 ** KEY values of this row before the update. */
1611 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1612 int op = OP_Ne;
1613 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1615 for(i=0; i<pPk->nKeyCol; i++){
1616 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1617 x = pPk->aiColumn[i];
1618 assert( x>=0 );
1619 if( i==(pPk->nKeyCol-1) ){
1620 addrJump = addrUniqueOk;
1621 op = OP_Eq;
1623 sqlite3VdbeAddOp4(v, op,
1624 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1626 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1627 VdbeCoverageIf(v, op==OP_Eq);
1628 VdbeCoverageIf(v, op==OP_Ne);
1634 /* Generate code that executes if the new index entry is not unique */
1635 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1636 || onError==OE_Ignore || onError==OE_Replace );
1637 switch( onError ){
1638 case OE_Rollback:
1639 case OE_Abort:
1640 case OE_Fail: {
1641 sqlite3UniqueConstraint(pParse, onError, pIdx);
1642 break;
1644 case OE_Ignore: {
1645 sqlite3VdbeGoto(v, ignoreDest);
1646 break;
1648 default: {
1649 Trigger *pTrigger = 0;
1650 assert( onError==OE_Replace );
1651 sqlite3MultiWrite(pParse);
1652 if( db->flags&SQLITE_RecTriggers ){
1653 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1655 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1656 regR, nPkField, 0, OE_Replace,
1657 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
1658 seenReplace = 1;
1659 break;
1662 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1663 sqlite3ExprCachePop(pParse);
1664 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1666 if( ipkTop ){
1667 sqlite3VdbeGoto(v, ipkTop+1);
1668 sqlite3VdbeJumpHere(v, ipkBottom);
1671 *pbMayReplace = seenReplace;
1672 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1675 #ifdef SQLITE_ENABLE_NULL_TRIM
1677 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
1678 ** to be the number of columns in table pTab that must not be NULL-trimmed.
1680 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
1682 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
1683 u16 i;
1685 /* Records with omitted columns are only allowed for schema format
1686 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
1687 if( pTab->pSchema->file_format<2 ) return;
1689 for(i=pTab->nCol-1; i>0; i--){
1690 if( pTab->aCol[i].pDflt!=0 ) break;
1691 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
1693 sqlite3VdbeChangeP5(v, i+1);
1695 #endif
1698 ** This routine generates code to finish the INSERT or UPDATE operation
1699 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1700 ** A consecutive range of registers starting at regNewData contains the
1701 ** rowid and the content to be inserted.
1703 ** The arguments to this routine should be the same as the first six
1704 ** arguments to sqlite3GenerateConstraintChecks.
1706 void sqlite3CompleteInsertion(
1707 Parse *pParse, /* The parser context */
1708 Table *pTab, /* the table into which we are inserting */
1709 int iDataCur, /* Cursor of the canonical data source */
1710 int iIdxCur, /* First index cursor */
1711 int regNewData, /* Range of content */
1712 int *aRegIdx, /* Register used by each index. 0 for unused indices */
1713 int update_flags, /* True for UPDATE, False for INSERT */
1714 int appendBias, /* True if this is likely to be an append */
1715 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1717 Vdbe *v; /* Prepared statements under construction */
1718 Index *pIdx; /* An index being inserted or updated */
1719 u8 pik_flags; /* flag values passed to the btree insert */
1720 int regData; /* Content registers (after the rowid) */
1721 int regRec; /* Register holding assembled record for the table */
1722 int i; /* Loop counter */
1723 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1725 assert( update_flags==0
1726 || update_flags==OPFLAG_ISUPDATE
1727 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
1730 v = sqlite3GetVdbe(pParse);
1731 assert( v!=0 );
1732 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1733 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1734 if( aRegIdx[i]==0 ) continue;
1735 bAffinityDone = 1;
1736 if( pIdx->pPartIdxWhere ){
1737 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1738 VdbeCoverage(v);
1740 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
1741 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1742 assert( pParse->nested==0 );
1743 pik_flags |= OPFLAG_NCHANGE;
1744 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
1745 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1746 if( update_flags==0 ){
1747 sqlite3VdbeAddOp4(v, OP_InsertInt,
1748 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE
1750 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
1752 #endif
1754 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
1755 aRegIdx[i]+1,
1756 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
1757 sqlite3VdbeChangeP5(v, pik_flags);
1759 if( !HasRowid(pTab) ) return;
1760 regData = regNewData + 1;
1761 regRec = sqlite3GetTempReg(pParse);
1762 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1763 sqlite3SetMakeRecordP5(v, pTab);
1764 if( !bAffinityDone ){
1765 sqlite3TableAffinity(v, pTab, 0);
1766 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1768 if( pParse->nested ){
1769 pik_flags = 0;
1770 }else{
1771 pik_flags = OPFLAG_NCHANGE;
1772 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
1774 if( appendBias ){
1775 pik_flags |= OPFLAG_APPEND;
1777 if( useSeekResult ){
1778 pik_flags |= OPFLAG_USESEEKRESULT;
1780 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1781 if( !pParse->nested ){
1782 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1784 sqlite3VdbeChangeP5(v, pik_flags);
1788 ** Allocate cursors for the pTab table and all its indices and generate
1789 ** code to open and initialized those cursors.
1791 ** The cursor for the object that contains the complete data (normally
1792 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1793 ** ROWID table) is returned in *piDataCur. The first index cursor is
1794 ** returned in *piIdxCur. The number of indices is returned.
1796 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1797 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1798 ** If iBase is negative, then allocate the next available cursor.
1800 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1801 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1802 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1803 ** pTab->pIndex list.
1805 ** If pTab is a virtual table, then this routine is a no-op and the
1806 ** *piDataCur and *piIdxCur values are left uninitialized.
1808 int sqlite3OpenTableAndIndices(
1809 Parse *pParse, /* Parsing context */
1810 Table *pTab, /* Table to be opened */
1811 int op, /* OP_OpenRead or OP_OpenWrite */
1812 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
1813 int iBase, /* Use this for the table cursor, if there is one */
1814 u8 *aToOpen, /* If not NULL: boolean for each table and index */
1815 int *piDataCur, /* Write the database source cursor number here */
1816 int *piIdxCur /* Write the first index cursor number here */
1818 int i;
1819 int iDb;
1820 int iDataCur;
1821 Index *pIdx;
1822 Vdbe *v;
1824 assert( op==OP_OpenRead || op==OP_OpenWrite );
1825 assert( op==OP_OpenWrite || p5==0 );
1826 if( IsVirtual(pTab) ){
1827 /* This routine is a no-op for virtual tables. Leave the output
1828 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1829 ** can detect if they are used by mistake in the caller. */
1830 return 0;
1832 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1833 v = sqlite3GetVdbe(pParse);
1834 assert( v!=0 );
1835 if( iBase<0 ) iBase = pParse->nTab;
1836 iDataCur = iBase++;
1837 if( piDataCur ) *piDataCur = iDataCur;
1838 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1839 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1840 }else{
1841 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1843 if( piIdxCur ) *piIdxCur = iBase;
1844 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1845 int iIdxCur = iBase++;
1846 assert( pIdx->pSchema==pTab->pSchema );
1847 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1848 if( piDataCur ) *piDataCur = iIdxCur;
1849 p5 = 0;
1851 if( aToOpen==0 || aToOpen[i+1] ){
1852 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1853 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1854 sqlite3VdbeChangeP5(v, p5);
1855 VdbeComment((v, "%s", pIdx->zName));
1858 if( iBase>pParse->nTab ) pParse->nTab = iBase;
1859 return i;
1863 #ifdef SQLITE_TEST
1865 ** The following global variable is incremented whenever the
1866 ** transfer optimization is used. This is used for testing
1867 ** purposes only - to make sure the transfer optimization really
1868 ** is happening when it is supposed to.
1870 int sqlite3_xferopt_count;
1871 #endif /* SQLITE_TEST */
1874 #ifndef SQLITE_OMIT_XFER_OPT
1876 ** Check to see if index pSrc is compatible as a source of data
1877 ** for index pDest in an insert transfer optimization. The rules
1878 ** for a compatible index:
1880 ** * The index is over the same set of columns
1881 ** * The same DESC and ASC markings occurs on all columns
1882 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
1883 ** * The same collating sequence on each column
1884 ** * The index has the exact same WHERE clause
1886 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1887 int i;
1888 assert( pDest && pSrc );
1889 assert( pDest->pTable!=pSrc->pTable );
1890 if( pDest->nKeyCol!=pSrc->nKeyCol ){
1891 return 0; /* Different number of columns */
1893 if( pDest->onError!=pSrc->onError ){
1894 return 0; /* Different conflict resolution strategies */
1896 for(i=0; i<pSrc->nKeyCol; i++){
1897 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1898 return 0; /* Different columns indexed */
1900 if( pSrc->aiColumn[i]==XN_EXPR ){
1901 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
1902 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
1903 pDest->aColExpr->a[i].pExpr, -1)!=0 ){
1904 return 0; /* Different expressions in the index */
1907 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1908 return 0; /* Different sort orders */
1910 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
1911 return 0; /* Different collating sequences */
1914 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1915 return 0; /* Different WHERE clauses */
1918 /* If no test above fails then the indices must be compatible */
1919 return 1;
1923 ** Attempt the transfer optimization on INSERTs of the form
1925 ** INSERT INTO tab1 SELECT * FROM tab2;
1927 ** The xfer optimization transfers raw records from tab2 over to tab1.
1928 ** Columns are not decoded and reassembled, which greatly improves
1929 ** performance. Raw index records are transferred in the same way.
1931 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1932 ** There are lots of rules for determining compatibility - see comments
1933 ** embedded in the code for details.
1935 ** This routine returns TRUE if the optimization is guaranteed to be used.
1936 ** Sometimes the xfer optimization will only work if the destination table
1937 ** is empty - a factor that can only be determined at run-time. In that
1938 ** case, this routine generates code for the xfer optimization but also
1939 ** does a test to see if the destination table is empty and jumps over the
1940 ** xfer optimization code if the test fails. In that case, this routine
1941 ** returns FALSE so that the caller will know to go ahead and generate
1942 ** an unoptimized transfer. This routine also returns FALSE if there
1943 ** is no chance that the xfer optimization can be applied.
1945 ** This optimization is particularly useful at making VACUUM run faster.
1947 static int xferOptimization(
1948 Parse *pParse, /* Parser context */
1949 Table *pDest, /* The table we are inserting into */
1950 Select *pSelect, /* A SELECT statement to use as the data source */
1951 int onError, /* How to handle constraint errors */
1952 int iDbDest /* The database of pDest */
1954 sqlite3 *db = pParse->db;
1955 ExprList *pEList; /* The result set of the SELECT */
1956 Table *pSrc; /* The table in the FROM clause of SELECT */
1957 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
1958 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
1959 int i; /* Loop counter */
1960 int iDbSrc; /* The database of pSrc */
1961 int iSrc, iDest; /* Cursors from source and destination */
1962 int addr1, addr2; /* Loop addresses */
1963 int emptyDestTest = 0; /* Address of test for empty pDest */
1964 int emptySrcTest = 0; /* Address of test for empty pSrc */
1965 Vdbe *v; /* The VDBE we are building */
1966 int regAutoinc; /* Memory register used by AUTOINC */
1967 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
1968 int regData, regRowid; /* Registers holding data and rowid */
1970 if( pSelect==0 ){
1971 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
1973 if( pParse->pWith || pSelect->pWith ){
1974 /* Do not attempt to process this query if there are an WITH clauses
1975 ** attached to it. Proceeding may generate a false "no such table: xxx"
1976 ** error if pSelect reads from a CTE named "xxx". */
1977 return 0;
1979 if( sqlite3TriggerList(pParse, pDest) ){
1980 return 0; /* tab1 must not have triggers */
1982 #ifndef SQLITE_OMIT_VIRTUALTABLE
1983 if( IsVirtual(pDest) ){
1984 return 0; /* tab1 must not be a virtual table */
1986 #endif
1987 if( onError==OE_Default ){
1988 if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1989 if( onError==OE_Default ) onError = OE_Abort;
1991 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
1992 if( pSelect->pSrc->nSrc!=1 ){
1993 return 0; /* FROM clause must have exactly one term */
1995 if( pSelect->pSrc->a[0].pSelect ){
1996 return 0; /* FROM clause cannot contain a subquery */
1998 if( pSelect->pWhere ){
1999 return 0; /* SELECT may not have a WHERE clause */
2001 if( pSelect->pOrderBy ){
2002 return 0; /* SELECT may not have an ORDER BY clause */
2004 /* Do not need to test for a HAVING clause. If HAVING is present but
2005 ** there is no ORDER BY, we will get an error. */
2006 if( pSelect->pGroupBy ){
2007 return 0; /* SELECT may not have a GROUP BY clause */
2009 if( pSelect->pLimit ){
2010 return 0; /* SELECT may not have a LIMIT clause */
2012 if( pSelect->pPrior ){
2013 return 0; /* SELECT may not be a compound query */
2015 if( pSelect->selFlags & SF_Distinct ){
2016 return 0; /* SELECT may not be DISTINCT */
2018 pEList = pSelect->pEList;
2019 assert( pEList!=0 );
2020 if( pEList->nExpr!=1 ){
2021 return 0; /* The result set must have exactly one column */
2023 assert( pEList->a[0].pExpr );
2024 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2025 return 0; /* The result set must be the special operator "*" */
2028 /* At this point we have established that the statement is of the
2029 ** correct syntactic form to participate in this optimization. Now
2030 ** we have to check the semantics.
2032 pItem = pSelect->pSrc->a;
2033 pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2034 if( pSrc==0 ){
2035 return 0; /* FROM clause does not contain a real table */
2037 if( pSrc==pDest ){
2038 return 0; /* tab1 and tab2 may not be the same table */
2040 if( HasRowid(pDest)!=HasRowid(pSrc) ){
2041 return 0; /* source and destination must both be WITHOUT ROWID or not */
2043 #ifndef SQLITE_OMIT_VIRTUALTABLE
2044 if( IsVirtual(pSrc) ){
2045 return 0; /* tab2 must not be a virtual table */
2047 #endif
2048 if( pSrc->pSelect ){
2049 return 0; /* tab2 may not be a view */
2051 if( pDest->nCol!=pSrc->nCol ){
2052 return 0; /* Number of columns must be the same in tab1 and tab2 */
2054 if( pDest->iPKey!=pSrc->iPKey ){
2055 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2057 for(i=0; i<pDest->nCol; i++){
2058 Column *pDestCol = &pDest->aCol[i];
2059 Column *pSrcCol = &pSrc->aCol[i];
2060 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2061 if( (db->mDbFlags & DBFLAG_Vacuum)==0
2062 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2064 return 0; /* Neither table may have __hidden__ columns */
2066 #endif
2067 if( pDestCol->affinity!=pSrcCol->affinity ){
2068 return 0; /* Affinity must be the same on all columns */
2070 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2071 return 0; /* Collating sequence must be the same on all columns */
2073 if( pDestCol->notNull && !pSrcCol->notNull ){
2074 return 0; /* tab2 must be NOT NULL if tab1 is */
2076 /* Default values for second and subsequent columns need to match. */
2077 if( i>0 ){
2078 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2079 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2080 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2081 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2082 pSrcCol->pDflt->u.zToken)!=0)
2084 return 0; /* Default values must be the same for all columns */
2088 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2089 if( IsUniqueIndex(pDestIdx) ){
2090 destHasUniqueIdx = 1;
2092 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2093 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2095 if( pSrcIdx==0 ){
2096 return 0; /* pDestIdx has no corresponding index in pSrc */
2099 #ifndef SQLITE_OMIT_CHECK
2100 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2101 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2103 #endif
2104 #ifndef SQLITE_OMIT_FOREIGN_KEY
2105 /* Disallow the transfer optimization if the destination table constains
2106 ** any foreign key constraints. This is more restrictive than necessary.
2107 ** But the main beneficiary of the transfer optimization is the VACUUM
2108 ** command, and the VACUUM command disables foreign key constraints. So
2109 ** the extra complication to make this rule less restrictive is probably
2110 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2112 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2113 return 0;
2115 #endif
2116 if( (db->flags & SQLITE_CountRows)!=0 ){
2117 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2120 /* If we get this far, it means that the xfer optimization is at
2121 ** least a possibility, though it might only work if the destination
2122 ** table (tab1) is initially empty.
2124 #ifdef SQLITE_TEST
2125 sqlite3_xferopt_count++;
2126 #endif
2127 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2128 v = sqlite3GetVdbe(pParse);
2129 sqlite3CodeVerifySchema(pParse, iDbSrc);
2130 iSrc = pParse->nTab++;
2131 iDest = pParse->nTab++;
2132 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2133 regData = sqlite3GetTempReg(pParse);
2134 regRowid = sqlite3GetTempReg(pParse);
2135 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2136 assert( HasRowid(pDest) || destHasUniqueIdx );
2137 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2138 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
2139 || destHasUniqueIdx /* (2) */
2140 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
2142 /* In some circumstances, we are able to run the xfer optimization
2143 ** only if the destination table is initially empty. Unless the
2144 ** DBFLAG_Vacuum flag is set, this block generates code to make
2145 ** that determination. If DBFLAG_Vacuum is set, then the destination
2146 ** table is always empty.
2148 ** Conditions under which the destination must be empty:
2150 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2151 ** (If the destination is not initially empty, the rowid fields
2152 ** of index entries might need to change.)
2154 ** (2) The destination has a unique index. (The xfer optimization
2155 ** is unable to test uniqueness.)
2157 ** (3) onError is something other than OE_Abort and OE_Rollback.
2159 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2160 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2161 sqlite3VdbeJumpHere(v, addr1);
2163 if( HasRowid(pSrc) ){
2164 u8 insFlags;
2165 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2166 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2167 if( pDest->iPKey>=0 ){
2168 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2169 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2170 VdbeCoverage(v);
2171 sqlite3RowidConstraint(pParse, onError, pDest);
2172 sqlite3VdbeJumpHere(v, addr2);
2173 autoIncStep(pParse, regAutoinc, regRowid);
2174 }else if( pDest->pIndex==0 ){
2175 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2176 }else{
2177 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2178 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2180 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2181 if( db->mDbFlags & DBFLAG_Vacuum ){
2182 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2183 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|
2184 OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
2185 }else{
2186 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
2188 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2189 (char*)pDest, P4_TABLE);
2190 sqlite3VdbeChangeP5(v, insFlags);
2191 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2192 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2193 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2194 }else{
2195 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2196 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2198 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2199 u8 idxInsFlags = 0;
2200 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2201 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2203 assert( pSrcIdx );
2204 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2205 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2206 VdbeComment((v, "%s", pSrcIdx->zName));
2207 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2208 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2209 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2210 VdbeComment((v, "%s", pDestIdx->zName));
2211 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2212 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2213 if( db->mDbFlags & DBFLAG_Vacuum ){
2214 /* This INSERT command is part of a VACUUM operation, which guarantees
2215 ** that the destination table is empty. If all indexed columns use
2216 ** collation sequence BINARY, then it can also be assumed that the
2217 ** index will be populated by inserting keys in strictly sorted
2218 ** order. In this case, instead of seeking within the b-tree as part
2219 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2220 ** OP_IdxInsert to seek to the point within the b-tree where each key
2221 ** should be inserted. This is faster.
2223 ** If any of the indexed columns use a collation sequence other than
2224 ** BINARY, this optimization is disabled. This is because the user
2225 ** might change the definition of a collation sequence and then run
2226 ** a VACUUM command. In that case keys may not be written in strictly
2227 ** sorted order. */
2228 for(i=0; i<pSrcIdx->nColumn; i++){
2229 const char *zColl = pSrcIdx->azColl[i];
2230 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2232 if( i==pSrcIdx->nColumn ){
2233 idxInsFlags = OPFLAG_USESEEKRESULT;
2234 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2237 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){
2238 idxInsFlags |= OPFLAG_NCHANGE;
2240 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
2241 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
2242 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2243 sqlite3VdbeJumpHere(v, addr1);
2244 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2245 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2247 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2248 sqlite3ReleaseTempReg(pParse, regRowid);
2249 sqlite3ReleaseTempReg(pParse, regData);
2250 if( emptyDestTest ){
2251 sqlite3AutoincrementEnd(pParse);
2252 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2253 sqlite3VdbeJumpHere(v, emptyDestTest);
2254 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2255 return 0;
2256 }else{
2257 return 1;
2260 #endif /* SQLITE_OMIT_XFER_OPT */