Enhance the command-line completion extension to return the names of
[sqlite.git] / src / build.c
blobeaddef5b1775dedaf086df053798649c980b8d6f
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 int iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 int iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 if( iDb==1 ) return;
63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64 for(i=0; i<pToplevel->nTableLock; i++){
65 p = &pToplevel->aTableLock[i];
66 if( p->iDb==iDb && p->iTab==iTab ){
67 p->isWriteLock = (p->isWriteLock || isWriteLock);
68 return;
72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73 pToplevel->aTableLock =
74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75 if( pToplevel->aTableLock ){
76 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77 p->iDb = iDb;
78 p->iTab = iTab;
79 p->isWriteLock = isWriteLock;
80 p->zLockName = zName;
81 }else{
82 pToplevel->nTableLock = 0;
83 sqlite3OomFault(pToplevel->db);
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
91 static void codeTableLocks(Parse *pParse){
92 int i;
93 Vdbe *pVdbe;
95 pVdbe = sqlite3GetVdbe(pParse);
96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
98 for(i=0; i<pParse->nTableLock; i++){
99 TableLock *p = &pParse->aTableLock[i];
100 int p1 = p->iDb;
101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102 p->zLockName, P4_STATIC);
105 #else
106 #define codeTableLocks(x)
107 #endif
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116 int i;
117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118 return 1;
120 #endif
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared. This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
132 void sqlite3FinishCoding(Parse *pParse){
133 sqlite3 *db;
134 Vdbe *v;
136 assert( pParse->pToplevel==0 );
137 db = pParse->db;
138 if( pParse->nested ) return;
139 if( db->mallocFailed || pParse->nErr ){
140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141 return;
144 /* Begin by generating some termination code at the end of the
145 ** vdbe program
147 v = sqlite3GetVdbe(pParse);
148 assert( !pParse->isMultiWrite
149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150 if( v ){
151 sqlite3VdbeAddOp0(v, OP_Halt);
153 #if SQLITE_USER_AUTHENTICATION
154 if( pParse->nTableLock>0 && db->init.busy==0 ){
155 sqlite3UserAuthInit(db);
156 if( db->auth.authLevel<UAUTH_User ){
157 sqlite3ErrorMsg(pParse, "user not authenticated");
158 pParse->rc = SQLITE_AUTH_USER;
159 return;
162 #endif
164 /* The cookie mask contains one bit for each database file open.
165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
166 ** set for each database that is used. Generate code to start a
167 ** transaction on each used database and to verify the schema cookie
168 ** on each used database.
170 if( db->mallocFailed==0
171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
173 int iDb, i;
174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175 sqlite3VdbeJumpHere(v, 0);
176 for(iDb=0; iDb<db->nDb; iDb++){
177 Schema *pSchema;
178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179 sqlite3VdbeUsesBtree(v, iDb);
180 pSchema = db->aDb[iDb].pSchema;
181 sqlite3VdbeAddOp4Int(v,
182 OP_Transaction, /* Opcode */
183 iDb, /* P1 */
184 DbMaskTest(pParse->writeMask,iDb), /* P2 */
185 pSchema->schema_cookie, /* P3 */
186 pSchema->iGeneration /* P4 */
188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189 VdbeComment((v,
190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193 for(i=0; i<pParse->nVtabLock; i++){
194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
197 pParse->nVtabLock = 0;
198 #endif
200 /* Once all the cookies have been verified and transactions opened,
201 ** obtain the required table-locks. This is a no-op unless the
202 ** shared-cache feature is enabled.
204 codeTableLocks(pParse);
206 /* Initialize any AUTOINCREMENT data structures required.
208 sqlite3AutoincrementBegin(pParse);
210 /* Code constant expressions that where factored out of inner loops */
211 if( pParse->pConstExpr ){
212 ExprList *pEL = pParse->pConstExpr;
213 pParse->okConstFactor = 0;
214 for(i=0; i<pEL->nExpr; i++){
215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
219 /* Finally, jump back to the beginning of the executable code. */
220 sqlite3VdbeGoto(v, 1);
225 /* Get the VDBE program ready for execution
227 if( v && pParse->nErr==0 && !db->mallocFailed ){
228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
229 /* A minimum of one cursor is required if autoincrement is used
230 * See ticket [a696379c1f08866] */
231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232 sqlite3VdbeMakeReady(v, pParse);
233 pParse->rc = SQLITE_DONE;
234 }else{
235 pParse->rc = SQLITE_ERROR;
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction. When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
247 ** Not everything is nestable. This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
249 ** care if you decide to try to use this routine for some other purposes.
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252 va_list ap;
253 char *zSql;
254 char *zErrMsg = 0;
255 sqlite3 *db = pParse->db;
256 char saveBuf[PARSE_TAIL_SZ];
258 if( pParse->nErr ) return;
259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
260 va_start(ap, zFormat);
261 zSql = sqlite3VMPrintf(db, zFormat, ap);
262 va_end(ap);
263 if( zSql==0 ){
264 return; /* A malloc must have failed */
266 pParse->nested++;
267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269 sqlite3RunParser(pParse, zSql, &zErrMsg);
270 sqlite3DbFree(db, zErrMsg);
271 sqlite3DbFree(db, zSql);
272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273 pParse->nested--;
276 #if SQLITE_USER_AUTHENTICATION
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
281 int sqlite3UserAuthTable(const char *zTable){
282 return sqlite3_stricmp(zTable, "sqlite_user")==0;
284 #endif
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table. Return NULL if not found.
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned. (No checking for duplicate table
293 ** names is done.) The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
296 ** See also sqlite3LocateTable().
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299 Table *p = 0;
300 int i;
302 /* All mutexes are required for schema access. Make sure we hold them. */
303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305 /* Only the admin user is allowed to know that the sqlite_user table
306 ** exists */
307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308 return 0;
310 #endif
311 while(1){
312 for(i=OMIT_TEMPDB; i<db->nDb; i++){
313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315 assert( sqlite3SchemaMutexHeld(db, j, 0) );
316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317 if( p ) return p;
320 /* Not found. If the name we were looking for was temp.sqlite_master
321 ** then change the name to sqlite_temp_master and try again. */
322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324 zName = TEMP_MASTER_NAME;
326 return 0;
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table. Return NULL if not found. Also leave an
333 ** error message in pParse->zErrMsg.
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
339 Table *sqlite3LocateTable(
340 Parse *pParse, /* context in which to report errors */
341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
342 const char *zName, /* Name of the table we are looking for */
343 const char *zDbase /* Name of the database. Might be NULL */
345 Table *p;
347 /* Read the database schema. If an error occurs, leave an error message
348 ** and code in pParse and return NULL. */
349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350 return 0;
353 p = sqlite3FindTable(pParse->db, zName, zDbase);
354 if( p==0 ){
355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358 /* If zName is the not the name of a table in the schema created using
359 ** CREATE, then check to see if it is the name of an virtual table that
360 ** can be an eponymous virtual table. */
361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
366 return pMod->pEpoTab;
369 #endif
370 if( (flags & LOCATE_NOERR)==0 ){
371 if( zDbase ){
372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373 }else{
374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
376 pParse->checkSchema = 1;
380 return p;
384 ** Locate the table identified by *p.
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
392 Table *sqlite3LocateTableItem(
393 Parse *pParse,
394 u32 flags,
395 struct SrcList_item *p
397 const char *zDb;
398 assert( p->pSchema==0 || p->zDatabase==0 );
399 if( p->pSchema ){
400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401 zDb = pParse->db->aDb[iDb].zDbSName;
402 }else{
403 zDb = p->zDatabase;
405 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned. (No checking
416 ** for duplicate index names is done.) The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421 Index *p = 0;
422 int i;
423 /* All mutexes are required for schema access. Make sure we hold them. */
424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425 for(i=OMIT_TEMPDB; i<db->nDb; i++){
426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
427 Schema *pSchema = db->aDb[j].pSchema;
428 assert( pSchema );
429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430 assert( sqlite3SchemaMutexHeld(db, j, 0) );
431 p = sqlite3HashFind(&pSchema->idxHash, zName);
432 if( p ) break;
434 return p;
438 ** Reclaim the memory used by an index
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442 sqlite3DeleteIndexSamples(db, p);
443 #endif
444 sqlite3ExprDelete(db, p->pPartIdxWhere);
445 sqlite3ExprListDelete(db, p->aColExpr);
446 sqlite3DbFree(db, p->zColAff);
447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449 sqlite3_free(p->aiRowEst);
450 #endif
451 sqlite3DbFree(db, p);
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461 Index *pIndex;
462 Hash *pHash;
464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465 pHash = &db->aDb[iDb].pSchema->idxHash;
466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467 if( ALWAYS(pIndex) ){
468 if( pIndex->pTable->pIndex==pIndex ){
469 pIndex->pTable->pIndex = pIndex->pNext;
470 }else{
471 Index *p;
472 /* Justification of ALWAYS(); The index must be on the list of
473 ** indices. */
474 p = pIndex->pTable->pIndex;
475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476 if( ALWAYS(p && p->pNext==pIndex) ){
477 p->pNext = pIndex->pNext;
480 freeIndex(db, pIndex);
482 db->mDbFlags |= DBFLAG_SchemaChange;
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list. Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494 int i, j;
495 for(i=j=2; i<db->nDb; i++){
496 struct Db *pDb = &db->aDb[i];
497 if( pDb->pBt==0 ){
498 sqlite3DbFree(db, pDb->zDbSName);
499 pDb->zDbSName = 0;
500 continue;
502 if( j<i ){
503 db->aDb[j] = db->aDb[i];
505 j++;
507 db->nDb = j;
508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510 sqlite3DbFree(db, db->aDb);
511 db->aDb = db->aDbStatic;
516 ** Reset the schema for the database at index iDb. Also reset the
517 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
518 ** Deferred resets may be run by calling with iDb<0.
520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
521 int i;
522 assert( iDb<db->nDb );
524 if( iDb>=0 ){
525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526 DbSetProperty(db, iDb, DB_ResetWanted);
527 DbSetProperty(db, 1, DB_ResetWanted);
530 if( db->nSchemaLock==0 ){
531 for(i=0; i<db->nDb; i++){
532 if( DbHasProperty(db, i, DB_ResetWanted) ){
533 sqlite3SchemaClear(db->aDb[i].pSchema);
540 ** Erase all schema information from all attached databases (including
541 ** "main" and "temp") for a single database connection.
543 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
544 int i;
545 sqlite3BtreeEnterAll(db);
546 assert( db->nSchemaLock==0 );
547 for(i=0; i<db->nDb; i++){
548 Db *pDb = &db->aDb[i];
549 if( pDb->pSchema ){
550 sqlite3SchemaClear(pDb->pSchema);
553 db->mDbFlags &= ~DBFLAG_SchemaChange;
554 sqlite3VtabUnlockList(db);
555 sqlite3BtreeLeaveAll(db);
556 sqlite3CollapseDatabaseArray(db);
560 ** This routine is called when a commit occurs.
562 void sqlite3CommitInternalChanges(sqlite3 *db){
563 db->mDbFlags &= ~DBFLAG_SchemaChange;
567 ** Delete memory allocated for the column names of a table or view (the
568 ** Table.aCol[] array).
570 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
571 int i;
572 Column *pCol;
573 assert( pTable!=0 );
574 if( (pCol = pTable->aCol)!=0 ){
575 for(i=0; i<pTable->nCol; i++, pCol++){
576 sqlite3DbFree(db, pCol->zName);
577 sqlite3ExprDelete(db, pCol->pDflt);
578 sqlite3DbFree(db, pCol->zColl);
580 sqlite3DbFree(db, pTable->aCol);
585 ** Remove the memory data structures associated with the given
586 ** Table. No changes are made to disk by this routine.
588 ** This routine just deletes the data structure. It does not unlink
589 ** the table data structure from the hash table. But it does destroy
590 ** memory structures of the indices and foreign keys associated with
591 ** the table.
593 ** The db parameter is optional. It is needed if the Table object
594 ** contains lookaside memory. (Table objects in the schema do not use
595 ** lookaside memory, but some ephemeral Table objects do.) Or the
596 ** db parameter can be used with db->pnBytesFreed to measure the memory
597 ** used by the Table object.
599 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
600 Index *pIndex, *pNext;
602 #ifdef SQLITE_DEBUG
603 /* Record the number of outstanding lookaside allocations in schema Tables
604 ** prior to doing any free() operations. Since schema Tables do not use
605 ** lookaside, this number should not change. */
606 int nLookaside = 0;
607 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){
608 nLookaside = sqlite3LookasideUsed(db, 0);
610 #endif
612 /* Delete all indices associated with this table. */
613 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
614 pNext = pIndex->pNext;
615 assert( pIndex->pSchema==pTable->pSchema
616 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
617 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
618 char *zName = pIndex->zName;
619 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
620 &pIndex->pSchema->idxHash, zName, 0
622 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
623 assert( pOld==pIndex || pOld==0 );
625 freeIndex(db, pIndex);
628 /* Delete any foreign keys attached to this table. */
629 sqlite3FkDelete(db, pTable);
631 /* Delete the Table structure itself.
633 sqlite3DeleteColumnNames(db, pTable);
634 sqlite3DbFree(db, pTable->zName);
635 sqlite3DbFree(db, pTable->zColAff);
636 sqlite3SelectDelete(db, pTable->pSelect);
637 sqlite3ExprListDelete(db, pTable->pCheck);
638 #ifndef SQLITE_OMIT_VIRTUALTABLE
639 sqlite3VtabClear(db, pTable);
640 #endif
641 sqlite3DbFree(db, pTable);
643 /* Verify that no lookaside memory was used by schema tables */
644 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
646 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
647 /* Do not delete the table until the reference count reaches zero. */
648 if( !pTable ) return;
649 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
650 deleteTable(db, pTable);
655 ** Unlink the given table from the hash tables and the delete the
656 ** table structure with all its indices and foreign keys.
658 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
659 Table *p;
660 Db *pDb;
662 assert( db!=0 );
663 assert( iDb>=0 && iDb<db->nDb );
664 assert( zTabName );
665 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
666 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
667 pDb = &db->aDb[iDb];
668 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
669 sqlite3DeleteTable(db, p);
670 db->mDbFlags |= DBFLAG_SchemaChange;
674 ** Given a token, return a string that consists of the text of that
675 ** token. Space to hold the returned string
676 ** is obtained from sqliteMalloc() and must be freed by the calling
677 ** function.
679 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
680 ** surround the body of the token are removed.
682 ** Tokens are often just pointers into the original SQL text and so
683 ** are not \000 terminated and are not persistent. The returned string
684 ** is \000 terminated and is persistent.
686 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
687 char *zName;
688 if( pName ){
689 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
690 sqlite3Dequote(zName);
691 }else{
692 zName = 0;
694 return zName;
698 ** Open the sqlite_master table stored in database number iDb for
699 ** writing. The table is opened using cursor 0.
701 void sqlite3OpenMasterTable(Parse *p, int iDb){
702 Vdbe *v = sqlite3GetVdbe(p);
703 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
704 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
705 if( p->nTab==0 ){
706 p->nTab = 1;
711 ** Parameter zName points to a nul-terminated buffer containing the name
712 ** of a database ("main", "temp" or the name of an attached db). This
713 ** function returns the index of the named database in db->aDb[], or
714 ** -1 if the named db cannot be found.
716 int sqlite3FindDbName(sqlite3 *db, const char *zName){
717 int i = -1; /* Database number */
718 if( zName ){
719 Db *pDb;
720 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
721 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
722 /* "main" is always an acceptable alias for the primary database
723 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
724 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
727 return i;
731 ** The token *pName contains the name of a database (either "main" or
732 ** "temp" or the name of an attached db). This routine returns the
733 ** index of the named database in db->aDb[], or -1 if the named db
734 ** does not exist.
736 int sqlite3FindDb(sqlite3 *db, Token *pName){
737 int i; /* Database number */
738 char *zName; /* Name we are searching for */
739 zName = sqlite3NameFromToken(db, pName);
740 i = sqlite3FindDbName(db, zName);
741 sqlite3DbFree(db, zName);
742 return i;
745 /* The table or view or trigger name is passed to this routine via tokens
746 ** pName1 and pName2. If the table name was fully qualified, for example:
748 ** CREATE TABLE xxx.yyy (...);
750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
751 ** the table name is not fully qualified, i.e.:
753 ** CREATE TABLE yyy(...);
755 ** Then pName1 is set to "yyy" and pName2 is "".
757 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
758 ** pName2) that stores the unqualified table name. The index of the
759 ** database "xxx" is returned.
761 int sqlite3TwoPartName(
762 Parse *pParse, /* Parsing and code generating context */
763 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
764 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
765 Token **pUnqual /* Write the unqualified object name here */
767 int iDb; /* Database holding the object */
768 sqlite3 *db = pParse->db;
770 assert( pName2!=0 );
771 if( pName2->n>0 ){
772 if( db->init.busy ) {
773 sqlite3ErrorMsg(pParse, "corrupt database");
774 return -1;
776 *pUnqual = pName2;
777 iDb = sqlite3FindDb(db, pName1);
778 if( iDb<0 ){
779 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
780 return -1;
782 }else{
783 assert( db->init.iDb==0 || db->init.busy
784 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
785 iDb = db->init.iDb;
786 *pUnqual = pName1;
788 return iDb;
792 ** This routine is used to check if the UTF-8 string zName is a legal
793 ** unqualified name for a new schema object (table, index, view or
794 ** trigger). All names are legal except those that begin with the string
795 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
796 ** is reserved for internal use.
798 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
799 if( !pParse->db->init.busy && pParse->nested==0
800 && (pParse->db->flags & SQLITE_WriteSchema)==0
801 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
802 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
803 return SQLITE_ERROR;
805 return SQLITE_OK;
809 ** Return the PRIMARY KEY index of a table
811 Index *sqlite3PrimaryKeyIndex(Table *pTab){
812 Index *p;
813 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
814 return p;
818 ** Return the column of index pIdx that corresponds to table
819 ** column iCol. Return -1 if not found.
821 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
822 int i;
823 for(i=0; i<pIdx->nColumn; i++){
824 if( iCol==pIdx->aiColumn[i] ) return i;
826 return -1;
830 ** Begin constructing a new table representation in memory. This is
831 ** the first of several action routines that get called in response
832 ** to a CREATE TABLE statement. In particular, this routine is called
833 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
834 ** flag is true if the table should be stored in the auxiliary database
835 ** file instead of in the main database file. This is normally the case
836 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
837 ** CREATE and TABLE.
839 ** The new table record is initialized and put in pParse->pNewTable.
840 ** As more of the CREATE TABLE statement is parsed, additional action
841 ** routines will be called to add more information to this record.
842 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
843 ** is called to complete the construction of the new table record.
845 void sqlite3StartTable(
846 Parse *pParse, /* Parser context */
847 Token *pName1, /* First part of the name of the table or view */
848 Token *pName2, /* Second part of the name of the table or view */
849 int isTemp, /* True if this is a TEMP table */
850 int isView, /* True if this is a VIEW */
851 int isVirtual, /* True if this is a VIRTUAL table */
852 int noErr /* Do nothing if table already exists */
854 Table *pTable;
855 char *zName = 0; /* The name of the new table */
856 sqlite3 *db = pParse->db;
857 Vdbe *v;
858 int iDb; /* Database number to create the table in */
859 Token *pName; /* Unqualified name of the table to create */
861 if( db->init.busy && db->init.newTnum==1 ){
862 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
863 iDb = db->init.iDb;
864 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
865 pName = pName1;
866 }else{
867 /* The common case */
868 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
869 if( iDb<0 ) return;
870 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
871 /* If creating a temp table, the name may not be qualified. Unless
872 ** the database name is "temp" anyway. */
873 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
874 return;
876 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
877 zName = sqlite3NameFromToken(db, pName);
879 pParse->sNameToken = *pName;
880 if( zName==0 ) return;
881 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
882 goto begin_table_error;
884 if( db->init.iDb==1 ) isTemp = 1;
885 #ifndef SQLITE_OMIT_AUTHORIZATION
886 assert( isTemp==0 || isTemp==1 );
887 assert( isView==0 || isView==1 );
889 static const u8 aCode[] = {
890 SQLITE_CREATE_TABLE,
891 SQLITE_CREATE_TEMP_TABLE,
892 SQLITE_CREATE_VIEW,
893 SQLITE_CREATE_TEMP_VIEW
895 char *zDb = db->aDb[iDb].zDbSName;
896 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
897 goto begin_table_error;
899 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
900 zName, 0, zDb) ){
901 goto begin_table_error;
904 #endif
906 /* Make sure the new table name does not collide with an existing
907 ** index or table name in the same database. Issue an error message if
908 ** it does. The exception is if the statement being parsed was passed
909 ** to an sqlite3_declare_vtab() call. In that case only the column names
910 ** and types will be used, so there is no need to test for namespace
911 ** collisions.
913 if( !IN_DECLARE_VTAB ){
914 char *zDb = db->aDb[iDb].zDbSName;
915 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
916 goto begin_table_error;
918 pTable = sqlite3FindTable(db, zName, zDb);
919 if( pTable ){
920 if( !noErr ){
921 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
922 }else{
923 assert( !db->init.busy || CORRUPT_DB );
924 sqlite3CodeVerifySchema(pParse, iDb);
926 goto begin_table_error;
928 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
929 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
930 goto begin_table_error;
934 pTable = sqlite3DbMallocZero(db, sizeof(Table));
935 if( pTable==0 ){
936 assert( db->mallocFailed );
937 pParse->rc = SQLITE_NOMEM_BKPT;
938 pParse->nErr++;
939 goto begin_table_error;
941 pTable->zName = zName;
942 pTable->iPKey = -1;
943 pTable->pSchema = db->aDb[iDb].pSchema;
944 pTable->nTabRef = 1;
945 #ifdef SQLITE_DEFAULT_ROWEST
946 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
947 #else
948 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
949 #endif
950 assert( pParse->pNewTable==0 );
951 pParse->pNewTable = pTable;
953 /* If this is the magic sqlite_sequence table used by autoincrement,
954 ** then record a pointer to this table in the main database structure
955 ** so that INSERT can find the table easily.
957 #ifndef SQLITE_OMIT_AUTOINCREMENT
958 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
959 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
960 pTable->pSchema->pSeqTab = pTable;
962 #endif
964 /* Begin generating the code that will insert the table record into
965 ** the SQLITE_MASTER table. Note in particular that we must go ahead
966 ** and allocate the record number for the table entry now. Before any
967 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
968 ** indices to be created and the table record must come before the
969 ** indices. Hence, the record number for the table must be allocated
970 ** now.
972 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
973 int addr1;
974 int fileFormat;
975 int reg1, reg2, reg3;
976 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
977 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
978 sqlite3BeginWriteOperation(pParse, 1, iDb);
980 #ifndef SQLITE_OMIT_VIRTUALTABLE
981 if( isVirtual ){
982 sqlite3VdbeAddOp0(v, OP_VBegin);
984 #endif
986 /* If the file format and encoding in the database have not been set,
987 ** set them now.
989 reg1 = pParse->regRowid = ++pParse->nMem;
990 reg2 = pParse->regRoot = ++pParse->nMem;
991 reg3 = ++pParse->nMem;
992 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
993 sqlite3VdbeUsesBtree(v, iDb);
994 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
995 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
996 1 : SQLITE_MAX_FILE_FORMAT;
997 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
998 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
999 sqlite3VdbeJumpHere(v, addr1);
1001 /* This just creates a place-holder record in the sqlite_master table.
1002 ** The record created does not contain anything yet. It will be replaced
1003 ** by the real entry in code generated at sqlite3EndTable().
1005 ** The rowid for the new entry is left in register pParse->regRowid.
1006 ** The root page number of the new table is left in reg pParse->regRoot.
1007 ** The rowid and root page number values are needed by the code that
1008 ** sqlite3EndTable will generate.
1010 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1011 if( isView || isVirtual ){
1012 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1013 }else
1014 #endif
1016 pParse->addrCrTab =
1017 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1019 sqlite3OpenMasterTable(pParse, iDb);
1020 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1021 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1022 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1023 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1024 sqlite3VdbeAddOp0(v, OP_Close);
1027 /* Normal (non-error) return. */
1028 return;
1030 /* If an error occurs, we jump here */
1031 begin_table_error:
1032 sqlite3DbFree(db, zName);
1033 return;
1036 /* Set properties of a table column based on the (magical)
1037 ** name of the column.
1039 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1040 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1041 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1042 pCol->colFlags |= COLFLAG_HIDDEN;
1043 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1044 pTab->tabFlags |= TF_OOOHidden;
1047 #endif
1051 ** Add a new column to the table currently being constructed.
1053 ** The parser calls this routine once for each column declaration
1054 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1055 ** first to get things going. Then this routine is called for each
1056 ** column.
1058 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1059 Table *p;
1060 int i;
1061 char *z;
1062 char *zType;
1063 Column *pCol;
1064 sqlite3 *db = pParse->db;
1065 if( (p = pParse->pNewTable)==0 ) return;
1066 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1067 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1068 return;
1070 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1071 if( z==0 ) return;
1072 memcpy(z, pName->z, pName->n);
1073 z[pName->n] = 0;
1074 sqlite3Dequote(z);
1075 for(i=0; i<p->nCol; i++){
1076 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1077 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1078 sqlite3DbFree(db, z);
1079 return;
1082 if( (p->nCol & 0x7)==0 ){
1083 Column *aNew;
1084 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1085 if( aNew==0 ){
1086 sqlite3DbFree(db, z);
1087 return;
1089 p->aCol = aNew;
1091 pCol = &p->aCol[p->nCol];
1092 memset(pCol, 0, sizeof(p->aCol[0]));
1093 pCol->zName = z;
1094 sqlite3ColumnPropertiesFromName(p, pCol);
1096 if( pType->n==0 ){
1097 /* If there is no type specified, columns have the default affinity
1098 ** 'BLOB'. */
1099 pCol->affinity = SQLITE_AFF_BLOB;
1100 pCol->szEst = 1;
1101 }else{
1102 zType = z + sqlite3Strlen30(z) + 1;
1103 memcpy(zType, pType->z, pType->n);
1104 zType[pType->n] = 0;
1105 sqlite3Dequote(zType);
1106 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1107 pCol->colFlags |= COLFLAG_HASTYPE;
1109 p->nCol++;
1110 pParse->constraintName.n = 0;
1114 ** This routine is called by the parser while in the middle of
1115 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1116 ** been seen on a column. This routine sets the notNull flag on
1117 ** the column currently under construction.
1119 void sqlite3AddNotNull(Parse *pParse, int onError){
1120 Table *p;
1121 Column *pCol;
1122 p = pParse->pNewTable;
1123 if( p==0 || NEVER(p->nCol<1) ) return;
1124 pCol = &p->aCol[p->nCol-1];
1125 pCol->notNull = (u8)onError;
1126 p->tabFlags |= TF_HasNotNull;
1128 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1129 ** on this column. */
1130 if( pCol->colFlags & COLFLAG_UNIQUE ){
1131 Index *pIdx;
1132 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1133 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1134 if( pIdx->aiColumn[0]==p->nCol-1 ){
1135 pIdx->uniqNotNull = 1;
1142 ** Scan the column type name zType (length nType) and return the
1143 ** associated affinity type.
1145 ** This routine does a case-independent search of zType for the
1146 ** substrings in the following table. If one of the substrings is
1147 ** found, the corresponding affinity is returned. If zType contains
1148 ** more than one of the substrings, entries toward the top of
1149 ** the table take priority. For example, if zType is 'BLOBINT',
1150 ** SQLITE_AFF_INTEGER is returned.
1152 ** Substring | Affinity
1153 ** --------------------------------
1154 ** 'INT' | SQLITE_AFF_INTEGER
1155 ** 'CHAR' | SQLITE_AFF_TEXT
1156 ** 'CLOB' | SQLITE_AFF_TEXT
1157 ** 'TEXT' | SQLITE_AFF_TEXT
1158 ** 'BLOB' | SQLITE_AFF_BLOB
1159 ** 'REAL' | SQLITE_AFF_REAL
1160 ** 'FLOA' | SQLITE_AFF_REAL
1161 ** 'DOUB' | SQLITE_AFF_REAL
1163 ** If none of the substrings in the above table are found,
1164 ** SQLITE_AFF_NUMERIC is returned.
1166 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1167 u32 h = 0;
1168 char aff = SQLITE_AFF_NUMERIC;
1169 const char *zChar = 0;
1171 assert( zIn!=0 );
1172 while( zIn[0] ){
1173 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1174 zIn++;
1175 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1176 aff = SQLITE_AFF_TEXT;
1177 zChar = zIn;
1178 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1179 aff = SQLITE_AFF_TEXT;
1180 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1181 aff = SQLITE_AFF_TEXT;
1182 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1183 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1184 aff = SQLITE_AFF_BLOB;
1185 if( zIn[0]=='(' ) zChar = zIn;
1186 #ifndef SQLITE_OMIT_FLOATING_POINT
1187 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1188 && aff==SQLITE_AFF_NUMERIC ){
1189 aff = SQLITE_AFF_REAL;
1190 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1191 && aff==SQLITE_AFF_NUMERIC ){
1192 aff = SQLITE_AFF_REAL;
1193 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1194 && aff==SQLITE_AFF_NUMERIC ){
1195 aff = SQLITE_AFF_REAL;
1196 #endif
1197 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1198 aff = SQLITE_AFF_INTEGER;
1199 break;
1203 /* If pszEst is not NULL, store an estimate of the field size. The
1204 ** estimate is scaled so that the size of an integer is 1. */
1205 if( pszEst ){
1206 *pszEst = 1; /* default size is approx 4 bytes */
1207 if( aff<SQLITE_AFF_NUMERIC ){
1208 if( zChar ){
1209 while( zChar[0] ){
1210 if( sqlite3Isdigit(zChar[0]) ){
1211 int v = 0;
1212 sqlite3GetInt32(zChar, &v);
1213 v = v/4 + 1;
1214 if( v>255 ) v = 255;
1215 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1216 break;
1218 zChar++;
1220 }else{
1221 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1225 return aff;
1229 ** The expression is the default value for the most recently added column
1230 ** of the table currently under construction.
1232 ** Default value expressions must be constant. Raise an exception if this
1233 ** is not the case.
1235 ** This routine is called by the parser while in the middle of
1236 ** parsing a CREATE TABLE statement.
1238 void sqlite3AddDefaultValue(
1239 Parse *pParse, /* Parsing context */
1240 Expr *pExpr, /* The parsed expression of the default value */
1241 const char *zStart, /* Start of the default value text */
1242 const char *zEnd /* First character past end of defaut value text */
1244 Table *p;
1245 Column *pCol;
1246 sqlite3 *db = pParse->db;
1247 p = pParse->pNewTable;
1248 if( p!=0 ){
1249 pCol = &(p->aCol[p->nCol-1]);
1250 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){
1251 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1252 pCol->zName);
1253 }else{
1254 /* A copy of pExpr is used instead of the original, as pExpr contains
1255 ** tokens that point to volatile memory.
1257 Expr x;
1258 sqlite3ExprDelete(db, pCol->pDflt);
1259 memset(&x, 0, sizeof(x));
1260 x.op = TK_SPAN;
1261 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1262 x.pLeft = pExpr;
1263 x.flags = EP_Skip;
1264 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1265 sqlite3DbFree(db, x.u.zToken);
1268 sqlite3ExprDelete(db, pExpr);
1272 ** Backwards Compatibility Hack:
1274 ** Historical versions of SQLite accepted strings as column names in
1275 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1277 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1278 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1280 ** This is goofy. But to preserve backwards compatibility we continue to
1281 ** accept it. This routine does the necessary conversion. It converts
1282 ** the expression given in its argument from a TK_STRING into a TK_ID
1283 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1284 ** If the epxression is anything other than TK_STRING, the expression is
1285 ** unchanged.
1287 static void sqlite3StringToId(Expr *p){
1288 if( p->op==TK_STRING ){
1289 p->op = TK_ID;
1290 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1291 p->pLeft->op = TK_ID;
1296 ** Designate the PRIMARY KEY for the table. pList is a list of names
1297 ** of columns that form the primary key. If pList is NULL, then the
1298 ** most recently added column of the table is the primary key.
1300 ** A table can have at most one primary key. If the table already has
1301 ** a primary key (and this is the second primary key) then create an
1302 ** error.
1304 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1305 ** then we will try to use that column as the rowid. Set the Table.iPKey
1306 ** field of the table under construction to be the index of the
1307 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1308 ** no INTEGER PRIMARY KEY.
1310 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1311 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1313 void sqlite3AddPrimaryKey(
1314 Parse *pParse, /* Parsing context */
1315 ExprList *pList, /* List of field names to be indexed */
1316 int onError, /* What to do with a uniqueness conflict */
1317 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1318 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1320 Table *pTab = pParse->pNewTable;
1321 Column *pCol = 0;
1322 int iCol = -1, i;
1323 int nTerm;
1324 if( pTab==0 ) goto primary_key_exit;
1325 if( pTab->tabFlags & TF_HasPrimaryKey ){
1326 sqlite3ErrorMsg(pParse,
1327 "table \"%s\" has more than one primary key", pTab->zName);
1328 goto primary_key_exit;
1330 pTab->tabFlags |= TF_HasPrimaryKey;
1331 if( pList==0 ){
1332 iCol = pTab->nCol - 1;
1333 pCol = &pTab->aCol[iCol];
1334 pCol->colFlags |= COLFLAG_PRIMKEY;
1335 nTerm = 1;
1336 }else{
1337 nTerm = pList->nExpr;
1338 for(i=0; i<nTerm; i++){
1339 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1340 assert( pCExpr!=0 );
1341 sqlite3StringToId(pCExpr);
1342 if( pCExpr->op==TK_ID ){
1343 const char *zCName = pCExpr->u.zToken;
1344 for(iCol=0; iCol<pTab->nCol; iCol++){
1345 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1346 pCol = &pTab->aCol[iCol];
1347 pCol->colFlags |= COLFLAG_PRIMKEY;
1348 break;
1354 if( nTerm==1
1355 && pCol
1356 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1357 && sortOrder!=SQLITE_SO_DESC
1359 pTab->iPKey = iCol;
1360 pTab->keyConf = (u8)onError;
1361 assert( autoInc==0 || autoInc==1 );
1362 pTab->tabFlags |= autoInc*TF_Autoincrement;
1363 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1364 }else if( autoInc ){
1365 #ifndef SQLITE_OMIT_AUTOINCREMENT
1366 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1367 "INTEGER PRIMARY KEY");
1368 #endif
1369 }else{
1370 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1371 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1372 pList = 0;
1375 primary_key_exit:
1376 sqlite3ExprListDelete(pParse->db, pList);
1377 return;
1381 ** Add a new CHECK constraint to the table currently under construction.
1383 void sqlite3AddCheckConstraint(
1384 Parse *pParse, /* Parsing context */
1385 Expr *pCheckExpr /* The check expression */
1387 #ifndef SQLITE_OMIT_CHECK
1388 Table *pTab = pParse->pNewTable;
1389 sqlite3 *db = pParse->db;
1390 if( pTab && !IN_DECLARE_VTAB
1391 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1393 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1394 if( pParse->constraintName.n ){
1395 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1397 }else
1398 #endif
1400 sqlite3ExprDelete(pParse->db, pCheckExpr);
1405 ** Set the collation function of the most recently parsed table column
1406 ** to the CollSeq given.
1408 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1409 Table *p;
1410 int i;
1411 char *zColl; /* Dequoted name of collation sequence */
1412 sqlite3 *db;
1414 if( (p = pParse->pNewTable)==0 ) return;
1415 i = p->nCol-1;
1416 db = pParse->db;
1417 zColl = sqlite3NameFromToken(db, pToken);
1418 if( !zColl ) return;
1420 if( sqlite3LocateCollSeq(pParse, zColl) ){
1421 Index *pIdx;
1422 sqlite3DbFree(db, p->aCol[i].zColl);
1423 p->aCol[i].zColl = zColl;
1425 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1426 ** then an index may have been created on this column before the
1427 ** collation type was added. Correct this if it is the case.
1429 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1430 assert( pIdx->nKeyCol==1 );
1431 if( pIdx->aiColumn[0]==i ){
1432 pIdx->azColl[0] = p->aCol[i].zColl;
1435 }else{
1436 sqlite3DbFree(db, zColl);
1441 ** This function returns the collation sequence for database native text
1442 ** encoding identified by the string zName, length nName.
1444 ** If the requested collation sequence is not available, or not available
1445 ** in the database native encoding, the collation factory is invoked to
1446 ** request it. If the collation factory does not supply such a sequence,
1447 ** and the sequence is available in another text encoding, then that is
1448 ** returned instead.
1450 ** If no versions of the requested collations sequence are available, or
1451 ** another error occurs, NULL is returned and an error message written into
1452 ** pParse.
1454 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1455 ** invokes the collation factory if the named collation cannot be found
1456 ** and generates an error message.
1458 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1460 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1461 sqlite3 *db = pParse->db;
1462 u8 enc = ENC(db);
1463 u8 initbusy = db->init.busy;
1464 CollSeq *pColl;
1466 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1467 if( !initbusy && (!pColl || !pColl->xCmp) ){
1468 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1471 return pColl;
1476 ** Generate code that will increment the schema cookie.
1478 ** The schema cookie is used to determine when the schema for the
1479 ** database changes. After each schema change, the cookie value
1480 ** changes. When a process first reads the schema it records the
1481 ** cookie. Thereafter, whenever it goes to access the database,
1482 ** it checks the cookie to make sure the schema has not changed
1483 ** since it was last read.
1485 ** This plan is not completely bullet-proof. It is possible for
1486 ** the schema to change multiple times and for the cookie to be
1487 ** set back to prior value. But schema changes are infrequent
1488 ** and the probability of hitting the same cookie value is only
1489 ** 1 chance in 2^32. So we're safe enough.
1491 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1492 ** the schema-version whenever the schema changes.
1494 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1495 sqlite3 *db = pParse->db;
1496 Vdbe *v = pParse->pVdbe;
1497 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1498 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1499 db->aDb[iDb].pSchema->schema_cookie+1);
1503 ** Measure the number of characters needed to output the given
1504 ** identifier. The number returned includes any quotes used
1505 ** but does not include the null terminator.
1507 ** The estimate is conservative. It might be larger that what is
1508 ** really needed.
1510 static int identLength(const char *z){
1511 int n;
1512 for(n=0; *z; n++, z++){
1513 if( *z=='"' ){ n++; }
1515 return n + 2;
1519 ** The first parameter is a pointer to an output buffer. The second
1520 ** parameter is a pointer to an integer that contains the offset at
1521 ** which to write into the output buffer. This function copies the
1522 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1523 ** to the specified offset in the buffer and updates *pIdx to refer
1524 ** to the first byte after the last byte written before returning.
1526 ** If the string zSignedIdent consists entirely of alpha-numeric
1527 ** characters, does not begin with a digit and is not an SQL keyword,
1528 ** then it is copied to the output buffer exactly as it is. Otherwise,
1529 ** it is quoted using double-quotes.
1531 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1532 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1533 int i, j, needQuote;
1534 i = *pIdx;
1536 for(j=0; zIdent[j]; j++){
1537 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1539 needQuote = sqlite3Isdigit(zIdent[0])
1540 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1541 || zIdent[j]!=0
1542 || j==0;
1544 if( needQuote ) z[i++] = '"';
1545 for(j=0; zIdent[j]; j++){
1546 z[i++] = zIdent[j];
1547 if( zIdent[j]=='"' ) z[i++] = '"';
1549 if( needQuote ) z[i++] = '"';
1550 z[i] = 0;
1551 *pIdx = i;
1555 ** Generate a CREATE TABLE statement appropriate for the given
1556 ** table. Memory to hold the text of the statement is obtained
1557 ** from sqliteMalloc() and must be freed by the calling function.
1559 static char *createTableStmt(sqlite3 *db, Table *p){
1560 int i, k, n;
1561 char *zStmt;
1562 char *zSep, *zSep2, *zEnd;
1563 Column *pCol;
1564 n = 0;
1565 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1566 n += identLength(pCol->zName) + 5;
1568 n += identLength(p->zName);
1569 if( n<50 ){
1570 zSep = "";
1571 zSep2 = ",";
1572 zEnd = ")";
1573 }else{
1574 zSep = "\n ";
1575 zSep2 = ",\n ";
1576 zEnd = "\n)";
1578 n += 35 + 6*p->nCol;
1579 zStmt = sqlite3DbMallocRaw(0, n);
1580 if( zStmt==0 ){
1581 sqlite3OomFault(db);
1582 return 0;
1584 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1585 k = sqlite3Strlen30(zStmt);
1586 identPut(zStmt, &k, p->zName);
1587 zStmt[k++] = '(';
1588 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1589 static const char * const azType[] = {
1590 /* SQLITE_AFF_BLOB */ "",
1591 /* SQLITE_AFF_TEXT */ " TEXT",
1592 /* SQLITE_AFF_NUMERIC */ " NUM",
1593 /* SQLITE_AFF_INTEGER */ " INT",
1594 /* SQLITE_AFF_REAL */ " REAL"
1596 int len;
1597 const char *zType;
1599 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1600 k += sqlite3Strlen30(&zStmt[k]);
1601 zSep = zSep2;
1602 identPut(zStmt, &k, pCol->zName);
1603 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1604 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1605 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1606 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1607 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1608 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1609 testcase( pCol->affinity==SQLITE_AFF_REAL );
1611 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1612 len = sqlite3Strlen30(zType);
1613 assert( pCol->affinity==SQLITE_AFF_BLOB
1614 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1615 memcpy(&zStmt[k], zType, len);
1616 k += len;
1617 assert( k<=n );
1619 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1620 return zStmt;
1624 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1625 ** on success and SQLITE_NOMEM on an OOM error.
1627 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1628 char *zExtra;
1629 int nByte;
1630 if( pIdx->nColumn>=N ) return SQLITE_OK;
1631 assert( pIdx->isResized==0 );
1632 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1633 zExtra = sqlite3DbMallocZero(db, nByte);
1634 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1635 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1636 pIdx->azColl = (const char**)zExtra;
1637 zExtra += sizeof(char*)*N;
1638 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1639 pIdx->aiColumn = (i16*)zExtra;
1640 zExtra += sizeof(i16)*N;
1641 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1642 pIdx->aSortOrder = (u8*)zExtra;
1643 pIdx->nColumn = N;
1644 pIdx->isResized = 1;
1645 return SQLITE_OK;
1649 ** Estimate the total row width for a table.
1651 static void estimateTableWidth(Table *pTab){
1652 unsigned wTable = 0;
1653 const Column *pTabCol;
1654 int i;
1655 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1656 wTable += pTabCol->szEst;
1658 if( pTab->iPKey<0 ) wTable++;
1659 pTab->szTabRow = sqlite3LogEst(wTable*4);
1663 ** Estimate the average size of a row for an index.
1665 static void estimateIndexWidth(Index *pIdx){
1666 unsigned wIndex = 0;
1667 int i;
1668 const Column *aCol = pIdx->pTable->aCol;
1669 for(i=0; i<pIdx->nColumn; i++){
1670 i16 x = pIdx->aiColumn[i];
1671 assert( x<pIdx->pTable->nCol );
1672 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1674 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1677 /* Return true if value x is found any of the first nCol entries of aiCol[]
1679 static int hasColumn(const i16 *aiCol, int nCol, int x){
1680 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1681 return 0;
1685 ** This routine runs at the end of parsing a CREATE TABLE statement that
1686 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1687 ** internal schema data structures and the generated VDBE code so that they
1688 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1689 ** Changes include:
1691 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1692 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
1693 ** into BTREE_BLOBKEY.
1694 ** (3) Bypass the creation of the sqlite_master table entry
1695 ** for the PRIMARY KEY as the primary key index is now
1696 ** identified by the sqlite_master table entry of the table itself.
1697 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1698 ** schema to the rootpage from the main table.
1699 ** (5) Add all table columns to the PRIMARY KEY Index object
1700 ** so that the PRIMARY KEY is a covering index. The surplus
1701 ** columns are part of KeyInfo.nAllField and are not used for
1702 ** sorting or lookup or uniqueness checks.
1703 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1704 ** indices with the PRIMARY KEY columns.
1706 ** For virtual tables, only (1) is performed.
1708 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1709 Index *pIdx;
1710 Index *pPk;
1711 int nPk;
1712 int i, j;
1713 sqlite3 *db = pParse->db;
1714 Vdbe *v = pParse->pVdbe;
1716 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1718 if( !db->init.imposterTable ){
1719 for(i=0; i<pTab->nCol; i++){
1720 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1721 pTab->aCol[i].notNull = OE_Abort;
1726 /* The remaining transformations only apply to b-tree tables, not to
1727 ** virtual tables */
1728 if( IN_DECLARE_VTAB ) return;
1730 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
1731 ** into BTREE_BLOBKEY.
1733 if( pParse->addrCrTab ){
1734 assert( v );
1735 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
1738 /* Locate the PRIMARY KEY index. Or, if this table was originally
1739 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1741 if( pTab->iPKey>=0 ){
1742 ExprList *pList;
1743 Token ipkToken;
1744 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1745 pList = sqlite3ExprListAppend(pParse, 0,
1746 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1747 if( pList==0 ) return;
1748 pList->a[0].sortOrder = pParse->iPkSortOrder;
1749 assert( pParse->pNewTable==pTab );
1750 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1751 SQLITE_IDXTYPE_PRIMARYKEY);
1752 if( db->mallocFailed ) return;
1753 pPk = sqlite3PrimaryKeyIndex(pTab);
1754 pTab->iPKey = -1;
1755 }else{
1756 pPk = sqlite3PrimaryKeyIndex(pTab);
1759 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1760 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1761 ** code assumes the PRIMARY KEY contains no repeated columns.
1763 for(i=j=1; i<pPk->nKeyCol; i++){
1764 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1765 pPk->nColumn--;
1766 }else{
1767 pPk->aiColumn[j++] = pPk->aiColumn[i];
1770 pPk->nKeyCol = j;
1772 assert( pPk!=0 );
1773 pPk->isCovering = 1;
1774 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1775 nPk = pPk->nKeyCol;
1777 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1778 ** table entry. This is only required if currently generating VDBE
1779 ** code for a CREATE TABLE (not when parsing one as part of reading
1780 ** a database schema). */
1781 if( v && pPk->tnum>0 ){
1782 assert( db->init.busy==0 );
1783 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1786 /* The root page of the PRIMARY KEY is the table root page */
1787 pPk->tnum = pTab->tnum;
1789 /* Update the in-memory representation of all UNIQUE indices by converting
1790 ** the final rowid column into one or more columns of the PRIMARY KEY.
1792 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1793 int n;
1794 if( IsPrimaryKeyIndex(pIdx) ) continue;
1795 for(i=n=0; i<nPk; i++){
1796 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1798 if( n==0 ){
1799 /* This index is a superset of the primary key */
1800 pIdx->nColumn = pIdx->nKeyCol;
1801 continue;
1803 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1804 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1805 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1806 pIdx->aiColumn[j] = pPk->aiColumn[i];
1807 pIdx->azColl[j] = pPk->azColl[i];
1808 j++;
1811 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1812 assert( pIdx->nColumn>=j );
1815 /* Add all table columns to the PRIMARY KEY index
1817 if( nPk<pTab->nCol ){
1818 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1819 for(i=0, j=nPk; i<pTab->nCol; i++){
1820 if( !hasColumn(pPk->aiColumn, j, i) ){
1821 assert( j<pPk->nColumn );
1822 pPk->aiColumn[j] = i;
1823 pPk->azColl[j] = sqlite3StrBINARY;
1824 j++;
1827 assert( pPk->nColumn==j );
1828 assert( pTab->nCol==j );
1829 }else{
1830 pPk->nColumn = pTab->nCol;
1835 ** This routine is called to report the final ")" that terminates
1836 ** a CREATE TABLE statement.
1838 ** The table structure that other action routines have been building
1839 ** is added to the internal hash tables, assuming no errors have
1840 ** occurred.
1842 ** An entry for the table is made in the master table on disk, unless
1843 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1844 ** it means we are reading the sqlite_master table because we just
1845 ** connected to the database or because the sqlite_master table has
1846 ** recently changed, so the entry for this table already exists in
1847 ** the sqlite_master table. We do not want to create it again.
1849 ** If the pSelect argument is not NULL, it means that this routine
1850 ** was called to create a table generated from a
1851 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1852 ** the new table will match the result set of the SELECT.
1854 void sqlite3EndTable(
1855 Parse *pParse, /* Parse context */
1856 Token *pCons, /* The ',' token after the last column defn. */
1857 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1858 u8 tabOpts, /* Extra table options. Usually 0. */
1859 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1861 Table *p; /* The new table */
1862 sqlite3 *db = pParse->db; /* The database connection */
1863 int iDb; /* Database in which the table lives */
1864 Index *pIdx; /* An implied index of the table */
1866 if( pEnd==0 && pSelect==0 ){
1867 return;
1869 assert( !db->mallocFailed );
1870 p = pParse->pNewTable;
1871 if( p==0 ) return;
1873 /* If the db->init.busy is 1 it means we are reading the SQL off the
1874 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1875 ** So do not write to the disk again. Extract the root page number
1876 ** for the table from the db->init.newTnum field. (The page number
1877 ** should have been put there by the sqliteOpenCb routine.)
1879 ** If the root page number is 1, that means this is the sqlite_master
1880 ** table itself. So mark it read-only.
1882 if( db->init.busy ){
1883 if( pSelect ){
1884 sqlite3ErrorMsg(pParse, "");
1885 return;
1887 p->tnum = db->init.newTnum;
1888 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1891 /* Special processing for WITHOUT ROWID Tables */
1892 if( tabOpts & TF_WithoutRowid ){
1893 if( (p->tabFlags & TF_Autoincrement) ){
1894 sqlite3ErrorMsg(pParse,
1895 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1896 return;
1898 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1899 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1900 }else{
1901 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1902 convertToWithoutRowidTable(pParse, p);
1906 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1908 #ifndef SQLITE_OMIT_CHECK
1909 /* Resolve names in all CHECK constraint expressions.
1911 if( p->pCheck ){
1912 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1914 #endif /* !defined(SQLITE_OMIT_CHECK) */
1916 /* Estimate the average row size for the table and for all implied indices */
1917 estimateTableWidth(p);
1918 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1919 estimateIndexWidth(pIdx);
1922 /* If not initializing, then create a record for the new table
1923 ** in the SQLITE_MASTER table of the database.
1925 ** If this is a TEMPORARY table, write the entry into the auxiliary
1926 ** file instead of into the main database file.
1928 if( !db->init.busy ){
1929 int n;
1930 Vdbe *v;
1931 char *zType; /* "view" or "table" */
1932 char *zType2; /* "VIEW" or "TABLE" */
1933 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1935 v = sqlite3GetVdbe(pParse);
1936 if( NEVER(v==0) ) return;
1938 sqlite3VdbeAddOp1(v, OP_Close, 0);
1941 ** Initialize zType for the new view or table.
1943 if( p->pSelect==0 ){
1944 /* A regular table */
1945 zType = "table";
1946 zType2 = "TABLE";
1947 #ifndef SQLITE_OMIT_VIEW
1948 }else{
1949 /* A view */
1950 zType = "view";
1951 zType2 = "VIEW";
1952 #endif
1955 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1956 ** statement to populate the new table. The root-page number for the
1957 ** new table is in register pParse->regRoot.
1959 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1960 ** suitable state to query for the column names and types to be used
1961 ** by the new table.
1963 ** A shared-cache write-lock is not required to write to the new table,
1964 ** as a schema-lock must have already been obtained to create it. Since
1965 ** a schema-lock excludes all other database users, the write-lock would
1966 ** be redundant.
1968 if( pSelect ){
1969 SelectDest dest; /* Where the SELECT should store results */
1970 int regYield; /* Register holding co-routine entry-point */
1971 int addrTop; /* Top of the co-routine */
1972 int regRec; /* A record to be insert into the new table */
1973 int regRowid; /* Rowid of the next row to insert */
1974 int addrInsLoop; /* Top of the loop for inserting rows */
1975 Table *pSelTab; /* A table that describes the SELECT results */
1977 regYield = ++pParse->nMem;
1978 regRec = ++pParse->nMem;
1979 regRowid = ++pParse->nMem;
1980 assert(pParse->nTab==1);
1981 sqlite3MayAbort(pParse);
1982 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1983 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1984 pParse->nTab = 2;
1985 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1986 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1987 if( pParse->nErr ) return;
1988 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1989 if( pSelTab==0 ) return;
1990 assert( p->aCol==0 );
1991 p->nCol = pSelTab->nCol;
1992 p->aCol = pSelTab->aCol;
1993 pSelTab->nCol = 0;
1994 pSelTab->aCol = 0;
1995 sqlite3DeleteTable(db, pSelTab);
1996 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1997 sqlite3Select(pParse, pSelect, &dest);
1998 if( pParse->nErr ) return;
1999 sqlite3VdbeEndCoroutine(v, regYield);
2000 sqlite3VdbeJumpHere(v, addrTop - 1);
2001 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2002 VdbeCoverage(v);
2003 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2004 sqlite3TableAffinity(v, p, 0);
2005 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2006 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2007 sqlite3VdbeGoto(v, addrInsLoop);
2008 sqlite3VdbeJumpHere(v, addrInsLoop);
2009 sqlite3VdbeAddOp1(v, OP_Close, 1);
2012 /* Compute the complete text of the CREATE statement */
2013 if( pSelect ){
2014 zStmt = createTableStmt(db, p);
2015 }else{
2016 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2017 n = (int)(pEnd2->z - pParse->sNameToken.z);
2018 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2019 zStmt = sqlite3MPrintf(db,
2020 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2024 /* A slot for the record has already been allocated in the
2025 ** SQLITE_MASTER table. We just need to update that slot with all
2026 ** the information we've collected.
2028 sqlite3NestedParse(pParse,
2029 "UPDATE %Q.%s "
2030 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2031 "WHERE rowid=#%d",
2032 db->aDb[iDb].zDbSName, MASTER_NAME,
2033 zType,
2034 p->zName,
2035 p->zName,
2036 pParse->regRoot,
2037 zStmt,
2038 pParse->regRowid
2040 sqlite3DbFree(db, zStmt);
2041 sqlite3ChangeCookie(pParse, iDb);
2043 #ifndef SQLITE_OMIT_AUTOINCREMENT
2044 /* Check to see if we need to create an sqlite_sequence table for
2045 ** keeping track of autoincrement keys.
2047 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2048 Db *pDb = &db->aDb[iDb];
2049 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2050 if( pDb->pSchema->pSeqTab==0 ){
2051 sqlite3NestedParse(pParse,
2052 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2053 pDb->zDbSName
2057 #endif
2059 /* Reparse everything to update our internal data structures */
2060 sqlite3VdbeAddParseSchemaOp(v, iDb,
2061 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2065 /* Add the table to the in-memory representation of the database.
2067 if( db->init.busy ){
2068 Table *pOld;
2069 Schema *pSchema = p->pSchema;
2070 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2071 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2072 if( pOld ){
2073 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2074 sqlite3OomFault(db);
2075 return;
2077 pParse->pNewTable = 0;
2078 db->mDbFlags |= DBFLAG_SchemaChange;
2080 #ifndef SQLITE_OMIT_ALTERTABLE
2081 if( !p->pSelect ){
2082 const char *zName = (const char *)pParse->sNameToken.z;
2083 int nName;
2084 assert( !pSelect && pCons && pEnd );
2085 if( pCons->z==0 ){
2086 pCons = pEnd;
2088 nName = (int)((const char *)pCons->z - zName);
2089 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2091 #endif
2095 #ifndef SQLITE_OMIT_VIEW
2097 ** The parser calls this routine in order to create a new VIEW
2099 void sqlite3CreateView(
2100 Parse *pParse, /* The parsing context */
2101 Token *pBegin, /* The CREATE token that begins the statement */
2102 Token *pName1, /* The token that holds the name of the view */
2103 Token *pName2, /* The token that holds the name of the view */
2104 ExprList *pCNames, /* Optional list of view column names */
2105 Select *pSelect, /* A SELECT statement that will become the new view */
2106 int isTemp, /* TRUE for a TEMPORARY view */
2107 int noErr /* Suppress error messages if VIEW already exists */
2109 Table *p;
2110 int n;
2111 const char *z;
2112 Token sEnd;
2113 DbFixer sFix;
2114 Token *pName = 0;
2115 int iDb;
2116 sqlite3 *db = pParse->db;
2118 if( pParse->nVar>0 ){
2119 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2120 goto create_view_fail;
2122 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2123 p = pParse->pNewTable;
2124 if( p==0 || pParse->nErr ) goto create_view_fail;
2125 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2126 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2127 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2128 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2130 /* Make a copy of the entire SELECT statement that defines the view.
2131 ** This will force all the Expr.token.z values to be dynamically
2132 ** allocated rather than point to the input string - which means that
2133 ** they will persist after the current sqlite3_exec() call returns.
2135 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2136 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2137 if( db->mallocFailed ) goto create_view_fail;
2139 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2140 ** the end.
2142 sEnd = pParse->sLastToken;
2143 assert( sEnd.z[0]!=0 || sEnd.n==0 );
2144 if( sEnd.z[0]!=';' ){
2145 sEnd.z += sEnd.n;
2147 sEnd.n = 0;
2148 n = (int)(sEnd.z - pBegin->z);
2149 assert( n>0 );
2150 z = pBegin->z;
2151 while( sqlite3Isspace(z[n-1]) ){ n--; }
2152 sEnd.z = &z[n-1];
2153 sEnd.n = 1;
2155 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2156 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2158 create_view_fail:
2159 sqlite3SelectDelete(db, pSelect);
2160 sqlite3ExprListDelete(db, pCNames);
2161 return;
2163 #endif /* SQLITE_OMIT_VIEW */
2165 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2167 ** The Table structure pTable is really a VIEW. Fill in the names of
2168 ** the columns of the view in the pTable structure. Return the number
2169 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2171 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2172 Table *pSelTab; /* A fake table from which we get the result set */
2173 Select *pSel; /* Copy of the SELECT that implements the view */
2174 int nErr = 0; /* Number of errors encountered */
2175 int n; /* Temporarily holds the number of cursors assigned */
2176 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2177 #ifndef SQLITE_OMIT_VIRTUALTABLE
2178 int rc;
2179 #endif
2180 #ifndef SQLITE_OMIT_AUTHORIZATION
2181 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2182 #endif
2184 assert( pTable );
2186 #ifndef SQLITE_OMIT_VIRTUALTABLE
2187 db->nSchemaLock++;
2188 rc = sqlite3VtabCallConnect(pParse, pTable);
2189 db->nSchemaLock--;
2190 if( rc ){
2191 return 1;
2193 if( IsVirtual(pTable) ) return 0;
2194 #endif
2196 #ifndef SQLITE_OMIT_VIEW
2197 /* A positive nCol means the columns names for this view are
2198 ** already known.
2200 if( pTable->nCol>0 ) return 0;
2202 /* A negative nCol is a special marker meaning that we are currently
2203 ** trying to compute the column names. If we enter this routine with
2204 ** a negative nCol, it means two or more views form a loop, like this:
2206 ** CREATE VIEW one AS SELECT * FROM two;
2207 ** CREATE VIEW two AS SELECT * FROM one;
2209 ** Actually, the error above is now caught prior to reaching this point.
2210 ** But the following test is still important as it does come up
2211 ** in the following:
2213 ** CREATE TABLE main.ex1(a);
2214 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2215 ** SELECT * FROM temp.ex1;
2217 if( pTable->nCol<0 ){
2218 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2219 return 1;
2221 assert( pTable->nCol>=0 );
2223 /* If we get this far, it means we need to compute the table names.
2224 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2225 ** "*" elements in the results set of the view and will assign cursors
2226 ** to the elements of the FROM clause. But we do not want these changes
2227 ** to be permanent. So the computation is done on a copy of the SELECT
2228 ** statement that defines the view.
2230 assert( pTable->pSelect );
2231 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2232 if( pSel ){
2233 n = pParse->nTab;
2234 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2235 pTable->nCol = -1;
2236 db->lookaside.bDisable++;
2237 #ifndef SQLITE_OMIT_AUTHORIZATION
2238 xAuth = db->xAuth;
2239 db->xAuth = 0;
2240 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2241 db->xAuth = xAuth;
2242 #else
2243 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2244 #endif
2245 pParse->nTab = n;
2246 if( pTable->pCheck ){
2247 /* CREATE VIEW name(arglist) AS ...
2248 ** The names of the columns in the table are taken from
2249 ** arglist which is stored in pTable->pCheck. The pCheck field
2250 ** normally holds CHECK constraints on an ordinary table, but for
2251 ** a VIEW it holds the list of column names.
2253 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2254 &pTable->nCol, &pTable->aCol);
2255 if( db->mallocFailed==0
2256 && pParse->nErr==0
2257 && pTable->nCol==pSel->pEList->nExpr
2259 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2261 }else if( pSelTab ){
2262 /* CREATE VIEW name AS... without an argument list. Construct
2263 ** the column names from the SELECT statement that defines the view.
2265 assert( pTable->aCol==0 );
2266 pTable->nCol = pSelTab->nCol;
2267 pTable->aCol = pSelTab->aCol;
2268 pSelTab->nCol = 0;
2269 pSelTab->aCol = 0;
2270 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2271 }else{
2272 pTable->nCol = 0;
2273 nErr++;
2275 sqlite3DeleteTable(db, pSelTab);
2276 sqlite3SelectDelete(db, pSel);
2277 db->lookaside.bDisable--;
2278 } else {
2279 nErr++;
2281 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2282 #endif /* SQLITE_OMIT_VIEW */
2283 return nErr;
2285 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2287 #ifndef SQLITE_OMIT_VIEW
2289 ** Clear the column names from every VIEW in database idx.
2291 static void sqliteViewResetAll(sqlite3 *db, int idx){
2292 HashElem *i;
2293 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2294 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2295 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2296 Table *pTab = sqliteHashData(i);
2297 if( pTab->pSelect ){
2298 sqlite3DeleteColumnNames(db, pTab);
2299 pTab->aCol = 0;
2300 pTab->nCol = 0;
2303 DbClearProperty(db, idx, DB_UnresetViews);
2305 #else
2306 # define sqliteViewResetAll(A,B)
2307 #endif /* SQLITE_OMIT_VIEW */
2310 ** This function is called by the VDBE to adjust the internal schema
2311 ** used by SQLite when the btree layer moves a table root page. The
2312 ** root-page of a table or index in database iDb has changed from iFrom
2313 ** to iTo.
2315 ** Ticket #1728: The symbol table might still contain information
2316 ** on tables and/or indices that are the process of being deleted.
2317 ** If you are unlucky, one of those deleted indices or tables might
2318 ** have the same rootpage number as the real table or index that is
2319 ** being moved. So we cannot stop searching after the first match
2320 ** because the first match might be for one of the deleted indices
2321 ** or tables and not the table/index that is actually being moved.
2322 ** We must continue looping until all tables and indices with
2323 ** rootpage==iFrom have been converted to have a rootpage of iTo
2324 ** in order to be certain that we got the right one.
2326 #ifndef SQLITE_OMIT_AUTOVACUUM
2327 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2328 HashElem *pElem;
2329 Hash *pHash;
2330 Db *pDb;
2332 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2333 pDb = &db->aDb[iDb];
2334 pHash = &pDb->pSchema->tblHash;
2335 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2336 Table *pTab = sqliteHashData(pElem);
2337 if( pTab->tnum==iFrom ){
2338 pTab->tnum = iTo;
2341 pHash = &pDb->pSchema->idxHash;
2342 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2343 Index *pIdx = sqliteHashData(pElem);
2344 if( pIdx->tnum==iFrom ){
2345 pIdx->tnum = iTo;
2349 #endif
2352 ** Write code to erase the table with root-page iTable from database iDb.
2353 ** Also write code to modify the sqlite_master table and internal schema
2354 ** if a root-page of another table is moved by the btree-layer whilst
2355 ** erasing iTable (this can happen with an auto-vacuum database).
2357 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2358 Vdbe *v = sqlite3GetVdbe(pParse);
2359 int r1 = sqlite3GetTempReg(pParse);
2360 assert( iTable>1 );
2361 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2362 sqlite3MayAbort(pParse);
2363 #ifndef SQLITE_OMIT_AUTOVACUUM
2364 /* OP_Destroy stores an in integer r1. If this integer
2365 ** is non-zero, then it is the root page number of a table moved to
2366 ** location iTable. The following code modifies the sqlite_master table to
2367 ** reflect this.
2369 ** The "#NNN" in the SQL is a special constant that means whatever value
2370 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2371 ** token for additional information.
2373 sqlite3NestedParse(pParse,
2374 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2375 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2376 #endif
2377 sqlite3ReleaseTempReg(pParse, r1);
2381 ** Write VDBE code to erase table pTab and all associated indices on disk.
2382 ** Code to update the sqlite_master tables and internal schema definitions
2383 ** in case a root-page belonging to another table is moved by the btree layer
2384 ** is also added (this can happen with an auto-vacuum database).
2386 static void destroyTable(Parse *pParse, Table *pTab){
2387 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2388 ** is not defined), then it is important to call OP_Destroy on the
2389 ** table and index root-pages in order, starting with the numerically
2390 ** largest root-page number. This guarantees that none of the root-pages
2391 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2392 ** following were coded:
2394 ** OP_Destroy 4 0
2395 ** ...
2396 ** OP_Destroy 5 0
2398 ** and root page 5 happened to be the largest root-page number in the
2399 ** database, then root page 5 would be moved to page 4 by the
2400 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2401 ** a free-list page.
2403 int iTab = pTab->tnum;
2404 int iDestroyed = 0;
2406 while( 1 ){
2407 Index *pIdx;
2408 int iLargest = 0;
2410 if( iDestroyed==0 || iTab<iDestroyed ){
2411 iLargest = iTab;
2413 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2414 int iIdx = pIdx->tnum;
2415 assert( pIdx->pSchema==pTab->pSchema );
2416 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2417 iLargest = iIdx;
2420 if( iLargest==0 ){
2421 return;
2422 }else{
2423 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2424 assert( iDb>=0 && iDb<pParse->db->nDb );
2425 destroyRootPage(pParse, iLargest, iDb);
2426 iDestroyed = iLargest;
2432 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2433 ** after a DROP INDEX or DROP TABLE command.
2435 static void sqlite3ClearStatTables(
2436 Parse *pParse, /* The parsing context */
2437 int iDb, /* The database number */
2438 const char *zType, /* "idx" or "tbl" */
2439 const char *zName /* Name of index or table */
2441 int i;
2442 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2443 for(i=1; i<=4; i++){
2444 char zTab[24];
2445 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2446 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2447 sqlite3NestedParse(pParse,
2448 "DELETE FROM %Q.%s WHERE %s=%Q",
2449 zDbName, zTab, zType, zName
2456 ** Generate code to drop a table.
2458 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2459 Vdbe *v;
2460 sqlite3 *db = pParse->db;
2461 Trigger *pTrigger;
2462 Db *pDb = &db->aDb[iDb];
2464 v = sqlite3GetVdbe(pParse);
2465 assert( v!=0 );
2466 sqlite3BeginWriteOperation(pParse, 1, iDb);
2468 #ifndef SQLITE_OMIT_VIRTUALTABLE
2469 if( IsVirtual(pTab) ){
2470 sqlite3VdbeAddOp0(v, OP_VBegin);
2472 #endif
2474 /* Drop all triggers associated with the table being dropped. Code
2475 ** is generated to remove entries from sqlite_master and/or
2476 ** sqlite_temp_master if required.
2478 pTrigger = sqlite3TriggerList(pParse, pTab);
2479 while( pTrigger ){
2480 assert( pTrigger->pSchema==pTab->pSchema ||
2481 pTrigger->pSchema==db->aDb[1].pSchema );
2482 sqlite3DropTriggerPtr(pParse, pTrigger);
2483 pTrigger = pTrigger->pNext;
2486 #ifndef SQLITE_OMIT_AUTOINCREMENT
2487 /* Remove any entries of the sqlite_sequence table associated with
2488 ** the table being dropped. This is done before the table is dropped
2489 ** at the btree level, in case the sqlite_sequence table needs to
2490 ** move as a result of the drop (can happen in auto-vacuum mode).
2492 if( pTab->tabFlags & TF_Autoincrement ){
2493 sqlite3NestedParse(pParse,
2494 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2495 pDb->zDbSName, pTab->zName
2498 #endif
2500 /* Drop all SQLITE_MASTER table and index entries that refer to the
2501 ** table. The program name loops through the master table and deletes
2502 ** every row that refers to a table of the same name as the one being
2503 ** dropped. Triggers are handled separately because a trigger can be
2504 ** created in the temp database that refers to a table in another
2505 ** database.
2507 sqlite3NestedParse(pParse,
2508 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2509 pDb->zDbSName, MASTER_NAME, pTab->zName);
2510 if( !isView && !IsVirtual(pTab) ){
2511 destroyTable(pParse, pTab);
2514 /* Remove the table entry from SQLite's internal schema and modify
2515 ** the schema cookie.
2517 if( IsVirtual(pTab) ){
2518 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2520 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2521 sqlite3ChangeCookie(pParse, iDb);
2522 sqliteViewResetAll(db, iDb);
2526 ** This routine is called to do the work of a DROP TABLE statement.
2527 ** pName is the name of the table to be dropped.
2529 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2530 Table *pTab;
2531 Vdbe *v;
2532 sqlite3 *db = pParse->db;
2533 int iDb;
2535 if( db->mallocFailed ){
2536 goto exit_drop_table;
2538 assert( pParse->nErr==0 );
2539 assert( pName->nSrc==1 );
2540 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2541 if( noErr ) db->suppressErr++;
2542 assert( isView==0 || isView==LOCATE_VIEW );
2543 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2544 if( noErr ) db->suppressErr--;
2546 if( pTab==0 ){
2547 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2548 goto exit_drop_table;
2550 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2551 assert( iDb>=0 && iDb<db->nDb );
2553 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2554 ** it is initialized.
2556 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2557 goto exit_drop_table;
2559 #ifndef SQLITE_OMIT_AUTHORIZATION
2561 int code;
2562 const char *zTab = SCHEMA_TABLE(iDb);
2563 const char *zDb = db->aDb[iDb].zDbSName;
2564 const char *zArg2 = 0;
2565 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2566 goto exit_drop_table;
2568 if( isView ){
2569 if( !OMIT_TEMPDB && iDb==1 ){
2570 code = SQLITE_DROP_TEMP_VIEW;
2571 }else{
2572 code = SQLITE_DROP_VIEW;
2574 #ifndef SQLITE_OMIT_VIRTUALTABLE
2575 }else if( IsVirtual(pTab) ){
2576 code = SQLITE_DROP_VTABLE;
2577 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2578 #endif
2579 }else{
2580 if( !OMIT_TEMPDB && iDb==1 ){
2581 code = SQLITE_DROP_TEMP_TABLE;
2582 }else{
2583 code = SQLITE_DROP_TABLE;
2586 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2587 goto exit_drop_table;
2589 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2590 goto exit_drop_table;
2593 #endif
2594 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2595 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2596 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2597 goto exit_drop_table;
2600 #ifndef SQLITE_OMIT_VIEW
2601 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2602 ** on a table.
2604 if( isView && pTab->pSelect==0 ){
2605 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2606 goto exit_drop_table;
2608 if( !isView && pTab->pSelect ){
2609 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2610 goto exit_drop_table;
2612 #endif
2614 /* Generate code to remove the table from the master table
2615 ** on disk.
2617 v = sqlite3GetVdbe(pParse);
2618 if( v ){
2619 sqlite3BeginWriteOperation(pParse, 1, iDb);
2620 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2621 sqlite3FkDropTable(pParse, pName, pTab);
2622 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2625 exit_drop_table:
2626 sqlite3SrcListDelete(db, pName);
2630 ** This routine is called to create a new foreign key on the table
2631 ** currently under construction. pFromCol determines which columns
2632 ** in the current table point to the foreign key. If pFromCol==0 then
2633 ** connect the key to the last column inserted. pTo is the name of
2634 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2635 ** of tables in the parent pTo table. flags contains all
2636 ** information about the conflict resolution algorithms specified
2637 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2639 ** An FKey structure is created and added to the table currently
2640 ** under construction in the pParse->pNewTable field.
2642 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2643 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2645 void sqlite3CreateForeignKey(
2646 Parse *pParse, /* Parsing context */
2647 ExprList *pFromCol, /* Columns in this table that point to other table */
2648 Token *pTo, /* Name of the other table */
2649 ExprList *pToCol, /* Columns in the other table */
2650 int flags /* Conflict resolution algorithms. */
2652 sqlite3 *db = pParse->db;
2653 #ifndef SQLITE_OMIT_FOREIGN_KEY
2654 FKey *pFKey = 0;
2655 FKey *pNextTo;
2656 Table *p = pParse->pNewTable;
2657 int nByte;
2658 int i;
2659 int nCol;
2660 char *z;
2662 assert( pTo!=0 );
2663 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2664 if( pFromCol==0 ){
2665 int iCol = p->nCol-1;
2666 if( NEVER(iCol<0) ) goto fk_end;
2667 if( pToCol && pToCol->nExpr!=1 ){
2668 sqlite3ErrorMsg(pParse, "foreign key on %s"
2669 " should reference only one column of table %T",
2670 p->aCol[iCol].zName, pTo);
2671 goto fk_end;
2673 nCol = 1;
2674 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2675 sqlite3ErrorMsg(pParse,
2676 "number of columns in foreign key does not match the number of "
2677 "columns in the referenced table");
2678 goto fk_end;
2679 }else{
2680 nCol = pFromCol->nExpr;
2682 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2683 if( pToCol ){
2684 for(i=0; i<pToCol->nExpr; i++){
2685 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2688 pFKey = sqlite3DbMallocZero(db, nByte );
2689 if( pFKey==0 ){
2690 goto fk_end;
2692 pFKey->pFrom = p;
2693 pFKey->pNextFrom = p->pFKey;
2694 z = (char*)&pFKey->aCol[nCol];
2695 pFKey->zTo = z;
2696 memcpy(z, pTo->z, pTo->n);
2697 z[pTo->n] = 0;
2698 sqlite3Dequote(z);
2699 z += pTo->n+1;
2700 pFKey->nCol = nCol;
2701 if( pFromCol==0 ){
2702 pFKey->aCol[0].iFrom = p->nCol-1;
2703 }else{
2704 for(i=0; i<nCol; i++){
2705 int j;
2706 for(j=0; j<p->nCol; j++){
2707 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2708 pFKey->aCol[i].iFrom = j;
2709 break;
2712 if( j>=p->nCol ){
2713 sqlite3ErrorMsg(pParse,
2714 "unknown column \"%s\" in foreign key definition",
2715 pFromCol->a[i].zName);
2716 goto fk_end;
2720 if( pToCol ){
2721 for(i=0; i<nCol; i++){
2722 int n = sqlite3Strlen30(pToCol->a[i].zName);
2723 pFKey->aCol[i].zCol = z;
2724 memcpy(z, pToCol->a[i].zName, n);
2725 z[n] = 0;
2726 z += n+1;
2729 pFKey->isDeferred = 0;
2730 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2731 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2733 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2734 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2735 pFKey->zTo, (void *)pFKey
2737 if( pNextTo==pFKey ){
2738 sqlite3OomFault(db);
2739 goto fk_end;
2741 if( pNextTo ){
2742 assert( pNextTo->pPrevTo==0 );
2743 pFKey->pNextTo = pNextTo;
2744 pNextTo->pPrevTo = pFKey;
2747 /* Link the foreign key to the table as the last step.
2749 p->pFKey = pFKey;
2750 pFKey = 0;
2752 fk_end:
2753 sqlite3DbFree(db, pFKey);
2754 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2755 sqlite3ExprListDelete(db, pFromCol);
2756 sqlite3ExprListDelete(db, pToCol);
2760 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2761 ** clause is seen as part of a foreign key definition. The isDeferred
2762 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2763 ** The behavior of the most recently created foreign key is adjusted
2764 ** accordingly.
2766 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2767 #ifndef SQLITE_OMIT_FOREIGN_KEY
2768 Table *pTab;
2769 FKey *pFKey;
2770 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2771 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2772 pFKey->isDeferred = (u8)isDeferred;
2773 #endif
2777 ** Generate code that will erase and refill index *pIdx. This is
2778 ** used to initialize a newly created index or to recompute the
2779 ** content of an index in response to a REINDEX command.
2781 ** if memRootPage is not negative, it means that the index is newly
2782 ** created. The register specified by memRootPage contains the
2783 ** root page number of the index. If memRootPage is negative, then
2784 ** the index already exists and must be cleared before being refilled and
2785 ** the root page number of the index is taken from pIndex->tnum.
2787 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2788 Table *pTab = pIndex->pTable; /* The table that is indexed */
2789 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2790 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2791 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2792 int addr1; /* Address of top of loop */
2793 int addr2; /* Address to jump to for next iteration */
2794 int tnum; /* Root page of index */
2795 int iPartIdxLabel; /* Jump to this label to skip a row */
2796 Vdbe *v; /* Generate code into this virtual machine */
2797 KeyInfo *pKey; /* KeyInfo for index */
2798 int regRecord; /* Register holding assembled index record */
2799 sqlite3 *db = pParse->db; /* The database connection */
2800 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2802 #ifndef SQLITE_OMIT_AUTHORIZATION
2803 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2804 db->aDb[iDb].zDbSName ) ){
2805 return;
2807 #endif
2809 /* Require a write-lock on the table to perform this operation */
2810 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2812 v = sqlite3GetVdbe(pParse);
2813 if( v==0 ) return;
2814 if( memRootPage>=0 ){
2815 tnum = memRootPage;
2816 }else{
2817 tnum = pIndex->tnum;
2819 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2820 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2822 /* Open the sorter cursor if we are to use one. */
2823 iSorter = pParse->nTab++;
2824 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2825 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2827 /* Open the table. Loop through all rows of the table, inserting index
2828 ** records into the sorter. */
2829 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2830 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2831 regRecord = sqlite3GetTempReg(pParse);
2833 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2834 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2835 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2836 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2837 sqlite3VdbeJumpHere(v, addr1);
2838 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2839 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2840 (char *)pKey, P4_KEYINFO);
2841 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2843 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2844 if( IsUniqueIndex(pIndex) ){
2845 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2846 sqlite3VdbeGoto(v, j2);
2847 addr2 = sqlite3VdbeCurrentAddr(v);
2848 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2849 pIndex->nKeyCol); VdbeCoverage(v);
2850 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2851 }else{
2852 addr2 = sqlite3VdbeCurrentAddr(v);
2854 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2855 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
2856 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2857 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2858 sqlite3ReleaseTempReg(pParse, regRecord);
2859 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2860 sqlite3VdbeJumpHere(v, addr1);
2862 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2863 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2864 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2868 ** Allocate heap space to hold an Index object with nCol columns.
2870 ** Increase the allocation size to provide an extra nExtra bytes
2871 ** of 8-byte aligned space after the Index object and return a
2872 ** pointer to this extra space in *ppExtra.
2874 Index *sqlite3AllocateIndexObject(
2875 sqlite3 *db, /* Database connection */
2876 i16 nCol, /* Total number of columns in the index */
2877 int nExtra, /* Number of bytes of extra space to alloc */
2878 char **ppExtra /* Pointer to the "extra" space */
2880 Index *p; /* Allocated index object */
2881 int nByte; /* Bytes of space for Index object + arrays */
2883 nByte = ROUND8(sizeof(Index)) + /* Index structure */
2884 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
2885 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
2886 sizeof(i16)*nCol + /* Index.aiColumn */
2887 sizeof(u8)*nCol); /* Index.aSortOrder */
2888 p = sqlite3DbMallocZero(db, nByte + nExtra);
2889 if( p ){
2890 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2891 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2892 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2893 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
2894 p->aSortOrder = (u8*)pExtra;
2895 p->nColumn = nCol;
2896 p->nKeyCol = nCol - 1;
2897 *ppExtra = ((char*)p) + nByte;
2899 return p;
2903 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2904 ** and pTblList is the name of the table that is to be indexed. Both will
2905 ** be NULL for a primary key or an index that is created to satisfy a
2906 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2907 ** as the table to be indexed. pParse->pNewTable is a table that is
2908 ** currently being constructed by a CREATE TABLE statement.
2910 ** pList is a list of columns to be indexed. pList will be NULL if this
2911 ** is a primary key or unique-constraint on the most recent column added
2912 ** to the table currently under construction.
2914 void sqlite3CreateIndex(
2915 Parse *pParse, /* All information about this parse */
2916 Token *pName1, /* First part of index name. May be NULL */
2917 Token *pName2, /* Second part of index name. May be NULL */
2918 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2919 ExprList *pList, /* A list of columns to be indexed */
2920 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2921 Token *pStart, /* The CREATE token that begins this statement */
2922 Expr *pPIWhere, /* WHERE clause for partial indices */
2923 int sortOrder, /* Sort order of primary key when pList==NULL */
2924 int ifNotExist, /* Omit error if index already exists */
2925 u8 idxType /* The index type */
2927 Table *pTab = 0; /* Table to be indexed */
2928 Index *pIndex = 0; /* The index to be created */
2929 char *zName = 0; /* Name of the index */
2930 int nName; /* Number of characters in zName */
2931 int i, j;
2932 DbFixer sFix; /* For assigning database names to pTable */
2933 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2934 sqlite3 *db = pParse->db;
2935 Db *pDb; /* The specific table containing the indexed database */
2936 int iDb; /* Index of the database that is being written */
2937 Token *pName = 0; /* Unqualified name of the index to create */
2938 struct ExprList_item *pListItem; /* For looping over pList */
2939 int nExtra = 0; /* Space allocated for zExtra[] */
2940 int nExtraCol; /* Number of extra columns needed */
2941 char *zExtra = 0; /* Extra space after the Index object */
2942 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2944 if( db->mallocFailed || pParse->nErr>0 ){
2945 goto exit_create_index;
2947 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2948 goto exit_create_index;
2950 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2951 goto exit_create_index;
2955 ** Find the table that is to be indexed. Return early if not found.
2957 if( pTblName!=0 ){
2959 /* Use the two-part index name to determine the database
2960 ** to search for the table. 'Fix' the table name to this db
2961 ** before looking up the table.
2963 assert( pName1 && pName2 );
2964 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2965 if( iDb<0 ) goto exit_create_index;
2966 assert( pName && pName->z );
2968 #ifndef SQLITE_OMIT_TEMPDB
2969 /* If the index name was unqualified, check if the table
2970 ** is a temp table. If so, set the database to 1. Do not do this
2971 ** if initialising a database schema.
2973 if( !db->init.busy ){
2974 pTab = sqlite3SrcListLookup(pParse, pTblName);
2975 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2976 iDb = 1;
2979 #endif
2981 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2982 if( sqlite3FixSrcList(&sFix, pTblName) ){
2983 /* Because the parser constructs pTblName from a single identifier,
2984 ** sqlite3FixSrcList can never fail. */
2985 assert(0);
2987 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2988 assert( db->mallocFailed==0 || pTab==0 );
2989 if( pTab==0 ) goto exit_create_index;
2990 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2991 sqlite3ErrorMsg(pParse,
2992 "cannot create a TEMP index on non-TEMP table \"%s\"",
2993 pTab->zName);
2994 goto exit_create_index;
2996 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2997 }else{
2998 assert( pName==0 );
2999 assert( pStart==0 );
3000 pTab = pParse->pNewTable;
3001 if( !pTab ) goto exit_create_index;
3002 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3004 pDb = &db->aDb[iDb];
3006 assert( pTab!=0 );
3007 assert( pParse->nErr==0 );
3008 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3009 && db->init.busy==0
3010 #if SQLITE_USER_AUTHENTICATION
3011 && sqlite3UserAuthTable(pTab->zName)==0
3012 #endif
3013 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
3014 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3015 goto exit_create_index;
3017 #ifndef SQLITE_OMIT_VIEW
3018 if( pTab->pSelect ){
3019 sqlite3ErrorMsg(pParse, "views may not be indexed");
3020 goto exit_create_index;
3022 #endif
3023 #ifndef SQLITE_OMIT_VIRTUALTABLE
3024 if( IsVirtual(pTab) ){
3025 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3026 goto exit_create_index;
3028 #endif
3031 ** Find the name of the index. Make sure there is not already another
3032 ** index or table with the same name.
3034 ** Exception: If we are reading the names of permanent indices from the
3035 ** sqlite_master table (because some other process changed the schema) and
3036 ** one of the index names collides with the name of a temporary table or
3037 ** index, then we will continue to process this index.
3039 ** If pName==0 it means that we are
3040 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3041 ** own name.
3043 if( pName ){
3044 zName = sqlite3NameFromToken(db, pName);
3045 if( zName==0 ) goto exit_create_index;
3046 assert( pName->z!=0 );
3047 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3048 goto exit_create_index;
3050 if( !db->init.busy ){
3051 if( sqlite3FindTable(db, zName, 0)!=0 ){
3052 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3053 goto exit_create_index;
3056 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3057 if( !ifNotExist ){
3058 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3059 }else{
3060 assert( !db->init.busy );
3061 sqlite3CodeVerifySchema(pParse, iDb);
3063 goto exit_create_index;
3065 }else{
3066 int n;
3067 Index *pLoop;
3068 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3069 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3070 if( zName==0 ){
3071 goto exit_create_index;
3074 /* Automatic index names generated from within sqlite3_declare_vtab()
3075 ** must have names that are distinct from normal automatic index names.
3076 ** The following statement converts "sqlite3_autoindex..." into
3077 ** "sqlite3_butoindex..." in order to make the names distinct.
3078 ** The "vtab_err.test" test demonstrates the need of this statement. */
3079 if( IN_DECLARE_VTAB ) zName[7]++;
3082 /* Check for authorization to create an index.
3084 #ifndef SQLITE_OMIT_AUTHORIZATION
3086 const char *zDb = pDb->zDbSName;
3087 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3088 goto exit_create_index;
3090 i = SQLITE_CREATE_INDEX;
3091 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3092 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3093 goto exit_create_index;
3096 #endif
3098 /* If pList==0, it means this routine was called to make a primary
3099 ** key out of the last column added to the table under construction.
3100 ** So create a fake list to simulate this.
3102 if( pList==0 ){
3103 Token prevCol;
3104 Column *pCol = &pTab->aCol[pTab->nCol-1];
3105 pCol->colFlags |= COLFLAG_UNIQUE;
3106 sqlite3TokenInit(&prevCol, pCol->zName);
3107 pList = sqlite3ExprListAppend(pParse, 0,
3108 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3109 if( pList==0 ) goto exit_create_index;
3110 assert( pList->nExpr==1 );
3111 sqlite3ExprListSetSortOrder(pList, sortOrder);
3112 }else{
3113 sqlite3ExprListCheckLength(pParse, pList, "index");
3116 /* Figure out how many bytes of space are required to store explicitly
3117 ** specified collation sequence names.
3119 for(i=0; i<pList->nExpr; i++){
3120 Expr *pExpr = pList->a[i].pExpr;
3121 assert( pExpr!=0 );
3122 if( pExpr->op==TK_COLLATE ){
3123 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3128 ** Allocate the index structure.
3130 nName = sqlite3Strlen30(zName);
3131 nExtraCol = pPk ? pPk->nKeyCol : 1;
3132 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3133 nName + nExtra + 1, &zExtra);
3134 if( db->mallocFailed ){
3135 goto exit_create_index;
3137 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3138 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3139 pIndex->zName = zExtra;
3140 zExtra += nName + 1;
3141 memcpy(pIndex->zName, zName, nName+1);
3142 pIndex->pTable = pTab;
3143 pIndex->onError = (u8)onError;
3144 pIndex->uniqNotNull = onError!=OE_None;
3145 pIndex->idxType = idxType;
3146 pIndex->pSchema = db->aDb[iDb].pSchema;
3147 pIndex->nKeyCol = pList->nExpr;
3148 if( pPIWhere ){
3149 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3150 pIndex->pPartIdxWhere = pPIWhere;
3151 pPIWhere = 0;
3153 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3155 /* Check to see if we should honor DESC requests on index columns
3157 if( pDb->pSchema->file_format>=4 ){
3158 sortOrderMask = -1; /* Honor DESC */
3159 }else{
3160 sortOrderMask = 0; /* Ignore DESC */
3163 /* Analyze the list of expressions that form the terms of the index and
3164 ** report any errors. In the common case where the expression is exactly
3165 ** a table column, store that column in aiColumn[]. For general expressions,
3166 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3168 ** TODO: Issue a warning if two or more columns of the index are identical.
3169 ** TODO: Issue a warning if the table primary key is used as part of the
3170 ** index key.
3172 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3173 Expr *pCExpr; /* The i-th index expression */
3174 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3175 const char *zColl; /* Collation sequence name */
3177 sqlite3StringToId(pListItem->pExpr);
3178 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3179 if( pParse->nErr ) goto exit_create_index;
3180 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3181 if( pCExpr->op!=TK_COLUMN ){
3182 if( pTab==pParse->pNewTable ){
3183 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3184 "UNIQUE constraints");
3185 goto exit_create_index;
3187 if( pIndex->aColExpr==0 ){
3188 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3189 pIndex->aColExpr = pCopy;
3190 if( !db->mallocFailed ){
3191 assert( pCopy!=0 );
3192 pListItem = &pCopy->a[i];
3195 j = XN_EXPR;
3196 pIndex->aiColumn[i] = XN_EXPR;
3197 pIndex->uniqNotNull = 0;
3198 }else{
3199 j = pCExpr->iColumn;
3200 assert( j<=0x7fff );
3201 if( j<0 ){
3202 j = pTab->iPKey;
3203 }else if( pTab->aCol[j].notNull==0 ){
3204 pIndex->uniqNotNull = 0;
3206 pIndex->aiColumn[i] = (i16)j;
3208 zColl = 0;
3209 if( pListItem->pExpr->op==TK_COLLATE ){
3210 int nColl;
3211 zColl = pListItem->pExpr->u.zToken;
3212 nColl = sqlite3Strlen30(zColl) + 1;
3213 assert( nExtra>=nColl );
3214 memcpy(zExtra, zColl, nColl);
3215 zColl = zExtra;
3216 zExtra += nColl;
3217 nExtra -= nColl;
3218 }else if( j>=0 ){
3219 zColl = pTab->aCol[j].zColl;
3221 if( !zColl ) zColl = sqlite3StrBINARY;
3222 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3223 goto exit_create_index;
3225 pIndex->azColl[i] = zColl;
3226 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3227 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3230 /* Append the table key to the end of the index. For WITHOUT ROWID
3231 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3232 ** normal tables (when pPk==0) this will be the rowid.
3234 if( pPk ){
3235 for(j=0; j<pPk->nKeyCol; j++){
3236 int x = pPk->aiColumn[j];
3237 assert( x>=0 );
3238 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3239 pIndex->nColumn--;
3240 }else{
3241 pIndex->aiColumn[i] = x;
3242 pIndex->azColl[i] = pPk->azColl[j];
3243 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3244 i++;
3247 assert( i==pIndex->nColumn );
3248 }else{
3249 pIndex->aiColumn[i] = XN_ROWID;
3250 pIndex->azColl[i] = sqlite3StrBINARY;
3252 sqlite3DefaultRowEst(pIndex);
3253 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3255 /* If this index contains every column of its table, then mark
3256 ** it as a covering index */
3257 assert( HasRowid(pTab)
3258 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3259 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3260 pIndex->isCovering = 1;
3261 for(j=0; j<pTab->nCol; j++){
3262 if( j==pTab->iPKey ) continue;
3263 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3264 pIndex->isCovering = 0;
3265 break;
3269 if( pTab==pParse->pNewTable ){
3270 /* This routine has been called to create an automatic index as a
3271 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3272 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3273 ** i.e. one of:
3275 ** CREATE TABLE t(x PRIMARY KEY, y);
3276 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3278 ** Either way, check to see if the table already has such an index. If
3279 ** so, don't bother creating this one. This only applies to
3280 ** automatically created indices. Users can do as they wish with
3281 ** explicit indices.
3283 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3284 ** (and thus suppressing the second one) even if they have different
3285 ** sort orders.
3287 ** If there are different collating sequences or if the columns of
3288 ** the constraint occur in different orders, then the constraints are
3289 ** considered distinct and both result in separate indices.
3291 Index *pIdx;
3292 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3293 int k;
3294 assert( IsUniqueIndex(pIdx) );
3295 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3296 assert( IsUniqueIndex(pIndex) );
3298 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3299 for(k=0; k<pIdx->nKeyCol; k++){
3300 const char *z1;
3301 const char *z2;
3302 assert( pIdx->aiColumn[k]>=0 );
3303 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3304 z1 = pIdx->azColl[k];
3305 z2 = pIndex->azColl[k];
3306 if( sqlite3StrICmp(z1, z2) ) break;
3308 if( k==pIdx->nKeyCol ){
3309 if( pIdx->onError!=pIndex->onError ){
3310 /* This constraint creates the same index as a previous
3311 ** constraint specified somewhere in the CREATE TABLE statement.
3312 ** However the ON CONFLICT clauses are different. If both this
3313 ** constraint and the previous equivalent constraint have explicit
3314 ** ON CONFLICT clauses this is an error. Otherwise, use the
3315 ** explicitly specified behavior for the index.
3317 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3318 sqlite3ErrorMsg(pParse,
3319 "conflicting ON CONFLICT clauses specified", 0);
3321 if( pIdx->onError==OE_Default ){
3322 pIdx->onError = pIndex->onError;
3325 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3326 goto exit_create_index;
3331 /* Link the new Index structure to its table and to the other
3332 ** in-memory database structures.
3334 assert( pParse->nErr==0 );
3335 if( db->init.busy ){
3336 Index *p;
3337 assert( !IN_DECLARE_VTAB );
3338 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3339 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3340 pIndex->zName, pIndex);
3341 if( p ){
3342 assert( p==pIndex ); /* Malloc must have failed */
3343 sqlite3OomFault(db);
3344 goto exit_create_index;
3346 db->mDbFlags |= DBFLAG_SchemaChange;
3347 if( pTblName!=0 ){
3348 pIndex->tnum = db->init.newTnum;
3352 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3353 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3354 ** emit code to allocate the index rootpage on disk and make an entry for
3355 ** the index in the sqlite_master table and populate the index with
3356 ** content. But, do not do this if we are simply reading the sqlite_master
3357 ** table to parse the schema, or if this index is the PRIMARY KEY index
3358 ** of a WITHOUT ROWID table.
3360 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3361 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3362 ** has just been created, it contains no data and the index initialization
3363 ** step can be skipped.
3365 else if( HasRowid(pTab) || pTblName!=0 ){
3366 Vdbe *v;
3367 char *zStmt;
3368 int iMem = ++pParse->nMem;
3370 v = sqlite3GetVdbe(pParse);
3371 if( v==0 ) goto exit_create_index;
3373 sqlite3BeginWriteOperation(pParse, 1, iDb);
3375 /* Create the rootpage for the index using CreateIndex. But before
3376 ** doing so, code a Noop instruction and store its address in
3377 ** Index.tnum. This is required in case this index is actually a
3378 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3379 ** that case the convertToWithoutRowidTable() routine will replace
3380 ** the Noop with a Goto to jump over the VDBE code generated below. */
3381 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3382 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
3384 /* Gather the complete text of the CREATE INDEX statement into
3385 ** the zStmt variable
3387 if( pStart ){
3388 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3389 if( pName->z[n-1]==';' ) n--;
3390 /* A named index with an explicit CREATE INDEX statement */
3391 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3392 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3393 }else{
3394 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3395 /* zStmt = sqlite3MPrintf(""); */
3396 zStmt = 0;
3399 /* Add an entry in sqlite_master for this index
3401 sqlite3NestedParse(pParse,
3402 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3403 db->aDb[iDb].zDbSName, MASTER_NAME,
3404 pIndex->zName,
3405 pTab->zName,
3406 iMem,
3407 zStmt
3409 sqlite3DbFree(db, zStmt);
3411 /* Fill the index with data and reparse the schema. Code an OP_Expire
3412 ** to invalidate all pre-compiled statements.
3414 if( pTblName ){
3415 sqlite3RefillIndex(pParse, pIndex, iMem);
3416 sqlite3ChangeCookie(pParse, iDb);
3417 sqlite3VdbeAddParseSchemaOp(v, iDb,
3418 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3419 sqlite3VdbeAddOp0(v, OP_Expire);
3422 sqlite3VdbeJumpHere(v, pIndex->tnum);
3425 /* When adding an index to the list of indices for a table, make
3426 ** sure all indices labeled OE_Replace come after all those labeled
3427 ** OE_Ignore. This is necessary for the correct constraint check
3428 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3429 ** UPDATE and INSERT statements.
3431 if( db->init.busy || pTblName==0 ){
3432 if( onError!=OE_Replace || pTab->pIndex==0
3433 || pTab->pIndex->onError==OE_Replace){
3434 pIndex->pNext = pTab->pIndex;
3435 pTab->pIndex = pIndex;
3436 }else{
3437 Index *pOther = pTab->pIndex;
3438 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3439 pOther = pOther->pNext;
3441 pIndex->pNext = pOther->pNext;
3442 pOther->pNext = pIndex;
3444 pIndex = 0;
3447 /* Clean up before exiting */
3448 exit_create_index:
3449 if( pIndex ) freeIndex(db, pIndex);
3450 sqlite3ExprDelete(db, pPIWhere);
3451 sqlite3ExprListDelete(db, pList);
3452 sqlite3SrcListDelete(db, pTblName);
3453 sqlite3DbFree(db, zName);
3457 ** Fill the Index.aiRowEst[] array with default information - information
3458 ** to be used when we have not run the ANALYZE command.
3460 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3461 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3462 ** number of rows in the table that match any particular value of the
3463 ** first column of the index. aiRowEst[2] is an estimate of the number
3464 ** of rows that match any particular combination of the first 2 columns
3465 ** of the index. And so forth. It must always be the case that
3467 ** aiRowEst[N]<=aiRowEst[N-1]
3468 ** aiRowEst[N]>=1
3470 ** Apart from that, we have little to go on besides intuition as to
3471 ** how aiRowEst[] should be initialized. The numbers generated here
3472 ** are based on typical values found in actual indices.
3474 void sqlite3DefaultRowEst(Index *pIdx){
3475 /* 10, 9, 8, 7, 6 */
3476 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3477 LogEst *a = pIdx->aiRowLogEst;
3478 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3479 int i;
3481 /* Indexes with default row estimates should not have stat1 data */
3482 assert( !pIdx->hasStat1 );
3484 /* Set the first entry (number of rows in the index) to the estimated
3485 ** number of rows in the table, or half the number of rows in the table
3486 ** for a partial index. But do not let the estimate drop below 10. */
3487 a[0] = pIdx->pTable->nRowLogEst;
3488 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3489 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3491 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3492 ** 6 and each subsequent value (if any) is 5. */
3493 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3494 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3495 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3498 assert( 0==sqlite3LogEst(1) );
3499 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3503 ** This routine will drop an existing named index. This routine
3504 ** implements the DROP INDEX statement.
3506 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3507 Index *pIndex;
3508 Vdbe *v;
3509 sqlite3 *db = pParse->db;
3510 int iDb;
3512 assert( pParse->nErr==0 ); /* Never called with prior errors */
3513 if( db->mallocFailed ){
3514 goto exit_drop_index;
3516 assert( pName->nSrc==1 );
3517 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3518 goto exit_drop_index;
3520 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3521 if( pIndex==0 ){
3522 if( !ifExists ){
3523 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3524 }else{
3525 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3527 pParse->checkSchema = 1;
3528 goto exit_drop_index;
3530 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3531 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3532 "or PRIMARY KEY constraint cannot be dropped", 0);
3533 goto exit_drop_index;
3535 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3536 #ifndef SQLITE_OMIT_AUTHORIZATION
3538 int code = SQLITE_DROP_INDEX;
3539 Table *pTab = pIndex->pTable;
3540 const char *zDb = db->aDb[iDb].zDbSName;
3541 const char *zTab = SCHEMA_TABLE(iDb);
3542 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3543 goto exit_drop_index;
3545 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3546 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3547 goto exit_drop_index;
3550 #endif
3552 /* Generate code to remove the index and from the master table */
3553 v = sqlite3GetVdbe(pParse);
3554 if( v ){
3555 sqlite3BeginWriteOperation(pParse, 1, iDb);
3556 sqlite3NestedParse(pParse,
3557 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3558 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3560 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3561 sqlite3ChangeCookie(pParse, iDb);
3562 destroyRootPage(pParse, pIndex->tnum, iDb);
3563 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3566 exit_drop_index:
3567 sqlite3SrcListDelete(db, pName);
3571 ** pArray is a pointer to an array of objects. Each object in the
3572 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3573 ** to extend the array so that there is space for a new object at the end.
3575 ** When this function is called, *pnEntry contains the current size of
3576 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3577 ** in total).
3579 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3580 ** space allocated for the new object is zeroed, *pnEntry updated to
3581 ** reflect the new size of the array and a pointer to the new allocation
3582 ** returned. *pIdx is set to the index of the new array entry in this case.
3584 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3585 ** unchanged and a copy of pArray returned.
3587 void *sqlite3ArrayAllocate(
3588 sqlite3 *db, /* Connection to notify of malloc failures */
3589 void *pArray, /* Array of objects. Might be reallocated */
3590 int szEntry, /* Size of each object in the array */
3591 int *pnEntry, /* Number of objects currently in use */
3592 int *pIdx /* Write the index of a new slot here */
3594 char *z;
3595 int n = *pnEntry;
3596 if( (n & (n-1))==0 ){
3597 int sz = (n==0) ? 1 : 2*n;
3598 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3599 if( pNew==0 ){
3600 *pIdx = -1;
3601 return pArray;
3603 pArray = pNew;
3605 z = (char*)pArray;
3606 memset(&z[n * szEntry], 0, szEntry);
3607 *pIdx = n;
3608 ++*pnEntry;
3609 return pArray;
3613 ** Append a new element to the given IdList. Create a new IdList if
3614 ** need be.
3616 ** A new IdList is returned, or NULL if malloc() fails.
3618 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3619 int i;
3620 if( pList==0 ){
3621 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3622 if( pList==0 ) return 0;
3624 pList->a = sqlite3ArrayAllocate(
3626 pList->a,
3627 sizeof(pList->a[0]),
3628 &pList->nId,
3631 if( i<0 ){
3632 sqlite3IdListDelete(db, pList);
3633 return 0;
3635 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3636 return pList;
3640 ** Delete an IdList.
3642 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3643 int i;
3644 if( pList==0 ) return;
3645 for(i=0; i<pList->nId; i++){
3646 sqlite3DbFree(db, pList->a[i].zName);
3648 sqlite3DbFree(db, pList->a);
3649 sqlite3DbFreeNN(db, pList);
3653 ** Return the index in pList of the identifier named zId. Return -1
3654 ** if not found.
3656 int sqlite3IdListIndex(IdList *pList, const char *zName){
3657 int i;
3658 if( pList==0 ) return -1;
3659 for(i=0; i<pList->nId; i++){
3660 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3662 return -1;
3666 ** Expand the space allocated for the given SrcList object by
3667 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3668 ** New slots are zeroed.
3670 ** For example, suppose a SrcList initially contains two entries: A,B.
3671 ** To append 3 new entries onto the end, do this:
3673 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3675 ** After the call above it would contain: A, B, nil, nil, nil.
3676 ** If the iStart argument had been 1 instead of 2, then the result
3677 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3678 ** the iStart value would be 0. The result then would
3679 ** be: nil, nil, nil, A, B.
3681 ** If a memory allocation fails the SrcList is unchanged. The
3682 ** db->mallocFailed flag will be set to true.
3684 SrcList *sqlite3SrcListEnlarge(
3685 sqlite3 *db, /* Database connection to notify of OOM errors */
3686 SrcList *pSrc, /* The SrcList to be enlarged */
3687 int nExtra, /* Number of new slots to add to pSrc->a[] */
3688 int iStart /* Index in pSrc->a[] of first new slot */
3690 int i;
3692 /* Sanity checking on calling parameters */
3693 assert( iStart>=0 );
3694 assert( nExtra>=1 );
3695 assert( pSrc!=0 );
3696 assert( iStart<=pSrc->nSrc );
3698 /* Allocate additional space if needed */
3699 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3700 SrcList *pNew;
3701 int nAlloc = pSrc->nSrc*2+nExtra;
3702 int nGot;
3703 pNew = sqlite3DbRealloc(db, pSrc,
3704 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3705 if( pNew==0 ){
3706 assert( db->mallocFailed );
3707 return pSrc;
3709 pSrc = pNew;
3710 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3711 pSrc->nAlloc = nGot;
3714 /* Move existing slots that come after the newly inserted slots
3715 ** out of the way */
3716 for(i=pSrc->nSrc-1; i>=iStart; i--){
3717 pSrc->a[i+nExtra] = pSrc->a[i];
3719 pSrc->nSrc += nExtra;
3721 /* Zero the newly allocated slots */
3722 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3723 for(i=iStart; i<iStart+nExtra; i++){
3724 pSrc->a[i].iCursor = -1;
3727 /* Return a pointer to the enlarged SrcList */
3728 return pSrc;
3733 ** Append a new table name to the given SrcList. Create a new SrcList if
3734 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3736 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3737 ** SrcList might be the same as the SrcList that was input or it might be
3738 ** a new one. If an OOM error does occurs, then the prior value of pList
3739 ** that is input to this routine is automatically freed.
3741 ** If pDatabase is not null, it means that the table has an optional
3742 ** database name prefix. Like this: "database.table". The pDatabase
3743 ** points to the table name and the pTable points to the database name.
3744 ** The SrcList.a[].zName field is filled with the table name which might
3745 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3746 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3747 ** or with NULL if no database is specified.
3749 ** In other words, if call like this:
3751 ** sqlite3SrcListAppend(D,A,B,0);
3753 ** Then B is a table name and the database name is unspecified. If called
3754 ** like this:
3756 ** sqlite3SrcListAppend(D,A,B,C);
3758 ** Then C is the table name and B is the database name. If C is defined
3759 ** then so is B. In other words, we never have a case where:
3761 ** sqlite3SrcListAppend(D,A,0,C);
3763 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3764 ** before being added to the SrcList.
3766 SrcList *sqlite3SrcListAppend(
3767 sqlite3 *db, /* Connection to notify of malloc failures */
3768 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3769 Token *pTable, /* Table to append */
3770 Token *pDatabase /* Database of the table */
3772 struct SrcList_item *pItem;
3773 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3774 assert( db!=0 );
3775 if( pList==0 ){
3776 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3777 if( pList==0 ) return 0;
3778 pList->nAlloc = 1;
3779 pList->nSrc = 1;
3780 memset(&pList->a[0], 0, sizeof(pList->a[0]));
3781 pList->a[0].iCursor = -1;
3782 }else{
3783 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3785 if( db->mallocFailed ){
3786 sqlite3SrcListDelete(db, pList);
3787 return 0;
3789 pItem = &pList->a[pList->nSrc-1];
3790 if( pDatabase && pDatabase->z==0 ){
3791 pDatabase = 0;
3793 if( pDatabase ){
3794 pItem->zName = sqlite3NameFromToken(db, pDatabase);
3795 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
3796 }else{
3797 pItem->zName = sqlite3NameFromToken(db, pTable);
3798 pItem->zDatabase = 0;
3800 return pList;
3804 ** Assign VdbeCursor index numbers to all tables in a SrcList
3806 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3807 int i;
3808 struct SrcList_item *pItem;
3809 assert(pList || pParse->db->mallocFailed );
3810 if( pList ){
3811 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3812 if( pItem->iCursor>=0 ) break;
3813 pItem->iCursor = pParse->nTab++;
3814 if( pItem->pSelect ){
3815 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3822 ** Delete an entire SrcList including all its substructure.
3824 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3825 int i;
3826 struct SrcList_item *pItem;
3827 if( pList==0 ) return;
3828 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3829 sqlite3DbFree(db, pItem->zDatabase);
3830 sqlite3DbFree(db, pItem->zName);
3831 sqlite3DbFree(db, pItem->zAlias);
3832 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3833 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3834 sqlite3DeleteTable(db, pItem->pTab);
3835 sqlite3SelectDelete(db, pItem->pSelect);
3836 sqlite3ExprDelete(db, pItem->pOn);
3837 sqlite3IdListDelete(db, pItem->pUsing);
3839 sqlite3DbFreeNN(db, pList);
3843 ** This routine is called by the parser to add a new term to the
3844 ** end of a growing FROM clause. The "p" parameter is the part of
3845 ** the FROM clause that has already been constructed. "p" is NULL
3846 ** if this is the first term of the FROM clause. pTable and pDatabase
3847 ** are the name of the table and database named in the FROM clause term.
3848 ** pDatabase is NULL if the database name qualifier is missing - the
3849 ** usual case. If the term has an alias, then pAlias points to the
3850 ** alias token. If the term is a subquery, then pSubquery is the
3851 ** SELECT statement that the subquery encodes. The pTable and
3852 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3853 ** parameters are the content of the ON and USING clauses.
3855 ** Return a new SrcList which encodes is the FROM with the new
3856 ** term added.
3858 SrcList *sqlite3SrcListAppendFromTerm(
3859 Parse *pParse, /* Parsing context */
3860 SrcList *p, /* The left part of the FROM clause already seen */
3861 Token *pTable, /* Name of the table to add to the FROM clause */
3862 Token *pDatabase, /* Name of the database containing pTable */
3863 Token *pAlias, /* The right-hand side of the AS subexpression */
3864 Select *pSubquery, /* A subquery used in place of a table name */
3865 Expr *pOn, /* The ON clause of a join */
3866 IdList *pUsing /* The USING clause of a join */
3868 struct SrcList_item *pItem;
3869 sqlite3 *db = pParse->db;
3870 if( !p && (pOn || pUsing) ){
3871 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3872 (pOn ? "ON" : "USING")
3874 goto append_from_error;
3876 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3877 if( p==0 ){
3878 goto append_from_error;
3880 assert( p->nSrc>0 );
3881 pItem = &p->a[p->nSrc-1];
3882 assert( pAlias!=0 );
3883 if( pAlias->n ){
3884 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3886 pItem->pSelect = pSubquery;
3887 pItem->pOn = pOn;
3888 pItem->pUsing = pUsing;
3889 return p;
3891 append_from_error:
3892 assert( p==0 );
3893 sqlite3ExprDelete(db, pOn);
3894 sqlite3IdListDelete(db, pUsing);
3895 sqlite3SelectDelete(db, pSubquery);
3896 return 0;
3900 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3901 ** element of the source-list passed as the second argument.
3903 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3904 assert( pIndexedBy!=0 );
3905 if( p && pIndexedBy->n>0 ){
3906 struct SrcList_item *pItem;
3907 assert( p->nSrc>0 );
3908 pItem = &p->a[p->nSrc-1];
3909 assert( pItem->fg.notIndexed==0 );
3910 assert( pItem->fg.isIndexedBy==0 );
3911 assert( pItem->fg.isTabFunc==0 );
3912 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3913 /* A "NOT INDEXED" clause was supplied. See parse.y
3914 ** construct "indexed_opt" for details. */
3915 pItem->fg.notIndexed = 1;
3916 }else{
3917 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3918 pItem->fg.isIndexedBy = 1;
3924 ** Add the list of function arguments to the SrcList entry for a
3925 ** table-valued-function.
3927 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3928 if( p ){
3929 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3930 assert( pItem->fg.notIndexed==0 );
3931 assert( pItem->fg.isIndexedBy==0 );
3932 assert( pItem->fg.isTabFunc==0 );
3933 pItem->u1.pFuncArg = pList;
3934 pItem->fg.isTabFunc = 1;
3935 }else{
3936 sqlite3ExprListDelete(pParse->db, pList);
3941 ** When building up a FROM clause in the parser, the join operator
3942 ** is initially attached to the left operand. But the code generator
3943 ** expects the join operator to be on the right operand. This routine
3944 ** Shifts all join operators from left to right for an entire FROM
3945 ** clause.
3947 ** Example: Suppose the join is like this:
3949 ** A natural cross join B
3951 ** The operator is "natural cross join". The A and B operands are stored
3952 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3953 ** operator with A. This routine shifts that operator over to B.
3955 void sqlite3SrcListShiftJoinType(SrcList *p){
3956 if( p ){
3957 int i;
3958 for(i=p->nSrc-1; i>0; i--){
3959 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3961 p->a[0].fg.jointype = 0;
3966 ** Generate VDBE code for a BEGIN statement.
3968 void sqlite3BeginTransaction(Parse *pParse, int type){
3969 sqlite3 *db;
3970 Vdbe *v;
3971 int i;
3973 assert( pParse!=0 );
3974 db = pParse->db;
3975 assert( db!=0 );
3976 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3977 return;
3979 v = sqlite3GetVdbe(pParse);
3980 if( !v ) return;
3981 if( type!=TK_DEFERRED ){
3982 for(i=0; i<db->nDb; i++){
3983 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3984 sqlite3VdbeUsesBtree(v, i);
3987 sqlite3VdbeAddOp0(v, OP_AutoCommit);
3991 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
3992 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
3993 ** code is generated for a COMMIT.
3995 void sqlite3EndTransaction(Parse *pParse, int eType){
3996 Vdbe *v;
3997 int isRollback;
3999 assert( pParse!=0 );
4000 assert( pParse->db!=0 );
4001 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
4002 isRollback = eType==TK_ROLLBACK;
4003 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
4004 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
4005 return;
4007 v = sqlite3GetVdbe(pParse);
4008 if( v ){
4009 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
4014 ** This function is called by the parser when it parses a command to create,
4015 ** release or rollback an SQL savepoint.
4017 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4018 char *zName = sqlite3NameFromToken(pParse->db, pName);
4019 if( zName ){
4020 Vdbe *v = sqlite3GetVdbe(pParse);
4021 #ifndef SQLITE_OMIT_AUTHORIZATION
4022 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4023 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4024 #endif
4025 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4026 sqlite3DbFree(pParse->db, zName);
4027 return;
4029 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4034 ** Make sure the TEMP database is open and available for use. Return
4035 ** the number of errors. Leave any error messages in the pParse structure.
4037 int sqlite3OpenTempDatabase(Parse *pParse){
4038 sqlite3 *db = pParse->db;
4039 if( db->aDb[1].pBt==0 && !pParse->explain ){
4040 int rc;
4041 Btree *pBt;
4042 static const int flags =
4043 SQLITE_OPEN_READWRITE |
4044 SQLITE_OPEN_CREATE |
4045 SQLITE_OPEN_EXCLUSIVE |
4046 SQLITE_OPEN_DELETEONCLOSE |
4047 SQLITE_OPEN_TEMP_DB;
4049 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4050 if( rc!=SQLITE_OK ){
4051 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4052 "file for storing temporary tables");
4053 pParse->rc = rc;
4054 return 1;
4056 db->aDb[1].pBt = pBt;
4057 assert( db->aDb[1].pSchema );
4058 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4059 sqlite3OomFault(db);
4060 return 1;
4063 return 0;
4067 ** Record the fact that the schema cookie will need to be verified
4068 ** for database iDb. The code to actually verify the schema cookie
4069 ** will occur at the end of the top-level VDBE and will be generated
4070 ** later, by sqlite3FinishCoding().
4072 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4073 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4075 assert( iDb>=0 && iDb<pParse->db->nDb );
4076 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4077 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4078 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4079 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4080 DbMaskSet(pToplevel->cookieMask, iDb);
4081 if( !OMIT_TEMPDB && iDb==1 ){
4082 sqlite3OpenTempDatabase(pToplevel);
4088 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4089 ** attached database. Otherwise, invoke it for the database named zDb only.
4091 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4092 sqlite3 *db = pParse->db;
4093 int i;
4094 for(i=0; i<db->nDb; i++){
4095 Db *pDb = &db->aDb[i];
4096 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4097 sqlite3CodeVerifySchema(pParse, i);
4103 ** Generate VDBE code that prepares for doing an operation that
4104 ** might change the database.
4106 ** This routine starts a new transaction if we are not already within
4107 ** a transaction. If we are already within a transaction, then a checkpoint
4108 ** is set if the setStatement parameter is true. A checkpoint should
4109 ** be set for operations that might fail (due to a constraint) part of
4110 ** the way through and which will need to undo some writes without having to
4111 ** rollback the whole transaction. For operations where all constraints
4112 ** can be checked before any changes are made to the database, it is never
4113 ** necessary to undo a write and the checkpoint should not be set.
4115 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4116 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4117 sqlite3CodeVerifySchema(pParse, iDb);
4118 DbMaskSet(pToplevel->writeMask, iDb);
4119 pToplevel->isMultiWrite |= setStatement;
4123 ** Indicate that the statement currently under construction might write
4124 ** more than one entry (example: deleting one row then inserting another,
4125 ** inserting multiple rows in a table, or inserting a row and index entries.)
4126 ** If an abort occurs after some of these writes have completed, then it will
4127 ** be necessary to undo the completed writes.
4129 void sqlite3MultiWrite(Parse *pParse){
4130 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4131 pToplevel->isMultiWrite = 1;
4135 ** The code generator calls this routine if is discovers that it is
4136 ** possible to abort a statement prior to completion. In order to
4137 ** perform this abort without corrupting the database, we need to make
4138 ** sure that the statement is protected by a statement transaction.
4140 ** Technically, we only need to set the mayAbort flag if the
4141 ** isMultiWrite flag was previously set. There is a time dependency
4142 ** such that the abort must occur after the multiwrite. This makes
4143 ** some statements involving the REPLACE conflict resolution algorithm
4144 ** go a little faster. But taking advantage of this time dependency
4145 ** makes it more difficult to prove that the code is correct (in
4146 ** particular, it prevents us from writing an effective
4147 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4148 ** to take the safe route and skip the optimization.
4150 void sqlite3MayAbort(Parse *pParse){
4151 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4152 pToplevel->mayAbort = 1;
4156 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4157 ** error. The onError parameter determines which (if any) of the statement
4158 ** and/or current transaction is rolled back.
4160 void sqlite3HaltConstraint(
4161 Parse *pParse, /* Parsing context */
4162 int errCode, /* extended error code */
4163 int onError, /* Constraint type */
4164 char *p4, /* Error message */
4165 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4166 u8 p5Errmsg /* P5_ErrMsg type */
4168 Vdbe *v = sqlite3GetVdbe(pParse);
4169 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4170 if( onError==OE_Abort ){
4171 sqlite3MayAbort(pParse);
4173 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4174 sqlite3VdbeChangeP5(v, p5Errmsg);
4178 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4180 void sqlite3UniqueConstraint(
4181 Parse *pParse, /* Parsing context */
4182 int onError, /* Constraint type */
4183 Index *pIdx /* The index that triggers the constraint */
4185 char *zErr;
4186 int j;
4187 StrAccum errMsg;
4188 Table *pTab = pIdx->pTable;
4190 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4191 if( pIdx->aColExpr ){
4192 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4193 }else{
4194 for(j=0; j<pIdx->nKeyCol; j++){
4195 char *zCol;
4196 assert( pIdx->aiColumn[j]>=0 );
4197 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4198 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4199 sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
4200 sqlite3StrAccumAppend(&errMsg, ".", 1);
4201 sqlite3StrAccumAppendAll(&errMsg, zCol);
4204 zErr = sqlite3StrAccumFinish(&errMsg);
4205 sqlite3HaltConstraint(pParse,
4206 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4207 : SQLITE_CONSTRAINT_UNIQUE,
4208 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4213 ** Code an OP_Halt due to non-unique rowid.
4215 void sqlite3RowidConstraint(
4216 Parse *pParse, /* Parsing context */
4217 int onError, /* Conflict resolution algorithm */
4218 Table *pTab /* The table with the non-unique rowid */
4220 char *zMsg;
4221 int rc;
4222 if( pTab->iPKey>=0 ){
4223 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4224 pTab->aCol[pTab->iPKey].zName);
4225 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4226 }else{
4227 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4228 rc = SQLITE_CONSTRAINT_ROWID;
4230 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4231 P5_ConstraintUnique);
4235 ** Check to see if pIndex uses the collating sequence pColl. Return
4236 ** true if it does and false if it does not.
4238 #ifndef SQLITE_OMIT_REINDEX
4239 static int collationMatch(const char *zColl, Index *pIndex){
4240 int i;
4241 assert( zColl!=0 );
4242 for(i=0; i<pIndex->nColumn; i++){
4243 const char *z = pIndex->azColl[i];
4244 assert( z!=0 || pIndex->aiColumn[i]<0 );
4245 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4246 return 1;
4249 return 0;
4251 #endif
4254 ** Recompute all indices of pTab that use the collating sequence pColl.
4255 ** If pColl==0 then recompute all indices of pTab.
4257 #ifndef SQLITE_OMIT_REINDEX
4258 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4259 Index *pIndex; /* An index associated with pTab */
4261 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4262 if( zColl==0 || collationMatch(zColl, pIndex) ){
4263 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4264 sqlite3BeginWriteOperation(pParse, 0, iDb);
4265 sqlite3RefillIndex(pParse, pIndex, -1);
4269 #endif
4272 ** Recompute all indices of all tables in all databases where the
4273 ** indices use the collating sequence pColl. If pColl==0 then recompute
4274 ** all indices everywhere.
4276 #ifndef SQLITE_OMIT_REINDEX
4277 static void reindexDatabases(Parse *pParse, char const *zColl){
4278 Db *pDb; /* A single database */
4279 int iDb; /* The database index number */
4280 sqlite3 *db = pParse->db; /* The database connection */
4281 HashElem *k; /* For looping over tables in pDb */
4282 Table *pTab; /* A table in the database */
4284 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4285 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4286 assert( pDb!=0 );
4287 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4288 pTab = (Table*)sqliteHashData(k);
4289 reindexTable(pParse, pTab, zColl);
4293 #endif
4296 ** Generate code for the REINDEX command.
4298 ** REINDEX -- 1
4299 ** REINDEX <collation> -- 2
4300 ** REINDEX ?<database>.?<tablename> -- 3
4301 ** REINDEX ?<database>.?<indexname> -- 4
4303 ** Form 1 causes all indices in all attached databases to be rebuilt.
4304 ** Form 2 rebuilds all indices in all databases that use the named
4305 ** collating function. Forms 3 and 4 rebuild the named index or all
4306 ** indices associated with the named table.
4308 #ifndef SQLITE_OMIT_REINDEX
4309 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4310 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4311 char *z; /* Name of a table or index */
4312 const char *zDb; /* Name of the database */
4313 Table *pTab; /* A table in the database */
4314 Index *pIndex; /* An index associated with pTab */
4315 int iDb; /* The database index number */
4316 sqlite3 *db = pParse->db; /* The database connection */
4317 Token *pObjName; /* Name of the table or index to be reindexed */
4319 /* Read the database schema. If an error occurs, leave an error message
4320 ** and code in pParse and return NULL. */
4321 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4322 return;
4325 if( pName1==0 ){
4326 reindexDatabases(pParse, 0);
4327 return;
4328 }else if( NEVER(pName2==0) || pName2->z==0 ){
4329 char *zColl;
4330 assert( pName1->z );
4331 zColl = sqlite3NameFromToken(pParse->db, pName1);
4332 if( !zColl ) return;
4333 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4334 if( pColl ){
4335 reindexDatabases(pParse, zColl);
4336 sqlite3DbFree(db, zColl);
4337 return;
4339 sqlite3DbFree(db, zColl);
4341 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4342 if( iDb<0 ) return;
4343 z = sqlite3NameFromToken(db, pObjName);
4344 if( z==0 ) return;
4345 zDb = db->aDb[iDb].zDbSName;
4346 pTab = sqlite3FindTable(db, z, zDb);
4347 if( pTab ){
4348 reindexTable(pParse, pTab, 0);
4349 sqlite3DbFree(db, z);
4350 return;
4352 pIndex = sqlite3FindIndex(db, z, zDb);
4353 sqlite3DbFree(db, z);
4354 if( pIndex ){
4355 sqlite3BeginWriteOperation(pParse, 0, iDb);
4356 sqlite3RefillIndex(pParse, pIndex, -1);
4357 return;
4359 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4361 #endif
4364 ** Return a KeyInfo structure that is appropriate for the given Index.
4366 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4367 ** when it has finished using it.
4369 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4370 int i;
4371 int nCol = pIdx->nColumn;
4372 int nKey = pIdx->nKeyCol;
4373 KeyInfo *pKey;
4374 if( pParse->nErr ) return 0;
4375 if( pIdx->uniqNotNull ){
4376 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4377 }else{
4378 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4380 if( pKey ){
4381 assert( sqlite3KeyInfoIsWriteable(pKey) );
4382 for(i=0; i<nCol; i++){
4383 const char *zColl = pIdx->azColl[i];
4384 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4385 sqlite3LocateCollSeq(pParse, zColl);
4386 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4388 if( pParse->nErr ){
4389 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
4390 if( pIdx->bNoQuery==0 ){
4391 /* Deactivate the index because it contains an unknown collating
4392 ** sequence. The only way to reactive the index is to reload the
4393 ** schema. Adding the missing collating sequence later does not
4394 ** reactive the index. The application had the chance to register
4395 ** the missing index using the collation-needed callback. For
4396 ** simplicity, SQLite will not give the application a second chance.
4398 pIdx->bNoQuery = 1;
4399 pParse->rc = SQLITE_ERROR_RETRY;
4401 sqlite3KeyInfoUnref(pKey);
4402 pKey = 0;
4405 return pKey;
4408 #ifndef SQLITE_OMIT_CTE
4410 ** This routine is invoked once per CTE by the parser while parsing a
4411 ** WITH clause.
4413 With *sqlite3WithAdd(
4414 Parse *pParse, /* Parsing context */
4415 With *pWith, /* Existing WITH clause, or NULL */
4416 Token *pName, /* Name of the common-table */
4417 ExprList *pArglist, /* Optional column name list for the table */
4418 Select *pQuery /* Query used to initialize the table */
4420 sqlite3 *db = pParse->db;
4421 With *pNew;
4422 char *zName;
4424 /* Check that the CTE name is unique within this WITH clause. If
4425 ** not, store an error in the Parse structure. */
4426 zName = sqlite3NameFromToken(pParse->db, pName);
4427 if( zName && pWith ){
4428 int i;
4429 for(i=0; i<pWith->nCte; i++){
4430 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4431 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4436 if( pWith ){
4437 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4438 pNew = sqlite3DbRealloc(db, pWith, nByte);
4439 }else{
4440 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4442 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4444 if( db->mallocFailed ){
4445 sqlite3ExprListDelete(db, pArglist);
4446 sqlite3SelectDelete(db, pQuery);
4447 sqlite3DbFree(db, zName);
4448 pNew = pWith;
4449 }else{
4450 pNew->a[pNew->nCte].pSelect = pQuery;
4451 pNew->a[pNew->nCte].pCols = pArglist;
4452 pNew->a[pNew->nCte].zName = zName;
4453 pNew->a[pNew->nCte].zCteErr = 0;
4454 pNew->nCte++;
4457 return pNew;
4461 ** Free the contents of the With object passed as the second argument.
4463 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4464 if( pWith ){
4465 int i;
4466 for(i=0; i<pWith->nCte; i++){
4467 struct Cte *pCte = &pWith->a[i];
4468 sqlite3ExprListDelete(db, pCte->pCols);
4469 sqlite3SelectDelete(db, pCte->pSelect);
4470 sqlite3DbFree(db, pCte->zName);
4472 sqlite3DbFree(db, pWith);
4475 #endif /* !defined(SQLITE_OMIT_CTE) */