Enhance the command-line completion extension to return the names of
[sqlite.git] / ext / misc / sha1.c
blobe2843bdefa488c10ebb6c2a148599be7c28e57c5
1 /*
2 ** 2017-01-27
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This SQLite extension implements a functions that compute SHA1 hashes.
14 ** Two SQL functions are implemented:
16 ** sha1(X)
17 ** sha1_query(Y)
19 ** The sha1(X) function computes the SHA1 hash of the input X, or NULL if
20 ** X is NULL.
22 ** The sha1_query(Y) function evalutes all queries in the SQL statements of Y
23 ** and returns a hash of their results.
25 #include "sqlite3ext.h"
26 SQLITE_EXTENSION_INIT1
27 #include <assert.h>
28 #include <string.h>
29 #include <stdarg.h>
31 /******************************************************************************
32 ** The Hash Engine
34 /* Context for the SHA1 hash */
35 typedef struct SHA1Context SHA1Context;
36 struct SHA1Context {
37 unsigned int state[5];
38 unsigned int count[2];
39 unsigned char buffer[64];
43 #if __GNUC__ && (defined(__i386__) || defined(__x86_64__))
45 * GCC by itself only generates left rotates. Use right rotates if
46 * possible to be kinder to dinky implementations with iterative rotate
47 * instructions.
49 #define SHA_ROT(op, x, k) \
50 ({ unsigned int y; asm(op " %1,%0" : "=r" (y) : "I" (k), "0" (x)); y; })
51 #define rol(x,k) SHA_ROT("roll", x, k)
52 #define ror(x,k) SHA_ROT("rorl", x, k)
54 #else
55 /* Generic C equivalent */
56 #define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r))
57 #define rol(x,k) SHA_ROT(x,k,32-(k))
58 #define ror(x,k) SHA_ROT(x,32-(k),k)
59 #endif
62 #define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \
63 |(rol(block[i],8)&0x00FF00FF))
64 #define blk0be(i) block[i]
65 #define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
66 ^block[(i+2)&15]^block[i&15],1))
69 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
71 * Rl0() for little-endian and Rb0() for big-endian. Endianness is
72 * determined at run-time.
74 #define Rl0(v,w,x,y,z,i) \
75 z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2);
76 #define Rb0(v,w,x,y,z,i) \
77 z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2);
78 #define R1(v,w,x,y,z,i) \
79 z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2);
80 #define R2(v,w,x,y,z,i) \
81 z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2);
82 #define R3(v,w,x,y,z,i) \
83 z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2);
84 #define R4(v,w,x,y,z,i) \
85 z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2);
88 * Hash a single 512-bit block. This is the core of the algorithm.
90 void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){
91 unsigned int qq[5]; /* a, b, c, d, e; */
92 static int one = 1;
93 unsigned int block[16];
94 memcpy(block, buffer, 64);
95 memcpy(qq,state,5*sizeof(unsigned int));
97 #define a qq[0]
98 #define b qq[1]
99 #define c qq[2]
100 #define d qq[3]
101 #define e qq[4]
103 /* Copy p->state[] to working vars */
105 a = state[0];
106 b = state[1];
107 c = state[2];
108 d = state[3];
109 e = state[4];
112 /* 4 rounds of 20 operations each. Loop unrolled. */
113 if( 1 == *(unsigned char*)&one ){
114 Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3);
115 Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7);
116 Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11);
117 Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15);
118 }else{
119 Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3);
120 Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7);
121 Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11);
122 Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15);
124 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
125 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
126 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
127 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
128 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
129 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
130 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
131 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
132 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
133 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
134 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
135 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
136 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
137 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
138 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
139 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
141 /* Add the working vars back into context.state[] */
142 state[0] += a;
143 state[1] += b;
144 state[2] += c;
145 state[3] += d;
146 state[4] += e;
148 #undef a
149 #undef b
150 #undef c
151 #undef d
152 #undef e
156 /* Initialize a SHA1 context */
157 static void hash_init(SHA1Context *p){
158 /* SHA1 initialization constants */
159 p->state[0] = 0x67452301;
160 p->state[1] = 0xEFCDAB89;
161 p->state[2] = 0x98BADCFE;
162 p->state[3] = 0x10325476;
163 p->state[4] = 0xC3D2E1F0;
164 p->count[0] = p->count[1] = 0;
167 /* Add new content to the SHA1 hash */
168 static void hash_step(
169 SHA1Context *p, /* Add content to this context */
170 const unsigned char *data, /* Data to be added */
171 unsigned int len /* Number of bytes in data */
173 unsigned int i, j;
175 j = p->count[0];
176 if( (p->count[0] += len << 3) < j ){
177 p->count[1] += (len>>29)+1;
179 j = (j >> 3) & 63;
180 if( (j + len) > 63 ){
181 (void)memcpy(&p->buffer[j], data, (i = 64-j));
182 SHA1Transform(p->state, p->buffer);
183 for(; i + 63 < len; i += 64){
184 SHA1Transform(p->state, &data[i]);
186 j = 0;
187 }else{
188 i = 0;
190 (void)memcpy(&p->buffer[j], &data[i], len - i);
193 /* Compute a string using sqlite3_vsnprintf() and hash it */
194 static void hash_step_vformat(
195 SHA1Context *p, /* Add content to this context */
196 const char *zFormat,
199 va_list ap;
200 int n;
201 char zBuf[50];
202 va_start(ap, zFormat);
203 sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap);
204 va_end(ap);
205 n = (int)strlen(zBuf);
206 hash_step(p, (unsigned char*)zBuf, n);
210 /* Add padding and compute the message digest. Render the
211 ** message digest as lower-case hexadecimal and put it into
212 ** zOut[]. zOut[] must be at least 41 bytes long. */
213 static void hash_finish(
214 SHA1Context *p, /* The SHA1 context to finish and render */
215 char *zOut /* Store hexadecimal hash here */
217 unsigned int i;
218 unsigned char finalcount[8];
219 unsigned char digest[20];
220 static const char zEncode[] = "0123456789abcdef";
222 for (i = 0; i < 8; i++){
223 finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)]
224 >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
226 hash_step(p, (const unsigned char *)"\200", 1);
227 while ((p->count[0] & 504) != 448){
228 hash_step(p, (const unsigned char *)"\0", 1);
230 hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */
231 for (i = 0; i < 20; i++){
232 digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
234 for(i=0; i<20; i++){
235 zOut[i*2] = zEncode[(digest[i]>>4)&0xf];
236 zOut[i*2+1] = zEncode[digest[i] & 0xf];
238 zOut[i*2]= 0;
240 /* End of the hashing logic
241 *****************************************************************************/
244 ** Implementation of the sha1(X) function.
246 ** Return a lower-case hexadecimal rendering of the SHA1 hash of the
247 ** argument X. If X is a BLOB, it is hashed as is. For all other
248 ** types of input, X is converted into a UTF-8 string and the string
249 ** is hash without the trailing 0x00 terminator. The hash of a NULL
250 ** value is NULL.
252 static void sha1Func(
253 sqlite3_context *context,
254 int argc,
255 sqlite3_value **argv
257 SHA1Context cx;
258 int eType = sqlite3_value_type(argv[0]);
259 int nByte = sqlite3_value_bytes(argv[0]);
260 char zOut[44];
262 assert( argc==1 );
263 if( eType==SQLITE_NULL ) return;
264 hash_init(&cx);
265 if( eType==SQLITE_BLOB ){
266 hash_step(&cx, sqlite3_value_blob(argv[0]), nByte);
267 }else{
268 hash_step(&cx, sqlite3_value_text(argv[0]), nByte);
270 hash_finish(&cx, zOut);
271 sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT);
275 ** Implementation of the sha1_query(SQL) function.
277 ** This function compiles and runs the SQL statement(s) given in the
278 ** argument. The results are hashed using SHA1 and that hash is returned.
280 ** The original SQL text is included as part of the hash.
282 ** The hash is not just a concatenation of the outputs. Each query
283 ** is delimited and each row and value within the query is delimited,
284 ** with all values being marked with their datatypes.
286 static void sha1QueryFunc(
287 sqlite3_context *context,
288 int argc,
289 sqlite3_value **argv
291 sqlite3 *db = sqlite3_context_db_handle(context);
292 const char *zSql = (const char*)sqlite3_value_text(argv[0]);
293 sqlite3_stmt *pStmt = 0;
294 int nCol; /* Number of columns in the result set */
295 int i; /* Loop counter */
296 int rc;
297 int n;
298 const char *z;
299 SHA1Context cx;
300 char zOut[44];
302 assert( argc==1 );
303 if( zSql==0 ) return;
304 hash_init(&cx);
305 while( zSql[0] ){
306 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql);
307 if( rc ){
308 char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s",
309 zSql, sqlite3_errmsg(db));
310 sqlite3_finalize(pStmt);
311 sqlite3_result_error(context, zMsg, -1);
312 sqlite3_free(zMsg);
313 return;
315 if( !sqlite3_stmt_readonly(pStmt) ){
316 char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt));
317 sqlite3_finalize(pStmt);
318 sqlite3_result_error(context, zMsg, -1);
319 sqlite3_free(zMsg);
320 return;
322 nCol = sqlite3_column_count(pStmt);
323 z = sqlite3_sql(pStmt);
324 n = (int)strlen(z);
325 hash_step_vformat(&cx,"S%d:",n);
326 hash_step(&cx,(unsigned char*)z,n);
328 /* Compute a hash over the result of the query */
329 while( SQLITE_ROW==sqlite3_step(pStmt) ){
330 hash_step(&cx,(const unsigned char*)"R",1);
331 for(i=0; i<nCol; i++){
332 switch( sqlite3_column_type(pStmt,i) ){
333 case SQLITE_NULL: {
334 hash_step(&cx, (const unsigned char*)"N",1);
335 break;
337 case SQLITE_INTEGER: {
338 sqlite3_uint64 u;
339 int j;
340 unsigned char x[9];
341 sqlite3_int64 v = sqlite3_column_int64(pStmt,i);
342 memcpy(&u, &v, 8);
343 for(j=8; j>=1; j--){
344 x[j] = u & 0xff;
345 u >>= 8;
347 x[0] = 'I';
348 hash_step(&cx, x, 9);
349 break;
351 case SQLITE_FLOAT: {
352 sqlite3_uint64 u;
353 int j;
354 unsigned char x[9];
355 double r = sqlite3_column_double(pStmt,i);
356 memcpy(&u, &r, 8);
357 for(j=8; j>=1; j--){
358 x[j] = u & 0xff;
359 u >>= 8;
361 x[0] = 'F';
362 hash_step(&cx,x,9);
363 break;
365 case SQLITE_TEXT: {
366 int n2 = sqlite3_column_bytes(pStmt, i);
367 const unsigned char *z2 = sqlite3_column_text(pStmt, i);
368 hash_step_vformat(&cx,"T%d:",n2);
369 hash_step(&cx, z2, n2);
370 break;
372 case SQLITE_BLOB: {
373 int n2 = sqlite3_column_bytes(pStmt, i);
374 const unsigned char *z2 = sqlite3_column_blob(pStmt, i);
375 hash_step_vformat(&cx,"B%d:",n2);
376 hash_step(&cx, z2, n2);
377 break;
382 sqlite3_finalize(pStmt);
384 hash_finish(&cx, zOut);
385 sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT);
389 #ifdef _WIN32
390 __declspec(dllexport)
391 #endif
392 int sqlite3_sha_init(
393 sqlite3 *db,
394 char **pzErrMsg,
395 const sqlite3_api_routines *pApi
397 int rc = SQLITE_OK;
398 SQLITE_EXTENSION_INIT2(pApi);
399 (void)pzErrMsg; /* Unused parameter */
400 rc = sqlite3_create_function(db, "sha1", 1, SQLITE_UTF8, 0,
401 sha1Func, 0, 0);
402 if( rc==SQLITE_OK ){
403 rc = sqlite3_create_function(db, "sha1_query", 1, SQLITE_UTF8, 0,
404 sha1QueryFunc, 0, 0);
406 return rc;