New assert() statements in the rowvalue IN expression processing.
[sqlite.git] / src / wherecode.c
blobcc2759eeaff1e1e21615909cbea195f0ec8e70ae
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
20 #include "sqliteInt.h"
21 #include "whereInt.h"
23 #ifndef SQLITE_OMIT_EXPLAIN
26 ** Return the name of the i-th column of the pIdx index.
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29 i = pIdx->aiColumn[i];
30 if( i==XN_EXPR ) return "<expr>";
31 if( i==XN_ROWID ) return "rowid";
32 return pIdx->pTable->aCol[i].zName;
36 ** This routine is a helper for explainIndexRange() below
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time. This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
43 static void explainAppendTerm(
44 StrAccum *pStr, /* The text expression being built */
45 Index *pIdx, /* Index to read column names from */
46 int nTerm, /* Number of terms */
47 int iTerm, /* Zero-based index of first term. */
48 int bAnd, /* Non-zero to append " AND " */
49 const char *zOp /* Name of the operator */
51 int i;
53 assert( nTerm>=1 );
54 if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5);
56 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
57 for(i=0; i<nTerm; i++){
58 if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
59 sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i));
61 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
63 sqlite3StrAccumAppend(pStr, zOp, 1);
65 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
66 for(i=0; i<nTerm; i++){
67 if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
68 sqlite3StrAccumAppend(pStr, "?", 1);
70 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
78 ** For example, if the query:
80 ** SELECT * FROM t1 WHERE a=1 AND b>2;
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
85 ** "a=? AND b>?"
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88 Index *pIndex = pLoop->u.btree.pIndex;
89 u16 nEq = pLoop->u.btree.nEq;
90 u16 nSkip = pLoop->nSkip;
91 int i, j;
93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94 sqlite3StrAccumAppend(pStr, " (", 2);
95 for(i=0; i<nEq; i++){
96 const char *z = explainIndexColumnName(pIndex, i);
97 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
98 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
101 j = i;
102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104 i = 1;
106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
109 sqlite3StrAccumAppend(pStr, ")", 1);
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
121 int sqlite3WhereExplainOneScan(
122 Parse *pParse, /* Parse context */
123 SrcList *pTabList, /* Table list this loop refers to */
124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
125 int iLevel, /* Value for "level" column of output */
126 int iFrom, /* Value for "from" column of output */
127 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
129 int ret = 0;
130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
131 if( pParse->explain==2 )
132 #endif
134 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
135 Vdbe *v = pParse->pVdbe; /* VM being constructed */
136 sqlite3 *db = pParse->db; /* Database handle */
137 int iId = pParse->iSelectId; /* Select id (left-most output column) */
138 int isSearch; /* True for a SEARCH. False for SCAN. */
139 WhereLoop *pLoop; /* The controlling WhereLoop object */
140 u32 flags; /* Flags that describe this loop */
141 char *zMsg; /* Text to add to EQP output */
142 StrAccum str; /* EQP output string */
143 char zBuf[100]; /* Initial space for EQP output string */
145 pLoop = pLevel->pWLoop;
146 flags = pLoop->wsFlags;
147 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
149 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
150 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
151 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
153 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
154 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
155 if( pItem->pSelect ){
156 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
157 }else{
158 sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
161 if( pItem->zAlias ){
162 sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
164 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
165 const char *zFmt = 0;
166 Index *pIdx;
168 assert( pLoop->u.btree.pIndex!=0 );
169 pIdx = pLoop->u.btree.pIndex;
170 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
171 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
172 if( isSearch ){
173 zFmt = "PRIMARY KEY";
175 }else if( flags & WHERE_PARTIALIDX ){
176 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
177 }else if( flags & WHERE_AUTO_INDEX ){
178 zFmt = "AUTOMATIC COVERING INDEX";
179 }else if( flags & WHERE_IDX_ONLY ){
180 zFmt = "COVERING INDEX %s";
181 }else{
182 zFmt = "INDEX %s";
184 if( zFmt ){
185 sqlite3StrAccumAppend(&str, " USING ", 7);
186 sqlite3XPrintf(&str, zFmt, pIdx->zName);
187 explainIndexRange(&str, pLoop);
189 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
190 const char *zRangeOp;
191 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
192 zRangeOp = "=";
193 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
194 zRangeOp = ">? AND rowid<";
195 }else if( flags&WHERE_BTM_LIMIT ){
196 zRangeOp = ">";
197 }else{
198 assert( flags&WHERE_TOP_LIMIT);
199 zRangeOp = "<";
201 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
203 #ifndef SQLITE_OMIT_VIRTUALTABLE
204 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
205 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
206 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
208 #endif
209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
210 if( pLoop->nOut>=10 ){
211 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
212 }else{
213 sqlite3StrAccumAppend(&str, " (~1 row)", 9);
215 #endif
216 zMsg = sqlite3StrAccumFinish(&str);
217 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
219 return ret;
221 #endif /* SQLITE_OMIT_EXPLAIN */
223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
225 ** Configure the VM passed as the first argument with an
226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
228 ** clause that the scan reads data from.
230 ** If argument addrExplain is not 0, it must be the address of an
231 ** OP_Explain instruction that describes the same loop.
233 void sqlite3WhereAddScanStatus(
234 Vdbe *v, /* Vdbe to add scanstatus entry to */
235 SrcList *pSrclist, /* FROM clause pLvl reads data from */
236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
237 int addrExplain /* Address of OP_Explain (or 0) */
239 const char *zObj = 0;
240 WhereLoop *pLoop = pLvl->pWLoop;
241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
242 zObj = pLoop->u.btree.pIndex->zName;
243 }else{
244 zObj = pSrclist->a[pLvl->iFrom].zName;
246 sqlite3VdbeScanStatus(
247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
250 #endif
254 ** Disable a term in the WHERE clause. Except, do not disable the term
255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
256 ** or USING clause of that join.
258 ** Consider the term t2.z='ok' in the following queries:
260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
264 ** The t2.z='ok' is disabled in the in (2) because it originates
265 ** in the ON clause. The term is disabled in (3) because it is not part
266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
268 ** Disabling a term causes that term to not be tested in the inner loop
269 ** of the join. Disabling is an optimization. When terms are satisfied
270 ** by indices, we disable them to prevent redundant tests in the inner
271 ** loop. We would get the correct results if nothing were ever disabled,
272 ** but joins might run a little slower. The trick is to disable as much
273 ** as we can without disabling too much. If we disabled in (1), we'd get
274 ** the wrong answer. See ticket #813.
276 ** If all the children of a term are disabled, then that term is also
277 ** automatically disabled. In this way, terms get disabled if derived
278 ** virtual terms are tested first. For example:
280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
281 ** \___________/ \______/ \_____/
282 ** parent child1 child2
284 ** Only the parent term was in the original WHERE clause. The child1
285 ** and child2 terms were added by the LIKE optimization. If both of
286 ** the virtual child terms are valid, then testing of the parent can be
287 ** skipped.
289 ** Usually the parent term is marked as TERM_CODED. But if the parent
290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
291 ** The TERM_LIKECOND marking indicates that the term should be coded inside
292 ** a conditional such that is only evaluated on the second pass of a
293 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
296 int nLoop = 0;
297 assert( pTerm!=0 );
298 while( (pTerm->wtFlags & TERM_CODED)==0
299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300 && (pLevel->notReady & pTerm->prereqAll)==0
302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
303 pTerm->wtFlags |= TERM_LIKECOND;
304 }else{
305 pTerm->wtFlags |= TERM_CODED;
307 if( pTerm->iParent<0 ) break;
308 pTerm = &pTerm->pWC->a[pTerm->iParent];
309 assert( pTerm!=0 );
310 pTerm->nChild--;
311 if( pTerm->nChild!=0 ) break;
312 nLoop++;
317 ** Code an OP_Affinity opcode to apply the column affinity string zAff
318 ** to the n registers starting at base.
320 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
321 ** beginning and end of zAff are ignored. If all entries in zAff are
322 ** SQLITE_AFF_BLOB, then no code gets generated.
324 ** This routine makes its own copy of zAff so that the caller is free
325 ** to modify zAff after this routine returns.
327 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
328 Vdbe *v = pParse->pVdbe;
329 if( zAff==0 ){
330 assert( pParse->db->mallocFailed );
331 return;
333 assert( v!=0 );
335 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
336 ** and end of the affinity string.
338 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
339 n--;
340 base++;
341 zAff++;
343 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
344 n--;
347 /* Code the OP_Affinity opcode if there is anything left to do. */
348 if( n>0 ){
349 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
350 sqlite3ExprCacheAffinityChange(pParse, base, n);
355 ** Expression pRight, which is the RHS of a comparison operation, is
356 ** either a vector of n elements or, if n==1, a scalar expression.
357 ** Before the comparison operation, affinity zAff is to be applied
358 ** to the pRight values. This function modifies characters within the
359 ** affinity string to SQLITE_AFF_BLOB if either:
361 ** * the comparison will be performed with no affinity, or
362 ** * the affinity change in zAff is guaranteed not to change the value.
364 static void updateRangeAffinityStr(
365 Expr *pRight, /* RHS of comparison */
366 int n, /* Number of vector elements in comparison */
367 char *zAff /* Affinity string to modify */
369 int i;
370 for(i=0; i<n; i++){
371 Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
372 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
373 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
375 zAff[i] = SQLITE_AFF_BLOB;
380 #ifdef SQLITE_DEBUG
381 /* Return true if the pSub ExprList is a subset of pMain. The terms
382 ** of pSub can be in a different order from pMain. The only requirement
383 ** is that every term in pSub must exist somewhere in pMain.
385 ** Return false if pSub contains any term that is not found in pMain.
387 static int exprListSubset(ExprList *pSub, ExprList *pMain){
388 int i, j;
389 for(i=0; i<pSub->nExpr; i++){
390 Expr *p = pSub->a[i].pExpr;
391 for(j=0; j<pMain->nExpr; j++){
392 if( sqlite3ExprCompare(0, p, pMain->a[j].pExpr, 0)==0 ) break;
394 if( j>=pMain->nExpr ) return 0;
396 return 1;
398 #endif /* SQLITE_DEBUG */
402 ** Generate code for a single equality term of the WHERE clause. An equality
403 ** term can be either X=expr or X IN (...). pTerm is the term to be
404 ** coded.
406 ** The current value for the constraint is left in a register, the index
407 ** of which is returned. An attempt is made store the result in iTarget but
408 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
409 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
410 ** some other register and it is the caller's responsibility to compensate.
412 ** For a constraint of the form X=expr, the expression is evaluated in
413 ** straight-line code. For constraints of the form X IN (...)
414 ** this routine sets up a loop that will iterate over all values of X.
416 static int codeEqualityTerm(
417 Parse *pParse, /* The parsing context */
418 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
419 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
420 int iEq, /* Index of the equality term within this level */
421 int bRev, /* True for reverse-order IN operations */
422 int iTarget /* Attempt to leave results in this register */
424 Expr *pX = pTerm->pExpr;
425 Vdbe *v = pParse->pVdbe;
426 int iReg; /* Register holding results */
428 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
429 assert( iTarget>0 );
430 if( pX->op==TK_EQ || pX->op==TK_IS ){
431 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
432 }else if( pX->op==TK_ISNULL ){
433 iReg = iTarget;
434 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
435 #ifndef SQLITE_OMIT_SUBQUERY
436 }else{
437 int eType = IN_INDEX_NOOP;
438 int iTab;
439 struct InLoop *pIn;
440 WhereLoop *pLoop = pLevel->pWLoop;
441 int i;
442 int nEq = 0;
443 int *aiMap = 0;
445 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
446 && pLoop->u.btree.pIndex!=0
447 && pLoop->u.btree.pIndex->aSortOrder[iEq]
449 testcase( iEq==0 );
450 testcase( bRev );
451 bRev = !bRev;
453 assert( pX->op==TK_IN );
454 iReg = iTarget;
456 for(i=0; i<iEq; i++){
457 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
458 disableTerm(pLevel, pTerm);
459 return iTarget;
462 for(i=iEq;i<pLoop->nLTerm; i++){
463 if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++;
466 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
467 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
468 }else{
469 Select *pSelect = pX->x.pSelect;
470 sqlite3 *db = pParse->db;
471 u16 savedDbOptFlags = db->dbOptFlags;
472 ExprList *pOrigRhs = pSelect->pEList;
473 ExprList *pOrigLhs = pX->pLeft->x.pList;
474 ExprList *pRhs = 0; /* New Select.pEList for RHS */
475 ExprList *pLhs = 0; /* New pX->pLeft vector */
477 for(i=iEq;i<pLoop->nLTerm; i++){
478 if( pLoop->aLTerm[i]->pExpr==pX ){
479 int iField = pLoop->aLTerm[i]->iField - 1;
480 Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0);
481 Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0);
483 pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs);
484 pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs);
488 /* pRhs should be a subset of pOrigRhs (though possibly in a different
489 ** order). And pLhs should be a subset of pOrigLhs. To put it
490 ** another way: Every term of pRhs should exist in pOrigRhs and
491 ** every term of pLhs should exist in pOrigLhs. */
492 assert( db->mallocFailed || exprListSubset(pRhs, pOrigRhs) );
493 assert( db->mallocFailed || exprListSubset(pLhs, pOrigLhs) );
495 if( !db->mallocFailed ){
496 Expr *pLeft = pX->pLeft;
498 if( pSelect->pOrderBy ){
499 /* If the SELECT statement has an ORDER BY clause, zero the
500 ** iOrderByCol variables. These are set to non-zero when an
501 ** ORDER BY term exactly matches one of the terms of the
502 ** result-set. Since the result-set of the SELECT statement may
503 ** have been modified or reordered, these variables are no longer
504 ** set correctly. Since setting them is just an optimization,
505 ** it's easiest just to zero them here. */
506 ExprList *pOrderBy = pSelect->pOrderBy;
507 for(i=0; i<pOrderBy->nExpr; i++){
508 pOrderBy->a[i].u.x.iOrderByCol = 0;
512 /* Take care here not to generate a TK_VECTOR containing only a
513 ** single value. Since the parser never creates such a vector, some
514 ** of the subroutines do not handle this case. */
515 if( pLhs->nExpr==1 ){
516 pX->pLeft = pLhs->a[0].pExpr;
517 }else{
518 pLeft->x.pList = pLhs;
519 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq);
520 testcase( aiMap==0 );
522 pSelect->pEList = pRhs;
523 db->dbOptFlags |= SQLITE_QueryFlattener;
524 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
525 db->dbOptFlags = savedDbOptFlags;
526 testcase( aiMap!=0 && aiMap[0]!=0 );
527 pSelect->pEList = pOrigRhs;
528 pLeft->x.pList = pOrigLhs;
529 pX->pLeft = pLeft;
531 sqlite3ExprListDelete(pParse->db, pLhs);
532 sqlite3ExprListDelete(pParse->db, pRhs);
535 if( eType==IN_INDEX_INDEX_DESC ){
536 testcase( bRev );
537 bRev = !bRev;
539 iTab = pX->iTable;
540 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
541 VdbeCoverageIf(v, bRev);
542 VdbeCoverageIf(v, !bRev);
543 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
545 pLoop->wsFlags |= WHERE_IN_ABLE;
546 if( pLevel->u.in.nIn==0 ){
547 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
550 i = pLevel->u.in.nIn;
551 pLevel->u.in.nIn += nEq;
552 pLevel->u.in.aInLoop =
553 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
554 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
555 pIn = pLevel->u.in.aInLoop;
556 if( pIn ){
557 int iMap = 0; /* Index in aiMap[] */
558 pIn += i;
559 for(i=iEq;i<pLoop->nLTerm; i++){
560 if( pLoop->aLTerm[i]->pExpr==pX ){
561 int iOut = iReg + i - iEq;
562 if( eType==IN_INDEX_ROWID ){
563 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */
564 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
565 }else{
566 int iCol = aiMap ? aiMap[iMap++] : 0;
567 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
569 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
570 if( i==iEq ){
571 pIn->iCur = iTab;
572 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
573 }else{
574 pIn->eEndLoopOp = OP_Noop;
576 pIn++;
579 }else{
580 pLevel->u.in.nIn = 0;
582 sqlite3DbFree(pParse->db, aiMap);
583 #endif
585 disableTerm(pLevel, pTerm);
586 return iReg;
590 ** Generate code that will evaluate all == and IN constraints for an
591 ** index scan.
593 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
594 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
595 ** The index has as many as three equality constraints, but in this
596 ** example, the third "c" value is an inequality. So only two
597 ** constraints are coded. This routine will generate code to evaluate
598 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
599 ** in consecutive registers and the index of the first register is returned.
601 ** In the example above nEq==2. But this subroutine works for any value
602 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
603 ** The only thing it does is allocate the pLevel->iMem memory cell and
604 ** compute the affinity string.
606 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
607 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
608 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
609 ** occurs after the nEq quality constraints.
611 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
612 ** the index of the first memory cell in that range. The code that
613 ** calls this routine will use that memory range to store keys for
614 ** start and termination conditions of the loop.
615 ** key value of the loop. If one or more IN operators appear, then
616 ** this routine allocates an additional nEq memory cells for internal
617 ** use.
619 ** Before returning, *pzAff is set to point to a buffer containing a
620 ** copy of the column affinity string of the index allocated using
621 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
622 ** with equality constraints that use BLOB or NONE affinity are set to
623 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
625 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
626 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
628 ** In the example above, the index on t1(a) has TEXT affinity. But since
629 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
630 ** no conversion should be attempted before using a t2.b value as part of
631 ** a key to search the index. Hence the first byte in the returned affinity
632 ** string in this example would be set to SQLITE_AFF_BLOB.
634 static int codeAllEqualityTerms(
635 Parse *pParse, /* Parsing context */
636 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
637 int bRev, /* Reverse the order of IN operators */
638 int nExtraReg, /* Number of extra registers to allocate */
639 char **pzAff /* OUT: Set to point to affinity string */
641 u16 nEq; /* The number of == or IN constraints to code */
642 u16 nSkip; /* Number of left-most columns to skip */
643 Vdbe *v = pParse->pVdbe; /* The vm under construction */
644 Index *pIdx; /* The index being used for this loop */
645 WhereTerm *pTerm; /* A single constraint term */
646 WhereLoop *pLoop; /* The WhereLoop object */
647 int j; /* Loop counter */
648 int regBase; /* Base register */
649 int nReg; /* Number of registers to allocate */
650 char *zAff; /* Affinity string to return */
652 /* This module is only called on query plans that use an index. */
653 pLoop = pLevel->pWLoop;
654 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
655 nEq = pLoop->u.btree.nEq;
656 nSkip = pLoop->nSkip;
657 pIdx = pLoop->u.btree.pIndex;
658 assert( pIdx!=0 );
660 /* Figure out how many memory cells we will need then allocate them.
662 regBase = pParse->nMem + 1;
663 nReg = pLoop->u.btree.nEq + nExtraReg;
664 pParse->nMem += nReg;
666 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
667 assert( zAff!=0 || pParse->db->mallocFailed );
669 if( nSkip ){
670 int iIdxCur = pLevel->iIdxCur;
671 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
672 VdbeCoverageIf(v, bRev==0);
673 VdbeCoverageIf(v, bRev!=0);
674 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
675 j = sqlite3VdbeAddOp0(v, OP_Goto);
676 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
677 iIdxCur, 0, regBase, nSkip);
678 VdbeCoverageIf(v, bRev==0);
679 VdbeCoverageIf(v, bRev!=0);
680 sqlite3VdbeJumpHere(v, j);
681 for(j=0; j<nSkip; j++){
682 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
683 testcase( pIdx->aiColumn[j]==XN_EXPR );
684 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
688 /* Evaluate the equality constraints
690 assert( zAff==0 || (int)strlen(zAff)>=nEq );
691 for(j=nSkip; j<nEq; j++){
692 int r1;
693 pTerm = pLoop->aLTerm[j];
694 assert( pTerm!=0 );
695 /* The following testcase is true for indices with redundant columns.
696 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
697 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
698 testcase( pTerm->wtFlags & TERM_VIRTUAL );
699 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
700 if( r1!=regBase+j ){
701 if( nReg==1 ){
702 sqlite3ReleaseTempReg(pParse, regBase);
703 regBase = r1;
704 }else{
705 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
708 if( pTerm->eOperator & WO_IN ){
709 if( pTerm->pExpr->flags & EP_xIsSelect ){
710 /* No affinity ever needs to be (or should be) applied to a value
711 ** from the RHS of an "? IN (SELECT ...)" expression. The
712 ** sqlite3FindInIndex() routine has already ensured that the
713 ** affinity of the comparison has been applied to the value. */
714 if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
716 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
717 Expr *pRight = pTerm->pExpr->pRight;
718 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
719 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
720 VdbeCoverage(v);
722 if( zAff ){
723 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
724 zAff[j] = SQLITE_AFF_BLOB;
726 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
727 zAff[j] = SQLITE_AFF_BLOB;
732 *pzAff = zAff;
733 return regBase;
736 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
738 ** If the most recently coded instruction is a constant range constraint
739 ** (a string literal) that originated from the LIKE optimization, then
740 ** set P3 and P5 on the OP_String opcode so that the string will be cast
741 ** to a BLOB at appropriate times.
743 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
744 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
745 ** scan loop run twice, once for strings and a second time for BLOBs.
746 ** The OP_String opcodes on the second pass convert the upper and lower
747 ** bound string constants to blobs. This routine makes the necessary changes
748 ** to the OP_String opcodes for that to happen.
750 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
751 ** only the one pass through the string space is required, so this routine
752 ** becomes a no-op.
754 static void whereLikeOptimizationStringFixup(
755 Vdbe *v, /* prepared statement under construction */
756 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
757 WhereTerm *pTerm /* The upper or lower bound just coded */
759 if( pTerm->wtFlags & TERM_LIKEOPT ){
760 VdbeOp *pOp;
761 assert( pLevel->iLikeRepCntr>0 );
762 pOp = sqlite3VdbeGetOp(v, -1);
763 assert( pOp!=0 );
764 assert( pOp->opcode==OP_String8
765 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
766 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
767 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
770 #else
771 # define whereLikeOptimizationStringFixup(A,B,C)
772 #endif
774 #ifdef SQLITE_ENABLE_CURSOR_HINTS
776 ** Information is passed from codeCursorHint() down to individual nodes of
777 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
778 ** structure.
780 struct CCurHint {
781 int iTabCur; /* Cursor for the main table */
782 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
783 Index *pIdx; /* The index used to access the table */
787 ** This function is called for every node of an expression that is a candidate
788 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
789 ** the table CCurHint.iTabCur, verify that the same column can be
790 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
792 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
793 struct CCurHint *pHint = pWalker->u.pCCurHint;
794 assert( pHint->pIdx!=0 );
795 if( pExpr->op==TK_COLUMN
796 && pExpr->iTable==pHint->iTabCur
797 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
799 pWalker->eCode = 1;
801 return WRC_Continue;
805 ** Test whether or not expression pExpr, which was part of a WHERE clause,
806 ** should be included in the cursor-hint for a table that is on the rhs
807 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
808 ** expression is not suitable.
810 ** An expression is unsuitable if it might evaluate to non NULL even if
811 ** a TK_COLUMN node that does affect the value of the expression is set
812 ** to NULL. For example:
814 ** col IS NULL
815 ** col IS NOT NULL
816 ** coalesce(col, 1)
817 ** CASE WHEN col THEN 0 ELSE 1 END
819 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
820 if( pExpr->op==TK_IS
821 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
822 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
824 pWalker->eCode = 1;
825 }else if( pExpr->op==TK_FUNCTION ){
826 int d1;
827 char d2[4];
828 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
829 pWalker->eCode = 1;
833 return WRC_Continue;
838 ** This function is called on every node of an expression tree used as an
839 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
840 ** that accesses any table other than the one identified by
841 ** CCurHint.iTabCur, then do the following:
843 ** 1) allocate a register and code an OP_Column instruction to read
844 ** the specified column into the new register, and
846 ** 2) transform the expression node to a TK_REGISTER node that reads
847 ** from the newly populated register.
849 ** Also, if the node is a TK_COLUMN that does access the table idenified
850 ** by pCCurHint.iTabCur, and an index is being used (which we will
851 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
852 ** an access of the index rather than the original table.
854 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
855 int rc = WRC_Continue;
856 struct CCurHint *pHint = pWalker->u.pCCurHint;
857 if( pExpr->op==TK_COLUMN ){
858 if( pExpr->iTable!=pHint->iTabCur ){
859 Vdbe *v = pWalker->pParse->pVdbe;
860 int reg = ++pWalker->pParse->nMem; /* Register for column value */
861 sqlite3ExprCodeGetColumnOfTable(
862 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
864 pExpr->op = TK_REGISTER;
865 pExpr->iTable = reg;
866 }else if( pHint->pIdx!=0 ){
867 pExpr->iTable = pHint->iIdxCur;
868 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
869 assert( pExpr->iColumn>=0 );
871 }else if( pExpr->op==TK_AGG_FUNCTION ){
872 /* An aggregate function in the WHERE clause of a query means this must
873 ** be a correlated sub-query, and expression pExpr is an aggregate from
874 ** the parent context. Do not walk the function arguments in this case.
876 ** todo: It should be possible to replace this node with a TK_REGISTER
877 ** expression, as the result of the expression must be stored in a
878 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
879 rc = WRC_Prune;
881 return rc;
885 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
887 static void codeCursorHint(
888 struct SrcList_item *pTabItem, /* FROM clause item */
889 WhereInfo *pWInfo, /* The where clause */
890 WhereLevel *pLevel, /* Which loop to provide hints for */
891 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
893 Parse *pParse = pWInfo->pParse;
894 sqlite3 *db = pParse->db;
895 Vdbe *v = pParse->pVdbe;
896 Expr *pExpr = 0;
897 WhereLoop *pLoop = pLevel->pWLoop;
898 int iCur;
899 WhereClause *pWC;
900 WhereTerm *pTerm;
901 int i, j;
902 struct CCurHint sHint;
903 Walker sWalker;
905 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
906 iCur = pLevel->iTabCur;
907 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
908 sHint.iTabCur = iCur;
909 sHint.iIdxCur = pLevel->iIdxCur;
910 sHint.pIdx = pLoop->u.btree.pIndex;
911 memset(&sWalker, 0, sizeof(sWalker));
912 sWalker.pParse = pParse;
913 sWalker.u.pCCurHint = &sHint;
914 pWC = &pWInfo->sWC;
915 for(i=0; i<pWC->nTerm; i++){
916 pTerm = &pWC->a[i];
917 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
918 if( pTerm->prereqAll & pLevel->notReady ) continue;
920 /* Any terms specified as part of the ON(...) clause for any LEFT
921 ** JOIN for which the current table is not the rhs are omitted
922 ** from the cursor-hint.
924 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
925 ** that were specified as part of the WHERE clause must be excluded.
926 ** This is to address the following:
928 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
930 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
931 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
932 ** pushed down to the cursor, this row is filtered out, causing
933 ** SQLite to synthesize a row of NULL values. Which does match the
934 ** WHERE clause, and so the query returns a row. Which is incorrect.
936 ** For the same reason, WHERE terms such as:
938 ** WHERE 1 = (t2.c IS NULL)
940 ** are also excluded. See codeCursorHintIsOrFunction() for details.
942 if( pTabItem->fg.jointype & JT_LEFT ){
943 Expr *pExpr = pTerm->pExpr;
944 if( !ExprHasProperty(pExpr, EP_FromJoin)
945 || pExpr->iRightJoinTable!=pTabItem->iCursor
947 sWalker.eCode = 0;
948 sWalker.xExprCallback = codeCursorHintIsOrFunction;
949 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
950 if( sWalker.eCode ) continue;
952 }else{
953 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
956 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
957 ** the cursor. These terms are not needed as hints for a pure range
958 ** scan (that has no == terms) so omit them. */
959 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
960 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
961 if( j<pLoop->nLTerm ) continue;
964 /* No subqueries or non-deterministic functions allowed */
965 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
967 /* For an index scan, make sure referenced columns are actually in
968 ** the index. */
969 if( sHint.pIdx!=0 ){
970 sWalker.eCode = 0;
971 sWalker.xExprCallback = codeCursorHintCheckExpr;
972 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
973 if( sWalker.eCode ) continue;
976 /* If we survive all prior tests, that means this term is worth hinting */
977 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
979 if( pExpr!=0 ){
980 sWalker.xExprCallback = codeCursorHintFixExpr;
981 sqlite3WalkExpr(&sWalker, pExpr);
982 sqlite3VdbeAddOp4(v, OP_CursorHint,
983 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
984 (const char*)pExpr, P4_EXPR);
987 #else
988 # define codeCursorHint(A,B,C,D) /* No-op */
989 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
992 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
993 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
994 ** function generates code to do a deferred seek of cursor iCur to the
995 ** rowid stored in register iRowid.
997 ** Normally, this is just:
999 ** OP_DeferredSeek $iCur $iRowid
1001 ** However, if the scan currently being coded is a branch of an OR-loop and
1002 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1003 ** is set to iIdxCur and P4 is set to point to an array of integers
1004 ** containing one entry for each column of the table cursor iCur is open
1005 ** on. For each table column, if the column is the i'th column of the
1006 ** index, then the corresponding array entry is set to (i+1). If the column
1007 ** does not appear in the index at all, the array entry is set to 0.
1009 static void codeDeferredSeek(
1010 WhereInfo *pWInfo, /* Where clause context */
1011 Index *pIdx, /* Index scan is using */
1012 int iCur, /* Cursor for IPK b-tree */
1013 int iIdxCur /* Index cursor */
1015 Parse *pParse = pWInfo->pParse; /* Parse context */
1016 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
1018 assert( iIdxCur>0 );
1019 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1021 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1022 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1023 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1025 int i;
1026 Table *pTab = pIdx->pTable;
1027 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
1028 if( ai ){
1029 ai[0] = pTab->nCol;
1030 for(i=0; i<pIdx->nColumn-1; i++){
1031 assert( pIdx->aiColumn[i]<pTab->nCol );
1032 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
1034 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1040 ** If the expression passed as the second argument is a vector, generate
1041 ** code to write the first nReg elements of the vector into an array
1042 ** of registers starting with iReg.
1044 ** If the expression is not a vector, then nReg must be passed 1. In
1045 ** this case, generate code to evaluate the expression and leave the
1046 ** result in register iReg.
1048 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1049 assert( nReg>0 );
1050 if( p && sqlite3ExprIsVector(p) ){
1051 #ifndef SQLITE_OMIT_SUBQUERY
1052 if( (p->flags & EP_xIsSelect) ){
1053 Vdbe *v = pParse->pVdbe;
1054 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
1055 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1056 }else
1057 #endif
1059 int i;
1060 ExprList *pList = p->x.pList;
1061 assert( nReg<=pList->nExpr );
1062 for(i=0; i<nReg; i++){
1063 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1066 }else{
1067 assert( nReg==1 );
1068 sqlite3ExprCode(pParse, p, iReg);
1072 /* An instance of the IdxExprTrans object carries information about a
1073 ** mapping from an expression on table columns into a column in an index
1074 ** down through the Walker.
1076 typedef struct IdxExprTrans {
1077 Expr *pIdxExpr; /* The index expression */
1078 int iTabCur; /* The cursor of the corresponding table */
1079 int iIdxCur; /* The cursor for the index */
1080 int iIdxCol; /* The column for the index */
1081 } IdxExprTrans;
1083 /* The walker node callback used to transform matching expressions into
1084 ** a reference to an index column for an index on an expression.
1086 ** If pExpr matches, then transform it into a reference to the index column
1087 ** that contains the value of pExpr.
1089 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1090 IdxExprTrans *pX = p->u.pIdxTrans;
1091 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1092 pExpr->op = TK_COLUMN;
1093 pExpr->iTable = pX->iIdxCur;
1094 pExpr->iColumn = pX->iIdxCol;
1095 pExpr->pTab = 0;
1096 return WRC_Prune;
1097 }else{
1098 return WRC_Continue;
1103 ** For an indexes on expression X, locate every instance of expression X
1104 ** in pExpr and change that subexpression into a reference to the appropriate
1105 ** column of the index.
1107 static void whereIndexExprTrans(
1108 Index *pIdx, /* The Index */
1109 int iTabCur, /* Cursor of the table that is being indexed */
1110 int iIdxCur, /* Cursor of the index itself */
1111 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1113 int iIdxCol; /* Column number of the index */
1114 ExprList *aColExpr; /* Expressions that are indexed */
1115 Walker w;
1116 IdxExprTrans x;
1117 aColExpr = pIdx->aColExpr;
1118 if( aColExpr==0 ) return; /* Not an index on expressions */
1119 memset(&w, 0, sizeof(w));
1120 w.xExprCallback = whereIndexExprTransNode;
1121 w.u.pIdxTrans = &x;
1122 x.iTabCur = iTabCur;
1123 x.iIdxCur = iIdxCur;
1124 for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){
1125 if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue;
1126 assert( aColExpr->a[iIdxCol].pExpr!=0 );
1127 x.iIdxCol = iIdxCol;
1128 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1129 sqlite3WalkExpr(&w, pWInfo->pWhere);
1130 sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1131 sqlite3WalkExprList(&w, pWInfo->pResultSet);
1136 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1137 ** implementation described by pWInfo.
1139 Bitmask sqlite3WhereCodeOneLoopStart(
1140 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1141 int iLevel, /* Which level of pWInfo->a[] should be coded */
1142 Bitmask notReady /* Which tables are currently available */
1144 int j, k; /* Loop counters */
1145 int iCur; /* The VDBE cursor for the table */
1146 int addrNxt; /* Where to jump to continue with the next IN case */
1147 int omitTable; /* True if we use the index only */
1148 int bRev; /* True if we need to scan in reverse order */
1149 WhereLevel *pLevel; /* The where level to be coded */
1150 WhereLoop *pLoop; /* The WhereLoop object being coded */
1151 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
1152 WhereTerm *pTerm; /* A WHERE clause term */
1153 Parse *pParse; /* Parsing context */
1154 sqlite3 *db; /* Database connection */
1155 Vdbe *v; /* The prepared stmt under constructions */
1156 struct SrcList_item *pTabItem; /* FROM clause term being coded */
1157 int addrBrk; /* Jump here to break out of the loop */
1158 int addrHalt; /* addrBrk for the outermost loop */
1159 int addrCont; /* Jump here to continue with next cycle */
1160 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
1161 int iReleaseReg = 0; /* Temp register to free before returning */
1162 Index *pIdx = 0; /* Index used by loop (if any) */
1163 int iLoop; /* Iteration of constraint generator loop */
1165 pParse = pWInfo->pParse;
1166 v = pParse->pVdbe;
1167 pWC = &pWInfo->sWC;
1168 db = pParse->db;
1169 pLevel = &pWInfo->a[iLevel];
1170 pLoop = pLevel->pWLoop;
1171 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1172 iCur = pTabItem->iCursor;
1173 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1174 bRev = (pWInfo->revMask>>iLevel)&1;
1175 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1176 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1177 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1179 /* Create labels for the "break" and "continue" instructions
1180 ** for the current loop. Jump to addrBrk to break out of a loop.
1181 ** Jump to cont to go immediately to the next iteration of the
1182 ** loop.
1184 ** When there is an IN operator, we also have a "addrNxt" label that
1185 ** means to continue with the next IN value combination. When
1186 ** there are no IN operators in the constraints, the "addrNxt" label
1187 ** is the same as "addrBrk".
1189 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
1190 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
1192 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1193 ** initialize a memory cell that records if this table matches any
1194 ** row of the left table of the join.
1196 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1197 pLevel->iLeftJoin = ++pParse->nMem;
1198 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1199 VdbeComment((v, "init LEFT JOIN no-match flag"));
1202 /* Compute a safe address to jump to if we discover that the table for
1203 ** this loop is empty and can never contribute content. */
1204 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1205 addrHalt = pWInfo->a[j].addrBrk;
1207 /* Special case of a FROM clause subquery implemented as a co-routine */
1208 if( pTabItem->fg.viaCoroutine ){
1209 int regYield = pTabItem->regReturn;
1210 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1211 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1212 VdbeCoverage(v);
1213 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
1214 pLevel->op = OP_Goto;
1215 }else
1217 #ifndef SQLITE_OMIT_VIRTUALTABLE
1218 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1219 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1220 ** to access the data.
1222 int iReg; /* P3 Value for OP_VFilter */
1223 int addrNotFound;
1224 int nConstraint = pLoop->nLTerm;
1225 int iIn; /* Counter for IN constraints */
1227 sqlite3ExprCachePush(pParse);
1228 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1229 addrNotFound = pLevel->addrBrk;
1230 for(j=0; j<nConstraint; j++){
1231 int iTarget = iReg+j+2;
1232 pTerm = pLoop->aLTerm[j];
1233 if( NEVER(pTerm==0) ) continue;
1234 if( pTerm->eOperator & WO_IN ){
1235 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1236 addrNotFound = pLevel->addrNxt;
1237 }else{
1238 Expr *pRight = pTerm->pExpr->pRight;
1239 codeExprOrVector(pParse, pRight, iTarget, 1);
1242 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1243 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1244 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1245 pLoop->u.vtab.idxStr,
1246 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1247 VdbeCoverage(v);
1248 pLoop->u.vtab.needFree = 0;
1249 pLevel->p1 = iCur;
1250 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1251 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1252 iIn = pLevel->u.in.nIn;
1253 for(j=nConstraint-1; j>=0; j--){
1254 pTerm = pLoop->aLTerm[j];
1255 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1256 disableTerm(pLevel, pTerm);
1257 }else if( (pTerm->eOperator & WO_IN)!=0 ){
1258 Expr *pCompare; /* The comparison operator */
1259 Expr *pRight; /* RHS of the comparison */
1260 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
1262 /* Reload the constraint value into reg[iReg+j+2]. The same value
1263 ** was loaded into the same register prior to the OP_VFilter, but
1264 ** the xFilter implementation might have changed the datatype or
1265 ** encoding of the value in the register, so it *must* be reloaded. */
1266 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1267 if( !db->mallocFailed ){
1268 assert( iIn>0 );
1269 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1270 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1271 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1272 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1273 testcase( pOp->opcode==OP_Rowid );
1274 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1277 /* Generate code that will continue to the next row if
1278 ** the IN constraint is not satisfied */
1279 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1280 assert( pCompare!=0 || db->mallocFailed );
1281 if( pCompare ){
1282 pCompare->pLeft = pTerm->pExpr->pLeft;
1283 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1284 if( pRight ){
1285 pRight->iTable = iReg+j+2;
1286 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1288 pCompare->pLeft = 0;
1289 sqlite3ExprDelete(db, pCompare);
1293 /* These registers need to be preserved in case there is an IN operator
1294 ** loop. So we could deallocate the registers here (and potentially
1295 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1296 ** simpler and safer to simply not reuse the registers.
1298 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1300 sqlite3ExprCachePop(pParse);
1301 }else
1302 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1304 if( (pLoop->wsFlags & WHERE_IPK)!=0
1305 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1307 /* Case 2: We can directly reference a single row using an
1308 ** equality comparison against the ROWID field. Or
1309 ** we reference multiple rows using a "rowid IN (...)"
1310 ** construct.
1312 assert( pLoop->u.btree.nEq==1 );
1313 pTerm = pLoop->aLTerm[0];
1314 assert( pTerm!=0 );
1315 assert( pTerm->pExpr!=0 );
1316 assert( omitTable==0 );
1317 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1318 iReleaseReg = ++pParse->nMem;
1319 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1320 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1321 addrNxt = pLevel->addrNxt;
1322 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1323 VdbeCoverage(v);
1324 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
1325 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1326 VdbeComment((v, "pk"));
1327 pLevel->op = OP_Noop;
1328 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1329 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1331 /* Case 3: We have an inequality comparison against the ROWID field.
1333 int testOp = OP_Noop;
1334 int start;
1335 int memEndValue = 0;
1336 WhereTerm *pStart, *pEnd;
1338 assert( omitTable==0 );
1339 j = 0;
1340 pStart = pEnd = 0;
1341 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1342 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1343 assert( pStart!=0 || pEnd!=0 );
1344 if( bRev ){
1345 pTerm = pStart;
1346 pStart = pEnd;
1347 pEnd = pTerm;
1349 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1350 if( pStart ){
1351 Expr *pX; /* The expression that defines the start bound */
1352 int r1, rTemp; /* Registers for holding the start boundary */
1353 int op; /* Cursor seek operation */
1355 /* The following constant maps TK_xx codes into corresponding
1356 ** seek opcodes. It depends on a particular ordering of TK_xx
1358 const u8 aMoveOp[] = {
1359 /* TK_GT */ OP_SeekGT,
1360 /* TK_LE */ OP_SeekLE,
1361 /* TK_LT */ OP_SeekLT,
1362 /* TK_GE */ OP_SeekGE
1364 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
1365 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
1366 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
1368 assert( (pStart->wtFlags & TERM_VNULL)==0 );
1369 testcase( pStart->wtFlags & TERM_VIRTUAL );
1370 pX = pStart->pExpr;
1371 assert( pX!=0 );
1372 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1373 if( sqlite3ExprIsVector(pX->pRight) ){
1374 r1 = rTemp = sqlite3GetTempReg(pParse);
1375 codeExprOrVector(pParse, pX->pRight, r1, 1);
1376 op = aMoveOp[(pX->op - TK_GT) | 0x0001];
1377 }else{
1378 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1379 disableTerm(pLevel, pStart);
1380 op = aMoveOp[(pX->op - TK_GT)];
1382 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1383 VdbeComment((v, "pk"));
1384 VdbeCoverageIf(v, pX->op==TK_GT);
1385 VdbeCoverageIf(v, pX->op==TK_LE);
1386 VdbeCoverageIf(v, pX->op==TK_LT);
1387 VdbeCoverageIf(v, pX->op==TK_GE);
1388 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
1389 sqlite3ReleaseTempReg(pParse, rTemp);
1390 }else{
1391 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1392 VdbeCoverageIf(v, bRev==0);
1393 VdbeCoverageIf(v, bRev!=0);
1395 if( pEnd ){
1396 Expr *pX;
1397 pX = pEnd->pExpr;
1398 assert( pX!=0 );
1399 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1400 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1401 testcase( pEnd->wtFlags & TERM_VIRTUAL );
1402 memEndValue = ++pParse->nMem;
1403 codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1404 if( 0==sqlite3ExprIsVector(pX->pRight)
1405 && (pX->op==TK_LT || pX->op==TK_GT)
1407 testOp = bRev ? OP_Le : OP_Ge;
1408 }else{
1409 testOp = bRev ? OP_Lt : OP_Gt;
1411 if( 0==sqlite3ExprIsVector(pX->pRight) ){
1412 disableTerm(pLevel, pEnd);
1415 start = sqlite3VdbeCurrentAddr(v);
1416 pLevel->op = bRev ? OP_Prev : OP_Next;
1417 pLevel->p1 = iCur;
1418 pLevel->p2 = start;
1419 assert( pLevel->p5==0 );
1420 if( testOp!=OP_Noop ){
1421 iRowidReg = ++pParse->nMem;
1422 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1423 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1424 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1425 VdbeCoverageIf(v, testOp==OP_Le);
1426 VdbeCoverageIf(v, testOp==OP_Lt);
1427 VdbeCoverageIf(v, testOp==OP_Ge);
1428 VdbeCoverageIf(v, testOp==OP_Gt);
1429 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1431 }else if( pLoop->wsFlags & WHERE_INDEXED ){
1432 /* Case 4: A scan using an index.
1434 ** The WHERE clause may contain zero or more equality
1435 ** terms ("==" or "IN" operators) that refer to the N
1436 ** left-most columns of the index. It may also contain
1437 ** inequality constraints (>, <, >= or <=) on the indexed
1438 ** column that immediately follows the N equalities. Only
1439 ** the right-most column can be an inequality - the rest must
1440 ** use the "==" and "IN" operators. For example, if the
1441 ** index is on (x,y,z), then the following clauses are all
1442 ** optimized:
1444 ** x=5
1445 ** x=5 AND y=10
1446 ** x=5 AND y<10
1447 ** x=5 AND y>5 AND y<10
1448 ** x=5 AND y=5 AND z<=10
1450 ** The z<10 term of the following cannot be used, only
1451 ** the x=5 term:
1453 ** x=5 AND z<10
1455 ** N may be zero if there are inequality constraints.
1456 ** If there are no inequality constraints, then N is at
1457 ** least one.
1459 ** This case is also used when there are no WHERE clause
1460 ** constraints but an index is selected anyway, in order
1461 ** to force the output order to conform to an ORDER BY.
1463 static const u8 aStartOp[] = {
1466 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1467 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1468 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1469 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1470 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1471 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1473 static const u8 aEndOp[] = {
1474 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1475 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1476 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1477 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1479 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1480 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
1481 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
1482 int regBase; /* Base register holding constraint values */
1483 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1484 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1485 int startEq; /* True if range start uses ==, >= or <= */
1486 int endEq; /* True if range end uses ==, >= or <= */
1487 int start_constraints; /* Start of range is constrained */
1488 int nConstraint; /* Number of constraint terms */
1489 int iIdxCur; /* The VDBE cursor for the index */
1490 int nExtraReg = 0; /* Number of extra registers needed */
1491 int op; /* Instruction opcode */
1492 char *zStartAff; /* Affinity for start of range constraint */
1493 char *zEndAff = 0; /* Affinity for end of range constraint */
1494 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1495 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1497 pIdx = pLoop->u.btree.pIndex;
1498 iIdxCur = pLevel->iIdxCur;
1499 assert( nEq>=pLoop->nSkip );
1501 /* If this loop satisfies a sort order (pOrderBy) request that
1502 ** was passed to this function to implement a "SELECT min(x) ..."
1503 ** query, then the caller will only allow the loop to run for
1504 ** a single iteration. This means that the first row returned
1505 ** should not have a NULL value stored in 'x'. If column 'x' is
1506 ** the first one after the nEq equality constraints in the index,
1507 ** this requires some special handling.
1509 assert( pWInfo->pOrderBy==0
1510 || pWInfo->pOrderBy->nExpr==1
1511 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1512 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1513 && pWInfo->nOBSat>0
1514 && (pIdx->nKeyCol>nEq)
1516 assert( pLoop->nSkip==0 );
1517 bSeekPastNull = 1;
1518 nExtraReg = 1;
1521 /* Find any inequality constraint terms for the start and end
1522 ** of the range.
1524 j = nEq;
1525 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1526 pRangeStart = pLoop->aLTerm[j++];
1527 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1528 /* Like optimization range constraints always occur in pairs */
1529 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1530 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1532 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1533 pRangeEnd = pLoop->aLTerm[j++];
1534 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1535 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1536 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1537 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1538 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1539 pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1540 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1541 VdbeComment((v, "LIKE loop counter"));
1542 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1543 /* iLikeRepCntr actually stores 2x the counter register number. The
1544 ** bottom bit indicates whether the search order is ASC or DESC. */
1545 testcase( bRev );
1546 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1547 assert( (bRev & ~1)==0 );
1548 pLevel->iLikeRepCntr <<=1;
1549 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1551 #endif
1552 if( pRangeStart==0 ){
1553 j = pIdx->aiColumn[nEq];
1554 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1555 bSeekPastNull = 1;
1559 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1561 /* If we are doing a reverse order scan on an ascending index, or
1562 ** a forward order scan on a descending index, interchange the
1563 ** start and end terms (pRangeStart and pRangeEnd).
1565 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1566 || (bRev && pIdx->nKeyCol==nEq)
1568 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1569 SWAP(u8, bSeekPastNull, bStopAtNull);
1570 SWAP(u8, nBtm, nTop);
1573 /* Generate code to evaluate all constraint terms using == or IN
1574 ** and store the values of those terms in an array of registers
1575 ** starting at regBase.
1577 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1578 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1579 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1580 if( zStartAff && nTop ){
1581 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1583 addrNxt = pLevel->addrNxt;
1585 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1586 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1587 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1588 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1589 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1590 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1591 start_constraints = pRangeStart || nEq>0;
1593 /* Seek the index cursor to the start of the range. */
1594 nConstraint = nEq;
1595 if( pRangeStart ){
1596 Expr *pRight = pRangeStart->pExpr->pRight;
1597 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1598 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1599 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1600 && sqlite3ExprCanBeNull(pRight)
1602 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1603 VdbeCoverage(v);
1605 if( zStartAff ){
1606 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1608 nConstraint += nBtm;
1609 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1610 if( sqlite3ExprIsVector(pRight)==0 ){
1611 disableTerm(pLevel, pRangeStart);
1612 }else{
1613 startEq = 1;
1615 bSeekPastNull = 0;
1616 }else if( bSeekPastNull ){
1617 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1618 nConstraint++;
1619 startEq = 0;
1620 start_constraints = 1;
1622 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1623 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1624 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1625 ** above has already left the cursor sitting on the correct row,
1626 ** so no further seeking is needed */
1627 }else{
1628 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1629 assert( op!=0 );
1630 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1631 VdbeCoverage(v);
1632 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1633 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1634 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1635 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1636 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1637 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1640 /* Load the value for the inequality constraint at the end of the
1641 ** range (if any).
1643 nConstraint = nEq;
1644 if( pRangeEnd ){
1645 Expr *pRight = pRangeEnd->pExpr->pRight;
1646 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1647 codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1648 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1649 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1650 && sqlite3ExprCanBeNull(pRight)
1652 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1653 VdbeCoverage(v);
1655 if( zEndAff ){
1656 updateRangeAffinityStr(pRight, nTop, zEndAff);
1657 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1658 }else{
1659 assert( pParse->db->mallocFailed );
1661 nConstraint += nTop;
1662 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1664 if( sqlite3ExprIsVector(pRight)==0 ){
1665 disableTerm(pLevel, pRangeEnd);
1666 }else{
1667 endEq = 1;
1669 }else if( bStopAtNull ){
1670 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1671 endEq = 0;
1672 nConstraint++;
1674 sqlite3DbFree(db, zStartAff);
1675 sqlite3DbFree(db, zEndAff);
1677 /* Top of the loop body */
1678 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1680 /* Check if the index cursor is past the end of the range. */
1681 if( nConstraint ){
1682 op = aEndOp[bRev*2 + endEq];
1683 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1684 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1685 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1686 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1687 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1690 /* Seek the table cursor, if required */
1691 if( omitTable ){
1692 /* pIdx is a covering index. No need to access the main table. */
1693 }else if( HasRowid(pIdx->pTable) ){
1694 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || (
1695 (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)
1696 && (pWInfo->eOnePass==ONEPASS_SINGLE)
1698 iRowidReg = ++pParse->nMem;
1699 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1700 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1701 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1702 VdbeCoverage(v);
1703 }else{
1704 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1706 }else if( iCur!=iIdxCur ){
1707 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1708 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1709 for(j=0; j<pPk->nKeyCol; j++){
1710 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1711 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1713 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1714 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1717 /* If pIdx is an index on one or more expressions, then look through
1718 ** all the expressions in pWInfo and try to transform matching expressions
1719 ** into reference to index columns.
1721 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1724 /* Record the instruction used to terminate the loop. */
1725 if( pLoop->wsFlags & WHERE_ONEROW ){
1726 pLevel->op = OP_Noop;
1727 }else if( bRev ){
1728 pLevel->op = OP_Prev;
1729 }else{
1730 pLevel->op = OP_Next;
1732 pLevel->p1 = iIdxCur;
1733 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1734 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1735 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1736 }else{
1737 assert( pLevel->p5==0 );
1739 if( omitTable ) pIdx = 0;
1740 }else
1742 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1743 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1744 /* Case 5: Two or more separately indexed terms connected by OR
1746 ** Example:
1748 ** CREATE TABLE t1(a,b,c,d);
1749 ** CREATE INDEX i1 ON t1(a);
1750 ** CREATE INDEX i2 ON t1(b);
1751 ** CREATE INDEX i3 ON t1(c);
1753 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1755 ** In the example, there are three indexed terms connected by OR.
1756 ** The top of the loop looks like this:
1758 ** Null 1 # Zero the rowset in reg 1
1760 ** Then, for each indexed term, the following. The arguments to
1761 ** RowSetTest are such that the rowid of the current row is inserted
1762 ** into the RowSet. If it is already present, control skips the
1763 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1765 ** sqlite3WhereBegin(<term>)
1766 ** RowSetTest # Insert rowid into rowset
1767 ** Gosub 2 A
1768 ** sqlite3WhereEnd()
1770 ** Following the above, code to terminate the loop. Label A, the target
1771 ** of the Gosub above, jumps to the instruction right after the Goto.
1773 ** Null 1 # Zero the rowset in reg 1
1774 ** Goto B # The loop is finished.
1776 ** A: <loop body> # Return data, whatever.
1778 ** Return 2 # Jump back to the Gosub
1780 ** B: <after the loop>
1782 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1783 ** use an ephemeral index instead of a RowSet to record the primary
1784 ** keys of the rows we have already seen.
1787 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1788 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1789 Index *pCov = 0; /* Potential covering index (or NULL) */
1790 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1792 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1793 int regRowset = 0; /* Register for RowSet object */
1794 int regRowid = 0; /* Register holding rowid */
1795 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1796 int iRetInit; /* Address of regReturn init */
1797 int untestedTerms = 0; /* Some terms not completely tested */
1798 int ii; /* Loop counter */
1799 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1800 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1801 Table *pTab = pTabItem->pTab;
1803 pTerm = pLoop->aLTerm[0];
1804 assert( pTerm!=0 );
1805 assert( pTerm->eOperator & WO_OR );
1806 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1807 pOrWc = &pTerm->u.pOrInfo->wc;
1808 pLevel->op = OP_Return;
1809 pLevel->p1 = regReturn;
1811 /* Set up a new SrcList in pOrTab containing the table being scanned
1812 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1813 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1815 if( pWInfo->nLevel>1 ){
1816 int nNotReady; /* The number of notReady tables */
1817 struct SrcList_item *origSrc; /* Original list of tables */
1818 nNotReady = pWInfo->nLevel - iLevel - 1;
1819 pOrTab = sqlite3StackAllocRaw(db,
1820 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1821 if( pOrTab==0 ) return notReady;
1822 pOrTab->nAlloc = (u8)(nNotReady + 1);
1823 pOrTab->nSrc = pOrTab->nAlloc;
1824 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1825 origSrc = pWInfo->pTabList->a;
1826 for(k=1; k<=nNotReady; k++){
1827 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1829 }else{
1830 pOrTab = pWInfo->pTabList;
1833 /* Initialize the rowset register to contain NULL. An SQL NULL is
1834 ** equivalent to an empty rowset. Or, create an ephemeral index
1835 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1837 ** Also initialize regReturn to contain the address of the instruction
1838 ** immediately following the OP_Return at the bottom of the loop. This
1839 ** is required in a few obscure LEFT JOIN cases where control jumps
1840 ** over the top of the loop into the body of it. In this case the
1841 ** correct response for the end-of-loop code (the OP_Return) is to
1842 ** fall through to the next instruction, just as an OP_Next does if
1843 ** called on an uninitialized cursor.
1845 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1846 if( HasRowid(pTab) ){
1847 regRowset = ++pParse->nMem;
1848 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1849 }else{
1850 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1851 regRowset = pParse->nTab++;
1852 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1853 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1855 regRowid = ++pParse->nMem;
1857 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1859 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1860 ** Then for every term xN, evaluate as the subexpression: xN AND z
1861 ** That way, terms in y that are factored into the disjunction will
1862 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1864 ** Actually, each subexpression is converted to "xN AND w" where w is
1865 ** the "interesting" terms of z - terms that did not originate in the
1866 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1867 ** indices.
1869 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1870 ** is not contained in the ON clause of a LEFT JOIN.
1871 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1873 if( pWC->nTerm>1 ){
1874 int iTerm;
1875 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1876 Expr *pExpr = pWC->a[iTerm].pExpr;
1877 if( &pWC->a[iTerm] == pTerm ) continue;
1878 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1879 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1880 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1881 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1882 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1883 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1884 pExpr = sqlite3ExprDup(db, pExpr, 0);
1885 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1887 if( pAndExpr ){
1888 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
1892 /* Run a separate WHERE clause for each term of the OR clause. After
1893 ** eliminating duplicates from other WHERE clauses, the action for each
1894 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1896 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
1897 for(ii=0; ii<pOrWc->nTerm; ii++){
1898 WhereTerm *pOrTerm = &pOrWc->a[ii];
1899 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1900 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1901 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1902 int jmp1 = 0; /* Address of jump operation */
1903 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1904 pAndExpr->pLeft = pOrExpr;
1905 pOrExpr = pAndExpr;
1907 /* Loop through table entries that match term pOrTerm. */
1908 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1909 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1910 wctrlFlags, iCovCur);
1911 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1912 if( pSubWInfo ){
1913 WhereLoop *pSubLoop;
1914 int addrExplain = sqlite3WhereExplainOneScan(
1915 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1917 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1919 /* This is the sub-WHERE clause body. First skip over
1920 ** duplicate rows from prior sub-WHERE clauses, and record the
1921 ** rowid (or PRIMARY KEY) for the current row so that the same
1922 ** row will be skipped in subsequent sub-WHERE clauses.
1924 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1925 int r;
1926 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1927 if( HasRowid(pTab) ){
1928 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1929 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1930 r,iSet);
1931 VdbeCoverage(v);
1932 }else{
1933 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1934 int nPk = pPk->nKeyCol;
1935 int iPk;
1937 /* Read the PK into an array of temp registers. */
1938 r = sqlite3GetTempRange(pParse, nPk);
1939 for(iPk=0; iPk<nPk; iPk++){
1940 int iCol = pPk->aiColumn[iPk];
1941 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
1944 /* Check if the temp table already contains this key. If so,
1945 ** the row has already been included in the result set and
1946 ** can be ignored (by jumping past the Gosub below). Otherwise,
1947 ** insert the key into the temp table and proceed with processing
1948 ** the row.
1950 ** Use some of the same optimizations as OP_RowSetTest: If iSet
1951 ** is zero, assume that the key cannot already be present in
1952 ** the temp table. And if iSet is -1, assume that there is no
1953 ** need to insert the key into the temp table, as it will never
1954 ** be tested for. */
1955 if( iSet ){
1956 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1957 VdbeCoverage(v);
1959 if( iSet>=0 ){
1960 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1961 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
1962 r, nPk);
1963 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1966 /* Release the array of temp registers */
1967 sqlite3ReleaseTempRange(pParse, r, nPk);
1971 /* Invoke the main loop body as a subroutine */
1972 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1974 /* Jump here (skipping the main loop body subroutine) if the
1975 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1976 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
1978 /* The pSubWInfo->untestedTerms flag means that this OR term
1979 ** contained one or more AND term from a notReady table. The
1980 ** terms from the notReady table could not be tested and will
1981 ** need to be tested later.
1983 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1985 /* If all of the OR-connected terms are optimized using the same
1986 ** index, and the index is opened using the same cursor number
1987 ** by each call to sqlite3WhereBegin() made by this loop, it may
1988 ** be possible to use that index as a covering index.
1990 ** If the call to sqlite3WhereBegin() above resulted in a scan that
1991 ** uses an index, and this is either the first OR-connected term
1992 ** processed or the index is the same as that used by all previous
1993 ** terms, set pCov to the candidate covering index. Otherwise, set
1994 ** pCov to NULL to indicate that no candidate covering index will
1995 ** be available.
1997 pSubLoop = pSubWInfo->a[0].pWLoop;
1998 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1999 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2000 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2001 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2003 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2004 pCov = pSubLoop->u.btree.pIndex;
2005 }else{
2006 pCov = 0;
2009 /* Finish the loop through table entries that match term pOrTerm. */
2010 sqlite3WhereEnd(pSubWInfo);
2014 pLevel->u.pCovidx = pCov;
2015 if( pCov ) pLevel->iIdxCur = iCovCur;
2016 if( pAndExpr ){
2017 pAndExpr->pLeft = 0;
2018 sqlite3ExprDelete(db, pAndExpr);
2020 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2021 sqlite3VdbeGoto(v, pLevel->addrBrk);
2022 sqlite3VdbeResolveLabel(v, iLoopBody);
2024 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
2025 if( !untestedTerms ) disableTerm(pLevel, pTerm);
2026 }else
2027 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2030 /* Case 6: There is no usable index. We must do a complete
2031 ** scan of the entire table.
2033 static const u8 aStep[] = { OP_Next, OP_Prev };
2034 static const u8 aStart[] = { OP_Rewind, OP_Last };
2035 assert( bRev==0 || bRev==1 );
2036 if( pTabItem->fg.isRecursive ){
2037 /* Tables marked isRecursive have only a single row that is stored in
2038 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
2039 pLevel->op = OP_Noop;
2040 }else{
2041 codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2042 pLevel->op = aStep[bRev];
2043 pLevel->p1 = iCur;
2044 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2045 VdbeCoverageIf(v, bRev==0);
2046 VdbeCoverageIf(v, bRev!=0);
2047 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2051 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2052 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2053 #endif
2055 /* Insert code to test every subexpression that can be completely
2056 ** computed using the current set of tables.
2058 ** This loop may run between one and three times, depending on the
2059 ** constraints to be generated. The value of stack variable iLoop
2060 ** determines the constraints coded by each iteration, as follows:
2062 ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2063 ** iLoop==2: Code remaining expressions that do not contain correlated
2064 ** sub-queries.
2065 ** iLoop==3: Code all remaining expressions.
2067 ** An effort is made to skip unnecessary iterations of the loop.
2069 iLoop = (pIdx ? 1 : 2);
2071 int iNext = 0; /* Next value for iLoop */
2072 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2073 Expr *pE;
2074 int skipLikeAddr = 0;
2075 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2076 testcase( pTerm->wtFlags & TERM_CODED );
2077 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2078 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2079 testcase( pWInfo->untestedTerms==0
2080 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2081 pWInfo->untestedTerms = 1;
2082 continue;
2084 pE = pTerm->pExpr;
2085 assert( pE!=0 );
2086 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2087 continue;
2090 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2091 iNext = 2;
2092 continue;
2094 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2095 if( iNext==0 ) iNext = 3;
2096 continue;
2099 if( pTerm->wtFlags & TERM_LIKECOND ){
2100 /* If the TERM_LIKECOND flag is set, that means that the range search
2101 ** is sufficient to guarantee that the LIKE operator is true, so we
2102 ** can skip the call to the like(A,B) function. But this only works
2103 ** for strings. So do not skip the call to the function on the pass
2104 ** that compares BLOBs. */
2105 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2106 continue;
2107 #else
2108 u32 x = pLevel->iLikeRepCntr;
2109 assert( x>0 );
2110 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If, (int)(x>>1));
2111 VdbeCoverage(v);
2112 #endif
2114 #ifdef WHERETRACE_ENABLED /* 0xffff */
2115 if( sqlite3WhereTrace ){
2116 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2117 pWC->nTerm-j, pTerm, iLoop));
2119 #endif
2120 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2121 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2122 pTerm->wtFlags |= TERM_CODED;
2124 iLoop = iNext;
2125 }while( iLoop>0 );
2127 /* Insert code to test for implied constraints based on transitivity
2128 ** of the "==" operator.
2130 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2131 ** and we are coding the t1 loop and the t2 loop has not yet coded,
2132 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2133 ** the implied "t1.a=123" constraint.
2135 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2136 Expr *pE, sEAlt;
2137 WhereTerm *pAlt;
2138 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2139 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2140 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2141 if( pTerm->leftCursor!=iCur ) continue;
2142 if( pLevel->iLeftJoin ) continue;
2143 pE = pTerm->pExpr;
2144 assert( !ExprHasProperty(pE, EP_FromJoin) );
2145 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2146 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2147 WO_EQ|WO_IN|WO_IS, 0);
2148 if( pAlt==0 ) continue;
2149 if( pAlt->wtFlags & (TERM_CODED) ) continue;
2150 testcase( pAlt->eOperator & WO_EQ );
2151 testcase( pAlt->eOperator & WO_IS );
2152 testcase( pAlt->eOperator & WO_IN );
2153 VdbeModuleComment((v, "begin transitive constraint"));
2154 sEAlt = *pAlt->pExpr;
2155 sEAlt.pLeft = pE->pLeft;
2156 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2159 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2160 ** at least one row of the right table has matched the left table.
2162 if( pLevel->iLeftJoin ){
2163 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2164 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2165 VdbeComment((v, "record LEFT JOIN hit"));
2166 sqlite3ExprCacheClear(pParse);
2167 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2168 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2169 testcase( pTerm->wtFlags & TERM_CODED );
2170 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2171 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2172 assert( pWInfo->untestedTerms );
2173 continue;
2175 assert( pTerm->pExpr );
2176 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2177 pTerm->wtFlags |= TERM_CODED;
2181 return pLevel->notReady;