Improved error messages. Limit the number of auxiliary columns to 100.
[sqlite.git] / ext / rtree / rtree.c
blobe569c94ace321ca09a11ed5367cc3989ddb764ae
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code for implementations of the r-tree and r*-tree
13 ** algorithms packaged as an SQLite virtual table module.
17 ** Database Format of R-Tree Tables
18 ** --------------------------------
20 ** The data structure for a single virtual r-tree table is stored in three
21 ** native SQLite tables declared as follows. In each case, the '%' character
22 ** in the table name is replaced with the user-supplied name of the r-tree
23 ** table.
25 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
26 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
27 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
29 ** The data for each node of the r-tree structure is stored in the %_node
30 ** table. For each node that is not the root node of the r-tree, there is
31 ** an entry in the %_parent table associating the node with its parent.
32 ** And for each row of data in the table, there is an entry in the %_rowid
33 ** table that maps from the entries rowid to the id of the node that it
34 ** is stored on. If the r-tree contains auxiliary columns, those are stored
35 ** on the end of the %_rowid table.
37 ** The root node of an r-tree always exists, even if the r-tree table is
38 ** empty. The nodeno of the root node is always 1. All other nodes in the
39 ** table must be the same size as the root node. The content of each node
40 ** is formatted as follows:
42 ** 1. If the node is the root node (node 1), then the first 2 bytes
43 ** of the node contain the tree depth as a big-endian integer.
44 ** For non-root nodes, the first 2 bytes are left unused.
46 ** 2. The next 2 bytes contain the number of entries currently
47 ** stored in the node.
49 ** 3. The remainder of the node contains the node entries. Each entry
50 ** consists of a single 8-byte integer followed by an even number
51 ** of 4-byte coordinates. For leaf nodes the integer is the rowid
52 ** of a record. For internal nodes it is the node number of a
53 ** child page.
56 #if !defined(SQLITE_CORE) \
57 || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE))
59 #ifndef SQLITE_CORE
60 #include "sqlite3ext.h"
61 SQLITE_EXTENSION_INIT1
62 #else
63 #include "sqlite3.h"
64 #endif
66 #include <string.h>
67 #include <assert.h>
68 #include <stdio.h>
70 #ifndef SQLITE_AMALGAMATION
71 #include "sqlite3rtree.h"
72 typedef sqlite3_int64 i64;
73 typedef sqlite3_uint64 u64;
74 typedef unsigned char u8;
75 typedef unsigned short u16;
76 typedef unsigned int u32;
77 #endif
79 /* The following macro is used to suppress compiler warnings.
81 #ifndef UNUSED_PARAMETER
82 # define UNUSED_PARAMETER(x) (void)(x)
83 #endif
85 typedef struct Rtree Rtree;
86 typedef struct RtreeCursor RtreeCursor;
87 typedef struct RtreeNode RtreeNode;
88 typedef struct RtreeCell RtreeCell;
89 typedef struct RtreeConstraint RtreeConstraint;
90 typedef struct RtreeMatchArg RtreeMatchArg;
91 typedef struct RtreeGeomCallback RtreeGeomCallback;
92 typedef union RtreeCoord RtreeCoord;
93 typedef struct RtreeSearchPoint RtreeSearchPoint;
95 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
96 #define RTREE_MAX_DIMENSIONS 5
98 /* Maximum number of auxiliary columns */
99 #define RTREE_MAX_AUX_COLUMN 100
101 /* Size of hash table Rtree.aHash. This hash table is not expected to
102 ** ever contain very many entries, so a fixed number of buckets is
103 ** used.
105 #define HASHSIZE 97
107 /* The xBestIndex method of this virtual table requires an estimate of
108 ** the number of rows in the virtual table to calculate the costs of
109 ** various strategies. If possible, this estimate is loaded from the
110 ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
111 ** Otherwise, if no sqlite_stat1 entry is available, use
112 ** RTREE_DEFAULT_ROWEST.
114 #define RTREE_DEFAULT_ROWEST 1048576
115 #define RTREE_MIN_ROWEST 100
118 ** An rtree virtual-table object.
120 struct Rtree {
121 sqlite3_vtab base; /* Base class. Must be first */
122 sqlite3 *db; /* Host database connection */
123 int iNodeSize; /* Size in bytes of each node in the node table */
124 u8 nDim; /* Number of dimensions */
125 u8 nDim2; /* Twice the number of dimensions */
126 u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
127 u8 nBytesPerCell; /* Bytes consumed per cell */
128 u8 inWrTrans; /* True if inside write transaction */
129 u8 nAux; /* # of auxiliary columns in %_rowid */
130 int iDepth; /* Current depth of the r-tree structure */
131 char *zDb; /* Name of database containing r-tree table */
132 char *zName; /* Name of r-tree table */
133 u32 nBusy; /* Current number of users of this structure */
134 i64 nRowEst; /* Estimated number of rows in this table */
135 u32 nCursor; /* Number of open cursors */
136 char *zReadAuxSql; /* SQL for statement to read aux data */
138 /* List of nodes removed during a CondenseTree operation. List is
139 ** linked together via the pointer normally used for hash chains -
140 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
141 ** headed by the node (leaf nodes have RtreeNode.iNode==0).
143 RtreeNode *pDeleted;
144 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */
146 /* Blob I/O on xxx_node */
147 sqlite3_blob *pNodeBlob;
149 /* Statements to read/write/delete a record from xxx_node */
150 sqlite3_stmt *pWriteNode;
151 sqlite3_stmt *pDeleteNode;
153 /* Statements to read/write/delete a record from xxx_rowid */
154 sqlite3_stmt *pReadRowid;
155 sqlite3_stmt *pWriteRowid;
156 sqlite3_stmt *pDeleteRowid;
158 /* Statements to read/write/delete a record from xxx_parent */
159 sqlite3_stmt *pReadParent;
160 sqlite3_stmt *pWriteParent;
161 sqlite3_stmt *pDeleteParent;
163 /* Statement for writing to the "aux:" fields, if there are any */
164 sqlite3_stmt *pWriteAux;
166 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
169 /* Possible values for Rtree.eCoordType: */
170 #define RTREE_COORD_REAL32 0
171 #define RTREE_COORD_INT32 1
174 ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
175 ** only deal with integer coordinates. No floating point operations
176 ** will be done.
178 #ifdef SQLITE_RTREE_INT_ONLY
179 typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */
180 typedef int RtreeValue; /* Low accuracy coordinate */
181 # define RTREE_ZERO 0
182 #else
183 typedef double RtreeDValue; /* High accuracy coordinate */
184 typedef float RtreeValue; /* Low accuracy coordinate */
185 # define RTREE_ZERO 0.0
186 #endif
189 ** When doing a search of an r-tree, instances of the following structure
190 ** record intermediate results from the tree walk.
192 ** The id is always a node-id. For iLevel>=1 the id is the node-id of
193 ** the node that the RtreeSearchPoint represents. When iLevel==0, however,
194 ** the id is of the parent node and the cell that RtreeSearchPoint
195 ** represents is the iCell-th entry in the parent node.
197 struct RtreeSearchPoint {
198 RtreeDValue rScore; /* The score for this node. Smallest goes first. */
199 sqlite3_int64 id; /* Node ID */
200 u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */
201 u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */
202 u8 iCell; /* Cell index within the node */
206 ** The minimum number of cells allowed for a node is a third of the
207 ** maximum. In Gutman's notation:
209 ** m = M/3
211 ** If an R*-tree "Reinsert" operation is required, the same number of
212 ** cells are removed from the overfull node and reinserted into the tree.
214 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
215 #define RTREE_REINSERT(p) RTREE_MINCELLS(p)
216 #define RTREE_MAXCELLS 51
219 ** The smallest possible node-size is (512-64)==448 bytes. And the largest
220 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
221 ** Therefore all non-root nodes must contain at least 3 entries. Since
222 ** 3^40 is greater than 2^64, an r-tree structure always has a depth of
223 ** 40 or less.
225 #define RTREE_MAX_DEPTH 40
229 ** Number of entries in the cursor RtreeNode cache. The first entry is
230 ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining
231 ** entries cache the RtreeNode for the first elements of the priority queue.
233 #define RTREE_CACHE_SZ 5
236 ** An rtree cursor object.
238 struct RtreeCursor {
239 sqlite3_vtab_cursor base; /* Base class. Must be first */
240 u8 atEOF; /* True if at end of search */
241 u8 bPoint; /* True if sPoint is valid */
242 u8 bAuxValid; /* True if pReadAux is valid */
243 int iStrategy; /* Copy of idxNum search parameter */
244 int nConstraint; /* Number of entries in aConstraint */
245 RtreeConstraint *aConstraint; /* Search constraints. */
246 int nPointAlloc; /* Number of slots allocated for aPoint[] */
247 int nPoint; /* Number of slots used in aPoint[] */
248 int mxLevel; /* iLevel value for root of the tree */
249 RtreeSearchPoint *aPoint; /* Priority queue for search points */
250 sqlite3_stmt *pReadAux; /* Statement to read aux-data */
251 RtreeSearchPoint sPoint; /* Cached next search point */
252 RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
253 u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */
256 /* Return the Rtree of a RtreeCursor */
257 #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab))
260 ** A coordinate can be either a floating point number or a integer. All
261 ** coordinates within a single R-Tree are always of the same time.
263 union RtreeCoord {
264 RtreeValue f; /* Floating point value */
265 int i; /* Integer value */
266 u32 u; /* Unsigned for byte-order conversions */
270 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
271 ** formatted as a RtreeDValue (double or int64). This macro assumes that local
272 ** variable pRtree points to the Rtree structure associated with the
273 ** RtreeCoord.
275 #ifdef SQLITE_RTREE_INT_ONLY
276 # define DCOORD(coord) ((RtreeDValue)coord.i)
277 #else
278 # define DCOORD(coord) ( \
279 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
280 ((double)coord.f) : \
281 ((double)coord.i) \
283 #endif
286 ** A search constraint.
288 struct RtreeConstraint {
289 int iCoord; /* Index of constrained coordinate */
290 int op; /* Constraining operation */
291 union {
292 RtreeDValue rValue; /* Constraint value. */
293 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*);
294 int (*xQueryFunc)(sqlite3_rtree_query_info*);
295 } u;
296 sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */
299 /* Possible values for RtreeConstraint.op */
300 #define RTREE_EQ 0x41 /* A */
301 #define RTREE_LE 0x42 /* B */
302 #define RTREE_LT 0x43 /* C */
303 #define RTREE_GE 0x44 /* D */
304 #define RTREE_GT 0x45 /* E */
305 #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */
306 #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */
310 ** An rtree structure node.
312 struct RtreeNode {
313 RtreeNode *pParent; /* Parent node */
314 i64 iNode; /* The node number */
315 int nRef; /* Number of references to this node */
316 int isDirty; /* True if the node needs to be written to disk */
317 u8 *zData; /* Content of the node, as should be on disk */
318 RtreeNode *pNext; /* Next node in this hash collision chain */
321 /* Return the number of cells in a node */
322 #define NCELL(pNode) readInt16(&(pNode)->zData[2])
325 ** A single cell from a node, deserialized
327 struct RtreeCell {
328 i64 iRowid; /* Node or entry ID */
329 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */
334 ** This object becomes the sqlite3_user_data() for the SQL functions
335 ** that are created by sqlite3_rtree_geometry_callback() and
336 ** sqlite3_rtree_query_callback() and which appear on the right of MATCH
337 ** operators in order to constrain a search.
339 ** xGeom and xQueryFunc are the callback functions. Exactly one of
340 ** xGeom and xQueryFunc fields is non-NULL, depending on whether the
341 ** SQL function was created using sqlite3_rtree_geometry_callback() or
342 ** sqlite3_rtree_query_callback().
344 ** This object is deleted automatically by the destructor mechanism in
345 ** sqlite3_create_function_v2().
347 struct RtreeGeomCallback {
348 int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
349 int (*xQueryFunc)(sqlite3_rtree_query_info*);
350 void (*xDestructor)(void*);
351 void *pContext;
355 ** An instance of this structure (in the form of a BLOB) is returned by
356 ** the SQL functions that sqlite3_rtree_geometry_callback() and
357 ** sqlite3_rtree_query_callback() create, and is read as the right-hand
358 ** operand to the MATCH operator of an R-Tree.
360 struct RtreeMatchArg {
361 u32 iSize; /* Size of this object */
362 RtreeGeomCallback cb; /* Info about the callback functions */
363 int nParam; /* Number of parameters to the SQL function */
364 sqlite3_value **apSqlParam; /* Original SQL parameter values */
365 RtreeDValue aParam[1]; /* Values for parameters to the SQL function */
368 #ifndef MAX
369 # define MAX(x,y) ((x) < (y) ? (y) : (x))
370 #endif
371 #ifndef MIN
372 # define MIN(x,y) ((x) > (y) ? (y) : (x))
373 #endif
375 /* What version of GCC is being used. 0 means GCC is not being used .
376 ** Note that the GCC_VERSION macro will also be set correctly when using
377 ** clang, since clang works hard to be gcc compatible. So the gcc
378 ** optimizations will also work when compiling with clang.
380 #ifndef GCC_VERSION
381 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
382 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
383 #else
384 # define GCC_VERSION 0
385 #endif
386 #endif
388 /* The testcase() macro should already be defined in the amalgamation. If
389 ** it is not, make it a no-op.
391 #ifndef SQLITE_AMALGAMATION
392 # define testcase(X)
393 #endif
396 ** Macros to determine whether the machine is big or little endian,
397 ** and whether or not that determination is run-time or compile-time.
399 ** For best performance, an attempt is made to guess at the byte-order
400 ** using C-preprocessor macros. If that is unsuccessful, or if
401 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
402 ** at run-time.
404 #ifndef SQLITE_BYTEORDER
405 #if defined(i386) || defined(__i386__) || defined(_M_IX86) || \
406 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
407 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
408 defined(__arm__)
409 # define SQLITE_BYTEORDER 1234
410 #elif defined(sparc) || defined(__ppc__)
411 # define SQLITE_BYTEORDER 4321
412 #else
413 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */
414 #endif
415 #endif
418 /* What version of MSVC is being used. 0 means MSVC is not being used */
419 #ifndef MSVC_VERSION
420 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
421 # define MSVC_VERSION _MSC_VER
422 #else
423 # define MSVC_VERSION 0
424 #endif
425 #endif
428 ** Functions to deserialize a 16 bit integer, 32 bit real number and
429 ** 64 bit integer. The deserialized value is returned.
431 static int readInt16(u8 *p){
432 return (p[0]<<8) + p[1];
434 static void readCoord(u8 *p, RtreeCoord *pCoord){
435 assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */
436 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
437 pCoord->u = _byteswap_ulong(*(u32*)p);
438 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
439 pCoord->u = __builtin_bswap32(*(u32*)p);
440 #elif SQLITE_BYTEORDER==4321
441 pCoord->u = *(u32*)p;
442 #else
443 pCoord->u = (
444 (((u32)p[0]) << 24) +
445 (((u32)p[1]) << 16) +
446 (((u32)p[2]) << 8) +
447 (((u32)p[3]) << 0)
449 #endif
451 static i64 readInt64(u8 *p){
452 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
453 u64 x;
454 memcpy(&x, p, 8);
455 return (i64)_byteswap_uint64(x);
456 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
457 u64 x;
458 memcpy(&x, p, 8);
459 return (i64)__builtin_bswap64(x);
460 #elif SQLITE_BYTEORDER==4321
461 i64 x;
462 memcpy(&x, p, 8);
463 return x;
464 #else
465 return (i64)(
466 (((u64)p[0]) << 56) +
467 (((u64)p[1]) << 48) +
468 (((u64)p[2]) << 40) +
469 (((u64)p[3]) << 32) +
470 (((u64)p[4]) << 24) +
471 (((u64)p[5]) << 16) +
472 (((u64)p[6]) << 8) +
473 (((u64)p[7]) << 0)
475 #endif
479 ** Functions to serialize a 16 bit integer, 32 bit real number and
480 ** 64 bit integer. The value returned is the number of bytes written
481 ** to the argument buffer (always 2, 4 and 8 respectively).
483 static void writeInt16(u8 *p, int i){
484 p[0] = (i>> 8)&0xFF;
485 p[1] = (i>> 0)&0xFF;
487 static int writeCoord(u8 *p, RtreeCoord *pCoord){
488 u32 i;
489 assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */
490 assert( sizeof(RtreeCoord)==4 );
491 assert( sizeof(u32)==4 );
492 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
493 i = __builtin_bswap32(pCoord->u);
494 memcpy(p, &i, 4);
495 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
496 i = _byteswap_ulong(pCoord->u);
497 memcpy(p, &i, 4);
498 #elif SQLITE_BYTEORDER==4321
499 i = pCoord->u;
500 memcpy(p, &i, 4);
501 #else
502 i = pCoord->u;
503 p[0] = (i>>24)&0xFF;
504 p[1] = (i>>16)&0xFF;
505 p[2] = (i>> 8)&0xFF;
506 p[3] = (i>> 0)&0xFF;
507 #endif
508 return 4;
510 static int writeInt64(u8 *p, i64 i){
511 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
512 i = (i64)__builtin_bswap64((u64)i);
513 memcpy(p, &i, 8);
514 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
515 i = (i64)_byteswap_uint64((u64)i);
516 memcpy(p, &i, 8);
517 #elif SQLITE_BYTEORDER==4321
518 memcpy(p, &i, 8);
519 #else
520 p[0] = (i>>56)&0xFF;
521 p[1] = (i>>48)&0xFF;
522 p[2] = (i>>40)&0xFF;
523 p[3] = (i>>32)&0xFF;
524 p[4] = (i>>24)&0xFF;
525 p[5] = (i>>16)&0xFF;
526 p[6] = (i>> 8)&0xFF;
527 p[7] = (i>> 0)&0xFF;
528 #endif
529 return 8;
533 ** Increment the reference count of node p.
535 static void nodeReference(RtreeNode *p){
536 if( p ){
537 p->nRef++;
542 ** Clear the content of node p (set all bytes to 0x00).
544 static void nodeZero(Rtree *pRtree, RtreeNode *p){
545 memset(&p->zData[2], 0, pRtree->iNodeSize-2);
546 p->isDirty = 1;
550 ** Given a node number iNode, return the corresponding key to use
551 ** in the Rtree.aHash table.
553 static int nodeHash(i64 iNode){
554 return iNode % HASHSIZE;
558 ** Search the node hash table for node iNode. If found, return a pointer
559 ** to it. Otherwise, return 0.
561 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
562 RtreeNode *p;
563 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
564 return p;
568 ** Add node pNode to the node hash table.
570 static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
571 int iHash;
572 assert( pNode->pNext==0 );
573 iHash = nodeHash(pNode->iNode);
574 pNode->pNext = pRtree->aHash[iHash];
575 pRtree->aHash[iHash] = pNode;
579 ** Remove node pNode from the node hash table.
581 static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
582 RtreeNode **pp;
583 if( pNode->iNode!=0 ){
584 pp = &pRtree->aHash[nodeHash(pNode->iNode)];
585 for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
586 *pp = pNode->pNext;
587 pNode->pNext = 0;
592 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
593 ** indicating that node has not yet been assigned a node number. It is
594 ** assigned a node number when nodeWrite() is called to write the
595 ** node contents out to the database.
597 static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
598 RtreeNode *pNode;
599 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
600 if( pNode ){
601 memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
602 pNode->zData = (u8 *)&pNode[1];
603 pNode->nRef = 1;
604 pNode->pParent = pParent;
605 pNode->isDirty = 1;
606 nodeReference(pParent);
608 return pNode;
612 ** Clear the Rtree.pNodeBlob object
614 static void nodeBlobReset(Rtree *pRtree){
615 if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){
616 sqlite3_blob *pBlob = pRtree->pNodeBlob;
617 pRtree->pNodeBlob = 0;
618 sqlite3_blob_close(pBlob);
623 ** Obtain a reference to an r-tree node.
625 static int nodeAcquire(
626 Rtree *pRtree, /* R-tree structure */
627 i64 iNode, /* Node number to load */
628 RtreeNode *pParent, /* Either the parent node or NULL */
629 RtreeNode **ppNode /* OUT: Acquired node */
631 int rc = SQLITE_OK;
632 RtreeNode *pNode = 0;
634 /* Check if the requested node is already in the hash table. If so,
635 ** increase its reference count and return it.
637 if( (pNode = nodeHashLookup(pRtree, iNode)) ){
638 assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
639 if( pParent && !pNode->pParent ){
640 nodeReference(pParent);
641 pNode->pParent = pParent;
643 pNode->nRef++;
644 *ppNode = pNode;
645 return SQLITE_OK;
648 if( pRtree->pNodeBlob ){
649 sqlite3_blob *pBlob = pRtree->pNodeBlob;
650 pRtree->pNodeBlob = 0;
651 rc = sqlite3_blob_reopen(pBlob, iNode);
652 pRtree->pNodeBlob = pBlob;
653 if( rc ){
654 nodeBlobReset(pRtree);
655 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
658 if( pRtree->pNodeBlob==0 ){
659 char *zTab = sqlite3_mprintf("%s_node", pRtree->zName);
660 if( zTab==0 ) return SQLITE_NOMEM;
661 rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, zTab, "data", iNode, 0,
662 &pRtree->pNodeBlob);
663 sqlite3_free(zTab);
665 if( rc ){
666 nodeBlobReset(pRtree);
667 *ppNode = 0;
668 /* If unable to open an sqlite3_blob on the desired row, that can only
669 ** be because the shadow tables hold erroneous data. */
670 if( rc==SQLITE_ERROR ) rc = SQLITE_CORRUPT_VTAB;
671 }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){
672 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
673 if( !pNode ){
674 rc = SQLITE_NOMEM;
675 }else{
676 pNode->pParent = pParent;
677 pNode->zData = (u8 *)&pNode[1];
678 pNode->nRef = 1;
679 pNode->iNode = iNode;
680 pNode->isDirty = 0;
681 pNode->pNext = 0;
682 rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData,
683 pRtree->iNodeSize, 0);
684 nodeReference(pParent);
688 /* If the root node was just loaded, set pRtree->iDepth to the height
689 ** of the r-tree structure. A height of zero means all data is stored on
690 ** the root node. A height of one means the children of the root node
691 ** are the leaves, and so on. If the depth as specified on the root node
692 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
694 if( pNode && iNode==1 ){
695 pRtree->iDepth = readInt16(pNode->zData);
696 if( pRtree->iDepth>RTREE_MAX_DEPTH ){
697 rc = SQLITE_CORRUPT_VTAB;
701 /* If no error has occurred so far, check if the "number of entries"
702 ** field on the node is too large. If so, set the return code to
703 ** SQLITE_CORRUPT_VTAB.
705 if( pNode && rc==SQLITE_OK ){
706 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
707 rc = SQLITE_CORRUPT_VTAB;
711 if( rc==SQLITE_OK ){
712 if( pNode!=0 ){
713 nodeHashInsert(pRtree, pNode);
714 }else{
715 rc = SQLITE_CORRUPT_VTAB;
717 *ppNode = pNode;
718 }else{
719 sqlite3_free(pNode);
720 *ppNode = 0;
723 return rc;
727 ** Overwrite cell iCell of node pNode with the contents of pCell.
729 static void nodeOverwriteCell(
730 Rtree *pRtree, /* The overall R-Tree */
731 RtreeNode *pNode, /* The node into which the cell is to be written */
732 RtreeCell *pCell, /* The cell to write */
733 int iCell /* Index into pNode into which pCell is written */
735 int ii;
736 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
737 p += writeInt64(p, pCell->iRowid);
738 for(ii=0; ii<pRtree->nDim2; ii++){
739 p += writeCoord(p, &pCell->aCoord[ii]);
741 pNode->isDirty = 1;
745 ** Remove the cell with index iCell from node pNode.
747 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
748 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
749 u8 *pSrc = &pDst[pRtree->nBytesPerCell];
750 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
751 memmove(pDst, pSrc, nByte);
752 writeInt16(&pNode->zData[2], NCELL(pNode)-1);
753 pNode->isDirty = 1;
757 ** Insert the contents of cell pCell into node pNode. If the insert
758 ** is successful, return SQLITE_OK.
760 ** If there is not enough free space in pNode, return SQLITE_FULL.
762 static int nodeInsertCell(
763 Rtree *pRtree, /* The overall R-Tree */
764 RtreeNode *pNode, /* Write new cell into this node */
765 RtreeCell *pCell /* The cell to be inserted */
767 int nCell; /* Current number of cells in pNode */
768 int nMaxCell; /* Maximum number of cells for pNode */
770 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
771 nCell = NCELL(pNode);
773 assert( nCell<=nMaxCell );
774 if( nCell<nMaxCell ){
775 nodeOverwriteCell(pRtree, pNode, pCell, nCell);
776 writeInt16(&pNode->zData[2], nCell+1);
777 pNode->isDirty = 1;
780 return (nCell==nMaxCell);
784 ** If the node is dirty, write it out to the database.
786 static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){
787 int rc = SQLITE_OK;
788 if( pNode->isDirty ){
789 sqlite3_stmt *p = pRtree->pWriteNode;
790 if( pNode->iNode ){
791 sqlite3_bind_int64(p, 1, pNode->iNode);
792 }else{
793 sqlite3_bind_null(p, 1);
795 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
796 sqlite3_step(p);
797 pNode->isDirty = 0;
798 rc = sqlite3_reset(p);
799 sqlite3_bind_null(p, 2);
800 if( pNode->iNode==0 && rc==SQLITE_OK ){
801 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
802 nodeHashInsert(pRtree, pNode);
805 return rc;
809 ** Release a reference to a node. If the node is dirty and the reference
810 ** count drops to zero, the node data is written to the database.
812 static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
813 int rc = SQLITE_OK;
814 if( pNode ){
815 assert( pNode->nRef>0 );
816 pNode->nRef--;
817 if( pNode->nRef==0 ){
818 if( pNode->iNode==1 ){
819 pRtree->iDepth = -1;
821 if( pNode->pParent ){
822 rc = nodeRelease(pRtree, pNode->pParent);
824 if( rc==SQLITE_OK ){
825 rc = nodeWrite(pRtree, pNode);
827 nodeHashDelete(pRtree, pNode);
828 sqlite3_free(pNode);
831 return rc;
835 ** Return the 64-bit integer value associated with cell iCell of
836 ** node pNode. If pNode is a leaf node, this is a rowid. If it is
837 ** an internal node, then the 64-bit integer is a child page number.
839 static i64 nodeGetRowid(
840 Rtree *pRtree, /* The overall R-Tree */
841 RtreeNode *pNode, /* The node from which to extract the ID */
842 int iCell /* The cell index from which to extract the ID */
844 assert( iCell<NCELL(pNode) );
845 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
849 ** Return coordinate iCoord from cell iCell in node pNode.
851 static void nodeGetCoord(
852 Rtree *pRtree, /* The overall R-Tree */
853 RtreeNode *pNode, /* The node from which to extract a coordinate */
854 int iCell, /* The index of the cell within the node */
855 int iCoord, /* Which coordinate to extract */
856 RtreeCoord *pCoord /* OUT: Space to write result to */
858 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
862 ** Deserialize cell iCell of node pNode. Populate the structure pointed
863 ** to by pCell with the results.
865 static void nodeGetCell(
866 Rtree *pRtree, /* The overall R-Tree */
867 RtreeNode *pNode, /* The node containing the cell to be read */
868 int iCell, /* Index of the cell within the node */
869 RtreeCell *pCell /* OUT: Write the cell contents here */
871 u8 *pData;
872 RtreeCoord *pCoord;
873 int ii = 0;
874 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
875 pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell);
876 pCoord = pCell->aCoord;
878 readCoord(pData, &pCoord[ii]);
879 readCoord(pData+4, &pCoord[ii+1]);
880 pData += 8;
881 ii += 2;
882 }while( ii<pRtree->nDim2 );
886 /* Forward declaration for the function that does the work of
887 ** the virtual table module xCreate() and xConnect() methods.
889 static int rtreeInit(
890 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
894 ** Rtree virtual table module xCreate method.
896 static int rtreeCreate(
897 sqlite3 *db,
898 void *pAux,
899 int argc, const char *const*argv,
900 sqlite3_vtab **ppVtab,
901 char **pzErr
903 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
907 ** Rtree virtual table module xConnect method.
909 static int rtreeConnect(
910 sqlite3 *db,
911 void *pAux,
912 int argc, const char *const*argv,
913 sqlite3_vtab **ppVtab,
914 char **pzErr
916 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
920 ** Increment the r-tree reference count.
922 static void rtreeReference(Rtree *pRtree){
923 pRtree->nBusy++;
927 ** Decrement the r-tree reference count. When the reference count reaches
928 ** zero the structure is deleted.
930 static void rtreeRelease(Rtree *pRtree){
931 pRtree->nBusy--;
932 if( pRtree->nBusy==0 ){
933 pRtree->inWrTrans = 0;
934 pRtree->nCursor = 0;
935 nodeBlobReset(pRtree);
936 sqlite3_finalize(pRtree->pWriteNode);
937 sqlite3_finalize(pRtree->pDeleteNode);
938 sqlite3_finalize(pRtree->pReadRowid);
939 sqlite3_finalize(pRtree->pWriteRowid);
940 sqlite3_finalize(pRtree->pDeleteRowid);
941 sqlite3_finalize(pRtree->pReadParent);
942 sqlite3_finalize(pRtree->pWriteParent);
943 sqlite3_finalize(pRtree->pDeleteParent);
944 sqlite3_finalize(pRtree->pWriteAux);
945 sqlite3_free(pRtree->zReadAuxSql);
946 sqlite3_free(pRtree);
951 ** Rtree virtual table module xDisconnect method.
953 static int rtreeDisconnect(sqlite3_vtab *pVtab){
954 rtreeRelease((Rtree *)pVtab);
955 return SQLITE_OK;
959 ** Rtree virtual table module xDestroy method.
961 static int rtreeDestroy(sqlite3_vtab *pVtab){
962 Rtree *pRtree = (Rtree *)pVtab;
963 int rc;
964 char *zCreate = sqlite3_mprintf(
965 "DROP TABLE '%q'.'%q_node';"
966 "DROP TABLE '%q'.'%q_rowid';"
967 "DROP TABLE '%q'.'%q_parent';",
968 pRtree->zDb, pRtree->zName,
969 pRtree->zDb, pRtree->zName,
970 pRtree->zDb, pRtree->zName
972 if( !zCreate ){
973 rc = SQLITE_NOMEM;
974 }else{
975 nodeBlobReset(pRtree);
976 rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
977 sqlite3_free(zCreate);
979 if( rc==SQLITE_OK ){
980 rtreeRelease(pRtree);
983 return rc;
987 ** Rtree virtual table module xOpen method.
989 static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
990 int rc = SQLITE_NOMEM;
991 Rtree *pRtree = (Rtree *)pVTab;
992 RtreeCursor *pCsr;
994 pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
995 if( pCsr ){
996 memset(pCsr, 0, sizeof(RtreeCursor));
997 pCsr->base.pVtab = pVTab;
998 rc = SQLITE_OK;
999 pRtree->nCursor++;
1001 *ppCursor = (sqlite3_vtab_cursor *)pCsr;
1003 return rc;
1008 ** Free the RtreeCursor.aConstraint[] array and its contents.
1010 static void freeCursorConstraints(RtreeCursor *pCsr){
1011 if( pCsr->aConstraint ){
1012 int i; /* Used to iterate through constraint array */
1013 for(i=0; i<pCsr->nConstraint; i++){
1014 sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo;
1015 if( pInfo ){
1016 if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser);
1017 sqlite3_free(pInfo);
1020 sqlite3_free(pCsr->aConstraint);
1021 pCsr->aConstraint = 0;
1026 ** Rtree virtual table module xClose method.
1028 static int rtreeClose(sqlite3_vtab_cursor *cur){
1029 Rtree *pRtree = (Rtree *)(cur->pVtab);
1030 int ii;
1031 RtreeCursor *pCsr = (RtreeCursor *)cur;
1032 assert( pRtree->nCursor>0 );
1033 freeCursorConstraints(pCsr);
1034 sqlite3_finalize(pCsr->pReadAux);
1035 sqlite3_free(pCsr->aPoint);
1036 for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
1037 sqlite3_free(pCsr);
1038 pRtree->nCursor--;
1039 nodeBlobReset(pRtree);
1040 return SQLITE_OK;
1044 ** Rtree virtual table module xEof method.
1046 ** Return non-zero if the cursor does not currently point to a valid
1047 ** record (i.e if the scan has finished), or zero otherwise.
1049 static int rtreeEof(sqlite3_vtab_cursor *cur){
1050 RtreeCursor *pCsr = (RtreeCursor *)cur;
1051 return pCsr->atEOF;
1055 ** Convert raw bits from the on-disk RTree record into a coordinate value.
1056 ** The on-disk format is big-endian and needs to be converted for little-
1057 ** endian platforms. The on-disk record stores integer coordinates if
1058 ** eInt is true and it stores 32-bit floating point records if eInt is
1059 ** false. a[] is the four bytes of the on-disk record to be decoded.
1060 ** Store the results in "r".
1062 ** There are five versions of this macro. The last one is generic. The
1063 ** other four are various architectures-specific optimizations.
1065 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1066 #define RTREE_DECODE_COORD(eInt, a, r) { \
1067 RtreeCoord c; /* Coordinate decoded */ \
1068 c.u = _byteswap_ulong(*(u32*)a); \
1069 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1071 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1072 #define RTREE_DECODE_COORD(eInt, a, r) { \
1073 RtreeCoord c; /* Coordinate decoded */ \
1074 c.u = __builtin_bswap32(*(u32*)a); \
1075 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1077 #elif SQLITE_BYTEORDER==1234
1078 #define RTREE_DECODE_COORD(eInt, a, r) { \
1079 RtreeCoord c; /* Coordinate decoded */ \
1080 memcpy(&c.u,a,4); \
1081 c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \
1082 ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \
1083 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1085 #elif SQLITE_BYTEORDER==4321
1086 #define RTREE_DECODE_COORD(eInt, a, r) { \
1087 RtreeCoord c; /* Coordinate decoded */ \
1088 memcpy(&c.u,a,4); \
1089 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1091 #else
1092 #define RTREE_DECODE_COORD(eInt, a, r) { \
1093 RtreeCoord c; /* Coordinate decoded */ \
1094 c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \
1095 +((u32)a[2]<<8) + a[3]; \
1096 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1098 #endif
1101 ** Check the RTree node or entry given by pCellData and p against the MATCH
1102 ** constraint pConstraint.
1104 static int rtreeCallbackConstraint(
1105 RtreeConstraint *pConstraint, /* The constraint to test */
1106 int eInt, /* True if RTree holding integer coordinates */
1107 u8 *pCellData, /* Raw cell content */
1108 RtreeSearchPoint *pSearch, /* Container of this cell */
1109 sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */
1110 int *peWithin /* OUT: visibility of the cell */
1112 sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */
1113 int nCoord = pInfo->nCoord; /* No. of coordinates */
1114 int rc; /* Callback return code */
1115 RtreeCoord c; /* Translator union */
1116 sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */
1118 assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY );
1119 assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 );
1121 if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){
1122 pInfo->iRowid = readInt64(pCellData);
1124 pCellData += 8;
1125 #ifndef SQLITE_RTREE_INT_ONLY
1126 if( eInt==0 ){
1127 switch( nCoord ){
1128 case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f;
1129 readCoord(pCellData+32, &c); aCoord[8] = c.f;
1130 case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f;
1131 readCoord(pCellData+24, &c); aCoord[6] = c.f;
1132 case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f;
1133 readCoord(pCellData+16, &c); aCoord[4] = c.f;
1134 case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f;
1135 readCoord(pCellData+8, &c); aCoord[2] = c.f;
1136 default: readCoord(pCellData+4, &c); aCoord[1] = c.f;
1137 readCoord(pCellData, &c); aCoord[0] = c.f;
1139 }else
1140 #endif
1142 switch( nCoord ){
1143 case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i;
1144 readCoord(pCellData+32, &c); aCoord[8] = c.i;
1145 case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i;
1146 readCoord(pCellData+24, &c); aCoord[6] = c.i;
1147 case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i;
1148 readCoord(pCellData+16, &c); aCoord[4] = c.i;
1149 case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i;
1150 readCoord(pCellData+8, &c); aCoord[2] = c.i;
1151 default: readCoord(pCellData+4, &c); aCoord[1] = c.i;
1152 readCoord(pCellData, &c); aCoord[0] = c.i;
1155 if( pConstraint->op==RTREE_MATCH ){
1156 int eWithin = 0;
1157 rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo,
1158 nCoord, aCoord, &eWithin);
1159 if( eWithin==0 ) *peWithin = NOT_WITHIN;
1160 *prScore = RTREE_ZERO;
1161 }else{
1162 pInfo->aCoord = aCoord;
1163 pInfo->iLevel = pSearch->iLevel - 1;
1164 pInfo->rScore = pInfo->rParentScore = pSearch->rScore;
1165 pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin;
1166 rc = pConstraint->u.xQueryFunc(pInfo);
1167 if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin;
1168 if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){
1169 *prScore = pInfo->rScore;
1172 return rc;
1176 ** Check the internal RTree node given by pCellData against constraint p.
1177 ** If this constraint cannot be satisfied by any child within the node,
1178 ** set *peWithin to NOT_WITHIN.
1180 static void rtreeNonleafConstraint(
1181 RtreeConstraint *p, /* The constraint to test */
1182 int eInt, /* True if RTree holds integer coordinates */
1183 u8 *pCellData, /* Raw cell content as appears on disk */
1184 int *peWithin /* Adjust downward, as appropriate */
1186 sqlite3_rtree_dbl val; /* Coordinate value convert to a double */
1188 /* p->iCoord might point to either a lower or upper bound coordinate
1189 ** in a coordinate pair. But make pCellData point to the lower bound.
1191 pCellData += 8 + 4*(p->iCoord&0xfe);
1193 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
1194 || p->op==RTREE_GT || p->op==RTREE_EQ );
1195 assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */
1196 switch( p->op ){
1197 case RTREE_LE:
1198 case RTREE_LT:
1199 case RTREE_EQ:
1200 RTREE_DECODE_COORD(eInt, pCellData, val);
1201 /* val now holds the lower bound of the coordinate pair */
1202 if( p->u.rValue>=val ) return;
1203 if( p->op!=RTREE_EQ ) break; /* RTREE_LE and RTREE_LT end here */
1204 /* Fall through for the RTREE_EQ case */
1206 default: /* RTREE_GT or RTREE_GE, or fallthrough of RTREE_EQ */
1207 pCellData += 4;
1208 RTREE_DECODE_COORD(eInt, pCellData, val);
1209 /* val now holds the upper bound of the coordinate pair */
1210 if( p->u.rValue<=val ) return;
1212 *peWithin = NOT_WITHIN;
1216 ** Check the leaf RTree cell given by pCellData against constraint p.
1217 ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN.
1218 ** If the constraint is satisfied, leave *peWithin unchanged.
1220 ** The constraint is of the form: xN op $val
1222 ** The op is given by p->op. The xN is p->iCoord-th coordinate in
1223 ** pCellData. $val is given by p->u.rValue.
1225 static void rtreeLeafConstraint(
1226 RtreeConstraint *p, /* The constraint to test */
1227 int eInt, /* True if RTree holds integer coordinates */
1228 u8 *pCellData, /* Raw cell content as appears on disk */
1229 int *peWithin /* Adjust downward, as appropriate */
1231 RtreeDValue xN; /* Coordinate value converted to a double */
1233 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
1234 || p->op==RTREE_GT || p->op==RTREE_EQ );
1235 pCellData += 8 + p->iCoord*4;
1236 assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */
1237 RTREE_DECODE_COORD(eInt, pCellData, xN);
1238 switch( p->op ){
1239 case RTREE_LE: if( xN <= p->u.rValue ) return; break;
1240 case RTREE_LT: if( xN < p->u.rValue ) return; break;
1241 case RTREE_GE: if( xN >= p->u.rValue ) return; break;
1242 case RTREE_GT: if( xN > p->u.rValue ) return; break;
1243 default: if( xN == p->u.rValue ) return; break;
1245 *peWithin = NOT_WITHIN;
1249 ** One of the cells in node pNode is guaranteed to have a 64-bit
1250 ** integer value equal to iRowid. Return the index of this cell.
1252 static int nodeRowidIndex(
1253 Rtree *pRtree,
1254 RtreeNode *pNode,
1255 i64 iRowid,
1256 int *piIndex
1258 int ii;
1259 int nCell = NCELL(pNode);
1260 assert( nCell<200 );
1261 for(ii=0; ii<nCell; ii++){
1262 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
1263 *piIndex = ii;
1264 return SQLITE_OK;
1267 return SQLITE_CORRUPT_VTAB;
1271 ** Return the index of the cell containing a pointer to node pNode
1272 ** in its parent. If pNode is the root node, return -1.
1274 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
1275 RtreeNode *pParent = pNode->pParent;
1276 if( pParent ){
1277 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
1279 *piIndex = -1;
1280 return SQLITE_OK;
1284 ** Compare two search points. Return negative, zero, or positive if the first
1285 ** is less than, equal to, or greater than the second.
1287 ** The rScore is the primary key. Smaller rScore values come first.
1288 ** If the rScore is a tie, then use iLevel as the tie breaker with smaller
1289 ** iLevel values coming first. In this way, if rScore is the same for all
1290 ** SearchPoints, then iLevel becomes the deciding factor and the result
1291 ** is a depth-first search, which is the desired default behavior.
1293 static int rtreeSearchPointCompare(
1294 const RtreeSearchPoint *pA,
1295 const RtreeSearchPoint *pB
1297 if( pA->rScore<pB->rScore ) return -1;
1298 if( pA->rScore>pB->rScore ) return +1;
1299 if( pA->iLevel<pB->iLevel ) return -1;
1300 if( pA->iLevel>pB->iLevel ) return +1;
1301 return 0;
1305 ** Interchange two search points in a cursor.
1307 static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
1308 RtreeSearchPoint t = p->aPoint[i];
1309 assert( i<j );
1310 p->aPoint[i] = p->aPoint[j];
1311 p->aPoint[j] = t;
1312 i++; j++;
1313 if( i<RTREE_CACHE_SZ ){
1314 if( j>=RTREE_CACHE_SZ ){
1315 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
1316 p->aNode[i] = 0;
1317 }else{
1318 RtreeNode *pTemp = p->aNode[i];
1319 p->aNode[i] = p->aNode[j];
1320 p->aNode[j] = pTemp;
1326 ** Return the search point with the lowest current score.
1328 static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){
1329 return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0;
1333 ** Get the RtreeNode for the search point with the lowest score.
1335 static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){
1336 sqlite3_int64 id;
1337 int ii = 1 - pCur->bPoint;
1338 assert( ii==0 || ii==1 );
1339 assert( pCur->bPoint || pCur->nPoint );
1340 if( pCur->aNode[ii]==0 ){
1341 assert( pRC!=0 );
1342 id = ii ? pCur->aPoint[0].id : pCur->sPoint.id;
1343 *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]);
1345 return pCur->aNode[ii];
1349 ** Push a new element onto the priority queue
1351 static RtreeSearchPoint *rtreeEnqueue(
1352 RtreeCursor *pCur, /* The cursor */
1353 RtreeDValue rScore, /* Score for the new search point */
1354 u8 iLevel /* Level for the new search point */
1356 int i, j;
1357 RtreeSearchPoint *pNew;
1358 if( pCur->nPoint>=pCur->nPointAlloc ){
1359 int nNew = pCur->nPointAlloc*2 + 8;
1360 pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0]));
1361 if( pNew==0 ) return 0;
1362 pCur->aPoint = pNew;
1363 pCur->nPointAlloc = nNew;
1365 i = pCur->nPoint++;
1366 pNew = pCur->aPoint + i;
1367 pNew->rScore = rScore;
1368 pNew->iLevel = iLevel;
1369 assert( iLevel<=RTREE_MAX_DEPTH );
1370 while( i>0 ){
1371 RtreeSearchPoint *pParent;
1372 j = (i-1)/2;
1373 pParent = pCur->aPoint + j;
1374 if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
1375 rtreeSearchPointSwap(pCur, j, i);
1376 i = j;
1377 pNew = pParent;
1379 return pNew;
1383 ** Allocate a new RtreeSearchPoint and return a pointer to it. Return
1384 ** NULL if malloc fails.
1386 static RtreeSearchPoint *rtreeSearchPointNew(
1387 RtreeCursor *pCur, /* The cursor */
1388 RtreeDValue rScore, /* Score for the new search point */
1389 u8 iLevel /* Level for the new search point */
1391 RtreeSearchPoint *pNew, *pFirst;
1392 pFirst = rtreeSearchPointFirst(pCur);
1393 pCur->anQueue[iLevel]++;
1394 if( pFirst==0
1395 || pFirst->rScore>rScore
1396 || (pFirst->rScore==rScore && pFirst->iLevel>iLevel)
1398 if( pCur->bPoint ){
1399 int ii;
1400 pNew = rtreeEnqueue(pCur, rScore, iLevel);
1401 if( pNew==0 ) return 0;
1402 ii = (int)(pNew - pCur->aPoint) + 1;
1403 if( ii<RTREE_CACHE_SZ ){
1404 assert( pCur->aNode[ii]==0 );
1405 pCur->aNode[ii] = pCur->aNode[0];
1406 }else{
1407 nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]);
1409 pCur->aNode[0] = 0;
1410 *pNew = pCur->sPoint;
1412 pCur->sPoint.rScore = rScore;
1413 pCur->sPoint.iLevel = iLevel;
1414 pCur->bPoint = 1;
1415 return &pCur->sPoint;
1416 }else{
1417 return rtreeEnqueue(pCur, rScore, iLevel);
1421 #if 0
1422 /* Tracing routines for the RtreeSearchPoint queue */
1423 static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){
1424 if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); }
1425 printf(" %d.%05lld.%02d %g %d",
1426 p->iLevel, p->id, p->iCell, p->rScore, p->eWithin
1428 idx++;
1429 if( idx<RTREE_CACHE_SZ ){
1430 printf(" %p\n", pCur->aNode[idx]);
1431 }else{
1432 printf("\n");
1435 static void traceQueue(RtreeCursor *pCur, const char *zPrefix){
1436 int ii;
1437 printf("=== %9s ", zPrefix);
1438 if( pCur->bPoint ){
1439 tracePoint(&pCur->sPoint, -1, pCur);
1441 for(ii=0; ii<pCur->nPoint; ii++){
1442 if( ii>0 || pCur->bPoint ) printf(" ");
1443 tracePoint(&pCur->aPoint[ii], ii, pCur);
1446 # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B)
1447 #else
1448 # define RTREE_QUEUE_TRACE(A,B) /* no-op */
1449 #endif
1451 /* Remove the search point with the lowest current score.
1453 static void rtreeSearchPointPop(RtreeCursor *p){
1454 int i, j, k, n;
1455 i = 1 - p->bPoint;
1456 assert( i==0 || i==1 );
1457 if( p->aNode[i] ){
1458 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
1459 p->aNode[i] = 0;
1461 if( p->bPoint ){
1462 p->anQueue[p->sPoint.iLevel]--;
1463 p->bPoint = 0;
1464 }else if( p->nPoint ){
1465 p->anQueue[p->aPoint[0].iLevel]--;
1466 n = --p->nPoint;
1467 p->aPoint[0] = p->aPoint[n];
1468 if( n<RTREE_CACHE_SZ-1 ){
1469 p->aNode[1] = p->aNode[n+1];
1470 p->aNode[n+1] = 0;
1472 i = 0;
1473 while( (j = i*2+1)<n ){
1474 k = j+1;
1475 if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){
1476 if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){
1477 rtreeSearchPointSwap(p, i, k);
1478 i = k;
1479 }else{
1480 break;
1482 }else{
1483 if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){
1484 rtreeSearchPointSwap(p, i, j);
1485 i = j;
1486 }else{
1487 break;
1496 ** Continue the search on cursor pCur until the front of the queue
1497 ** contains an entry suitable for returning as a result-set row,
1498 ** or until the RtreeSearchPoint queue is empty, indicating that the
1499 ** query has completed.
1501 static int rtreeStepToLeaf(RtreeCursor *pCur){
1502 RtreeSearchPoint *p;
1503 Rtree *pRtree = RTREE_OF_CURSOR(pCur);
1504 RtreeNode *pNode;
1505 int eWithin;
1506 int rc = SQLITE_OK;
1507 int nCell;
1508 int nConstraint = pCur->nConstraint;
1509 int ii;
1510 int eInt;
1511 RtreeSearchPoint x;
1513 eInt = pRtree->eCoordType==RTREE_COORD_INT32;
1514 while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){
1515 pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc);
1516 if( rc ) return rc;
1517 nCell = NCELL(pNode);
1518 assert( nCell<200 );
1519 while( p->iCell<nCell ){
1520 sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1;
1521 u8 *pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell);
1522 eWithin = FULLY_WITHIN;
1523 for(ii=0; ii<nConstraint; ii++){
1524 RtreeConstraint *pConstraint = pCur->aConstraint + ii;
1525 if( pConstraint->op>=RTREE_MATCH ){
1526 rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p,
1527 &rScore, &eWithin);
1528 if( rc ) return rc;
1529 }else if( p->iLevel==1 ){
1530 rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin);
1531 }else{
1532 rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin);
1534 if( eWithin==NOT_WITHIN ) break;
1536 p->iCell++;
1537 if( eWithin==NOT_WITHIN ) continue;
1538 x.iLevel = p->iLevel - 1;
1539 if( x.iLevel ){
1540 x.id = readInt64(pCellData);
1541 x.iCell = 0;
1542 }else{
1543 x.id = p->id;
1544 x.iCell = p->iCell - 1;
1546 if( p->iCell>=nCell ){
1547 RTREE_QUEUE_TRACE(pCur, "POP-S:");
1548 rtreeSearchPointPop(pCur);
1550 if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO;
1551 p = rtreeSearchPointNew(pCur, rScore, x.iLevel);
1552 if( p==0 ) return SQLITE_NOMEM;
1553 p->eWithin = (u8)eWithin;
1554 p->id = x.id;
1555 p->iCell = x.iCell;
1556 RTREE_QUEUE_TRACE(pCur, "PUSH-S:");
1557 break;
1559 if( p->iCell>=nCell ){
1560 RTREE_QUEUE_TRACE(pCur, "POP-Se:");
1561 rtreeSearchPointPop(pCur);
1564 pCur->atEOF = p==0;
1565 return SQLITE_OK;
1569 ** Rtree virtual table module xNext method.
1571 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
1572 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
1573 int rc = SQLITE_OK;
1575 /* Move to the next entry that matches the configured constraints. */
1576 RTREE_QUEUE_TRACE(pCsr, "POP-Nx:");
1577 if( pCsr->bAuxValid ){
1578 pCsr->bAuxValid = 0;
1579 sqlite3_reset(pCsr->pReadAux);
1581 rtreeSearchPointPop(pCsr);
1582 rc = rtreeStepToLeaf(pCsr);
1583 return rc;
1587 ** Rtree virtual table module xRowid method.
1589 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
1590 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
1591 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
1592 int rc = SQLITE_OK;
1593 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
1594 if( rc==SQLITE_OK && p ){
1595 *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);
1597 return rc;
1601 ** Rtree virtual table module xColumn method.
1603 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
1604 Rtree *pRtree = (Rtree *)cur->pVtab;
1605 RtreeCursor *pCsr = (RtreeCursor *)cur;
1606 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
1607 RtreeCoord c;
1608 int rc = SQLITE_OK;
1609 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
1611 if( rc ) return rc;
1612 if( p==0 ) return SQLITE_OK;
1613 if( i==0 ){
1614 sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
1615 }else if( i<=pRtree->nDim2 ){
1616 nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
1617 #ifndef SQLITE_RTREE_INT_ONLY
1618 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
1619 sqlite3_result_double(ctx, c.f);
1620 }else
1621 #endif
1623 assert( pRtree->eCoordType==RTREE_COORD_INT32 );
1624 sqlite3_result_int(ctx, c.i);
1626 }else{
1627 if( !pCsr->bAuxValid ){
1628 if( pCsr->pReadAux==0 ){
1629 rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0,
1630 &pCsr->pReadAux, 0);
1631 if( rc ) return rc;
1633 sqlite3_bind_int64(pCsr->pReadAux, 1,
1634 nodeGetRowid(pRtree, pNode, p->iCell));
1635 rc = sqlite3_step(pCsr->pReadAux);
1636 if( rc==SQLITE_ROW ){
1637 pCsr->bAuxValid = 1;
1638 }else{
1639 sqlite3_reset(pCsr->pReadAux);
1640 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
1641 return rc;
1644 sqlite3_result_value(ctx,
1645 sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1));
1647 return SQLITE_OK;
1651 ** Use nodeAcquire() to obtain the leaf node containing the record with
1652 ** rowid iRowid. If successful, set *ppLeaf to point to the node and
1653 ** return SQLITE_OK. If there is no such record in the table, set
1654 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
1655 ** to zero and return an SQLite error code.
1657 static int findLeafNode(
1658 Rtree *pRtree, /* RTree to search */
1659 i64 iRowid, /* The rowid searching for */
1660 RtreeNode **ppLeaf, /* Write the node here */
1661 sqlite3_int64 *piNode /* Write the node-id here */
1663 int rc;
1664 *ppLeaf = 0;
1665 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
1666 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
1667 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
1668 if( piNode ) *piNode = iNode;
1669 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
1670 sqlite3_reset(pRtree->pReadRowid);
1671 }else{
1672 rc = sqlite3_reset(pRtree->pReadRowid);
1674 return rc;
1678 ** This function is called to configure the RtreeConstraint object passed
1679 ** as the second argument for a MATCH constraint. The value passed as the
1680 ** first argument to this function is the right-hand operand to the MATCH
1681 ** operator.
1683 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
1684 RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */
1685 sqlite3_rtree_query_info *pInfo; /* Callback information */
1687 pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg");
1688 if( pSrc==0 ) return SQLITE_ERROR;
1689 pInfo = (sqlite3_rtree_query_info*)
1690 sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize );
1691 if( !pInfo ) return SQLITE_NOMEM;
1692 memset(pInfo, 0, sizeof(*pInfo));
1693 pBlob = (RtreeMatchArg*)&pInfo[1];
1694 memcpy(pBlob, pSrc, pSrc->iSize);
1695 pInfo->pContext = pBlob->cb.pContext;
1696 pInfo->nParam = pBlob->nParam;
1697 pInfo->aParam = pBlob->aParam;
1698 pInfo->apSqlParam = pBlob->apSqlParam;
1700 if( pBlob->cb.xGeom ){
1701 pCons->u.xGeom = pBlob->cb.xGeom;
1702 }else{
1703 pCons->op = RTREE_QUERY;
1704 pCons->u.xQueryFunc = pBlob->cb.xQueryFunc;
1706 pCons->pInfo = pInfo;
1707 return SQLITE_OK;
1711 ** Rtree virtual table module xFilter method.
1713 static int rtreeFilter(
1714 sqlite3_vtab_cursor *pVtabCursor,
1715 int idxNum, const char *idxStr,
1716 int argc, sqlite3_value **argv
1718 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
1719 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
1720 RtreeNode *pRoot = 0;
1721 int ii;
1722 int rc = SQLITE_OK;
1723 int iCell = 0;
1725 rtreeReference(pRtree);
1727 /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
1728 freeCursorConstraints(pCsr);
1729 sqlite3_free(pCsr->aPoint);
1730 memset(pCsr, 0, sizeof(RtreeCursor));
1731 pCsr->base.pVtab = (sqlite3_vtab*)pRtree;
1733 pCsr->iStrategy = idxNum;
1734 if( idxNum==1 ){
1735 /* Special case - lookup by rowid. */
1736 RtreeNode *pLeaf; /* Leaf on which the required cell resides */
1737 RtreeSearchPoint *p; /* Search point for the leaf */
1738 i64 iRowid = sqlite3_value_int64(argv[0]);
1739 i64 iNode = 0;
1740 rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
1741 if( rc==SQLITE_OK && pLeaf!=0 ){
1742 p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
1743 assert( p!=0 ); /* Always returns pCsr->sPoint */
1744 pCsr->aNode[0] = pLeaf;
1745 p->id = iNode;
1746 p->eWithin = PARTLY_WITHIN;
1747 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
1748 p->iCell = (u8)iCell;
1749 RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
1750 }else{
1751 pCsr->atEOF = 1;
1753 }else{
1754 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
1755 ** with the configured constraints.
1757 rc = nodeAcquire(pRtree, 1, 0, &pRoot);
1758 if( rc==SQLITE_OK && argc>0 ){
1759 pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
1760 pCsr->nConstraint = argc;
1761 if( !pCsr->aConstraint ){
1762 rc = SQLITE_NOMEM;
1763 }else{
1764 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
1765 memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
1766 assert( (idxStr==0 && argc==0)
1767 || (idxStr && (int)strlen(idxStr)==argc*2) );
1768 for(ii=0; ii<argc; ii++){
1769 RtreeConstraint *p = &pCsr->aConstraint[ii];
1770 p->op = idxStr[ii*2];
1771 p->iCoord = idxStr[ii*2+1]-'0';
1772 if( p->op>=RTREE_MATCH ){
1773 /* A MATCH operator. The right-hand-side must be a blob that
1774 ** can be cast into an RtreeMatchArg object. One created using
1775 ** an sqlite3_rtree_geometry_callback() SQL user function.
1777 rc = deserializeGeometry(argv[ii], p);
1778 if( rc!=SQLITE_OK ){
1779 break;
1781 p->pInfo->nCoord = pRtree->nDim2;
1782 p->pInfo->anQueue = pCsr->anQueue;
1783 p->pInfo->mxLevel = pRtree->iDepth + 1;
1784 }else{
1785 #ifdef SQLITE_RTREE_INT_ONLY
1786 p->u.rValue = sqlite3_value_int64(argv[ii]);
1787 #else
1788 p->u.rValue = sqlite3_value_double(argv[ii]);
1789 #endif
1794 if( rc==SQLITE_OK ){
1795 RtreeSearchPoint *pNew;
1796 pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1));
1797 if( pNew==0 ) return SQLITE_NOMEM;
1798 pNew->id = 1;
1799 pNew->iCell = 0;
1800 pNew->eWithin = PARTLY_WITHIN;
1801 assert( pCsr->bPoint==1 );
1802 pCsr->aNode[0] = pRoot;
1803 pRoot = 0;
1804 RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
1805 rc = rtreeStepToLeaf(pCsr);
1809 nodeRelease(pRtree, pRoot);
1810 rtreeRelease(pRtree);
1811 return rc;
1815 ** Rtree virtual table module xBestIndex method. There are three
1816 ** table scan strategies to choose from (in order from most to
1817 ** least desirable):
1819 ** idxNum idxStr Strategy
1820 ** ------------------------------------------------
1821 ** 1 Unused Direct lookup by rowid.
1822 ** 2 See below R-tree query or full-table scan.
1823 ** ------------------------------------------------
1825 ** If strategy 1 is used, then idxStr is not meaningful. If strategy
1826 ** 2 is used, idxStr is formatted to contain 2 bytes for each
1827 ** constraint used. The first two bytes of idxStr correspond to
1828 ** the constraint in sqlite3_index_info.aConstraintUsage[] with
1829 ** (argvIndex==1) etc.
1831 ** The first of each pair of bytes in idxStr identifies the constraint
1832 ** operator as follows:
1834 ** Operator Byte Value
1835 ** ----------------------
1836 ** = 0x41 ('A')
1837 ** <= 0x42 ('B')
1838 ** < 0x43 ('C')
1839 ** >= 0x44 ('D')
1840 ** > 0x45 ('E')
1841 ** MATCH 0x46 ('F')
1842 ** ----------------------
1844 ** The second of each pair of bytes identifies the coordinate column
1845 ** to which the constraint applies. The leftmost coordinate column
1846 ** is 'a', the second from the left 'b' etc.
1848 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
1849 Rtree *pRtree = (Rtree*)tab;
1850 int rc = SQLITE_OK;
1851 int ii;
1852 int bMatch = 0; /* True if there exists a MATCH constraint */
1853 i64 nRow; /* Estimated rows returned by this scan */
1855 int iIdx = 0;
1856 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
1857 memset(zIdxStr, 0, sizeof(zIdxStr));
1859 /* Check if there exists a MATCH constraint - even an unusable one. If there
1860 ** is, do not consider the lookup-by-rowid plan as using such a plan would
1861 ** require the VDBE to evaluate the MATCH constraint, which is not currently
1862 ** possible. */
1863 for(ii=0; ii<pIdxInfo->nConstraint; ii++){
1864 if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){
1865 bMatch = 1;
1869 assert( pIdxInfo->idxStr==0 );
1870 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
1871 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
1873 if( bMatch==0 && p->usable
1874 && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ
1876 /* We have an equality constraint on the rowid. Use strategy 1. */
1877 int jj;
1878 for(jj=0; jj<ii; jj++){
1879 pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
1880 pIdxInfo->aConstraintUsage[jj].omit = 0;
1882 pIdxInfo->idxNum = 1;
1883 pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
1884 pIdxInfo->aConstraintUsage[jj].omit = 1;
1886 /* This strategy involves a two rowid lookups on an B-Tree structures
1887 ** and then a linear search of an R-Tree node. This should be
1888 ** considered almost as quick as a direct rowid lookup (for which
1889 ** sqlite uses an internal cost of 0.0). It is expected to return
1890 ** a single row.
1892 pIdxInfo->estimatedCost = 30.0;
1893 pIdxInfo->estimatedRows = 1;
1894 return SQLITE_OK;
1897 if( p->usable
1898 && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2)
1899 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH)
1901 u8 op;
1902 switch( p->op ){
1903 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
1904 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
1905 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
1906 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
1907 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
1908 default:
1909 assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
1910 op = RTREE_MATCH;
1911 break;
1913 zIdxStr[iIdx++] = op;
1914 zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0');
1915 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
1916 pIdxInfo->aConstraintUsage[ii].omit = 1;
1920 pIdxInfo->idxNum = 2;
1921 pIdxInfo->needToFreeIdxStr = 1;
1922 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
1923 return SQLITE_NOMEM;
1926 nRow = pRtree->nRowEst >> (iIdx/2);
1927 pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
1928 pIdxInfo->estimatedRows = nRow;
1930 return rc;
1934 ** Return the N-dimensional volumn of the cell stored in *p.
1936 static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
1937 RtreeDValue area = (RtreeDValue)1;
1938 assert( pRtree->nDim>=1 && pRtree->nDim<=5 );
1939 #ifndef SQLITE_RTREE_INT_ONLY
1940 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
1941 switch( pRtree->nDim ){
1942 case 5: area = p->aCoord[9].f - p->aCoord[8].f;
1943 case 4: area *= p->aCoord[7].f - p->aCoord[6].f;
1944 case 3: area *= p->aCoord[5].f - p->aCoord[4].f;
1945 case 2: area *= p->aCoord[3].f - p->aCoord[2].f;
1946 default: area *= p->aCoord[1].f - p->aCoord[0].f;
1948 }else
1949 #endif
1951 switch( pRtree->nDim ){
1952 case 5: area = p->aCoord[9].i - p->aCoord[8].i;
1953 case 4: area *= p->aCoord[7].i - p->aCoord[6].i;
1954 case 3: area *= p->aCoord[5].i - p->aCoord[4].i;
1955 case 2: area *= p->aCoord[3].i - p->aCoord[2].i;
1956 default: area *= p->aCoord[1].i - p->aCoord[0].i;
1959 return area;
1963 ** Return the margin length of cell p. The margin length is the sum
1964 ** of the objects size in each dimension.
1966 static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
1967 RtreeDValue margin = 0;
1968 int ii = pRtree->nDim2 - 2;
1970 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
1971 ii -= 2;
1972 }while( ii>=0 );
1973 return margin;
1977 ** Store the union of cells p1 and p2 in p1.
1979 static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
1980 int ii = 0;
1981 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
1983 p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
1984 p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
1985 ii += 2;
1986 }while( ii<pRtree->nDim2 );
1987 }else{
1989 p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
1990 p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
1991 ii += 2;
1992 }while( ii<pRtree->nDim2 );
1997 ** Return true if the area covered by p2 is a subset of the area covered
1998 ** by p1. False otherwise.
2000 static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
2001 int ii;
2002 int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
2003 for(ii=0; ii<pRtree->nDim2; ii+=2){
2004 RtreeCoord *a1 = &p1->aCoord[ii];
2005 RtreeCoord *a2 = &p2->aCoord[ii];
2006 if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f))
2007 || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i))
2009 return 0;
2012 return 1;
2016 ** Return the amount cell p would grow by if it were unioned with pCell.
2018 static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
2019 RtreeDValue area;
2020 RtreeCell cell;
2021 memcpy(&cell, p, sizeof(RtreeCell));
2022 area = cellArea(pRtree, &cell);
2023 cellUnion(pRtree, &cell, pCell);
2024 return (cellArea(pRtree, &cell)-area);
2027 static RtreeDValue cellOverlap(
2028 Rtree *pRtree,
2029 RtreeCell *p,
2030 RtreeCell *aCell,
2031 int nCell
2033 int ii;
2034 RtreeDValue overlap = RTREE_ZERO;
2035 for(ii=0; ii<nCell; ii++){
2036 int jj;
2037 RtreeDValue o = (RtreeDValue)1;
2038 for(jj=0; jj<pRtree->nDim2; jj+=2){
2039 RtreeDValue x1, x2;
2040 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
2041 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
2042 if( x2<x1 ){
2043 o = (RtreeDValue)0;
2044 break;
2045 }else{
2046 o = o * (x2-x1);
2049 overlap += o;
2051 return overlap;
2056 ** This function implements the ChooseLeaf algorithm from Gutman[84].
2057 ** ChooseSubTree in r*tree terminology.
2059 static int ChooseLeaf(
2060 Rtree *pRtree, /* Rtree table */
2061 RtreeCell *pCell, /* Cell to insert into rtree */
2062 int iHeight, /* Height of sub-tree rooted at pCell */
2063 RtreeNode **ppLeaf /* OUT: Selected leaf page */
2065 int rc;
2066 int ii;
2067 RtreeNode *pNode = 0;
2068 rc = nodeAcquire(pRtree, 1, 0, &pNode);
2070 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
2071 int iCell;
2072 sqlite3_int64 iBest = 0;
2074 RtreeDValue fMinGrowth = RTREE_ZERO;
2075 RtreeDValue fMinArea = RTREE_ZERO;
2077 int nCell = NCELL(pNode);
2078 RtreeCell cell;
2079 RtreeNode *pChild;
2081 RtreeCell *aCell = 0;
2083 /* Select the child node which will be enlarged the least if pCell
2084 ** is inserted into it. Resolve ties by choosing the entry with
2085 ** the smallest area.
2087 for(iCell=0; iCell<nCell; iCell++){
2088 int bBest = 0;
2089 RtreeDValue growth;
2090 RtreeDValue area;
2091 nodeGetCell(pRtree, pNode, iCell, &cell);
2092 growth = cellGrowth(pRtree, &cell, pCell);
2093 area = cellArea(pRtree, &cell);
2094 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
2095 bBest = 1;
2097 if( bBest ){
2098 fMinGrowth = growth;
2099 fMinArea = area;
2100 iBest = cell.iRowid;
2104 sqlite3_free(aCell);
2105 rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
2106 nodeRelease(pRtree, pNode);
2107 pNode = pChild;
2110 *ppLeaf = pNode;
2111 return rc;
2115 ** A cell with the same content as pCell has just been inserted into
2116 ** the node pNode. This function updates the bounding box cells in
2117 ** all ancestor elements.
2119 static int AdjustTree(
2120 Rtree *pRtree, /* Rtree table */
2121 RtreeNode *pNode, /* Adjust ancestry of this node. */
2122 RtreeCell *pCell /* This cell was just inserted */
2124 RtreeNode *p = pNode;
2125 while( p->pParent ){
2126 RtreeNode *pParent = p->pParent;
2127 RtreeCell cell;
2128 int iCell;
2130 if( nodeParentIndex(pRtree, p, &iCell) ){
2131 return SQLITE_CORRUPT_VTAB;
2134 nodeGetCell(pRtree, pParent, iCell, &cell);
2135 if( !cellContains(pRtree, &cell, pCell) ){
2136 cellUnion(pRtree, &cell, pCell);
2137 nodeOverwriteCell(pRtree, pParent, &cell, iCell);
2140 p = pParent;
2142 return SQLITE_OK;
2146 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
2148 static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
2149 sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
2150 sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
2151 sqlite3_step(pRtree->pWriteRowid);
2152 return sqlite3_reset(pRtree->pWriteRowid);
2156 ** Write mapping (iNode->iPar) to the <rtree>_parent table.
2158 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
2159 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
2160 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
2161 sqlite3_step(pRtree->pWriteParent);
2162 return sqlite3_reset(pRtree->pWriteParent);
2165 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
2169 ** Arguments aIdx, aDistance and aSpare all point to arrays of size
2170 ** nIdx. The aIdx array contains the set of integers from 0 to
2171 ** (nIdx-1) in no particular order. This function sorts the values
2172 ** in aIdx according to the indexed values in aDistance. For
2173 ** example, assuming the inputs:
2175 ** aIdx = { 0, 1, 2, 3 }
2176 ** aDistance = { 5.0, 2.0, 7.0, 6.0 }
2178 ** this function sets the aIdx array to contain:
2180 ** aIdx = { 0, 1, 2, 3 }
2182 ** The aSpare array is used as temporary working space by the
2183 ** sorting algorithm.
2185 static void SortByDistance(
2186 int *aIdx,
2187 int nIdx,
2188 RtreeDValue *aDistance,
2189 int *aSpare
2191 if( nIdx>1 ){
2192 int iLeft = 0;
2193 int iRight = 0;
2195 int nLeft = nIdx/2;
2196 int nRight = nIdx-nLeft;
2197 int *aLeft = aIdx;
2198 int *aRight = &aIdx[nLeft];
2200 SortByDistance(aLeft, nLeft, aDistance, aSpare);
2201 SortByDistance(aRight, nRight, aDistance, aSpare);
2203 memcpy(aSpare, aLeft, sizeof(int)*nLeft);
2204 aLeft = aSpare;
2206 while( iLeft<nLeft || iRight<nRight ){
2207 if( iLeft==nLeft ){
2208 aIdx[iLeft+iRight] = aRight[iRight];
2209 iRight++;
2210 }else if( iRight==nRight ){
2211 aIdx[iLeft+iRight] = aLeft[iLeft];
2212 iLeft++;
2213 }else{
2214 RtreeDValue fLeft = aDistance[aLeft[iLeft]];
2215 RtreeDValue fRight = aDistance[aRight[iRight]];
2216 if( fLeft<fRight ){
2217 aIdx[iLeft+iRight] = aLeft[iLeft];
2218 iLeft++;
2219 }else{
2220 aIdx[iLeft+iRight] = aRight[iRight];
2221 iRight++;
2226 #if 0
2227 /* Check that the sort worked */
2229 int jj;
2230 for(jj=1; jj<nIdx; jj++){
2231 RtreeDValue left = aDistance[aIdx[jj-1]];
2232 RtreeDValue right = aDistance[aIdx[jj]];
2233 assert( left<=right );
2236 #endif
2241 ** Arguments aIdx, aCell and aSpare all point to arrays of size
2242 ** nIdx. The aIdx array contains the set of integers from 0 to
2243 ** (nIdx-1) in no particular order. This function sorts the values
2244 ** in aIdx according to dimension iDim of the cells in aCell. The
2245 ** minimum value of dimension iDim is considered first, the
2246 ** maximum used to break ties.
2248 ** The aSpare array is used as temporary working space by the
2249 ** sorting algorithm.
2251 static void SortByDimension(
2252 Rtree *pRtree,
2253 int *aIdx,
2254 int nIdx,
2255 int iDim,
2256 RtreeCell *aCell,
2257 int *aSpare
2259 if( nIdx>1 ){
2261 int iLeft = 0;
2262 int iRight = 0;
2264 int nLeft = nIdx/2;
2265 int nRight = nIdx-nLeft;
2266 int *aLeft = aIdx;
2267 int *aRight = &aIdx[nLeft];
2269 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
2270 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
2272 memcpy(aSpare, aLeft, sizeof(int)*nLeft);
2273 aLeft = aSpare;
2274 while( iLeft<nLeft || iRight<nRight ){
2275 RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
2276 RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
2277 RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
2278 RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
2279 if( (iLeft!=nLeft) && ((iRight==nRight)
2280 || (xleft1<xright1)
2281 || (xleft1==xright1 && xleft2<xright2)
2283 aIdx[iLeft+iRight] = aLeft[iLeft];
2284 iLeft++;
2285 }else{
2286 aIdx[iLeft+iRight] = aRight[iRight];
2287 iRight++;
2291 #if 0
2292 /* Check that the sort worked */
2294 int jj;
2295 for(jj=1; jj<nIdx; jj++){
2296 RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
2297 RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
2298 RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
2299 RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
2300 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
2303 #endif
2308 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
2310 static int splitNodeStartree(
2311 Rtree *pRtree,
2312 RtreeCell *aCell,
2313 int nCell,
2314 RtreeNode *pLeft,
2315 RtreeNode *pRight,
2316 RtreeCell *pBboxLeft,
2317 RtreeCell *pBboxRight
2319 int **aaSorted;
2320 int *aSpare;
2321 int ii;
2323 int iBestDim = 0;
2324 int iBestSplit = 0;
2325 RtreeDValue fBestMargin = RTREE_ZERO;
2327 int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
2329 aaSorted = (int **)sqlite3_malloc(nByte);
2330 if( !aaSorted ){
2331 return SQLITE_NOMEM;
2334 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
2335 memset(aaSorted, 0, nByte);
2336 for(ii=0; ii<pRtree->nDim; ii++){
2337 int jj;
2338 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
2339 for(jj=0; jj<nCell; jj++){
2340 aaSorted[ii][jj] = jj;
2342 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
2345 for(ii=0; ii<pRtree->nDim; ii++){
2346 RtreeDValue margin = RTREE_ZERO;
2347 RtreeDValue fBestOverlap = RTREE_ZERO;
2348 RtreeDValue fBestArea = RTREE_ZERO;
2349 int iBestLeft = 0;
2350 int nLeft;
2352 for(
2353 nLeft=RTREE_MINCELLS(pRtree);
2354 nLeft<=(nCell-RTREE_MINCELLS(pRtree));
2355 nLeft++
2357 RtreeCell left;
2358 RtreeCell right;
2359 int kk;
2360 RtreeDValue overlap;
2361 RtreeDValue area;
2363 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
2364 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
2365 for(kk=1; kk<(nCell-1); kk++){
2366 if( kk<nLeft ){
2367 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
2368 }else{
2369 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
2372 margin += cellMargin(pRtree, &left);
2373 margin += cellMargin(pRtree, &right);
2374 overlap = cellOverlap(pRtree, &left, &right, 1);
2375 area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
2376 if( (nLeft==RTREE_MINCELLS(pRtree))
2377 || (overlap<fBestOverlap)
2378 || (overlap==fBestOverlap && area<fBestArea)
2380 iBestLeft = nLeft;
2381 fBestOverlap = overlap;
2382 fBestArea = area;
2386 if( ii==0 || margin<fBestMargin ){
2387 iBestDim = ii;
2388 fBestMargin = margin;
2389 iBestSplit = iBestLeft;
2393 memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
2394 memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
2395 for(ii=0; ii<nCell; ii++){
2396 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
2397 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
2398 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
2399 nodeInsertCell(pRtree, pTarget, pCell);
2400 cellUnion(pRtree, pBbox, pCell);
2403 sqlite3_free(aaSorted);
2404 return SQLITE_OK;
2408 static int updateMapping(
2409 Rtree *pRtree,
2410 i64 iRowid,
2411 RtreeNode *pNode,
2412 int iHeight
2414 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
2415 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
2416 if( iHeight>0 ){
2417 RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
2418 if( pChild ){
2419 nodeRelease(pRtree, pChild->pParent);
2420 nodeReference(pNode);
2421 pChild->pParent = pNode;
2424 return xSetMapping(pRtree, iRowid, pNode->iNode);
2427 static int SplitNode(
2428 Rtree *pRtree,
2429 RtreeNode *pNode,
2430 RtreeCell *pCell,
2431 int iHeight
2433 int i;
2434 int newCellIsRight = 0;
2436 int rc = SQLITE_OK;
2437 int nCell = NCELL(pNode);
2438 RtreeCell *aCell;
2439 int *aiUsed;
2441 RtreeNode *pLeft = 0;
2442 RtreeNode *pRight = 0;
2444 RtreeCell leftbbox;
2445 RtreeCell rightbbox;
2447 /* Allocate an array and populate it with a copy of pCell and
2448 ** all cells from node pLeft. Then zero the original node.
2450 aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
2451 if( !aCell ){
2452 rc = SQLITE_NOMEM;
2453 goto splitnode_out;
2455 aiUsed = (int *)&aCell[nCell+1];
2456 memset(aiUsed, 0, sizeof(int)*(nCell+1));
2457 for(i=0; i<nCell; i++){
2458 nodeGetCell(pRtree, pNode, i, &aCell[i]);
2460 nodeZero(pRtree, pNode);
2461 memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
2462 nCell++;
2464 if( pNode->iNode==1 ){
2465 pRight = nodeNew(pRtree, pNode);
2466 pLeft = nodeNew(pRtree, pNode);
2467 pRtree->iDepth++;
2468 pNode->isDirty = 1;
2469 writeInt16(pNode->zData, pRtree->iDepth);
2470 }else{
2471 pLeft = pNode;
2472 pRight = nodeNew(pRtree, pLeft->pParent);
2473 nodeReference(pLeft);
2476 if( !pLeft || !pRight ){
2477 rc = SQLITE_NOMEM;
2478 goto splitnode_out;
2481 memset(pLeft->zData, 0, pRtree->iNodeSize);
2482 memset(pRight->zData, 0, pRtree->iNodeSize);
2484 rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight,
2485 &leftbbox, &rightbbox);
2486 if( rc!=SQLITE_OK ){
2487 goto splitnode_out;
2490 /* Ensure both child nodes have node numbers assigned to them by calling
2491 ** nodeWrite(). Node pRight always needs a node number, as it was created
2492 ** by nodeNew() above. But node pLeft sometimes already has a node number.
2493 ** In this case avoid the all to nodeWrite().
2495 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
2496 || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
2498 goto splitnode_out;
2501 rightbbox.iRowid = pRight->iNode;
2502 leftbbox.iRowid = pLeft->iNode;
2504 if( pNode->iNode==1 ){
2505 rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
2506 if( rc!=SQLITE_OK ){
2507 goto splitnode_out;
2509 }else{
2510 RtreeNode *pParent = pLeft->pParent;
2511 int iCell;
2512 rc = nodeParentIndex(pRtree, pLeft, &iCell);
2513 if( rc==SQLITE_OK ){
2514 nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
2515 rc = AdjustTree(pRtree, pParent, &leftbbox);
2517 if( rc!=SQLITE_OK ){
2518 goto splitnode_out;
2521 if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
2522 goto splitnode_out;
2525 for(i=0; i<NCELL(pRight); i++){
2526 i64 iRowid = nodeGetRowid(pRtree, pRight, i);
2527 rc = updateMapping(pRtree, iRowid, pRight, iHeight);
2528 if( iRowid==pCell->iRowid ){
2529 newCellIsRight = 1;
2531 if( rc!=SQLITE_OK ){
2532 goto splitnode_out;
2535 if( pNode->iNode==1 ){
2536 for(i=0; i<NCELL(pLeft); i++){
2537 i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
2538 rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
2539 if( rc!=SQLITE_OK ){
2540 goto splitnode_out;
2543 }else if( newCellIsRight==0 ){
2544 rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
2547 if( rc==SQLITE_OK ){
2548 rc = nodeRelease(pRtree, pRight);
2549 pRight = 0;
2551 if( rc==SQLITE_OK ){
2552 rc = nodeRelease(pRtree, pLeft);
2553 pLeft = 0;
2556 splitnode_out:
2557 nodeRelease(pRtree, pRight);
2558 nodeRelease(pRtree, pLeft);
2559 sqlite3_free(aCell);
2560 return rc;
2564 ** If node pLeaf is not the root of the r-tree and its pParent pointer is
2565 ** still NULL, load all ancestor nodes of pLeaf into memory and populate
2566 ** the pLeaf->pParent chain all the way up to the root node.
2568 ** This operation is required when a row is deleted (or updated - an update
2569 ** is implemented as a delete followed by an insert). SQLite provides the
2570 ** rowid of the row to delete, which can be used to find the leaf on which
2571 ** the entry resides (argument pLeaf). Once the leaf is located, this
2572 ** function is called to determine its ancestry.
2574 static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
2575 int rc = SQLITE_OK;
2576 RtreeNode *pChild = pLeaf;
2577 while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
2578 int rc2 = SQLITE_OK; /* sqlite3_reset() return code */
2579 sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
2580 rc = sqlite3_step(pRtree->pReadParent);
2581 if( rc==SQLITE_ROW ){
2582 RtreeNode *pTest; /* Used to test for reference loops */
2583 i64 iNode; /* Node number of parent node */
2585 /* Before setting pChild->pParent, test that we are not creating a
2586 ** loop of references (as we would if, say, pChild==pParent). We don't
2587 ** want to do this as it leads to a memory leak when trying to delete
2588 ** the referenced counted node structures.
2590 iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
2591 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
2592 if( !pTest ){
2593 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
2596 rc = sqlite3_reset(pRtree->pReadParent);
2597 if( rc==SQLITE_OK ) rc = rc2;
2598 if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB;
2599 pChild = pChild->pParent;
2601 return rc;
2604 static int deleteCell(Rtree *, RtreeNode *, int, int);
2606 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
2607 int rc;
2608 int rc2;
2609 RtreeNode *pParent = 0;
2610 int iCell;
2612 assert( pNode->nRef==1 );
2614 /* Remove the entry in the parent cell. */
2615 rc = nodeParentIndex(pRtree, pNode, &iCell);
2616 if( rc==SQLITE_OK ){
2617 pParent = pNode->pParent;
2618 pNode->pParent = 0;
2619 rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
2621 rc2 = nodeRelease(pRtree, pParent);
2622 if( rc==SQLITE_OK ){
2623 rc = rc2;
2625 if( rc!=SQLITE_OK ){
2626 return rc;
2629 /* Remove the xxx_node entry. */
2630 sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
2631 sqlite3_step(pRtree->pDeleteNode);
2632 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
2633 return rc;
2636 /* Remove the xxx_parent entry. */
2637 sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
2638 sqlite3_step(pRtree->pDeleteParent);
2639 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
2640 return rc;
2643 /* Remove the node from the in-memory hash table and link it into
2644 ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
2646 nodeHashDelete(pRtree, pNode);
2647 pNode->iNode = iHeight;
2648 pNode->pNext = pRtree->pDeleted;
2649 pNode->nRef++;
2650 pRtree->pDeleted = pNode;
2652 return SQLITE_OK;
2655 static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
2656 RtreeNode *pParent = pNode->pParent;
2657 int rc = SQLITE_OK;
2658 if( pParent ){
2659 int ii;
2660 int nCell = NCELL(pNode);
2661 RtreeCell box; /* Bounding box for pNode */
2662 nodeGetCell(pRtree, pNode, 0, &box);
2663 for(ii=1; ii<nCell; ii++){
2664 RtreeCell cell;
2665 nodeGetCell(pRtree, pNode, ii, &cell);
2666 cellUnion(pRtree, &box, &cell);
2668 box.iRowid = pNode->iNode;
2669 rc = nodeParentIndex(pRtree, pNode, &ii);
2670 if( rc==SQLITE_OK ){
2671 nodeOverwriteCell(pRtree, pParent, &box, ii);
2672 rc = fixBoundingBox(pRtree, pParent);
2675 return rc;
2679 ** Delete the cell at index iCell of node pNode. After removing the
2680 ** cell, adjust the r-tree data structure if required.
2682 static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
2683 RtreeNode *pParent;
2684 int rc;
2686 if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
2687 return rc;
2690 /* Remove the cell from the node. This call just moves bytes around
2691 ** the in-memory node image, so it cannot fail.
2693 nodeDeleteCell(pRtree, pNode, iCell);
2695 /* If the node is not the tree root and now has less than the minimum
2696 ** number of cells, remove it from the tree. Otherwise, update the
2697 ** cell in the parent node so that it tightly contains the updated
2698 ** node.
2700 pParent = pNode->pParent;
2701 assert( pParent || pNode->iNode==1 );
2702 if( pParent ){
2703 if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
2704 rc = removeNode(pRtree, pNode, iHeight);
2705 }else{
2706 rc = fixBoundingBox(pRtree, pNode);
2710 return rc;
2713 static int Reinsert(
2714 Rtree *pRtree,
2715 RtreeNode *pNode,
2716 RtreeCell *pCell,
2717 int iHeight
2719 int *aOrder;
2720 int *aSpare;
2721 RtreeCell *aCell;
2722 RtreeDValue *aDistance;
2723 int nCell;
2724 RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS];
2725 int iDim;
2726 int ii;
2727 int rc = SQLITE_OK;
2728 int n;
2730 memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS);
2732 nCell = NCELL(pNode)+1;
2733 n = (nCell+1)&(~1);
2735 /* Allocate the buffers used by this operation. The allocation is
2736 ** relinquished before this function returns.
2738 aCell = (RtreeCell *)sqlite3_malloc(n * (
2739 sizeof(RtreeCell) + /* aCell array */
2740 sizeof(int) + /* aOrder array */
2741 sizeof(int) + /* aSpare array */
2742 sizeof(RtreeDValue) /* aDistance array */
2744 if( !aCell ){
2745 return SQLITE_NOMEM;
2747 aOrder = (int *)&aCell[n];
2748 aSpare = (int *)&aOrder[n];
2749 aDistance = (RtreeDValue *)&aSpare[n];
2751 for(ii=0; ii<nCell; ii++){
2752 if( ii==(nCell-1) ){
2753 memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
2754 }else{
2755 nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
2757 aOrder[ii] = ii;
2758 for(iDim=0; iDim<pRtree->nDim; iDim++){
2759 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
2760 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
2763 for(iDim=0; iDim<pRtree->nDim; iDim++){
2764 aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2));
2767 for(ii=0; ii<nCell; ii++){
2768 aDistance[ii] = RTREE_ZERO;
2769 for(iDim=0; iDim<pRtree->nDim; iDim++){
2770 RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) -
2771 DCOORD(aCell[ii].aCoord[iDim*2]));
2772 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
2776 SortByDistance(aOrder, nCell, aDistance, aSpare);
2777 nodeZero(pRtree, pNode);
2779 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
2780 RtreeCell *p = &aCell[aOrder[ii]];
2781 nodeInsertCell(pRtree, pNode, p);
2782 if( p->iRowid==pCell->iRowid ){
2783 if( iHeight==0 ){
2784 rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
2785 }else{
2786 rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
2790 if( rc==SQLITE_OK ){
2791 rc = fixBoundingBox(pRtree, pNode);
2793 for(; rc==SQLITE_OK && ii<nCell; ii++){
2794 /* Find a node to store this cell in. pNode->iNode currently contains
2795 ** the height of the sub-tree headed by the cell.
2797 RtreeNode *pInsert;
2798 RtreeCell *p = &aCell[aOrder[ii]];
2799 rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
2800 if( rc==SQLITE_OK ){
2801 int rc2;
2802 rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
2803 rc2 = nodeRelease(pRtree, pInsert);
2804 if( rc==SQLITE_OK ){
2805 rc = rc2;
2810 sqlite3_free(aCell);
2811 return rc;
2815 ** Insert cell pCell into node pNode. Node pNode is the head of a
2816 ** subtree iHeight high (leaf nodes have iHeight==0).
2818 static int rtreeInsertCell(
2819 Rtree *pRtree,
2820 RtreeNode *pNode,
2821 RtreeCell *pCell,
2822 int iHeight
2824 int rc = SQLITE_OK;
2825 if( iHeight>0 ){
2826 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
2827 if( pChild ){
2828 nodeRelease(pRtree, pChild->pParent);
2829 nodeReference(pNode);
2830 pChild->pParent = pNode;
2833 if( nodeInsertCell(pRtree, pNode, pCell) ){
2834 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
2835 rc = SplitNode(pRtree, pNode, pCell, iHeight);
2836 }else{
2837 pRtree->iReinsertHeight = iHeight;
2838 rc = Reinsert(pRtree, pNode, pCell, iHeight);
2840 }else{
2841 rc = AdjustTree(pRtree, pNode, pCell);
2842 if( rc==SQLITE_OK ){
2843 if( iHeight==0 ){
2844 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
2845 }else{
2846 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
2850 return rc;
2853 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
2854 int ii;
2855 int rc = SQLITE_OK;
2856 int nCell = NCELL(pNode);
2858 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
2859 RtreeNode *pInsert;
2860 RtreeCell cell;
2861 nodeGetCell(pRtree, pNode, ii, &cell);
2863 /* Find a node to store this cell in. pNode->iNode currently contains
2864 ** the height of the sub-tree headed by the cell.
2866 rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert);
2867 if( rc==SQLITE_OK ){
2868 int rc2;
2869 rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode);
2870 rc2 = nodeRelease(pRtree, pInsert);
2871 if( rc==SQLITE_OK ){
2872 rc = rc2;
2876 return rc;
2880 ** Select a currently unused rowid for a new r-tree record.
2882 static int newRowid(Rtree *pRtree, i64 *piRowid){
2883 int rc;
2884 sqlite3_bind_null(pRtree->pWriteRowid, 1);
2885 sqlite3_bind_null(pRtree->pWriteRowid, 2);
2886 sqlite3_step(pRtree->pWriteRowid);
2887 rc = sqlite3_reset(pRtree->pWriteRowid);
2888 *piRowid = sqlite3_last_insert_rowid(pRtree->db);
2889 return rc;
2893 ** Remove the entry with rowid=iDelete from the r-tree structure.
2895 static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
2896 int rc; /* Return code */
2897 RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */
2898 int iCell; /* Index of iDelete cell in pLeaf */
2899 RtreeNode *pRoot = 0; /* Root node of rtree structure */
2902 /* Obtain a reference to the root node to initialize Rtree.iDepth */
2903 rc = nodeAcquire(pRtree, 1, 0, &pRoot);
2905 /* Obtain a reference to the leaf node that contains the entry
2906 ** about to be deleted.
2908 if( rc==SQLITE_OK ){
2909 rc = findLeafNode(pRtree, iDelete, &pLeaf, 0);
2912 /* Delete the cell in question from the leaf node. */
2913 if( rc==SQLITE_OK ){
2914 int rc2;
2915 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
2916 if( rc==SQLITE_OK ){
2917 rc = deleteCell(pRtree, pLeaf, iCell, 0);
2919 rc2 = nodeRelease(pRtree, pLeaf);
2920 if( rc==SQLITE_OK ){
2921 rc = rc2;
2925 /* Delete the corresponding entry in the <rtree>_rowid table. */
2926 if( rc==SQLITE_OK ){
2927 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
2928 sqlite3_step(pRtree->pDeleteRowid);
2929 rc = sqlite3_reset(pRtree->pDeleteRowid);
2932 /* Check if the root node now has exactly one child. If so, remove
2933 ** it, schedule the contents of the child for reinsertion and
2934 ** reduce the tree height by one.
2936 ** This is equivalent to copying the contents of the child into
2937 ** the root node (the operation that Gutman's paper says to perform
2938 ** in this scenario).
2940 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
2941 int rc2;
2942 RtreeNode *pChild = 0;
2943 i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
2944 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
2945 if( rc==SQLITE_OK ){
2946 rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
2948 rc2 = nodeRelease(pRtree, pChild);
2949 if( rc==SQLITE_OK ) rc = rc2;
2950 if( rc==SQLITE_OK ){
2951 pRtree->iDepth--;
2952 writeInt16(pRoot->zData, pRtree->iDepth);
2953 pRoot->isDirty = 1;
2957 /* Re-insert the contents of any underfull nodes removed from the tree. */
2958 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
2959 if( rc==SQLITE_OK ){
2960 rc = reinsertNodeContent(pRtree, pLeaf);
2962 pRtree->pDeleted = pLeaf->pNext;
2963 sqlite3_free(pLeaf);
2966 /* Release the reference to the root node. */
2967 if( rc==SQLITE_OK ){
2968 rc = nodeRelease(pRtree, pRoot);
2969 }else{
2970 nodeRelease(pRtree, pRoot);
2973 return rc;
2977 ** Rounding constants for float->double conversion.
2979 #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */
2980 #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */
2982 #if !defined(SQLITE_RTREE_INT_ONLY)
2984 ** Convert an sqlite3_value into an RtreeValue (presumably a float)
2985 ** while taking care to round toward negative or positive, respectively.
2987 static RtreeValue rtreeValueDown(sqlite3_value *v){
2988 double d = sqlite3_value_double(v);
2989 float f = (float)d;
2990 if( f>d ){
2991 f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS));
2993 return f;
2995 static RtreeValue rtreeValueUp(sqlite3_value *v){
2996 double d = sqlite3_value_double(v);
2997 float f = (float)d;
2998 if( f<d ){
2999 f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY));
3001 return f;
3003 #endif /* !defined(SQLITE_RTREE_INT_ONLY) */
3006 ** A constraint has failed while inserting a row into an rtree table.
3007 ** Assuming no OOM error occurs, this function sets the error message
3008 ** (at pRtree->base.zErrMsg) to an appropriate value and returns
3009 ** SQLITE_CONSTRAINT.
3011 ** Parameter iCol is the index of the leftmost column involved in the
3012 ** constraint failure. If it is 0, then the constraint that failed is
3013 ** the unique constraint on the id column. Otherwise, it is the rtree
3014 ** (c1<=c2) constraint on columns iCol and iCol+1 that has failed.
3016 ** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT.
3018 static int rtreeConstraintError(Rtree *pRtree, int iCol){
3019 sqlite3_stmt *pStmt = 0;
3020 char *zSql;
3021 int rc;
3023 assert( iCol==0 || iCol%2 );
3024 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName);
3025 if( zSql ){
3026 rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0);
3027 }else{
3028 rc = SQLITE_NOMEM;
3030 sqlite3_free(zSql);
3032 if( rc==SQLITE_OK ){
3033 if( iCol==0 ){
3034 const char *zCol = sqlite3_column_name(pStmt, 0);
3035 pRtree->base.zErrMsg = sqlite3_mprintf(
3036 "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol
3038 }else{
3039 const char *zCol1 = sqlite3_column_name(pStmt, iCol);
3040 const char *zCol2 = sqlite3_column_name(pStmt, iCol+1);
3041 pRtree->base.zErrMsg = sqlite3_mprintf(
3042 "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2
3047 sqlite3_finalize(pStmt);
3048 return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc);
3054 ** The xUpdate method for rtree module virtual tables.
3056 static int rtreeUpdate(
3057 sqlite3_vtab *pVtab,
3058 int nData,
3059 sqlite3_value **aData,
3060 sqlite_int64 *pRowid
3062 Rtree *pRtree = (Rtree *)pVtab;
3063 int rc = SQLITE_OK;
3064 RtreeCell cell; /* New cell to insert if nData>1 */
3065 int bHaveRowid = 0; /* Set to 1 after new rowid is determined */
3067 rtreeReference(pRtree);
3068 assert(nData>=1);
3070 cell.iRowid = 0; /* Used only to suppress a compiler warning */
3072 /* Constraint handling. A write operation on an r-tree table may return
3073 ** SQLITE_CONSTRAINT for two reasons:
3075 ** 1. A duplicate rowid value, or
3076 ** 2. The supplied data violates the "x2>=x1" constraint.
3078 ** In the first case, if the conflict-handling mode is REPLACE, then
3079 ** the conflicting row can be removed before proceeding. In the second
3080 ** case, SQLITE_CONSTRAINT must be returned regardless of the
3081 ** conflict-handling mode specified by the user.
3083 if( nData>1 ){
3084 int ii;
3085 int nn = nData - 4;
3087 if( nn > pRtree->nDim2 ) nn = pRtree->nDim2;
3088 /* Populate the cell.aCoord[] array. The first coordinate is aData[3].
3090 ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
3091 ** with "column" that are interpreted as table constraints.
3092 ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
3093 ** This problem was discovered after years of use, so we silently ignore
3094 ** these kinds of misdeclared tables to avoid breaking any legacy.
3097 #ifndef SQLITE_RTREE_INT_ONLY
3098 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
3099 for(ii=0; ii<nn; ii+=2){
3100 cell.aCoord[ii].f = rtreeValueDown(aData[ii+3]);
3101 cell.aCoord[ii+1].f = rtreeValueUp(aData[ii+4]);
3102 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
3103 rc = rtreeConstraintError(pRtree, ii+1);
3104 goto constraint;
3107 }else
3108 #endif
3110 for(ii=0; ii<nn; ii+=2){
3111 cell.aCoord[ii].i = sqlite3_value_int(aData[ii+3]);
3112 cell.aCoord[ii+1].i = sqlite3_value_int(aData[ii+4]);
3113 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
3114 rc = rtreeConstraintError(pRtree, ii+1);
3115 goto constraint;
3120 /* If a rowid value was supplied, check if it is already present in
3121 ** the table. If so, the constraint has failed. */
3122 if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){
3123 cell.iRowid = sqlite3_value_int64(aData[2]);
3124 if( sqlite3_value_type(aData[0])==SQLITE_NULL
3125 || sqlite3_value_int64(aData[0])!=cell.iRowid
3127 int steprc;
3128 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
3129 steprc = sqlite3_step(pRtree->pReadRowid);
3130 rc = sqlite3_reset(pRtree->pReadRowid);
3131 if( SQLITE_ROW==steprc ){
3132 if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
3133 rc = rtreeDeleteRowid(pRtree, cell.iRowid);
3134 }else{
3135 rc = rtreeConstraintError(pRtree, 0);
3136 goto constraint;
3140 bHaveRowid = 1;
3144 /* If aData[0] is not an SQL NULL value, it is the rowid of a
3145 ** record to delete from the r-tree table. The following block does
3146 ** just that.
3148 if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){
3149 rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0]));
3152 /* If the aData[] array contains more than one element, elements
3153 ** (aData[2]..aData[argc-1]) contain a new record to insert into
3154 ** the r-tree structure.
3156 if( rc==SQLITE_OK && nData>1 ){
3157 /* Insert the new record into the r-tree */
3158 RtreeNode *pLeaf = 0;
3160 /* Figure out the rowid of the new row. */
3161 if( bHaveRowid==0 ){
3162 rc = newRowid(pRtree, &cell.iRowid);
3164 *pRowid = cell.iRowid;
3166 if( rc==SQLITE_OK ){
3167 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
3169 if( rc==SQLITE_OK ){
3170 int rc2;
3171 pRtree->iReinsertHeight = -1;
3172 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
3173 rc2 = nodeRelease(pRtree, pLeaf);
3174 if( rc==SQLITE_OK ){
3175 rc = rc2;
3178 if( pRtree->nAux ){
3179 sqlite3_stmt *pUp = pRtree->pWriteAux;
3180 int jj;
3181 sqlite3_bind_int64(pUp, 1, *pRowid);
3182 for(jj=0; jj<pRtree->nAux; jj++){
3183 sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]);
3185 sqlite3_step(pUp);
3186 rc = sqlite3_reset(pUp);
3190 constraint:
3191 rtreeRelease(pRtree);
3192 return rc;
3196 ** Called when a transaction starts.
3198 static int rtreeBeginTransaction(sqlite3_vtab *pVtab){
3199 Rtree *pRtree = (Rtree *)pVtab;
3200 assert( pRtree->inWrTrans==0 );
3201 pRtree->inWrTrans++;
3202 return SQLITE_OK;
3206 ** Called when a transaction completes (either by COMMIT or ROLLBACK).
3207 ** The sqlite3_blob object should be released at this point.
3209 static int rtreeEndTransaction(sqlite3_vtab *pVtab){
3210 Rtree *pRtree = (Rtree *)pVtab;
3211 pRtree->inWrTrans = 0;
3212 nodeBlobReset(pRtree);
3213 return SQLITE_OK;
3217 ** The xRename method for rtree module virtual tables.
3219 static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
3220 Rtree *pRtree = (Rtree *)pVtab;
3221 int rc = SQLITE_NOMEM;
3222 char *zSql = sqlite3_mprintf(
3223 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
3224 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
3225 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
3226 , pRtree->zDb, pRtree->zName, zNewName
3227 , pRtree->zDb, pRtree->zName, zNewName
3228 , pRtree->zDb, pRtree->zName, zNewName
3230 if( zSql ){
3231 nodeBlobReset(pRtree);
3232 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
3233 sqlite3_free(zSql);
3235 return rc;
3239 ** The xSavepoint method.
3241 ** This module does not need to do anything to support savepoints. However,
3242 ** it uses this hook to close any open blob handle. This is done because a
3243 ** DROP TABLE command - which fortunately always opens a savepoint - cannot
3244 ** succeed if there are any open blob handles. i.e. if the blob handle were
3245 ** not closed here, the following would fail:
3247 ** BEGIN;
3248 ** INSERT INTO rtree...
3249 ** DROP TABLE <tablename>; -- Would fail with SQLITE_LOCKED
3250 ** COMMIT;
3252 static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){
3253 Rtree *pRtree = (Rtree *)pVtab;
3254 int iwt = pRtree->inWrTrans;
3255 UNUSED_PARAMETER(iSavepoint);
3256 pRtree->inWrTrans = 0;
3257 nodeBlobReset(pRtree);
3258 pRtree->inWrTrans = iwt;
3259 return SQLITE_OK;
3263 ** This function populates the pRtree->nRowEst variable with an estimate
3264 ** of the number of rows in the virtual table. If possible, this is based
3265 ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
3267 static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){
3268 const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
3269 char *zSql;
3270 sqlite3_stmt *p;
3271 int rc;
3272 i64 nRow = 0;
3274 rc = sqlite3_table_column_metadata(
3275 db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0
3277 if( rc!=SQLITE_OK ){
3278 pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
3279 return rc==SQLITE_ERROR ? SQLITE_OK : rc;
3281 zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName);
3282 if( zSql==0 ){
3283 rc = SQLITE_NOMEM;
3284 }else{
3285 rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0);
3286 if( rc==SQLITE_OK ){
3287 if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0);
3288 rc = sqlite3_finalize(p);
3289 }else if( rc!=SQLITE_NOMEM ){
3290 rc = SQLITE_OK;
3293 if( rc==SQLITE_OK ){
3294 if( nRow==0 ){
3295 pRtree->nRowEst = RTREE_DEFAULT_ROWEST;
3296 }else{
3297 pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST);
3300 sqlite3_free(zSql);
3303 return rc;
3306 static sqlite3_module rtreeModule = {
3307 2, /* iVersion */
3308 rtreeCreate, /* xCreate - create a table */
3309 rtreeConnect, /* xConnect - connect to an existing table */
3310 rtreeBestIndex, /* xBestIndex - Determine search strategy */
3311 rtreeDisconnect, /* xDisconnect - Disconnect from a table */
3312 rtreeDestroy, /* xDestroy - Drop a table */
3313 rtreeOpen, /* xOpen - open a cursor */
3314 rtreeClose, /* xClose - close a cursor */
3315 rtreeFilter, /* xFilter - configure scan constraints */
3316 rtreeNext, /* xNext - advance a cursor */
3317 rtreeEof, /* xEof */
3318 rtreeColumn, /* xColumn - read data */
3319 rtreeRowid, /* xRowid - read data */
3320 rtreeUpdate, /* xUpdate - write data */
3321 rtreeBeginTransaction, /* xBegin - begin transaction */
3322 rtreeEndTransaction, /* xSync - sync transaction */
3323 rtreeEndTransaction, /* xCommit - commit transaction */
3324 rtreeEndTransaction, /* xRollback - rollback transaction */
3325 0, /* xFindFunction - function overloading */
3326 rtreeRename, /* xRename - rename the table */
3327 rtreeSavepoint, /* xSavepoint */
3328 0, /* xRelease */
3329 0, /* xRollbackTo */
3332 static int rtreeSqlInit(
3333 Rtree *pRtree,
3334 sqlite3 *db,
3335 const char *zDb,
3336 const char *zPrefix,
3337 int isCreate
3339 int rc = SQLITE_OK;
3341 #define N_STATEMENT 8
3342 static const char *azSql[N_STATEMENT] = {
3343 /* Write the xxx_node table */
3344 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)",
3345 "DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1",
3347 /* Read and write the xxx_rowid table */
3348 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1",
3349 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)",
3350 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1",
3352 /* Read and write the xxx_parent table */
3353 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1",
3354 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)",
3355 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1"
3357 sqlite3_stmt **appStmt[N_STATEMENT];
3358 int i;
3360 pRtree->db = db;
3362 if( isCreate ){
3363 char *zCreate;
3364 sqlite3_str *p = sqlite3_str_new(db);
3365 int ii;
3366 sqlite3_str_appendf(p,
3367 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno",
3368 zDb, zPrefix);
3369 for(ii=0; ii<pRtree->nAux; ii++){
3370 sqlite3_str_appendf(p,",a%d",ii);
3372 sqlite3_str_appendf(p,
3373 ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);",
3374 zDb, zPrefix);
3375 sqlite3_str_appendf(p,
3376 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);",
3377 zDb, zPrefix);
3378 sqlite3_str_appendf(p,
3379 "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))",
3380 zDb, zPrefix, pRtree->iNodeSize);
3381 zCreate = sqlite3_str_finish(p);
3382 if( !zCreate ){
3383 return SQLITE_NOMEM;
3385 rc = sqlite3_exec(db, zCreate, 0, 0, 0);
3386 sqlite3_free(zCreate);
3387 if( rc!=SQLITE_OK ){
3388 return rc;
3392 appStmt[0] = &pRtree->pWriteNode;
3393 appStmt[1] = &pRtree->pDeleteNode;
3394 appStmt[2] = &pRtree->pReadRowid;
3395 appStmt[3] = &pRtree->pWriteRowid;
3396 appStmt[4] = &pRtree->pDeleteRowid;
3397 appStmt[5] = &pRtree->pReadParent;
3398 appStmt[6] = &pRtree->pWriteParent;
3399 appStmt[7] = &pRtree->pDeleteParent;
3401 rc = rtreeQueryStat1(db, pRtree);
3402 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
3403 char *zSql;
3404 const char *zFormat;
3405 if( i!=3 || pRtree->nAux==0 ){
3406 zFormat = azSql[i];
3407 }else {
3408 /* An UPSERT is very slightly slower than REPLACE, but it is needed
3409 ** if there are auxiliary columns */
3410 zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)"
3411 "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno";
3413 zSql = sqlite3_mprintf(zFormat, zDb, zPrefix);
3414 if( zSql ){
3415 rc = sqlite3_prepare_v3(db, zSql, -1, SQLITE_PREPARE_PERSISTENT,
3416 appStmt[i], 0);
3417 }else{
3418 rc = SQLITE_NOMEM;
3420 sqlite3_free(zSql);
3422 if( pRtree->nAux ){
3423 pRtree->zReadAuxSql = sqlite3_mprintf(
3424 "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1",
3425 zDb, zPrefix);
3426 if( pRtree->zReadAuxSql==0 ){
3427 rc = SQLITE_NOMEM;
3428 }else{
3429 sqlite3_str *p = sqlite3_str_new(db);
3430 int ii;
3431 char *zSql;
3432 sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix);
3433 for(ii=0; ii<pRtree->nAux; ii++){
3434 if( ii ) sqlite3_str_append(p, ",", 1);
3435 sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2);
3437 sqlite3_str_appendf(p, " WHERE rowid=?1");
3438 zSql = sqlite3_str_finish(p);
3439 if( zSql==0 ){
3440 rc = SQLITE_NOMEM;
3441 }else{
3442 rc = sqlite3_prepare_v3(db, zSql, -1, SQLITE_PREPARE_PERSISTENT,
3443 &pRtree->pWriteAux, 0);
3444 sqlite3_free(zSql);
3449 return rc;
3453 ** The second argument to this function contains the text of an SQL statement
3454 ** that returns a single integer value. The statement is compiled and executed
3455 ** using database connection db. If successful, the integer value returned
3456 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
3457 ** code is returned and the value of *piVal after returning is not defined.
3459 static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
3460 int rc = SQLITE_NOMEM;
3461 if( zSql ){
3462 sqlite3_stmt *pStmt = 0;
3463 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
3464 if( rc==SQLITE_OK ){
3465 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3466 *piVal = sqlite3_column_int(pStmt, 0);
3468 rc = sqlite3_finalize(pStmt);
3471 return rc;
3475 ** This function is called from within the xConnect() or xCreate() method to
3476 ** determine the node-size used by the rtree table being created or connected
3477 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
3478 ** Otherwise, an SQLite error code is returned.
3480 ** If this function is being called as part of an xConnect(), then the rtree
3481 ** table already exists. In this case the node-size is determined by inspecting
3482 ** the root node of the tree.
3484 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
3485 ** This ensures that each node is stored on a single database page. If the
3486 ** database page-size is so large that more than RTREE_MAXCELLS entries
3487 ** would fit in a single node, use a smaller node-size.
3489 static int getNodeSize(
3490 sqlite3 *db, /* Database handle */
3491 Rtree *pRtree, /* Rtree handle */
3492 int isCreate, /* True for xCreate, false for xConnect */
3493 char **pzErr /* OUT: Error message, if any */
3495 int rc;
3496 char *zSql;
3497 if( isCreate ){
3498 int iPageSize = 0;
3499 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
3500 rc = getIntFromStmt(db, zSql, &iPageSize);
3501 if( rc==SQLITE_OK ){
3502 pRtree->iNodeSize = iPageSize-64;
3503 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
3504 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
3506 }else{
3507 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
3509 }else{
3510 zSql = sqlite3_mprintf(
3511 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
3512 pRtree->zDb, pRtree->zName
3514 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
3515 if( rc!=SQLITE_OK ){
3516 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
3517 }else if( pRtree->iNodeSize<(512-64) ){
3518 rc = SQLITE_CORRUPT_VTAB;
3519 *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"",
3520 pRtree->zName);
3524 sqlite3_free(zSql);
3525 return rc;
3529 ** This function is the implementation of both the xConnect and xCreate
3530 ** methods of the r-tree virtual table.
3532 ** argv[0] -> module name
3533 ** argv[1] -> database name
3534 ** argv[2] -> table name
3535 ** argv[...] -> column names...
3537 static int rtreeInit(
3538 sqlite3 *db, /* Database connection */
3539 void *pAux, /* One of the RTREE_COORD_* constants */
3540 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
3541 sqlite3_vtab **ppVtab, /* OUT: New virtual table */
3542 char **pzErr, /* OUT: Error message, if any */
3543 int isCreate /* True for xCreate, false for xConnect */
3545 int rc = SQLITE_OK;
3546 Rtree *pRtree;
3547 int nDb; /* Length of string argv[1] */
3548 int nName; /* Length of string argv[2] */
3549 int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
3550 sqlite3_str *pSql;
3551 char *zSql;
3552 int ii = 4;
3553 int iErr;
3555 const char *aErrMsg[] = {
3556 0, /* 0 */
3557 "Wrong number of columns for an rtree table", /* 1 */
3558 "Too few columns for an rtree table", /* 2 */
3559 "Too many columns for an rtree table", /* 3 */
3560 "Auxiliary rtree columns must be last" /* 4 */
3563 assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */
3564 if( argc>RTREE_MAX_AUX_COLUMN+3 ){
3565 *pzErr = sqlite3_mprintf("%s", aErrMsg[3]);
3566 return SQLITE_ERROR;
3569 sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
3571 /* Allocate the sqlite3_vtab structure */
3572 nDb = (int)strlen(argv[1]);
3573 nName = (int)strlen(argv[2]);
3574 pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
3575 if( !pRtree ){
3576 return SQLITE_NOMEM;
3578 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
3579 pRtree->nBusy = 1;
3580 pRtree->base.pModule = &rtreeModule;
3581 pRtree->zDb = (char *)&pRtree[1];
3582 pRtree->zName = &pRtree->zDb[nDb+1];
3583 pRtree->eCoordType = (u8)eCoordType;
3584 memcpy(pRtree->zDb, argv[1], nDb);
3585 memcpy(pRtree->zName, argv[2], nName);
3588 /* Create/Connect to the underlying relational database schema. If
3589 ** that is successful, call sqlite3_declare_vtab() to configure
3590 ** the r-tree table schema.
3592 pSql = sqlite3_str_new(db);
3593 sqlite3_str_appendf(pSql, "CREATE TABLE x(%s", argv[3]);
3594 for(ii=4; ii<argc; ii++){
3595 if( argv[ii][0]=='+' ){
3596 pRtree->nAux++;
3597 sqlite3_str_appendf(pSql, ",%s", argv[ii]+1);
3598 }else if( pRtree->nAux>0 ){
3599 break;
3600 }else{
3601 pRtree->nDim2++;
3602 sqlite3_str_appendf(pSql, ",%s", argv[ii]);
3605 sqlite3_str_appendf(pSql, ");");
3606 zSql = sqlite3_str_finish(pSql);
3607 if( !zSql ){
3608 rc = SQLITE_NOMEM;
3609 }else if( ii<argc ){
3610 *pzErr = sqlite3_mprintf("%s", aErrMsg[4]);
3611 rc = SQLITE_ERROR;
3612 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
3613 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
3615 sqlite3_free(zSql);
3616 if( rc ) goto rtreeInit_fail;
3617 pRtree->nDim = pRtree->nDim2/2;
3618 if( pRtree->nDim<1 ){
3619 iErr = 2;
3620 }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){
3621 iErr = 3;
3622 }else if( pRtree->nDim2 % 2 ){
3623 iErr = 1;
3624 }else{
3625 iErr = 0;
3627 if( iErr ){
3628 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
3629 goto rtreeInit_fail;
3631 pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;
3633 /* Figure out the node size to use. */
3634 rc = getNodeSize(db, pRtree, isCreate, pzErr);
3635 if( rc ) goto rtreeInit_fail;
3636 rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate);
3637 if( rc ){
3638 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
3639 goto rtreeInit_fail;
3642 *ppVtab = (sqlite3_vtab *)pRtree;
3643 return SQLITE_OK;
3645 rtreeInit_fail:
3646 if( rc==SQLITE_OK ) rc = SQLITE_ERROR;
3647 assert( *ppVtab==0 );
3648 assert( pRtree->nBusy==1 );
3649 rtreeRelease(pRtree);
3650 return rc;
3655 ** Implementation of a scalar function that decodes r-tree nodes to
3656 ** human readable strings. This can be used for debugging and analysis.
3658 ** The scalar function takes two arguments: (1) the number of dimensions
3659 ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
3660 ** an r-tree node. For a two-dimensional r-tree structure called "rt", to
3661 ** deserialize all nodes, a statement like:
3663 ** SELECT rtreenode(2, data) FROM rt_node;
3665 ** The human readable string takes the form of a Tcl list with one
3666 ** entry for each cell in the r-tree node. Each entry is itself a
3667 ** list, containing the 8-byte rowid/pageno followed by the
3668 ** <num-dimension>*2 coordinates.
3670 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
3671 char *zText = 0;
3672 RtreeNode node;
3673 Rtree tree;
3674 int ii;
3676 UNUSED_PARAMETER(nArg);
3677 memset(&node, 0, sizeof(RtreeNode));
3678 memset(&tree, 0, sizeof(Rtree));
3679 tree.nDim = (u8)sqlite3_value_int(apArg[0]);
3680 tree.nDim2 = tree.nDim*2;
3681 tree.nBytesPerCell = 8 + 8 * tree.nDim;
3682 node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
3684 for(ii=0; ii<NCELL(&node); ii++){
3685 char zCell[512];
3686 int nCell = 0;
3687 RtreeCell cell;
3688 int jj;
3690 nodeGetCell(&tree, &node, ii, &cell);
3691 sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
3692 nCell = (int)strlen(zCell);
3693 for(jj=0; jj<tree.nDim2; jj++){
3694 #ifndef SQLITE_RTREE_INT_ONLY
3695 sqlite3_snprintf(512-nCell,&zCell[nCell], " %g",
3696 (double)cell.aCoord[jj].f);
3697 #else
3698 sqlite3_snprintf(512-nCell,&zCell[nCell], " %d",
3699 cell.aCoord[jj].i);
3700 #endif
3701 nCell = (int)strlen(zCell);
3704 if( zText ){
3705 char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
3706 sqlite3_free(zText);
3707 zText = zTextNew;
3708 }else{
3709 zText = sqlite3_mprintf("{%s}", zCell);
3713 sqlite3_result_text(ctx, zText, -1, sqlite3_free);
3716 /* This routine implements an SQL function that returns the "depth" parameter
3717 ** from the front of a blob that is an r-tree node. For example:
3719 ** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
3721 ** The depth value is 0 for all nodes other than the root node, and the root
3722 ** node always has nodeno=1, so the example above is the primary use for this
3723 ** routine. This routine is intended for testing and analysis only.
3725 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
3726 UNUSED_PARAMETER(nArg);
3727 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
3728 || sqlite3_value_bytes(apArg[0])<2
3730 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
3731 }else{
3732 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
3733 sqlite3_result_int(ctx, readInt16(zBlob));
3738 ** Context object passed between the various routines that make up the
3739 ** implementation of integrity-check function rtreecheck().
3741 typedef struct RtreeCheck RtreeCheck;
3742 struct RtreeCheck {
3743 sqlite3 *db; /* Database handle */
3744 const char *zDb; /* Database containing rtree table */
3745 const char *zTab; /* Name of rtree table */
3746 int bInt; /* True for rtree_i32 table */
3747 int nDim; /* Number of dimensions for this rtree tbl */
3748 sqlite3_stmt *pGetNode; /* Statement used to retrieve nodes */
3749 sqlite3_stmt *aCheckMapping[2]; /* Statements to query %_parent/%_rowid */
3750 int nLeaf; /* Number of leaf cells in table */
3751 int nNonLeaf; /* Number of non-leaf cells in table */
3752 int rc; /* Return code */
3753 char *zReport; /* Message to report */
3754 int nErr; /* Number of lines in zReport */
3757 #define RTREE_CHECK_MAX_ERROR 100
3760 ** Reset SQL statement pStmt. If the sqlite3_reset() call returns an error,
3761 ** and RtreeCheck.rc==SQLITE_OK, set RtreeCheck.rc to the error code.
3763 static void rtreeCheckReset(RtreeCheck *pCheck, sqlite3_stmt *pStmt){
3764 int rc = sqlite3_reset(pStmt);
3765 if( pCheck->rc==SQLITE_OK ) pCheck->rc = rc;
3769 ** The second and subsequent arguments to this function are a format string
3770 ** and printf style arguments. This function formats the string and attempts
3771 ** to compile it as an SQL statement.
3773 ** If successful, a pointer to the new SQL statement is returned. Otherwise,
3774 ** NULL is returned and an error code left in RtreeCheck.rc.
3776 static sqlite3_stmt *rtreeCheckPrepare(
3777 RtreeCheck *pCheck, /* RtreeCheck object */
3778 const char *zFmt, ... /* Format string and trailing args */
3780 va_list ap;
3781 char *z;
3782 sqlite3_stmt *pRet = 0;
3784 va_start(ap, zFmt);
3785 z = sqlite3_vmprintf(zFmt, ap);
3787 if( pCheck->rc==SQLITE_OK ){
3788 if( z==0 ){
3789 pCheck->rc = SQLITE_NOMEM;
3790 }else{
3791 pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0);
3795 sqlite3_free(z);
3796 va_end(ap);
3797 return pRet;
3801 ** The second and subsequent arguments to this function are a printf()
3802 ** style format string and arguments. This function formats the string and
3803 ** appends it to the report being accumuated in pCheck.
3805 static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){
3806 va_list ap;
3807 va_start(ap, zFmt);
3808 if( pCheck->rc==SQLITE_OK && pCheck->nErr<RTREE_CHECK_MAX_ERROR ){
3809 char *z = sqlite3_vmprintf(zFmt, ap);
3810 if( z==0 ){
3811 pCheck->rc = SQLITE_NOMEM;
3812 }else{
3813 pCheck->zReport = sqlite3_mprintf("%z%s%z",
3814 pCheck->zReport, (pCheck->zReport ? "\n" : ""), z
3816 if( pCheck->zReport==0 ){
3817 pCheck->rc = SQLITE_NOMEM;
3820 pCheck->nErr++;
3822 va_end(ap);
3826 ** This function is a no-op if there is already an error code stored
3827 ** in the RtreeCheck object indicated by the first argument. NULL is
3828 ** returned in this case.
3830 ** Otherwise, the contents of rtree table node iNode are loaded from
3831 ** the database and copied into a buffer obtained from sqlite3_malloc().
3832 ** If no error occurs, a pointer to the buffer is returned and (*pnNode)
3833 ** is set to the size of the buffer in bytes.
3835 ** Or, if an error does occur, NULL is returned and an error code left
3836 ** in the RtreeCheck object. The final value of *pnNode is undefined in
3837 ** this case.
3839 static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){
3840 u8 *pRet = 0; /* Return value */
3842 assert( pCheck->rc==SQLITE_OK );
3843 if( pCheck->pGetNode==0 ){
3844 pCheck->pGetNode = rtreeCheckPrepare(pCheck,
3845 "SELECT data FROM %Q.'%q_node' WHERE nodeno=?",
3846 pCheck->zDb, pCheck->zTab
3850 if( pCheck->rc==SQLITE_OK ){
3851 sqlite3_bind_int64(pCheck->pGetNode, 1, iNode);
3852 if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){
3853 int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0);
3854 const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0);
3855 pRet = sqlite3_malloc(nNode);
3856 if( pRet==0 ){
3857 pCheck->rc = SQLITE_NOMEM;
3858 }else{
3859 memcpy(pRet, pNode, nNode);
3860 *pnNode = nNode;
3863 rtreeCheckReset(pCheck, pCheck->pGetNode);
3864 if( pCheck->rc==SQLITE_OK && pRet==0 ){
3865 rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode);
3869 return pRet;
3873 ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid
3874 ** (if bLeaf==1) table contains a specified entry. The schemas of the
3875 ** two tables are:
3877 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
3878 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
3880 ** In both cases, this function checks that there exists an entry with
3881 ** IPK value iKey and the second column set to iVal.
3884 static void rtreeCheckMapping(
3885 RtreeCheck *pCheck, /* RtreeCheck object */
3886 int bLeaf, /* True for a leaf cell, false for interior */
3887 i64 iKey, /* Key for mapping */
3888 i64 iVal /* Expected value for mapping */
3890 int rc;
3891 sqlite3_stmt *pStmt;
3892 const char *azSql[2] = {
3893 "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1",
3894 "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1"
3897 assert( bLeaf==0 || bLeaf==1 );
3898 if( pCheck->aCheckMapping[bLeaf]==0 ){
3899 pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck,
3900 azSql[bLeaf], pCheck->zDb, pCheck->zTab
3903 if( pCheck->rc!=SQLITE_OK ) return;
3905 pStmt = pCheck->aCheckMapping[bLeaf];
3906 sqlite3_bind_int64(pStmt, 1, iKey);
3907 rc = sqlite3_step(pStmt);
3908 if( rc==SQLITE_DONE ){
3909 rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table",
3910 iKey, iVal, (bLeaf ? "%_rowid" : "%_parent")
3912 }else if( rc==SQLITE_ROW ){
3913 i64 ii = sqlite3_column_int64(pStmt, 0);
3914 if( ii!=iVal ){
3915 rtreeCheckAppendMsg(pCheck,
3916 "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)",
3917 iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal
3921 rtreeCheckReset(pCheck, pStmt);
3925 ** Argument pCell points to an array of coordinates stored on an rtree page.
3926 ** This function checks that the coordinates are internally consistent (no
3927 ** x1>x2 conditions) and adds an error message to the RtreeCheck object
3928 ** if they are not.
3930 ** Additionally, if pParent is not NULL, then it is assumed to point to
3931 ** the array of coordinates on the parent page that bound the page
3932 ** containing pCell. In this case it is also verified that the two
3933 ** sets of coordinates are mutually consistent and an error message added
3934 ** to the RtreeCheck object if they are not.
3936 static void rtreeCheckCellCoord(
3937 RtreeCheck *pCheck,
3938 i64 iNode, /* Node id to use in error messages */
3939 int iCell, /* Cell number to use in error messages */
3940 u8 *pCell, /* Pointer to cell coordinates */
3941 u8 *pParent /* Pointer to parent coordinates */
3943 RtreeCoord c1, c2;
3944 RtreeCoord p1, p2;
3945 int i;
3947 for(i=0; i<pCheck->nDim; i++){
3948 readCoord(&pCell[4*2*i], &c1);
3949 readCoord(&pCell[4*(2*i + 1)], &c2);
3951 /* printf("%e, %e\n", c1.u.f, c2.u.f); */
3952 if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){
3953 rtreeCheckAppendMsg(pCheck,
3954 "Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode
3958 if( pParent ){
3959 readCoord(&pParent[4*2*i], &p1);
3960 readCoord(&pParent[4*(2*i + 1)], &p2);
3962 if( (pCheck->bInt ? c1.i<p1.i : c1.f<p1.f)
3963 || (pCheck->bInt ? c2.i>p2.i : c2.f>p2.f)
3965 rtreeCheckAppendMsg(pCheck,
3966 "Dimension %d of cell %d on node %lld is corrupt relative to parent"
3967 , i, iCell, iNode
3975 ** Run rtreecheck() checks on node iNode, which is at depth iDepth within
3976 ** the r-tree structure. Argument aParent points to the array of coordinates
3977 ** that bound node iNode on the parent node.
3979 ** If any problems are discovered, an error message is appended to the
3980 ** report accumulated in the RtreeCheck object.
3982 static void rtreeCheckNode(
3983 RtreeCheck *pCheck,
3984 int iDepth, /* Depth of iNode (0==leaf) */
3985 u8 *aParent, /* Buffer containing parent coords */
3986 i64 iNode /* Node to check */
3988 u8 *aNode = 0;
3989 int nNode = 0;
3991 assert( iNode==1 || aParent!=0 );
3992 assert( pCheck->nDim>0 );
3994 aNode = rtreeCheckGetNode(pCheck, iNode, &nNode);
3995 if( aNode ){
3996 if( nNode<4 ){
3997 rtreeCheckAppendMsg(pCheck,
3998 "Node %lld is too small (%d bytes)", iNode, nNode
4000 }else{
4001 int nCell; /* Number of cells on page */
4002 int i; /* Used to iterate through cells */
4003 if( aParent==0 ){
4004 iDepth = readInt16(aNode);
4005 if( iDepth>RTREE_MAX_DEPTH ){
4006 rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth);
4007 sqlite3_free(aNode);
4008 return;
4011 nCell = readInt16(&aNode[2]);
4012 if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){
4013 rtreeCheckAppendMsg(pCheck,
4014 "Node %lld is too small for cell count of %d (%d bytes)",
4015 iNode, nCell, nNode
4017 }else{
4018 for(i=0; i<nCell; i++){
4019 u8 *pCell = &aNode[4 + i*(8 + pCheck->nDim*2*4)];
4020 i64 iVal = readInt64(pCell);
4021 rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent);
4023 if( iDepth>0 ){
4024 rtreeCheckMapping(pCheck, 0, iVal, iNode);
4025 rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal);
4026 pCheck->nNonLeaf++;
4027 }else{
4028 rtreeCheckMapping(pCheck, 1, iVal, iNode);
4029 pCheck->nLeaf++;
4034 sqlite3_free(aNode);
4039 ** The second argument to this function must be either "_rowid" or
4040 ** "_parent". This function checks that the number of entries in the
4041 ** %_rowid or %_parent table is exactly nExpect. If not, it adds
4042 ** an error message to the report in the RtreeCheck object indicated
4043 ** by the first argument.
4045 static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){
4046 if( pCheck->rc==SQLITE_OK ){
4047 sqlite3_stmt *pCount;
4048 pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'",
4049 pCheck->zDb, pCheck->zTab, zTbl
4051 if( pCount ){
4052 if( sqlite3_step(pCount)==SQLITE_ROW ){
4053 i64 nActual = sqlite3_column_int64(pCount, 0);
4054 if( nActual!=nExpect ){
4055 rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table"
4056 " - expected %lld, actual %lld" , zTbl, nExpect, nActual
4060 pCheck->rc = sqlite3_finalize(pCount);
4066 ** This function does the bulk of the work for the rtree integrity-check.
4067 ** It is called by rtreecheck(), which is the SQL function implementation.
4069 static int rtreeCheckTable(
4070 sqlite3 *db, /* Database handle to access db through */
4071 const char *zDb, /* Name of db ("main", "temp" etc.) */
4072 const char *zTab, /* Name of rtree table to check */
4073 char **pzReport /* OUT: sqlite3_malloc'd report text */
4075 RtreeCheck check; /* Common context for various routines */
4076 sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */
4077 int bEnd = 0; /* True if transaction should be closed */
4078 int nAux = 0; /* Number of extra columns. */
4080 /* Initialize the context object */
4081 memset(&check, 0, sizeof(check));
4082 check.db = db;
4083 check.zDb = zDb;
4084 check.zTab = zTab;
4086 /* If there is not already an open transaction, open one now. This is
4087 ** to ensure that the queries run as part of this integrity-check operate
4088 ** on a consistent snapshot. */
4089 if( sqlite3_get_autocommit(db) ){
4090 check.rc = sqlite3_exec(db, "BEGIN", 0, 0, 0);
4091 bEnd = 1;
4094 /* Find the number of auxiliary columns */
4095 if( check.rc==SQLITE_OK ){
4096 pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab);
4097 if( pStmt ){
4098 nAux = sqlite3_column_count(pStmt) - 2;
4099 sqlite3_finalize(pStmt);
4101 check.rc = SQLITE_OK;
4104 /* Find number of dimensions in the rtree table. */
4105 pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab);
4106 if( pStmt ){
4107 int rc;
4108 check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2;
4109 if( check.nDim<1 ){
4110 rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree");
4111 }else if( SQLITE_ROW==sqlite3_step(pStmt) ){
4112 check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER);
4114 rc = sqlite3_finalize(pStmt);
4115 if( rc!=SQLITE_CORRUPT ) check.rc = rc;
4118 /* Do the actual integrity-check */
4119 if( check.nDim>=1 ){
4120 if( check.rc==SQLITE_OK ){
4121 rtreeCheckNode(&check, 0, 0, 1);
4123 rtreeCheckCount(&check, "_rowid", check.nLeaf);
4124 rtreeCheckCount(&check, "_parent", check.nNonLeaf);
4127 /* Finalize SQL statements used by the integrity-check */
4128 sqlite3_finalize(check.pGetNode);
4129 sqlite3_finalize(check.aCheckMapping[0]);
4130 sqlite3_finalize(check.aCheckMapping[1]);
4132 /* If one was opened, close the transaction */
4133 if( bEnd ){
4134 int rc = sqlite3_exec(db, "END", 0, 0, 0);
4135 if( check.rc==SQLITE_OK ) check.rc = rc;
4137 *pzReport = check.zReport;
4138 return check.rc;
4142 ** Usage:
4144 ** rtreecheck(<rtree-table>);
4145 ** rtreecheck(<database>, <rtree-table>);
4147 ** Invoking this SQL function runs an integrity-check on the named rtree
4148 ** table. The integrity-check verifies the following:
4150 ** 1. For each cell in the r-tree structure (%_node table), that:
4152 ** a) for each dimension, (coord1 <= coord2).
4154 ** b) unless the cell is on the root node, that the cell is bounded
4155 ** by the parent cell on the parent node.
4157 ** c) for leaf nodes, that there is an entry in the %_rowid
4158 ** table corresponding to the cell's rowid value that
4159 ** points to the correct node.
4161 ** d) for cells on non-leaf nodes, that there is an entry in the
4162 ** %_parent table mapping from the cell's child node to the
4163 ** node that it resides on.
4165 ** 2. That there are the same number of entries in the %_rowid table
4166 ** as there are leaf cells in the r-tree structure, and that there
4167 ** is a leaf cell that corresponds to each entry in the %_rowid table.
4169 ** 3. That there are the same number of entries in the %_parent table
4170 ** as there are non-leaf cells in the r-tree structure, and that
4171 ** there is a non-leaf cell that corresponds to each entry in the
4172 ** %_parent table.
4174 static void rtreecheck(
4175 sqlite3_context *ctx,
4176 int nArg,
4177 sqlite3_value **apArg
4179 if( nArg!=1 && nArg!=2 ){
4180 sqlite3_result_error(ctx,
4181 "wrong number of arguments to function rtreecheck()", -1
4183 }else{
4184 int rc;
4185 char *zReport = 0;
4186 const char *zDb = (const char*)sqlite3_value_text(apArg[0]);
4187 const char *zTab;
4188 if( nArg==1 ){
4189 zTab = zDb;
4190 zDb = "main";
4191 }else{
4192 zTab = (const char*)sqlite3_value_text(apArg[1]);
4194 rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport);
4195 if( rc==SQLITE_OK ){
4196 sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT);
4197 }else{
4198 sqlite3_result_error_code(ctx, rc);
4200 sqlite3_free(zReport);
4206 ** Register the r-tree module with database handle db. This creates the
4207 ** virtual table module "rtree" and the debugging/analysis scalar
4208 ** function "rtreenode".
4210 int sqlite3RtreeInit(sqlite3 *db){
4211 const int utf8 = SQLITE_UTF8;
4212 int rc;
4214 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
4215 if( rc==SQLITE_OK ){
4216 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
4218 if( rc==SQLITE_OK ){
4219 rc = sqlite3_create_function(db, "rtreecheck", -1, utf8, 0,rtreecheck, 0,0);
4221 if( rc==SQLITE_OK ){
4222 #ifdef SQLITE_RTREE_INT_ONLY
4223 void *c = (void *)RTREE_COORD_INT32;
4224 #else
4225 void *c = (void *)RTREE_COORD_REAL32;
4226 #endif
4227 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
4229 if( rc==SQLITE_OK ){
4230 void *c = (void *)RTREE_COORD_INT32;
4231 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
4234 return rc;
4238 ** This routine deletes the RtreeGeomCallback object that was attached
4239 ** one of the SQL functions create by sqlite3_rtree_geometry_callback()
4240 ** or sqlite3_rtree_query_callback(). In other words, this routine is the
4241 ** destructor for an RtreeGeomCallback objecct. This routine is called when
4242 ** the corresponding SQL function is deleted.
4244 static void rtreeFreeCallback(void *p){
4245 RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p;
4246 if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext);
4247 sqlite3_free(p);
4251 ** This routine frees the BLOB that is returned by geomCallback().
4253 static void rtreeMatchArgFree(void *pArg){
4254 int i;
4255 RtreeMatchArg *p = (RtreeMatchArg*)pArg;
4256 for(i=0; i<p->nParam; i++){
4257 sqlite3_value_free(p->apSqlParam[i]);
4259 sqlite3_free(p);
4263 ** Each call to sqlite3_rtree_geometry_callback() or
4264 ** sqlite3_rtree_query_callback() creates an ordinary SQLite
4265 ** scalar function that is implemented by this routine.
4267 ** All this function does is construct an RtreeMatchArg object that
4268 ** contains the geometry-checking callback routines and a list of
4269 ** parameters to this function, then return that RtreeMatchArg object
4270 ** as a BLOB.
4272 ** The R-Tree MATCH operator will read the returned BLOB, deserialize
4273 ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
4274 ** out which elements of the R-Tree should be returned by the query.
4276 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
4277 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
4278 RtreeMatchArg *pBlob;
4279 int nBlob;
4280 int memErr = 0;
4282 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue)
4283 + nArg*sizeof(sqlite3_value*);
4284 pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
4285 if( !pBlob ){
4286 sqlite3_result_error_nomem(ctx);
4287 }else{
4288 int i;
4289 pBlob->iSize = nBlob;
4290 pBlob->cb = pGeomCtx[0];
4291 pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg];
4292 pBlob->nParam = nArg;
4293 for(i=0; i<nArg; i++){
4294 pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]);
4295 if( pBlob->apSqlParam[i]==0 ) memErr = 1;
4296 #ifdef SQLITE_RTREE_INT_ONLY
4297 pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
4298 #else
4299 pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
4300 #endif
4302 if( memErr ){
4303 sqlite3_result_error_nomem(ctx);
4304 rtreeMatchArgFree(pBlob);
4305 }else{
4306 sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree);
4312 ** Register a new geometry function for use with the r-tree MATCH operator.
4314 int sqlite3_rtree_geometry_callback(
4315 sqlite3 *db, /* Register SQL function on this connection */
4316 const char *zGeom, /* Name of the new SQL function */
4317 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */
4318 void *pContext /* Extra data associated with the callback */
4320 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
4322 /* Allocate and populate the context object. */
4323 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
4324 if( !pGeomCtx ) return SQLITE_NOMEM;
4325 pGeomCtx->xGeom = xGeom;
4326 pGeomCtx->xQueryFunc = 0;
4327 pGeomCtx->xDestructor = 0;
4328 pGeomCtx->pContext = pContext;
4329 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
4330 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
4335 ** Register a new 2nd-generation geometry function for use with the
4336 ** r-tree MATCH operator.
4338 int sqlite3_rtree_query_callback(
4339 sqlite3 *db, /* Register SQL function on this connection */
4340 const char *zQueryFunc, /* Name of new SQL function */
4341 int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */
4342 void *pContext, /* Extra data passed into the callback */
4343 void (*xDestructor)(void*) /* Destructor for the extra data */
4345 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
4347 /* Allocate and populate the context object. */
4348 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
4349 if( !pGeomCtx ) return SQLITE_NOMEM;
4350 pGeomCtx->xGeom = 0;
4351 pGeomCtx->xQueryFunc = xQueryFunc;
4352 pGeomCtx->xDestructor = xDestructor;
4353 pGeomCtx->pContext = pContext;
4354 return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY,
4355 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback
4359 #if !SQLITE_CORE
4360 #ifdef _WIN32
4361 __declspec(dllexport)
4362 #endif
4363 int sqlite3_rtree_init(
4364 sqlite3 *db,
4365 char **pzErrMsg,
4366 const sqlite3_api_routines *pApi
4368 SQLITE_EXTENSION_INIT2(pApi)
4369 return sqlite3RtreeInit(db);
4371 #endif
4373 #endif