Identify Select objects within a single statement using small sequential
[sqlite.git] / src / wherecode.c
blob3bb220d2edcb530358f90f5c475b83563a9bde9c
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
20 #include "sqliteInt.h"
21 #include "whereInt.h"
23 #ifndef SQLITE_OMIT_EXPLAIN
26 ** Return the name of the i-th column of the pIdx index.
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29 i = pIdx->aiColumn[i];
30 if( i==XN_EXPR ) return "<expr>";
31 if( i==XN_ROWID ) return "rowid";
32 return pIdx->pTable->aCol[i].zName;
36 ** This routine is a helper for explainIndexRange() below
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time. This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
43 static void explainAppendTerm(
44 StrAccum *pStr, /* The text expression being built */
45 Index *pIdx, /* Index to read column names from */
46 int nTerm, /* Number of terms */
47 int iTerm, /* Zero-based index of first term. */
48 int bAnd, /* Non-zero to append " AND " */
49 const char *zOp /* Name of the operator */
51 int i;
53 assert( nTerm>=1 );
54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57 for(i=0; i<nTerm; i++){
58 if( i ) sqlite3_str_append(pStr, ",", 1);
59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
63 sqlite3_str_append(pStr, zOp, 1);
65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66 for(i=0; i<nTerm; i++){
67 if( i ) sqlite3_str_append(pStr, ",", 1);
68 sqlite3_str_append(pStr, "?", 1);
70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
78 ** For example, if the query:
80 ** SELECT * FROM t1 WHERE a=1 AND b>2;
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
85 ** "a=? AND b>?"
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88 Index *pIndex = pLoop->u.btree.pIndex;
89 u16 nEq = pLoop->u.btree.nEq;
90 u16 nSkip = pLoop->nSkip;
91 int i, j;
93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94 sqlite3_str_append(pStr, " (", 2);
95 for(i=0; i<nEq; i++){
96 const char *z = explainIndexColumnName(pIndex, i);
97 if( i ) sqlite3_str_append(pStr, " AND ", 5);
98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
101 j = i;
102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104 i = 1;
106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
109 sqlite3_str_append(pStr, ")", 1);
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
121 int sqlite3WhereExplainOneScan(
122 Parse *pParse, /* Parse context */
123 SrcList *pTabList, /* Table list this loop refers to */
124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
127 int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129 if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
132 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
133 Vdbe *v = pParse->pVdbe; /* VM being constructed */
134 sqlite3 *db = pParse->db; /* Database handle */
135 int isSearch; /* True for a SEARCH. False for SCAN. */
136 WhereLoop *pLoop; /* The controlling WhereLoop object */
137 u32 flags; /* Flags that describe this loop */
138 char *zMsg; /* Text to add to EQP output */
139 StrAccum str; /* EQP output string */
140 char zBuf[100]; /* Initial space for EQP output string */
142 pLoop = pLevel->pWLoop;
143 flags = pLoop->wsFlags;
144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151 sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN");
152 if( pItem->pSelect ){
153 sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId);
154 }else{
155 sqlite3_str_appendf(&str, " TABLE %s", pItem->zName);
158 if( pItem->zAlias ){
159 sqlite3_str_appendf(&str, " AS %s", pItem->zAlias);
161 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
162 const char *zFmt = 0;
163 Index *pIdx;
165 assert( pLoop->u.btree.pIndex!=0 );
166 pIdx = pLoop->u.btree.pIndex;
167 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
168 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
169 if( isSearch ){
170 zFmt = "PRIMARY KEY";
172 }else if( flags & WHERE_PARTIALIDX ){
173 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
174 }else if( flags & WHERE_AUTO_INDEX ){
175 zFmt = "AUTOMATIC COVERING INDEX";
176 }else if( flags & WHERE_IDX_ONLY ){
177 zFmt = "COVERING INDEX %s";
178 }else{
179 zFmt = "INDEX %s";
181 if( zFmt ){
182 sqlite3_str_append(&str, " USING ", 7);
183 sqlite3_str_appendf(&str, zFmt, pIdx->zName);
184 explainIndexRange(&str, pLoop);
186 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
187 const char *zRangeOp;
188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189 zRangeOp = "=";
190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191 zRangeOp = ">? AND rowid<";
192 }else if( flags&WHERE_BTM_LIMIT ){
193 zRangeOp = ">";
194 }else{
195 assert( flags&WHERE_TOP_LIMIT);
196 zRangeOp = "<";
198 sqlite3_str_appendf(&str,
199 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
206 #endif
207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
208 if( pLoop->nOut>=10 ){
209 sqlite3_str_appendf(&str, " (~%llu rows)",
210 sqlite3LogEstToInt(pLoop->nOut));
211 }else{
212 sqlite3_str_append(&str, " (~1 row)", 9);
214 #endif
215 zMsg = sqlite3StrAccumFinish(&str);
216 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
217 pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
219 return ret;
221 #endif /* SQLITE_OMIT_EXPLAIN */
223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
225 ** Configure the VM passed as the first argument with an
226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
228 ** clause that the scan reads data from.
230 ** If argument addrExplain is not 0, it must be the address of an
231 ** OP_Explain instruction that describes the same loop.
233 void sqlite3WhereAddScanStatus(
234 Vdbe *v, /* Vdbe to add scanstatus entry to */
235 SrcList *pSrclist, /* FROM clause pLvl reads data from */
236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
237 int addrExplain /* Address of OP_Explain (or 0) */
239 const char *zObj = 0;
240 WhereLoop *pLoop = pLvl->pWLoop;
241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
242 zObj = pLoop->u.btree.pIndex->zName;
243 }else{
244 zObj = pSrclist->a[pLvl->iFrom].zName;
246 sqlite3VdbeScanStatus(
247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
250 #endif
254 ** Disable a term in the WHERE clause. Except, do not disable the term
255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
256 ** or USING clause of that join.
258 ** Consider the term t2.z='ok' in the following queries:
260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
264 ** The t2.z='ok' is disabled in the in (2) because it originates
265 ** in the ON clause. The term is disabled in (3) because it is not part
266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
268 ** Disabling a term causes that term to not be tested in the inner loop
269 ** of the join. Disabling is an optimization. When terms are satisfied
270 ** by indices, we disable them to prevent redundant tests in the inner
271 ** loop. We would get the correct results if nothing were ever disabled,
272 ** but joins might run a little slower. The trick is to disable as much
273 ** as we can without disabling too much. If we disabled in (1), we'd get
274 ** the wrong answer. See ticket #813.
276 ** If all the children of a term are disabled, then that term is also
277 ** automatically disabled. In this way, terms get disabled if derived
278 ** virtual terms are tested first. For example:
280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
281 ** \___________/ \______/ \_____/
282 ** parent child1 child2
284 ** Only the parent term was in the original WHERE clause. The child1
285 ** and child2 terms were added by the LIKE optimization. If both of
286 ** the virtual child terms are valid, then testing of the parent can be
287 ** skipped.
289 ** Usually the parent term is marked as TERM_CODED. But if the parent
290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
291 ** The TERM_LIKECOND marking indicates that the term should be coded inside
292 ** a conditional such that is only evaluated on the second pass of a
293 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
296 int nLoop = 0;
297 assert( pTerm!=0 );
298 while( (pTerm->wtFlags & TERM_CODED)==0
299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300 && (pLevel->notReady & pTerm->prereqAll)==0
302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
303 pTerm->wtFlags |= TERM_LIKECOND;
304 }else{
305 pTerm->wtFlags |= TERM_CODED;
307 if( pTerm->iParent<0 ) break;
308 pTerm = &pTerm->pWC->a[pTerm->iParent];
309 assert( pTerm!=0 );
310 pTerm->nChild--;
311 if( pTerm->nChild!=0 ) break;
312 nLoop++;
317 ** Code an OP_Affinity opcode to apply the column affinity string zAff
318 ** to the n registers starting at base.
320 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
321 ** beginning and end of zAff are ignored. If all entries in zAff are
322 ** SQLITE_AFF_BLOB, then no code gets generated.
324 ** This routine makes its own copy of zAff so that the caller is free
325 ** to modify zAff after this routine returns.
327 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
328 Vdbe *v = pParse->pVdbe;
329 if( zAff==0 ){
330 assert( pParse->db->mallocFailed );
331 return;
333 assert( v!=0 );
335 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
336 ** and end of the affinity string.
338 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
339 n--;
340 base++;
341 zAff++;
343 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
344 n--;
347 /* Code the OP_Affinity opcode if there is anything left to do. */
348 if( n>0 ){
349 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
350 sqlite3ExprCacheAffinityChange(pParse, base, n);
355 ** Expression pRight, which is the RHS of a comparison operation, is
356 ** either a vector of n elements or, if n==1, a scalar expression.
357 ** Before the comparison operation, affinity zAff is to be applied
358 ** to the pRight values. This function modifies characters within the
359 ** affinity string to SQLITE_AFF_BLOB if either:
361 ** * the comparison will be performed with no affinity, or
362 ** * the affinity change in zAff is guaranteed not to change the value.
364 static void updateRangeAffinityStr(
365 Expr *pRight, /* RHS of comparison */
366 int n, /* Number of vector elements in comparison */
367 char *zAff /* Affinity string to modify */
369 int i;
370 for(i=0; i<n; i++){
371 Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
372 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
373 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
375 zAff[i] = SQLITE_AFF_BLOB;
382 ** pX is an expression of the form: (vector) IN (SELECT ...)
383 ** In other words, it is a vector IN operator with a SELECT clause on the
384 ** LHS. But not all terms in the vector are indexable and the terms might
385 ** not be in the correct order for indexing.
387 ** This routine makes a copy of the input pX expression and then adjusts
388 ** the vector on the LHS with corresponding changes to the SELECT so that
389 ** the vector contains only index terms and those terms are in the correct
390 ** order. The modified IN expression is returned. The caller is responsible
391 ** for deleting the returned expression.
393 ** Example:
395 ** CREATE TABLE t1(a,b,c,d,e,f);
396 ** CREATE INDEX t1x1 ON t1(e,c);
397 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
398 ** \_______________________________________/
399 ** The pX expression
401 ** Since only columns e and c can be used with the index, in that order,
402 ** the modified IN expression that is returned will be:
404 ** (e,c) IN (SELECT z,x FROM t2)
406 ** The reduced pX is different from the original (obviously) and thus is
407 ** only used for indexing, to improve performance. The original unaltered
408 ** IN expression must also be run on each output row for correctness.
410 static Expr *removeUnindexableInClauseTerms(
411 Parse *pParse, /* The parsing context */
412 int iEq, /* Look at loop terms starting here */
413 WhereLoop *pLoop, /* The current loop */
414 Expr *pX /* The IN expression to be reduced */
416 sqlite3 *db = pParse->db;
417 Expr *pNew = sqlite3ExprDup(db, pX, 0);
418 if( db->mallocFailed==0 ){
419 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */
420 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */
421 ExprList *pRhs = 0; /* New RHS after modifications */
422 ExprList *pLhs = 0; /* New LHS after mods */
423 int i; /* Loop counter */
424 Select *pSelect; /* Pointer to the SELECT on the RHS */
426 for(i=iEq; i<pLoop->nLTerm; i++){
427 if( pLoop->aLTerm[i]->pExpr==pX ){
428 int iField = pLoop->aLTerm[i]->iField - 1;
429 assert( pOrigRhs->a[iField].pExpr!=0 );
430 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
431 pOrigRhs->a[iField].pExpr = 0;
432 assert( pOrigLhs->a[iField].pExpr!=0 );
433 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
434 pOrigLhs->a[iField].pExpr = 0;
437 sqlite3ExprListDelete(db, pOrigRhs);
438 sqlite3ExprListDelete(db, pOrigLhs);
439 pNew->pLeft->x.pList = pLhs;
440 pNew->x.pSelect->pEList = pRhs;
441 if( pLhs && pLhs->nExpr==1 ){
442 /* Take care here not to generate a TK_VECTOR containing only a
443 ** single value. Since the parser never creates such a vector, some
444 ** of the subroutines do not handle this case. */
445 Expr *p = pLhs->a[0].pExpr;
446 pLhs->a[0].pExpr = 0;
447 sqlite3ExprDelete(db, pNew->pLeft);
448 pNew->pLeft = p;
450 pSelect = pNew->x.pSelect;
451 if( pSelect->pOrderBy ){
452 /* If the SELECT statement has an ORDER BY clause, zero the
453 ** iOrderByCol variables. These are set to non-zero when an
454 ** ORDER BY term exactly matches one of the terms of the
455 ** result-set. Since the result-set of the SELECT statement may
456 ** have been modified or reordered, these variables are no longer
457 ** set correctly. Since setting them is just an optimization,
458 ** it's easiest just to zero them here. */
459 ExprList *pOrderBy = pSelect->pOrderBy;
460 for(i=0; i<pOrderBy->nExpr; i++){
461 pOrderBy->a[i].u.x.iOrderByCol = 0;
465 #if 0
466 printf("For indexing, change the IN expr:\n");
467 sqlite3TreeViewExpr(0, pX, 0);
468 printf("Into:\n");
469 sqlite3TreeViewExpr(0, pNew, 0);
470 #endif
472 return pNew;
477 ** Generate code for a single equality term of the WHERE clause. An equality
478 ** term can be either X=expr or X IN (...). pTerm is the term to be
479 ** coded.
481 ** The current value for the constraint is left in a register, the index
482 ** of which is returned. An attempt is made store the result in iTarget but
483 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
484 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
485 ** some other register and it is the caller's responsibility to compensate.
487 ** For a constraint of the form X=expr, the expression is evaluated in
488 ** straight-line code. For constraints of the form X IN (...)
489 ** this routine sets up a loop that will iterate over all values of X.
491 static int codeEqualityTerm(
492 Parse *pParse, /* The parsing context */
493 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
494 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
495 int iEq, /* Index of the equality term within this level */
496 int bRev, /* True for reverse-order IN operations */
497 int iTarget /* Attempt to leave results in this register */
499 Expr *pX = pTerm->pExpr;
500 Vdbe *v = pParse->pVdbe;
501 int iReg; /* Register holding results */
503 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
504 assert( iTarget>0 );
505 if( pX->op==TK_EQ || pX->op==TK_IS ){
506 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
507 }else if( pX->op==TK_ISNULL ){
508 iReg = iTarget;
509 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
510 #ifndef SQLITE_OMIT_SUBQUERY
511 }else{
512 int eType = IN_INDEX_NOOP;
513 int iTab;
514 struct InLoop *pIn;
515 WhereLoop *pLoop = pLevel->pWLoop;
516 int i;
517 int nEq = 0;
518 int *aiMap = 0;
520 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
521 && pLoop->u.btree.pIndex!=0
522 && pLoop->u.btree.pIndex->aSortOrder[iEq]
524 testcase( iEq==0 );
525 testcase( bRev );
526 bRev = !bRev;
528 assert( pX->op==TK_IN );
529 iReg = iTarget;
531 for(i=0; i<iEq; i++){
532 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
533 disableTerm(pLevel, pTerm);
534 return iTarget;
537 for(i=iEq;i<pLoop->nLTerm; i++){
538 assert( pLoop->aLTerm[i]!=0 );
539 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
542 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
543 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
544 }else{
545 sqlite3 *db = pParse->db;
546 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
548 if( !db->mallocFailed ){
549 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
550 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
551 pTerm->pExpr->iTable = pX->iTable;
553 sqlite3ExprDelete(db, pX);
554 pX = pTerm->pExpr;
557 if( eType==IN_INDEX_INDEX_DESC ){
558 testcase( bRev );
559 bRev = !bRev;
561 iTab = pX->iTable;
562 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
563 VdbeCoverageIf(v, bRev);
564 VdbeCoverageIf(v, !bRev);
565 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
567 pLoop->wsFlags |= WHERE_IN_ABLE;
568 if( pLevel->u.in.nIn==0 ){
569 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
572 i = pLevel->u.in.nIn;
573 pLevel->u.in.nIn += nEq;
574 pLevel->u.in.aInLoop =
575 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
576 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
577 pIn = pLevel->u.in.aInLoop;
578 if( pIn ){
579 int iMap = 0; /* Index in aiMap[] */
580 pIn += i;
581 for(i=iEq;i<pLoop->nLTerm; i++){
582 if( pLoop->aLTerm[i]->pExpr==pX ){
583 int iOut = iReg + i - iEq;
584 if( eType==IN_INDEX_ROWID ){
585 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */
586 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
587 }else{
588 int iCol = aiMap ? aiMap[iMap++] : 0;
589 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
591 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
592 if( i==iEq ){
593 pIn->iCur = iTab;
594 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
595 if( iEq>0 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){
596 pIn->iBase = iReg - i;
597 pIn->nPrefix = i;
598 pLoop->wsFlags |= WHERE_IN_EARLYOUT;
599 }else{
600 pIn->nPrefix = 0;
602 }else{
603 pIn->eEndLoopOp = OP_Noop;
605 pIn++;
608 }else{
609 pLevel->u.in.nIn = 0;
611 sqlite3DbFree(pParse->db, aiMap);
612 #endif
614 disableTerm(pLevel, pTerm);
615 return iReg;
619 ** Generate code that will evaluate all == and IN constraints for an
620 ** index scan.
622 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
623 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
624 ** The index has as many as three equality constraints, but in this
625 ** example, the third "c" value is an inequality. So only two
626 ** constraints are coded. This routine will generate code to evaluate
627 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
628 ** in consecutive registers and the index of the first register is returned.
630 ** In the example above nEq==2. But this subroutine works for any value
631 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
632 ** The only thing it does is allocate the pLevel->iMem memory cell and
633 ** compute the affinity string.
635 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
636 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
637 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
638 ** occurs after the nEq quality constraints.
640 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
641 ** the index of the first memory cell in that range. The code that
642 ** calls this routine will use that memory range to store keys for
643 ** start and termination conditions of the loop.
644 ** key value of the loop. If one or more IN operators appear, then
645 ** this routine allocates an additional nEq memory cells for internal
646 ** use.
648 ** Before returning, *pzAff is set to point to a buffer containing a
649 ** copy of the column affinity string of the index allocated using
650 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
651 ** with equality constraints that use BLOB or NONE affinity are set to
652 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
654 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
655 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
657 ** In the example above, the index on t1(a) has TEXT affinity. But since
658 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
659 ** no conversion should be attempted before using a t2.b value as part of
660 ** a key to search the index. Hence the first byte in the returned affinity
661 ** string in this example would be set to SQLITE_AFF_BLOB.
663 static int codeAllEqualityTerms(
664 Parse *pParse, /* Parsing context */
665 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
666 int bRev, /* Reverse the order of IN operators */
667 int nExtraReg, /* Number of extra registers to allocate */
668 char **pzAff /* OUT: Set to point to affinity string */
670 u16 nEq; /* The number of == or IN constraints to code */
671 u16 nSkip; /* Number of left-most columns to skip */
672 Vdbe *v = pParse->pVdbe; /* The vm under construction */
673 Index *pIdx; /* The index being used for this loop */
674 WhereTerm *pTerm; /* A single constraint term */
675 WhereLoop *pLoop; /* The WhereLoop object */
676 int j; /* Loop counter */
677 int regBase; /* Base register */
678 int nReg; /* Number of registers to allocate */
679 char *zAff; /* Affinity string to return */
681 /* This module is only called on query plans that use an index. */
682 pLoop = pLevel->pWLoop;
683 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
684 nEq = pLoop->u.btree.nEq;
685 nSkip = pLoop->nSkip;
686 pIdx = pLoop->u.btree.pIndex;
687 assert( pIdx!=0 );
689 /* Figure out how many memory cells we will need then allocate them.
691 regBase = pParse->nMem + 1;
692 nReg = pLoop->u.btree.nEq + nExtraReg;
693 pParse->nMem += nReg;
695 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
696 assert( zAff!=0 || pParse->db->mallocFailed );
698 if( nSkip ){
699 int iIdxCur = pLevel->iIdxCur;
700 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
701 VdbeCoverageIf(v, bRev==0);
702 VdbeCoverageIf(v, bRev!=0);
703 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
704 j = sqlite3VdbeAddOp0(v, OP_Goto);
705 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
706 iIdxCur, 0, regBase, nSkip);
707 VdbeCoverageIf(v, bRev==0);
708 VdbeCoverageIf(v, bRev!=0);
709 sqlite3VdbeJumpHere(v, j);
710 for(j=0; j<nSkip; j++){
711 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
712 testcase( pIdx->aiColumn[j]==XN_EXPR );
713 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
717 /* Evaluate the equality constraints
719 assert( zAff==0 || (int)strlen(zAff)>=nEq );
720 for(j=nSkip; j<nEq; j++){
721 int r1;
722 pTerm = pLoop->aLTerm[j];
723 assert( pTerm!=0 );
724 /* The following testcase is true for indices with redundant columns.
725 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
726 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
727 testcase( pTerm->wtFlags & TERM_VIRTUAL );
728 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
729 if( r1!=regBase+j ){
730 if( nReg==1 ){
731 sqlite3ReleaseTempReg(pParse, regBase);
732 regBase = r1;
733 }else{
734 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
737 if( pTerm->eOperator & WO_IN ){
738 if( pTerm->pExpr->flags & EP_xIsSelect ){
739 /* No affinity ever needs to be (or should be) applied to a value
740 ** from the RHS of an "? IN (SELECT ...)" expression. The
741 ** sqlite3FindInIndex() routine has already ensured that the
742 ** affinity of the comparison has been applied to the value. */
743 if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
745 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
746 Expr *pRight = pTerm->pExpr->pRight;
747 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
748 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
749 VdbeCoverage(v);
751 if( zAff ){
752 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
753 zAff[j] = SQLITE_AFF_BLOB;
755 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
756 zAff[j] = SQLITE_AFF_BLOB;
761 *pzAff = zAff;
762 return regBase;
765 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
767 ** If the most recently coded instruction is a constant range constraint
768 ** (a string literal) that originated from the LIKE optimization, then
769 ** set P3 and P5 on the OP_String opcode so that the string will be cast
770 ** to a BLOB at appropriate times.
772 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
773 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
774 ** scan loop run twice, once for strings and a second time for BLOBs.
775 ** The OP_String opcodes on the second pass convert the upper and lower
776 ** bound string constants to blobs. This routine makes the necessary changes
777 ** to the OP_String opcodes for that to happen.
779 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
780 ** only the one pass through the string space is required, so this routine
781 ** becomes a no-op.
783 static void whereLikeOptimizationStringFixup(
784 Vdbe *v, /* prepared statement under construction */
785 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
786 WhereTerm *pTerm /* The upper or lower bound just coded */
788 if( pTerm->wtFlags & TERM_LIKEOPT ){
789 VdbeOp *pOp;
790 assert( pLevel->iLikeRepCntr>0 );
791 pOp = sqlite3VdbeGetOp(v, -1);
792 assert( pOp!=0 );
793 assert( pOp->opcode==OP_String8
794 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
795 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
796 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
799 #else
800 # define whereLikeOptimizationStringFixup(A,B,C)
801 #endif
803 #ifdef SQLITE_ENABLE_CURSOR_HINTS
805 ** Information is passed from codeCursorHint() down to individual nodes of
806 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
807 ** structure.
809 struct CCurHint {
810 int iTabCur; /* Cursor for the main table */
811 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
812 Index *pIdx; /* The index used to access the table */
816 ** This function is called for every node of an expression that is a candidate
817 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
818 ** the table CCurHint.iTabCur, verify that the same column can be
819 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
821 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
822 struct CCurHint *pHint = pWalker->u.pCCurHint;
823 assert( pHint->pIdx!=0 );
824 if( pExpr->op==TK_COLUMN
825 && pExpr->iTable==pHint->iTabCur
826 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
828 pWalker->eCode = 1;
830 return WRC_Continue;
834 ** Test whether or not expression pExpr, which was part of a WHERE clause,
835 ** should be included in the cursor-hint for a table that is on the rhs
836 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
837 ** expression is not suitable.
839 ** An expression is unsuitable if it might evaluate to non NULL even if
840 ** a TK_COLUMN node that does affect the value of the expression is set
841 ** to NULL. For example:
843 ** col IS NULL
844 ** col IS NOT NULL
845 ** coalesce(col, 1)
846 ** CASE WHEN col THEN 0 ELSE 1 END
848 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
849 if( pExpr->op==TK_IS
850 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
851 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
853 pWalker->eCode = 1;
854 }else if( pExpr->op==TK_FUNCTION ){
855 int d1;
856 char d2[4];
857 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
858 pWalker->eCode = 1;
862 return WRC_Continue;
867 ** This function is called on every node of an expression tree used as an
868 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
869 ** that accesses any table other than the one identified by
870 ** CCurHint.iTabCur, then do the following:
872 ** 1) allocate a register and code an OP_Column instruction to read
873 ** the specified column into the new register, and
875 ** 2) transform the expression node to a TK_REGISTER node that reads
876 ** from the newly populated register.
878 ** Also, if the node is a TK_COLUMN that does access the table idenified
879 ** by pCCurHint.iTabCur, and an index is being used (which we will
880 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
881 ** an access of the index rather than the original table.
883 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
884 int rc = WRC_Continue;
885 struct CCurHint *pHint = pWalker->u.pCCurHint;
886 if( pExpr->op==TK_COLUMN ){
887 if( pExpr->iTable!=pHint->iTabCur ){
888 Vdbe *v = pWalker->pParse->pVdbe;
889 int reg = ++pWalker->pParse->nMem; /* Register for column value */
890 sqlite3ExprCodeGetColumnOfTable(
891 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
893 pExpr->op = TK_REGISTER;
894 pExpr->iTable = reg;
895 }else if( pHint->pIdx!=0 ){
896 pExpr->iTable = pHint->iIdxCur;
897 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
898 assert( pExpr->iColumn>=0 );
900 }else if( pExpr->op==TK_AGG_FUNCTION ){
901 /* An aggregate function in the WHERE clause of a query means this must
902 ** be a correlated sub-query, and expression pExpr is an aggregate from
903 ** the parent context. Do not walk the function arguments in this case.
905 ** todo: It should be possible to replace this node with a TK_REGISTER
906 ** expression, as the result of the expression must be stored in a
907 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
908 rc = WRC_Prune;
910 return rc;
914 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
916 static void codeCursorHint(
917 struct SrcList_item *pTabItem, /* FROM clause item */
918 WhereInfo *pWInfo, /* The where clause */
919 WhereLevel *pLevel, /* Which loop to provide hints for */
920 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
922 Parse *pParse = pWInfo->pParse;
923 sqlite3 *db = pParse->db;
924 Vdbe *v = pParse->pVdbe;
925 Expr *pExpr = 0;
926 WhereLoop *pLoop = pLevel->pWLoop;
927 int iCur;
928 WhereClause *pWC;
929 WhereTerm *pTerm;
930 int i, j;
931 struct CCurHint sHint;
932 Walker sWalker;
934 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
935 iCur = pLevel->iTabCur;
936 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
937 sHint.iTabCur = iCur;
938 sHint.iIdxCur = pLevel->iIdxCur;
939 sHint.pIdx = pLoop->u.btree.pIndex;
940 memset(&sWalker, 0, sizeof(sWalker));
941 sWalker.pParse = pParse;
942 sWalker.u.pCCurHint = &sHint;
943 pWC = &pWInfo->sWC;
944 for(i=0; i<pWC->nTerm; i++){
945 pTerm = &pWC->a[i];
946 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
947 if( pTerm->prereqAll & pLevel->notReady ) continue;
949 /* Any terms specified as part of the ON(...) clause for any LEFT
950 ** JOIN for which the current table is not the rhs are omitted
951 ** from the cursor-hint.
953 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
954 ** that were specified as part of the WHERE clause must be excluded.
955 ** This is to address the following:
957 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
959 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
960 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
961 ** pushed down to the cursor, this row is filtered out, causing
962 ** SQLite to synthesize a row of NULL values. Which does match the
963 ** WHERE clause, and so the query returns a row. Which is incorrect.
965 ** For the same reason, WHERE terms such as:
967 ** WHERE 1 = (t2.c IS NULL)
969 ** are also excluded. See codeCursorHintIsOrFunction() for details.
971 if( pTabItem->fg.jointype & JT_LEFT ){
972 Expr *pExpr = pTerm->pExpr;
973 if( !ExprHasProperty(pExpr, EP_FromJoin)
974 || pExpr->iRightJoinTable!=pTabItem->iCursor
976 sWalker.eCode = 0;
977 sWalker.xExprCallback = codeCursorHintIsOrFunction;
978 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
979 if( sWalker.eCode ) continue;
981 }else{
982 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
985 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
986 ** the cursor. These terms are not needed as hints for a pure range
987 ** scan (that has no == terms) so omit them. */
988 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
989 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
990 if( j<pLoop->nLTerm ) continue;
993 /* No subqueries or non-deterministic functions allowed */
994 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
996 /* For an index scan, make sure referenced columns are actually in
997 ** the index. */
998 if( sHint.pIdx!=0 ){
999 sWalker.eCode = 0;
1000 sWalker.xExprCallback = codeCursorHintCheckExpr;
1001 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1002 if( sWalker.eCode ) continue;
1005 /* If we survive all prior tests, that means this term is worth hinting */
1006 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1008 if( pExpr!=0 ){
1009 sWalker.xExprCallback = codeCursorHintFixExpr;
1010 sqlite3WalkExpr(&sWalker, pExpr);
1011 sqlite3VdbeAddOp4(v, OP_CursorHint,
1012 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1013 (const char*)pExpr, P4_EXPR);
1016 #else
1017 # define codeCursorHint(A,B,C,D) /* No-op */
1018 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1021 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1022 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1023 ** function generates code to do a deferred seek of cursor iCur to the
1024 ** rowid stored in register iRowid.
1026 ** Normally, this is just:
1028 ** OP_DeferredSeek $iCur $iRowid
1030 ** However, if the scan currently being coded is a branch of an OR-loop and
1031 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1032 ** is set to iIdxCur and P4 is set to point to an array of integers
1033 ** containing one entry for each column of the table cursor iCur is open
1034 ** on. For each table column, if the column is the i'th column of the
1035 ** index, then the corresponding array entry is set to (i+1). If the column
1036 ** does not appear in the index at all, the array entry is set to 0.
1038 static void codeDeferredSeek(
1039 WhereInfo *pWInfo, /* Where clause context */
1040 Index *pIdx, /* Index scan is using */
1041 int iCur, /* Cursor for IPK b-tree */
1042 int iIdxCur /* Index cursor */
1044 Parse *pParse = pWInfo->pParse; /* Parse context */
1045 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
1047 assert( iIdxCur>0 );
1048 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1050 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1051 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1052 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1054 int i;
1055 Table *pTab = pIdx->pTable;
1056 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
1057 if( ai ){
1058 ai[0] = pTab->nCol;
1059 for(i=0; i<pIdx->nColumn-1; i++){
1060 assert( pIdx->aiColumn[i]<pTab->nCol );
1061 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
1063 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1069 ** If the expression passed as the second argument is a vector, generate
1070 ** code to write the first nReg elements of the vector into an array
1071 ** of registers starting with iReg.
1073 ** If the expression is not a vector, then nReg must be passed 1. In
1074 ** this case, generate code to evaluate the expression and leave the
1075 ** result in register iReg.
1077 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1078 assert( nReg>0 );
1079 if( p && sqlite3ExprIsVector(p) ){
1080 #ifndef SQLITE_OMIT_SUBQUERY
1081 if( (p->flags & EP_xIsSelect) ){
1082 Vdbe *v = pParse->pVdbe;
1083 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
1084 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1085 }else
1086 #endif
1088 int i;
1089 ExprList *pList = p->x.pList;
1090 assert( nReg<=pList->nExpr );
1091 for(i=0; i<nReg; i++){
1092 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1095 }else{
1096 assert( nReg==1 );
1097 sqlite3ExprCode(pParse, p, iReg);
1101 /* An instance of the IdxExprTrans object carries information about a
1102 ** mapping from an expression on table columns into a column in an index
1103 ** down through the Walker.
1105 typedef struct IdxExprTrans {
1106 Expr *pIdxExpr; /* The index expression */
1107 int iTabCur; /* The cursor of the corresponding table */
1108 int iIdxCur; /* The cursor for the index */
1109 int iIdxCol; /* The column for the index */
1110 } IdxExprTrans;
1112 /* The walker node callback used to transform matching expressions into
1113 ** a reference to an index column for an index on an expression.
1115 ** If pExpr matches, then transform it into a reference to the index column
1116 ** that contains the value of pExpr.
1118 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1119 IdxExprTrans *pX = p->u.pIdxTrans;
1120 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1121 pExpr->op = TK_COLUMN;
1122 pExpr->iTable = pX->iIdxCur;
1123 pExpr->iColumn = pX->iIdxCol;
1124 pExpr->pTab = 0;
1125 return WRC_Prune;
1126 }else{
1127 return WRC_Continue;
1132 ** For an indexes on expression X, locate every instance of expression X
1133 ** in pExpr and change that subexpression into a reference to the appropriate
1134 ** column of the index.
1136 static void whereIndexExprTrans(
1137 Index *pIdx, /* The Index */
1138 int iTabCur, /* Cursor of the table that is being indexed */
1139 int iIdxCur, /* Cursor of the index itself */
1140 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1142 int iIdxCol; /* Column number of the index */
1143 ExprList *aColExpr; /* Expressions that are indexed */
1144 Walker w;
1145 IdxExprTrans x;
1146 aColExpr = pIdx->aColExpr;
1147 if( aColExpr==0 ) return; /* Not an index on expressions */
1148 memset(&w, 0, sizeof(w));
1149 w.xExprCallback = whereIndexExprTransNode;
1150 w.u.pIdxTrans = &x;
1151 x.iTabCur = iTabCur;
1152 x.iIdxCur = iIdxCur;
1153 for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){
1154 if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue;
1155 assert( aColExpr->a[iIdxCol].pExpr!=0 );
1156 x.iIdxCol = iIdxCol;
1157 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1158 sqlite3WalkExpr(&w, pWInfo->pWhere);
1159 sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1160 sqlite3WalkExprList(&w, pWInfo->pResultSet);
1165 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1166 ** implementation described by pWInfo.
1168 Bitmask sqlite3WhereCodeOneLoopStart(
1169 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1170 int iLevel, /* Which level of pWInfo->a[] should be coded */
1171 Bitmask notReady /* Which tables are currently available */
1173 int j, k; /* Loop counters */
1174 int iCur; /* The VDBE cursor for the table */
1175 int addrNxt; /* Where to jump to continue with the next IN case */
1176 int omitTable; /* True if we use the index only */
1177 int bRev; /* True if we need to scan in reverse order */
1178 WhereLevel *pLevel; /* The where level to be coded */
1179 WhereLoop *pLoop; /* The WhereLoop object being coded */
1180 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
1181 WhereTerm *pTerm; /* A WHERE clause term */
1182 Parse *pParse; /* Parsing context */
1183 sqlite3 *db; /* Database connection */
1184 Vdbe *v; /* The prepared stmt under constructions */
1185 struct SrcList_item *pTabItem; /* FROM clause term being coded */
1186 int addrBrk; /* Jump here to break out of the loop */
1187 int addrHalt; /* addrBrk for the outermost loop */
1188 int addrCont; /* Jump here to continue with next cycle */
1189 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
1190 int iReleaseReg = 0; /* Temp register to free before returning */
1191 Index *pIdx = 0; /* Index used by loop (if any) */
1192 int iLoop; /* Iteration of constraint generator loop */
1194 pParse = pWInfo->pParse;
1195 v = pParse->pVdbe;
1196 pWC = &pWInfo->sWC;
1197 db = pParse->db;
1198 pLevel = &pWInfo->a[iLevel];
1199 pLoop = pLevel->pWLoop;
1200 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1201 iCur = pTabItem->iCursor;
1202 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1203 bRev = (pWInfo->revMask>>iLevel)&1;
1204 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1205 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1206 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1208 /* Create labels for the "break" and "continue" instructions
1209 ** for the current loop. Jump to addrBrk to break out of a loop.
1210 ** Jump to cont to go immediately to the next iteration of the
1211 ** loop.
1213 ** When there is an IN operator, we also have a "addrNxt" label that
1214 ** means to continue with the next IN value combination. When
1215 ** there are no IN operators in the constraints, the "addrNxt" label
1216 ** is the same as "addrBrk".
1218 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
1219 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
1221 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1222 ** initialize a memory cell that records if this table matches any
1223 ** row of the left table of the join.
1225 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1226 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1228 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1229 pLevel->iLeftJoin = ++pParse->nMem;
1230 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1231 VdbeComment((v, "init LEFT JOIN no-match flag"));
1234 /* Compute a safe address to jump to if we discover that the table for
1235 ** this loop is empty and can never contribute content. */
1236 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1237 addrHalt = pWInfo->a[j].addrBrk;
1239 /* Special case of a FROM clause subquery implemented as a co-routine */
1240 if( pTabItem->fg.viaCoroutine ){
1241 int regYield = pTabItem->regReturn;
1242 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1243 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1244 VdbeCoverage(v);
1245 VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1246 pLevel->op = OP_Goto;
1247 }else
1249 #ifndef SQLITE_OMIT_VIRTUALTABLE
1250 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1251 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1252 ** to access the data.
1254 int iReg; /* P3 Value for OP_VFilter */
1255 int addrNotFound;
1256 int nConstraint = pLoop->nLTerm;
1257 int iIn; /* Counter for IN constraints */
1259 sqlite3ExprCachePush(pParse);
1260 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1261 addrNotFound = pLevel->addrBrk;
1262 for(j=0; j<nConstraint; j++){
1263 int iTarget = iReg+j+2;
1264 pTerm = pLoop->aLTerm[j];
1265 if( NEVER(pTerm==0) ) continue;
1266 if( pTerm->eOperator & WO_IN ){
1267 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1268 addrNotFound = pLevel->addrNxt;
1269 }else{
1270 Expr *pRight = pTerm->pExpr->pRight;
1271 codeExprOrVector(pParse, pRight, iTarget, 1);
1274 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1275 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1276 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1277 pLoop->u.vtab.idxStr,
1278 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1279 VdbeCoverage(v);
1280 pLoop->u.vtab.needFree = 0;
1281 pLevel->p1 = iCur;
1282 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1283 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1284 iIn = pLevel->u.in.nIn;
1285 for(j=nConstraint-1; j>=0; j--){
1286 pTerm = pLoop->aLTerm[j];
1287 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1288 disableTerm(pLevel, pTerm);
1289 }else if( (pTerm->eOperator & WO_IN)!=0 ){
1290 Expr *pCompare; /* The comparison operator */
1291 Expr *pRight; /* RHS of the comparison */
1292 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
1294 /* Reload the constraint value into reg[iReg+j+2]. The same value
1295 ** was loaded into the same register prior to the OP_VFilter, but
1296 ** the xFilter implementation might have changed the datatype or
1297 ** encoding of the value in the register, so it *must* be reloaded. */
1298 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1299 if( !db->mallocFailed ){
1300 assert( iIn>0 );
1301 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1302 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1303 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1304 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1305 testcase( pOp->opcode==OP_Rowid );
1306 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1309 /* Generate code that will continue to the next row if
1310 ** the IN constraint is not satisfied */
1311 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1312 assert( pCompare!=0 || db->mallocFailed );
1313 if( pCompare ){
1314 pCompare->pLeft = pTerm->pExpr->pLeft;
1315 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1316 if( pRight ){
1317 pRight->iTable = iReg+j+2;
1318 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1320 pCompare->pLeft = 0;
1321 sqlite3ExprDelete(db, pCompare);
1325 /* These registers need to be preserved in case there is an IN operator
1326 ** loop. So we could deallocate the registers here (and potentially
1327 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1328 ** simpler and safer to simply not reuse the registers.
1330 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1332 sqlite3ExprCachePop(pParse);
1333 }else
1334 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1336 if( (pLoop->wsFlags & WHERE_IPK)!=0
1337 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1339 /* Case 2: We can directly reference a single row using an
1340 ** equality comparison against the ROWID field. Or
1341 ** we reference multiple rows using a "rowid IN (...)"
1342 ** construct.
1344 assert( pLoop->u.btree.nEq==1 );
1345 pTerm = pLoop->aLTerm[0];
1346 assert( pTerm!=0 );
1347 assert( pTerm->pExpr!=0 );
1348 assert( omitTable==0 );
1349 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1350 iReleaseReg = ++pParse->nMem;
1351 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1352 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1353 addrNxt = pLevel->addrNxt;
1354 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1355 VdbeCoverage(v);
1356 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
1357 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1358 VdbeComment((v, "pk"));
1359 pLevel->op = OP_Noop;
1360 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1361 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1363 /* Case 3: We have an inequality comparison against the ROWID field.
1365 int testOp = OP_Noop;
1366 int start;
1367 int memEndValue = 0;
1368 WhereTerm *pStart, *pEnd;
1370 assert( omitTable==0 );
1371 j = 0;
1372 pStart = pEnd = 0;
1373 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1374 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1375 assert( pStart!=0 || pEnd!=0 );
1376 if( bRev ){
1377 pTerm = pStart;
1378 pStart = pEnd;
1379 pEnd = pTerm;
1381 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1382 if( pStart ){
1383 Expr *pX; /* The expression that defines the start bound */
1384 int r1, rTemp; /* Registers for holding the start boundary */
1385 int op; /* Cursor seek operation */
1387 /* The following constant maps TK_xx codes into corresponding
1388 ** seek opcodes. It depends on a particular ordering of TK_xx
1390 const u8 aMoveOp[] = {
1391 /* TK_GT */ OP_SeekGT,
1392 /* TK_LE */ OP_SeekLE,
1393 /* TK_LT */ OP_SeekLT,
1394 /* TK_GE */ OP_SeekGE
1396 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
1397 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
1398 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
1400 assert( (pStart->wtFlags & TERM_VNULL)==0 );
1401 testcase( pStart->wtFlags & TERM_VIRTUAL );
1402 pX = pStart->pExpr;
1403 assert( pX!=0 );
1404 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1405 if( sqlite3ExprIsVector(pX->pRight) ){
1406 r1 = rTemp = sqlite3GetTempReg(pParse);
1407 codeExprOrVector(pParse, pX->pRight, r1, 1);
1408 testcase( pX->op==TK_GT );
1409 testcase( pX->op==TK_GE );
1410 testcase( pX->op==TK_LT );
1411 testcase( pX->op==TK_LE );
1412 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1413 assert( pX->op!=TK_GT || op==OP_SeekGE );
1414 assert( pX->op!=TK_GE || op==OP_SeekGE );
1415 assert( pX->op!=TK_LT || op==OP_SeekLE );
1416 assert( pX->op!=TK_LE || op==OP_SeekLE );
1417 }else{
1418 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1419 disableTerm(pLevel, pStart);
1420 op = aMoveOp[(pX->op - TK_GT)];
1422 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1423 VdbeComment((v, "pk"));
1424 VdbeCoverageIf(v, pX->op==TK_GT);
1425 VdbeCoverageIf(v, pX->op==TK_LE);
1426 VdbeCoverageIf(v, pX->op==TK_LT);
1427 VdbeCoverageIf(v, pX->op==TK_GE);
1428 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
1429 sqlite3ReleaseTempReg(pParse, rTemp);
1430 }else{
1431 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1432 VdbeCoverageIf(v, bRev==0);
1433 VdbeCoverageIf(v, bRev!=0);
1435 if( pEnd ){
1436 Expr *pX;
1437 pX = pEnd->pExpr;
1438 assert( pX!=0 );
1439 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1440 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1441 testcase( pEnd->wtFlags & TERM_VIRTUAL );
1442 memEndValue = ++pParse->nMem;
1443 codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1444 if( 0==sqlite3ExprIsVector(pX->pRight)
1445 && (pX->op==TK_LT || pX->op==TK_GT)
1447 testOp = bRev ? OP_Le : OP_Ge;
1448 }else{
1449 testOp = bRev ? OP_Lt : OP_Gt;
1451 if( 0==sqlite3ExprIsVector(pX->pRight) ){
1452 disableTerm(pLevel, pEnd);
1455 start = sqlite3VdbeCurrentAddr(v);
1456 pLevel->op = bRev ? OP_Prev : OP_Next;
1457 pLevel->p1 = iCur;
1458 pLevel->p2 = start;
1459 assert( pLevel->p5==0 );
1460 if( testOp!=OP_Noop ){
1461 iRowidReg = ++pParse->nMem;
1462 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1463 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1464 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1465 VdbeCoverageIf(v, testOp==OP_Le);
1466 VdbeCoverageIf(v, testOp==OP_Lt);
1467 VdbeCoverageIf(v, testOp==OP_Ge);
1468 VdbeCoverageIf(v, testOp==OP_Gt);
1469 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1471 }else if( pLoop->wsFlags & WHERE_INDEXED ){
1472 /* Case 4: A scan using an index.
1474 ** The WHERE clause may contain zero or more equality
1475 ** terms ("==" or "IN" operators) that refer to the N
1476 ** left-most columns of the index. It may also contain
1477 ** inequality constraints (>, <, >= or <=) on the indexed
1478 ** column that immediately follows the N equalities. Only
1479 ** the right-most column can be an inequality - the rest must
1480 ** use the "==" and "IN" operators. For example, if the
1481 ** index is on (x,y,z), then the following clauses are all
1482 ** optimized:
1484 ** x=5
1485 ** x=5 AND y=10
1486 ** x=5 AND y<10
1487 ** x=5 AND y>5 AND y<10
1488 ** x=5 AND y=5 AND z<=10
1490 ** The z<10 term of the following cannot be used, only
1491 ** the x=5 term:
1493 ** x=5 AND z<10
1495 ** N may be zero if there are inequality constraints.
1496 ** If there are no inequality constraints, then N is at
1497 ** least one.
1499 ** This case is also used when there are no WHERE clause
1500 ** constraints but an index is selected anyway, in order
1501 ** to force the output order to conform to an ORDER BY.
1503 static const u8 aStartOp[] = {
1506 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1507 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1508 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1509 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1510 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1511 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1513 static const u8 aEndOp[] = {
1514 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1515 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1516 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1517 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1519 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1520 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
1521 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
1522 int regBase; /* Base register holding constraint values */
1523 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1524 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1525 int startEq; /* True if range start uses ==, >= or <= */
1526 int endEq; /* True if range end uses ==, >= or <= */
1527 int start_constraints; /* Start of range is constrained */
1528 int nConstraint; /* Number of constraint terms */
1529 int iIdxCur; /* The VDBE cursor for the index */
1530 int nExtraReg = 0; /* Number of extra registers needed */
1531 int op; /* Instruction opcode */
1532 char *zStartAff; /* Affinity for start of range constraint */
1533 char *zEndAff = 0; /* Affinity for end of range constraint */
1534 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1535 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1537 pIdx = pLoop->u.btree.pIndex;
1538 iIdxCur = pLevel->iIdxCur;
1539 assert( nEq>=pLoop->nSkip );
1541 /* If this loop satisfies a sort order (pOrderBy) request that
1542 ** was passed to this function to implement a "SELECT min(x) ..."
1543 ** query, then the caller will only allow the loop to run for
1544 ** a single iteration. This means that the first row returned
1545 ** should not have a NULL value stored in 'x'. If column 'x' is
1546 ** the first one after the nEq equality constraints in the index,
1547 ** this requires some special handling.
1549 assert( pWInfo->pOrderBy==0
1550 || pWInfo->pOrderBy->nExpr==1
1551 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1552 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1553 && pWInfo->nOBSat>0
1554 && (pIdx->nKeyCol>nEq)
1556 assert( pLoop->nSkip==0 );
1557 bSeekPastNull = 1;
1558 nExtraReg = 1;
1561 /* Find any inequality constraint terms for the start and end
1562 ** of the range.
1564 j = nEq;
1565 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1566 pRangeStart = pLoop->aLTerm[j++];
1567 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1568 /* Like optimization range constraints always occur in pairs */
1569 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1570 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1572 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1573 pRangeEnd = pLoop->aLTerm[j++];
1574 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1575 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1576 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1577 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1578 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1579 pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1580 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1581 VdbeComment((v, "LIKE loop counter"));
1582 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1583 /* iLikeRepCntr actually stores 2x the counter register number. The
1584 ** bottom bit indicates whether the search order is ASC or DESC. */
1585 testcase( bRev );
1586 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1587 assert( (bRev & ~1)==0 );
1588 pLevel->iLikeRepCntr <<=1;
1589 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1591 #endif
1592 if( pRangeStart==0 ){
1593 j = pIdx->aiColumn[nEq];
1594 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1595 bSeekPastNull = 1;
1599 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1601 /* If we are doing a reverse order scan on an ascending index, or
1602 ** a forward order scan on a descending index, interchange the
1603 ** start and end terms (pRangeStart and pRangeEnd).
1605 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1606 || (bRev && pIdx->nKeyCol==nEq)
1608 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1609 SWAP(u8, bSeekPastNull, bStopAtNull);
1610 SWAP(u8, nBtm, nTop);
1613 /* Generate code to evaluate all constraint terms using == or IN
1614 ** and store the values of those terms in an array of registers
1615 ** starting at regBase.
1617 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1618 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1619 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1620 if( zStartAff && nTop ){
1621 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1623 addrNxt = pLevel->addrNxt;
1625 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1626 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1627 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1628 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1629 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1630 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1631 start_constraints = pRangeStart || nEq>0;
1633 /* Seek the index cursor to the start of the range. */
1634 nConstraint = nEq;
1635 if( pRangeStart ){
1636 Expr *pRight = pRangeStart->pExpr->pRight;
1637 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1638 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1639 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1640 && sqlite3ExprCanBeNull(pRight)
1642 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1643 VdbeCoverage(v);
1645 if( zStartAff ){
1646 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1648 nConstraint += nBtm;
1649 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1650 if( sqlite3ExprIsVector(pRight)==0 ){
1651 disableTerm(pLevel, pRangeStart);
1652 }else{
1653 startEq = 1;
1655 bSeekPastNull = 0;
1656 }else if( bSeekPastNull ){
1657 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1658 nConstraint++;
1659 startEq = 0;
1660 start_constraints = 1;
1662 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1663 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1664 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1665 ** above has already left the cursor sitting on the correct row,
1666 ** so no further seeking is needed */
1667 }else{
1668 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1669 sqlite3VdbeAddOp1(v, OP_SeekHit, iIdxCur);
1671 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1672 assert( op!=0 );
1673 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1674 VdbeCoverage(v);
1675 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1676 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1677 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1678 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1679 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1680 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1683 /* Load the value for the inequality constraint at the end of the
1684 ** range (if any).
1686 nConstraint = nEq;
1687 if( pRangeEnd ){
1688 Expr *pRight = pRangeEnd->pExpr->pRight;
1689 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1690 codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1691 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1692 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1693 && sqlite3ExprCanBeNull(pRight)
1695 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1696 VdbeCoverage(v);
1698 if( zEndAff ){
1699 updateRangeAffinityStr(pRight, nTop, zEndAff);
1700 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1701 }else{
1702 assert( pParse->db->mallocFailed );
1704 nConstraint += nTop;
1705 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1707 if( sqlite3ExprIsVector(pRight)==0 ){
1708 disableTerm(pLevel, pRangeEnd);
1709 }else{
1710 endEq = 1;
1712 }else if( bStopAtNull ){
1713 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1714 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1715 endEq = 0;
1716 nConstraint++;
1718 sqlite3DbFree(db, zStartAff);
1719 sqlite3DbFree(db, zEndAff);
1721 /* Top of the loop body */
1722 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1724 /* Check if the index cursor is past the end of the range. */
1725 if( nConstraint ){
1726 op = aEndOp[bRev*2 + endEq];
1727 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1728 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1729 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1730 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1731 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1734 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1735 sqlite3VdbeAddOp2(v, OP_SeekHit, iIdxCur, 1);
1738 /* Seek the table cursor, if required */
1739 if( omitTable ){
1740 /* pIdx is a covering index. No need to access the main table. */
1741 }else if( HasRowid(pIdx->pTable) ){
1742 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || (
1743 (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)
1744 && (pWInfo->eOnePass==ONEPASS_SINGLE)
1746 iRowidReg = ++pParse->nMem;
1747 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1748 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1749 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1750 VdbeCoverage(v);
1751 }else{
1752 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1754 }else if( iCur!=iIdxCur ){
1755 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1756 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1757 for(j=0; j<pPk->nKeyCol; j++){
1758 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1759 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1761 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1762 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1765 /* If pIdx is an index on one or more expressions, then look through
1766 ** all the expressions in pWInfo and try to transform matching expressions
1767 ** into reference to index columns.
1769 ** Do not do this for the RHS of a LEFT JOIN. This is because the
1770 ** expression may be evaluated after OP_NullRow has been executed on
1771 ** the cursor. In this case it is important to do the full evaluation,
1772 ** as the result of the expression may not be NULL, even if all table
1773 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a
1775 if( pLevel->iLeftJoin==0 ){
1776 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1779 /* Record the instruction used to terminate the loop. */
1780 if( pLoop->wsFlags & WHERE_ONEROW ){
1781 pLevel->op = OP_Noop;
1782 }else if( bRev ){
1783 pLevel->op = OP_Prev;
1784 }else{
1785 pLevel->op = OP_Next;
1787 pLevel->p1 = iIdxCur;
1788 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1789 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1790 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1791 }else{
1792 assert( pLevel->p5==0 );
1794 if( omitTable ) pIdx = 0;
1795 }else
1797 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1798 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1799 /* Case 5: Two or more separately indexed terms connected by OR
1801 ** Example:
1803 ** CREATE TABLE t1(a,b,c,d);
1804 ** CREATE INDEX i1 ON t1(a);
1805 ** CREATE INDEX i2 ON t1(b);
1806 ** CREATE INDEX i3 ON t1(c);
1808 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1810 ** In the example, there are three indexed terms connected by OR.
1811 ** The top of the loop looks like this:
1813 ** Null 1 # Zero the rowset in reg 1
1815 ** Then, for each indexed term, the following. The arguments to
1816 ** RowSetTest are such that the rowid of the current row is inserted
1817 ** into the RowSet. If it is already present, control skips the
1818 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1820 ** sqlite3WhereBegin(<term>)
1821 ** RowSetTest # Insert rowid into rowset
1822 ** Gosub 2 A
1823 ** sqlite3WhereEnd()
1825 ** Following the above, code to terminate the loop. Label A, the target
1826 ** of the Gosub above, jumps to the instruction right after the Goto.
1828 ** Null 1 # Zero the rowset in reg 1
1829 ** Goto B # The loop is finished.
1831 ** A: <loop body> # Return data, whatever.
1833 ** Return 2 # Jump back to the Gosub
1835 ** B: <after the loop>
1837 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1838 ** use an ephemeral index instead of a RowSet to record the primary
1839 ** keys of the rows we have already seen.
1842 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1843 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1844 Index *pCov = 0; /* Potential covering index (or NULL) */
1845 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1847 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1848 int regRowset = 0; /* Register for RowSet object */
1849 int regRowid = 0; /* Register holding rowid */
1850 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1851 int iRetInit; /* Address of regReturn init */
1852 int untestedTerms = 0; /* Some terms not completely tested */
1853 int ii; /* Loop counter */
1854 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1855 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1856 Table *pTab = pTabItem->pTab;
1858 pTerm = pLoop->aLTerm[0];
1859 assert( pTerm!=0 );
1860 assert( pTerm->eOperator & WO_OR );
1861 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1862 pOrWc = &pTerm->u.pOrInfo->wc;
1863 pLevel->op = OP_Return;
1864 pLevel->p1 = regReturn;
1866 /* Set up a new SrcList in pOrTab containing the table being scanned
1867 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1868 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1870 if( pWInfo->nLevel>1 ){
1871 int nNotReady; /* The number of notReady tables */
1872 struct SrcList_item *origSrc; /* Original list of tables */
1873 nNotReady = pWInfo->nLevel - iLevel - 1;
1874 pOrTab = sqlite3StackAllocRaw(db,
1875 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1876 if( pOrTab==0 ) return notReady;
1877 pOrTab->nAlloc = (u8)(nNotReady + 1);
1878 pOrTab->nSrc = pOrTab->nAlloc;
1879 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1880 origSrc = pWInfo->pTabList->a;
1881 for(k=1; k<=nNotReady; k++){
1882 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1884 }else{
1885 pOrTab = pWInfo->pTabList;
1888 /* Initialize the rowset register to contain NULL. An SQL NULL is
1889 ** equivalent to an empty rowset. Or, create an ephemeral index
1890 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1892 ** Also initialize regReturn to contain the address of the instruction
1893 ** immediately following the OP_Return at the bottom of the loop. This
1894 ** is required in a few obscure LEFT JOIN cases where control jumps
1895 ** over the top of the loop into the body of it. In this case the
1896 ** correct response for the end-of-loop code (the OP_Return) is to
1897 ** fall through to the next instruction, just as an OP_Next does if
1898 ** called on an uninitialized cursor.
1900 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1901 if( HasRowid(pTab) ){
1902 regRowset = ++pParse->nMem;
1903 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1904 }else{
1905 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1906 regRowset = pParse->nTab++;
1907 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1908 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1910 regRowid = ++pParse->nMem;
1912 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1914 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1915 ** Then for every term xN, evaluate as the subexpression: xN AND z
1916 ** That way, terms in y that are factored into the disjunction will
1917 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1919 ** Actually, each subexpression is converted to "xN AND w" where w is
1920 ** the "interesting" terms of z - terms that did not originate in the
1921 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1922 ** indices.
1924 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1925 ** is not contained in the ON clause of a LEFT JOIN.
1926 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1928 if( pWC->nTerm>1 ){
1929 int iTerm;
1930 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1931 Expr *pExpr = pWC->a[iTerm].pExpr;
1932 if( &pWC->a[iTerm] == pTerm ) continue;
1933 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1934 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1935 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1936 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1937 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1938 pExpr = sqlite3ExprDup(db, pExpr, 0);
1939 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1941 if( pAndExpr ){
1942 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
1946 /* Run a separate WHERE clause for each term of the OR clause. After
1947 ** eliminating duplicates from other WHERE clauses, the action for each
1948 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1950 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
1951 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
1952 for(ii=0; ii<pOrWc->nTerm; ii++){
1953 WhereTerm *pOrTerm = &pOrWc->a[ii];
1954 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1955 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1956 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1957 int jmp1 = 0; /* Address of jump operation */
1958 assert( (pTabItem[0].fg.jointype & JT_LEFT)==0
1959 || ExprHasProperty(pOrExpr, EP_FromJoin)
1961 if( pAndExpr ){
1962 pAndExpr->pLeft = pOrExpr;
1963 pOrExpr = pAndExpr;
1965 /* Loop through table entries that match term pOrTerm. */
1966 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1967 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1968 wctrlFlags, iCovCur);
1969 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1970 if( pSubWInfo ){
1971 WhereLoop *pSubLoop;
1972 int addrExplain = sqlite3WhereExplainOneScan(
1973 pParse, pOrTab, &pSubWInfo->a[0], 0
1975 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1977 /* This is the sub-WHERE clause body. First skip over
1978 ** duplicate rows from prior sub-WHERE clauses, and record the
1979 ** rowid (or PRIMARY KEY) for the current row so that the same
1980 ** row will be skipped in subsequent sub-WHERE clauses.
1982 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1983 int r;
1984 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1985 if( HasRowid(pTab) ){
1986 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1987 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1988 r,iSet);
1989 VdbeCoverage(v);
1990 }else{
1991 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1992 int nPk = pPk->nKeyCol;
1993 int iPk;
1995 /* Read the PK into an array of temp registers. */
1996 r = sqlite3GetTempRange(pParse, nPk);
1997 for(iPk=0; iPk<nPk; iPk++){
1998 int iCol = pPk->aiColumn[iPk];
1999 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
2002 /* Check if the temp table already contains this key. If so,
2003 ** the row has already been included in the result set and
2004 ** can be ignored (by jumping past the Gosub below). Otherwise,
2005 ** insert the key into the temp table and proceed with processing
2006 ** the row.
2008 ** Use some of the same optimizations as OP_RowSetTest: If iSet
2009 ** is zero, assume that the key cannot already be present in
2010 ** the temp table. And if iSet is -1, assume that there is no
2011 ** need to insert the key into the temp table, as it will never
2012 ** be tested for. */
2013 if( iSet ){
2014 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2015 VdbeCoverage(v);
2017 if( iSet>=0 ){
2018 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2019 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2020 r, nPk);
2021 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2024 /* Release the array of temp registers */
2025 sqlite3ReleaseTempRange(pParse, r, nPk);
2029 /* Invoke the main loop body as a subroutine */
2030 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2032 /* Jump here (skipping the main loop body subroutine) if the
2033 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2034 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2036 /* The pSubWInfo->untestedTerms flag means that this OR term
2037 ** contained one or more AND term from a notReady table. The
2038 ** terms from the notReady table could not be tested and will
2039 ** need to be tested later.
2041 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2043 /* If all of the OR-connected terms are optimized using the same
2044 ** index, and the index is opened using the same cursor number
2045 ** by each call to sqlite3WhereBegin() made by this loop, it may
2046 ** be possible to use that index as a covering index.
2048 ** If the call to sqlite3WhereBegin() above resulted in a scan that
2049 ** uses an index, and this is either the first OR-connected term
2050 ** processed or the index is the same as that used by all previous
2051 ** terms, set pCov to the candidate covering index. Otherwise, set
2052 ** pCov to NULL to indicate that no candidate covering index will
2053 ** be available.
2055 pSubLoop = pSubWInfo->a[0].pWLoop;
2056 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2057 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2058 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2059 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2061 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2062 pCov = pSubLoop->u.btree.pIndex;
2063 }else{
2064 pCov = 0;
2067 /* Finish the loop through table entries that match term pOrTerm. */
2068 sqlite3WhereEnd(pSubWInfo);
2072 ExplainQueryPlanPop(pParse);
2073 pLevel->u.pCovidx = pCov;
2074 if( pCov ) pLevel->iIdxCur = iCovCur;
2075 if( pAndExpr ){
2076 pAndExpr->pLeft = 0;
2077 sqlite3ExprDelete(db, pAndExpr);
2079 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2080 sqlite3VdbeGoto(v, pLevel->addrBrk);
2081 sqlite3VdbeResolveLabel(v, iLoopBody);
2083 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
2084 if( !untestedTerms ) disableTerm(pLevel, pTerm);
2085 }else
2086 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2089 /* Case 6: There is no usable index. We must do a complete
2090 ** scan of the entire table.
2092 static const u8 aStep[] = { OP_Next, OP_Prev };
2093 static const u8 aStart[] = { OP_Rewind, OP_Last };
2094 assert( bRev==0 || bRev==1 );
2095 if( pTabItem->fg.isRecursive ){
2096 /* Tables marked isRecursive have only a single row that is stored in
2097 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
2098 pLevel->op = OP_Noop;
2099 }else{
2100 codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2101 pLevel->op = aStep[bRev];
2102 pLevel->p1 = iCur;
2103 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2104 VdbeCoverageIf(v, bRev==0);
2105 VdbeCoverageIf(v, bRev!=0);
2106 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2110 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2111 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2112 #endif
2114 /* Insert code to test every subexpression that can be completely
2115 ** computed using the current set of tables.
2117 ** This loop may run between one and three times, depending on the
2118 ** constraints to be generated. The value of stack variable iLoop
2119 ** determines the constraints coded by each iteration, as follows:
2121 ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2122 ** iLoop==2: Code remaining expressions that do not contain correlated
2123 ** sub-queries.
2124 ** iLoop==3: Code all remaining expressions.
2126 ** An effort is made to skip unnecessary iterations of the loop.
2128 iLoop = (pIdx ? 1 : 2);
2130 int iNext = 0; /* Next value for iLoop */
2131 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2132 Expr *pE;
2133 int skipLikeAddr = 0;
2134 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2135 testcase( pTerm->wtFlags & TERM_CODED );
2136 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2137 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2138 testcase( pWInfo->untestedTerms==0
2139 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2140 pWInfo->untestedTerms = 1;
2141 continue;
2143 pE = pTerm->pExpr;
2144 assert( pE!=0 );
2145 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2146 continue;
2149 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2150 iNext = 2;
2151 continue;
2153 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2154 if( iNext==0 ) iNext = 3;
2155 continue;
2158 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2159 /* If the TERM_LIKECOND flag is set, that means that the range search
2160 ** is sufficient to guarantee that the LIKE operator is true, so we
2161 ** can skip the call to the like(A,B) function. But this only works
2162 ** for strings. So do not skip the call to the function on the pass
2163 ** that compares BLOBs. */
2164 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2165 continue;
2166 #else
2167 u32 x = pLevel->iLikeRepCntr;
2168 if( x>0 ){
2169 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2171 VdbeCoverage(v);
2172 #endif
2174 #ifdef WHERETRACE_ENABLED /* 0xffff */
2175 if( sqlite3WhereTrace ){
2176 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2177 pWC->nTerm-j, pTerm, iLoop));
2179 #endif
2180 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2181 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2182 pTerm->wtFlags |= TERM_CODED;
2184 iLoop = iNext;
2185 }while( iLoop>0 );
2187 /* Insert code to test for implied constraints based on transitivity
2188 ** of the "==" operator.
2190 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2191 ** and we are coding the t1 loop and the t2 loop has not yet coded,
2192 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2193 ** the implied "t1.a=123" constraint.
2195 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2196 Expr *pE, sEAlt;
2197 WhereTerm *pAlt;
2198 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2199 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2200 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2201 if( pTerm->leftCursor!=iCur ) continue;
2202 if( pLevel->iLeftJoin ) continue;
2203 pE = pTerm->pExpr;
2204 assert( !ExprHasProperty(pE, EP_FromJoin) );
2205 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2206 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2207 WO_EQ|WO_IN|WO_IS, 0);
2208 if( pAlt==0 ) continue;
2209 if( pAlt->wtFlags & (TERM_CODED) ) continue;
2210 if( (pAlt->eOperator & WO_IN)
2211 && (pAlt->pExpr->flags & EP_xIsSelect)
2212 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2214 continue;
2216 testcase( pAlt->eOperator & WO_EQ );
2217 testcase( pAlt->eOperator & WO_IS );
2218 testcase( pAlt->eOperator & WO_IN );
2219 VdbeModuleComment((v, "begin transitive constraint"));
2220 sEAlt = *pAlt->pExpr;
2221 sEAlt.pLeft = pE->pLeft;
2222 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2225 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2226 ** at least one row of the right table has matched the left table.
2228 if( pLevel->iLeftJoin ){
2229 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2230 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2231 VdbeComment((v, "record LEFT JOIN hit"));
2232 sqlite3ExprCacheClear(pParse);
2233 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2234 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2235 testcase( pTerm->wtFlags & TERM_CODED );
2236 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2237 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2238 assert( pWInfo->untestedTerms );
2239 continue;
2241 assert( pTerm->pExpr );
2242 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2243 pTerm->wtFlags |= TERM_CODED;
2247 return pLevel->notReady;