Identify Select objects within a single statement using small sequential
[sqlite.git] / src / where.c
blobf83c429c2fd4b852a290fddfe6a290e4ea9abb63
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
20 #include "whereInt.h"
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly. The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
27 ** This object is not an API and can be changed from one release to the
28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33 WhereClause *pWC; /* The Where clause being analyzed */
34 Parse *pParse; /* The parsing context */
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
40 /* Test variable that can be set to enable WHERE tracing */
41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
42 /***/ int sqlite3WhereTrace = 0;
43 #endif
47 ** Return the estimated number of output rows from a WHERE clause
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50 return pWInfo->nRowOut;
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58 return pWInfo->eDistinct;
62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
63 ** Return FALSE if the output needs to be sorted.
65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
66 return pWInfo->nOBSat;
70 ** Return TRUE if the innermost loop of the WHERE clause implementation
71 ** returns rows in ORDER BY order for complete run of the inner loop.
73 ** Across multiple iterations of outer loops, the output rows need not be
74 ** sorted. As long as rows are sorted for just the innermost loop, this
75 ** routine can return TRUE.
77 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){
78 return pWInfo->bOrderedInnerLoop;
82 ** Return the VDBE address or label to jump to in order to continue
83 ** immediately with the next row of a WHERE clause.
85 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
86 assert( pWInfo->iContinue!=0 );
87 return pWInfo->iContinue;
91 ** Return the VDBE address or label to jump to in order to break
92 ** out of a WHERE loop.
94 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
95 return pWInfo->iBreak;
99 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
100 ** operate directly on the rowis returned by a WHERE clause. Return
101 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
102 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
103 ** optimization can be used on multiple
105 ** If the ONEPASS optimization is used (if this routine returns true)
106 ** then also write the indices of open cursors used by ONEPASS
107 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
108 ** table and iaCur[1] gets the cursor used by an auxiliary index.
109 ** Either value may be -1, indicating that cursor is not used.
110 ** Any cursors returned will have been opened for writing.
112 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
113 ** unable to use the ONEPASS optimization.
115 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
116 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
117 #ifdef WHERETRACE_ENABLED
118 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
119 sqlite3DebugPrintf("%s cursors: %d %d\n",
120 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
121 aiCur[0], aiCur[1]);
123 #endif
124 return pWInfo->eOnePass;
128 ** Move the content of pSrc into pDest
130 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
131 pDest->n = pSrc->n;
132 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
136 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
138 ** The new entry might overwrite an existing entry, or it might be
139 ** appended, or it might be discarded. Do whatever is the right thing
140 ** so that pSet keeps the N_OR_COST best entries seen so far.
142 static int whereOrInsert(
143 WhereOrSet *pSet, /* The WhereOrSet to be updated */
144 Bitmask prereq, /* Prerequisites of the new entry */
145 LogEst rRun, /* Run-cost of the new entry */
146 LogEst nOut /* Number of outputs for the new entry */
148 u16 i;
149 WhereOrCost *p;
150 for(i=pSet->n, p=pSet->a; i>0; i--, p++){
151 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
152 goto whereOrInsert_done;
154 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
155 return 0;
158 if( pSet->n<N_OR_COST ){
159 p = &pSet->a[pSet->n++];
160 p->nOut = nOut;
161 }else{
162 p = pSet->a;
163 for(i=1; i<pSet->n; i++){
164 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
166 if( p->rRun<=rRun ) return 0;
168 whereOrInsert_done:
169 p->prereq = prereq;
170 p->rRun = rRun;
171 if( p->nOut>nOut ) p->nOut = nOut;
172 return 1;
176 ** Return the bitmask for the given cursor number. Return 0 if
177 ** iCursor is not in the set.
179 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
180 int i;
181 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
182 for(i=0; i<pMaskSet->n; i++){
183 if( pMaskSet->ix[i]==iCursor ){
184 return MASKBIT(i);
187 return 0;
191 ** Create a new mask for cursor iCursor.
193 ** There is one cursor per table in the FROM clause. The number of
194 ** tables in the FROM clause is limited by a test early in the
195 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
196 ** array will never overflow.
198 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
199 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
200 pMaskSet->ix[pMaskSet->n++] = iCursor;
204 ** Advance to the next WhereTerm that matches according to the criteria
205 ** established when the pScan object was initialized by whereScanInit().
206 ** Return NULL if there are no more matching WhereTerms.
208 static WhereTerm *whereScanNext(WhereScan *pScan){
209 int iCur; /* The cursor on the LHS of the term */
210 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
211 Expr *pX; /* An expression being tested */
212 WhereClause *pWC; /* Shorthand for pScan->pWC */
213 WhereTerm *pTerm; /* The term being tested */
214 int k = pScan->k; /* Where to start scanning */
216 assert( pScan->iEquiv<=pScan->nEquiv );
217 pWC = pScan->pWC;
218 while(1){
219 iColumn = pScan->aiColumn[pScan->iEquiv-1];
220 iCur = pScan->aiCur[pScan->iEquiv-1];
221 assert( pWC!=0 );
223 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
224 if( pTerm->leftCursor==iCur
225 && pTerm->u.leftColumn==iColumn
226 && (iColumn!=XN_EXPR
227 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
228 pScan->pIdxExpr,iCur)==0)
229 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
231 if( (pTerm->eOperator & WO_EQUIV)!=0
232 && pScan->nEquiv<ArraySize(pScan->aiCur)
233 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
235 int j;
236 for(j=0; j<pScan->nEquiv; j++){
237 if( pScan->aiCur[j]==pX->iTable
238 && pScan->aiColumn[j]==pX->iColumn ){
239 break;
242 if( j==pScan->nEquiv ){
243 pScan->aiCur[j] = pX->iTable;
244 pScan->aiColumn[j] = pX->iColumn;
245 pScan->nEquiv++;
248 if( (pTerm->eOperator & pScan->opMask)!=0 ){
249 /* Verify the affinity and collating sequence match */
250 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
251 CollSeq *pColl;
252 Parse *pParse = pWC->pWInfo->pParse;
253 pX = pTerm->pExpr;
254 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
255 continue;
257 assert(pX->pLeft);
258 pColl = sqlite3BinaryCompareCollSeq(pParse,
259 pX->pLeft, pX->pRight);
260 if( pColl==0 ) pColl = pParse->db->pDfltColl;
261 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
262 continue;
265 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
266 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
267 && pX->iTable==pScan->aiCur[0]
268 && pX->iColumn==pScan->aiColumn[0]
270 testcase( pTerm->eOperator & WO_IS );
271 continue;
273 pScan->pWC = pWC;
274 pScan->k = k+1;
275 return pTerm;
279 pWC = pWC->pOuter;
280 k = 0;
281 }while( pWC!=0 );
282 if( pScan->iEquiv>=pScan->nEquiv ) break;
283 pWC = pScan->pOrigWC;
284 k = 0;
285 pScan->iEquiv++;
287 return 0;
291 ** Initialize a WHERE clause scanner object. Return a pointer to the
292 ** first match. Return NULL if there are no matches.
294 ** The scanner will be searching the WHERE clause pWC. It will look
295 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
296 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
297 ** must be one of the indexes of table iCur.
299 ** The <op> must be one of the operators described by opMask.
301 ** If the search is for X and the WHERE clause contains terms of the
302 ** form X=Y then this routine might also return terms of the form
303 ** "Y <op> <expr>". The number of levels of transitivity is limited,
304 ** but is enough to handle most commonly occurring SQL statements.
306 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
307 ** index pIdx.
309 static WhereTerm *whereScanInit(
310 WhereScan *pScan, /* The WhereScan object being initialized */
311 WhereClause *pWC, /* The WHERE clause to be scanned */
312 int iCur, /* Cursor to scan for */
313 int iColumn, /* Column to scan for */
314 u32 opMask, /* Operator(s) to scan for */
315 Index *pIdx /* Must be compatible with this index */
317 pScan->pOrigWC = pWC;
318 pScan->pWC = pWC;
319 pScan->pIdxExpr = 0;
320 pScan->idxaff = 0;
321 pScan->zCollName = 0;
322 if( pIdx ){
323 int j = iColumn;
324 iColumn = pIdx->aiColumn[j];
325 if( iColumn==XN_EXPR ){
326 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
327 pScan->zCollName = pIdx->azColl[j];
328 }else if( iColumn==pIdx->pTable->iPKey ){
329 iColumn = XN_ROWID;
330 }else if( iColumn>=0 ){
331 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
332 pScan->zCollName = pIdx->azColl[j];
334 }else if( iColumn==XN_EXPR ){
335 return 0;
337 pScan->opMask = opMask;
338 pScan->k = 0;
339 pScan->aiCur[0] = iCur;
340 pScan->aiColumn[0] = iColumn;
341 pScan->nEquiv = 1;
342 pScan->iEquiv = 1;
343 return whereScanNext(pScan);
347 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
348 ** where X is a reference to the iColumn of table iCur or of index pIdx
349 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
350 ** the op parameter. Return a pointer to the term. Return 0 if not found.
352 ** If pIdx!=0 then it must be one of the indexes of table iCur.
353 ** Search for terms matching the iColumn-th column of pIdx
354 ** rather than the iColumn-th column of table iCur.
356 ** The term returned might by Y=<expr> if there is another constraint in
357 ** the WHERE clause that specifies that X=Y. Any such constraints will be
358 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
359 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
360 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
361 ** other equivalent values. Hence a search for X will return <expr> if X=A1
362 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
364 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
365 ** then try for the one with no dependencies on <expr> - in other words where
366 ** <expr> is a constant expression of some kind. Only return entries of
367 ** the form "X <op> Y" where Y is a column in another table if no terms of
368 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
369 ** exist, try to return a term that does not use WO_EQUIV.
371 WhereTerm *sqlite3WhereFindTerm(
372 WhereClause *pWC, /* The WHERE clause to be searched */
373 int iCur, /* Cursor number of LHS */
374 int iColumn, /* Column number of LHS */
375 Bitmask notReady, /* RHS must not overlap with this mask */
376 u32 op, /* Mask of WO_xx values describing operator */
377 Index *pIdx /* Must be compatible with this index, if not NULL */
379 WhereTerm *pResult = 0;
380 WhereTerm *p;
381 WhereScan scan;
383 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
384 op &= WO_EQ|WO_IS;
385 while( p ){
386 if( (p->prereqRight & notReady)==0 ){
387 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
388 testcase( p->eOperator & WO_IS );
389 return p;
391 if( pResult==0 ) pResult = p;
393 p = whereScanNext(&scan);
395 return pResult;
399 ** This function searches pList for an entry that matches the iCol-th column
400 ** of index pIdx.
402 ** If such an expression is found, its index in pList->a[] is returned. If
403 ** no expression is found, -1 is returned.
405 static int findIndexCol(
406 Parse *pParse, /* Parse context */
407 ExprList *pList, /* Expression list to search */
408 int iBase, /* Cursor for table associated with pIdx */
409 Index *pIdx, /* Index to match column of */
410 int iCol /* Column of index to match */
412 int i;
413 const char *zColl = pIdx->azColl[iCol];
415 for(i=0; i<pList->nExpr; i++){
416 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
417 if( p->op==TK_COLUMN
418 && p->iColumn==pIdx->aiColumn[iCol]
419 && p->iTable==iBase
421 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
422 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
423 return i;
428 return -1;
432 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
434 static int indexColumnNotNull(Index *pIdx, int iCol){
435 int j;
436 assert( pIdx!=0 );
437 assert( iCol>=0 && iCol<pIdx->nColumn );
438 j = pIdx->aiColumn[iCol];
439 if( j>=0 ){
440 return pIdx->pTable->aCol[j].notNull;
441 }else if( j==(-1) ){
442 return 1;
443 }else{
444 assert( j==(-2) );
445 return 0; /* Assume an indexed expression can always yield a NULL */
451 ** Return true if the DISTINCT expression-list passed as the third argument
452 ** is redundant.
454 ** A DISTINCT list is redundant if any subset of the columns in the
455 ** DISTINCT list are collectively unique and individually non-null.
457 static int isDistinctRedundant(
458 Parse *pParse, /* Parsing context */
459 SrcList *pTabList, /* The FROM clause */
460 WhereClause *pWC, /* The WHERE clause */
461 ExprList *pDistinct /* The result set that needs to be DISTINCT */
463 Table *pTab;
464 Index *pIdx;
465 int i;
466 int iBase;
468 /* If there is more than one table or sub-select in the FROM clause of
469 ** this query, then it will not be possible to show that the DISTINCT
470 ** clause is redundant. */
471 if( pTabList->nSrc!=1 ) return 0;
472 iBase = pTabList->a[0].iCursor;
473 pTab = pTabList->a[0].pTab;
475 /* If any of the expressions is an IPK column on table iBase, then return
476 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
477 ** current SELECT is a correlated sub-query.
479 for(i=0; i<pDistinct->nExpr; i++){
480 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
481 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
484 /* Loop through all indices on the table, checking each to see if it makes
485 ** the DISTINCT qualifier redundant. It does so if:
487 ** 1. The index is itself UNIQUE, and
489 ** 2. All of the columns in the index are either part of the pDistinct
490 ** list, or else the WHERE clause contains a term of the form "col=X",
491 ** where X is a constant value. The collation sequences of the
492 ** comparison and select-list expressions must match those of the index.
494 ** 3. All of those index columns for which the WHERE clause does not
495 ** contain a "col=X" term are subject to a NOT NULL constraint.
497 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
498 if( !IsUniqueIndex(pIdx) ) continue;
499 for(i=0; i<pIdx->nKeyCol; i++){
500 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
501 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
502 if( indexColumnNotNull(pIdx, i)==0 ) break;
505 if( i==pIdx->nKeyCol ){
506 /* This index implies that the DISTINCT qualifier is redundant. */
507 return 1;
511 return 0;
516 ** Estimate the logarithm of the input value to base 2.
518 static LogEst estLog(LogEst N){
519 return N<=10 ? 0 : sqlite3LogEst(N) - 33;
523 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
525 ** This routine runs over generated VDBE code and translates OP_Column
526 ** opcodes into OP_Copy when the table is being accessed via co-routine
527 ** instead of via table lookup.
529 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
530 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
531 ** then each OP_Rowid is transformed into an instruction to increment the
532 ** value stored in its output register.
534 static void translateColumnToCopy(
535 Parse *pParse, /* Parsing context */
536 int iStart, /* Translate from this opcode to the end */
537 int iTabCur, /* OP_Column/OP_Rowid references to this table */
538 int iRegister, /* The first column is in this register */
539 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */
541 Vdbe *v = pParse->pVdbe;
542 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
543 int iEnd = sqlite3VdbeCurrentAddr(v);
544 if( pParse->db->mallocFailed ) return;
545 for(; iStart<iEnd; iStart++, pOp++){
546 if( pOp->p1!=iTabCur ) continue;
547 if( pOp->opcode==OP_Column ){
548 pOp->opcode = OP_Copy;
549 pOp->p1 = pOp->p2 + iRegister;
550 pOp->p2 = pOp->p3;
551 pOp->p3 = 0;
552 }else if( pOp->opcode==OP_Rowid ){
553 if( bIncrRowid ){
554 /* Increment the value stored in the P2 operand of the OP_Rowid. */
555 pOp->opcode = OP_AddImm;
556 pOp->p1 = pOp->p2;
557 pOp->p2 = 1;
558 }else{
559 pOp->opcode = OP_Null;
560 pOp->p1 = 0;
561 pOp->p3 = 0;
568 ** Two routines for printing the content of an sqlite3_index_info
569 ** structure. Used for testing and debugging only. If neither
570 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
571 ** are no-ops.
573 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
574 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
575 int i;
576 if( !sqlite3WhereTrace ) return;
577 for(i=0; i<p->nConstraint; i++){
578 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
580 p->aConstraint[i].iColumn,
581 p->aConstraint[i].iTermOffset,
582 p->aConstraint[i].op,
583 p->aConstraint[i].usable);
585 for(i=0; i<p->nOrderBy; i++){
586 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
588 p->aOrderBy[i].iColumn,
589 p->aOrderBy[i].desc);
592 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
593 int i;
594 if( !sqlite3WhereTrace ) return;
595 for(i=0; i<p->nConstraint; i++){
596 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
598 p->aConstraintUsage[i].argvIndex,
599 p->aConstraintUsage[i].omit);
601 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
602 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
603 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
604 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
605 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
607 #else
608 #define TRACE_IDX_INPUTS(A)
609 #define TRACE_IDX_OUTPUTS(A)
610 #endif
612 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
614 ** Return TRUE if the WHERE clause term pTerm is of a form where it
615 ** could be used with an index to access pSrc, assuming an appropriate
616 ** index existed.
618 static int termCanDriveIndex(
619 WhereTerm *pTerm, /* WHERE clause term to check */
620 struct SrcList_item *pSrc, /* Table we are trying to access */
621 Bitmask notReady /* Tables in outer loops of the join */
623 char aff;
624 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
625 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
626 if( (pSrc->fg.jointype & JT_LEFT)
627 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
628 && (pTerm->eOperator & WO_IS)
630 /* Cannot use an IS term from the WHERE clause as an index driver for
631 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
632 ** the ON clause. */
633 return 0;
635 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
636 if( pTerm->u.leftColumn<0 ) return 0;
637 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
638 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
639 testcase( pTerm->pExpr->op==TK_IS );
640 return 1;
642 #endif
645 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
647 ** Generate code to construct the Index object for an automatic index
648 ** and to set up the WhereLevel object pLevel so that the code generator
649 ** makes use of the automatic index.
651 static void constructAutomaticIndex(
652 Parse *pParse, /* The parsing context */
653 WhereClause *pWC, /* The WHERE clause */
654 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
655 Bitmask notReady, /* Mask of cursors that are not available */
656 WhereLevel *pLevel /* Write new index here */
658 int nKeyCol; /* Number of columns in the constructed index */
659 WhereTerm *pTerm; /* A single term of the WHERE clause */
660 WhereTerm *pWCEnd; /* End of pWC->a[] */
661 Index *pIdx; /* Object describing the transient index */
662 Vdbe *v; /* Prepared statement under construction */
663 int addrInit; /* Address of the initialization bypass jump */
664 Table *pTable; /* The table being indexed */
665 int addrTop; /* Top of the index fill loop */
666 int regRecord; /* Register holding an index record */
667 int n; /* Column counter */
668 int i; /* Loop counter */
669 int mxBitCol; /* Maximum column in pSrc->colUsed */
670 CollSeq *pColl; /* Collating sequence to on a column */
671 WhereLoop *pLoop; /* The Loop object */
672 char *zNotUsed; /* Extra space on the end of pIdx */
673 Bitmask idxCols; /* Bitmap of columns used for indexing */
674 Bitmask extraCols; /* Bitmap of additional columns */
675 u8 sentWarning = 0; /* True if a warnning has been issued */
676 Expr *pPartial = 0; /* Partial Index Expression */
677 int iContinue = 0; /* Jump here to skip excluded rows */
678 struct SrcList_item *pTabItem; /* FROM clause term being indexed */
679 int addrCounter = 0; /* Address where integer counter is initialized */
680 int regBase; /* Array of registers where record is assembled */
682 /* Generate code to skip over the creation and initialization of the
683 ** transient index on 2nd and subsequent iterations of the loop. */
684 v = pParse->pVdbe;
685 assert( v!=0 );
686 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
688 /* Count the number of columns that will be added to the index
689 ** and used to match WHERE clause constraints */
690 nKeyCol = 0;
691 pTable = pSrc->pTab;
692 pWCEnd = &pWC->a[pWC->nTerm];
693 pLoop = pLevel->pWLoop;
694 idxCols = 0;
695 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
696 Expr *pExpr = pTerm->pExpr;
697 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */
698 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */
699 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */
700 if( pLoop->prereq==0
701 && (pTerm->wtFlags & TERM_VIRTUAL)==0
702 && !ExprHasProperty(pExpr, EP_FromJoin)
703 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
704 pPartial = sqlite3ExprAnd(pParse->db, pPartial,
705 sqlite3ExprDup(pParse->db, pExpr, 0));
707 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
708 int iCol = pTerm->u.leftColumn;
709 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
710 testcase( iCol==BMS );
711 testcase( iCol==BMS-1 );
712 if( !sentWarning ){
713 sqlite3_log(SQLITE_WARNING_AUTOINDEX,
714 "automatic index on %s(%s)", pTable->zName,
715 pTable->aCol[iCol].zName);
716 sentWarning = 1;
718 if( (idxCols & cMask)==0 ){
719 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
720 goto end_auto_index_create;
722 pLoop->aLTerm[nKeyCol++] = pTerm;
723 idxCols |= cMask;
727 assert( nKeyCol>0 );
728 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
729 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
730 | WHERE_AUTO_INDEX;
732 /* Count the number of additional columns needed to create a
733 ** covering index. A "covering index" is an index that contains all
734 ** columns that are needed by the query. With a covering index, the
735 ** original table never needs to be accessed. Automatic indices must
736 ** be a covering index because the index will not be updated if the
737 ** original table changes and the index and table cannot both be used
738 ** if they go out of sync.
740 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
741 mxBitCol = MIN(BMS-1,pTable->nCol);
742 testcase( pTable->nCol==BMS-1 );
743 testcase( pTable->nCol==BMS-2 );
744 for(i=0; i<mxBitCol; i++){
745 if( extraCols & MASKBIT(i) ) nKeyCol++;
747 if( pSrc->colUsed & MASKBIT(BMS-1) ){
748 nKeyCol += pTable->nCol - BMS + 1;
751 /* Construct the Index object to describe this index */
752 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
753 if( pIdx==0 ) goto end_auto_index_create;
754 pLoop->u.btree.pIndex = pIdx;
755 pIdx->zName = "auto-index";
756 pIdx->pTable = pTable;
757 n = 0;
758 idxCols = 0;
759 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
760 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
761 int iCol = pTerm->u.leftColumn;
762 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
763 testcase( iCol==BMS-1 );
764 testcase( iCol==BMS );
765 if( (idxCols & cMask)==0 ){
766 Expr *pX = pTerm->pExpr;
767 idxCols |= cMask;
768 pIdx->aiColumn[n] = pTerm->u.leftColumn;
769 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
770 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
771 n++;
775 assert( (u32)n==pLoop->u.btree.nEq );
777 /* Add additional columns needed to make the automatic index into
778 ** a covering index */
779 for(i=0; i<mxBitCol; i++){
780 if( extraCols & MASKBIT(i) ){
781 pIdx->aiColumn[n] = i;
782 pIdx->azColl[n] = sqlite3StrBINARY;
783 n++;
786 if( pSrc->colUsed & MASKBIT(BMS-1) ){
787 for(i=BMS-1; i<pTable->nCol; i++){
788 pIdx->aiColumn[n] = i;
789 pIdx->azColl[n] = sqlite3StrBINARY;
790 n++;
793 assert( n==nKeyCol );
794 pIdx->aiColumn[n] = XN_ROWID;
795 pIdx->azColl[n] = sqlite3StrBINARY;
797 /* Create the automatic index */
798 assert( pLevel->iIdxCur>=0 );
799 pLevel->iIdxCur = pParse->nTab++;
800 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
801 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
802 VdbeComment((v, "for %s", pTable->zName));
804 /* Fill the automatic index with content */
805 sqlite3ExprCachePush(pParse);
806 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
807 if( pTabItem->fg.viaCoroutine ){
808 int regYield = pTabItem->regReturn;
809 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
810 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
811 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
812 VdbeCoverage(v);
813 VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
814 }else{
815 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
817 if( pPartial ){
818 iContinue = sqlite3VdbeMakeLabel(v);
819 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
820 pLoop->wsFlags |= WHERE_PARTIALIDX;
822 regRecord = sqlite3GetTempReg(pParse);
823 regBase = sqlite3GenerateIndexKey(
824 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
826 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
827 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
828 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
829 if( pTabItem->fg.viaCoroutine ){
830 sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
831 testcase( pParse->db->mallocFailed );
832 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
833 pTabItem->regResult, 1);
834 sqlite3VdbeGoto(v, addrTop);
835 pTabItem->fg.viaCoroutine = 0;
836 }else{
837 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
839 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
840 sqlite3VdbeJumpHere(v, addrTop);
841 sqlite3ReleaseTempReg(pParse, regRecord);
842 sqlite3ExprCachePop(pParse);
844 /* Jump here when skipping the initialization */
845 sqlite3VdbeJumpHere(v, addrInit);
847 end_auto_index_create:
848 sqlite3ExprDelete(pParse->db, pPartial);
850 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
852 #ifndef SQLITE_OMIT_VIRTUALTABLE
854 ** Allocate and populate an sqlite3_index_info structure. It is the
855 ** responsibility of the caller to eventually release the structure
856 ** by passing the pointer returned by this function to sqlite3_free().
858 static sqlite3_index_info *allocateIndexInfo(
859 Parse *pParse, /* The parsing context */
860 WhereClause *pWC, /* The WHERE clause being analyzed */
861 Bitmask mUnusable, /* Ignore terms with these prereqs */
862 struct SrcList_item *pSrc, /* The FROM clause term that is the vtab */
863 ExprList *pOrderBy, /* The ORDER BY clause */
864 u16 *pmNoOmit /* Mask of terms not to omit */
866 int i, j;
867 int nTerm;
868 struct sqlite3_index_constraint *pIdxCons;
869 struct sqlite3_index_orderby *pIdxOrderBy;
870 struct sqlite3_index_constraint_usage *pUsage;
871 struct HiddenIndexInfo *pHidden;
872 WhereTerm *pTerm;
873 int nOrderBy;
874 sqlite3_index_info *pIdxInfo;
875 u16 mNoOmit = 0;
877 /* Count the number of possible WHERE clause constraints referring
878 ** to this virtual table */
879 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
880 if( pTerm->leftCursor != pSrc->iCursor ) continue;
881 if( pTerm->prereqRight & mUnusable ) continue;
882 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
883 testcase( pTerm->eOperator & WO_IN );
884 testcase( pTerm->eOperator & WO_ISNULL );
885 testcase( pTerm->eOperator & WO_IS );
886 testcase( pTerm->eOperator & WO_ALL );
887 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
888 if( pTerm->wtFlags & TERM_VNULL ) continue;
889 assert( pTerm->u.leftColumn>=(-1) );
890 nTerm++;
893 /* If the ORDER BY clause contains only columns in the current
894 ** virtual table then allocate space for the aOrderBy part of
895 ** the sqlite3_index_info structure.
897 nOrderBy = 0;
898 if( pOrderBy ){
899 int n = pOrderBy->nExpr;
900 for(i=0; i<n; i++){
901 Expr *pExpr = pOrderBy->a[i].pExpr;
902 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
904 if( i==n){
905 nOrderBy = n;
909 /* Allocate the sqlite3_index_info structure
911 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
912 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
913 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
914 if( pIdxInfo==0 ){
915 sqlite3ErrorMsg(pParse, "out of memory");
916 return 0;
919 /* Initialize the structure. The sqlite3_index_info structure contains
920 ** many fields that are declared "const" to prevent xBestIndex from
921 ** changing them. We have to do some funky casting in order to
922 ** initialize those fields.
924 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
925 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
926 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
927 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
928 *(int*)&pIdxInfo->nConstraint = nTerm;
929 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
930 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
931 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
932 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
933 pUsage;
935 pHidden->pWC = pWC;
936 pHidden->pParse = pParse;
937 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
938 u16 op;
939 if( pTerm->leftCursor != pSrc->iCursor ) continue;
940 if( pTerm->prereqRight & mUnusable ) continue;
941 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
942 testcase( pTerm->eOperator & WO_IN );
943 testcase( pTerm->eOperator & WO_IS );
944 testcase( pTerm->eOperator & WO_ISNULL );
945 testcase( pTerm->eOperator & WO_ALL );
946 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
947 if( pTerm->wtFlags & TERM_VNULL ) continue;
948 assert( pTerm->u.leftColumn>=(-1) );
949 pIdxCons[j].iColumn = pTerm->u.leftColumn;
950 pIdxCons[j].iTermOffset = i;
951 op = pTerm->eOperator & WO_ALL;
952 if( op==WO_IN ) op = WO_EQ;
953 if( op==WO_AUX ){
954 pIdxCons[j].op = pTerm->eMatchOp;
955 }else if( op & (WO_ISNULL|WO_IS) ){
956 if( op==WO_ISNULL ){
957 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
958 }else{
959 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
961 }else{
962 pIdxCons[j].op = (u8)op;
963 /* The direct assignment in the previous line is possible only because
964 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
965 ** following asserts verify this fact. */
966 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
967 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
968 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
969 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
970 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
971 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
973 if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
974 && sqlite3ExprIsVector(pTerm->pExpr->pRight)
976 if( i<16 ) mNoOmit |= (1 << i);
977 if( op==WO_LT ) pIdxCons[j].op = WO_LE;
978 if( op==WO_GT ) pIdxCons[j].op = WO_GE;
982 j++;
984 for(i=0; i<nOrderBy; i++){
985 Expr *pExpr = pOrderBy->a[i].pExpr;
986 pIdxOrderBy[i].iColumn = pExpr->iColumn;
987 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
990 *pmNoOmit = mNoOmit;
991 return pIdxInfo;
995 ** The table object reference passed as the second argument to this function
996 ** must represent a virtual table. This function invokes the xBestIndex()
997 ** method of the virtual table with the sqlite3_index_info object that
998 ** comes in as the 3rd argument to this function.
1000 ** If an error occurs, pParse is populated with an error message and a
1001 ** non-zero value is returned. Otherwise, 0 is returned and the output
1002 ** part of the sqlite3_index_info structure is left populated.
1004 ** Whether or not an error is returned, it is the responsibility of the
1005 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1006 ** that this is required.
1008 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1009 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1010 int rc;
1012 TRACE_IDX_INPUTS(p);
1013 rc = pVtab->pModule->xBestIndex(pVtab, p);
1014 TRACE_IDX_OUTPUTS(p);
1016 if( rc!=SQLITE_OK ){
1017 if( rc==SQLITE_NOMEM ){
1018 sqlite3OomFault(pParse->db);
1019 }else if( !pVtab->zErrMsg ){
1020 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1021 }else{
1022 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1025 sqlite3_free(pVtab->zErrMsg);
1026 pVtab->zErrMsg = 0;
1028 #if 0
1029 /* This error is now caught by the caller.
1030 ** Search for "xBestIndex malfunction" below */
1031 for(i=0; i<p->nConstraint; i++){
1032 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
1033 sqlite3ErrorMsg(pParse,
1034 "table %s: xBestIndex returned an invalid plan", pTab->zName);
1037 #endif
1039 return pParse->nErr;
1041 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1043 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1045 ** Estimate the location of a particular key among all keys in an
1046 ** index. Store the results in aStat as follows:
1048 ** aStat[0] Est. number of rows less than pRec
1049 ** aStat[1] Est. number of rows equal to pRec
1051 ** Return the index of the sample that is the smallest sample that
1052 ** is greater than or equal to pRec. Note that this index is not an index
1053 ** into the aSample[] array - it is an index into a virtual set of samples
1054 ** based on the contents of aSample[] and the number of fields in record
1055 ** pRec.
1057 static int whereKeyStats(
1058 Parse *pParse, /* Database connection */
1059 Index *pIdx, /* Index to consider domain of */
1060 UnpackedRecord *pRec, /* Vector of values to consider */
1061 int roundUp, /* Round up if true. Round down if false */
1062 tRowcnt *aStat /* OUT: stats written here */
1064 IndexSample *aSample = pIdx->aSample;
1065 int iCol; /* Index of required stats in anEq[] etc. */
1066 int i; /* Index of first sample >= pRec */
1067 int iSample; /* Smallest sample larger than or equal to pRec */
1068 int iMin = 0; /* Smallest sample not yet tested */
1069 int iTest; /* Next sample to test */
1070 int res; /* Result of comparison operation */
1071 int nField; /* Number of fields in pRec */
1072 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
1074 #ifndef SQLITE_DEBUG
1075 UNUSED_PARAMETER( pParse );
1076 #endif
1077 assert( pRec!=0 );
1078 assert( pIdx->nSample>0 );
1079 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1081 /* Do a binary search to find the first sample greater than or equal
1082 ** to pRec. If pRec contains a single field, the set of samples to search
1083 ** is simply the aSample[] array. If the samples in aSample[] contain more
1084 ** than one fields, all fields following the first are ignored.
1086 ** If pRec contains N fields, where N is more than one, then as well as the
1087 ** samples in aSample[] (truncated to N fields), the search also has to
1088 ** consider prefixes of those samples. For example, if the set of samples
1089 ** in aSample is:
1091 ** aSample[0] = (a, 5)
1092 ** aSample[1] = (a, 10)
1093 ** aSample[2] = (b, 5)
1094 ** aSample[3] = (c, 100)
1095 ** aSample[4] = (c, 105)
1097 ** Then the search space should ideally be the samples above and the
1098 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1099 ** the code actually searches this set:
1101 ** 0: (a)
1102 ** 1: (a, 5)
1103 ** 2: (a, 10)
1104 ** 3: (a, 10)
1105 ** 4: (b)
1106 ** 5: (b, 5)
1107 ** 6: (c)
1108 ** 7: (c, 100)
1109 ** 8: (c, 105)
1110 ** 9: (c, 105)
1112 ** For each sample in the aSample[] array, N samples are present in the
1113 ** effective sample array. In the above, samples 0 and 1 are based on
1114 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1116 ** Often, sample i of each block of N effective samples has (i+1) fields.
1117 ** Except, each sample may be extended to ensure that it is greater than or
1118 ** equal to the previous sample in the array. For example, in the above,
1119 ** sample 2 is the first sample of a block of N samples, so at first it
1120 ** appears that it should be 1 field in size. However, that would make it
1121 ** smaller than sample 1, so the binary search would not work. As a result,
1122 ** it is extended to two fields. The duplicates that this creates do not
1123 ** cause any problems.
1125 nField = pRec->nField;
1126 iCol = 0;
1127 iSample = pIdx->nSample * nField;
1129 int iSamp; /* Index in aSample[] of test sample */
1130 int n; /* Number of fields in test sample */
1132 iTest = (iMin+iSample)/2;
1133 iSamp = iTest / nField;
1134 if( iSamp>0 ){
1135 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1136 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1137 ** fields that is greater than the previous effective sample. */
1138 for(n=(iTest % nField) + 1; n<nField; n++){
1139 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1141 }else{
1142 n = iTest + 1;
1145 pRec->nField = n;
1146 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1147 if( res<0 ){
1148 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1149 iMin = iTest+1;
1150 }else if( res==0 && n<nField ){
1151 iLower = aSample[iSamp].anLt[n-1];
1152 iMin = iTest+1;
1153 res = -1;
1154 }else{
1155 iSample = iTest;
1156 iCol = n-1;
1158 }while( res && iMin<iSample );
1159 i = iSample / nField;
1161 #ifdef SQLITE_DEBUG
1162 /* The following assert statements check that the binary search code
1163 ** above found the right answer. This block serves no purpose other
1164 ** than to invoke the asserts. */
1165 if( pParse->db->mallocFailed==0 ){
1166 if( res==0 ){
1167 /* If (res==0) is true, then pRec must be equal to sample i. */
1168 assert( i<pIdx->nSample );
1169 assert( iCol==nField-1 );
1170 pRec->nField = nField;
1171 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1172 || pParse->db->mallocFailed
1174 }else{
1175 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1176 ** all samples in the aSample[] array, pRec must be smaller than the
1177 ** (iCol+1) field prefix of sample i. */
1178 assert( i<=pIdx->nSample && i>=0 );
1179 pRec->nField = iCol+1;
1180 assert( i==pIdx->nSample
1181 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1182 || pParse->db->mallocFailed );
1184 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1185 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1186 ** be greater than or equal to the (iCol) field prefix of sample i.
1187 ** If (i>0), then pRec must also be greater than sample (i-1). */
1188 if( iCol>0 ){
1189 pRec->nField = iCol;
1190 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1191 || pParse->db->mallocFailed );
1193 if( i>0 ){
1194 pRec->nField = nField;
1195 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1196 || pParse->db->mallocFailed );
1200 #endif /* ifdef SQLITE_DEBUG */
1202 if( res==0 ){
1203 /* Record pRec is equal to sample i */
1204 assert( iCol==nField-1 );
1205 aStat[0] = aSample[i].anLt[iCol];
1206 aStat[1] = aSample[i].anEq[iCol];
1207 }else{
1208 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1209 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1210 ** is larger than all samples in the array. */
1211 tRowcnt iUpper, iGap;
1212 if( i>=pIdx->nSample ){
1213 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1214 }else{
1215 iUpper = aSample[i].anLt[iCol];
1218 if( iLower>=iUpper ){
1219 iGap = 0;
1220 }else{
1221 iGap = iUpper - iLower;
1223 if( roundUp ){
1224 iGap = (iGap*2)/3;
1225 }else{
1226 iGap = iGap/3;
1228 aStat[0] = iLower + iGap;
1229 aStat[1] = pIdx->aAvgEq[nField-1];
1232 /* Restore the pRec->nField value before returning. */
1233 pRec->nField = nField;
1234 return i;
1236 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1239 ** If it is not NULL, pTerm is a term that provides an upper or lower
1240 ** bound on a range scan. Without considering pTerm, it is estimated
1241 ** that the scan will visit nNew rows. This function returns the number
1242 ** estimated to be visited after taking pTerm into account.
1244 ** If the user explicitly specified a likelihood() value for this term,
1245 ** then the return value is the likelihood multiplied by the number of
1246 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1247 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1249 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1250 LogEst nRet = nNew;
1251 if( pTerm ){
1252 if( pTerm->truthProb<=0 ){
1253 nRet += pTerm->truthProb;
1254 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1255 nRet -= 20; assert( 20==sqlite3LogEst(4) );
1258 return nRet;
1262 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1264 ** Return the affinity for a single column of an index.
1266 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1267 assert( iCol>=0 && iCol<pIdx->nColumn );
1268 if( !pIdx->zColAff ){
1269 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1271 return pIdx->zColAff[iCol];
1273 #endif
1276 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1278 ** This function is called to estimate the number of rows visited by a
1279 ** range-scan on a skip-scan index. For example:
1281 ** CREATE INDEX i1 ON t1(a, b, c);
1282 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1284 ** Value pLoop->nOut is currently set to the estimated number of rows
1285 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1286 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1287 ** on the stat4 data for the index. this scan will be peformed multiple
1288 ** times (once for each (a,b) combination that matches a=?) is dealt with
1289 ** by the caller.
1291 ** It does this by scanning through all stat4 samples, comparing values
1292 ** extracted from pLower and pUpper with the corresponding column in each
1293 ** sample. If L and U are the number of samples found to be less than or
1294 ** equal to the values extracted from pLower and pUpper respectively, and
1295 ** N is the total number of samples, the pLoop->nOut value is adjusted
1296 ** as follows:
1298 ** nOut = nOut * ( min(U - L, 1) / N )
1300 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1301 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1302 ** U is set to N.
1304 ** Normally, this function sets *pbDone to 1 before returning. However,
1305 ** if no value can be extracted from either pLower or pUpper (and so the
1306 ** estimate of the number of rows delivered remains unchanged), *pbDone
1307 ** is left as is.
1309 ** If an error occurs, an SQLite error code is returned. Otherwise,
1310 ** SQLITE_OK.
1312 static int whereRangeSkipScanEst(
1313 Parse *pParse, /* Parsing & code generating context */
1314 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1315 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1316 WhereLoop *pLoop, /* Update the .nOut value of this loop */
1317 int *pbDone /* Set to true if at least one expr. value extracted */
1319 Index *p = pLoop->u.btree.pIndex;
1320 int nEq = pLoop->u.btree.nEq;
1321 sqlite3 *db = pParse->db;
1322 int nLower = -1;
1323 int nUpper = p->nSample+1;
1324 int rc = SQLITE_OK;
1325 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1326 CollSeq *pColl;
1328 sqlite3_value *p1 = 0; /* Value extracted from pLower */
1329 sqlite3_value *p2 = 0; /* Value extracted from pUpper */
1330 sqlite3_value *pVal = 0; /* Value extracted from record */
1332 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1333 if( pLower ){
1334 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1335 nLower = 0;
1337 if( pUpper && rc==SQLITE_OK ){
1338 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1339 nUpper = p2 ? 0 : p->nSample;
1342 if( p1 || p2 ){
1343 int i;
1344 int nDiff;
1345 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1346 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1347 if( rc==SQLITE_OK && p1 ){
1348 int res = sqlite3MemCompare(p1, pVal, pColl);
1349 if( res>=0 ) nLower++;
1351 if( rc==SQLITE_OK && p2 ){
1352 int res = sqlite3MemCompare(p2, pVal, pColl);
1353 if( res>=0 ) nUpper++;
1356 nDiff = (nUpper - nLower);
1357 if( nDiff<=0 ) nDiff = 1;
1359 /* If there is both an upper and lower bound specified, and the
1360 ** comparisons indicate that they are close together, use the fallback
1361 ** method (assume that the scan visits 1/64 of the rows) for estimating
1362 ** the number of rows visited. Otherwise, estimate the number of rows
1363 ** using the method described in the header comment for this function. */
1364 if( nDiff!=1 || pUpper==0 || pLower==0 ){
1365 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1366 pLoop->nOut -= nAdjust;
1367 *pbDone = 1;
1368 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1369 nLower, nUpper, nAdjust*-1, pLoop->nOut));
1372 }else{
1373 assert( *pbDone==0 );
1376 sqlite3ValueFree(p1);
1377 sqlite3ValueFree(p2);
1378 sqlite3ValueFree(pVal);
1380 return rc;
1382 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1385 ** This function is used to estimate the number of rows that will be visited
1386 ** by scanning an index for a range of values. The range may have an upper
1387 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1388 ** and lower bounds are represented by pLower and pUpper respectively. For
1389 ** example, assuming that index p is on t1(a):
1391 ** ... FROM t1 WHERE a > ? AND a < ? ...
1392 ** |_____| |_____|
1393 ** | |
1394 ** pLower pUpper
1396 ** If either of the upper or lower bound is not present, then NULL is passed in
1397 ** place of the corresponding WhereTerm.
1399 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1400 ** column subject to the range constraint. Or, equivalently, the number of
1401 ** equality constraints optimized by the proposed index scan. For example,
1402 ** assuming index p is on t1(a, b), and the SQL query is:
1404 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1406 ** then nEq is set to 1 (as the range restricted column, b, is the second
1407 ** left-most column of the index). Or, if the query is:
1409 ** ... FROM t1 WHERE a > ? AND a < ? ...
1411 ** then nEq is set to 0.
1413 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1414 ** number of rows that the index scan is expected to visit without
1415 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1416 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1417 ** to account for the range constraints pLower and pUpper.
1419 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1420 ** used, a single range inequality reduces the search space by a factor of 4.
1421 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1422 ** rows visited by a factor of 64.
1424 static int whereRangeScanEst(
1425 Parse *pParse, /* Parsing & code generating context */
1426 WhereLoopBuilder *pBuilder,
1427 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1428 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1429 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
1431 int rc = SQLITE_OK;
1432 int nOut = pLoop->nOut;
1433 LogEst nNew;
1435 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1436 Index *p = pLoop->u.btree.pIndex;
1437 int nEq = pLoop->u.btree.nEq;
1439 if( p->nSample>0 && nEq<p->nSampleCol ){
1440 if( nEq==pBuilder->nRecValid ){
1441 UnpackedRecord *pRec = pBuilder->pRec;
1442 tRowcnt a[2];
1443 int nBtm = pLoop->u.btree.nBtm;
1444 int nTop = pLoop->u.btree.nTop;
1446 /* Variable iLower will be set to the estimate of the number of rows in
1447 ** the index that are less than the lower bound of the range query. The
1448 ** lower bound being the concatenation of $P and $L, where $P is the
1449 ** key-prefix formed by the nEq values matched against the nEq left-most
1450 ** columns of the index, and $L is the value in pLower.
1452 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1453 ** is not a simple variable or literal value), the lower bound of the
1454 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1455 ** if $L is available, whereKeyStats() is called for both ($P) and
1456 ** ($P:$L) and the larger of the two returned values is used.
1458 ** Similarly, iUpper is to be set to the estimate of the number of rows
1459 ** less than the upper bound of the range query. Where the upper bound
1460 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1461 ** of iUpper are requested of whereKeyStats() and the smaller used.
1463 ** The number of rows between the two bounds is then just iUpper-iLower.
1465 tRowcnt iLower; /* Rows less than the lower bound */
1466 tRowcnt iUpper; /* Rows less than the upper bound */
1467 int iLwrIdx = -2; /* aSample[] for the lower bound */
1468 int iUprIdx = -1; /* aSample[] for the upper bound */
1470 if( pRec ){
1471 testcase( pRec->nField!=pBuilder->nRecValid );
1472 pRec->nField = pBuilder->nRecValid;
1474 /* Determine iLower and iUpper using ($P) only. */
1475 if( nEq==0 ){
1476 iLower = 0;
1477 iUpper = p->nRowEst0;
1478 }else{
1479 /* Note: this call could be optimized away - since the same values must
1480 ** have been requested when testing key $P in whereEqualScanEst(). */
1481 whereKeyStats(pParse, p, pRec, 0, a);
1482 iLower = a[0];
1483 iUpper = a[0] + a[1];
1486 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1487 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1488 assert( p->aSortOrder!=0 );
1489 if( p->aSortOrder[nEq] ){
1490 /* The roles of pLower and pUpper are swapped for a DESC index */
1491 SWAP(WhereTerm*, pLower, pUpper);
1492 SWAP(int, nBtm, nTop);
1495 /* If possible, improve on the iLower estimate using ($P:$L). */
1496 if( pLower ){
1497 int n; /* Values extracted from pExpr */
1498 Expr *pExpr = pLower->pExpr->pRight;
1499 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1500 if( rc==SQLITE_OK && n ){
1501 tRowcnt iNew;
1502 u16 mask = WO_GT|WO_LE;
1503 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1504 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1505 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1506 if( iNew>iLower ) iLower = iNew;
1507 nOut--;
1508 pLower = 0;
1512 /* If possible, improve on the iUpper estimate using ($P:$U). */
1513 if( pUpper ){
1514 int n; /* Values extracted from pExpr */
1515 Expr *pExpr = pUpper->pExpr->pRight;
1516 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1517 if( rc==SQLITE_OK && n ){
1518 tRowcnt iNew;
1519 u16 mask = WO_GT|WO_LE;
1520 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1521 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1522 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1523 if( iNew<iUpper ) iUpper = iNew;
1524 nOut--;
1525 pUpper = 0;
1529 pBuilder->pRec = pRec;
1530 if( rc==SQLITE_OK ){
1531 if( iUpper>iLower ){
1532 nNew = sqlite3LogEst(iUpper - iLower);
1533 /* TUNING: If both iUpper and iLower are derived from the same
1534 ** sample, then assume they are 4x more selective. This brings
1535 ** the estimated selectivity more in line with what it would be
1536 ** if estimated without the use of STAT3/4 tables. */
1537 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) );
1538 }else{
1539 nNew = 10; assert( 10==sqlite3LogEst(2) );
1541 if( nNew<nOut ){
1542 nOut = nNew;
1544 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
1545 (u32)iLower, (u32)iUpper, nOut));
1547 }else{
1548 int bDone = 0;
1549 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1550 if( bDone ) return rc;
1553 #else
1554 UNUSED_PARAMETER(pParse);
1555 UNUSED_PARAMETER(pBuilder);
1556 assert( pLower || pUpper );
1557 #endif
1558 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1559 nNew = whereRangeAdjust(pLower, nOut);
1560 nNew = whereRangeAdjust(pUpper, nNew);
1562 /* TUNING: If there is both an upper and lower limit and neither limit
1563 ** has an application-defined likelihood(), assume the range is
1564 ** reduced by an additional 75%. This means that, by default, an open-ended
1565 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1566 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1567 ** match 1/64 of the index. */
1568 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1569 nNew -= 20;
1572 nOut -= (pLower!=0) + (pUpper!=0);
1573 if( nNew<10 ) nNew = 10;
1574 if( nNew<nOut ) nOut = nNew;
1575 #if defined(WHERETRACE_ENABLED)
1576 if( pLoop->nOut>nOut ){
1577 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1578 pLoop->nOut, nOut));
1580 #endif
1581 pLoop->nOut = (LogEst)nOut;
1582 return rc;
1585 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1587 ** Estimate the number of rows that will be returned based on
1588 ** an equality constraint x=VALUE and where that VALUE occurs in
1589 ** the histogram data. This only works when x is the left-most
1590 ** column of an index and sqlite_stat3 histogram data is available
1591 ** for that index. When pExpr==NULL that means the constraint is
1592 ** "x IS NULL" instead of "x=VALUE".
1594 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1595 ** If unable to make an estimate, leave *pnRow unchanged and return
1596 ** non-zero.
1598 ** This routine can fail if it is unable to load a collating sequence
1599 ** required for string comparison, or if unable to allocate memory
1600 ** for a UTF conversion required for comparison. The error is stored
1601 ** in the pParse structure.
1603 static int whereEqualScanEst(
1604 Parse *pParse, /* Parsing & code generating context */
1605 WhereLoopBuilder *pBuilder,
1606 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
1607 tRowcnt *pnRow /* Write the revised row estimate here */
1609 Index *p = pBuilder->pNew->u.btree.pIndex;
1610 int nEq = pBuilder->pNew->u.btree.nEq;
1611 UnpackedRecord *pRec = pBuilder->pRec;
1612 int rc; /* Subfunction return code */
1613 tRowcnt a[2]; /* Statistics */
1614 int bOk;
1616 assert( nEq>=1 );
1617 assert( nEq<=p->nColumn );
1618 assert( p->aSample!=0 );
1619 assert( p->nSample>0 );
1620 assert( pBuilder->nRecValid<nEq );
1622 /* If values are not available for all fields of the index to the left
1623 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1624 if( pBuilder->nRecValid<(nEq-1) ){
1625 return SQLITE_NOTFOUND;
1628 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1629 ** below would return the same value. */
1630 if( nEq>=p->nColumn ){
1631 *pnRow = 1;
1632 return SQLITE_OK;
1635 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1636 pBuilder->pRec = pRec;
1637 if( rc!=SQLITE_OK ) return rc;
1638 if( bOk==0 ) return SQLITE_NOTFOUND;
1639 pBuilder->nRecValid = nEq;
1641 whereKeyStats(pParse, p, pRec, 0, a);
1642 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1643 p->zName, nEq-1, (int)a[1]));
1644 *pnRow = a[1];
1646 return rc;
1648 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1650 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1652 ** Estimate the number of rows that will be returned based on
1653 ** an IN constraint where the right-hand side of the IN operator
1654 ** is a list of values. Example:
1656 ** WHERE x IN (1,2,3,4)
1658 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1659 ** If unable to make an estimate, leave *pnRow unchanged and return
1660 ** non-zero.
1662 ** This routine can fail if it is unable to load a collating sequence
1663 ** required for string comparison, or if unable to allocate memory
1664 ** for a UTF conversion required for comparison. The error is stored
1665 ** in the pParse structure.
1667 static int whereInScanEst(
1668 Parse *pParse, /* Parsing & code generating context */
1669 WhereLoopBuilder *pBuilder,
1670 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1671 tRowcnt *pnRow /* Write the revised row estimate here */
1673 Index *p = pBuilder->pNew->u.btree.pIndex;
1674 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1675 int nRecValid = pBuilder->nRecValid;
1676 int rc = SQLITE_OK; /* Subfunction return code */
1677 tRowcnt nEst; /* Number of rows for a single term */
1678 tRowcnt nRowEst = 0; /* New estimate of the number of rows */
1679 int i; /* Loop counter */
1681 assert( p->aSample!=0 );
1682 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1683 nEst = nRow0;
1684 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1685 nRowEst += nEst;
1686 pBuilder->nRecValid = nRecValid;
1689 if( rc==SQLITE_OK ){
1690 if( nRowEst > nRow0 ) nRowEst = nRow0;
1691 *pnRow = nRowEst;
1692 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1694 assert( pBuilder->nRecValid==nRecValid );
1695 return rc;
1697 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1700 #ifdef WHERETRACE_ENABLED
1702 ** Print the content of a WhereTerm object
1704 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1705 if( pTerm==0 ){
1706 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1707 }else{
1708 char zType[4];
1709 char zLeft[50];
1710 memcpy(zType, "...", 4);
1711 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1712 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
1713 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1714 if( pTerm->eOperator & WO_SINGLE ){
1715 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1716 pTerm->leftCursor, pTerm->u.leftColumn);
1717 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1718 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1719 pTerm->u.pOrInfo->indexable);
1720 }else{
1721 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1723 sqlite3DebugPrintf(
1724 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1725 iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1726 pTerm->eOperator, pTerm->wtFlags);
1727 if( pTerm->iField ){
1728 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1729 }else{
1730 sqlite3DebugPrintf("\n");
1732 sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1735 #endif
1737 #ifdef WHERETRACE_ENABLED
1739 ** Show the complete content of a WhereClause
1741 void sqlite3WhereClausePrint(WhereClause *pWC){
1742 int i;
1743 for(i=0; i<pWC->nTerm; i++){
1744 whereTermPrint(&pWC->a[i], i);
1747 #endif
1749 #ifdef WHERETRACE_ENABLED
1751 ** Print a WhereLoop object for debugging purposes
1753 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1754 WhereInfo *pWInfo = pWC->pWInfo;
1755 int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1756 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1757 Table *pTab = pItem->pTab;
1758 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1759 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1760 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1761 sqlite3DebugPrintf(" %12s",
1762 pItem->zAlias ? pItem->zAlias : pTab->zName);
1763 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1764 const char *zName;
1765 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1766 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1767 int i = sqlite3Strlen30(zName) - 1;
1768 while( zName[i]!='_' ) i--;
1769 zName += i;
1771 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1772 }else{
1773 sqlite3DebugPrintf("%20s","");
1775 }else{
1776 char *z;
1777 if( p->u.vtab.idxStr ){
1778 z = sqlite3_mprintf("(%d,\"%s\",%x)",
1779 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1780 }else{
1781 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1783 sqlite3DebugPrintf(" %-19s", z);
1784 sqlite3_free(z);
1786 if( p->wsFlags & WHERE_SKIPSCAN ){
1787 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1788 }else{
1789 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1791 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1792 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1793 int i;
1794 for(i=0; i<p->nLTerm; i++){
1795 whereTermPrint(p->aLTerm[i], i);
1799 #endif
1802 ** Convert bulk memory into a valid WhereLoop that can be passed
1803 ** to whereLoopClear harmlessly.
1805 static void whereLoopInit(WhereLoop *p){
1806 p->aLTerm = p->aLTermSpace;
1807 p->nLTerm = 0;
1808 p->nLSlot = ArraySize(p->aLTermSpace);
1809 p->wsFlags = 0;
1813 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
1815 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1816 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1817 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1818 sqlite3_free(p->u.vtab.idxStr);
1819 p->u.vtab.needFree = 0;
1820 p->u.vtab.idxStr = 0;
1821 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1822 sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1823 sqlite3DbFreeNN(db, p->u.btree.pIndex);
1824 p->u.btree.pIndex = 0;
1830 ** Deallocate internal memory used by a WhereLoop object
1832 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1833 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1834 whereLoopClearUnion(db, p);
1835 whereLoopInit(p);
1839 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1841 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1842 WhereTerm **paNew;
1843 if( p->nLSlot>=n ) return SQLITE_OK;
1844 n = (n+7)&~7;
1845 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1846 if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1847 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1848 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1849 p->aLTerm = paNew;
1850 p->nLSlot = n;
1851 return SQLITE_OK;
1855 ** Transfer content from the second pLoop into the first.
1857 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1858 whereLoopClearUnion(db, pTo);
1859 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1860 memset(&pTo->u, 0, sizeof(pTo->u));
1861 return SQLITE_NOMEM_BKPT;
1863 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1864 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1865 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1866 pFrom->u.vtab.needFree = 0;
1867 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1868 pFrom->u.btree.pIndex = 0;
1870 return SQLITE_OK;
1874 ** Delete a WhereLoop object
1876 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1877 whereLoopClear(db, p);
1878 sqlite3DbFreeNN(db, p);
1882 ** Free a WhereInfo structure
1884 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1885 int i;
1886 assert( pWInfo!=0 );
1887 for(i=0; i<pWInfo->nLevel; i++){
1888 WhereLevel *pLevel = &pWInfo->a[i];
1889 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1890 sqlite3DbFree(db, pLevel->u.in.aInLoop);
1893 sqlite3WhereClauseClear(&pWInfo->sWC);
1894 while( pWInfo->pLoops ){
1895 WhereLoop *p = pWInfo->pLoops;
1896 pWInfo->pLoops = p->pNextLoop;
1897 whereLoopDelete(db, p);
1899 sqlite3DbFreeNN(db, pWInfo);
1903 ** Return TRUE if all of the following are true:
1905 ** (1) X has the same or lower cost that Y
1906 ** (2) X uses fewer WHERE clause terms than Y
1907 ** (3) Every WHERE clause term used by X is also used by Y
1908 ** (4) X skips at least as many columns as Y
1909 ** (5) If X is a covering index, than Y is too
1911 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1912 ** If X is a proper subset of Y then Y is a better choice and ought
1913 ** to have a lower cost. This routine returns TRUE when that cost
1914 ** relationship is inverted and needs to be adjusted. Constraint (4)
1915 ** was added because if X uses skip-scan less than Y it still might
1916 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
1917 ** was added because a covering index probably deserves to have a lower cost
1918 ** than a non-covering index even if it is a proper subset.
1920 static int whereLoopCheaperProperSubset(
1921 const WhereLoop *pX, /* First WhereLoop to compare */
1922 const WhereLoop *pY /* Compare against this WhereLoop */
1924 int i, j;
1925 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1926 return 0; /* X is not a subset of Y */
1928 if( pY->nSkip > pX->nSkip ) return 0;
1929 if( pX->rRun >= pY->rRun ){
1930 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */
1931 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */
1933 for(i=pX->nLTerm-1; i>=0; i--){
1934 if( pX->aLTerm[i]==0 ) continue;
1935 for(j=pY->nLTerm-1; j>=0; j--){
1936 if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1938 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
1940 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1941 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1942 return 0; /* Constraint (5) */
1944 return 1; /* All conditions meet */
1948 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1949 ** that:
1951 ** (1) pTemplate costs less than any other WhereLoops that are a proper
1952 ** subset of pTemplate
1954 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
1955 ** is a proper subset.
1957 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1958 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1959 ** also used by Y.
1961 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1962 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1963 for(; p; p=p->pNextLoop){
1964 if( p->iTab!=pTemplate->iTab ) continue;
1965 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1966 if( whereLoopCheaperProperSubset(p, pTemplate) ){
1967 /* Adjust pTemplate cost downward so that it is cheaper than its
1968 ** subset p. */
1969 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1970 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1971 pTemplate->rRun = p->rRun;
1972 pTemplate->nOut = p->nOut - 1;
1973 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1974 /* Adjust pTemplate cost upward so that it is costlier than p since
1975 ** pTemplate is a proper subset of p */
1976 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1977 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1978 pTemplate->rRun = p->rRun;
1979 pTemplate->nOut = p->nOut + 1;
1985 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1986 ** replaced by pTemplate.
1988 ** Return NULL if pTemplate does not belong on the WhereLoop list.
1989 ** In other words if pTemplate ought to be dropped from further consideration.
1991 ** If pX is a WhereLoop that pTemplate can replace, then return the
1992 ** link that points to pX.
1994 ** If pTemplate cannot replace any existing element of the list but needs
1995 ** to be added to the list as a new entry, then return a pointer to the
1996 ** tail of the list.
1998 static WhereLoop **whereLoopFindLesser(
1999 WhereLoop **ppPrev,
2000 const WhereLoop *pTemplate
2002 WhereLoop *p;
2003 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2004 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2005 /* If either the iTab or iSortIdx values for two WhereLoop are different
2006 ** then those WhereLoops need to be considered separately. Neither is
2007 ** a candidate to replace the other. */
2008 continue;
2010 /* In the current implementation, the rSetup value is either zero
2011 ** or the cost of building an automatic index (NlogN) and the NlogN
2012 ** is the same for compatible WhereLoops. */
2013 assert( p->rSetup==0 || pTemplate->rSetup==0
2014 || p->rSetup==pTemplate->rSetup );
2016 /* whereLoopAddBtree() always generates and inserts the automatic index
2017 ** case first. Hence compatible candidate WhereLoops never have a larger
2018 ** rSetup. Call this SETUP-INVARIANT */
2019 assert( p->rSetup>=pTemplate->rSetup );
2021 /* Any loop using an appliation-defined index (or PRIMARY KEY or
2022 ** UNIQUE constraint) with one or more == constraints is better
2023 ** than an automatic index. Unless it is a skip-scan. */
2024 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2025 && (pTemplate->nSkip)==0
2026 && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2027 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2028 && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2030 break;
2033 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2034 ** discarded. WhereLoop p is better if:
2035 ** (1) p has no more dependencies than pTemplate, and
2036 ** (2) p has an equal or lower cost than pTemplate
2038 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
2039 && p->rSetup<=pTemplate->rSetup /* (2a) */
2040 && p->rRun<=pTemplate->rRun /* (2b) */
2041 && p->nOut<=pTemplate->nOut /* (2c) */
2043 return 0; /* Discard pTemplate */
2046 /* If pTemplate is always better than p, then cause p to be overwritten
2047 ** with pTemplate. pTemplate is better than p if:
2048 ** (1) pTemplate has no more dependences than p, and
2049 ** (2) pTemplate has an equal or lower cost than p.
2051 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
2052 && p->rRun>=pTemplate->rRun /* (2a) */
2053 && p->nOut>=pTemplate->nOut /* (2b) */
2055 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2056 break; /* Cause p to be overwritten by pTemplate */
2059 return ppPrev;
2063 ** Insert or replace a WhereLoop entry using the template supplied.
2065 ** An existing WhereLoop entry might be overwritten if the new template
2066 ** is better and has fewer dependencies. Or the template will be ignored
2067 ** and no insert will occur if an existing WhereLoop is faster and has
2068 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2069 ** added based on the template.
2071 ** If pBuilder->pOrSet is not NULL then we care about only the
2072 ** prerequisites and rRun and nOut costs of the N best loops. That
2073 ** information is gathered in the pBuilder->pOrSet object. This special
2074 ** processing mode is used only for OR clause processing.
2076 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2077 ** still might overwrite similar loops with the new template if the
2078 ** new template is better. Loops may be overwritten if the following
2079 ** conditions are met:
2081 ** (1) They have the same iTab.
2082 ** (2) They have the same iSortIdx.
2083 ** (3) The template has same or fewer dependencies than the current loop
2084 ** (4) The template has the same or lower cost than the current loop
2086 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2087 WhereLoop **ppPrev, *p;
2088 WhereInfo *pWInfo = pBuilder->pWInfo;
2089 sqlite3 *db = pWInfo->pParse->db;
2090 int rc;
2092 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2093 ** and prereqs.
2095 if( pBuilder->pOrSet!=0 ){
2096 if( pTemplate->nLTerm ){
2097 #if WHERETRACE_ENABLED
2098 u16 n = pBuilder->pOrSet->n;
2099 int x =
2100 #endif
2101 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2102 pTemplate->nOut);
2103 #if WHERETRACE_ENABLED /* 0x8 */
2104 if( sqlite3WhereTrace & 0x8 ){
2105 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
2106 whereLoopPrint(pTemplate, pBuilder->pWC);
2108 #endif
2110 return SQLITE_OK;
2113 /* Look for an existing WhereLoop to replace with pTemplate
2115 whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2116 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2118 if( ppPrev==0 ){
2119 /* There already exists a WhereLoop on the list that is better
2120 ** than pTemplate, so just ignore pTemplate */
2121 #if WHERETRACE_ENABLED /* 0x8 */
2122 if( sqlite3WhereTrace & 0x8 ){
2123 sqlite3DebugPrintf(" skip: ");
2124 whereLoopPrint(pTemplate, pBuilder->pWC);
2126 #endif
2127 return SQLITE_OK;
2128 }else{
2129 p = *ppPrev;
2132 /* If we reach this point it means that either p[] should be overwritten
2133 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2134 ** WhereLoop and insert it.
2136 #if WHERETRACE_ENABLED /* 0x8 */
2137 if( sqlite3WhereTrace & 0x8 ){
2138 if( p!=0 ){
2139 sqlite3DebugPrintf("replace: ");
2140 whereLoopPrint(p, pBuilder->pWC);
2141 sqlite3DebugPrintf(" with: ");
2142 }else{
2143 sqlite3DebugPrintf(" add: ");
2145 whereLoopPrint(pTemplate, pBuilder->pWC);
2147 #endif
2148 if( p==0 ){
2149 /* Allocate a new WhereLoop to add to the end of the list */
2150 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2151 if( p==0 ) return SQLITE_NOMEM_BKPT;
2152 whereLoopInit(p);
2153 p->pNextLoop = 0;
2154 }else{
2155 /* We will be overwriting WhereLoop p[]. But before we do, first
2156 ** go through the rest of the list and delete any other entries besides
2157 ** p[] that are also supplated by pTemplate */
2158 WhereLoop **ppTail = &p->pNextLoop;
2159 WhereLoop *pToDel;
2160 while( *ppTail ){
2161 ppTail = whereLoopFindLesser(ppTail, pTemplate);
2162 if( ppTail==0 ) break;
2163 pToDel = *ppTail;
2164 if( pToDel==0 ) break;
2165 *ppTail = pToDel->pNextLoop;
2166 #if WHERETRACE_ENABLED /* 0x8 */
2167 if( sqlite3WhereTrace & 0x8 ){
2168 sqlite3DebugPrintf(" delete: ");
2169 whereLoopPrint(pToDel, pBuilder->pWC);
2171 #endif
2172 whereLoopDelete(db, pToDel);
2175 rc = whereLoopXfer(db, p, pTemplate);
2176 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2177 Index *pIndex = p->u.btree.pIndex;
2178 if( pIndex && pIndex->tnum==0 ){
2179 p->u.btree.pIndex = 0;
2182 return rc;
2186 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2187 ** WHERE clause that reference the loop but which are not used by an
2188 ** index.
2190 ** For every WHERE clause term that is not used by the index
2191 ** and which has a truth probability assigned by one of the likelihood(),
2192 ** likely(), or unlikely() SQL functions, reduce the estimated number
2193 ** of output rows by the probability specified.
2195 ** TUNING: For every WHERE clause term that is not used by the index
2196 ** and which does not have an assigned truth probability, heuristics
2197 ** described below are used to try to estimate the truth probability.
2198 ** TODO --> Perhaps this is something that could be improved by better
2199 ** table statistics.
2201 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2202 ** value corresponds to -1 in LogEst notation, so this means decrement
2203 ** the WhereLoop.nOut field for every such WHERE clause term.
2205 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2206 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2207 ** final output row estimate is no greater than 1/4 of the total number
2208 ** of rows in the table. In other words, assume that x==EXPR will filter
2209 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2210 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2211 ** on the "x" column and so in that case only cap the output row estimate
2212 ** at 1/2 instead of 1/4.
2214 static void whereLoopOutputAdjust(
2215 WhereClause *pWC, /* The WHERE clause */
2216 WhereLoop *pLoop, /* The loop to adjust downward */
2217 LogEst nRow /* Number of rows in the entire table */
2219 WhereTerm *pTerm, *pX;
2220 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2221 int i, j, k;
2222 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
2224 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2225 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2226 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2227 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2228 if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2229 for(j=pLoop->nLTerm-1; j>=0; j--){
2230 pX = pLoop->aLTerm[j];
2231 if( pX==0 ) continue;
2232 if( pX==pTerm ) break;
2233 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2235 if( j<0 ){
2236 if( pTerm->truthProb<=0 ){
2237 /* If a truth probability is specified using the likelihood() hints,
2238 ** then use the probability provided by the application. */
2239 pLoop->nOut += pTerm->truthProb;
2240 }else{
2241 /* In the absence of explicit truth probabilities, use heuristics to
2242 ** guess a reasonable truth probability. */
2243 pLoop->nOut--;
2244 if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2245 Expr *pRight = pTerm->pExpr->pRight;
2246 testcase( pTerm->pExpr->op==TK_IS );
2247 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2248 k = 10;
2249 }else{
2250 k = 20;
2252 if( iReduce<k ) iReduce = k;
2257 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce;
2261 ** Term pTerm is a vector range comparison operation. The first comparison
2262 ** in the vector can be optimized using column nEq of the index. This
2263 ** function returns the total number of vector elements that can be used
2264 ** as part of the range comparison.
2266 ** For example, if the query is:
2268 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2270 ** and the index:
2272 ** CREATE INDEX ... ON (a, b, c, d, e)
2274 ** then this function would be invoked with nEq=1. The value returned in
2275 ** this case is 3.
2277 static int whereRangeVectorLen(
2278 Parse *pParse, /* Parsing context */
2279 int iCur, /* Cursor open on pIdx */
2280 Index *pIdx, /* The index to be used for a inequality constraint */
2281 int nEq, /* Number of prior equality constraints on same index */
2282 WhereTerm *pTerm /* The vector inequality constraint */
2284 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2285 int i;
2287 nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2288 for(i=1; i<nCmp; i++){
2289 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2290 ** of the index. If not, exit the loop. */
2291 char aff; /* Comparison affinity */
2292 char idxaff = 0; /* Indexed columns affinity */
2293 CollSeq *pColl; /* Comparison collation sequence */
2294 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2295 Expr *pRhs = pTerm->pExpr->pRight;
2296 if( pRhs->flags & EP_xIsSelect ){
2297 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2298 }else{
2299 pRhs = pRhs->x.pList->a[i].pExpr;
2302 /* Check that the LHS of the comparison is a column reference to
2303 ** the right column of the right source table. And that the sort
2304 ** order of the index column is the same as the sort order of the
2305 ** leftmost index column. */
2306 if( pLhs->op!=TK_COLUMN
2307 || pLhs->iTable!=iCur
2308 || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2309 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2311 break;
2314 testcase( pLhs->iColumn==XN_ROWID );
2315 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2316 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2317 if( aff!=idxaff ) break;
2319 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2320 if( pColl==0 ) break;
2321 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2323 return i;
2327 ** Adjust the cost C by the costMult facter T. This only occurs if
2328 ** compiled with -DSQLITE_ENABLE_COSTMULT
2330 #ifdef SQLITE_ENABLE_COSTMULT
2331 # define ApplyCostMultiplier(C,T) C += T
2332 #else
2333 # define ApplyCostMultiplier(C,T)
2334 #endif
2337 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2338 ** index pIndex. Try to match one more.
2340 ** When this function is called, pBuilder->pNew->nOut contains the
2341 ** number of rows expected to be visited by filtering using the nEq
2342 ** terms only. If it is modified, this value is restored before this
2343 ** function returns.
2345 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2346 ** INTEGER PRIMARY KEY.
2348 static int whereLoopAddBtreeIndex(
2349 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
2350 struct SrcList_item *pSrc, /* FROM clause term being analyzed */
2351 Index *pProbe, /* An index on pSrc */
2352 LogEst nInMul /* log(Number of iterations due to IN) */
2354 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */
2355 Parse *pParse = pWInfo->pParse; /* Parsing context */
2356 sqlite3 *db = pParse->db; /* Database connection malloc context */
2357 WhereLoop *pNew; /* Template WhereLoop under construction */
2358 WhereTerm *pTerm; /* A WhereTerm under consideration */
2359 int opMask; /* Valid operators for constraints */
2360 WhereScan scan; /* Iterator for WHERE terms */
2361 Bitmask saved_prereq; /* Original value of pNew->prereq */
2362 u16 saved_nLTerm; /* Original value of pNew->nLTerm */
2363 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
2364 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
2365 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
2366 u16 saved_nSkip; /* Original value of pNew->nSkip */
2367 u32 saved_wsFlags; /* Original value of pNew->wsFlags */
2368 LogEst saved_nOut; /* Original value of pNew->nOut */
2369 int rc = SQLITE_OK; /* Return code */
2370 LogEst rSize; /* Number of rows in the table */
2371 LogEst rLogSize; /* Logarithm of table size */
2372 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2374 pNew = pBuilder->pNew;
2375 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2376 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n",
2377 pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq));
2379 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2380 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2381 if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2382 opMask = WO_LT|WO_LE;
2383 }else{
2384 assert( pNew->u.btree.nBtm==0 );
2385 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2387 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2389 assert( pNew->u.btree.nEq<pProbe->nColumn );
2391 saved_nEq = pNew->u.btree.nEq;
2392 saved_nBtm = pNew->u.btree.nBtm;
2393 saved_nTop = pNew->u.btree.nTop;
2394 saved_nSkip = pNew->nSkip;
2395 saved_nLTerm = pNew->nLTerm;
2396 saved_wsFlags = pNew->wsFlags;
2397 saved_prereq = pNew->prereq;
2398 saved_nOut = pNew->nOut;
2399 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2400 opMask, pProbe);
2401 pNew->rSetup = 0;
2402 rSize = pProbe->aiRowLogEst[0];
2403 rLogSize = estLog(rSize);
2404 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2405 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
2406 LogEst rCostIdx;
2407 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
2408 int nIn = 0;
2409 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2410 int nRecValid = pBuilder->nRecValid;
2411 #endif
2412 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2413 && indexColumnNotNull(pProbe, saved_nEq)
2415 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2417 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2419 /* Do not allow the upper bound of a LIKE optimization range constraint
2420 ** to mix with a lower range bound from some other source */
2421 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2423 /* Do not allow constraints from the WHERE clause to be used by the
2424 ** right table of a LEFT JOIN. Only constraints in the ON clause are
2425 ** allowed */
2426 if( (pSrc->fg.jointype & JT_LEFT)!=0
2427 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2429 continue;
2432 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2433 pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2434 }else{
2435 pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2437 pNew->wsFlags = saved_wsFlags;
2438 pNew->u.btree.nEq = saved_nEq;
2439 pNew->u.btree.nBtm = saved_nBtm;
2440 pNew->u.btree.nTop = saved_nTop;
2441 pNew->nLTerm = saved_nLTerm;
2442 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2443 pNew->aLTerm[pNew->nLTerm++] = pTerm;
2444 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2446 assert( nInMul==0
2447 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2448 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2449 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2452 if( eOp & WO_IN ){
2453 Expr *pExpr = pTerm->pExpr;
2454 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2455 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2456 int i;
2457 nIn = 46; assert( 46==sqlite3LogEst(25) );
2459 /* The expression may actually be of the form (x, y) IN (SELECT...).
2460 ** In this case there is a separate term for each of (x) and (y).
2461 ** However, the nIn multiplier should only be applied once, not once
2462 ** for each such term. The following loop checks that pTerm is the
2463 ** first such term in use, and sets nIn back to 0 if it is not. */
2464 for(i=0; i<pNew->nLTerm-1; i++){
2465 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2467 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2468 /* "x IN (value, value, ...)" */
2469 nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2470 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser
2471 ** changes "x IN (?)" into "x=?". */
2473 if( pProbe->hasStat1 ){
2474 LogEst M, logK, safetyMargin;
2475 /* Let:
2476 ** N = the total number of rows in the table
2477 ** K = the number of entries on the RHS of the IN operator
2478 ** M = the number of rows in the table that match terms to the
2479 ** to the left in the same index. If the IN operator is on
2480 ** the left-most index column, M==N.
2482 ** Given the definitions above, it is better to omit the IN operator
2483 ** from the index lookup and instead do a scan of the M elements,
2484 ** testing each scanned row against the IN operator separately, if:
2486 ** M*log(K) < K*log(N)
2488 ** Our estimates for M, K, and N might be inaccurate, so we build in
2489 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2490 ** with the index, as using an index has better worst-case behavior.
2491 ** If we do not have real sqlite_stat1 data, always prefer to use
2492 ** the index.
2494 M = pProbe->aiRowLogEst[saved_nEq];
2495 logK = estLog(nIn);
2496 safetyMargin = 10; /* TUNING: extra weight for indexed IN */
2497 if( M + logK + safetyMargin < nIn + rLogSize ){
2498 WHERETRACE(0x40,
2499 ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2500 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2501 continue;
2502 }else{
2503 WHERETRACE(0x40,
2504 ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2505 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2508 pNew->wsFlags |= WHERE_COLUMN_IN;
2509 }else if( eOp & (WO_EQ|WO_IS) ){
2510 int iCol = pProbe->aiColumn[saved_nEq];
2511 pNew->wsFlags |= WHERE_COLUMN_EQ;
2512 assert( saved_nEq==pNew->u.btree.nEq );
2513 if( iCol==XN_ROWID
2514 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2516 if( iCol==XN_ROWID || pProbe->uniqNotNull
2517 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2519 pNew->wsFlags |= WHERE_ONEROW;
2520 }else{
2521 pNew->wsFlags |= WHERE_UNQ_WANTED;
2524 }else if( eOp & WO_ISNULL ){
2525 pNew->wsFlags |= WHERE_COLUMN_NULL;
2526 }else if( eOp & (WO_GT|WO_GE) ){
2527 testcase( eOp & WO_GT );
2528 testcase( eOp & WO_GE );
2529 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2530 pNew->u.btree.nBtm = whereRangeVectorLen(
2531 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2533 pBtm = pTerm;
2534 pTop = 0;
2535 if( pTerm->wtFlags & TERM_LIKEOPT ){
2536 /* Range contraints that come from the LIKE optimization are
2537 ** always used in pairs. */
2538 pTop = &pTerm[1];
2539 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2540 assert( pTop->wtFlags & TERM_LIKEOPT );
2541 assert( pTop->eOperator==WO_LT );
2542 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2543 pNew->aLTerm[pNew->nLTerm++] = pTop;
2544 pNew->wsFlags |= WHERE_TOP_LIMIT;
2545 pNew->u.btree.nTop = 1;
2547 }else{
2548 assert( eOp & (WO_LT|WO_LE) );
2549 testcase( eOp & WO_LT );
2550 testcase( eOp & WO_LE );
2551 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2552 pNew->u.btree.nTop = whereRangeVectorLen(
2553 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2555 pTop = pTerm;
2556 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2557 pNew->aLTerm[pNew->nLTerm-2] : 0;
2560 /* At this point pNew->nOut is set to the number of rows expected to
2561 ** be visited by the index scan before considering term pTerm, or the
2562 ** values of nIn and nInMul. In other words, assuming that all
2563 ** "x IN(...)" terms are replaced with "x = ?". This block updates
2564 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
2565 assert( pNew->nOut==saved_nOut );
2566 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2567 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2568 ** data, using some other estimate. */
2569 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2570 }else{
2571 int nEq = ++pNew->u.btree.nEq;
2572 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2574 assert( pNew->nOut==saved_nOut );
2575 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2576 assert( (eOp & WO_IN) || nIn==0 );
2577 testcase( eOp & WO_IN );
2578 pNew->nOut += pTerm->truthProb;
2579 pNew->nOut -= nIn;
2580 }else{
2581 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2582 tRowcnt nOut = 0;
2583 if( nInMul==0
2584 && pProbe->nSample
2585 && pNew->u.btree.nEq<=pProbe->nSampleCol
2586 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2588 Expr *pExpr = pTerm->pExpr;
2589 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2590 testcase( eOp & WO_EQ );
2591 testcase( eOp & WO_IS );
2592 testcase( eOp & WO_ISNULL );
2593 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2594 }else{
2595 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2597 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2598 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
2599 if( nOut ){
2600 pNew->nOut = sqlite3LogEst(nOut);
2601 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2602 pNew->nOut -= nIn;
2605 if( nOut==0 )
2606 #endif
2608 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2609 if( eOp & WO_ISNULL ){
2610 /* TUNING: If there is no likelihood() value, assume that a
2611 ** "col IS NULL" expression matches twice as many rows
2612 ** as (col=?). */
2613 pNew->nOut += 10;
2619 /* Set rCostIdx to the cost of visiting selected rows in index. Add
2620 ** it to pNew->rRun, which is currently set to the cost of the index
2621 ** seek only. Then, if this is a non-covering index, add the cost of
2622 ** visiting the rows in the main table. */
2623 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2624 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2625 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2626 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2628 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2630 nOutUnadjusted = pNew->nOut;
2631 pNew->rRun += nInMul + nIn;
2632 pNew->nOut += nInMul + nIn;
2633 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2634 rc = whereLoopInsert(pBuilder, pNew);
2636 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2637 pNew->nOut = saved_nOut;
2638 }else{
2639 pNew->nOut = nOutUnadjusted;
2642 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2643 && pNew->u.btree.nEq<pProbe->nColumn
2645 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2647 pNew->nOut = saved_nOut;
2648 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2649 pBuilder->nRecValid = nRecValid;
2650 #endif
2652 pNew->prereq = saved_prereq;
2653 pNew->u.btree.nEq = saved_nEq;
2654 pNew->u.btree.nBtm = saved_nBtm;
2655 pNew->u.btree.nTop = saved_nTop;
2656 pNew->nSkip = saved_nSkip;
2657 pNew->wsFlags = saved_wsFlags;
2658 pNew->nOut = saved_nOut;
2659 pNew->nLTerm = saved_nLTerm;
2661 /* Consider using a skip-scan if there are no WHERE clause constraints
2662 ** available for the left-most terms of the index, and if the average
2663 ** number of repeats in the left-most terms is at least 18.
2665 ** The magic number 18 is selected on the basis that scanning 17 rows
2666 ** is almost always quicker than an index seek (even though if the index
2667 ** contains fewer than 2^17 rows we assume otherwise in other parts of
2668 ** the code). And, even if it is not, it should not be too much slower.
2669 ** On the other hand, the extra seeks could end up being significantly
2670 ** more expensive. */
2671 assert( 42==sqlite3LogEst(18) );
2672 if( saved_nEq==saved_nSkip
2673 && saved_nEq+1<pProbe->nKeyCol
2674 && pProbe->noSkipScan==0
2675 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
2676 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2678 LogEst nIter;
2679 pNew->u.btree.nEq++;
2680 pNew->nSkip++;
2681 pNew->aLTerm[pNew->nLTerm++] = 0;
2682 pNew->wsFlags |= WHERE_SKIPSCAN;
2683 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2684 pNew->nOut -= nIter;
2685 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
2686 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2687 nIter += 5;
2688 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2689 pNew->nOut = saved_nOut;
2690 pNew->u.btree.nEq = saved_nEq;
2691 pNew->nSkip = saved_nSkip;
2692 pNew->wsFlags = saved_wsFlags;
2695 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2696 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2697 return rc;
2701 ** Return True if it is possible that pIndex might be useful in
2702 ** implementing the ORDER BY clause in pBuilder.
2704 ** Return False if pBuilder does not contain an ORDER BY clause or
2705 ** if there is no way for pIndex to be useful in implementing that
2706 ** ORDER BY clause.
2708 static int indexMightHelpWithOrderBy(
2709 WhereLoopBuilder *pBuilder,
2710 Index *pIndex,
2711 int iCursor
2713 ExprList *pOB;
2714 ExprList *aColExpr;
2715 int ii, jj;
2717 if( pIndex->bUnordered ) return 0;
2718 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2719 for(ii=0; ii<pOB->nExpr; ii++){
2720 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2721 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2722 if( pExpr->iColumn<0 ) return 1;
2723 for(jj=0; jj<pIndex->nKeyCol; jj++){
2724 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2726 }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2727 for(jj=0; jj<pIndex->nKeyCol; jj++){
2728 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2729 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2730 return 1;
2735 return 0;
2738 /* Check to see if a partial index with pPartIndexWhere can be used
2739 ** in the current query. Return true if it can be and false if not.
2741 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2742 int i;
2743 WhereTerm *pTerm;
2744 Parse *pParse = pWC->pWInfo->pParse;
2745 while( pWhere->op==TK_AND ){
2746 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2747 pWhere = pWhere->pRight;
2749 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2750 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2751 Expr *pExpr = pTerm->pExpr;
2752 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2753 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2755 return 1;
2758 return 0;
2762 ** Add all WhereLoop objects for a single table of the join where the table
2763 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
2764 ** a b-tree table, not a virtual table.
2766 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2767 ** are calculated as follows:
2769 ** For a full scan, assuming the table (or index) contains nRow rows:
2771 ** cost = nRow * 3.0 // full-table scan
2772 ** cost = nRow * K // scan of covering index
2773 ** cost = nRow * (K+3.0) // scan of non-covering index
2775 ** where K is a value between 1.1 and 3.0 set based on the relative
2776 ** estimated average size of the index and table records.
2778 ** For an index scan, where nVisit is the number of index rows visited
2779 ** by the scan, and nSeek is the number of seek operations required on
2780 ** the index b-tree:
2782 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
2783 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
2785 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2786 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2787 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2789 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2790 ** of uncertainty. For this reason, scoring is designed to pick plans that
2791 ** "do the least harm" if the estimates are inaccurate. For example, a
2792 ** log(nRow) factor is omitted from a non-covering index scan in order to
2793 ** bias the scoring in favor of using an index, since the worst-case
2794 ** performance of using an index is far better than the worst-case performance
2795 ** of a full table scan.
2797 static int whereLoopAddBtree(
2798 WhereLoopBuilder *pBuilder, /* WHERE clause information */
2799 Bitmask mPrereq /* Extra prerequesites for using this table */
2801 WhereInfo *pWInfo; /* WHERE analysis context */
2802 Index *pProbe; /* An index we are evaluating */
2803 Index sPk; /* A fake index object for the primary key */
2804 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
2805 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2806 SrcList *pTabList; /* The FROM clause */
2807 struct SrcList_item *pSrc; /* The FROM clause btree term to add */
2808 WhereLoop *pNew; /* Template WhereLoop object */
2809 int rc = SQLITE_OK; /* Return code */
2810 int iSortIdx = 1; /* Index number */
2811 int b; /* A boolean value */
2812 LogEst rSize; /* number of rows in the table */
2813 LogEst rLogSize; /* Logarithm of the number of rows in the table */
2814 WhereClause *pWC; /* The parsed WHERE clause */
2815 Table *pTab; /* Table being queried */
2817 pNew = pBuilder->pNew;
2818 pWInfo = pBuilder->pWInfo;
2819 pTabList = pWInfo->pTabList;
2820 pSrc = pTabList->a + pNew->iTab;
2821 pTab = pSrc->pTab;
2822 pWC = pBuilder->pWC;
2823 assert( !IsVirtual(pSrc->pTab) );
2825 if( pSrc->pIBIndex ){
2826 /* An INDEXED BY clause specifies a particular index to use */
2827 pProbe = pSrc->pIBIndex;
2828 }else if( !HasRowid(pTab) ){
2829 pProbe = pTab->pIndex;
2830 }else{
2831 /* There is no INDEXED BY clause. Create a fake Index object in local
2832 ** variable sPk to represent the rowid primary key index. Make this
2833 ** fake index the first in a chain of Index objects with all of the real
2834 ** indices to follow */
2835 Index *pFirst; /* First of real indices on the table */
2836 memset(&sPk, 0, sizeof(Index));
2837 sPk.nKeyCol = 1;
2838 sPk.nColumn = 1;
2839 sPk.aiColumn = &aiColumnPk;
2840 sPk.aiRowLogEst = aiRowEstPk;
2841 sPk.onError = OE_Replace;
2842 sPk.pTable = pTab;
2843 sPk.szIdxRow = pTab->szTabRow;
2844 aiRowEstPk[0] = pTab->nRowLogEst;
2845 aiRowEstPk[1] = 0;
2846 pFirst = pSrc->pTab->pIndex;
2847 if( pSrc->fg.notIndexed==0 ){
2848 /* The real indices of the table are only considered if the
2849 ** NOT INDEXED qualifier is omitted from the FROM clause */
2850 sPk.pNext = pFirst;
2852 pProbe = &sPk;
2854 rSize = pTab->nRowLogEst;
2855 rLogSize = estLog(rSize);
2857 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2858 /* Automatic indexes */
2859 if( !pBuilder->pOrSet /* Not part of an OR optimization */
2860 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2861 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2862 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */
2863 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
2864 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2865 && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2866 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */
2868 /* Generate auto-index WhereLoops */
2869 WhereTerm *pTerm;
2870 WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2871 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2872 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2873 if( termCanDriveIndex(pTerm, pSrc, 0) ){
2874 pNew->u.btree.nEq = 1;
2875 pNew->nSkip = 0;
2876 pNew->u.btree.pIndex = 0;
2877 pNew->nLTerm = 1;
2878 pNew->aLTerm[0] = pTerm;
2879 /* TUNING: One-time cost for computing the automatic index is
2880 ** estimated to be X*N*log2(N) where N is the number of rows in
2881 ** the table being indexed and where X is 7 (LogEst=28) for normal
2882 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
2883 ** of X is smaller for views and subqueries so that the query planner
2884 ** will be more aggressive about generating automatic indexes for
2885 ** those objects, since there is no opportunity to add schema
2886 ** indexes on subqueries and views. */
2887 pNew->rSetup = rLogSize + rSize;
2888 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2889 pNew->rSetup += 28;
2890 }else{
2891 pNew->rSetup -= 10;
2893 ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2894 if( pNew->rSetup<0 ) pNew->rSetup = 0;
2895 /* TUNING: Each index lookup yields 20 rows in the table. This
2896 ** is more than the usual guess of 10 rows, since we have no way
2897 ** of knowing how selective the index will ultimately be. It would
2898 ** not be unreasonable to make this value much larger. */
2899 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
2900 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2901 pNew->wsFlags = WHERE_AUTO_INDEX;
2902 pNew->prereq = mPrereq | pTerm->prereqRight;
2903 rc = whereLoopInsert(pBuilder, pNew);
2907 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2909 /* Loop over all indices. If there was an INDEXED BY clause, then only
2910 ** consider index pProbe. */
2911 for(; rc==SQLITE_OK && pProbe;
2912 pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
2914 if( pProbe->pPartIdxWhere!=0
2915 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2916 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
2917 continue; /* Partial index inappropriate for this query */
2919 if( pProbe->bNoQuery ) continue;
2920 rSize = pProbe->aiRowLogEst[0];
2921 pNew->u.btree.nEq = 0;
2922 pNew->u.btree.nBtm = 0;
2923 pNew->u.btree.nTop = 0;
2924 pNew->nSkip = 0;
2925 pNew->nLTerm = 0;
2926 pNew->iSortIdx = 0;
2927 pNew->rSetup = 0;
2928 pNew->prereq = mPrereq;
2929 pNew->nOut = rSize;
2930 pNew->u.btree.pIndex = pProbe;
2931 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2932 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2933 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2934 if( pProbe->tnum<=0 ){
2935 /* Integer primary key index */
2936 pNew->wsFlags = WHERE_IPK;
2938 /* Full table scan */
2939 pNew->iSortIdx = b ? iSortIdx : 0;
2940 /* TUNING: Cost of full table scan is (N*3.0). */
2941 pNew->rRun = rSize + 16;
2942 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2943 whereLoopOutputAdjust(pWC, pNew, rSize);
2944 rc = whereLoopInsert(pBuilder, pNew);
2945 pNew->nOut = rSize;
2946 if( rc ) break;
2947 }else{
2948 Bitmask m;
2949 if( pProbe->isCovering ){
2950 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2951 m = 0;
2952 }else{
2953 m = pSrc->colUsed & pProbe->colNotIdxed;
2954 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2957 /* Full scan via index */
2958 if( b
2959 || !HasRowid(pTab)
2960 || pProbe->pPartIdxWhere!=0
2961 || ( m==0
2962 && pProbe->bUnordered==0
2963 && (pProbe->szIdxRow<pTab->szTabRow)
2964 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2965 && sqlite3GlobalConfig.bUseCis
2966 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2969 pNew->iSortIdx = b ? iSortIdx : 0;
2971 /* The cost of visiting the index rows is N*K, where K is
2972 ** between 1.1 and 3.0, depending on the relative sizes of the
2973 ** index and table rows. */
2974 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2975 if( m!=0 ){
2976 /* If this is a non-covering index scan, add in the cost of
2977 ** doing table lookups. The cost will be 3x the number of
2978 ** lookups. Take into account WHERE clause terms that can be
2979 ** satisfied using just the index, and that do not require a
2980 ** table lookup. */
2981 LogEst nLookup = rSize + 16; /* Base cost: N*3 */
2982 int ii;
2983 int iCur = pSrc->iCursor;
2984 WhereClause *pWC2 = &pWInfo->sWC;
2985 for(ii=0; ii<pWC2->nTerm; ii++){
2986 WhereTerm *pTerm = &pWC2->a[ii];
2987 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
2988 break;
2990 /* pTerm can be evaluated using just the index. So reduce
2991 ** the expected number of table lookups accordingly */
2992 if( pTerm->truthProb<=0 ){
2993 nLookup += pTerm->truthProb;
2994 }else{
2995 nLookup--;
2996 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3000 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3002 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3003 whereLoopOutputAdjust(pWC, pNew, rSize);
3004 rc = whereLoopInsert(pBuilder, pNew);
3005 pNew->nOut = rSize;
3006 if( rc ) break;
3010 pBuilder->bldFlags = 0;
3011 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3012 if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
3013 /* If a non-unique index is used, or if a prefix of the key for
3014 ** unique index is used (making the index functionally non-unique)
3015 ** then the sqlite_stat1 data becomes important for scoring the
3016 ** plan */
3017 pTab->tabFlags |= TF_StatsUsed;
3019 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3020 sqlite3Stat4ProbeFree(pBuilder->pRec);
3021 pBuilder->nRecValid = 0;
3022 pBuilder->pRec = 0;
3023 #endif
3025 return rc;
3028 #ifndef SQLITE_OMIT_VIRTUALTABLE
3031 ** Argument pIdxInfo is already populated with all constraints that may
3032 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3033 ** function marks a subset of those constraints usable, invokes the
3034 ** xBestIndex method and adds the returned plan to pBuilder.
3036 ** A constraint is marked usable if:
3038 ** * Argument mUsable indicates that its prerequisites are available, and
3040 ** * It is not one of the operators specified in the mExclude mask passed
3041 ** as the fourth argument (which in practice is either WO_IN or 0).
3043 ** Argument mPrereq is a mask of tables that must be scanned before the
3044 ** virtual table in question. These are added to the plans prerequisites
3045 ** before it is added to pBuilder.
3047 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3048 ** uses one or more WO_IN terms, or false otherwise.
3050 static int whereLoopAddVirtualOne(
3051 WhereLoopBuilder *pBuilder,
3052 Bitmask mPrereq, /* Mask of tables that must be used. */
3053 Bitmask mUsable, /* Mask of usable tables */
3054 u16 mExclude, /* Exclude terms using these operators */
3055 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
3056 u16 mNoOmit, /* Do not omit these constraints */
3057 int *pbIn /* OUT: True if plan uses an IN(...) op */
3059 WhereClause *pWC = pBuilder->pWC;
3060 struct sqlite3_index_constraint *pIdxCons;
3061 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3062 int i;
3063 int mxTerm;
3064 int rc = SQLITE_OK;
3065 WhereLoop *pNew = pBuilder->pNew;
3066 Parse *pParse = pBuilder->pWInfo->pParse;
3067 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3068 int nConstraint = pIdxInfo->nConstraint;
3070 assert( (mUsable & mPrereq)==mPrereq );
3071 *pbIn = 0;
3072 pNew->prereq = mPrereq;
3074 /* Set the usable flag on the subset of constraints identified by
3075 ** arguments mUsable and mExclude. */
3076 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3077 for(i=0; i<nConstraint; i++, pIdxCons++){
3078 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3079 pIdxCons->usable = 0;
3080 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3081 && (pTerm->eOperator & mExclude)==0
3083 pIdxCons->usable = 1;
3087 /* Initialize the output fields of the sqlite3_index_info structure */
3088 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3089 assert( pIdxInfo->needToFreeIdxStr==0 );
3090 pIdxInfo->idxStr = 0;
3091 pIdxInfo->idxNum = 0;
3092 pIdxInfo->orderByConsumed = 0;
3093 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3094 pIdxInfo->estimatedRows = 25;
3095 pIdxInfo->idxFlags = 0;
3096 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3098 /* Invoke the virtual table xBestIndex() method */
3099 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3100 if( rc ) return rc;
3102 mxTerm = -1;
3103 assert( pNew->nLSlot>=nConstraint );
3104 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3105 pNew->u.vtab.omitMask = 0;
3106 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3107 for(i=0; i<nConstraint; i++, pIdxCons++){
3108 int iTerm;
3109 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3110 WhereTerm *pTerm;
3111 int j = pIdxCons->iTermOffset;
3112 if( iTerm>=nConstraint
3113 || j<0
3114 || j>=pWC->nTerm
3115 || pNew->aLTerm[iTerm]!=0
3116 || pIdxCons->usable==0
3118 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3119 testcase( pIdxInfo->needToFreeIdxStr );
3120 return SQLITE_ERROR;
3122 testcase( iTerm==nConstraint-1 );
3123 testcase( j==0 );
3124 testcase( j==pWC->nTerm-1 );
3125 pTerm = &pWC->a[j];
3126 pNew->prereq |= pTerm->prereqRight;
3127 assert( iTerm<pNew->nLSlot );
3128 pNew->aLTerm[iTerm] = pTerm;
3129 if( iTerm>mxTerm ) mxTerm = iTerm;
3130 testcase( iTerm==15 );
3131 testcase( iTerm==16 );
3132 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3133 if( (pTerm->eOperator & WO_IN)!=0 ){
3134 /* A virtual table that is constrained by an IN clause may not
3135 ** consume the ORDER BY clause because (1) the order of IN terms
3136 ** is not necessarily related to the order of output terms and
3137 ** (2) Multiple outputs from a single IN value will not merge
3138 ** together. */
3139 pIdxInfo->orderByConsumed = 0;
3140 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3141 *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3145 pNew->u.vtab.omitMask &= ~mNoOmit;
3147 pNew->nLTerm = mxTerm+1;
3148 for(i=0; i<=mxTerm; i++){
3149 if( pNew->aLTerm[i]==0 ){
3150 /* The non-zero argvIdx values must be contiguous. Raise an
3151 ** error if they are not */
3152 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3153 testcase( pIdxInfo->needToFreeIdxStr );
3154 return SQLITE_ERROR;
3157 assert( pNew->nLTerm<=pNew->nLSlot );
3158 pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3159 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3160 pIdxInfo->needToFreeIdxStr = 0;
3161 pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3162 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3163 pIdxInfo->nOrderBy : 0);
3164 pNew->rSetup = 0;
3165 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3166 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3168 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3169 ** that the scan will visit at most one row. Clear it otherwise. */
3170 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3171 pNew->wsFlags |= WHERE_ONEROW;
3172 }else{
3173 pNew->wsFlags &= ~WHERE_ONEROW;
3175 rc = whereLoopInsert(pBuilder, pNew);
3176 if( pNew->u.vtab.needFree ){
3177 sqlite3_free(pNew->u.vtab.idxStr);
3178 pNew->u.vtab.needFree = 0;
3180 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3181 *pbIn, (sqlite3_uint64)mPrereq,
3182 (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3184 return rc;
3188 ** If this function is invoked from within an xBestIndex() callback, it
3189 ** returns a pointer to a buffer containing the name of the collation
3190 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3191 ** array. Or, if iCons is out of range or there is no active xBestIndex
3192 ** call, return NULL.
3194 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3195 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3196 const char *zRet = 0;
3197 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3198 CollSeq *pC = 0;
3199 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3200 Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3201 if( pX->pLeft ){
3202 pC = sqlite3BinaryCompareCollSeq(pHidden->pParse, pX->pLeft, pX->pRight);
3204 zRet = (pC ? pC->zName : "BINARY");
3206 return zRet;
3210 ** Add all WhereLoop objects for a table of the join identified by
3211 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
3213 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3214 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3215 ** entries that occur before the virtual table in the FROM clause and are
3216 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3217 ** mUnusable mask contains all FROM clause entries that occur after the
3218 ** virtual table and are separated from it by at least one LEFT or
3219 ** CROSS JOIN.
3221 ** For example, if the query were:
3223 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3225 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3227 ** All the tables in mPrereq must be scanned before the current virtual
3228 ** table. So any terms for which all prerequisites are satisfied by
3229 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3230 ** Conversely, all tables in mUnusable must be scanned after the current
3231 ** virtual table, so any terms for which the prerequisites overlap with
3232 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3234 static int whereLoopAddVirtual(
3235 WhereLoopBuilder *pBuilder, /* WHERE clause information */
3236 Bitmask mPrereq, /* Tables that must be scanned before this one */
3237 Bitmask mUnusable /* Tables that must be scanned after this one */
3239 int rc = SQLITE_OK; /* Return code */
3240 WhereInfo *pWInfo; /* WHERE analysis context */
3241 Parse *pParse; /* The parsing context */
3242 WhereClause *pWC; /* The WHERE clause */
3243 struct SrcList_item *pSrc; /* The FROM clause term to search */
3244 sqlite3_index_info *p; /* Object to pass to xBestIndex() */
3245 int nConstraint; /* Number of constraints in p */
3246 int bIn; /* True if plan uses IN(...) operator */
3247 WhereLoop *pNew;
3248 Bitmask mBest; /* Tables used by best possible plan */
3249 u16 mNoOmit;
3251 assert( (mPrereq & mUnusable)==0 );
3252 pWInfo = pBuilder->pWInfo;
3253 pParse = pWInfo->pParse;
3254 pWC = pBuilder->pWC;
3255 pNew = pBuilder->pNew;
3256 pSrc = &pWInfo->pTabList->a[pNew->iTab];
3257 assert( IsVirtual(pSrc->pTab) );
3258 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3259 &mNoOmit);
3260 if( p==0 ) return SQLITE_NOMEM_BKPT;
3261 pNew->rSetup = 0;
3262 pNew->wsFlags = WHERE_VIRTUALTABLE;
3263 pNew->nLTerm = 0;
3264 pNew->u.vtab.needFree = 0;
3265 nConstraint = p->nConstraint;
3266 if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3267 sqlite3DbFree(pParse->db, p);
3268 return SQLITE_NOMEM_BKPT;
3271 /* First call xBestIndex() with all constraints usable. */
3272 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3273 WHERETRACE(0x40, (" VirtualOne: all usable\n"));
3274 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3276 /* If the call to xBestIndex() with all terms enabled produced a plan
3277 ** that does not require any source tables (IOW: a plan with mBest==0),
3278 ** then there is no point in making any further calls to xBestIndex()
3279 ** since they will all return the same result (if the xBestIndex()
3280 ** implementation is sane). */
3281 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3282 int seenZero = 0; /* True if a plan with no prereqs seen */
3283 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
3284 Bitmask mPrev = 0;
3285 Bitmask mBestNoIn = 0;
3287 /* If the plan produced by the earlier call uses an IN(...) term, call
3288 ** xBestIndex again, this time with IN(...) terms disabled. */
3289 if( bIn ){
3290 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
3291 rc = whereLoopAddVirtualOne(
3292 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3293 assert( bIn==0 );
3294 mBestNoIn = pNew->prereq & ~mPrereq;
3295 if( mBestNoIn==0 ){
3296 seenZero = 1;
3297 seenZeroNoIN = 1;
3301 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3302 ** in the set of terms that apply to the current virtual table. */
3303 while( rc==SQLITE_OK ){
3304 int i;
3305 Bitmask mNext = ALLBITS;
3306 assert( mNext>0 );
3307 for(i=0; i<nConstraint; i++){
3308 Bitmask mThis = (
3309 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3311 if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3313 mPrev = mNext;
3314 if( mNext==ALLBITS ) break;
3315 if( mNext==mBest || mNext==mBestNoIn ) continue;
3316 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
3317 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3318 rc = whereLoopAddVirtualOne(
3319 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3320 if( pNew->prereq==mPrereq ){
3321 seenZero = 1;
3322 if( bIn==0 ) seenZeroNoIN = 1;
3326 /* If the calls to xBestIndex() in the above loop did not find a plan
3327 ** that requires no source tables at all (i.e. one guaranteed to be
3328 ** usable), make a call here with all source tables disabled */
3329 if( rc==SQLITE_OK && seenZero==0 ){
3330 WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
3331 rc = whereLoopAddVirtualOne(
3332 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3333 if( bIn==0 ) seenZeroNoIN = 1;
3336 /* If the calls to xBestIndex() have so far failed to find a plan
3337 ** that requires no source tables at all and does not use an IN(...)
3338 ** operator, make a final call to obtain one here. */
3339 if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3340 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
3341 rc = whereLoopAddVirtualOne(
3342 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3346 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3347 sqlite3DbFreeNN(pParse->db, p);
3348 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3349 return rc;
3351 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3354 ** Add WhereLoop entries to handle OR terms. This works for either
3355 ** btrees or virtual tables.
3357 static int whereLoopAddOr(
3358 WhereLoopBuilder *pBuilder,
3359 Bitmask mPrereq,
3360 Bitmask mUnusable
3362 WhereInfo *pWInfo = pBuilder->pWInfo;
3363 WhereClause *pWC;
3364 WhereLoop *pNew;
3365 WhereTerm *pTerm, *pWCEnd;
3366 int rc = SQLITE_OK;
3367 int iCur;
3368 WhereClause tempWC;
3369 WhereLoopBuilder sSubBuild;
3370 WhereOrSet sSum, sCur;
3371 struct SrcList_item *pItem;
3373 pWC = pBuilder->pWC;
3374 pWCEnd = pWC->a + pWC->nTerm;
3375 pNew = pBuilder->pNew;
3376 memset(&sSum, 0, sizeof(sSum));
3377 pItem = pWInfo->pTabList->a + pNew->iTab;
3378 iCur = pItem->iCursor;
3380 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3381 if( (pTerm->eOperator & WO_OR)!=0
3382 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3384 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3385 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3386 WhereTerm *pOrTerm;
3387 int once = 1;
3388 int i, j;
3390 sSubBuild = *pBuilder;
3391 sSubBuild.pOrderBy = 0;
3392 sSubBuild.pOrSet = &sCur;
3394 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3395 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3396 if( (pOrTerm->eOperator & WO_AND)!=0 ){
3397 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3398 }else if( pOrTerm->leftCursor==iCur ){
3399 tempWC.pWInfo = pWC->pWInfo;
3400 tempWC.pOuter = pWC;
3401 tempWC.op = TK_AND;
3402 tempWC.nTerm = 1;
3403 tempWC.a = pOrTerm;
3404 sSubBuild.pWC = &tempWC;
3405 }else{
3406 continue;
3408 sCur.n = 0;
3409 #ifdef WHERETRACE_ENABLED
3410 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3411 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3412 if( sqlite3WhereTrace & 0x400 ){
3413 sqlite3WhereClausePrint(sSubBuild.pWC);
3415 #endif
3416 #ifndef SQLITE_OMIT_VIRTUALTABLE
3417 if( IsVirtual(pItem->pTab) ){
3418 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3419 }else
3420 #endif
3422 rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3424 if( rc==SQLITE_OK ){
3425 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3427 assert( rc==SQLITE_OK || sCur.n==0 );
3428 if( sCur.n==0 ){
3429 sSum.n = 0;
3430 break;
3431 }else if( once ){
3432 whereOrMove(&sSum, &sCur);
3433 once = 0;
3434 }else{
3435 WhereOrSet sPrev;
3436 whereOrMove(&sPrev, &sSum);
3437 sSum.n = 0;
3438 for(i=0; i<sPrev.n; i++){
3439 for(j=0; j<sCur.n; j++){
3440 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3441 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3442 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3447 pNew->nLTerm = 1;
3448 pNew->aLTerm[0] = pTerm;
3449 pNew->wsFlags = WHERE_MULTI_OR;
3450 pNew->rSetup = 0;
3451 pNew->iSortIdx = 0;
3452 memset(&pNew->u, 0, sizeof(pNew->u));
3453 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3454 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3455 ** of all sub-scans required by the OR-scan. However, due to rounding
3456 ** errors, it may be that the cost of the OR-scan is equal to its
3457 ** most expensive sub-scan. Add the smallest possible penalty
3458 ** (equivalent to multiplying the cost by 1.07) to ensure that
3459 ** this does not happen. Otherwise, for WHERE clauses such as the
3460 ** following where there is an index on "y":
3462 ** WHERE likelihood(x=?, 0.99) OR y=?
3464 ** the planner may elect to "OR" together a full-table scan and an
3465 ** index lookup. And other similarly odd results. */
3466 pNew->rRun = sSum.a[i].rRun + 1;
3467 pNew->nOut = sSum.a[i].nOut;
3468 pNew->prereq = sSum.a[i].prereq;
3469 rc = whereLoopInsert(pBuilder, pNew);
3471 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3474 return rc;
3478 ** Add all WhereLoop objects for all tables
3480 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3481 WhereInfo *pWInfo = pBuilder->pWInfo;
3482 Bitmask mPrereq = 0;
3483 Bitmask mPrior = 0;
3484 int iTab;
3485 SrcList *pTabList = pWInfo->pTabList;
3486 struct SrcList_item *pItem;
3487 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3488 sqlite3 *db = pWInfo->pParse->db;
3489 int rc = SQLITE_OK;
3490 WhereLoop *pNew;
3491 u8 priorJointype = 0;
3493 /* Loop over the tables in the join, from left to right */
3494 pNew = pBuilder->pNew;
3495 whereLoopInit(pNew);
3496 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3497 Bitmask mUnusable = 0;
3498 pNew->iTab = iTab;
3499 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3500 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3501 /* This condition is true when pItem is the FROM clause term on the
3502 ** right-hand-side of a LEFT or CROSS JOIN. */
3503 mPrereq = mPrior;
3505 priorJointype = pItem->fg.jointype;
3506 #ifndef SQLITE_OMIT_VIRTUALTABLE
3507 if( IsVirtual(pItem->pTab) ){
3508 struct SrcList_item *p;
3509 for(p=&pItem[1]; p<pEnd; p++){
3510 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3511 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3514 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3515 }else
3516 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3518 rc = whereLoopAddBtree(pBuilder, mPrereq);
3520 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3521 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3523 mPrior |= pNew->maskSelf;
3524 if( rc || db->mallocFailed ) break;
3527 whereLoopClear(db, pNew);
3528 return rc;
3532 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3533 ** parameters) to see if it outputs rows in the requested ORDER BY
3534 ** (or GROUP BY) without requiring a separate sort operation. Return N:
3536 ** N>0: N terms of the ORDER BY clause are satisfied
3537 ** N==0: No terms of the ORDER BY clause are satisfied
3538 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
3540 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3541 ** strict. With GROUP BY and DISTINCT the only requirement is that
3542 ** equivalent rows appear immediately adjacent to one another. GROUP BY
3543 ** and DISTINCT do not require rows to appear in any particular order as long
3544 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
3545 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
3546 ** pOrderBy terms must be matched in strict left-to-right order.
3548 static i8 wherePathSatisfiesOrderBy(
3549 WhereInfo *pWInfo, /* The WHERE clause */
3550 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
3551 WherePath *pPath, /* The WherePath to check */
3552 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3553 u16 nLoop, /* Number of entries in pPath->aLoop[] */
3554 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
3555 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
3557 u8 revSet; /* True if rev is known */
3558 u8 rev; /* Composite sort order */
3559 u8 revIdx; /* Index sort order */
3560 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
3561 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
3562 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
3563 u16 eqOpMask; /* Allowed equality operators */
3564 u16 nKeyCol; /* Number of key columns in pIndex */
3565 u16 nColumn; /* Total number of ordered columns in the index */
3566 u16 nOrderBy; /* Number terms in the ORDER BY clause */
3567 int iLoop; /* Index of WhereLoop in pPath being processed */
3568 int i, j; /* Loop counters */
3569 int iCur; /* Cursor number for current WhereLoop */
3570 int iColumn; /* A column number within table iCur */
3571 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3572 WhereTerm *pTerm; /* A single term of the WHERE clause */
3573 Expr *pOBExpr; /* An expression from the ORDER BY clause */
3574 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
3575 Index *pIndex; /* The index associated with pLoop */
3576 sqlite3 *db = pWInfo->pParse->db; /* Database connection */
3577 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
3578 Bitmask obDone; /* Mask of all ORDER BY terms */
3579 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
3580 Bitmask ready; /* Mask of inner loops */
3583 ** We say the WhereLoop is "one-row" if it generates no more than one
3584 ** row of output. A WhereLoop is one-row if all of the following are true:
3585 ** (a) All index columns match with WHERE_COLUMN_EQ.
3586 ** (b) The index is unique
3587 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3588 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3590 ** We say the WhereLoop is "order-distinct" if the set of columns from
3591 ** that WhereLoop that are in the ORDER BY clause are different for every
3592 ** row of the WhereLoop. Every one-row WhereLoop is automatically
3593 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
3594 ** is not order-distinct. To be order-distinct is not quite the same as being
3595 ** UNIQUE since a UNIQUE column or index can have multiple rows that
3596 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3597 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3599 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3600 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3601 ** automatically order-distinct.
3604 assert( pOrderBy!=0 );
3605 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3607 nOrderBy = pOrderBy->nExpr;
3608 testcase( nOrderBy==BMS-1 );
3609 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
3610 isOrderDistinct = 1;
3611 obDone = MASKBIT(nOrderBy)-1;
3612 orderDistinctMask = 0;
3613 ready = 0;
3614 eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3615 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3616 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3617 if( iLoop>0 ) ready |= pLoop->maskSelf;
3618 if( iLoop<nLoop ){
3619 pLoop = pPath->aLoop[iLoop];
3620 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3621 }else{
3622 pLoop = pLast;
3624 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3625 if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3626 break;
3627 }else{
3628 pLoop->u.btree.nIdxCol = 0;
3630 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3632 /* Mark off any ORDER BY term X that is a column in the table of
3633 ** the current loop for which there is term in the WHERE
3634 ** clause of the form X IS NULL or X=? that reference only outer
3635 ** loops.
3637 for(i=0; i<nOrderBy; i++){
3638 if( MASKBIT(i) & obSat ) continue;
3639 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3640 if( pOBExpr->op!=TK_COLUMN ) continue;
3641 if( pOBExpr->iTable!=iCur ) continue;
3642 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3643 ~ready, eqOpMask, 0);
3644 if( pTerm==0 ) continue;
3645 if( pTerm->eOperator==WO_IN ){
3646 /* IN terms are only valid for sorting in the ORDER BY LIMIT
3647 ** optimization, and then only if they are actually used
3648 ** by the query plan */
3649 assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3650 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3651 if( j>=pLoop->nLTerm ) continue;
3653 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3654 if( sqlite3ExprCollSeqMatch(pWInfo->pParse,
3655 pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){
3656 continue;
3658 testcase( pTerm->pExpr->op==TK_IS );
3660 obSat |= MASKBIT(i);
3663 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3664 if( pLoop->wsFlags & WHERE_IPK ){
3665 pIndex = 0;
3666 nKeyCol = 0;
3667 nColumn = 1;
3668 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3669 return 0;
3670 }else{
3671 nKeyCol = pIndex->nKeyCol;
3672 nColumn = pIndex->nColumn;
3673 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3674 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3675 || !HasRowid(pIndex->pTable));
3676 isOrderDistinct = IsUniqueIndex(pIndex);
3679 /* Loop through all columns of the index and deal with the ones
3680 ** that are not constrained by == or IN.
3682 rev = revSet = 0;
3683 distinctColumns = 0;
3684 for(j=0; j<nColumn; j++){
3685 u8 bOnce = 1; /* True to run the ORDER BY search loop */
3687 assert( j>=pLoop->u.btree.nEq
3688 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3690 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3691 u16 eOp = pLoop->aLTerm[j]->eOperator;
3693 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
3694 ** doing WHERE_ORDERBY_LIMIT processing).
3696 ** If the current term is a column of an ((?,?) IN (SELECT...))
3697 ** expression for which the SELECT returns more than one column,
3698 ** check that it is the only column used by this loop. Otherwise,
3699 ** if it is one of two or more, none of the columns can be
3700 ** considered to match an ORDER BY term. */
3701 if( (eOp & eqOpMask)!=0 ){
3702 if( eOp & WO_ISNULL ){
3703 testcase( isOrderDistinct );
3704 isOrderDistinct = 0;
3706 continue;
3707 }else if( ALWAYS(eOp & WO_IN) ){
3708 /* ALWAYS() justification: eOp is an equality operator due to the
3709 ** j<pLoop->u.btree.nEq constraint above. Any equality other
3710 ** than WO_IN is captured by the previous "if". So this one
3711 ** always has to be WO_IN. */
3712 Expr *pX = pLoop->aLTerm[j]->pExpr;
3713 for(i=j+1; i<pLoop->u.btree.nEq; i++){
3714 if( pLoop->aLTerm[i]->pExpr==pX ){
3715 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3716 bOnce = 0;
3717 break;
3723 /* Get the column number in the table (iColumn) and sort order
3724 ** (revIdx) for the j-th column of the index.
3726 if( pIndex ){
3727 iColumn = pIndex->aiColumn[j];
3728 revIdx = pIndex->aSortOrder[j];
3729 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3730 }else{
3731 iColumn = XN_ROWID;
3732 revIdx = 0;
3735 /* An unconstrained column that might be NULL means that this
3736 ** WhereLoop is not well-ordered
3738 if( isOrderDistinct
3739 && iColumn>=0
3740 && j>=pLoop->u.btree.nEq
3741 && pIndex->pTable->aCol[iColumn].notNull==0
3743 isOrderDistinct = 0;
3746 /* Find the ORDER BY term that corresponds to the j-th column
3747 ** of the index and mark that ORDER BY term off
3749 isMatch = 0;
3750 for(i=0; bOnce && i<nOrderBy; i++){
3751 if( MASKBIT(i) & obSat ) continue;
3752 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3753 testcase( wctrlFlags & WHERE_GROUPBY );
3754 testcase( wctrlFlags & WHERE_DISTINCTBY );
3755 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3756 if( iColumn>=XN_ROWID ){
3757 if( pOBExpr->op!=TK_COLUMN ) continue;
3758 if( pOBExpr->iTable!=iCur ) continue;
3759 if( pOBExpr->iColumn!=iColumn ) continue;
3760 }else{
3761 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3762 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3763 continue;
3766 if( iColumn!=XN_ROWID ){
3767 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3768 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3770 pLoop->u.btree.nIdxCol = j+1;
3771 isMatch = 1;
3772 break;
3774 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3775 /* Make sure the sort order is compatible in an ORDER BY clause.
3776 ** Sort order is irrelevant for a GROUP BY clause. */
3777 if( revSet ){
3778 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3779 }else{
3780 rev = revIdx ^ pOrderBy->a[i].sortOrder;
3781 if( rev ) *pRevMask |= MASKBIT(iLoop);
3782 revSet = 1;
3785 if( isMatch ){
3786 if( iColumn==XN_ROWID ){
3787 testcase( distinctColumns==0 );
3788 distinctColumns = 1;
3790 obSat |= MASKBIT(i);
3791 }else{
3792 /* No match found */
3793 if( j==0 || j<nKeyCol ){
3794 testcase( isOrderDistinct!=0 );
3795 isOrderDistinct = 0;
3797 break;
3799 } /* end Loop over all index columns */
3800 if( distinctColumns ){
3801 testcase( isOrderDistinct==0 );
3802 isOrderDistinct = 1;
3804 } /* end-if not one-row */
3806 /* Mark off any other ORDER BY terms that reference pLoop */
3807 if( isOrderDistinct ){
3808 orderDistinctMask |= pLoop->maskSelf;
3809 for(i=0; i<nOrderBy; i++){
3810 Expr *p;
3811 Bitmask mTerm;
3812 if( MASKBIT(i) & obSat ) continue;
3813 p = pOrderBy->a[i].pExpr;
3814 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3815 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3816 if( (mTerm&~orderDistinctMask)==0 ){
3817 obSat |= MASKBIT(i);
3821 } /* End the loop over all WhereLoops from outer-most down to inner-most */
3822 if( obSat==obDone ) return (i8)nOrderBy;
3823 if( !isOrderDistinct ){
3824 for(i=nOrderBy-1; i>0; i--){
3825 Bitmask m = MASKBIT(i) - 1;
3826 if( (obSat&m)==m ) return i;
3828 return 0;
3830 return -1;
3835 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3836 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3837 ** BY clause - and so any order that groups rows as required satisfies the
3838 ** request.
3840 ** Normally, in this case it is not possible for the caller to determine
3841 ** whether or not the rows are really being delivered in sorted order, or
3842 ** just in some other order that provides the required grouping. However,
3843 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3844 ** this function may be called on the returned WhereInfo object. It returns
3845 ** true if the rows really will be sorted in the specified order, or false
3846 ** otherwise.
3848 ** For example, assuming:
3850 ** CREATE INDEX i1 ON t1(x, Y);
3852 ** then
3854 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
3855 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
3857 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3858 assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3859 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3860 return pWInfo->sorted;
3863 #ifdef WHERETRACE_ENABLED
3864 /* For debugging use only: */
3865 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3866 static char zName[65];
3867 int i;
3868 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3869 if( pLast ) zName[i++] = pLast->cId;
3870 zName[i] = 0;
3871 return zName;
3873 #endif
3876 ** Return the cost of sorting nRow rows, assuming that the keys have
3877 ** nOrderby columns and that the first nSorted columns are already in
3878 ** order.
3880 static LogEst whereSortingCost(
3881 WhereInfo *pWInfo,
3882 LogEst nRow,
3883 int nOrderBy,
3884 int nSorted
3886 /* TUNING: Estimated cost of a full external sort, where N is
3887 ** the number of rows to sort is:
3889 ** cost = (3.0 * N * log(N)).
3891 ** Or, if the order-by clause has X terms but only the last Y
3892 ** terms are out of order, then block-sorting will reduce the
3893 ** sorting cost to:
3895 ** cost = (3.0 * N * log(N)) * (Y/X)
3897 ** The (Y/X) term is implemented using stack variable rScale
3898 ** below. */
3899 LogEst rScale, rSortCost;
3900 assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3901 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3902 rSortCost = nRow + rScale + 16;
3904 /* Multiple by log(M) where M is the number of output rows.
3905 ** Use the LIMIT for M if it is smaller */
3906 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3907 nRow = pWInfo->iLimit;
3909 rSortCost += estLog(nRow);
3910 return rSortCost;
3914 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3915 ** attempts to find the lowest cost path that visits each WhereLoop
3916 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
3918 ** Assume that the total number of output rows that will need to be sorted
3919 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
3920 ** costs if nRowEst==0.
3922 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3923 ** error occurs.
3925 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3926 int mxChoice; /* Maximum number of simultaneous paths tracked */
3927 int nLoop; /* Number of terms in the join */
3928 Parse *pParse; /* Parsing context */
3929 sqlite3 *db; /* The database connection */
3930 int iLoop; /* Loop counter over the terms of the join */
3931 int ii, jj; /* Loop counters */
3932 int mxI = 0; /* Index of next entry to replace */
3933 int nOrderBy; /* Number of ORDER BY clause terms */
3934 LogEst mxCost = 0; /* Maximum cost of a set of paths */
3935 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
3936 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
3937 WherePath *aFrom; /* All nFrom paths at the previous level */
3938 WherePath *aTo; /* The nTo best paths at the current level */
3939 WherePath *pFrom; /* An element of aFrom[] that we are working on */
3940 WherePath *pTo; /* An element of aTo[] that we are working on */
3941 WhereLoop *pWLoop; /* One of the WhereLoop objects */
3942 WhereLoop **pX; /* Used to divy up the pSpace memory */
3943 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
3944 char *pSpace; /* Temporary memory used by this routine */
3945 int nSpace; /* Bytes of space allocated at pSpace */
3947 pParse = pWInfo->pParse;
3948 db = pParse->db;
3949 nLoop = pWInfo->nLevel;
3950 /* TUNING: For simple queries, only the best path is tracked.
3951 ** For 2-way joins, the 5 best paths are followed.
3952 ** For joins of 3 or more tables, track the 10 best paths */
3953 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3954 assert( nLoop<=pWInfo->pTabList->nSrc );
3955 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
3957 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3958 ** case the purpose of this call is to estimate the number of rows returned
3959 ** by the overall query. Once this estimate has been obtained, the caller
3960 ** will invoke this function a second time, passing the estimate as the
3961 ** nRowEst parameter. */
3962 if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3963 nOrderBy = 0;
3964 }else{
3965 nOrderBy = pWInfo->pOrderBy->nExpr;
3968 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3969 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3970 nSpace += sizeof(LogEst) * nOrderBy;
3971 pSpace = sqlite3DbMallocRawNN(db, nSpace);
3972 if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
3973 aTo = (WherePath*)pSpace;
3974 aFrom = aTo+mxChoice;
3975 memset(aFrom, 0, sizeof(aFrom[0]));
3976 pX = (WhereLoop**)(aFrom+mxChoice);
3977 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3978 pFrom->aLoop = pX;
3980 if( nOrderBy ){
3981 /* If there is an ORDER BY clause and it is not being ignored, set up
3982 ** space for the aSortCost[] array. Each element of the aSortCost array
3983 ** is either zero - meaning it has not yet been initialized - or the
3984 ** cost of sorting nRowEst rows of data where the first X terms of
3985 ** the ORDER BY clause are already in order, where X is the array
3986 ** index. */
3987 aSortCost = (LogEst*)pX;
3988 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3990 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3991 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3993 /* Seed the search with a single WherePath containing zero WhereLoops.
3995 ** TUNING: Do not let the number of iterations go above 28. If the cost
3996 ** of computing an automatic index is not paid back within the first 28
3997 ** rows, then do not use the automatic index. */
3998 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
3999 nFrom = 1;
4000 assert( aFrom[0].isOrdered==0 );
4001 if( nOrderBy ){
4002 /* If nLoop is zero, then there are no FROM terms in the query. Since
4003 ** in this case the query may return a maximum of one row, the results
4004 ** are already in the requested order. Set isOrdered to nOrderBy to
4005 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4006 ** -1, indicating that the result set may or may not be ordered,
4007 ** depending on the loops added to the current plan. */
4008 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4011 /* Compute successively longer WherePaths using the previous generation
4012 ** of WherePaths as the basis for the next. Keep track of the mxChoice
4013 ** best paths at each generation */
4014 for(iLoop=0; iLoop<nLoop; iLoop++){
4015 nTo = 0;
4016 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4017 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4018 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
4019 LogEst rCost; /* Cost of path (pFrom+pWLoop) */
4020 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
4021 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
4022 Bitmask maskNew; /* Mask of src visited by (..) */
4023 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
4025 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4026 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4027 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4028 /* Do not use an automatic index if the this loop is expected
4029 ** to run less than 1.25 times. It is tempting to also exclude
4030 ** automatic index usage on an outer loop, but sometimes an automatic
4031 ** index is useful in the outer loop of a correlated subquery. */
4032 assert( 10==sqlite3LogEst(2) );
4033 continue;
4036 /* At this point, pWLoop is a candidate to be the next loop.
4037 ** Compute its cost */
4038 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4039 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4040 nOut = pFrom->nRow + pWLoop->nOut;
4041 maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4042 if( isOrdered<0 ){
4043 isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4044 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4045 iLoop, pWLoop, &revMask);
4046 }else{
4047 revMask = pFrom->revLoop;
4049 if( isOrdered>=0 && isOrdered<nOrderBy ){
4050 if( aSortCost[isOrdered]==0 ){
4051 aSortCost[isOrdered] = whereSortingCost(
4052 pWInfo, nRowEst, nOrderBy, isOrdered
4055 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
4057 WHERETRACE(0x002,
4058 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4059 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4060 rUnsorted, rCost));
4061 }else{
4062 rCost = rUnsorted;
4063 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */
4066 /* Check to see if pWLoop should be added to the set of
4067 ** mxChoice best-so-far paths.
4069 ** First look for an existing path among best-so-far paths
4070 ** that covers the same set of loops and has the same isOrdered
4071 ** setting as the current path candidate.
4073 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4074 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4075 ** of legal values for isOrdered, -1..64.
4077 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4078 if( pTo->maskLoop==maskNew
4079 && ((pTo->isOrdered^isOrdered)&0x80)==0
4081 testcase( jj==nTo-1 );
4082 break;
4085 if( jj>=nTo ){
4086 /* None of the existing best-so-far paths match the candidate. */
4087 if( nTo>=mxChoice
4088 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4090 /* The current candidate is no better than any of the mxChoice
4091 ** paths currently in the best-so-far buffer. So discard
4092 ** this candidate as not viable. */
4093 #ifdef WHERETRACE_ENABLED /* 0x4 */
4094 if( sqlite3WhereTrace&0x4 ){
4095 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
4096 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4097 isOrdered>=0 ? isOrdered+'0' : '?');
4099 #endif
4100 continue;
4102 /* If we reach this points it means that the new candidate path
4103 ** needs to be added to the set of best-so-far paths. */
4104 if( nTo<mxChoice ){
4105 /* Increase the size of the aTo set by one */
4106 jj = nTo++;
4107 }else{
4108 /* New path replaces the prior worst to keep count below mxChoice */
4109 jj = mxI;
4111 pTo = &aTo[jj];
4112 #ifdef WHERETRACE_ENABLED /* 0x4 */
4113 if( sqlite3WhereTrace&0x4 ){
4114 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
4115 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4116 isOrdered>=0 ? isOrdered+'0' : '?');
4118 #endif
4119 }else{
4120 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4121 ** same set of loops and has the same isOrdered setting as the
4122 ** candidate path. Check to see if the candidate should replace
4123 ** pTo or if the candidate should be skipped.
4125 ** The conditional is an expanded vector comparison equivalent to:
4126 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4128 if( pTo->rCost<rCost
4129 || (pTo->rCost==rCost
4130 && (pTo->nRow<nOut
4131 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4135 #ifdef WHERETRACE_ENABLED /* 0x4 */
4136 if( sqlite3WhereTrace&0x4 ){
4137 sqlite3DebugPrintf(
4138 "Skip %s cost=%-3d,%3d,%3d order=%c",
4139 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4140 isOrdered>=0 ? isOrdered+'0' : '?');
4141 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
4142 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4143 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4145 #endif
4146 /* Discard the candidate path from further consideration */
4147 testcase( pTo->rCost==rCost );
4148 continue;
4150 testcase( pTo->rCost==rCost+1 );
4151 /* Control reaches here if the candidate path is better than the
4152 ** pTo path. Replace pTo with the candidate. */
4153 #ifdef WHERETRACE_ENABLED /* 0x4 */
4154 if( sqlite3WhereTrace&0x4 ){
4155 sqlite3DebugPrintf(
4156 "Update %s cost=%-3d,%3d,%3d order=%c",
4157 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4158 isOrdered>=0 ? isOrdered+'0' : '?');
4159 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
4160 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4161 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4163 #endif
4165 /* pWLoop is a winner. Add it to the set of best so far */
4166 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4167 pTo->revLoop = revMask;
4168 pTo->nRow = nOut;
4169 pTo->rCost = rCost;
4170 pTo->rUnsorted = rUnsorted;
4171 pTo->isOrdered = isOrdered;
4172 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4173 pTo->aLoop[iLoop] = pWLoop;
4174 if( nTo>=mxChoice ){
4175 mxI = 0;
4176 mxCost = aTo[0].rCost;
4177 mxUnsorted = aTo[0].nRow;
4178 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4179 if( pTo->rCost>mxCost
4180 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4182 mxCost = pTo->rCost;
4183 mxUnsorted = pTo->rUnsorted;
4184 mxI = jj;
4191 #ifdef WHERETRACE_ENABLED /* >=2 */
4192 if( sqlite3WhereTrace & 0x02 ){
4193 sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4194 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4195 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4196 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4197 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4198 if( pTo->isOrdered>0 ){
4199 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4200 }else{
4201 sqlite3DebugPrintf("\n");
4205 #endif
4207 /* Swap the roles of aFrom and aTo for the next generation */
4208 pFrom = aTo;
4209 aTo = aFrom;
4210 aFrom = pFrom;
4211 nFrom = nTo;
4214 if( nFrom==0 ){
4215 sqlite3ErrorMsg(pParse, "no query solution");
4216 sqlite3DbFreeNN(db, pSpace);
4217 return SQLITE_ERROR;
4220 /* Find the lowest cost path. pFrom will be left pointing to that path */
4221 pFrom = aFrom;
4222 for(ii=1; ii<nFrom; ii++){
4223 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4225 assert( pWInfo->nLevel==nLoop );
4226 /* Load the lowest cost path into pWInfo */
4227 for(iLoop=0; iLoop<nLoop; iLoop++){
4228 WhereLevel *pLevel = pWInfo->a + iLoop;
4229 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4230 pLevel->iFrom = pWLoop->iTab;
4231 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4233 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4234 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4235 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4236 && nRowEst
4238 Bitmask notUsed;
4239 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4240 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4241 if( rc==pWInfo->pResultSet->nExpr ){
4242 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4245 if( pWInfo->pOrderBy ){
4246 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4247 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4248 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4250 }else{
4251 pWInfo->nOBSat = pFrom->isOrdered;
4252 pWInfo->revMask = pFrom->revLoop;
4253 if( pWInfo->nOBSat<=0 ){
4254 pWInfo->nOBSat = 0;
4255 if( nLoop>0 ){
4256 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4257 if( (wsFlags & WHERE_ONEROW)==0
4258 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4260 Bitmask m = 0;
4261 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4262 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4263 testcase( wsFlags & WHERE_IPK );
4264 testcase( wsFlags & WHERE_COLUMN_IN );
4265 if( rc==pWInfo->pOrderBy->nExpr ){
4266 pWInfo->bOrderedInnerLoop = 1;
4267 pWInfo->revMask = m;
4273 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4274 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4276 Bitmask revMask = 0;
4277 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4278 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4280 assert( pWInfo->sorted==0 );
4281 if( nOrder==pWInfo->pOrderBy->nExpr ){
4282 pWInfo->sorted = 1;
4283 pWInfo->revMask = revMask;
4289 pWInfo->nRowOut = pFrom->nRow;
4291 /* Free temporary memory and return success */
4292 sqlite3DbFreeNN(db, pSpace);
4293 return SQLITE_OK;
4297 ** Most queries use only a single table (they are not joins) and have
4298 ** simple == constraints against indexed fields. This routine attempts
4299 ** to plan those simple cases using much less ceremony than the
4300 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4301 ** times for the common case.
4303 ** Return non-zero on success, if this query can be handled by this
4304 ** no-frills query planner. Return zero if this query needs the
4305 ** general-purpose query planner.
4307 static int whereShortCut(WhereLoopBuilder *pBuilder){
4308 WhereInfo *pWInfo;
4309 struct SrcList_item *pItem;
4310 WhereClause *pWC;
4311 WhereTerm *pTerm;
4312 WhereLoop *pLoop;
4313 int iCur;
4314 int j;
4315 Table *pTab;
4316 Index *pIdx;
4318 pWInfo = pBuilder->pWInfo;
4319 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4320 assert( pWInfo->pTabList->nSrc>=1 );
4321 pItem = pWInfo->pTabList->a;
4322 pTab = pItem->pTab;
4323 if( IsVirtual(pTab) ) return 0;
4324 if( pItem->fg.isIndexedBy ) return 0;
4325 iCur = pItem->iCursor;
4326 pWC = &pWInfo->sWC;
4327 pLoop = pBuilder->pNew;
4328 pLoop->wsFlags = 0;
4329 pLoop->nSkip = 0;
4330 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4331 if( pTerm ){
4332 testcase( pTerm->eOperator & WO_IS );
4333 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4334 pLoop->aLTerm[0] = pTerm;
4335 pLoop->nLTerm = 1;
4336 pLoop->u.btree.nEq = 1;
4337 /* TUNING: Cost of a rowid lookup is 10 */
4338 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
4339 }else{
4340 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4341 int opMask;
4342 assert( pLoop->aLTermSpace==pLoop->aLTerm );
4343 if( !IsUniqueIndex(pIdx)
4344 || pIdx->pPartIdxWhere!=0
4345 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4346 ) continue;
4347 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4348 for(j=0; j<pIdx->nKeyCol; j++){
4349 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4350 if( pTerm==0 ) break;
4351 testcase( pTerm->eOperator & WO_IS );
4352 pLoop->aLTerm[j] = pTerm;
4354 if( j!=pIdx->nKeyCol ) continue;
4355 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4356 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4357 pLoop->wsFlags |= WHERE_IDX_ONLY;
4359 pLoop->nLTerm = j;
4360 pLoop->u.btree.nEq = j;
4361 pLoop->u.btree.pIndex = pIdx;
4362 /* TUNING: Cost of a unique index lookup is 15 */
4363 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
4364 break;
4367 if( pLoop->wsFlags ){
4368 pLoop->nOut = (LogEst)1;
4369 pWInfo->a[0].pWLoop = pLoop;
4370 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4371 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4372 pWInfo->a[0].iTabCur = iCur;
4373 pWInfo->nRowOut = 1;
4374 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
4375 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4376 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4378 #ifdef SQLITE_DEBUG
4379 pLoop->cId = '0';
4380 #endif
4381 return 1;
4383 return 0;
4387 ** Helper function for exprIsDeterministic().
4389 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4390 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4391 pWalker->eCode = 0;
4392 return WRC_Abort;
4394 return WRC_Continue;
4398 ** Return true if the expression contains no non-deterministic SQL
4399 ** functions. Do not consider non-deterministic SQL functions that are
4400 ** part of sub-select statements.
4402 static int exprIsDeterministic(Expr *p){
4403 Walker w;
4404 memset(&w, 0, sizeof(w));
4405 w.eCode = 1;
4406 w.xExprCallback = exprNodeIsDeterministic;
4407 w.xSelectCallback = sqlite3SelectWalkFail;
4408 sqlite3WalkExpr(&w, p);
4409 return w.eCode;
4413 ** Generate the beginning of the loop used for WHERE clause processing.
4414 ** The return value is a pointer to an opaque structure that contains
4415 ** information needed to terminate the loop. Later, the calling routine
4416 ** should invoke sqlite3WhereEnd() with the return value of this function
4417 ** in order to complete the WHERE clause processing.
4419 ** If an error occurs, this routine returns NULL.
4421 ** The basic idea is to do a nested loop, one loop for each table in
4422 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4423 ** same as a SELECT with only a single table in the FROM clause.) For
4424 ** example, if the SQL is this:
4426 ** SELECT * FROM t1, t2, t3 WHERE ...;
4428 ** Then the code generated is conceptually like the following:
4430 ** foreach row1 in t1 do \ Code generated
4431 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4432 ** foreach row3 in t3 do /
4433 ** ...
4434 ** end \ Code generated
4435 ** end |-- by sqlite3WhereEnd()
4436 ** end /
4438 ** Note that the loops might not be nested in the order in which they
4439 ** appear in the FROM clause if a different order is better able to make
4440 ** use of indices. Note also that when the IN operator appears in
4441 ** the WHERE clause, it might result in additional nested loops for
4442 ** scanning through all values on the right-hand side of the IN.
4444 ** There are Btree cursors associated with each table. t1 uses cursor
4445 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4446 ** And so forth. This routine generates code to open those VDBE cursors
4447 ** and sqlite3WhereEnd() generates the code to close them.
4449 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4450 ** in pTabList pointing at their appropriate entries. The [...] code
4451 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4452 ** data from the various tables of the loop.
4454 ** If the WHERE clause is empty, the foreach loops must each scan their
4455 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4456 ** the tables have indices and there are terms in the WHERE clause that
4457 ** refer to those indices, a complete table scan can be avoided and the
4458 ** code will run much faster. Most of the work of this routine is checking
4459 ** to see if there are indices that can be used to speed up the loop.
4461 ** Terms of the WHERE clause are also used to limit which rows actually
4462 ** make it to the "..." in the middle of the loop. After each "foreach",
4463 ** terms of the WHERE clause that use only terms in that loop and outer
4464 ** loops are evaluated and if false a jump is made around all subsequent
4465 ** inner loops (or around the "..." if the test occurs within the inner-
4466 ** most loop)
4468 ** OUTER JOINS
4470 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4472 ** foreach row1 in t1 do
4473 ** flag = 0
4474 ** foreach row2 in t2 do
4475 ** start:
4476 ** ...
4477 ** flag = 1
4478 ** end
4479 ** if flag==0 then
4480 ** move the row2 cursor to a null row
4481 ** goto start
4482 ** fi
4483 ** end
4485 ** ORDER BY CLAUSE PROCESSING
4487 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4488 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4489 ** if there is one. If there is no ORDER BY clause or if this routine
4490 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4492 ** The iIdxCur parameter is the cursor number of an index. If
4493 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4494 ** to use for OR clause processing. The WHERE clause should use this
4495 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4496 ** the first cursor in an array of cursors for all indices. iIdxCur should
4497 ** be used to compute the appropriate cursor depending on which index is
4498 ** used.
4500 WhereInfo *sqlite3WhereBegin(
4501 Parse *pParse, /* The parser context */
4502 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
4503 Expr *pWhere, /* The WHERE clause */
4504 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
4505 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */
4506 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
4507 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4508 ** If WHERE_USE_LIMIT, then the limit amount */
4510 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
4511 int nTabList; /* Number of elements in pTabList */
4512 WhereInfo *pWInfo; /* Will become the return value of this function */
4513 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
4514 Bitmask notReady; /* Cursors that are not yet positioned */
4515 WhereLoopBuilder sWLB; /* The WhereLoop builder */
4516 WhereMaskSet *pMaskSet; /* The expression mask set */
4517 WhereLevel *pLevel; /* A single level in pWInfo->a[] */
4518 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
4519 int ii; /* Loop counter */
4520 sqlite3 *db; /* Database connection */
4521 int rc; /* Return code */
4522 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
4524 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4525 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4526 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4529 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4530 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4531 || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4533 /* Variable initialization */
4534 db = pParse->db;
4535 memset(&sWLB, 0, sizeof(sWLB));
4537 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4538 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4539 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4540 sWLB.pOrderBy = pOrderBy;
4542 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4543 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4544 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4545 wctrlFlags &= ~WHERE_WANT_DISTINCT;
4548 /* The number of tables in the FROM clause is limited by the number of
4549 ** bits in a Bitmask
4551 testcase( pTabList->nSrc==BMS );
4552 if( pTabList->nSrc>BMS ){
4553 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4554 return 0;
4557 /* This function normally generates a nested loop for all tables in
4558 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4559 ** only generate code for the first table in pTabList and assume that
4560 ** any cursors associated with subsequent tables are uninitialized.
4562 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4564 /* Allocate and initialize the WhereInfo structure that will become the
4565 ** return value. A single allocation is used to store the WhereInfo
4566 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4567 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4568 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4569 ** some architectures. Hence the ROUND8() below.
4571 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4572 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4573 if( db->mallocFailed ){
4574 sqlite3DbFree(db, pWInfo);
4575 pWInfo = 0;
4576 goto whereBeginError;
4578 pWInfo->pParse = pParse;
4579 pWInfo->pTabList = pTabList;
4580 pWInfo->pOrderBy = pOrderBy;
4581 pWInfo->pWhere = pWhere;
4582 pWInfo->pResultSet = pResultSet;
4583 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4584 pWInfo->nLevel = nTabList;
4585 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4586 pWInfo->wctrlFlags = wctrlFlags;
4587 pWInfo->iLimit = iAuxArg;
4588 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4589 memset(&pWInfo->nOBSat, 0,
4590 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4591 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4592 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
4593 pMaskSet = &pWInfo->sMaskSet;
4594 sWLB.pWInfo = pWInfo;
4595 sWLB.pWC = &pWInfo->sWC;
4596 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4597 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4598 whereLoopInit(sWLB.pNew);
4599 #ifdef SQLITE_DEBUG
4600 sWLB.pNew->cId = '*';
4601 #endif
4603 /* Split the WHERE clause into separate subexpressions where each
4604 ** subexpression is separated by an AND operator.
4606 initMaskSet(pMaskSet);
4607 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4608 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4610 /* Special case: No FROM clause
4612 if( nTabList==0 ){
4613 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4614 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4615 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4617 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4618 }else{
4619 /* Assign a bit from the bitmask to every term in the FROM clause.
4621 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4623 ** The rule of the previous sentence ensures thta if X is the bitmask for
4624 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4625 ** Knowing the bitmask for all tables to the left of a left join is
4626 ** important. Ticket #3015.
4628 ** Note that bitmasks are created for all pTabList->nSrc tables in
4629 ** pTabList, not just the first nTabList tables. nTabList is normally
4630 ** equal to pTabList->nSrc but might be shortened to 1 if the
4631 ** WHERE_OR_SUBCLAUSE flag is set.
4633 ii = 0;
4635 createMask(pMaskSet, pTabList->a[ii].iCursor);
4636 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4637 }while( (++ii)<pTabList->nSrc );
4638 #ifdef SQLITE_DEBUG
4640 Bitmask mx = 0;
4641 for(ii=0; ii<pTabList->nSrc; ii++){
4642 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4643 assert( m>=mx );
4644 mx = m;
4647 #endif
4650 /* Analyze all of the subexpressions. */
4651 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4652 if( db->mallocFailed ) goto whereBeginError;
4654 /* Special case: WHERE terms that do not refer to any tables in the join
4655 ** (constant expressions). Evaluate each such term, and jump over all the
4656 ** generated code if the result is not true.
4658 ** Do not do this if the expression contains non-deterministic functions
4659 ** that are not within a sub-select. This is not strictly required, but
4660 ** preserves SQLite's legacy behaviour in the following two cases:
4662 ** FROM ... WHERE random()>0; -- eval random() once per row
4663 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall
4665 for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4666 WhereTerm *pT = &sWLB.pWC->a[ii];
4667 if( pT->wtFlags & TERM_VIRTUAL ) continue;
4668 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4669 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4670 pT->wtFlags |= TERM_CODED;
4674 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4675 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4676 /* The DISTINCT marking is pointless. Ignore it. */
4677 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4678 }else if( pOrderBy==0 ){
4679 /* Try to ORDER BY the result set to make distinct processing easier */
4680 pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4681 pWInfo->pOrderBy = pResultSet;
4685 /* Construct the WhereLoop objects */
4686 #if defined(WHERETRACE_ENABLED)
4687 if( sqlite3WhereTrace & 0xffff ){
4688 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4689 if( wctrlFlags & WHERE_USE_LIMIT ){
4690 sqlite3DebugPrintf(", limit: %d", iAuxArg);
4692 sqlite3DebugPrintf(")\n");
4694 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4695 sqlite3WhereClausePrint(sWLB.pWC);
4697 #endif
4699 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4700 rc = whereLoopAddAll(&sWLB);
4701 if( rc ) goto whereBeginError;
4703 #ifdef WHERETRACE_ENABLED
4704 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
4705 WhereLoop *p;
4706 int i;
4707 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4708 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4709 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4710 p->cId = zLabel[i%(sizeof(zLabel)-1)];
4711 whereLoopPrint(p, sWLB.pWC);
4714 #endif
4716 wherePathSolver(pWInfo, 0);
4717 if( db->mallocFailed ) goto whereBeginError;
4718 if( pWInfo->pOrderBy ){
4719 wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4720 if( db->mallocFailed ) goto whereBeginError;
4723 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4724 pWInfo->revMask = ALLBITS;
4726 if( pParse->nErr || NEVER(db->mallocFailed) ){
4727 goto whereBeginError;
4729 #ifdef WHERETRACE_ENABLED
4730 if( sqlite3WhereTrace ){
4731 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4732 if( pWInfo->nOBSat>0 ){
4733 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4735 switch( pWInfo->eDistinct ){
4736 case WHERE_DISTINCT_UNIQUE: {
4737 sqlite3DebugPrintf(" DISTINCT=unique");
4738 break;
4740 case WHERE_DISTINCT_ORDERED: {
4741 sqlite3DebugPrintf(" DISTINCT=ordered");
4742 break;
4744 case WHERE_DISTINCT_UNORDERED: {
4745 sqlite3DebugPrintf(" DISTINCT=unordered");
4746 break;
4749 sqlite3DebugPrintf("\n");
4750 for(ii=0; ii<pWInfo->nLevel; ii++){
4751 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4754 #endif
4756 /* Attempt to omit tables from the join that do not affect the result.
4757 ** For a table to not affect the result, the following must be true:
4759 ** 1) The query must not be an aggregate.
4760 ** 2) The table must be the RHS of a LEFT JOIN.
4761 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
4762 ** must contain a constraint that limits the scan of the table to
4763 ** at most a single row.
4764 ** 4) The table must not be referenced by any part of the query apart
4765 ** from its own USING or ON clause.
4767 ** For example, given:
4769 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
4770 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
4771 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
4773 ** then table t2 can be omitted from the following:
4775 ** SELECT v1, v3 FROM t1
4776 ** LEFT JOIN t2 USING (t1.ipk=t2.ipk)
4777 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4779 ** or from:
4781 ** SELECT DISTINCT v1, v3 FROM t1
4782 ** LEFT JOIN t2
4783 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4785 notReady = ~(Bitmask)0;
4786 if( pWInfo->nLevel>=2
4787 && pResultSet!=0 /* guarantees condition (1) above */
4788 && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4790 int i;
4791 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4792 if( sWLB.pOrderBy ){
4793 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4795 for(i=pWInfo->nLevel-1; i>=1; i--){
4796 WhereTerm *pTerm, *pEnd;
4797 struct SrcList_item *pItem;
4798 pLoop = pWInfo->a[i].pWLoop;
4799 pItem = &pWInfo->pTabList->a[pLoop->iTab];
4800 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
4801 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4802 && (pLoop->wsFlags & WHERE_ONEROW)==0
4804 continue;
4806 if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
4807 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4808 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4809 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4810 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4811 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
4813 break;
4817 if( pTerm<pEnd ) continue;
4818 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4819 notReady &= ~pLoop->maskSelf;
4820 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4821 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4822 pTerm->wtFlags |= TERM_CODED;
4825 if( i!=pWInfo->nLevel-1 ){
4826 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
4827 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
4829 pWInfo->nLevel--;
4830 nTabList--;
4833 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4834 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4836 /* If the caller is an UPDATE or DELETE statement that is requesting
4837 ** to use a one-pass algorithm, determine if this is appropriate.
4839 ** A one-pass approach can be used if the caller has requested one
4840 ** and either (a) the scan visits at most one row or (b) each
4841 ** of the following are true:
4843 ** * the caller has indicated that a one-pass approach can be used
4844 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
4845 ** * the table is not a virtual table, and
4846 ** * either the scan does not use the OR optimization or the caller
4847 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
4848 ** for DELETE).
4850 ** The last qualification is because an UPDATE statement uses
4851 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
4852 ** use a one-pass approach, and this is not set accurately for scans
4853 ** that use the OR optimization.
4855 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4856 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4857 int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4858 int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4859 if( bOnerow || (
4860 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
4861 && 0==(wsFlags & WHERE_VIRTUALTABLE)
4862 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
4864 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4865 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4866 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4867 bFordelete = OPFLAG_FORDELETE;
4869 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4874 /* Open all tables in the pTabList and any indices selected for
4875 ** searching those tables.
4877 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4878 Table *pTab; /* Table to open */
4879 int iDb; /* Index of database containing table/index */
4880 struct SrcList_item *pTabItem;
4882 pTabItem = &pTabList->a[pLevel->iFrom];
4883 pTab = pTabItem->pTab;
4884 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4885 pLoop = pLevel->pWLoop;
4886 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4887 /* Do nothing */
4888 }else
4889 #ifndef SQLITE_OMIT_VIRTUALTABLE
4890 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4891 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4892 int iCur = pTabItem->iCursor;
4893 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4894 }else if( IsVirtual(pTab) ){
4895 /* noop */
4896 }else
4897 #endif
4898 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4899 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4900 int op = OP_OpenRead;
4901 if( pWInfo->eOnePass!=ONEPASS_OFF ){
4902 op = OP_OpenWrite;
4903 pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4905 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4906 assert( pTabItem->iCursor==pLevel->iTabCur );
4907 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4908 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4909 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4910 Bitmask b = pTabItem->colUsed;
4911 int n = 0;
4912 for(; b; b=b>>1, n++){}
4913 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4914 assert( n<=pTab->nCol );
4916 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4917 if( pLoop->u.btree.pIndex!=0 ){
4918 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4919 }else
4920 #endif
4922 sqlite3VdbeChangeP5(v, bFordelete);
4924 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4925 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4926 (const u8*)&pTabItem->colUsed, P4_INT64);
4927 #endif
4928 }else{
4929 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4931 if( pLoop->wsFlags & WHERE_INDEXED ){
4932 Index *pIx = pLoop->u.btree.pIndex;
4933 int iIndexCur;
4934 int op = OP_OpenRead;
4935 /* iAuxArg is always set to a positive value if ONEPASS is possible */
4936 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4937 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4938 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
4940 /* This is one term of an OR-optimization using the PRIMARY KEY of a
4941 ** WITHOUT ROWID table. No need for a separate index */
4942 iIndexCur = pLevel->iTabCur;
4943 op = 0;
4944 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4945 Index *pJ = pTabItem->pTab->pIndex;
4946 iIndexCur = iAuxArg;
4947 assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4948 while( ALWAYS(pJ) && pJ!=pIx ){
4949 iIndexCur++;
4950 pJ = pJ->pNext;
4952 op = OP_OpenWrite;
4953 pWInfo->aiCurOnePass[1] = iIndexCur;
4954 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
4955 iIndexCur = iAuxArg;
4956 op = OP_ReopenIdx;
4957 }else{
4958 iIndexCur = pParse->nTab++;
4960 pLevel->iIdxCur = iIndexCur;
4961 assert( pIx->pSchema==pTab->pSchema );
4962 assert( iIndexCur>=0 );
4963 if( op ){
4964 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4965 sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4966 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4967 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4968 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4969 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
4971 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4973 VdbeComment((v, "%s", pIx->zName));
4974 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4976 u64 colUsed = 0;
4977 int ii, jj;
4978 for(ii=0; ii<pIx->nColumn; ii++){
4979 jj = pIx->aiColumn[ii];
4980 if( jj<0 ) continue;
4981 if( jj>63 ) jj = 63;
4982 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4983 colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4985 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4986 (u8*)&colUsed, P4_INT64);
4988 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4991 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4993 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4994 if( db->mallocFailed ) goto whereBeginError;
4996 /* Generate the code to do the search. Each iteration of the for
4997 ** loop below generates code for a single nested loop of the VM
4998 ** program.
5000 for(ii=0; ii<nTabList; ii++){
5001 int addrExplain;
5002 int wsFlags;
5003 pLevel = &pWInfo->a[ii];
5004 wsFlags = pLevel->pWLoop->wsFlags;
5005 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5006 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5007 constructAutomaticIndex(pParse, &pWInfo->sWC,
5008 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5009 if( db->mallocFailed ) goto whereBeginError;
5011 #endif
5012 addrExplain = sqlite3WhereExplainOneScan(
5013 pParse, pTabList, pLevel, wctrlFlags
5015 pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5016 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
5017 pWInfo->iContinue = pLevel->addrCont;
5018 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5019 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5023 /* Done. */
5024 VdbeModuleComment((v, "Begin WHERE-core"));
5025 return pWInfo;
5027 /* Jump here if malloc fails */
5028 whereBeginError:
5029 if( pWInfo ){
5030 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5031 whereInfoFree(db, pWInfo);
5033 return 0;
5037 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5038 ** index rather than the main table. In SQLITE_DEBUG mode, we want
5039 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
5040 ** does that.
5042 #ifndef SQLITE_DEBUG
5043 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5044 #else
5045 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5046 static void sqlite3WhereOpcodeRewriteTrace(
5047 sqlite3 *db,
5048 int pc,
5049 VdbeOp *pOp
5051 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5052 sqlite3VdbePrintOp(0, pc, pOp);
5054 #endif
5057 ** Generate the end of the WHERE loop. See comments on
5058 ** sqlite3WhereBegin() for additional information.
5060 void sqlite3WhereEnd(WhereInfo *pWInfo){
5061 Parse *pParse = pWInfo->pParse;
5062 Vdbe *v = pParse->pVdbe;
5063 int i;
5064 WhereLevel *pLevel;
5065 WhereLoop *pLoop;
5066 SrcList *pTabList = pWInfo->pTabList;
5067 sqlite3 *db = pParse->db;
5069 /* Generate loop termination code.
5071 VdbeModuleComment((v, "End WHERE-core"));
5072 sqlite3ExprCacheClear(pParse);
5073 for(i=pWInfo->nLevel-1; i>=0; i--){
5074 int addr;
5075 pLevel = &pWInfo->a[i];
5076 pLoop = pLevel->pWLoop;
5077 if( pLevel->op!=OP_Noop ){
5078 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5079 int addrSeek = 0;
5080 Index *pIdx;
5081 int n;
5082 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5083 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
5084 && (pLoop->wsFlags & WHERE_INDEXED)!=0
5085 && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5086 && (n = pLoop->u.btree.nIdxCol)>0
5087 && pIdx->aiRowLogEst[n]>=36
5089 int r1 = pParse->nMem+1;
5090 int j, op;
5091 for(j=0; j<n; j++){
5092 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5094 pParse->nMem += n+1;
5095 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5096 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5097 VdbeCoverageIf(v, op==OP_SeekLT);
5098 VdbeCoverageIf(v, op==OP_SeekGT);
5099 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5101 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5102 /* The common case: Advance to the next row */
5103 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5104 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5105 sqlite3VdbeChangeP5(v, pLevel->p5);
5106 VdbeCoverage(v);
5107 VdbeCoverageIf(v, pLevel->op==OP_Next);
5108 VdbeCoverageIf(v, pLevel->op==OP_Prev);
5109 VdbeCoverageIf(v, pLevel->op==OP_VNext);
5110 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5111 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5112 #endif
5113 }else{
5114 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5116 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5117 struct InLoop *pIn;
5118 int j;
5119 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5120 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5121 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5122 if( pIn->eEndLoopOp!=OP_Noop ){
5123 if( pIn->nPrefix ){
5124 assert( pLoop->wsFlags & WHERE_IN_EARLYOUT );
5125 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5126 sqlite3VdbeCurrentAddr(v)+2,
5127 pIn->iBase, pIn->nPrefix);
5128 VdbeCoverage(v);
5130 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5131 VdbeCoverage(v);
5132 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5133 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5135 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5138 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5139 if( pLevel->addrSkip ){
5140 sqlite3VdbeGoto(v, pLevel->addrSkip);
5141 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5142 sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5143 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5145 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5146 if( pLevel->addrLikeRep ){
5147 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5148 pLevel->addrLikeRep);
5149 VdbeCoverage(v);
5151 #endif
5152 if( pLevel->iLeftJoin ){
5153 int ws = pLoop->wsFlags;
5154 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5155 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5156 if( (ws & WHERE_IDX_ONLY)==0 ){
5157 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5158 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5160 if( (ws & WHERE_INDEXED)
5161 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5163 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5165 if( pLevel->op==OP_Return ){
5166 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5167 }else{
5168 sqlite3VdbeGoto(v, pLevel->addrFirst);
5170 sqlite3VdbeJumpHere(v, addr);
5172 VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5173 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5176 /* The "break" point is here, just past the end of the outer loop.
5177 ** Set it.
5179 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5181 assert( pWInfo->nLevel<=pTabList->nSrc );
5182 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5183 int k, last;
5184 VdbeOp *pOp;
5185 Index *pIdx = 0;
5186 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5187 Table *pTab = pTabItem->pTab;
5188 assert( pTab!=0 );
5189 pLoop = pLevel->pWLoop;
5191 /* For a co-routine, change all OP_Column references to the table of
5192 ** the co-routine into OP_Copy of result contained in a register.
5193 ** OP_Rowid becomes OP_Null.
5195 if( pTabItem->fg.viaCoroutine ){
5196 testcase( pParse->db->mallocFailed );
5197 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5198 pTabItem->regResult, 0);
5199 continue;
5202 /* If this scan uses an index, make VDBE code substitutions to read data
5203 ** from the index instead of from the table where possible. In some cases
5204 ** this optimization prevents the table from ever being read, which can
5205 ** yield a significant performance boost.
5207 ** Calls to the code generator in between sqlite3WhereBegin and
5208 ** sqlite3WhereEnd will have created code that references the table
5209 ** directly. This loop scans all that code looking for opcodes
5210 ** that reference the table and converts them into opcodes that
5211 ** reference the index.
5213 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5214 pIdx = pLoop->u.btree.pIndex;
5215 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5216 pIdx = pLevel->u.pCovidx;
5218 if( pIdx
5219 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5220 && !db->mallocFailed
5222 last = sqlite3VdbeCurrentAddr(v);
5223 k = pLevel->addrBody;
5224 #ifdef SQLITE_DEBUG
5225 if( db->flags & SQLITE_VdbeAddopTrace ){
5226 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5228 #endif
5229 pOp = sqlite3VdbeGetOp(v, k);
5230 for(; k<last; k++, pOp++){
5231 if( pOp->p1!=pLevel->iTabCur ) continue;
5232 if( pOp->opcode==OP_Column
5233 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5234 || pOp->opcode==OP_Offset
5235 #endif
5237 int x = pOp->p2;
5238 assert( pIdx->pTable==pTab );
5239 if( !HasRowid(pTab) ){
5240 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5241 x = pPk->aiColumn[x];
5242 assert( x>=0 );
5244 x = sqlite3ColumnOfIndex(pIdx, x);
5245 if( x>=0 ){
5246 pOp->p2 = x;
5247 pOp->p1 = pLevel->iIdxCur;
5248 OpcodeRewriteTrace(db, k, pOp);
5250 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5251 || pWInfo->eOnePass );
5252 }else if( pOp->opcode==OP_Rowid ){
5253 pOp->p1 = pLevel->iIdxCur;
5254 pOp->opcode = OP_IdxRowid;
5255 OpcodeRewriteTrace(db, k, pOp);
5256 }else if( pOp->opcode==OP_IfNullRow ){
5257 pOp->p1 = pLevel->iIdxCur;
5258 OpcodeRewriteTrace(db, k, pOp);
5261 #ifdef SQLITE_DEBUG
5262 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5263 #endif
5267 /* Final cleanup
5269 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5270 whereInfoFree(db, pWInfo);
5271 return;