Identify Select objects within a single statement using small sequential
[sqlite.git] / src / select.c
blobec99d6b68d37a7639602169376cb3967e1c5bbfd
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25 sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38 u8 isTnct; /* True if the DISTINCT keyword is present */
39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
40 int tabTnct; /* Ephemeral table used for DISTINCT processing */
41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
66 int iECursor; /* Cursor number for the sorter */
67 int regReturn; /* Register holding block-output return address */
68 int labelBkOut; /* Start label for the block-output subroutine */
69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70 int labelDone; /* Jump here when done, ex: LIMIT reached */
71 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
72 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74 u8 nDefer; /* Number of valid entries in aDefer[] */
75 struct DeferredCsr {
76 Table *pTab; /* Table definition */
77 int iCsr; /* Cursor number for table */
78 int nKey; /* Number of PK columns for table pTab (>=1) */
79 } aDefer[4];
80 #endif
81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
86 ** Delete all the content of a Select structure. Deallocate the structure
87 ** itself only if bFree is true.
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90 while( p ){
91 Select *pPrior = p->pPrior;
92 sqlite3ExprListDelete(db, p->pEList);
93 sqlite3SrcListDelete(db, p->pSrc);
94 sqlite3ExprDelete(db, p->pWhere);
95 sqlite3ExprListDelete(db, p->pGroupBy);
96 sqlite3ExprDelete(db, p->pHaving);
97 sqlite3ExprListDelete(db, p->pOrderBy);
98 sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101 sqlite3WindowListDelete(db, p->pWinDefn);
103 #endif
104 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
105 if( bFree ) sqlite3DbFreeNN(db, p);
106 p = pPrior;
107 bFree = 1;
112 ** Initialize a SelectDest structure.
114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
115 pDest->eDest = (u8)eDest;
116 pDest->iSDParm = iParm;
117 pDest->zAffSdst = 0;
118 pDest->iSdst = 0;
119 pDest->nSdst = 0;
124 ** Allocate a new Select structure and return a pointer to that
125 ** structure.
127 Select *sqlite3SelectNew(
128 Parse *pParse, /* Parsing context */
129 ExprList *pEList, /* which columns to include in the result */
130 SrcList *pSrc, /* the FROM clause -- which tables to scan */
131 Expr *pWhere, /* the WHERE clause */
132 ExprList *pGroupBy, /* the GROUP BY clause */
133 Expr *pHaving, /* the HAVING clause */
134 ExprList *pOrderBy, /* the ORDER BY clause */
135 u32 selFlags, /* Flag parameters, such as SF_Distinct */
136 Expr *pLimit /* LIMIT value. NULL means not used */
138 Select *pNew;
139 Select standin;
140 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
141 if( pNew==0 ){
142 assert( pParse->db->mallocFailed );
143 pNew = &standin;
145 if( pEList==0 ){
146 pEList = sqlite3ExprListAppend(pParse, 0,
147 sqlite3Expr(pParse->db,TK_ASTERISK,0));
149 pNew->pEList = pEList;
150 pNew->op = TK_SELECT;
151 pNew->selFlags = selFlags;
152 pNew->iLimit = 0;
153 pNew->iOffset = 0;
154 pNew->selId = ++pParse->nSelect;
155 pNew->addrOpenEphm[0] = -1;
156 pNew->addrOpenEphm[1] = -1;
157 pNew->nSelectRow = 0;
158 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
159 pNew->pSrc = pSrc;
160 pNew->pWhere = pWhere;
161 pNew->pGroupBy = pGroupBy;
162 pNew->pHaving = pHaving;
163 pNew->pOrderBy = pOrderBy;
164 pNew->pPrior = 0;
165 pNew->pNext = 0;
166 pNew->pLimit = pLimit;
167 pNew->pWith = 0;
168 #ifndef SQLITE_OMIT_WINDOWFUNC
169 pNew->pWin = 0;
170 pNew->pWinDefn = 0;
171 #endif
172 if( pParse->db->mallocFailed ) {
173 clearSelect(pParse->db, pNew, pNew!=&standin);
174 pNew = 0;
175 }else{
176 assert( pNew->pSrc!=0 || pParse->nErr>0 );
178 assert( pNew!=&standin );
179 return pNew;
184 ** Delete the given Select structure and all of its substructures.
186 void sqlite3SelectDelete(sqlite3 *db, Select *p){
187 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
191 ** Return a pointer to the right-most SELECT statement in a compound.
193 static Select *findRightmost(Select *p){
194 while( p->pNext ) p = p->pNext;
195 return p;
199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
200 ** type of join. Return an integer constant that expresses that type
201 ** in terms of the following bit values:
203 ** JT_INNER
204 ** JT_CROSS
205 ** JT_OUTER
206 ** JT_NATURAL
207 ** JT_LEFT
208 ** JT_RIGHT
210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
212 ** If an illegal or unsupported join type is seen, then still return
213 ** a join type, but put an error in the pParse structure.
215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
216 int jointype = 0;
217 Token *apAll[3];
218 Token *p;
219 /* 0123456789 123456789 123456789 123 */
220 static const char zKeyText[] = "naturaleftouterightfullinnercross";
221 static const struct {
222 u8 i; /* Beginning of keyword text in zKeyText[] */
223 u8 nChar; /* Length of the keyword in characters */
224 u8 code; /* Join type mask */
225 } aKeyword[] = {
226 /* natural */ { 0, 7, JT_NATURAL },
227 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
228 /* outer */ { 10, 5, JT_OUTER },
229 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
230 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
231 /* inner */ { 23, 5, JT_INNER },
232 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
234 int i, j;
235 apAll[0] = pA;
236 apAll[1] = pB;
237 apAll[2] = pC;
238 for(i=0; i<3 && apAll[i]; i++){
239 p = apAll[i];
240 for(j=0; j<ArraySize(aKeyword); j++){
241 if( p->n==aKeyword[j].nChar
242 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
243 jointype |= aKeyword[j].code;
244 break;
247 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
248 if( j>=ArraySize(aKeyword) ){
249 jointype |= JT_ERROR;
250 break;
254 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
255 (jointype & JT_ERROR)!=0
257 const char *zSp = " ";
258 assert( pB!=0 );
259 if( pC==0 ){ zSp++; }
260 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
261 "%T %T%s%T", pA, pB, zSp, pC);
262 jointype = JT_INNER;
263 }else if( (jointype & JT_OUTER)!=0
264 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
265 sqlite3ErrorMsg(pParse,
266 "RIGHT and FULL OUTER JOINs are not currently supported");
267 jointype = JT_INNER;
269 return jointype;
273 ** Return the index of a column in a table. Return -1 if the column
274 ** is not contained in the table.
276 static int columnIndex(Table *pTab, const char *zCol){
277 int i;
278 for(i=0; i<pTab->nCol; i++){
279 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
281 return -1;
285 ** Search the first N tables in pSrc, from left to right, looking for a
286 ** table that has a column named zCol.
288 ** When found, set *piTab and *piCol to the table index and column index
289 ** of the matching column and return TRUE.
291 ** If not found, return FALSE.
293 static int tableAndColumnIndex(
294 SrcList *pSrc, /* Array of tables to search */
295 int N, /* Number of tables in pSrc->a[] to search */
296 const char *zCol, /* Name of the column we are looking for */
297 int *piTab, /* Write index of pSrc->a[] here */
298 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
300 int i; /* For looping over tables in pSrc */
301 int iCol; /* Index of column matching zCol */
303 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
304 for(i=0; i<N; i++){
305 iCol = columnIndex(pSrc->a[i].pTab, zCol);
306 if( iCol>=0 ){
307 if( piTab ){
308 *piTab = i;
309 *piCol = iCol;
311 return 1;
314 return 0;
318 ** This function is used to add terms implied by JOIN syntax to the
319 ** WHERE clause expression of a SELECT statement. The new term, which
320 ** is ANDed with the existing WHERE clause, is of the form:
322 ** (tab1.col1 = tab2.col2)
324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
326 ** column iColRight of tab2.
328 static void addWhereTerm(
329 Parse *pParse, /* Parsing context */
330 SrcList *pSrc, /* List of tables in FROM clause */
331 int iLeft, /* Index of first table to join in pSrc */
332 int iColLeft, /* Index of column in first table */
333 int iRight, /* Index of second table in pSrc */
334 int iColRight, /* Index of column in second table */
335 int isOuterJoin, /* True if this is an OUTER join */
336 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
338 sqlite3 *db = pParse->db;
339 Expr *pE1;
340 Expr *pE2;
341 Expr *pEq;
343 assert( iLeft<iRight );
344 assert( pSrc->nSrc>iRight );
345 assert( pSrc->a[iLeft].pTab );
346 assert( pSrc->a[iRight].pTab );
348 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
349 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
351 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
352 if( pEq && isOuterJoin ){
353 ExprSetProperty(pEq, EP_FromJoin);
354 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
355 ExprSetVVAProperty(pEq, EP_NoReduce);
356 pEq->iRightJoinTable = (i16)pE2->iTable;
358 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
362 ** Set the EP_FromJoin property on all terms of the given expression.
363 ** And set the Expr.iRightJoinTable to iTable for every term in the
364 ** expression.
366 ** The EP_FromJoin property is used on terms of an expression to tell
367 ** the LEFT OUTER JOIN processing logic that this term is part of the
368 ** join restriction specified in the ON or USING clause and not a part
369 ** of the more general WHERE clause. These terms are moved over to the
370 ** WHERE clause during join processing but we need to remember that they
371 ** originated in the ON or USING clause.
373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
374 ** expression depends on table iRightJoinTable even if that table is not
375 ** explicitly mentioned in the expression. That information is needed
376 ** for cases like this:
378 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
380 ** The where clause needs to defer the handling of the t1.x=5
381 ** term until after the t2 loop of the join. In that way, a
382 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
383 ** defer the handling of t1.x=5, it will be processed immediately
384 ** after the t1 loop and rows with t1.x!=5 will never appear in
385 ** the output, which is incorrect.
387 static void setJoinExpr(Expr *p, int iTable){
388 while( p ){
389 ExprSetProperty(p, EP_FromJoin);
390 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
391 ExprSetVVAProperty(p, EP_NoReduce);
392 p->iRightJoinTable = (i16)iTable;
393 if( p->op==TK_FUNCTION && p->x.pList ){
394 int i;
395 for(i=0; i<p->x.pList->nExpr; i++){
396 setJoinExpr(p->x.pList->a[i].pExpr, iTable);
399 setJoinExpr(p->pLeft, iTable);
400 p = p->pRight;
404 /* Undo the work of setJoinExpr(). In the expression tree p, convert every
405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
406 ** an ordinary term that omits the EP_FromJoin mark.
408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
410 static void unsetJoinExpr(Expr *p, int iTable){
411 while( p ){
412 if( ExprHasProperty(p, EP_FromJoin)
413 && (iTable<0 || p->iRightJoinTable==iTable) ){
414 ExprClearProperty(p, EP_FromJoin);
416 if( p->op==TK_FUNCTION && p->x.pList ){
417 int i;
418 for(i=0; i<p->x.pList->nExpr; i++){
419 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
422 unsetJoinExpr(p->pLeft, iTable);
423 p = p->pRight;
428 ** This routine processes the join information for a SELECT statement.
429 ** ON and USING clauses are converted into extra terms of the WHERE clause.
430 ** NATURAL joins also create extra WHERE clause terms.
432 ** The terms of a FROM clause are contained in the Select.pSrc structure.
433 ** The left most table is the first entry in Select.pSrc. The right-most
434 ** table is the last entry. The join operator is held in the entry to
435 ** the left. Thus entry 0 contains the join operator for the join between
436 ** entries 0 and 1. Any ON or USING clauses associated with the join are
437 ** also attached to the left entry.
439 ** This routine returns the number of errors encountered.
441 static int sqliteProcessJoin(Parse *pParse, Select *p){
442 SrcList *pSrc; /* All tables in the FROM clause */
443 int i, j; /* Loop counters */
444 struct SrcList_item *pLeft; /* Left table being joined */
445 struct SrcList_item *pRight; /* Right table being joined */
447 pSrc = p->pSrc;
448 pLeft = &pSrc->a[0];
449 pRight = &pLeft[1];
450 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
451 Table *pRightTab = pRight->pTab;
452 int isOuter;
454 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
455 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
457 /* When the NATURAL keyword is present, add WHERE clause terms for
458 ** every column that the two tables have in common.
460 if( pRight->fg.jointype & JT_NATURAL ){
461 if( pRight->pOn || pRight->pUsing ){
462 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
463 "an ON or USING clause", 0);
464 return 1;
466 for(j=0; j<pRightTab->nCol; j++){
467 char *zName; /* Name of column in the right table */
468 int iLeft; /* Matching left table */
469 int iLeftCol; /* Matching column in the left table */
471 zName = pRightTab->aCol[j].zName;
472 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
473 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
474 isOuter, &p->pWhere);
479 /* Disallow both ON and USING clauses in the same join
481 if( pRight->pOn && pRight->pUsing ){
482 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
483 "clauses in the same join");
484 return 1;
487 /* Add the ON clause to the end of the WHERE clause, connected by
488 ** an AND operator.
490 if( pRight->pOn ){
491 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
492 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
493 pRight->pOn = 0;
496 /* Create extra terms on the WHERE clause for each column named
497 ** in the USING clause. Example: If the two tables to be joined are
498 ** A and B and the USING clause names X, Y, and Z, then add this
499 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
500 ** Report an error if any column mentioned in the USING clause is
501 ** not contained in both tables to be joined.
503 if( pRight->pUsing ){
504 IdList *pList = pRight->pUsing;
505 for(j=0; j<pList->nId; j++){
506 char *zName; /* Name of the term in the USING clause */
507 int iLeft; /* Table on the left with matching column name */
508 int iLeftCol; /* Column number of matching column on the left */
509 int iRightCol; /* Column number of matching column on the right */
511 zName = pList->a[j].zName;
512 iRightCol = columnIndex(pRightTab, zName);
513 if( iRightCol<0
514 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
516 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
517 "not present in both tables", zName);
518 return 1;
520 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
521 isOuter, &p->pWhere);
525 return 0;
529 ** An instance of this object holds information (beyond pParse and pSelect)
530 ** needed to load the next result row that is to be added to the sorter.
532 typedef struct RowLoadInfo RowLoadInfo;
533 struct RowLoadInfo {
534 int regResult; /* Store results in array of registers here */
535 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
537 ExprList *pExtra; /* Extra columns needed by sorter refs */
538 int regExtraResult; /* Where to load the extra columns */
539 #endif
543 ** This routine does the work of loading query data into an array of
544 ** registers so that it can be added to the sorter.
546 static void innerLoopLoadRow(
547 Parse *pParse, /* Statement under construction */
548 Select *pSelect, /* The query being coded */
549 RowLoadInfo *pInfo /* Info needed to complete the row load */
551 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
552 0, pInfo->ecelFlags);
553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
554 if( pInfo->pExtra ){
555 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
556 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
558 #endif
562 ** Code the OP_MakeRecord instruction that generates the entry to be
563 ** added into the sorter.
565 ** Return the register in which the result is stored.
567 static int makeSorterRecord(
568 Parse *pParse,
569 SortCtx *pSort,
570 Select *pSelect,
571 int regBase,
572 int nBase
574 int nOBSat = pSort->nOBSat;
575 Vdbe *v = pParse->pVdbe;
576 int regOut = ++pParse->nMem;
577 if( pSort->pDeferredRowLoad ){
578 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
580 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
581 return regOut;
585 ** Generate code that will push the record in registers regData
586 ** through regData+nData-1 onto the sorter.
588 static void pushOntoSorter(
589 Parse *pParse, /* Parser context */
590 SortCtx *pSort, /* Information about the ORDER BY clause */
591 Select *pSelect, /* The whole SELECT statement */
592 int regData, /* First register holding data to be sorted */
593 int regOrigData, /* First register holding data before packing */
594 int nData, /* Number of elements in the regData data array */
595 int nPrefixReg /* No. of reg prior to regData available for use */
597 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
598 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
599 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
600 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
601 int regBase; /* Regs for sorter record */
602 int regRecord = 0; /* Assembled sorter record */
603 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
604 int op; /* Opcode to add sorter record to sorter */
605 int iLimit; /* LIMIT counter */
606 int iSkip = 0; /* End of the sorter insert loop */
608 assert( bSeq==0 || bSeq==1 );
610 /* Three cases:
611 ** (1) The data to be sorted has already been packed into a Record
612 ** by a prior OP_MakeRecord. In this case nData==1 and regData
613 ** will be completely unrelated to regOrigData.
614 ** (2) All output columns are included in the sort record. In that
615 ** case regData==regOrigData.
616 ** (3) Some output columns are omitted from the sort record due to
617 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
618 ** SQLITE_ECEL_OMITREF optimization, or due to the
619 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
620 ** regOrigData is 0 to prevent this routine from trying to copy
621 ** values that might not yet exist.
623 assert( nData==1 || regData==regOrigData || regOrigData==0 );
625 if( nPrefixReg ){
626 assert( nPrefixReg==nExpr+bSeq );
627 regBase = regData - nPrefixReg;
628 }else{
629 regBase = pParse->nMem + 1;
630 pParse->nMem += nBase;
632 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
633 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
634 pSort->labelDone = sqlite3VdbeMakeLabel(v);
635 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
636 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
637 if( bSeq ){
638 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
640 if( nPrefixReg==0 && nData>0 ){
641 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
643 if( nOBSat>0 ){
644 int regPrevKey; /* The first nOBSat columns of the previous row */
645 int addrFirst; /* Address of the OP_IfNot opcode */
646 int addrJmp; /* Address of the OP_Jump opcode */
647 VdbeOp *pOp; /* Opcode that opens the sorter */
648 int nKey; /* Number of sorting key columns, including OP_Sequence */
649 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
651 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
652 regPrevKey = pParse->nMem+1;
653 pParse->nMem += pSort->nOBSat;
654 nKey = nExpr - pSort->nOBSat + bSeq;
655 if( bSeq ){
656 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
657 }else{
658 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
660 VdbeCoverage(v);
661 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
662 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
663 if( pParse->db->mallocFailed ) return;
664 pOp->p2 = nKey + nData;
665 pKI = pOp->p4.pKeyInfo;
666 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
667 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
668 testcase( pKI->nAllField > pKI->nKeyField+2 );
669 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
670 pKI->nAllField-pKI->nKeyField-1);
671 addrJmp = sqlite3VdbeCurrentAddr(v);
672 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
673 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
674 pSort->regReturn = ++pParse->nMem;
675 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
676 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
677 if( iLimit ){
678 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
679 VdbeCoverage(v);
681 sqlite3VdbeJumpHere(v, addrFirst);
682 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
683 sqlite3VdbeJumpHere(v, addrJmp);
685 if( iLimit ){
686 /* At this point the values for the new sorter entry are stored
687 ** in an array of registers. They need to be composed into a record
688 ** and inserted into the sorter if either (a) there are currently
689 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
690 ** the largest record currently in the sorter. If (b) is true and there
691 ** are already LIMIT+OFFSET items in the sorter, delete the largest
692 ** entry before inserting the new one. This way there are never more
693 ** than LIMIT+OFFSET items in the sorter.
695 ** If the new record does not need to be inserted into the sorter,
696 ** jump to the next iteration of the loop. Or, if the
697 ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
698 ** loop delivers items in sorted order, jump to the next iteration
699 ** of the outer loop.
701 int iCsr = pSort->iECursor;
702 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
703 VdbeCoverage(v);
704 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
705 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
706 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
707 VdbeCoverage(v);
708 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
710 if( regRecord==0 ){
711 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
713 if( pSort->sortFlags & SORTFLAG_UseSorter ){
714 op = OP_SorterInsert;
715 }else{
716 op = OP_IdxInsert;
718 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
719 regBase+nOBSat, nBase-nOBSat);
720 if( iSkip ){
721 assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );
722 sqlite3VdbeChangeP2(v, iSkip,
723 sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop);
728 ** Add code to implement the OFFSET
730 static void codeOffset(
731 Vdbe *v, /* Generate code into this VM */
732 int iOffset, /* Register holding the offset counter */
733 int iContinue /* Jump here to skip the current record */
735 if( iOffset>0 ){
736 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
737 VdbeComment((v, "OFFSET"));
742 ** Add code that will check to make sure the N registers starting at iMem
743 ** form a distinct entry. iTab is a sorting index that holds previously
744 ** seen combinations of the N values. A new entry is made in iTab
745 ** if the current N values are new.
747 ** A jump to addrRepeat is made and the N+1 values are popped from the
748 ** stack if the top N elements are not distinct.
750 static void codeDistinct(
751 Parse *pParse, /* Parsing and code generating context */
752 int iTab, /* A sorting index used to test for distinctness */
753 int addrRepeat, /* Jump to here if not distinct */
754 int N, /* Number of elements */
755 int iMem /* First element */
757 Vdbe *v;
758 int r1;
760 v = pParse->pVdbe;
761 r1 = sqlite3GetTempReg(pParse);
762 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
763 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
764 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
765 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
766 sqlite3ReleaseTempReg(pParse, r1);
769 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
771 ** This function is called as part of inner-loop generation for a SELECT
772 ** statement with an ORDER BY that is not optimized by an index. It
773 ** determines the expressions, if any, that the sorter-reference
774 ** optimization should be used for. The sorter-reference optimization
775 ** is used for SELECT queries like:
777 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
779 ** If the optimization is used for expression "bigblob", then instead of
780 ** storing values read from that column in the sorter records, the PK of
781 ** the row from table t1 is stored instead. Then, as records are extracted from
782 ** the sorter to return to the user, the required value of bigblob is
783 ** retrieved directly from table t1. If the values are very large, this
784 ** can be more efficient than storing them directly in the sorter records.
786 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
787 ** for which the sorter-reference optimization should be enabled.
788 ** Additionally, the pSort->aDefer[] array is populated with entries
789 ** for all cursors required to evaluate all selected expressions. Finally.
790 ** output variable (*ppExtra) is set to an expression list containing
791 ** expressions for all extra PK values that should be stored in the
792 ** sorter records.
794 static void selectExprDefer(
795 Parse *pParse, /* Leave any error here */
796 SortCtx *pSort, /* Sorter context */
797 ExprList *pEList, /* Expressions destined for sorter */
798 ExprList **ppExtra /* Expressions to append to sorter record */
800 int i;
801 int nDefer = 0;
802 ExprList *pExtra = 0;
803 for(i=0; i<pEList->nExpr; i++){
804 struct ExprList_item *pItem = &pEList->a[i];
805 if( pItem->u.x.iOrderByCol==0 ){
806 Expr *pExpr = pItem->pExpr;
807 Table *pTab = pExpr->pTab;
808 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
809 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
811 int j;
812 for(j=0; j<nDefer; j++){
813 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
815 if( j==nDefer ){
816 if( nDefer==ArraySize(pSort->aDefer) ){
817 continue;
818 }else{
819 int nKey = 1;
820 int k;
821 Index *pPk = 0;
822 if( !HasRowid(pTab) ){
823 pPk = sqlite3PrimaryKeyIndex(pTab);
824 nKey = pPk->nKeyCol;
826 for(k=0; k<nKey; k++){
827 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
828 if( pNew ){
829 pNew->iTable = pExpr->iTable;
830 pNew->pTab = pExpr->pTab;
831 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
832 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
835 pSort->aDefer[nDefer].pTab = pExpr->pTab;
836 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
837 pSort->aDefer[nDefer].nKey = nKey;
838 nDefer++;
841 pItem->bSorterRef = 1;
845 pSort->nDefer = (u8)nDefer;
846 *ppExtra = pExtra;
848 #endif
851 ** This routine generates the code for the inside of the inner loop
852 ** of a SELECT.
854 ** If srcTab is negative, then the p->pEList expressions
855 ** are evaluated in order to get the data for this row. If srcTab is
856 ** zero or more, then data is pulled from srcTab and p->pEList is used only
857 ** to get the number of columns and the collation sequence for each column.
859 static void selectInnerLoop(
860 Parse *pParse, /* The parser context */
861 Select *p, /* The complete select statement being coded */
862 int srcTab, /* Pull data from this table if non-negative */
863 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
864 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
865 SelectDest *pDest, /* How to dispose of the results */
866 int iContinue, /* Jump here to continue with next row */
867 int iBreak /* Jump here to break out of the inner loop */
869 Vdbe *v = pParse->pVdbe;
870 int i;
871 int hasDistinct; /* True if the DISTINCT keyword is present */
872 int eDest = pDest->eDest; /* How to dispose of results */
873 int iParm = pDest->iSDParm; /* First argument to disposal method */
874 int nResultCol; /* Number of result columns */
875 int nPrefixReg = 0; /* Number of extra registers before regResult */
876 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
878 /* Usually, regResult is the first cell in an array of memory cells
879 ** containing the current result row. In this case regOrig is set to the
880 ** same value. However, if the results are being sent to the sorter, the
881 ** values for any expressions that are also part of the sort-key are omitted
882 ** from this array. In this case regOrig is set to zero. */
883 int regResult; /* Start of memory holding current results */
884 int regOrig; /* Start of memory holding full result (or 0) */
886 assert( v );
887 assert( p->pEList!=0 );
888 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
889 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
890 if( pSort==0 && !hasDistinct ){
891 assert( iContinue!=0 );
892 codeOffset(v, p->iOffset, iContinue);
895 /* Pull the requested columns.
897 nResultCol = p->pEList->nExpr;
899 if( pDest->iSdst==0 ){
900 if( pSort ){
901 nPrefixReg = pSort->pOrderBy->nExpr;
902 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
903 pParse->nMem += nPrefixReg;
905 pDest->iSdst = pParse->nMem+1;
906 pParse->nMem += nResultCol;
907 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
908 /* This is an error condition that can result, for example, when a SELECT
909 ** on the right-hand side of an INSERT contains more result columns than
910 ** there are columns in the table on the left. The error will be caught
911 ** and reported later. But we need to make sure enough memory is allocated
912 ** to avoid other spurious errors in the meantime. */
913 pParse->nMem += nResultCol;
915 pDest->nSdst = nResultCol;
916 regOrig = regResult = pDest->iSdst;
917 if( srcTab>=0 ){
918 for(i=0; i<nResultCol; i++){
919 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
920 VdbeComment((v, "%s", p->pEList->a[i].zName));
922 }else if( eDest!=SRT_Exists ){
923 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
924 ExprList *pExtra = 0;
925 #endif
926 /* If the destination is an EXISTS(...) expression, the actual
927 ** values returned by the SELECT are not required.
929 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
930 ExprList *pEList;
931 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
932 ecelFlags = SQLITE_ECEL_DUP;
933 }else{
934 ecelFlags = 0;
936 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
937 /* For each expression in p->pEList that is a copy of an expression in
938 ** the ORDER BY clause (pSort->pOrderBy), set the associated
939 ** iOrderByCol value to one more than the index of the ORDER BY
940 ** expression within the sort-key that pushOntoSorter() will generate.
941 ** This allows the p->pEList field to be omitted from the sorted record,
942 ** saving space and CPU cycles. */
943 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
945 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
946 int j;
947 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
948 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
951 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
952 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
953 if( pExtra && pParse->db->mallocFailed==0 ){
954 /* If there are any extra PK columns to add to the sorter records,
955 ** allocate extra memory cells and adjust the OpenEphemeral
956 ** instruction to account for the larger records. This is only
957 ** required if there are one or more WITHOUT ROWID tables with
958 ** composite primary keys in the SortCtx.aDefer[] array. */
959 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
960 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
961 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
962 pParse->nMem += pExtra->nExpr;
964 #endif
966 /* Adjust nResultCol to account for columns that are omitted
967 ** from the sorter by the optimizations in this branch */
968 pEList = p->pEList;
969 for(i=0; i<pEList->nExpr; i++){
970 if( pEList->a[i].u.x.iOrderByCol>0
971 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
972 || pEList->a[i].bSorterRef
973 #endif
975 nResultCol--;
976 regOrig = 0;
980 testcase( regOrig );
981 testcase( eDest==SRT_Set );
982 testcase( eDest==SRT_Mem );
983 testcase( eDest==SRT_Coroutine );
984 testcase( eDest==SRT_Output );
985 assert( eDest==SRT_Set || eDest==SRT_Mem
986 || eDest==SRT_Coroutine || eDest==SRT_Output );
988 sRowLoadInfo.regResult = regResult;
989 sRowLoadInfo.ecelFlags = ecelFlags;
990 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
991 sRowLoadInfo.pExtra = pExtra;
992 sRowLoadInfo.regExtraResult = regResult + nResultCol;
993 if( pExtra ) nResultCol += pExtra->nExpr;
994 #endif
995 if( p->iLimit
996 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
997 && nPrefixReg>0
999 assert( pSort!=0 );
1000 assert( hasDistinct==0 );
1001 pSort->pDeferredRowLoad = &sRowLoadInfo;
1002 regOrig = 0;
1003 }else{
1004 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1008 /* If the DISTINCT keyword was present on the SELECT statement
1009 ** and this row has been seen before, then do not make this row
1010 ** part of the result.
1012 if( hasDistinct ){
1013 switch( pDistinct->eTnctType ){
1014 case WHERE_DISTINCT_ORDERED: {
1015 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
1016 int iJump; /* Jump destination */
1017 int regPrev; /* Previous row content */
1019 /* Allocate space for the previous row */
1020 regPrev = pParse->nMem+1;
1021 pParse->nMem += nResultCol;
1023 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1024 ** sets the MEM_Cleared bit on the first register of the
1025 ** previous value. This will cause the OP_Ne below to always
1026 ** fail on the first iteration of the loop even if the first
1027 ** row is all NULLs.
1029 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1030 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1031 pOp->opcode = OP_Null;
1032 pOp->p1 = 1;
1033 pOp->p2 = regPrev;
1035 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1036 for(i=0; i<nResultCol; i++){
1037 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1038 if( i<nResultCol-1 ){
1039 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1040 VdbeCoverage(v);
1041 }else{
1042 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1043 VdbeCoverage(v);
1045 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1046 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1048 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1049 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1050 break;
1053 case WHERE_DISTINCT_UNIQUE: {
1054 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1055 break;
1058 default: {
1059 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1060 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1061 regResult);
1062 break;
1065 if( pSort==0 ){
1066 codeOffset(v, p->iOffset, iContinue);
1070 switch( eDest ){
1071 /* In this mode, write each query result to the key of the temporary
1072 ** table iParm.
1074 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1075 case SRT_Union: {
1076 int r1;
1077 r1 = sqlite3GetTempReg(pParse);
1078 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1079 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1080 sqlite3ReleaseTempReg(pParse, r1);
1081 break;
1084 /* Construct a record from the query result, but instead of
1085 ** saving that record, use it as a key to delete elements from
1086 ** the temporary table iParm.
1088 case SRT_Except: {
1089 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1090 break;
1092 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1094 /* Store the result as data using a unique key.
1096 case SRT_Fifo:
1097 case SRT_DistFifo:
1098 case SRT_Table:
1099 case SRT_EphemTab: {
1100 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1101 testcase( eDest==SRT_Table );
1102 testcase( eDest==SRT_EphemTab );
1103 testcase( eDest==SRT_Fifo );
1104 testcase( eDest==SRT_DistFifo );
1105 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1106 #ifndef SQLITE_OMIT_CTE
1107 if( eDest==SRT_DistFifo ){
1108 /* If the destination is DistFifo, then cursor (iParm+1) is open
1109 ** on an ephemeral index. If the current row is already present
1110 ** in the index, do not write it to the output. If not, add the
1111 ** current row to the index and proceed with writing it to the
1112 ** output table as well. */
1113 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1114 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1115 VdbeCoverage(v);
1116 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1117 assert( pSort==0 );
1119 #endif
1120 if( pSort ){
1121 assert( regResult==regOrig );
1122 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1123 }else{
1124 int r2 = sqlite3GetTempReg(pParse);
1125 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1126 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1127 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1128 sqlite3ReleaseTempReg(pParse, r2);
1130 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1131 break;
1134 #ifndef SQLITE_OMIT_SUBQUERY
1135 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1136 ** then there should be a single item on the stack. Write this
1137 ** item into the set table with bogus data.
1139 case SRT_Set: {
1140 if( pSort ){
1141 /* At first glance you would think we could optimize out the
1142 ** ORDER BY in this case since the order of entries in the set
1143 ** does not matter. But there might be a LIMIT clause, in which
1144 ** case the order does matter */
1145 pushOntoSorter(
1146 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1147 }else{
1148 int r1 = sqlite3GetTempReg(pParse);
1149 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1150 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1151 r1, pDest->zAffSdst, nResultCol);
1152 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1153 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1154 sqlite3ReleaseTempReg(pParse, r1);
1156 break;
1159 /* If any row exist in the result set, record that fact and abort.
1161 case SRT_Exists: {
1162 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1163 /* The LIMIT clause will terminate the loop for us */
1164 break;
1167 /* If this is a scalar select that is part of an expression, then
1168 ** store the results in the appropriate memory cell or array of
1169 ** memory cells and break out of the scan loop.
1171 case SRT_Mem: {
1172 if( pSort ){
1173 assert( nResultCol<=pDest->nSdst );
1174 pushOntoSorter(
1175 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1176 }else{
1177 assert( nResultCol==pDest->nSdst );
1178 assert( regResult==iParm );
1179 /* The LIMIT clause will jump out of the loop for us */
1181 break;
1183 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1185 case SRT_Coroutine: /* Send data to a co-routine */
1186 case SRT_Output: { /* Return the results */
1187 testcase( eDest==SRT_Coroutine );
1188 testcase( eDest==SRT_Output );
1189 if( pSort ){
1190 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1191 nPrefixReg);
1192 }else if( eDest==SRT_Coroutine ){
1193 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1194 }else{
1195 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1196 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1198 break;
1201 #ifndef SQLITE_OMIT_CTE
1202 /* Write the results into a priority queue that is order according to
1203 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1204 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1205 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1206 ** final OP_Sequence column. The last column is the record as a blob.
1208 case SRT_DistQueue:
1209 case SRT_Queue: {
1210 int nKey;
1211 int r1, r2, r3;
1212 int addrTest = 0;
1213 ExprList *pSO;
1214 pSO = pDest->pOrderBy;
1215 assert( pSO );
1216 nKey = pSO->nExpr;
1217 r1 = sqlite3GetTempReg(pParse);
1218 r2 = sqlite3GetTempRange(pParse, nKey+2);
1219 r3 = r2+nKey+1;
1220 if( eDest==SRT_DistQueue ){
1221 /* If the destination is DistQueue, then cursor (iParm+1) is open
1222 ** on a second ephemeral index that holds all values every previously
1223 ** added to the queue. */
1224 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1225 regResult, nResultCol);
1226 VdbeCoverage(v);
1228 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1229 if( eDest==SRT_DistQueue ){
1230 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1231 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1233 for(i=0; i<nKey; i++){
1234 sqlite3VdbeAddOp2(v, OP_SCopy,
1235 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1236 r2+i);
1238 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1239 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1240 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1241 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1242 sqlite3ReleaseTempReg(pParse, r1);
1243 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1244 break;
1246 #endif /* SQLITE_OMIT_CTE */
1250 #if !defined(SQLITE_OMIT_TRIGGER)
1251 /* Discard the results. This is used for SELECT statements inside
1252 ** the body of a TRIGGER. The purpose of such selects is to call
1253 ** user-defined functions that have side effects. We do not care
1254 ** about the actual results of the select.
1256 default: {
1257 assert( eDest==SRT_Discard );
1258 break;
1260 #endif
1263 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1264 ** there is a sorter, in which case the sorter has already limited
1265 ** the output for us.
1267 if( pSort==0 && p->iLimit ){
1268 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1273 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1274 ** X extra columns.
1276 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1277 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1278 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1279 if( p ){
1280 p->aSortOrder = (u8*)&p->aColl[N+X];
1281 p->nKeyField = (u16)N;
1282 p->nAllField = (u16)(N+X);
1283 p->enc = ENC(db);
1284 p->db = db;
1285 p->nRef = 1;
1286 memset(&p[1], 0, nExtra);
1287 }else{
1288 sqlite3OomFault(db);
1290 return p;
1294 ** Deallocate a KeyInfo object
1296 void sqlite3KeyInfoUnref(KeyInfo *p){
1297 if( p ){
1298 assert( p->nRef>0 );
1299 p->nRef--;
1300 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1305 ** Make a new pointer to a KeyInfo object
1307 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1308 if( p ){
1309 assert( p->nRef>0 );
1310 p->nRef++;
1312 return p;
1315 #ifdef SQLITE_DEBUG
1317 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1318 ** can only be changed if this is just a single reference to the object.
1320 ** This routine is used only inside of assert() statements.
1322 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1323 #endif /* SQLITE_DEBUG */
1326 ** Given an expression list, generate a KeyInfo structure that records
1327 ** the collating sequence for each expression in that expression list.
1329 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1330 ** KeyInfo structure is appropriate for initializing a virtual index to
1331 ** implement that clause. If the ExprList is the result set of a SELECT
1332 ** then the KeyInfo structure is appropriate for initializing a virtual
1333 ** index to implement a DISTINCT test.
1335 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1336 ** function is responsible for seeing that this structure is eventually
1337 ** freed.
1339 KeyInfo *sqlite3KeyInfoFromExprList(
1340 Parse *pParse, /* Parsing context */
1341 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1342 int iStart, /* Begin with this column of pList */
1343 int nExtra /* Add this many extra columns to the end */
1345 int nExpr;
1346 KeyInfo *pInfo;
1347 struct ExprList_item *pItem;
1348 sqlite3 *db = pParse->db;
1349 int i;
1351 nExpr = pList->nExpr;
1352 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1353 if( pInfo ){
1354 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1355 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1356 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1357 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1360 return pInfo;
1364 ** Name of the connection operator, used for error messages.
1366 static const char *selectOpName(int id){
1367 char *z;
1368 switch( id ){
1369 case TK_ALL: z = "UNION ALL"; break;
1370 case TK_INTERSECT: z = "INTERSECT"; break;
1371 case TK_EXCEPT: z = "EXCEPT"; break;
1372 default: z = "UNION"; break;
1374 return z;
1377 #ifndef SQLITE_OMIT_EXPLAIN
1379 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1380 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1381 ** where the caption is of the form:
1383 ** "USE TEMP B-TREE FOR xxx"
1385 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1386 ** is determined by the zUsage argument.
1388 static void explainTempTable(Parse *pParse, const char *zUsage){
1389 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1393 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1394 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1395 ** in sqlite3Select() to assign values to structure member variables that
1396 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1397 ** code with #ifndef directives.
1399 # define explainSetInteger(a, b) a = b
1401 #else
1402 /* No-op versions of the explainXXX() functions and macros. */
1403 # define explainTempTable(y,z)
1404 # define explainSetInteger(y,z)
1405 #endif
1409 ** If the inner loop was generated using a non-null pOrderBy argument,
1410 ** then the results were placed in a sorter. After the loop is terminated
1411 ** we need to run the sorter and output the results. The following
1412 ** routine generates the code needed to do that.
1414 static void generateSortTail(
1415 Parse *pParse, /* Parsing context */
1416 Select *p, /* The SELECT statement */
1417 SortCtx *pSort, /* Information on the ORDER BY clause */
1418 int nColumn, /* Number of columns of data */
1419 SelectDest *pDest /* Write the sorted results here */
1421 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1422 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1423 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
1424 int addr; /* Top of output loop. Jump for Next. */
1425 int addrOnce = 0;
1426 int iTab;
1427 ExprList *pOrderBy = pSort->pOrderBy;
1428 int eDest = pDest->eDest;
1429 int iParm = pDest->iSDParm;
1430 int regRow;
1431 int regRowid;
1432 int iCol;
1433 int nKey; /* Number of key columns in sorter record */
1434 int iSortTab; /* Sorter cursor to read from */
1435 int i;
1436 int bSeq; /* True if sorter record includes seq. no. */
1437 int nRefKey = 0;
1438 struct ExprList_item *aOutEx = p->pEList->a;
1440 assert( addrBreak<0 );
1441 if( pSort->labelBkOut ){
1442 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1443 sqlite3VdbeGoto(v, addrBreak);
1444 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1447 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1448 /* Open any cursors needed for sorter-reference expressions */
1449 for(i=0; i<pSort->nDefer; i++){
1450 Table *pTab = pSort->aDefer[i].pTab;
1451 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1452 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1453 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1455 #endif
1457 iTab = pSort->iECursor;
1458 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1459 regRowid = 0;
1460 regRow = pDest->iSdst;
1461 }else{
1462 regRowid = sqlite3GetTempReg(pParse);
1463 regRow = sqlite3GetTempRange(pParse, nColumn);
1465 nKey = pOrderBy->nExpr - pSort->nOBSat;
1466 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1467 int regSortOut = ++pParse->nMem;
1468 iSortTab = pParse->nTab++;
1469 if( pSort->labelBkOut ){
1470 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1472 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1473 nKey+1+nColumn+nRefKey);
1474 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1475 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1476 VdbeCoverage(v);
1477 codeOffset(v, p->iOffset, addrContinue);
1478 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1479 bSeq = 0;
1480 }else{
1481 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1482 codeOffset(v, p->iOffset, addrContinue);
1483 iSortTab = iTab;
1484 bSeq = 1;
1486 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1487 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1488 if( aOutEx[i].bSorterRef ) continue;
1489 #endif
1490 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1492 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1493 if( pSort->nDefer ){
1494 int iKey = iCol+1;
1495 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1497 for(i=0; i<pSort->nDefer; i++){
1498 int iCsr = pSort->aDefer[i].iCsr;
1499 Table *pTab = pSort->aDefer[i].pTab;
1500 int nKey = pSort->aDefer[i].nKey;
1502 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1503 if( HasRowid(pTab) ){
1504 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1505 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1506 sqlite3VdbeCurrentAddr(v)+1, regKey);
1507 }else{
1508 int k;
1509 int iJmp;
1510 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1511 for(k=0; k<nKey; k++){
1512 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1514 iJmp = sqlite3VdbeCurrentAddr(v);
1515 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1516 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1517 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1520 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1522 #endif
1523 for(i=nColumn-1; i>=0; i--){
1524 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1525 if( aOutEx[i].bSorterRef ){
1526 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1527 }else
1528 #endif
1530 int iRead;
1531 if( aOutEx[i].u.x.iOrderByCol ){
1532 iRead = aOutEx[i].u.x.iOrderByCol-1;
1533 }else{
1534 iRead = iCol--;
1536 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1537 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1540 switch( eDest ){
1541 case SRT_Table:
1542 case SRT_EphemTab: {
1543 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1544 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1545 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1546 break;
1548 #ifndef SQLITE_OMIT_SUBQUERY
1549 case SRT_Set: {
1550 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1551 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1552 pDest->zAffSdst, nColumn);
1553 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1554 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1555 break;
1557 case SRT_Mem: {
1558 /* The LIMIT clause will terminate the loop for us */
1559 break;
1561 #endif
1562 default: {
1563 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1564 testcase( eDest==SRT_Output );
1565 testcase( eDest==SRT_Coroutine );
1566 if( eDest==SRT_Output ){
1567 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1568 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1569 }else{
1570 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1572 break;
1575 if( regRowid ){
1576 if( eDest==SRT_Set ){
1577 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1578 }else{
1579 sqlite3ReleaseTempReg(pParse, regRow);
1581 sqlite3ReleaseTempReg(pParse, regRowid);
1583 /* The bottom of the loop
1585 sqlite3VdbeResolveLabel(v, addrContinue);
1586 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1587 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1588 }else{
1589 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1591 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1592 sqlite3VdbeResolveLabel(v, addrBreak);
1596 ** Return a pointer to a string containing the 'declaration type' of the
1597 ** expression pExpr. The string may be treated as static by the caller.
1599 ** Also try to estimate the size of the returned value and return that
1600 ** result in *pEstWidth.
1602 ** The declaration type is the exact datatype definition extracted from the
1603 ** original CREATE TABLE statement if the expression is a column. The
1604 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1605 ** is considered a column can be complex in the presence of subqueries. The
1606 ** result-set expression in all of the following SELECT statements is
1607 ** considered a column by this function.
1609 ** SELECT col FROM tbl;
1610 ** SELECT (SELECT col FROM tbl;
1611 ** SELECT (SELECT col FROM tbl);
1612 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1614 ** The declaration type for any expression other than a column is NULL.
1616 ** This routine has either 3 or 6 parameters depending on whether or not
1617 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1619 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1620 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1621 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1622 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1623 #endif
1624 static const char *columnTypeImpl(
1625 NameContext *pNC,
1626 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1627 Expr *pExpr
1628 #else
1629 Expr *pExpr,
1630 const char **pzOrigDb,
1631 const char **pzOrigTab,
1632 const char **pzOrigCol
1633 #endif
1635 char const *zType = 0;
1636 int j;
1637 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1638 char const *zOrigDb = 0;
1639 char const *zOrigTab = 0;
1640 char const *zOrigCol = 0;
1641 #endif
1643 assert( pExpr!=0 );
1644 assert( pNC->pSrcList!=0 );
1645 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates
1646 ** are processed */
1647 switch( pExpr->op ){
1648 case TK_COLUMN: {
1649 /* The expression is a column. Locate the table the column is being
1650 ** extracted from in NameContext.pSrcList. This table may be real
1651 ** database table or a subquery.
1653 Table *pTab = 0; /* Table structure column is extracted from */
1654 Select *pS = 0; /* Select the column is extracted from */
1655 int iCol = pExpr->iColumn; /* Index of column in pTab */
1656 while( pNC && !pTab ){
1657 SrcList *pTabList = pNC->pSrcList;
1658 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1659 if( j<pTabList->nSrc ){
1660 pTab = pTabList->a[j].pTab;
1661 pS = pTabList->a[j].pSelect;
1662 }else{
1663 pNC = pNC->pNext;
1667 if( pTab==0 ){
1668 /* At one time, code such as "SELECT new.x" within a trigger would
1669 ** cause this condition to run. Since then, we have restructured how
1670 ** trigger code is generated and so this condition is no longer
1671 ** possible. However, it can still be true for statements like
1672 ** the following:
1674 ** CREATE TABLE t1(col INTEGER);
1675 ** SELECT (SELECT t1.col) FROM FROM t1;
1677 ** when columnType() is called on the expression "t1.col" in the
1678 ** sub-select. In this case, set the column type to NULL, even
1679 ** though it should really be "INTEGER".
1681 ** This is not a problem, as the column type of "t1.col" is never
1682 ** used. When columnType() is called on the expression
1683 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1684 ** branch below. */
1685 break;
1688 assert( pTab && pExpr->pTab==pTab );
1689 if( pS ){
1690 /* The "table" is actually a sub-select or a view in the FROM clause
1691 ** of the SELECT statement. Return the declaration type and origin
1692 ** data for the result-set column of the sub-select.
1694 if( iCol>=0 && iCol<pS->pEList->nExpr ){
1695 /* If iCol is less than zero, then the expression requests the
1696 ** rowid of the sub-select or view. This expression is legal (see
1697 ** test case misc2.2.2) - it always evaluates to NULL.
1699 NameContext sNC;
1700 Expr *p = pS->pEList->a[iCol].pExpr;
1701 sNC.pSrcList = pS->pSrc;
1702 sNC.pNext = pNC;
1703 sNC.pParse = pNC->pParse;
1704 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1706 }else{
1707 /* A real table or a CTE table */
1708 assert( !pS );
1709 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1710 if( iCol<0 ) iCol = pTab->iPKey;
1711 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1712 if( iCol<0 ){
1713 zType = "INTEGER";
1714 zOrigCol = "rowid";
1715 }else{
1716 zOrigCol = pTab->aCol[iCol].zName;
1717 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1719 zOrigTab = pTab->zName;
1720 if( pNC->pParse && pTab->pSchema ){
1721 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1722 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1724 #else
1725 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1726 if( iCol<0 ){
1727 zType = "INTEGER";
1728 }else{
1729 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1731 #endif
1733 break;
1735 #ifndef SQLITE_OMIT_SUBQUERY
1736 case TK_SELECT: {
1737 /* The expression is a sub-select. Return the declaration type and
1738 ** origin info for the single column in the result set of the SELECT
1739 ** statement.
1741 NameContext sNC;
1742 Select *pS = pExpr->x.pSelect;
1743 Expr *p = pS->pEList->a[0].pExpr;
1744 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1745 sNC.pSrcList = pS->pSrc;
1746 sNC.pNext = pNC;
1747 sNC.pParse = pNC->pParse;
1748 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1749 break;
1751 #endif
1754 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1755 if( pzOrigDb ){
1756 assert( pzOrigTab && pzOrigCol );
1757 *pzOrigDb = zOrigDb;
1758 *pzOrigTab = zOrigTab;
1759 *pzOrigCol = zOrigCol;
1761 #endif
1762 return zType;
1766 ** Generate code that will tell the VDBE the declaration types of columns
1767 ** in the result set.
1769 static void generateColumnTypes(
1770 Parse *pParse, /* Parser context */
1771 SrcList *pTabList, /* List of tables */
1772 ExprList *pEList /* Expressions defining the result set */
1774 #ifndef SQLITE_OMIT_DECLTYPE
1775 Vdbe *v = pParse->pVdbe;
1776 int i;
1777 NameContext sNC;
1778 sNC.pSrcList = pTabList;
1779 sNC.pParse = pParse;
1780 sNC.pNext = 0;
1781 for(i=0; i<pEList->nExpr; i++){
1782 Expr *p = pEList->a[i].pExpr;
1783 const char *zType;
1784 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1785 const char *zOrigDb = 0;
1786 const char *zOrigTab = 0;
1787 const char *zOrigCol = 0;
1788 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1790 /* The vdbe must make its own copy of the column-type and other
1791 ** column specific strings, in case the schema is reset before this
1792 ** virtual machine is deleted.
1794 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1795 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1796 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1797 #else
1798 zType = columnType(&sNC, p, 0, 0, 0);
1799 #endif
1800 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1802 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1807 ** Compute the column names for a SELECT statement.
1809 ** The only guarantee that SQLite makes about column names is that if the
1810 ** column has an AS clause assigning it a name, that will be the name used.
1811 ** That is the only documented guarantee. However, countless applications
1812 ** developed over the years have made baseless assumptions about column names
1813 ** and will break if those assumptions changes. Hence, use extreme caution
1814 ** when modifying this routine to avoid breaking legacy.
1816 ** See Also: sqlite3ColumnsFromExprList()
1818 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1819 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1820 ** applications should operate this way. Nevertheless, we need to support the
1821 ** other modes for legacy:
1823 ** short=OFF, full=OFF: Column name is the text of the expression has it
1824 ** originally appears in the SELECT statement. In
1825 ** other words, the zSpan of the result expression.
1827 ** short=ON, full=OFF: (This is the default setting). If the result
1828 ** refers directly to a table column, then the
1829 ** result column name is just the table column
1830 ** name: COLUMN. Otherwise use zSpan.
1832 ** full=ON, short=ANY: If the result refers directly to a table column,
1833 ** then the result column name with the table name
1834 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1836 static void generateColumnNames(
1837 Parse *pParse, /* Parser context */
1838 Select *pSelect /* Generate column names for this SELECT statement */
1840 Vdbe *v = pParse->pVdbe;
1841 int i;
1842 Table *pTab;
1843 SrcList *pTabList;
1844 ExprList *pEList;
1845 sqlite3 *db = pParse->db;
1846 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1847 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1849 #ifndef SQLITE_OMIT_EXPLAIN
1850 /* If this is an EXPLAIN, skip this step */
1851 if( pParse->explain ){
1852 return;
1854 #endif
1856 if( pParse->colNamesSet ) return;
1857 /* Column names are determined by the left-most term of a compound select */
1858 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1859 SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1860 pTabList = pSelect->pSrc;
1861 pEList = pSelect->pEList;
1862 assert( v!=0 );
1863 assert( pTabList!=0 );
1864 pParse->colNamesSet = 1;
1865 fullName = (db->flags & SQLITE_FullColNames)!=0;
1866 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1867 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1868 for(i=0; i<pEList->nExpr; i++){
1869 Expr *p = pEList->a[i].pExpr;
1871 assert( p!=0 );
1872 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
1873 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1874 if( pEList->a[i].zName ){
1875 /* An AS clause always takes first priority */
1876 char *zName = pEList->a[i].zName;
1877 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1878 }else if( srcName && p->op==TK_COLUMN ){
1879 char *zCol;
1880 int iCol = p->iColumn;
1881 pTab = p->pTab;
1882 assert( pTab!=0 );
1883 if( iCol<0 ) iCol = pTab->iPKey;
1884 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1885 if( iCol<0 ){
1886 zCol = "rowid";
1887 }else{
1888 zCol = pTab->aCol[iCol].zName;
1890 if( fullName ){
1891 char *zName = 0;
1892 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1893 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1894 }else{
1895 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1897 }else{
1898 const char *z = pEList->a[i].zSpan;
1899 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1900 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1903 generateColumnTypes(pParse, pTabList, pEList);
1907 ** Given an expression list (which is really the list of expressions
1908 ** that form the result set of a SELECT statement) compute appropriate
1909 ** column names for a table that would hold the expression list.
1911 ** All column names will be unique.
1913 ** Only the column names are computed. Column.zType, Column.zColl,
1914 ** and other fields of Column are zeroed.
1916 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1917 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1919 ** The only guarantee that SQLite makes about column names is that if the
1920 ** column has an AS clause assigning it a name, that will be the name used.
1921 ** That is the only documented guarantee. However, countless applications
1922 ** developed over the years have made baseless assumptions about column names
1923 ** and will break if those assumptions changes. Hence, use extreme caution
1924 ** when modifying this routine to avoid breaking legacy.
1926 ** See Also: generateColumnNames()
1928 int sqlite3ColumnsFromExprList(
1929 Parse *pParse, /* Parsing context */
1930 ExprList *pEList, /* Expr list from which to derive column names */
1931 i16 *pnCol, /* Write the number of columns here */
1932 Column **paCol /* Write the new column list here */
1934 sqlite3 *db = pParse->db; /* Database connection */
1935 int i, j; /* Loop counters */
1936 u32 cnt; /* Index added to make the name unique */
1937 Column *aCol, *pCol; /* For looping over result columns */
1938 int nCol; /* Number of columns in the result set */
1939 char *zName; /* Column name */
1940 int nName; /* Size of name in zName[] */
1941 Hash ht; /* Hash table of column names */
1943 sqlite3HashInit(&ht);
1944 if( pEList ){
1945 nCol = pEList->nExpr;
1946 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1947 testcase( aCol==0 );
1948 if( nCol>32767 ) nCol = 32767;
1949 }else{
1950 nCol = 0;
1951 aCol = 0;
1953 assert( nCol==(i16)nCol );
1954 *pnCol = nCol;
1955 *paCol = aCol;
1957 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1958 /* Get an appropriate name for the column
1960 if( (zName = pEList->a[i].zName)!=0 ){
1961 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1962 }else{
1963 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1964 while( pColExpr->op==TK_DOT ){
1965 pColExpr = pColExpr->pRight;
1966 assert( pColExpr!=0 );
1968 assert( pColExpr->op!=TK_AGG_COLUMN );
1969 if( pColExpr->op==TK_COLUMN ){
1970 /* For columns use the column name name */
1971 int iCol = pColExpr->iColumn;
1972 Table *pTab = pColExpr->pTab;
1973 assert( pTab!=0 );
1974 if( iCol<0 ) iCol = pTab->iPKey;
1975 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1976 }else if( pColExpr->op==TK_ID ){
1977 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1978 zName = pColExpr->u.zToken;
1979 }else{
1980 /* Use the original text of the column expression as its name */
1981 zName = pEList->a[i].zSpan;
1984 if( zName ){
1985 zName = sqlite3DbStrDup(db, zName);
1986 }else{
1987 zName = sqlite3MPrintf(db,"column%d",i+1);
1990 /* Make sure the column name is unique. If the name is not unique,
1991 ** append an integer to the name so that it becomes unique.
1993 cnt = 0;
1994 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1995 nName = sqlite3Strlen30(zName);
1996 if( nName>0 ){
1997 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1998 if( zName[j]==':' ) nName = j;
2000 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2001 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2003 pCol->zName = zName;
2004 sqlite3ColumnPropertiesFromName(0, pCol);
2005 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2006 sqlite3OomFault(db);
2009 sqlite3HashClear(&ht);
2010 if( db->mallocFailed ){
2011 for(j=0; j<i; j++){
2012 sqlite3DbFree(db, aCol[j].zName);
2014 sqlite3DbFree(db, aCol);
2015 *paCol = 0;
2016 *pnCol = 0;
2017 return SQLITE_NOMEM_BKPT;
2019 return SQLITE_OK;
2023 ** Add type and collation information to a column list based on
2024 ** a SELECT statement.
2026 ** The column list presumably came from selectColumnNamesFromExprList().
2027 ** The column list has only names, not types or collations. This
2028 ** routine goes through and adds the types and collations.
2030 ** This routine requires that all identifiers in the SELECT
2031 ** statement be resolved.
2033 void sqlite3SelectAddColumnTypeAndCollation(
2034 Parse *pParse, /* Parsing contexts */
2035 Table *pTab, /* Add column type information to this table */
2036 Select *pSelect /* SELECT used to determine types and collations */
2038 sqlite3 *db = pParse->db;
2039 NameContext sNC;
2040 Column *pCol;
2041 CollSeq *pColl;
2042 int i;
2043 Expr *p;
2044 struct ExprList_item *a;
2046 assert( pSelect!=0 );
2047 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2048 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2049 if( db->mallocFailed ) return;
2050 memset(&sNC, 0, sizeof(sNC));
2051 sNC.pSrcList = pSelect->pSrc;
2052 a = pSelect->pEList->a;
2053 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2054 const char *zType;
2055 int n, m;
2056 p = a[i].pExpr;
2057 zType = columnType(&sNC, p, 0, 0, 0);
2058 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2059 pCol->affinity = sqlite3ExprAffinity(p);
2060 if( zType ){
2061 m = sqlite3Strlen30(zType);
2062 n = sqlite3Strlen30(pCol->zName);
2063 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2064 if( pCol->zName ){
2065 memcpy(&pCol->zName[n+1], zType, m+1);
2066 pCol->colFlags |= COLFLAG_HASTYPE;
2069 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2070 pColl = sqlite3ExprCollSeq(pParse, p);
2071 if( pColl && pCol->zColl==0 ){
2072 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2075 pTab->szTabRow = 1; /* Any non-zero value works */
2079 ** Given a SELECT statement, generate a Table structure that describes
2080 ** the result set of that SELECT.
2082 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2083 Table *pTab;
2084 sqlite3 *db = pParse->db;
2085 int savedFlags;
2087 savedFlags = db->flags;
2088 db->flags &= ~SQLITE_FullColNames;
2089 db->flags |= SQLITE_ShortColNames;
2090 sqlite3SelectPrep(pParse, pSelect, 0);
2091 if( pParse->nErr ) return 0;
2092 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2093 db->flags = savedFlags;
2094 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2095 if( pTab==0 ){
2096 return 0;
2098 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2099 ** is disabled */
2100 assert( db->lookaside.bDisable );
2101 pTab->nTabRef = 1;
2102 pTab->zName = 0;
2103 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2104 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2105 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2106 pTab->iPKey = -1;
2107 if( db->mallocFailed ){
2108 sqlite3DeleteTable(db, pTab);
2109 return 0;
2111 return pTab;
2115 ** Get a VDBE for the given parser context. Create a new one if necessary.
2116 ** If an error occurs, return NULL and leave a message in pParse.
2118 Vdbe *sqlite3GetVdbe(Parse *pParse){
2119 if( pParse->pVdbe ){
2120 return pParse->pVdbe;
2122 if( pParse->pToplevel==0
2123 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2125 pParse->okConstFactor = 1;
2127 return sqlite3VdbeCreate(pParse);
2132 ** Compute the iLimit and iOffset fields of the SELECT based on the
2133 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2134 ** that appear in the original SQL statement after the LIMIT and OFFSET
2135 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2136 ** are the integer memory register numbers for counters used to compute
2137 ** the limit and offset. If there is no limit and/or offset, then
2138 ** iLimit and iOffset are negative.
2140 ** This routine changes the values of iLimit and iOffset only if
2141 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2142 ** and iOffset should have been preset to appropriate default values (zero)
2143 ** prior to calling this routine.
2145 ** The iOffset register (if it exists) is initialized to the value
2146 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2147 ** iOffset+1 is initialized to LIMIT+OFFSET.
2149 ** Only if pLimit->pLeft!=0 do the limit registers get
2150 ** redefined. The UNION ALL operator uses this property to force
2151 ** the reuse of the same limit and offset registers across multiple
2152 ** SELECT statements.
2154 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2155 Vdbe *v = 0;
2156 int iLimit = 0;
2157 int iOffset;
2158 int n;
2159 Expr *pLimit = p->pLimit;
2161 if( p->iLimit ) return;
2164 ** "LIMIT -1" always shows all rows. There is some
2165 ** controversy about what the correct behavior should be.
2166 ** The current implementation interprets "LIMIT 0" to mean
2167 ** no rows.
2169 sqlite3ExprCacheClear(pParse);
2170 if( pLimit ){
2171 assert( pLimit->op==TK_LIMIT );
2172 assert( pLimit->pLeft!=0 );
2173 p->iLimit = iLimit = ++pParse->nMem;
2174 v = sqlite3GetVdbe(pParse);
2175 assert( v!=0 );
2176 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2177 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2178 VdbeComment((v, "LIMIT counter"));
2179 if( n==0 ){
2180 sqlite3VdbeGoto(v, iBreak);
2181 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2182 p->nSelectRow = sqlite3LogEst((u64)n);
2183 p->selFlags |= SF_FixedLimit;
2185 }else{
2186 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2187 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2188 VdbeComment((v, "LIMIT counter"));
2189 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2191 if( pLimit->pRight ){
2192 p->iOffset = iOffset = ++pParse->nMem;
2193 pParse->nMem++; /* Allocate an extra register for limit+offset */
2194 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2195 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2196 VdbeComment((v, "OFFSET counter"));
2197 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2198 VdbeComment((v, "LIMIT+OFFSET"));
2203 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2205 ** Return the appropriate collating sequence for the iCol-th column of
2206 ** the result set for the compound-select statement "p". Return NULL if
2207 ** the column has no default collating sequence.
2209 ** The collating sequence for the compound select is taken from the
2210 ** left-most term of the select that has a collating sequence.
2212 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2213 CollSeq *pRet;
2214 if( p->pPrior ){
2215 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2216 }else{
2217 pRet = 0;
2219 assert( iCol>=0 );
2220 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2221 ** have been thrown during name resolution and we would not have gotten
2222 ** this far */
2223 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2224 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2226 return pRet;
2230 ** The select statement passed as the second parameter is a compound SELECT
2231 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2232 ** structure suitable for implementing the ORDER BY.
2234 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2235 ** function is responsible for ensuring that this structure is eventually
2236 ** freed.
2238 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2239 ExprList *pOrderBy = p->pOrderBy;
2240 int nOrderBy = p->pOrderBy->nExpr;
2241 sqlite3 *db = pParse->db;
2242 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2243 if( pRet ){
2244 int i;
2245 for(i=0; i<nOrderBy; i++){
2246 struct ExprList_item *pItem = &pOrderBy->a[i];
2247 Expr *pTerm = pItem->pExpr;
2248 CollSeq *pColl;
2250 if( pTerm->flags & EP_Collate ){
2251 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2252 }else{
2253 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2254 if( pColl==0 ) pColl = db->pDfltColl;
2255 pOrderBy->a[i].pExpr =
2256 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2258 assert( sqlite3KeyInfoIsWriteable(pRet) );
2259 pRet->aColl[i] = pColl;
2260 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2264 return pRet;
2267 #ifndef SQLITE_OMIT_CTE
2269 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2270 ** query of the form:
2272 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2273 ** \___________/ \_______________/
2274 ** p->pPrior p
2277 ** There is exactly one reference to the recursive-table in the FROM clause
2278 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2280 ** The setup-query runs once to generate an initial set of rows that go
2281 ** into a Queue table. Rows are extracted from the Queue table one by
2282 ** one. Each row extracted from Queue is output to pDest. Then the single
2283 ** extracted row (now in the iCurrent table) becomes the content of the
2284 ** recursive-table for a recursive-query run. The output of the recursive-query
2285 ** is added back into the Queue table. Then another row is extracted from Queue
2286 ** and the iteration continues until the Queue table is empty.
2288 ** If the compound query operator is UNION then no duplicate rows are ever
2289 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2290 ** that have ever been inserted into Queue and causes duplicates to be
2291 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2293 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2294 ** ORDER BY order and the first entry is extracted for each cycle. Without
2295 ** an ORDER BY, the Queue table is just a FIFO.
2297 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2298 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2299 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2300 ** with a positive value, then the first OFFSET outputs are discarded rather
2301 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2302 ** rows have been skipped.
2304 static void generateWithRecursiveQuery(
2305 Parse *pParse, /* Parsing context */
2306 Select *p, /* The recursive SELECT to be coded */
2307 SelectDest *pDest /* What to do with query results */
2309 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2310 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2311 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2312 Select *pSetup = p->pPrior; /* The setup query */
2313 int addrTop; /* Top of the loop */
2314 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2315 int iCurrent = 0; /* The Current table */
2316 int regCurrent; /* Register holding Current table */
2317 int iQueue; /* The Queue table */
2318 int iDistinct = 0; /* To ensure unique results if UNION */
2319 int eDest = SRT_Fifo; /* How to write to Queue */
2320 SelectDest destQueue; /* SelectDest targetting the Queue table */
2321 int i; /* Loop counter */
2322 int rc; /* Result code */
2323 ExprList *pOrderBy; /* The ORDER BY clause */
2324 Expr *pLimit; /* Saved LIMIT and OFFSET */
2325 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2327 /* Obtain authorization to do a recursive query */
2328 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2330 /* Process the LIMIT and OFFSET clauses, if they exist */
2331 addrBreak = sqlite3VdbeMakeLabel(v);
2332 p->nSelectRow = 320; /* 4 billion rows */
2333 computeLimitRegisters(pParse, p, addrBreak);
2334 pLimit = p->pLimit;
2335 regLimit = p->iLimit;
2336 regOffset = p->iOffset;
2337 p->pLimit = 0;
2338 p->iLimit = p->iOffset = 0;
2339 pOrderBy = p->pOrderBy;
2341 /* Locate the cursor number of the Current table */
2342 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2343 if( pSrc->a[i].fg.isRecursive ){
2344 iCurrent = pSrc->a[i].iCursor;
2345 break;
2349 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2350 ** the Distinct table must be exactly one greater than Queue in order
2351 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2352 iQueue = pParse->nTab++;
2353 if( p->op==TK_UNION ){
2354 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2355 iDistinct = pParse->nTab++;
2356 }else{
2357 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2359 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2361 /* Allocate cursors for Current, Queue, and Distinct. */
2362 regCurrent = ++pParse->nMem;
2363 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2364 if( pOrderBy ){
2365 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2366 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2367 (char*)pKeyInfo, P4_KEYINFO);
2368 destQueue.pOrderBy = pOrderBy;
2369 }else{
2370 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2372 VdbeComment((v, "Queue table"));
2373 if( iDistinct ){
2374 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2375 p->selFlags |= SF_UsesEphemeral;
2378 /* Detach the ORDER BY clause from the compound SELECT */
2379 p->pOrderBy = 0;
2381 /* Store the results of the setup-query in Queue. */
2382 pSetup->pNext = 0;
2383 ExplainQueryPlan((pParse, 1, "SETUP"));
2384 rc = sqlite3Select(pParse, pSetup, &destQueue);
2385 pSetup->pNext = p;
2386 if( rc ) goto end_of_recursive_query;
2388 /* Find the next row in the Queue and output that row */
2389 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2391 /* Transfer the next row in Queue over to Current */
2392 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2393 if( pOrderBy ){
2394 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2395 }else{
2396 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2398 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2400 /* Output the single row in Current */
2401 addrCont = sqlite3VdbeMakeLabel(v);
2402 codeOffset(v, regOffset, addrCont);
2403 selectInnerLoop(pParse, p, iCurrent,
2404 0, 0, pDest, addrCont, addrBreak);
2405 if( regLimit ){
2406 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2407 VdbeCoverage(v);
2409 sqlite3VdbeResolveLabel(v, addrCont);
2411 /* Execute the recursive SELECT taking the single row in Current as
2412 ** the value for the recursive-table. Store the results in the Queue.
2414 if( p->selFlags & SF_Aggregate ){
2415 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2416 }else{
2417 p->pPrior = 0;
2418 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2419 sqlite3Select(pParse, p, &destQueue);
2420 assert( p->pPrior==0 );
2421 p->pPrior = pSetup;
2424 /* Keep running the loop until the Queue is empty */
2425 sqlite3VdbeGoto(v, addrTop);
2426 sqlite3VdbeResolveLabel(v, addrBreak);
2428 end_of_recursive_query:
2429 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2430 p->pOrderBy = pOrderBy;
2431 p->pLimit = pLimit;
2432 return;
2434 #endif /* SQLITE_OMIT_CTE */
2436 /* Forward references */
2437 static int multiSelectOrderBy(
2438 Parse *pParse, /* Parsing context */
2439 Select *p, /* The right-most of SELECTs to be coded */
2440 SelectDest *pDest /* What to do with query results */
2444 ** Handle the special case of a compound-select that originates from a
2445 ** VALUES clause. By handling this as a special case, we avoid deep
2446 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2447 ** on a VALUES clause.
2449 ** Because the Select object originates from a VALUES clause:
2450 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2451 ** (2) All terms are UNION ALL
2452 ** (3) There is no ORDER BY clause
2454 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2455 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2456 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2457 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2459 static int multiSelectValues(
2460 Parse *pParse, /* Parsing context */
2461 Select *p, /* The right-most of SELECTs to be coded */
2462 SelectDest *pDest /* What to do with query results */
2464 int nRow = 1;
2465 int rc = 0;
2466 int bShowAll = p->pLimit==0;
2467 assert( p->selFlags & SF_MultiValue );
2469 assert( p->selFlags & SF_Values );
2470 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2471 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2472 if( p->pPrior==0 ) break;
2473 assert( p->pPrior->pNext==p );
2474 p = p->pPrior;
2475 nRow += bShowAll;
2476 }while(1);
2477 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2478 nRow==1 ? "" : "S"));
2479 while( p ){
2480 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2481 if( !bShowAll ) break;
2482 p->nSelectRow = nRow;
2483 p = p->pNext;
2485 return rc;
2489 ** This routine is called to process a compound query form from
2490 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2491 ** INTERSECT
2493 ** "p" points to the right-most of the two queries. the query on the
2494 ** left is p->pPrior. The left query could also be a compound query
2495 ** in which case this routine will be called recursively.
2497 ** The results of the total query are to be written into a destination
2498 ** of type eDest with parameter iParm.
2500 ** Example 1: Consider a three-way compound SQL statement.
2502 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2504 ** This statement is parsed up as follows:
2506 ** SELECT c FROM t3
2507 ** |
2508 ** `-----> SELECT b FROM t2
2509 ** |
2510 ** `------> SELECT a FROM t1
2512 ** The arrows in the diagram above represent the Select.pPrior pointer.
2513 ** So if this routine is called with p equal to the t3 query, then
2514 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2516 ** Notice that because of the way SQLite parses compound SELECTs, the
2517 ** individual selects always group from left to right.
2519 static int multiSelect(
2520 Parse *pParse, /* Parsing context */
2521 Select *p, /* The right-most of SELECTs to be coded */
2522 SelectDest *pDest /* What to do with query results */
2524 int rc = SQLITE_OK; /* Success code from a subroutine */
2525 Select *pPrior; /* Another SELECT immediately to our left */
2526 Vdbe *v; /* Generate code to this VDBE */
2527 SelectDest dest; /* Alternative data destination */
2528 Select *pDelete = 0; /* Chain of simple selects to delete */
2529 sqlite3 *db; /* Database connection */
2531 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2532 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2534 assert( p && p->pPrior ); /* Calling function guarantees this much */
2535 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2536 db = pParse->db;
2537 pPrior = p->pPrior;
2538 dest = *pDest;
2539 if( pPrior->pOrderBy || pPrior->pLimit ){
2540 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2541 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2542 rc = 1;
2543 goto multi_select_end;
2546 v = sqlite3GetVdbe(pParse);
2547 assert( v!=0 ); /* The VDBE already created by calling function */
2549 /* Create the destination temporary table if necessary
2551 if( dest.eDest==SRT_EphemTab ){
2552 assert( p->pEList );
2553 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2554 dest.eDest = SRT_Table;
2557 /* Special handling for a compound-select that originates as a VALUES clause.
2559 if( p->selFlags & SF_MultiValue ){
2560 rc = multiSelectValues(pParse, p, &dest);
2561 goto multi_select_end;
2564 /* Make sure all SELECTs in the statement have the same number of elements
2565 ** in their result sets.
2567 assert( p->pEList && pPrior->pEList );
2568 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2570 #ifndef SQLITE_OMIT_CTE
2571 if( p->selFlags & SF_Recursive ){
2572 generateWithRecursiveQuery(pParse, p, &dest);
2573 }else
2574 #endif
2576 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2578 if( p->pOrderBy ){
2579 return multiSelectOrderBy(pParse, p, pDest);
2580 }else{
2582 #ifndef SQLITE_OMIT_EXPLAIN
2583 if( pPrior->pPrior==0 ){
2584 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2585 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2587 #endif
2589 /* Generate code for the left and right SELECT statements.
2591 switch( p->op ){
2592 case TK_ALL: {
2593 int addr = 0;
2594 int nLimit;
2595 assert( !pPrior->pLimit );
2596 pPrior->iLimit = p->iLimit;
2597 pPrior->iOffset = p->iOffset;
2598 pPrior->pLimit = p->pLimit;
2599 rc = sqlite3Select(pParse, pPrior, &dest);
2600 p->pLimit = 0;
2601 if( rc ){
2602 goto multi_select_end;
2604 p->pPrior = 0;
2605 p->iLimit = pPrior->iLimit;
2606 p->iOffset = pPrior->iOffset;
2607 if( p->iLimit ){
2608 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2609 VdbeComment((v, "Jump ahead if LIMIT reached"));
2610 if( p->iOffset ){
2611 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2612 p->iLimit, p->iOffset+1, p->iOffset);
2615 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2616 rc = sqlite3Select(pParse, p, &dest);
2617 testcase( rc!=SQLITE_OK );
2618 pDelete = p->pPrior;
2619 p->pPrior = pPrior;
2620 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2621 if( pPrior->pLimit
2622 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2623 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2625 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2627 if( addr ){
2628 sqlite3VdbeJumpHere(v, addr);
2630 break;
2632 case TK_EXCEPT:
2633 case TK_UNION: {
2634 int unionTab; /* Cursor number of the temp table holding result */
2635 u8 op = 0; /* One of the SRT_ operations to apply to self */
2636 int priorOp; /* The SRT_ operation to apply to prior selects */
2637 Expr *pLimit; /* Saved values of p->nLimit */
2638 int addr;
2639 SelectDest uniondest;
2641 testcase( p->op==TK_EXCEPT );
2642 testcase( p->op==TK_UNION );
2643 priorOp = SRT_Union;
2644 if( dest.eDest==priorOp ){
2645 /* We can reuse a temporary table generated by a SELECT to our
2646 ** right.
2648 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2649 unionTab = dest.iSDParm;
2650 }else{
2651 /* We will need to create our own temporary table to hold the
2652 ** intermediate results.
2654 unionTab = pParse->nTab++;
2655 assert( p->pOrderBy==0 );
2656 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2657 assert( p->addrOpenEphm[0] == -1 );
2658 p->addrOpenEphm[0] = addr;
2659 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2660 assert( p->pEList );
2663 /* Code the SELECT statements to our left
2665 assert( !pPrior->pOrderBy );
2666 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2667 rc = sqlite3Select(pParse, pPrior, &uniondest);
2668 if( rc ){
2669 goto multi_select_end;
2672 /* Code the current SELECT statement
2674 if( p->op==TK_EXCEPT ){
2675 op = SRT_Except;
2676 }else{
2677 assert( p->op==TK_UNION );
2678 op = SRT_Union;
2680 p->pPrior = 0;
2681 pLimit = p->pLimit;
2682 p->pLimit = 0;
2683 uniondest.eDest = op;
2684 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2685 selectOpName(p->op)));
2686 rc = sqlite3Select(pParse, p, &uniondest);
2687 testcase( rc!=SQLITE_OK );
2688 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2689 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2690 sqlite3ExprListDelete(db, p->pOrderBy);
2691 pDelete = p->pPrior;
2692 p->pPrior = pPrior;
2693 p->pOrderBy = 0;
2694 if( p->op==TK_UNION ){
2695 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2697 sqlite3ExprDelete(db, p->pLimit);
2698 p->pLimit = pLimit;
2699 p->iLimit = 0;
2700 p->iOffset = 0;
2702 /* Convert the data in the temporary table into whatever form
2703 ** it is that we currently need.
2705 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2706 if( dest.eDest!=priorOp ){
2707 int iCont, iBreak, iStart;
2708 assert( p->pEList );
2709 iBreak = sqlite3VdbeMakeLabel(v);
2710 iCont = sqlite3VdbeMakeLabel(v);
2711 computeLimitRegisters(pParse, p, iBreak);
2712 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2713 iStart = sqlite3VdbeCurrentAddr(v);
2714 selectInnerLoop(pParse, p, unionTab,
2715 0, 0, &dest, iCont, iBreak);
2716 sqlite3VdbeResolveLabel(v, iCont);
2717 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2718 sqlite3VdbeResolveLabel(v, iBreak);
2719 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2721 break;
2723 default: assert( p->op==TK_INTERSECT ); {
2724 int tab1, tab2;
2725 int iCont, iBreak, iStart;
2726 Expr *pLimit;
2727 int addr;
2728 SelectDest intersectdest;
2729 int r1;
2731 /* INTERSECT is different from the others since it requires
2732 ** two temporary tables. Hence it has its own case. Begin
2733 ** by allocating the tables we will need.
2735 tab1 = pParse->nTab++;
2736 tab2 = pParse->nTab++;
2737 assert( p->pOrderBy==0 );
2739 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2740 assert( p->addrOpenEphm[0] == -1 );
2741 p->addrOpenEphm[0] = addr;
2742 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2743 assert( p->pEList );
2745 /* Code the SELECTs to our left into temporary table "tab1".
2747 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2748 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2749 if( rc ){
2750 goto multi_select_end;
2753 /* Code the current SELECT into temporary table "tab2"
2755 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2756 assert( p->addrOpenEphm[1] == -1 );
2757 p->addrOpenEphm[1] = addr;
2758 p->pPrior = 0;
2759 pLimit = p->pLimit;
2760 p->pLimit = 0;
2761 intersectdest.iSDParm = tab2;
2762 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2763 selectOpName(p->op)));
2764 rc = sqlite3Select(pParse, p, &intersectdest);
2765 testcase( rc!=SQLITE_OK );
2766 pDelete = p->pPrior;
2767 p->pPrior = pPrior;
2768 if( p->nSelectRow>pPrior->nSelectRow ){
2769 p->nSelectRow = pPrior->nSelectRow;
2771 sqlite3ExprDelete(db, p->pLimit);
2772 p->pLimit = pLimit;
2774 /* Generate code to take the intersection of the two temporary
2775 ** tables.
2777 assert( p->pEList );
2778 iBreak = sqlite3VdbeMakeLabel(v);
2779 iCont = sqlite3VdbeMakeLabel(v);
2780 computeLimitRegisters(pParse, p, iBreak);
2781 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2782 r1 = sqlite3GetTempReg(pParse);
2783 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2784 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2785 VdbeCoverage(v);
2786 sqlite3ReleaseTempReg(pParse, r1);
2787 selectInnerLoop(pParse, p, tab1,
2788 0, 0, &dest, iCont, iBreak);
2789 sqlite3VdbeResolveLabel(v, iCont);
2790 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2791 sqlite3VdbeResolveLabel(v, iBreak);
2792 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2793 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2794 break;
2798 #ifndef SQLITE_OMIT_EXPLAIN
2799 if( p->pNext==0 ){
2800 ExplainQueryPlanPop(pParse);
2802 #endif
2805 /* Compute collating sequences used by
2806 ** temporary tables needed to implement the compound select.
2807 ** Attach the KeyInfo structure to all temporary tables.
2809 ** This section is run by the right-most SELECT statement only.
2810 ** SELECT statements to the left always skip this part. The right-most
2811 ** SELECT might also skip this part if it has no ORDER BY clause and
2812 ** no temp tables are required.
2814 if( p->selFlags & SF_UsesEphemeral ){
2815 int i; /* Loop counter */
2816 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2817 Select *pLoop; /* For looping through SELECT statements */
2818 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2819 int nCol; /* Number of columns in result set */
2821 assert( p->pNext==0 );
2822 nCol = p->pEList->nExpr;
2823 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2824 if( !pKeyInfo ){
2825 rc = SQLITE_NOMEM_BKPT;
2826 goto multi_select_end;
2828 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2829 *apColl = multiSelectCollSeq(pParse, p, i);
2830 if( 0==*apColl ){
2831 *apColl = db->pDfltColl;
2835 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2836 for(i=0; i<2; i++){
2837 int addr = pLoop->addrOpenEphm[i];
2838 if( addr<0 ){
2839 /* If [0] is unused then [1] is also unused. So we can
2840 ** always safely abort as soon as the first unused slot is found */
2841 assert( pLoop->addrOpenEphm[1]<0 );
2842 break;
2844 sqlite3VdbeChangeP2(v, addr, nCol);
2845 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2846 P4_KEYINFO);
2847 pLoop->addrOpenEphm[i] = -1;
2850 sqlite3KeyInfoUnref(pKeyInfo);
2853 multi_select_end:
2854 pDest->iSdst = dest.iSdst;
2855 pDest->nSdst = dest.nSdst;
2856 sqlite3SelectDelete(db, pDelete);
2857 return rc;
2859 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2862 ** Error message for when two or more terms of a compound select have different
2863 ** size result sets.
2865 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2866 if( p->selFlags & SF_Values ){
2867 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2868 }else{
2869 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2870 " do not have the same number of result columns", selectOpName(p->op));
2875 ** Code an output subroutine for a coroutine implementation of a
2876 ** SELECT statment.
2878 ** The data to be output is contained in pIn->iSdst. There are
2879 ** pIn->nSdst columns to be output. pDest is where the output should
2880 ** be sent.
2882 ** regReturn is the number of the register holding the subroutine
2883 ** return address.
2885 ** If regPrev>0 then it is the first register in a vector that
2886 ** records the previous output. mem[regPrev] is a flag that is false
2887 ** if there has been no previous output. If regPrev>0 then code is
2888 ** generated to suppress duplicates. pKeyInfo is used for comparing
2889 ** keys.
2891 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2892 ** iBreak.
2894 static int generateOutputSubroutine(
2895 Parse *pParse, /* Parsing context */
2896 Select *p, /* The SELECT statement */
2897 SelectDest *pIn, /* Coroutine supplying data */
2898 SelectDest *pDest, /* Where to send the data */
2899 int regReturn, /* The return address register */
2900 int regPrev, /* Previous result register. No uniqueness if 0 */
2901 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2902 int iBreak /* Jump here if we hit the LIMIT */
2904 Vdbe *v = pParse->pVdbe;
2905 int iContinue;
2906 int addr;
2908 addr = sqlite3VdbeCurrentAddr(v);
2909 iContinue = sqlite3VdbeMakeLabel(v);
2911 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2913 if( regPrev ){
2914 int addr1, addr2;
2915 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2916 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2917 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2918 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2919 sqlite3VdbeJumpHere(v, addr1);
2920 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2921 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2923 if( pParse->db->mallocFailed ) return 0;
2925 /* Suppress the first OFFSET entries if there is an OFFSET clause
2927 codeOffset(v, p->iOffset, iContinue);
2929 assert( pDest->eDest!=SRT_Exists );
2930 assert( pDest->eDest!=SRT_Table );
2931 switch( pDest->eDest ){
2932 /* Store the result as data using a unique key.
2934 case SRT_EphemTab: {
2935 int r1 = sqlite3GetTempReg(pParse);
2936 int r2 = sqlite3GetTempReg(pParse);
2937 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2938 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2939 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2940 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2941 sqlite3ReleaseTempReg(pParse, r2);
2942 sqlite3ReleaseTempReg(pParse, r1);
2943 break;
2946 #ifndef SQLITE_OMIT_SUBQUERY
2947 /* If we are creating a set for an "expr IN (SELECT ...)".
2949 case SRT_Set: {
2950 int r1;
2951 testcase( pIn->nSdst>1 );
2952 r1 = sqlite3GetTempReg(pParse);
2953 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2954 r1, pDest->zAffSdst, pIn->nSdst);
2955 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2956 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2957 pIn->iSdst, pIn->nSdst);
2958 sqlite3ReleaseTempReg(pParse, r1);
2959 break;
2962 /* If this is a scalar select that is part of an expression, then
2963 ** store the results in the appropriate memory cell and break out
2964 ** of the scan loop.
2966 case SRT_Mem: {
2967 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 );
2968 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2969 /* The LIMIT clause will jump out of the loop for us */
2970 break;
2972 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2974 /* The results are stored in a sequence of registers
2975 ** starting at pDest->iSdst. Then the co-routine yields.
2977 case SRT_Coroutine: {
2978 if( pDest->iSdst==0 ){
2979 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2980 pDest->nSdst = pIn->nSdst;
2982 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2983 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2984 break;
2987 /* If none of the above, then the result destination must be
2988 ** SRT_Output. This routine is never called with any other
2989 ** destination other than the ones handled above or SRT_Output.
2991 ** For SRT_Output, results are stored in a sequence of registers.
2992 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2993 ** return the next row of result.
2995 default: {
2996 assert( pDest->eDest==SRT_Output );
2997 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2998 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2999 break;
3003 /* Jump to the end of the loop if the LIMIT is reached.
3005 if( p->iLimit ){
3006 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3009 /* Generate the subroutine return
3011 sqlite3VdbeResolveLabel(v, iContinue);
3012 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3014 return addr;
3018 ** Alternative compound select code generator for cases when there
3019 ** is an ORDER BY clause.
3021 ** We assume a query of the following form:
3023 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3025 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3026 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3027 ** co-routines. Then run the co-routines in parallel and merge the results
3028 ** into the output. In addition to the two coroutines (called selectA and
3029 ** selectB) there are 7 subroutines:
3031 ** outA: Move the output of the selectA coroutine into the output
3032 ** of the compound query.
3034 ** outB: Move the output of the selectB coroutine into the output
3035 ** of the compound query. (Only generated for UNION and
3036 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3037 ** appears only in B.)
3039 ** AltB: Called when there is data from both coroutines and A<B.
3041 ** AeqB: Called when there is data from both coroutines and A==B.
3043 ** AgtB: Called when there is data from both coroutines and A>B.
3045 ** EofA: Called when data is exhausted from selectA.
3047 ** EofB: Called when data is exhausted from selectB.
3049 ** The implementation of the latter five subroutines depend on which
3050 ** <operator> is used:
3053 ** UNION ALL UNION EXCEPT INTERSECT
3054 ** ------------- ----------------- -------------- -----------------
3055 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3057 ** AeqB: outA, nextA nextA nextA outA, nextA
3059 ** AgtB: outB, nextB outB, nextB nextB nextB
3061 ** EofA: outB, nextB outB, nextB halt halt
3063 ** EofB: outA, nextA outA, nextA outA, nextA halt
3065 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3066 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3067 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3068 ** following nextX causes a jump to the end of the select processing.
3070 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3071 ** within the output subroutine. The regPrev register set holds the previously
3072 ** output value. A comparison is made against this value and the output
3073 ** is skipped if the next results would be the same as the previous.
3075 ** The implementation plan is to implement the two coroutines and seven
3076 ** subroutines first, then put the control logic at the bottom. Like this:
3078 ** goto Init
3079 ** coA: coroutine for left query (A)
3080 ** coB: coroutine for right query (B)
3081 ** outA: output one row of A
3082 ** outB: output one row of B (UNION and UNION ALL only)
3083 ** EofA: ...
3084 ** EofB: ...
3085 ** AltB: ...
3086 ** AeqB: ...
3087 ** AgtB: ...
3088 ** Init: initialize coroutine registers
3089 ** yield coA
3090 ** if eof(A) goto EofA
3091 ** yield coB
3092 ** if eof(B) goto EofB
3093 ** Cmpr: Compare A, B
3094 ** Jump AltB, AeqB, AgtB
3095 ** End: ...
3097 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3098 ** actually called using Gosub and they do not Return. EofA and EofB loop
3099 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3100 ** and AgtB jump to either L2 or to one of EofA or EofB.
3102 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3103 static int multiSelectOrderBy(
3104 Parse *pParse, /* Parsing context */
3105 Select *p, /* The right-most of SELECTs to be coded */
3106 SelectDest *pDest /* What to do with query results */
3108 int i, j; /* Loop counters */
3109 Select *pPrior; /* Another SELECT immediately to our left */
3110 Vdbe *v; /* Generate code to this VDBE */
3111 SelectDest destA; /* Destination for coroutine A */
3112 SelectDest destB; /* Destination for coroutine B */
3113 int regAddrA; /* Address register for select-A coroutine */
3114 int regAddrB; /* Address register for select-B coroutine */
3115 int addrSelectA; /* Address of the select-A coroutine */
3116 int addrSelectB; /* Address of the select-B coroutine */
3117 int regOutA; /* Address register for the output-A subroutine */
3118 int regOutB; /* Address register for the output-B subroutine */
3119 int addrOutA; /* Address of the output-A subroutine */
3120 int addrOutB = 0; /* Address of the output-B subroutine */
3121 int addrEofA; /* Address of the select-A-exhausted subroutine */
3122 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3123 int addrEofB; /* Address of the select-B-exhausted subroutine */
3124 int addrAltB; /* Address of the A<B subroutine */
3125 int addrAeqB; /* Address of the A==B subroutine */
3126 int addrAgtB; /* Address of the A>B subroutine */
3127 int regLimitA; /* Limit register for select-A */
3128 int regLimitB; /* Limit register for select-A */
3129 int regPrev; /* A range of registers to hold previous output */
3130 int savedLimit; /* Saved value of p->iLimit */
3131 int savedOffset; /* Saved value of p->iOffset */
3132 int labelCmpr; /* Label for the start of the merge algorithm */
3133 int labelEnd; /* Label for the end of the overall SELECT stmt */
3134 int addr1; /* Jump instructions that get retargetted */
3135 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3136 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3137 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3138 sqlite3 *db; /* Database connection */
3139 ExprList *pOrderBy; /* The ORDER BY clause */
3140 int nOrderBy; /* Number of terms in the ORDER BY clause */
3141 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
3143 assert( p->pOrderBy!=0 );
3144 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3145 db = pParse->db;
3146 v = pParse->pVdbe;
3147 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3148 labelEnd = sqlite3VdbeMakeLabel(v);
3149 labelCmpr = sqlite3VdbeMakeLabel(v);
3152 /* Patch up the ORDER BY clause
3154 op = p->op;
3155 pPrior = p->pPrior;
3156 assert( pPrior->pOrderBy==0 );
3157 pOrderBy = p->pOrderBy;
3158 assert( pOrderBy );
3159 nOrderBy = pOrderBy->nExpr;
3161 /* For operators other than UNION ALL we have to make sure that
3162 ** the ORDER BY clause covers every term of the result set. Add
3163 ** terms to the ORDER BY clause as necessary.
3165 if( op!=TK_ALL ){
3166 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3167 struct ExprList_item *pItem;
3168 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3169 assert( pItem->u.x.iOrderByCol>0 );
3170 if( pItem->u.x.iOrderByCol==i ) break;
3172 if( j==nOrderBy ){
3173 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3174 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3175 pNew->flags |= EP_IntValue;
3176 pNew->u.iValue = i;
3177 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3178 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3183 /* Compute the comparison permutation and keyinfo that is used with
3184 ** the permutation used to determine if the next
3185 ** row of results comes from selectA or selectB. Also add explicit
3186 ** collations to the ORDER BY clause terms so that when the subqueries
3187 ** to the right and the left are evaluated, they use the correct
3188 ** collation.
3190 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3191 if( aPermute ){
3192 struct ExprList_item *pItem;
3193 aPermute[0] = nOrderBy;
3194 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3195 assert( pItem->u.x.iOrderByCol>0 );
3196 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3197 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3199 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3200 }else{
3201 pKeyMerge = 0;
3204 /* Reattach the ORDER BY clause to the query.
3206 p->pOrderBy = pOrderBy;
3207 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3209 /* Allocate a range of temporary registers and the KeyInfo needed
3210 ** for the logic that removes duplicate result rows when the
3211 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3213 if( op==TK_ALL ){
3214 regPrev = 0;
3215 }else{
3216 int nExpr = p->pEList->nExpr;
3217 assert( nOrderBy>=nExpr || db->mallocFailed );
3218 regPrev = pParse->nMem+1;
3219 pParse->nMem += nExpr+1;
3220 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3221 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3222 if( pKeyDup ){
3223 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3224 for(i=0; i<nExpr; i++){
3225 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3226 pKeyDup->aSortOrder[i] = 0;
3231 /* Separate the left and the right query from one another
3233 p->pPrior = 0;
3234 pPrior->pNext = 0;
3235 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3236 if( pPrior->pPrior==0 ){
3237 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3240 /* Compute the limit registers */
3241 computeLimitRegisters(pParse, p, labelEnd);
3242 if( p->iLimit && op==TK_ALL ){
3243 regLimitA = ++pParse->nMem;
3244 regLimitB = ++pParse->nMem;
3245 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3246 regLimitA);
3247 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3248 }else{
3249 regLimitA = regLimitB = 0;
3251 sqlite3ExprDelete(db, p->pLimit);
3252 p->pLimit = 0;
3254 regAddrA = ++pParse->nMem;
3255 regAddrB = ++pParse->nMem;
3256 regOutA = ++pParse->nMem;
3257 regOutB = ++pParse->nMem;
3258 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3259 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3261 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3263 /* Generate a coroutine to evaluate the SELECT statement to the
3264 ** left of the compound operator - the "A" select.
3266 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3267 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3268 VdbeComment((v, "left SELECT"));
3269 pPrior->iLimit = regLimitA;
3270 ExplainQueryPlan((pParse, 1, "LEFT"));
3271 sqlite3Select(pParse, pPrior, &destA);
3272 sqlite3VdbeEndCoroutine(v, regAddrA);
3273 sqlite3VdbeJumpHere(v, addr1);
3275 /* Generate a coroutine to evaluate the SELECT statement on
3276 ** the right - the "B" select
3278 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3279 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3280 VdbeComment((v, "right SELECT"));
3281 savedLimit = p->iLimit;
3282 savedOffset = p->iOffset;
3283 p->iLimit = regLimitB;
3284 p->iOffset = 0;
3285 ExplainQueryPlan((pParse, 1, "RIGHT"));
3286 sqlite3Select(pParse, p, &destB);
3287 p->iLimit = savedLimit;
3288 p->iOffset = savedOffset;
3289 sqlite3VdbeEndCoroutine(v, regAddrB);
3291 /* Generate a subroutine that outputs the current row of the A
3292 ** select as the next output row of the compound select.
3294 VdbeNoopComment((v, "Output routine for A"));
3295 addrOutA = generateOutputSubroutine(pParse,
3296 p, &destA, pDest, regOutA,
3297 regPrev, pKeyDup, labelEnd);
3299 /* Generate a subroutine that outputs the current row of the B
3300 ** select as the next output row of the compound select.
3302 if( op==TK_ALL || op==TK_UNION ){
3303 VdbeNoopComment((v, "Output routine for B"));
3304 addrOutB = generateOutputSubroutine(pParse,
3305 p, &destB, pDest, regOutB,
3306 regPrev, pKeyDup, labelEnd);
3308 sqlite3KeyInfoUnref(pKeyDup);
3310 /* Generate a subroutine to run when the results from select A
3311 ** are exhausted and only data in select B remains.
3313 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3314 addrEofA_noB = addrEofA = labelEnd;
3315 }else{
3316 VdbeNoopComment((v, "eof-A subroutine"));
3317 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3318 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3319 VdbeCoverage(v);
3320 sqlite3VdbeGoto(v, addrEofA);
3321 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3324 /* Generate a subroutine to run when the results from select B
3325 ** are exhausted and only data in select A remains.
3327 if( op==TK_INTERSECT ){
3328 addrEofB = addrEofA;
3329 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3330 }else{
3331 VdbeNoopComment((v, "eof-B subroutine"));
3332 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3333 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3334 sqlite3VdbeGoto(v, addrEofB);
3337 /* Generate code to handle the case of A<B
3339 VdbeNoopComment((v, "A-lt-B subroutine"));
3340 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3341 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3342 sqlite3VdbeGoto(v, labelCmpr);
3344 /* Generate code to handle the case of A==B
3346 if( op==TK_ALL ){
3347 addrAeqB = addrAltB;
3348 }else if( op==TK_INTERSECT ){
3349 addrAeqB = addrAltB;
3350 addrAltB++;
3351 }else{
3352 VdbeNoopComment((v, "A-eq-B subroutine"));
3353 addrAeqB =
3354 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3355 sqlite3VdbeGoto(v, labelCmpr);
3358 /* Generate code to handle the case of A>B
3360 VdbeNoopComment((v, "A-gt-B subroutine"));
3361 addrAgtB = sqlite3VdbeCurrentAddr(v);
3362 if( op==TK_ALL || op==TK_UNION ){
3363 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3365 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3366 sqlite3VdbeGoto(v, labelCmpr);
3368 /* This code runs once to initialize everything.
3370 sqlite3VdbeJumpHere(v, addr1);
3371 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3372 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3374 /* Implement the main merge loop
3376 sqlite3VdbeResolveLabel(v, labelCmpr);
3377 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3378 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3379 (char*)pKeyMerge, P4_KEYINFO);
3380 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3381 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3383 /* Jump to the this point in order to terminate the query.
3385 sqlite3VdbeResolveLabel(v, labelEnd);
3387 /* Reassembly the compound query so that it will be freed correctly
3388 ** by the calling function */
3389 if( p->pPrior ){
3390 sqlite3SelectDelete(db, p->pPrior);
3392 p->pPrior = pPrior;
3393 pPrior->pNext = p;
3395 /*** TBD: Insert subroutine calls to close cursors on incomplete
3396 **** subqueries ****/
3397 ExplainQueryPlanPop(pParse);
3398 return pParse->nErr!=0;
3400 #endif
3402 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3404 /* An instance of the SubstContext object describes an substitution edit
3405 ** to be performed on a parse tree.
3407 ** All references to columns in table iTable are to be replaced by corresponding
3408 ** expressions in pEList.
3410 typedef struct SubstContext {
3411 Parse *pParse; /* The parsing context */
3412 int iTable; /* Replace references to this table */
3413 int iNewTable; /* New table number */
3414 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3415 ExprList *pEList; /* Replacement expressions */
3416 } SubstContext;
3418 /* Forward Declarations */
3419 static void substExprList(SubstContext*, ExprList*);
3420 static void substSelect(SubstContext*, Select*, int);
3423 ** Scan through the expression pExpr. Replace every reference to
3424 ** a column in table number iTable with a copy of the iColumn-th
3425 ** entry in pEList. (But leave references to the ROWID column
3426 ** unchanged.)
3428 ** This routine is part of the flattening procedure. A subquery
3429 ** whose result set is defined by pEList appears as entry in the
3430 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3431 ** FORM clause entry is iTable. This routine makes the necessary
3432 ** changes to pExpr so that it refers directly to the source table
3433 ** of the subquery rather the result set of the subquery.
3435 static Expr *substExpr(
3436 SubstContext *pSubst, /* Description of the substitution */
3437 Expr *pExpr /* Expr in which substitution occurs */
3439 if( pExpr==0 ) return 0;
3440 if( ExprHasProperty(pExpr, EP_FromJoin)
3441 && pExpr->iRightJoinTable==pSubst->iTable
3443 pExpr->iRightJoinTable = pSubst->iNewTable;
3445 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3446 if( pExpr->iColumn<0 ){
3447 pExpr->op = TK_NULL;
3448 }else{
3449 Expr *pNew;
3450 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3451 Expr ifNullRow;
3452 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3453 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3454 if( sqlite3ExprIsVector(pCopy) ){
3455 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3456 }else{
3457 sqlite3 *db = pSubst->pParse->db;
3458 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3459 memset(&ifNullRow, 0, sizeof(ifNullRow));
3460 ifNullRow.op = TK_IF_NULL_ROW;
3461 ifNullRow.pLeft = pCopy;
3462 ifNullRow.iTable = pSubst->iNewTable;
3463 pCopy = &ifNullRow;
3465 pNew = sqlite3ExprDup(db, pCopy, 0);
3466 if( pNew && pSubst->isLeftJoin ){
3467 ExprSetProperty(pNew, EP_CanBeNull);
3469 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3470 pNew->iRightJoinTable = pExpr->iRightJoinTable;
3471 ExprSetProperty(pNew, EP_FromJoin);
3473 sqlite3ExprDelete(db, pExpr);
3474 pExpr = pNew;
3477 }else{
3478 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3479 pExpr->iTable = pSubst->iNewTable;
3481 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3482 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3483 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3484 substSelect(pSubst, pExpr->x.pSelect, 1);
3485 }else{
3486 substExprList(pSubst, pExpr->x.pList);
3489 return pExpr;
3491 static void substExprList(
3492 SubstContext *pSubst, /* Description of the substitution */
3493 ExprList *pList /* List to scan and in which to make substitutes */
3495 int i;
3496 if( pList==0 ) return;
3497 for(i=0; i<pList->nExpr; i++){
3498 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3501 static void substSelect(
3502 SubstContext *pSubst, /* Description of the substitution */
3503 Select *p, /* SELECT statement in which to make substitutions */
3504 int doPrior /* Do substitutes on p->pPrior too */
3506 SrcList *pSrc;
3507 struct SrcList_item *pItem;
3508 int i;
3509 if( !p ) return;
3511 substExprList(pSubst, p->pEList);
3512 substExprList(pSubst, p->pGroupBy);
3513 substExprList(pSubst, p->pOrderBy);
3514 p->pHaving = substExpr(pSubst, p->pHaving);
3515 p->pWhere = substExpr(pSubst, p->pWhere);
3516 pSrc = p->pSrc;
3517 assert( pSrc!=0 );
3518 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3519 substSelect(pSubst, pItem->pSelect, 1);
3520 if( pItem->fg.isTabFunc ){
3521 substExprList(pSubst, pItem->u1.pFuncArg);
3524 }while( doPrior && (p = p->pPrior)!=0 );
3526 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3528 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3530 ** This routine attempts to flatten subqueries as a performance optimization.
3531 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3533 ** To understand the concept of flattening, consider the following
3534 ** query:
3536 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3538 ** The default way of implementing this query is to execute the
3539 ** subquery first and store the results in a temporary table, then
3540 ** run the outer query on that temporary table. This requires two
3541 ** passes over the data. Furthermore, because the temporary table
3542 ** has no indices, the WHERE clause on the outer query cannot be
3543 ** optimized.
3545 ** This routine attempts to rewrite queries such as the above into
3546 ** a single flat select, like this:
3548 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3550 ** The code generated for this simplification gives the same result
3551 ** but only has to scan the data once. And because indices might
3552 ** exist on the table t1, a complete scan of the data might be
3553 ** avoided.
3555 ** Flattening is subject to the following constraints:
3557 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3558 ** The subquery and the outer query cannot both be aggregates.
3560 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3561 ** (2) If the subquery is an aggregate then
3562 ** (2a) the outer query must not be a join and
3563 ** (2b) the outer query must not use subqueries
3564 ** other than the one FROM-clause subquery that is a candidate
3565 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3566 ** from 2015-02-09.)
3568 ** (3) If the subquery is the right operand of a LEFT JOIN then
3569 ** (3a) the subquery may not be a join and
3570 ** (3b) the FROM clause of the subquery may not contain a virtual
3571 ** table and
3572 ** (3c) the outer query may not be an aggregate.
3574 ** (4) The subquery can not be DISTINCT.
3576 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3577 ** sub-queries that were excluded from this optimization. Restriction
3578 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3580 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3581 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3583 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3584 ** A FROM clause, consider adding a FROM clause with the special
3585 ** table sqlite_once that consists of a single row containing a
3586 ** single NULL.
3588 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3590 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3592 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3593 ** accidently carried the comment forward until 2014-09-15. Original
3594 ** constraint: "If the subquery is aggregate then the outer query
3595 ** may not use LIMIT."
3597 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3599 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3600 ** a separate restriction deriving from ticket #350.
3602 ** (13) The subquery and outer query may not both use LIMIT.
3604 ** (14) The subquery may not use OFFSET.
3606 ** (15) If the outer query is part of a compound select, then the
3607 ** subquery may not use LIMIT.
3608 ** (See ticket #2339 and ticket [02a8e81d44]).
3610 ** (16) If the outer query is aggregate, then the subquery may not
3611 ** use ORDER BY. (Ticket #2942) This used to not matter
3612 ** until we introduced the group_concat() function.
3614 ** (17) If the subquery is a compound select, then
3615 ** (17a) all compound operators must be a UNION ALL, and
3616 ** (17b) no terms within the subquery compound may be aggregate
3617 ** or DISTINCT, and
3618 ** (17c) every term within the subquery compound must have a FROM clause
3619 ** (17d) the outer query may not be
3620 ** (17d1) aggregate, or
3621 ** (17d2) DISTINCT, or
3622 ** (17d3) a join.
3624 ** The parent and sub-query may contain WHERE clauses. Subject to
3625 ** rules (11), (13) and (14), they may also contain ORDER BY,
3626 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3627 ** operator other than UNION ALL because all the other compound
3628 ** operators have an implied DISTINCT which is disallowed by
3629 ** restriction (4).
3631 ** Also, each component of the sub-query must return the same number
3632 ** of result columns. This is actually a requirement for any compound
3633 ** SELECT statement, but all the code here does is make sure that no
3634 ** such (illegal) sub-query is flattened. The caller will detect the
3635 ** syntax error and return a detailed message.
3637 ** (18) If the sub-query is a compound select, then all terms of the
3638 ** ORDER BY clause of the parent must be simple references to
3639 ** columns of the sub-query.
3641 ** (19) If the subquery uses LIMIT then the outer query may not
3642 ** have a WHERE clause.
3644 ** (20) If the sub-query is a compound select, then it must not use
3645 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3646 ** somewhat by saying that the terms of the ORDER BY clause must
3647 ** appear as unmodified result columns in the outer query. But we
3648 ** have other optimizations in mind to deal with that case.
3650 ** (21) If the subquery uses LIMIT then the outer query may not be
3651 ** DISTINCT. (See ticket [752e1646fc]).
3653 ** (22) The subquery may not be a recursive CTE.
3655 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3656 ** a recursive CTE, then the sub-query may not be a compound query.
3657 ** This restriction is because transforming the
3658 ** parent to a compound query confuses the code that handles
3659 ** recursive queries in multiSelect().
3661 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3662 ** The subquery may not be an aggregate that uses the built-in min() or
3663 ** or max() functions. (Without this restriction, a query like:
3664 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3665 ** return the value X for which Y was maximal.)
3667 ** (25) If either the subquery or the parent query contains a window
3668 ** function in the select list or ORDER BY clause, flattening
3669 ** is not attempted.
3672 ** In this routine, the "p" parameter is a pointer to the outer query.
3673 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3674 ** uses aggregates.
3676 ** If flattening is not attempted, this routine is a no-op and returns 0.
3677 ** If flattening is attempted this routine returns 1.
3679 ** All of the expression analysis must occur on both the outer query and
3680 ** the subquery before this routine runs.
3682 static int flattenSubquery(
3683 Parse *pParse, /* Parsing context */
3684 Select *p, /* The parent or outer SELECT statement */
3685 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3686 int isAgg /* True if outer SELECT uses aggregate functions */
3688 const char *zSavedAuthContext = pParse->zAuthContext;
3689 Select *pParent; /* Current UNION ALL term of the other query */
3690 Select *pSub; /* The inner query or "subquery" */
3691 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3692 SrcList *pSrc; /* The FROM clause of the outer query */
3693 SrcList *pSubSrc; /* The FROM clause of the subquery */
3694 int iParent; /* VDBE cursor number of the pSub result set temp table */
3695 int iNewParent = -1;/* Replacement table for iParent */
3696 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3697 int i; /* Loop counter */
3698 Expr *pWhere; /* The WHERE clause */
3699 struct SrcList_item *pSubitem; /* The subquery */
3700 sqlite3 *db = pParse->db;
3702 /* Check to see if flattening is permitted. Return 0 if not.
3704 assert( p!=0 );
3705 assert( p->pPrior==0 );
3706 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3707 pSrc = p->pSrc;
3708 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3709 pSubitem = &pSrc->a[iFrom];
3710 iParent = pSubitem->iCursor;
3711 pSub = pSubitem->pSelect;
3712 assert( pSub!=0 );
3714 #ifndef SQLITE_OMIT_WINDOWFUNC
3715 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
3716 #endif
3718 pSubSrc = pSub->pSrc;
3719 assert( pSubSrc );
3720 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3721 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3722 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3723 ** became arbitrary expressions, we were forced to add restrictions (13)
3724 ** and (14). */
3725 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3726 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
3727 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3728 return 0; /* Restriction (15) */
3730 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3731 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
3732 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3733 return 0; /* Restrictions (8)(9) */
3735 if( p->pOrderBy && pSub->pOrderBy ){
3736 return 0; /* Restriction (11) */
3738 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3739 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3740 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3741 return 0; /* Restriction (21) */
3743 if( pSub->selFlags & (SF_Recursive) ){
3744 return 0; /* Restrictions (22) */
3748 ** If the subquery is the right operand of a LEFT JOIN, then the
3749 ** subquery may not be a join itself (3a). Example of why this is not
3750 ** allowed:
3752 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3754 ** If we flatten the above, we would get
3756 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3758 ** which is not at all the same thing.
3760 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3761 ** query cannot be an aggregate. (3c) This is an artifact of the way
3762 ** aggregates are processed - there is no mechanism to determine if
3763 ** the LEFT JOIN table should be all-NULL.
3765 ** See also tickets #306, #350, and #3300.
3767 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3768 isLeftJoin = 1;
3769 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3770 /* (3a) (3c) (3b) */
3771 return 0;
3774 #ifdef SQLITE_EXTRA_IFNULLROW
3775 else if( iFrom>0 && !isAgg ){
3776 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3777 ** every reference to any result column from subquery in a join, even
3778 ** though they are not necessary. This will stress-test the OP_IfNullRow
3779 ** opcode. */
3780 isLeftJoin = -1;
3782 #endif
3784 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3785 ** use only the UNION ALL operator. And none of the simple select queries
3786 ** that make up the compound SELECT are allowed to be aggregate or distinct
3787 ** queries.
3789 if( pSub->pPrior ){
3790 if( pSub->pOrderBy ){
3791 return 0; /* Restriction (20) */
3793 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3794 return 0; /* (17d1), (17d2), or (17d3) */
3796 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3797 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3798 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3799 assert( pSub->pSrc!=0 );
3800 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3801 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
3802 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
3803 || pSub1->pSrc->nSrc<1 /* (17c) */
3805 return 0;
3807 testcase( pSub1->pSrc->nSrc>1 );
3810 /* Restriction (18). */
3811 if( p->pOrderBy ){
3812 int ii;
3813 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3814 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3819 /* Ex-restriction (23):
3820 ** The only way that the recursive part of a CTE can contain a compound
3821 ** subquery is for the subquery to be one term of a join. But if the
3822 ** subquery is a join, then the flattening has already been stopped by
3823 ** restriction (17d3)
3825 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3827 /***** If we reach this point, flattening is permitted. *****/
3828 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3829 pSub->selId, pSub, iFrom));
3831 /* Authorize the subquery */
3832 pParse->zAuthContext = pSubitem->zName;
3833 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3834 testcase( i==SQLITE_DENY );
3835 pParse->zAuthContext = zSavedAuthContext;
3837 /* If the sub-query is a compound SELECT statement, then (by restrictions
3838 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3839 ** be of the form:
3841 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3843 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3844 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3845 ** OFFSET clauses and joins them to the left-hand-side of the original
3846 ** using UNION ALL operators. In this case N is the number of simple
3847 ** select statements in the compound sub-query.
3849 ** Example:
3851 ** SELECT a+1 FROM (
3852 ** SELECT x FROM tab
3853 ** UNION ALL
3854 ** SELECT y FROM tab
3855 ** UNION ALL
3856 ** SELECT abs(z*2) FROM tab2
3857 ** ) WHERE a!=5 ORDER BY 1
3859 ** Transformed into:
3861 ** SELECT x+1 FROM tab WHERE x+1!=5
3862 ** UNION ALL
3863 ** SELECT y+1 FROM tab WHERE y+1!=5
3864 ** UNION ALL
3865 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3866 ** ORDER BY 1
3868 ** We call this the "compound-subquery flattening".
3870 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3871 Select *pNew;
3872 ExprList *pOrderBy = p->pOrderBy;
3873 Expr *pLimit = p->pLimit;
3874 Select *pPrior = p->pPrior;
3875 p->pOrderBy = 0;
3876 p->pSrc = 0;
3877 p->pPrior = 0;
3878 p->pLimit = 0;
3879 pNew = sqlite3SelectDup(db, p, 0);
3880 p->pLimit = pLimit;
3881 p->pOrderBy = pOrderBy;
3882 p->pSrc = pSrc;
3883 p->op = TK_ALL;
3884 if( pNew==0 ){
3885 p->pPrior = pPrior;
3886 }else{
3887 pNew->pPrior = pPrior;
3888 if( pPrior ) pPrior->pNext = pNew;
3889 pNew->pNext = p;
3890 p->pPrior = pNew;
3891 SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3892 " creates %u as peer\n",pNew->selId));
3894 if( db->mallocFailed ) return 1;
3897 /* Begin flattening the iFrom-th entry of the FROM clause
3898 ** in the outer query.
3900 pSub = pSub1 = pSubitem->pSelect;
3902 /* Delete the transient table structure associated with the
3903 ** subquery
3905 sqlite3DbFree(db, pSubitem->zDatabase);
3906 sqlite3DbFree(db, pSubitem->zName);
3907 sqlite3DbFree(db, pSubitem->zAlias);
3908 pSubitem->zDatabase = 0;
3909 pSubitem->zName = 0;
3910 pSubitem->zAlias = 0;
3911 pSubitem->pSelect = 0;
3913 /* Defer deleting the Table object associated with the
3914 ** subquery until code generation is
3915 ** complete, since there may still exist Expr.pTab entries that
3916 ** refer to the subquery even after flattening. Ticket #3346.
3918 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3920 if( ALWAYS(pSubitem->pTab!=0) ){
3921 Table *pTabToDel = pSubitem->pTab;
3922 if( pTabToDel->nTabRef==1 ){
3923 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3924 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3925 pToplevel->pZombieTab = pTabToDel;
3926 }else{
3927 pTabToDel->nTabRef--;
3929 pSubitem->pTab = 0;
3932 /* The following loop runs once for each term in a compound-subquery
3933 ** flattening (as described above). If we are doing a different kind
3934 ** of flattening - a flattening other than a compound-subquery flattening -
3935 ** then this loop only runs once.
3937 ** This loop moves all of the FROM elements of the subquery into the
3938 ** the FROM clause of the outer query. Before doing this, remember
3939 ** the cursor number for the original outer query FROM element in
3940 ** iParent. The iParent cursor will never be used. Subsequent code
3941 ** will scan expressions looking for iParent references and replace
3942 ** those references with expressions that resolve to the subquery FROM
3943 ** elements we are now copying in.
3945 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3946 int nSubSrc;
3947 u8 jointype = 0;
3948 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3949 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3950 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3952 if( pSrc ){
3953 assert( pParent==p ); /* First time through the loop */
3954 jointype = pSubitem->fg.jointype;
3955 }else{
3956 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3957 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3958 if( pSrc==0 ){
3959 assert( db->mallocFailed );
3960 break;
3964 /* The subquery uses a single slot of the FROM clause of the outer
3965 ** query. If the subquery has more than one element in its FROM clause,
3966 ** then expand the outer query to make space for it to hold all elements
3967 ** of the subquery.
3969 ** Example:
3971 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3973 ** The outer query has 3 slots in its FROM clause. One slot of the
3974 ** outer query (the middle slot) is used by the subquery. The next
3975 ** block of code will expand the outer query FROM clause to 4 slots.
3976 ** The middle slot is expanded to two slots in order to make space
3977 ** for the two elements in the FROM clause of the subquery.
3979 if( nSubSrc>1 ){
3980 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3981 if( db->mallocFailed ){
3982 break;
3986 /* Transfer the FROM clause terms from the subquery into the
3987 ** outer query.
3989 for(i=0; i<nSubSrc; i++){
3990 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3991 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3992 pSrc->a[i+iFrom] = pSubSrc->a[i];
3993 iNewParent = pSubSrc->a[i].iCursor;
3994 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3996 pSrc->a[iFrom].fg.jointype = jointype;
3998 /* Now begin substituting subquery result set expressions for
3999 ** references to the iParent in the outer query.
4001 ** Example:
4003 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4004 ** \ \_____________ subquery __________/ /
4005 ** \_____________________ outer query ______________________________/
4007 ** We look at every expression in the outer query and every place we see
4008 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4010 if( pSub->pOrderBy ){
4011 /* At this point, any non-zero iOrderByCol values indicate that the
4012 ** ORDER BY column expression is identical to the iOrderByCol'th
4013 ** expression returned by SELECT statement pSub. Since these values
4014 ** do not necessarily correspond to columns in SELECT statement pParent,
4015 ** zero them before transfering the ORDER BY clause.
4017 ** Not doing this may cause an error if a subsequent call to this
4018 ** function attempts to flatten a compound sub-query into pParent
4019 ** (the only way this can happen is if the compound sub-query is
4020 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4021 ExprList *pOrderBy = pSub->pOrderBy;
4022 for(i=0; i<pOrderBy->nExpr; i++){
4023 pOrderBy->a[i].u.x.iOrderByCol = 0;
4025 assert( pParent->pOrderBy==0 );
4026 pParent->pOrderBy = pOrderBy;
4027 pSub->pOrderBy = 0;
4029 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
4030 if( isLeftJoin>0 ){
4031 setJoinExpr(pWhere, iNewParent);
4033 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4034 if( db->mallocFailed==0 ){
4035 SubstContext x;
4036 x.pParse = pParse;
4037 x.iTable = iParent;
4038 x.iNewTable = iNewParent;
4039 x.isLeftJoin = isLeftJoin;
4040 x.pEList = pSub->pEList;
4041 substSelect(&x, pParent, 0);
4044 /* The flattened query is distinct if either the inner or the
4045 ** outer query is distinct.
4047 pParent->selFlags |= pSub->selFlags & SF_Distinct;
4050 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4052 ** One is tempted to try to add a and b to combine the limits. But this
4053 ** does not work if either limit is negative.
4055 if( pSub->pLimit ){
4056 pParent->pLimit = pSub->pLimit;
4057 pSub->pLimit = 0;
4061 /* Finially, delete what is left of the subquery and return
4062 ** success.
4064 sqlite3SelectDelete(db, pSub1);
4066 #if SELECTTRACE_ENABLED
4067 if( sqlite3SelectTrace & 0x100 ){
4068 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4069 sqlite3TreeViewSelect(0, p, 0);
4071 #endif
4073 return 1;
4075 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4079 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4081 ** Make copies of relevant WHERE clause terms of the outer query into
4082 ** the WHERE clause of subquery. Example:
4084 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4086 ** Transformed into:
4088 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4089 ** WHERE x=5 AND y=10;
4091 ** The hope is that the terms added to the inner query will make it more
4092 ** efficient.
4094 ** Do not attempt this optimization if:
4096 ** (1) (** This restriction was removed on 2017-09-29. We used to
4097 ** disallow this optimization for aggregate subqueries, but now
4098 ** it is allowed by putting the extra terms on the HAVING clause.
4099 ** The added HAVING clause is pointless if the subquery lacks
4100 ** a GROUP BY clause. But such a HAVING clause is also harmless
4101 ** so there does not appear to be any reason to add extra logic
4102 ** to suppress it. **)
4104 ** (2) The inner query is the recursive part of a common table expression.
4106 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4107 ** clause would change the meaning of the LIMIT).
4109 ** (4) The inner query is the right operand of a LEFT JOIN and the
4110 ** expression to be pushed down does not come from the ON clause
4111 ** on that LEFT JOIN.
4113 ** (5) The WHERE clause expression originates in the ON or USING clause
4114 ** of a LEFT JOIN where iCursor is not the right-hand table of that
4115 ** left join. An example:
4117 ** SELECT *
4118 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4119 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4120 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4122 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
4123 ** But if the (b2=2) term were to be pushed down into the bb subquery,
4124 ** then the (1,1,NULL) row would be suppressed.
4126 ** (6) The inner query features one or more window-functions (since
4127 ** changes to the WHERE clause of the inner query could change the
4128 ** window over which window functions are calculated).
4130 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4131 ** terms are duplicated into the subquery.
4133 static int pushDownWhereTerms(
4134 Parse *pParse, /* Parse context (for malloc() and error reporting) */
4135 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
4136 Expr *pWhere, /* The WHERE clause of the outer query */
4137 int iCursor, /* Cursor number of the subquery */
4138 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */
4140 Expr *pNew;
4141 int nChng = 0;
4142 if( pWhere==0 ) return 0;
4143 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */
4145 #ifndef SQLITE_OMIT_WINDOWFUNC
4146 if( pSubq->pWin ) return 0; /* restriction (6) */
4147 #endif
4149 #ifdef SQLITE_DEBUG
4150 /* Only the first term of a compound can have a WITH clause. But make
4151 ** sure no other terms are marked SF_Recursive in case something changes
4152 ** in the future.
4155 Select *pX;
4156 for(pX=pSubq; pX; pX=pX->pPrior){
4157 assert( (pX->selFlags & (SF_Recursive))==0 );
4160 #endif
4162 if( pSubq->pLimit!=0 ){
4163 return 0; /* restriction (3) */
4165 while( pWhere->op==TK_AND ){
4166 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4167 iCursor, isLeftJoin);
4168 pWhere = pWhere->pLeft;
4170 if( isLeftJoin
4171 && (ExprHasProperty(pWhere,EP_FromJoin)==0
4172 || pWhere->iRightJoinTable!=iCursor)
4174 return 0; /* restriction (4) */
4176 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4177 return 0; /* restriction (5) */
4179 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4180 nChng++;
4181 while( pSubq ){
4182 SubstContext x;
4183 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4184 unsetJoinExpr(pNew, -1);
4185 x.pParse = pParse;
4186 x.iTable = iCursor;
4187 x.iNewTable = iCursor;
4188 x.isLeftJoin = 0;
4189 x.pEList = pSubq->pEList;
4190 pNew = substExpr(&x, pNew);
4191 if( pSubq->selFlags & SF_Aggregate ){
4192 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4193 }else{
4194 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4196 pSubq = pSubq->pPrior;
4199 return nChng;
4201 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4204 ** The pFunc is the only aggregate function in the query. Check to see
4205 ** if the query is a candidate for the min/max optimization.
4207 ** If the query is a candidate for the min/max optimization, then set
4208 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4209 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4210 ** whether pFunc is a min() or max() function.
4212 ** If the query is not a candidate for the min/max optimization, return
4213 ** WHERE_ORDERBY_NORMAL (which must be zero).
4215 ** This routine must be called after aggregate functions have been
4216 ** located but before their arguments have been subjected to aggregate
4217 ** analysis.
4219 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4220 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
4221 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */
4222 const char *zFunc; /* Name of aggregate function pFunc */
4223 ExprList *pOrderBy;
4224 u8 sortOrder;
4226 assert( *ppMinMax==0 );
4227 assert( pFunc->op==TK_AGG_FUNCTION );
4228 if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4229 zFunc = pFunc->u.zToken;
4230 if( sqlite3StrICmp(zFunc, "min")==0 ){
4231 eRet = WHERE_ORDERBY_MIN;
4232 sortOrder = SQLITE_SO_ASC;
4233 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4234 eRet = WHERE_ORDERBY_MAX;
4235 sortOrder = SQLITE_SO_DESC;
4236 }else{
4237 return eRet;
4239 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4240 assert( pOrderBy!=0 || db->mallocFailed );
4241 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4242 return eRet;
4246 ** The select statement passed as the first argument is an aggregate query.
4247 ** The second argument is the associated aggregate-info object. This
4248 ** function tests if the SELECT is of the form:
4250 ** SELECT count(*) FROM <tbl>
4252 ** where table is a database table, not a sub-select or view. If the query
4253 ** does match this pattern, then a pointer to the Table object representing
4254 ** <tbl> is returned. Otherwise, 0 is returned.
4256 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4257 Table *pTab;
4258 Expr *pExpr;
4260 assert( !p->pGroupBy );
4262 if( p->pWhere || p->pEList->nExpr!=1
4263 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4265 return 0;
4267 pTab = p->pSrc->a[0].pTab;
4268 pExpr = p->pEList->a[0].pExpr;
4269 assert( pTab && !pTab->pSelect && pExpr );
4271 if( IsVirtual(pTab) ) return 0;
4272 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4273 if( NEVER(pAggInfo->nFunc==0) ) return 0;
4274 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4275 if( pExpr->flags&EP_Distinct ) return 0;
4277 return pTab;
4281 ** If the source-list item passed as an argument was augmented with an
4282 ** INDEXED BY clause, then try to locate the specified index. If there
4283 ** was such a clause and the named index cannot be found, return
4284 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4285 ** pFrom->pIndex and return SQLITE_OK.
4287 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4288 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4289 Table *pTab = pFrom->pTab;
4290 char *zIndexedBy = pFrom->u1.zIndexedBy;
4291 Index *pIdx;
4292 for(pIdx=pTab->pIndex;
4293 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4294 pIdx=pIdx->pNext
4296 if( !pIdx ){
4297 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4298 pParse->checkSchema = 1;
4299 return SQLITE_ERROR;
4301 pFrom->pIBIndex = pIdx;
4303 return SQLITE_OK;
4306 ** Detect compound SELECT statements that use an ORDER BY clause with
4307 ** an alternative collating sequence.
4309 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4311 ** These are rewritten as a subquery:
4313 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4314 ** ORDER BY ... COLLATE ...
4316 ** This transformation is necessary because the multiSelectOrderBy() routine
4317 ** above that generates the code for a compound SELECT with an ORDER BY clause
4318 ** uses a merge algorithm that requires the same collating sequence on the
4319 ** result columns as on the ORDER BY clause. See ticket
4320 ** http://www.sqlite.org/src/info/6709574d2a
4322 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4323 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4324 ** there are COLLATE terms in the ORDER BY.
4326 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4327 int i;
4328 Select *pNew;
4329 Select *pX;
4330 sqlite3 *db;
4331 struct ExprList_item *a;
4332 SrcList *pNewSrc;
4333 Parse *pParse;
4334 Token dummy;
4336 if( p->pPrior==0 ) return WRC_Continue;
4337 if( p->pOrderBy==0 ) return WRC_Continue;
4338 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4339 if( pX==0 ) return WRC_Continue;
4340 a = p->pOrderBy->a;
4341 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4342 if( a[i].pExpr->flags & EP_Collate ) break;
4344 if( i<0 ) return WRC_Continue;
4346 /* If we reach this point, that means the transformation is required. */
4348 pParse = pWalker->pParse;
4349 db = pParse->db;
4350 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4351 if( pNew==0 ) return WRC_Abort;
4352 memset(&dummy, 0, sizeof(dummy));
4353 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4354 if( pNewSrc==0 ) return WRC_Abort;
4355 *pNew = *p;
4356 p->pSrc = pNewSrc;
4357 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4358 p->op = TK_SELECT;
4359 p->pWhere = 0;
4360 pNew->pGroupBy = 0;
4361 pNew->pHaving = 0;
4362 pNew->pOrderBy = 0;
4363 p->pPrior = 0;
4364 p->pNext = 0;
4365 p->pWith = 0;
4366 p->selFlags &= ~SF_Compound;
4367 assert( (p->selFlags & SF_Converted)==0 );
4368 p->selFlags |= SF_Converted;
4369 assert( pNew->pPrior!=0 );
4370 pNew->pPrior->pNext = pNew;
4371 pNew->pLimit = 0;
4372 return WRC_Continue;
4376 ** Check to see if the FROM clause term pFrom has table-valued function
4377 ** arguments. If it does, leave an error message in pParse and return
4378 ** non-zero, since pFrom is not allowed to be a table-valued function.
4380 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4381 if( pFrom->fg.isTabFunc ){
4382 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4383 return 1;
4385 return 0;
4388 #ifndef SQLITE_OMIT_CTE
4390 ** Argument pWith (which may be NULL) points to a linked list of nested
4391 ** WITH contexts, from inner to outermost. If the table identified by
4392 ** FROM clause element pItem is really a common-table-expression (CTE)
4393 ** then return a pointer to the CTE definition for that table. Otherwise
4394 ** return NULL.
4396 ** If a non-NULL value is returned, set *ppContext to point to the With
4397 ** object that the returned CTE belongs to.
4399 static struct Cte *searchWith(
4400 With *pWith, /* Current innermost WITH clause */
4401 struct SrcList_item *pItem, /* FROM clause element to resolve */
4402 With **ppContext /* OUT: WITH clause return value belongs to */
4404 const char *zName;
4405 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4406 With *p;
4407 for(p=pWith; p; p=p->pOuter){
4408 int i;
4409 for(i=0; i<p->nCte; i++){
4410 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4411 *ppContext = p;
4412 return &p->a[i];
4417 return 0;
4420 /* The code generator maintains a stack of active WITH clauses
4421 ** with the inner-most WITH clause being at the top of the stack.
4423 ** This routine pushes the WITH clause passed as the second argument
4424 ** onto the top of the stack. If argument bFree is true, then this
4425 ** WITH clause will never be popped from the stack. In this case it
4426 ** should be freed along with the Parse object. In other cases, when
4427 ** bFree==0, the With object will be freed along with the SELECT
4428 ** statement with which it is associated.
4430 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4431 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4432 if( pWith ){
4433 assert( pParse->pWith!=pWith );
4434 pWith->pOuter = pParse->pWith;
4435 pParse->pWith = pWith;
4436 if( bFree ) pParse->pWithToFree = pWith;
4441 ** This function checks if argument pFrom refers to a CTE declared by
4442 ** a WITH clause on the stack currently maintained by the parser. And,
4443 ** if currently processing a CTE expression, if it is a recursive
4444 ** reference to the current CTE.
4446 ** If pFrom falls into either of the two categories above, pFrom->pTab
4447 ** and other fields are populated accordingly. The caller should check
4448 ** (pFrom->pTab!=0) to determine whether or not a successful match
4449 ** was found.
4451 ** Whether or not a match is found, SQLITE_OK is returned if no error
4452 ** occurs. If an error does occur, an error message is stored in the
4453 ** parser and some error code other than SQLITE_OK returned.
4455 static int withExpand(
4456 Walker *pWalker,
4457 struct SrcList_item *pFrom
4459 Parse *pParse = pWalker->pParse;
4460 sqlite3 *db = pParse->db;
4461 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4462 With *pWith; /* WITH clause that pCte belongs to */
4464 assert( pFrom->pTab==0 );
4466 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4467 if( pCte ){
4468 Table *pTab;
4469 ExprList *pEList;
4470 Select *pSel;
4471 Select *pLeft; /* Left-most SELECT statement */
4472 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4473 With *pSavedWith; /* Initial value of pParse->pWith */
4475 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4476 ** recursive reference to CTE pCte. Leave an error in pParse and return
4477 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4478 ** In this case, proceed. */
4479 if( pCte->zCteErr ){
4480 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4481 return SQLITE_ERROR;
4483 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4485 assert( pFrom->pTab==0 );
4486 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4487 if( pTab==0 ) return WRC_Abort;
4488 pTab->nTabRef = 1;
4489 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4490 pTab->iPKey = -1;
4491 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4492 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4493 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4494 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4495 assert( pFrom->pSelect );
4497 /* Check if this is a recursive CTE. */
4498 pSel = pFrom->pSelect;
4499 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4500 if( bMayRecursive ){
4501 int i;
4502 SrcList *pSrc = pFrom->pSelect->pSrc;
4503 for(i=0; i<pSrc->nSrc; i++){
4504 struct SrcList_item *pItem = &pSrc->a[i];
4505 if( pItem->zDatabase==0
4506 && pItem->zName!=0
4507 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4509 pItem->pTab = pTab;
4510 pItem->fg.isRecursive = 1;
4511 pTab->nTabRef++;
4512 pSel->selFlags |= SF_Recursive;
4517 /* Only one recursive reference is permitted. */
4518 if( pTab->nTabRef>2 ){
4519 sqlite3ErrorMsg(
4520 pParse, "multiple references to recursive table: %s", pCte->zName
4522 return SQLITE_ERROR;
4524 assert( pTab->nTabRef==1 ||
4525 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4527 pCte->zCteErr = "circular reference: %s";
4528 pSavedWith = pParse->pWith;
4529 pParse->pWith = pWith;
4530 if( bMayRecursive ){
4531 Select *pPrior = pSel->pPrior;
4532 assert( pPrior->pWith==0 );
4533 pPrior->pWith = pSel->pWith;
4534 sqlite3WalkSelect(pWalker, pPrior);
4535 pPrior->pWith = 0;
4536 }else{
4537 sqlite3WalkSelect(pWalker, pSel);
4539 pParse->pWith = pWith;
4541 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4542 pEList = pLeft->pEList;
4543 if( pCte->pCols ){
4544 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4545 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4546 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4548 pParse->pWith = pSavedWith;
4549 return SQLITE_ERROR;
4551 pEList = pCte->pCols;
4554 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4555 if( bMayRecursive ){
4556 if( pSel->selFlags & SF_Recursive ){
4557 pCte->zCteErr = "multiple recursive references: %s";
4558 }else{
4559 pCte->zCteErr = "recursive reference in a subquery: %s";
4561 sqlite3WalkSelect(pWalker, pSel);
4563 pCte->zCteErr = 0;
4564 pParse->pWith = pSavedWith;
4567 return SQLITE_OK;
4569 #endif
4571 #ifndef SQLITE_OMIT_CTE
4573 ** If the SELECT passed as the second argument has an associated WITH
4574 ** clause, pop it from the stack stored as part of the Parse object.
4576 ** This function is used as the xSelectCallback2() callback by
4577 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4578 ** names and other FROM clause elements.
4580 static void selectPopWith(Walker *pWalker, Select *p){
4581 Parse *pParse = pWalker->pParse;
4582 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4583 With *pWith = findRightmost(p)->pWith;
4584 if( pWith!=0 ){
4585 assert( pParse->pWith==pWith );
4586 pParse->pWith = pWith->pOuter;
4590 #else
4591 #define selectPopWith 0
4592 #endif
4595 ** The SrcList_item structure passed as the second argument represents a
4596 ** sub-query in the FROM clause of a SELECT statement. This function
4597 ** allocates and populates the SrcList_item.pTab object. If successful,
4598 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4599 ** SQLITE_NOMEM.
4601 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4602 Select *pSel = pFrom->pSelect;
4603 Table *pTab;
4605 assert( pSel );
4606 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4607 if( pTab==0 ) return SQLITE_NOMEM;
4608 pTab->nTabRef = 1;
4609 if( pFrom->zAlias ){
4610 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4611 }else{
4612 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4614 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4615 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4616 pTab->iPKey = -1;
4617 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4618 pTab->tabFlags |= TF_Ephemeral;
4620 return SQLITE_OK;
4624 ** This routine is a Walker callback for "expanding" a SELECT statement.
4625 ** "Expanding" means to do the following:
4627 ** (1) Make sure VDBE cursor numbers have been assigned to every
4628 ** element of the FROM clause.
4630 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4631 ** defines FROM clause. When views appear in the FROM clause,
4632 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4633 ** that implements the view. A copy is made of the view's SELECT
4634 ** statement so that we can freely modify or delete that statement
4635 ** without worrying about messing up the persistent representation
4636 ** of the view.
4638 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4639 ** on joins and the ON and USING clause of joins.
4641 ** (4) Scan the list of columns in the result set (pEList) looking
4642 ** for instances of the "*" operator or the TABLE.* operator.
4643 ** If found, expand each "*" to be every column in every table
4644 ** and TABLE.* to be every column in TABLE.
4647 static int selectExpander(Walker *pWalker, Select *p){
4648 Parse *pParse = pWalker->pParse;
4649 int i, j, k;
4650 SrcList *pTabList;
4651 ExprList *pEList;
4652 struct SrcList_item *pFrom;
4653 sqlite3 *db = pParse->db;
4654 Expr *pE, *pRight, *pExpr;
4655 u16 selFlags = p->selFlags;
4656 u32 elistFlags = 0;
4658 p->selFlags |= SF_Expanded;
4659 if( db->mallocFailed ){
4660 return WRC_Abort;
4662 assert( p->pSrc!=0 );
4663 if( (selFlags & SF_Expanded)!=0 ){
4664 return WRC_Prune;
4666 pTabList = p->pSrc;
4667 pEList = p->pEList;
4668 sqlite3WithPush(pParse, p->pWith, 0);
4670 /* Make sure cursor numbers have been assigned to all entries in
4671 ** the FROM clause of the SELECT statement.
4673 sqlite3SrcListAssignCursors(pParse, pTabList);
4675 /* Look up every table named in the FROM clause of the select. If
4676 ** an entry of the FROM clause is a subquery instead of a table or view,
4677 ** then create a transient table structure to describe the subquery.
4679 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4680 Table *pTab;
4681 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4682 if( pFrom->fg.isRecursive ) continue;
4683 assert( pFrom->pTab==0 );
4684 #ifndef SQLITE_OMIT_CTE
4685 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4686 if( pFrom->pTab ) {} else
4687 #endif
4688 if( pFrom->zName==0 ){
4689 #ifndef SQLITE_OMIT_SUBQUERY
4690 Select *pSel = pFrom->pSelect;
4691 /* A sub-query in the FROM clause of a SELECT */
4692 assert( pSel!=0 );
4693 assert( pFrom->pTab==0 );
4694 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4695 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4696 #endif
4697 }else{
4698 /* An ordinary table or view name in the FROM clause */
4699 assert( pFrom->pTab==0 );
4700 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4701 if( pTab==0 ) return WRC_Abort;
4702 if( pTab->nTabRef>=0xffff ){
4703 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4704 pTab->zName);
4705 pFrom->pTab = 0;
4706 return WRC_Abort;
4708 pTab->nTabRef++;
4709 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4710 return WRC_Abort;
4712 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4713 if( IsVirtual(pTab) || pTab->pSelect ){
4714 i16 nCol;
4715 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4716 assert( pFrom->pSelect==0 );
4717 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4718 nCol = pTab->nCol;
4719 pTab->nCol = -1;
4720 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4721 pTab->nCol = nCol;
4723 #endif
4726 /* Locate the index named by the INDEXED BY clause, if any. */
4727 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4728 return WRC_Abort;
4732 /* Process NATURAL keywords, and ON and USING clauses of joins.
4734 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4735 return WRC_Abort;
4738 /* For every "*" that occurs in the column list, insert the names of
4739 ** all columns in all tables. And for every TABLE.* insert the names
4740 ** of all columns in TABLE. The parser inserted a special expression
4741 ** with the TK_ASTERISK operator for each "*" that it found in the column
4742 ** list. The following code just has to locate the TK_ASTERISK
4743 ** expressions and expand each one to the list of all columns in
4744 ** all tables.
4746 ** The first loop just checks to see if there are any "*" operators
4747 ** that need expanding.
4749 for(k=0; k<pEList->nExpr; k++){
4750 pE = pEList->a[k].pExpr;
4751 if( pE->op==TK_ASTERISK ) break;
4752 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4753 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4754 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4755 elistFlags |= pE->flags;
4757 if( k<pEList->nExpr ){
4759 ** If we get here it means the result set contains one or more "*"
4760 ** operators that need to be expanded. Loop through each expression
4761 ** in the result set and expand them one by one.
4763 struct ExprList_item *a = pEList->a;
4764 ExprList *pNew = 0;
4765 int flags = pParse->db->flags;
4766 int longNames = (flags & SQLITE_FullColNames)!=0
4767 && (flags & SQLITE_ShortColNames)==0;
4769 for(k=0; k<pEList->nExpr; k++){
4770 pE = a[k].pExpr;
4771 elistFlags |= pE->flags;
4772 pRight = pE->pRight;
4773 assert( pE->op!=TK_DOT || pRight!=0 );
4774 if( pE->op!=TK_ASTERISK
4775 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4777 /* This particular expression does not need to be expanded.
4779 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4780 if( pNew ){
4781 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4782 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4783 a[k].zName = 0;
4784 a[k].zSpan = 0;
4786 a[k].pExpr = 0;
4787 }else{
4788 /* This expression is a "*" or a "TABLE.*" and needs to be
4789 ** expanded. */
4790 int tableSeen = 0; /* Set to 1 when TABLE matches */
4791 char *zTName = 0; /* text of name of TABLE */
4792 if( pE->op==TK_DOT ){
4793 assert( pE->pLeft!=0 );
4794 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4795 zTName = pE->pLeft->u.zToken;
4797 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4798 Table *pTab = pFrom->pTab;
4799 Select *pSub = pFrom->pSelect;
4800 char *zTabName = pFrom->zAlias;
4801 const char *zSchemaName = 0;
4802 int iDb;
4803 if( zTabName==0 ){
4804 zTabName = pTab->zName;
4806 if( db->mallocFailed ) break;
4807 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4808 pSub = 0;
4809 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4810 continue;
4812 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4813 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4815 for(j=0; j<pTab->nCol; j++){
4816 char *zName = pTab->aCol[j].zName;
4817 char *zColname; /* The computed column name */
4818 char *zToFree; /* Malloced string that needs to be freed */
4819 Token sColname; /* Computed column name as a token */
4821 assert( zName );
4822 if( zTName && pSub
4823 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4825 continue;
4828 /* If a column is marked as 'hidden', omit it from the expanded
4829 ** result-set list unless the SELECT has the SF_IncludeHidden
4830 ** bit set.
4832 if( (p->selFlags & SF_IncludeHidden)==0
4833 && IsHiddenColumn(&pTab->aCol[j])
4835 continue;
4837 tableSeen = 1;
4839 if( i>0 && zTName==0 ){
4840 if( (pFrom->fg.jointype & JT_NATURAL)!=0
4841 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4843 /* In a NATURAL join, omit the join columns from the
4844 ** table to the right of the join */
4845 continue;
4847 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4848 /* In a join with a USING clause, omit columns in the
4849 ** using clause from the table on the right. */
4850 continue;
4853 pRight = sqlite3Expr(db, TK_ID, zName);
4854 zColname = zName;
4855 zToFree = 0;
4856 if( longNames || pTabList->nSrc>1 ){
4857 Expr *pLeft;
4858 pLeft = sqlite3Expr(db, TK_ID, zTabName);
4859 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4860 if( zSchemaName ){
4861 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4862 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4864 if( longNames ){
4865 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4866 zToFree = zColname;
4868 }else{
4869 pExpr = pRight;
4871 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4872 sqlite3TokenInit(&sColname, zColname);
4873 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4874 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4875 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4876 if( pSub ){
4877 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4878 testcase( pX->zSpan==0 );
4879 }else{
4880 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4881 zSchemaName, zTabName, zColname);
4882 testcase( pX->zSpan==0 );
4884 pX->bSpanIsTab = 1;
4886 sqlite3DbFree(db, zToFree);
4889 if( !tableSeen ){
4890 if( zTName ){
4891 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4892 }else{
4893 sqlite3ErrorMsg(pParse, "no tables specified");
4898 sqlite3ExprListDelete(db, pEList);
4899 p->pEList = pNew;
4901 if( p->pEList ){
4902 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4903 sqlite3ErrorMsg(pParse, "too many columns in result set");
4904 return WRC_Abort;
4906 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4907 p->selFlags |= SF_ComplexResult;
4910 return WRC_Continue;
4914 ** No-op routine for the parse-tree walker.
4916 ** When this routine is the Walker.xExprCallback then expression trees
4917 ** are walked without any actions being taken at each node. Presumably,
4918 ** when this routine is used for Walker.xExprCallback then
4919 ** Walker.xSelectCallback is set to do something useful for every
4920 ** subquery in the parser tree.
4922 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4923 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4924 return WRC_Continue;
4928 ** No-op routine for the parse-tree walker for SELECT statements.
4929 ** subquery in the parser tree.
4931 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4932 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4933 return WRC_Continue;
4936 #if SQLITE_DEBUG
4938 ** Always assert. This xSelectCallback2 implementation proves that the
4939 ** xSelectCallback2 is never invoked.
4941 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4942 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4943 assert( 0 );
4945 #endif
4947 ** This routine "expands" a SELECT statement and all of its subqueries.
4948 ** For additional information on what it means to "expand" a SELECT
4949 ** statement, see the comment on the selectExpand worker callback above.
4951 ** Expanding a SELECT statement is the first step in processing a
4952 ** SELECT statement. The SELECT statement must be expanded before
4953 ** name resolution is performed.
4955 ** If anything goes wrong, an error message is written into pParse.
4956 ** The calling function can detect the problem by looking at pParse->nErr
4957 ** and/or pParse->db->mallocFailed.
4959 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4960 Walker w;
4961 w.xExprCallback = sqlite3ExprWalkNoop;
4962 w.pParse = pParse;
4963 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4964 w.xSelectCallback = convertCompoundSelectToSubquery;
4965 w.xSelectCallback2 = 0;
4966 sqlite3WalkSelect(&w, pSelect);
4968 w.xSelectCallback = selectExpander;
4969 w.xSelectCallback2 = selectPopWith;
4970 sqlite3WalkSelect(&w, pSelect);
4974 #ifndef SQLITE_OMIT_SUBQUERY
4976 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4977 ** interface.
4979 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4980 ** information to the Table structure that represents the result set
4981 ** of that subquery.
4983 ** The Table structure that represents the result set was constructed
4984 ** by selectExpander() but the type and collation information was omitted
4985 ** at that point because identifiers had not yet been resolved. This
4986 ** routine is called after identifier resolution.
4988 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4989 Parse *pParse;
4990 int i;
4991 SrcList *pTabList;
4992 struct SrcList_item *pFrom;
4994 assert( p->selFlags & SF_Resolved );
4995 if( p->selFlags & SF_HasTypeInfo ) return;
4996 p->selFlags |= SF_HasTypeInfo;
4997 pParse = pWalker->pParse;
4998 pTabList = p->pSrc;
4999 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5000 Table *pTab = pFrom->pTab;
5001 assert( pTab!=0 );
5002 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5003 /* A sub-query in the FROM clause of a SELECT */
5004 Select *pSel = pFrom->pSelect;
5005 if( pSel ){
5006 while( pSel->pPrior ) pSel = pSel->pPrior;
5007 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
5012 #endif
5016 ** This routine adds datatype and collating sequence information to
5017 ** the Table structures of all FROM-clause subqueries in a
5018 ** SELECT statement.
5020 ** Use this routine after name resolution.
5022 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5023 #ifndef SQLITE_OMIT_SUBQUERY
5024 Walker w;
5025 w.xSelectCallback = sqlite3SelectWalkNoop;
5026 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5027 w.xExprCallback = sqlite3ExprWalkNoop;
5028 w.pParse = pParse;
5029 sqlite3WalkSelect(&w, pSelect);
5030 #endif
5035 ** This routine sets up a SELECT statement for processing. The
5036 ** following is accomplished:
5038 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
5039 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
5040 ** * ON and USING clauses are shifted into WHERE statements
5041 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
5042 ** * Identifiers in expression are matched to tables.
5044 ** This routine acts recursively on all subqueries within the SELECT.
5046 void sqlite3SelectPrep(
5047 Parse *pParse, /* The parser context */
5048 Select *p, /* The SELECT statement being coded. */
5049 NameContext *pOuterNC /* Name context for container */
5051 assert( p!=0 || pParse->db->mallocFailed );
5052 if( pParse->db->mallocFailed ) return;
5053 if( p->selFlags & SF_HasTypeInfo ) return;
5054 sqlite3SelectExpand(pParse, p);
5055 if( pParse->nErr || pParse->db->mallocFailed ) return;
5056 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5057 if( pParse->nErr || pParse->db->mallocFailed ) return;
5058 sqlite3SelectAddTypeInfo(pParse, p);
5062 ** Reset the aggregate accumulator.
5064 ** The aggregate accumulator is a set of memory cells that hold
5065 ** intermediate results while calculating an aggregate. This
5066 ** routine generates code that stores NULLs in all of those memory
5067 ** cells.
5069 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5070 Vdbe *v = pParse->pVdbe;
5071 int i;
5072 struct AggInfo_func *pFunc;
5073 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5074 if( nReg==0 ) return;
5075 #ifdef SQLITE_DEBUG
5076 /* Verify that all AggInfo registers are within the range specified by
5077 ** AggInfo.mnReg..AggInfo.mxReg */
5078 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5079 for(i=0; i<pAggInfo->nColumn; i++){
5080 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5081 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5083 for(i=0; i<pAggInfo->nFunc; i++){
5084 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5085 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5087 #endif
5088 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5089 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5090 if( pFunc->iDistinct>=0 ){
5091 Expr *pE = pFunc->pExpr;
5092 assert( !ExprHasProperty(pE, EP_xIsSelect) );
5093 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5094 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5095 "argument");
5096 pFunc->iDistinct = -1;
5097 }else{
5098 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5099 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5100 (char*)pKeyInfo, P4_KEYINFO);
5107 ** Invoke the OP_AggFinalize opcode for every aggregate function
5108 ** in the AggInfo structure.
5110 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5111 Vdbe *v = pParse->pVdbe;
5112 int i;
5113 struct AggInfo_func *pF;
5114 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5115 ExprList *pList = pF->pExpr->x.pList;
5116 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5117 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5118 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5124 ** Update the accumulator memory cells for an aggregate based on
5125 ** the current cursor position.
5127 ** If regAcc is non-zero and there are no min() or max() aggregates
5128 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5129 ** registers i register regAcc contains 0. The caller will take care
5130 ** of setting and clearing regAcc.
5132 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5133 Vdbe *v = pParse->pVdbe;
5134 int i;
5135 int regHit = 0;
5136 int addrHitTest = 0;
5137 struct AggInfo_func *pF;
5138 struct AggInfo_col *pC;
5140 pAggInfo->directMode = 1;
5141 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5142 int nArg;
5143 int addrNext = 0;
5144 int regAgg;
5145 ExprList *pList = pF->pExpr->x.pList;
5146 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5147 if( pList ){
5148 nArg = pList->nExpr;
5149 regAgg = sqlite3GetTempRange(pParse, nArg);
5150 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5151 }else{
5152 nArg = 0;
5153 regAgg = 0;
5155 if( pF->iDistinct>=0 ){
5156 addrNext = sqlite3VdbeMakeLabel(v);
5157 testcase( nArg==0 ); /* Error condition */
5158 testcase( nArg>1 ); /* Also an error */
5159 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5161 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5162 CollSeq *pColl = 0;
5163 struct ExprList_item *pItem;
5164 int j;
5165 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
5166 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5167 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5169 if( !pColl ){
5170 pColl = pParse->db->pDfltColl;
5172 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5173 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5175 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5176 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5177 sqlite3VdbeChangeP5(v, (u8)nArg);
5178 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
5179 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5180 if( addrNext ){
5181 sqlite3VdbeResolveLabel(v, addrNext);
5182 sqlite3ExprCacheClear(pParse);
5186 /* Before populating the accumulator registers, clear the column cache.
5187 ** Otherwise, if any of the required column values are already present
5188 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
5189 ** to pC->iMem. But by the time the value is used, the original register
5190 ** may have been used, invalidating the underlying buffer holding the
5191 ** text or blob value. See ticket [883034dcb5].
5193 ** Another solution would be to change the OP_SCopy used to copy cached
5194 ** values to an OP_Copy.
5196 if( regHit==0 && pAggInfo->nAccumulator ){
5197 regHit = regAcc;
5199 if( regHit ){
5200 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5202 sqlite3ExprCacheClear(pParse);
5203 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5204 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5206 pAggInfo->directMode = 0;
5207 sqlite3ExprCacheClear(pParse);
5208 if( addrHitTest ){
5209 sqlite3VdbeJumpHere(v, addrHitTest);
5214 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5215 ** count(*) query ("SELECT count(*) FROM pTab").
5217 #ifndef SQLITE_OMIT_EXPLAIN
5218 static void explainSimpleCount(
5219 Parse *pParse, /* Parse context */
5220 Table *pTab, /* Table being queried */
5221 Index *pIdx /* Index used to optimize scan, or NULL */
5223 if( pParse->explain==2 ){
5224 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5225 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5226 pTab->zName,
5227 bCover ? " USING COVERING INDEX " : "",
5228 bCover ? pIdx->zName : ""
5232 #else
5233 # define explainSimpleCount(a,b,c)
5234 #endif
5237 ** sqlite3WalkExpr() callback used by havingToWhere().
5239 ** If the node passed to the callback is a TK_AND node, return
5240 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5242 ** Otherwise, return WRC_Prune. In this case, also check if the
5243 ** sub-expression matches the criteria for being moved to the WHERE
5244 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5245 ** within the HAVING expression with a constant "1".
5247 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5248 if( pExpr->op!=TK_AND ){
5249 Select *pS = pWalker->u.pSelect;
5250 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5251 sqlite3 *db = pWalker->pParse->db;
5252 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5253 if( pNew ){
5254 Expr *pWhere = pS->pWhere;
5255 SWAP(Expr, *pNew, *pExpr);
5256 pNew = sqlite3ExprAnd(db, pWhere, pNew);
5257 pS->pWhere = pNew;
5258 pWalker->eCode = 1;
5261 return WRC_Prune;
5263 return WRC_Continue;
5267 ** Transfer eligible terms from the HAVING clause of a query, which is
5268 ** processed after grouping, to the WHERE clause, which is processed before
5269 ** grouping. For example, the query:
5271 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5273 ** can be rewritten as:
5275 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5277 ** A term of the HAVING expression is eligible for transfer if it consists
5278 ** entirely of constants and expressions that are also GROUP BY terms that
5279 ** use the "BINARY" collation sequence.
5281 static void havingToWhere(Parse *pParse, Select *p){
5282 Walker sWalker;
5283 memset(&sWalker, 0, sizeof(sWalker));
5284 sWalker.pParse = pParse;
5285 sWalker.xExprCallback = havingToWhereExprCb;
5286 sWalker.u.pSelect = p;
5287 sqlite3WalkExpr(&sWalker, p->pHaving);
5288 #if SELECTTRACE_ENABLED
5289 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5290 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5291 sqlite3TreeViewSelect(0, p, 0);
5293 #endif
5297 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5298 ** If it is, then return the SrcList_item for the prior view. If it is not,
5299 ** then return 0.
5301 static struct SrcList_item *isSelfJoinView(
5302 SrcList *pTabList, /* Search for self-joins in this FROM clause */
5303 struct SrcList_item *pThis /* Search for prior reference to this subquery */
5305 struct SrcList_item *pItem;
5306 for(pItem = pTabList->a; pItem<pThis; pItem++){
5307 if( pItem->pSelect==0 ) continue;
5308 if( pItem->fg.viaCoroutine ) continue;
5309 if( pItem->zName==0 ) continue;
5310 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5311 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5312 if( sqlite3ExprCompare(0,
5313 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5315 /* The view was modified by some other optimization such as
5316 ** pushDownWhereTerms() */
5317 continue;
5319 return pItem;
5321 return 0;
5324 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5326 ** Attempt to transform a query of the form
5328 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5330 ** Into this:
5332 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5334 ** The transformation only works if all of the following are true:
5336 ** * The subquery is a UNION ALL of two or more terms
5337 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5338 ** * The outer query is a simple count(*)
5340 ** Return TRUE if the optimization is undertaken.
5342 static int countOfViewOptimization(Parse *pParse, Select *p){
5343 Select *pSub, *pPrior;
5344 Expr *pExpr;
5345 Expr *pCount;
5346 sqlite3 *db;
5347 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
5348 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
5349 pExpr = p->pEList->a[0].pExpr;
5350 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
5351 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
5352 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
5353 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
5354 pSub = p->pSrc->a[0].pSelect;
5355 if( pSub==0 ) return 0; /* The FROM is a subquery */
5356 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
5358 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
5359 if( pSub->pWhere ) return 0; /* No WHERE clause */
5360 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
5361 pSub = pSub->pPrior; /* Repeat over compound */
5362 }while( pSub );
5364 /* If we reach this point then it is OK to perform the transformation */
5366 db = pParse->db;
5367 pCount = pExpr;
5368 pExpr = 0;
5369 pSub = p->pSrc->a[0].pSelect;
5370 p->pSrc->a[0].pSelect = 0;
5371 sqlite3SrcListDelete(db, p->pSrc);
5372 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5373 while( pSub ){
5374 Expr *pTerm;
5375 pPrior = pSub->pPrior;
5376 pSub->pPrior = 0;
5377 pSub->pNext = 0;
5378 pSub->selFlags |= SF_Aggregate;
5379 pSub->selFlags &= ~SF_Compound;
5380 pSub->nSelectRow = 0;
5381 sqlite3ExprListDelete(db, pSub->pEList);
5382 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5383 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5384 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5385 sqlite3PExprAddSelect(pParse, pTerm, pSub);
5386 if( pExpr==0 ){
5387 pExpr = pTerm;
5388 }else{
5389 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5391 pSub = pPrior;
5393 p->pEList->a[0].pExpr = pExpr;
5394 p->selFlags &= ~SF_Aggregate;
5396 #if SELECTTRACE_ENABLED
5397 if( sqlite3SelectTrace & 0x400 ){
5398 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5399 sqlite3TreeViewSelect(0, p, 0);
5401 #endif
5402 return 1;
5404 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5407 ** Generate code for the SELECT statement given in the p argument.
5409 ** The results are returned according to the SelectDest structure.
5410 ** See comments in sqliteInt.h for further information.
5412 ** This routine returns the number of errors. If any errors are
5413 ** encountered, then an appropriate error message is left in
5414 ** pParse->zErrMsg.
5416 ** This routine does NOT free the Select structure passed in. The
5417 ** calling function needs to do that.
5419 int sqlite3Select(
5420 Parse *pParse, /* The parser context */
5421 Select *p, /* The SELECT statement being coded. */
5422 SelectDest *pDest /* What to do with the query results */
5424 int i, j; /* Loop counters */
5425 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
5426 Vdbe *v; /* The virtual machine under construction */
5427 int isAgg; /* True for select lists like "count(*)" */
5428 ExprList *pEList = 0; /* List of columns to extract. */
5429 SrcList *pTabList; /* List of tables to select from */
5430 Expr *pWhere; /* The WHERE clause. May be NULL */
5431 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
5432 Expr *pHaving; /* The HAVING clause. May be NULL */
5433 int rc = 1; /* Value to return from this function */
5434 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5435 SortCtx sSort; /* Info on how to code the ORDER BY clause */
5436 AggInfo sAggInfo; /* Information used by aggregate queries */
5437 int iEnd; /* Address of the end of the query */
5438 sqlite3 *db; /* The database connection */
5439 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
5440 u8 minMaxFlag; /* Flag for min/max queries */
5442 db = pParse->db;
5443 v = sqlite3GetVdbe(pParse);
5444 if( p==0 || db->mallocFailed || pParse->nErr ){
5445 return 1;
5447 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5448 memset(&sAggInfo, 0, sizeof(sAggInfo));
5449 #if SELECTTRACE_ENABLED
5450 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5451 if( sqlite3SelectTrace & 0x100 ){
5452 sqlite3TreeViewSelect(0, p, 0);
5454 #endif
5456 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5457 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5458 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5459 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5460 if( IgnorableOrderby(pDest) ){
5461 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5462 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5463 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
5464 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5465 /* If ORDER BY makes no difference in the output then neither does
5466 ** DISTINCT so it can be removed too. */
5467 sqlite3ExprListDelete(db, p->pOrderBy);
5468 p->pOrderBy = 0;
5469 p->selFlags &= ~SF_Distinct;
5471 sqlite3SelectPrep(pParse, p, 0);
5472 if( pParse->nErr || db->mallocFailed ){
5473 goto select_end;
5475 assert( p->pEList!=0 );
5476 #if SELECTTRACE_ENABLED
5477 if( sqlite3SelectTrace & 0x104 ){
5478 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5479 sqlite3TreeViewSelect(0, p, 0);
5481 #endif
5483 if( pDest->eDest==SRT_Output ){
5484 generateColumnNames(pParse, p);
5487 #ifndef SQLITE_OMIT_WINDOWFUNC
5488 if( sqlite3WindowRewrite(pParse, p) ){
5489 goto select_end;
5491 #if SELECTTRACE_ENABLED
5492 if( sqlite3SelectTrace & 0x108 ){
5493 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5494 sqlite3TreeViewSelect(0, p, 0);
5496 #endif
5497 #endif /* SQLITE_OMIT_WINDOWFUNC */
5498 pTabList = p->pSrc;
5499 isAgg = (p->selFlags & SF_Aggregate)!=0;
5500 memset(&sSort, 0, sizeof(sSort));
5501 sSort.pOrderBy = p->pOrderBy;
5503 /* Try to various optimizations (flattening subqueries, and strength
5504 ** reduction of join operators) in the FROM clause up into the main query
5506 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5507 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5508 struct SrcList_item *pItem = &pTabList->a[i];
5509 Select *pSub = pItem->pSelect;
5510 Table *pTab = pItem->pTab;
5512 /* Convert LEFT JOIN into JOIN if there are terms of the right table
5513 ** of the LEFT JOIN used in the WHERE clause.
5515 if( (pItem->fg.jointype & JT_LEFT)!=0
5516 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5517 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5519 SELECTTRACE(0x100,pParse,p,
5520 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5521 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5522 unsetJoinExpr(p->pWhere, pItem->iCursor);
5525 /* No futher action if this term of the FROM clause is no a subquery */
5526 if( pSub==0 ) continue;
5528 /* Catch mismatch in the declared columns of a view and the number of
5529 ** columns in the SELECT on the RHS */
5530 if( pTab->nCol!=pSub->pEList->nExpr ){
5531 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5532 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5533 goto select_end;
5536 /* Do not try to flatten an aggregate subquery.
5538 ** Flattening an aggregate subquery is only possible if the outer query
5539 ** is not a join. But if the outer query is not a join, then the subquery
5540 ** will be implemented as a co-routine and there is no advantage to
5541 ** flattening in that case.
5543 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5544 assert( pSub->pGroupBy==0 );
5546 /* If the outer query contains a "complex" result set (that is,
5547 ** if the result set of the outer query uses functions or subqueries)
5548 ** and if the subquery contains an ORDER BY clause and if
5549 ** it will be implemented as a co-routine, then do not flatten. This
5550 ** restriction allows SQL constructs like this:
5552 ** SELECT expensive_function(x)
5553 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5555 ** The expensive_function() is only computed on the 10 rows that
5556 ** are output, rather than every row of the table.
5558 ** The requirement that the outer query have a complex result set
5559 ** means that flattening does occur on simpler SQL constraints without
5560 ** the expensive_function() like:
5562 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5564 if( pSub->pOrderBy!=0
5565 && i==0
5566 && (p->selFlags & SF_ComplexResult)!=0
5567 && (pTabList->nSrc==1
5568 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5570 continue;
5573 if( flattenSubquery(pParse, p, i, isAgg) ){
5574 /* This subquery can be absorbed into its parent. */
5575 i = -1;
5577 pTabList = p->pSrc;
5578 if( db->mallocFailed ) goto select_end;
5579 if( !IgnorableOrderby(pDest) ){
5580 sSort.pOrderBy = p->pOrderBy;
5583 #endif
5585 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5586 /* Handle compound SELECT statements using the separate multiSelect()
5587 ** procedure.
5589 if( p->pPrior ){
5590 rc = multiSelect(pParse, p, pDest);
5591 #if SELECTTRACE_ENABLED
5592 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5593 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5594 sqlite3TreeViewSelect(0, p, 0);
5596 #endif
5597 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5598 return rc;
5600 #endif
5602 /* For each term in the FROM clause, do two things:
5603 ** (1) Authorized unreferenced tables
5604 ** (2) Generate code for all sub-queries
5606 for(i=0; i<pTabList->nSrc; i++){
5607 struct SrcList_item *pItem = &pTabList->a[i];
5608 SelectDest dest;
5609 Select *pSub;
5610 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5611 const char *zSavedAuthContext;
5612 #endif
5614 /* Issue SQLITE_READ authorizations with a fake column name for any
5615 ** tables that are referenced but from which no values are extracted.
5616 ** Examples of where these kinds of null SQLITE_READ authorizations
5617 ** would occur:
5619 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5620 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5622 ** The fake column name is an empty string. It is possible for a table to
5623 ** have a column named by the empty string, in which case there is no way to
5624 ** distinguish between an unreferenced table and an actual reference to the
5625 ** "" column. The original design was for the fake column name to be a NULL,
5626 ** which would be unambiguous. But legacy authorization callbacks might
5627 ** assume the column name is non-NULL and segfault. The use of an empty
5628 ** string for the fake column name seems safer.
5630 if( pItem->colUsed==0 ){
5631 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5634 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5635 /* Generate code for all sub-queries in the FROM clause
5637 pSub = pItem->pSelect;
5638 if( pSub==0 ) continue;
5640 /* Sometimes the code for a subquery will be generated more than
5641 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5642 ** for example. In that case, do not regenerate the code to manifest
5643 ** a view or the co-routine to implement a view. The first instance
5644 ** is sufficient, though the subroutine to manifest the view does need
5645 ** to be invoked again. */
5646 if( pItem->addrFillSub ){
5647 if( pItem->fg.viaCoroutine==0 ){
5648 /* The subroutine that manifests the view might be a one-time routine,
5649 ** or it might need to be rerun on each iteration because it
5650 ** encodes a correlated subquery. */
5651 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5652 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5654 continue;
5657 /* Increment Parse.nHeight by the height of the largest expression
5658 ** tree referred to by this, the parent select. The child select
5659 ** may contain expression trees of at most
5660 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5661 ** more conservative than necessary, but much easier than enforcing
5662 ** an exact limit.
5664 pParse->nHeight += sqlite3SelectExprHeight(p);
5666 /* Make copies of constant WHERE-clause terms in the outer query down
5667 ** inside the subquery. This can help the subquery to run more efficiently.
5669 if( OptimizationEnabled(db, SQLITE_PushDown)
5670 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5671 (pItem->fg.jointype & JT_OUTER)!=0)
5673 #if SELECTTRACE_ENABLED
5674 if( sqlite3SelectTrace & 0x100 ){
5675 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5676 sqlite3TreeViewSelect(0, p, 0);
5678 #endif
5679 }else{
5680 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5683 zSavedAuthContext = pParse->zAuthContext;
5684 pParse->zAuthContext = pItem->zName;
5686 /* Generate code to implement the subquery
5688 ** The subquery is implemented as a co-routine if the subquery is
5689 ** guaranteed to be the outer loop (so that it does not need to be
5690 ** computed more than once)
5692 ** TODO: Are there other reasons beside (1) to use a co-routine
5693 ** implementation?
5695 if( i==0
5696 && (pTabList->nSrc==1
5697 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
5699 /* Implement a co-routine that will return a single row of the result
5700 ** set on each invocation.
5702 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5704 pItem->regReturn = ++pParse->nMem;
5705 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5706 VdbeComment((v, "%s", pItem->pTab->zName));
5707 pItem->addrFillSub = addrTop;
5708 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5709 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
5710 sqlite3Select(pParse, pSub, &dest);
5711 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5712 pItem->fg.viaCoroutine = 1;
5713 pItem->regResult = dest.iSdst;
5714 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5715 sqlite3VdbeJumpHere(v, addrTop-1);
5716 sqlite3ClearTempRegCache(pParse);
5717 }else{
5718 /* Generate a subroutine that will fill an ephemeral table with
5719 ** the content of this subquery. pItem->addrFillSub will point
5720 ** to the address of the generated subroutine. pItem->regReturn
5721 ** is a register allocated to hold the subroutine return address
5723 int topAddr;
5724 int onceAddr = 0;
5725 int retAddr;
5726 struct SrcList_item *pPrior;
5728 assert( pItem->addrFillSub==0 );
5729 pItem->regReturn = ++pParse->nMem;
5730 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5731 pItem->addrFillSub = topAddr+1;
5732 if( pItem->fg.isCorrelated==0 ){
5733 /* If the subquery is not correlated and if we are not inside of
5734 ** a trigger, then we only need to compute the value of the subquery
5735 ** once. */
5736 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5737 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5738 }else{
5739 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5741 pPrior = isSelfJoinView(pTabList, pItem);
5742 if( pPrior ){
5743 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5744 assert( pPrior->pSelect!=0 );
5745 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5746 }else{
5747 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5748 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
5749 sqlite3Select(pParse, pSub, &dest);
5751 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5752 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5753 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5754 VdbeComment((v, "end %s", pItem->pTab->zName));
5755 sqlite3VdbeChangeP1(v, topAddr, retAddr);
5756 sqlite3ClearTempRegCache(pParse);
5758 if( db->mallocFailed ) goto select_end;
5759 pParse->nHeight -= sqlite3SelectExprHeight(p);
5760 pParse->zAuthContext = zSavedAuthContext;
5761 #endif
5764 /* Various elements of the SELECT copied into local variables for
5765 ** convenience */
5766 pEList = p->pEList;
5767 pWhere = p->pWhere;
5768 pGroupBy = p->pGroupBy;
5769 pHaving = p->pHaving;
5770 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5772 #if SELECTTRACE_ENABLED
5773 if( sqlite3SelectTrace & 0x400 ){
5774 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5775 sqlite3TreeViewSelect(0, p, 0);
5777 #endif
5779 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5780 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5781 && countOfViewOptimization(pParse, p)
5783 if( db->mallocFailed ) goto select_end;
5784 pEList = p->pEList;
5785 pTabList = p->pSrc;
5787 #endif
5789 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5790 ** if the select-list is the same as the ORDER BY list, then this query
5791 ** can be rewritten as a GROUP BY. In other words, this:
5793 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5795 ** is transformed to:
5797 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5799 ** The second form is preferred as a single index (or temp-table) may be
5800 ** used for both the ORDER BY and DISTINCT processing. As originally
5801 ** written the query must use a temp-table for at least one of the ORDER
5802 ** BY and DISTINCT, and an index or separate temp-table for the other.
5804 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5805 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5807 p->selFlags &= ~SF_Distinct;
5808 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5809 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5810 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5811 ** original setting of the SF_Distinct flag, not the current setting */
5812 assert( sDistinct.isTnct );
5814 #if SELECTTRACE_ENABLED
5815 if( sqlite3SelectTrace & 0x400 ){
5816 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5817 sqlite3TreeViewSelect(0, p, 0);
5819 #endif
5822 /* If there is an ORDER BY clause, then create an ephemeral index to
5823 ** do the sorting. But this sorting ephemeral index might end up
5824 ** being unused if the data can be extracted in pre-sorted order.
5825 ** If that is the case, then the OP_OpenEphemeral instruction will be
5826 ** changed to an OP_Noop once we figure out that the sorting index is
5827 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5828 ** that change.
5830 if( sSort.pOrderBy ){
5831 KeyInfo *pKeyInfo;
5832 pKeyInfo = sqlite3KeyInfoFromExprList(
5833 pParse, sSort.pOrderBy, 0, pEList->nExpr);
5834 sSort.iECursor = pParse->nTab++;
5835 sSort.addrSortIndex =
5836 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5837 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5838 (char*)pKeyInfo, P4_KEYINFO
5840 }else{
5841 sSort.addrSortIndex = -1;
5844 /* If the output is destined for a temporary table, open that table.
5846 if( pDest->eDest==SRT_EphemTab ){
5847 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5850 /* Set the limiter.
5852 iEnd = sqlite3VdbeMakeLabel(v);
5853 if( (p->selFlags & SF_FixedLimit)==0 ){
5854 p->nSelectRow = 320; /* 4 billion rows */
5856 computeLimitRegisters(pParse, p, iEnd);
5857 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5858 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5859 sSort.sortFlags |= SORTFLAG_UseSorter;
5862 /* Open an ephemeral index to use for the distinct set.
5864 if( p->selFlags & SF_Distinct ){
5865 sDistinct.tabTnct = pParse->nTab++;
5866 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5867 sDistinct.tabTnct, 0, 0,
5868 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
5869 P4_KEYINFO);
5870 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5871 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5872 }else{
5873 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5876 if( !isAgg && pGroupBy==0 ){
5877 /* No aggregate functions and no GROUP BY clause */
5878 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
5879 | (p->selFlags & SF_FixedLimit);
5880 #ifndef SQLITE_OMIT_WINDOWFUNC
5881 Window *pWin = p->pWin; /* Master window object (or NULL) */
5882 if( pWin ){
5883 sqlite3WindowCodeInit(pParse, pWin);
5885 #endif
5886 assert( WHERE_USE_LIMIT==SF_FixedLimit );
5889 /* Begin the database scan. */
5890 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5891 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5892 p->pEList, wctrlFlags, p->nSelectRow);
5893 if( pWInfo==0 ) goto select_end;
5894 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5895 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5897 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5898 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5900 if( sSort.pOrderBy ){
5901 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5902 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5903 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5904 sSort.pOrderBy = 0;
5908 /* If sorting index that was created by a prior OP_OpenEphemeral
5909 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5910 ** into an OP_Noop.
5912 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5913 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5916 assert( p->pEList==pEList );
5917 #ifndef SQLITE_OMIT_WINDOWFUNC
5918 if( pWin ){
5919 int addrGosub = sqlite3VdbeMakeLabel(v);
5920 int iCont = sqlite3VdbeMakeLabel(v);
5921 int iBreak = sqlite3VdbeMakeLabel(v);
5922 int regGosub = ++pParse->nMem;
5924 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
5926 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
5927 sqlite3VdbeResolveLabel(v, addrGosub);
5928 VdbeNoopComment((v, "SELECT inner-loop subroutine"));
5929 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
5930 sqlite3VdbeResolveLabel(v, iCont);
5931 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
5932 VdbeComment((v, "end inner-loop subroutine"));
5933 sqlite3VdbeResolveLabel(v, iBreak);
5934 }else
5935 #endif /* SQLITE_OMIT_WINDOWFUNC */
5937 /* Use the standard inner loop. */
5938 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5939 sqlite3WhereContinueLabel(pWInfo),
5940 sqlite3WhereBreakLabel(pWInfo));
5942 /* End the database scan loop.
5944 sqlite3WhereEnd(pWInfo);
5946 }else{
5947 /* This case when there exist aggregate functions or a GROUP BY clause
5948 ** or both */
5949 NameContext sNC; /* Name context for processing aggregate information */
5950 int iAMem; /* First Mem address for storing current GROUP BY */
5951 int iBMem; /* First Mem address for previous GROUP BY */
5952 int iUseFlag; /* Mem address holding flag indicating that at least
5953 ** one row of the input to the aggregator has been
5954 ** processed */
5955 int iAbortFlag; /* Mem address which causes query abort if positive */
5956 int groupBySort; /* Rows come from source in GROUP BY order */
5957 int addrEnd; /* End of processing for this SELECT */
5958 int sortPTab = 0; /* Pseudotable used to decode sorting results */
5959 int sortOut = 0; /* Output register from the sorter */
5960 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5962 /* Remove any and all aliases between the result set and the
5963 ** GROUP BY clause.
5965 if( pGroupBy ){
5966 int k; /* Loop counter */
5967 struct ExprList_item *pItem; /* For looping over expression in a list */
5969 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5970 pItem->u.x.iAlias = 0;
5972 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5973 pItem->u.x.iAlias = 0;
5975 assert( 66==sqlite3LogEst(100) );
5976 if( p->nSelectRow>66 ) p->nSelectRow = 66;
5977 }else{
5978 assert( 0==sqlite3LogEst(1) );
5979 p->nSelectRow = 0;
5982 /* If there is both a GROUP BY and an ORDER BY clause and they are
5983 ** identical, then it may be possible to disable the ORDER BY clause
5984 ** on the grounds that the GROUP BY will cause elements to come out
5985 ** in the correct order. It also may not - the GROUP BY might use a
5986 ** database index that causes rows to be grouped together as required
5987 ** but not actually sorted. Either way, record the fact that the
5988 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5989 ** variable. */
5990 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5991 orderByGrp = 1;
5994 /* Create a label to jump to when we want to abort the query */
5995 addrEnd = sqlite3VdbeMakeLabel(v);
5997 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5998 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5999 ** SELECT statement.
6001 memset(&sNC, 0, sizeof(sNC));
6002 sNC.pParse = pParse;
6003 sNC.pSrcList = pTabList;
6004 sNC.uNC.pAggInfo = &sAggInfo;
6005 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6006 sAggInfo.mnReg = pParse->nMem+1;
6007 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6008 sAggInfo.pGroupBy = pGroupBy;
6009 sqlite3ExprAnalyzeAggList(&sNC, pEList);
6010 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6011 if( pHaving ){
6012 if( pGroupBy ){
6013 assert( pWhere==p->pWhere );
6014 assert( pHaving==p->pHaving );
6015 assert( pGroupBy==p->pGroupBy );
6016 havingToWhere(pParse, p);
6017 pWhere = p->pWhere;
6019 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6021 sAggInfo.nAccumulator = sAggInfo.nColumn;
6022 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6023 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6024 }else{
6025 minMaxFlag = WHERE_ORDERBY_NORMAL;
6027 for(i=0; i<sAggInfo.nFunc; i++){
6028 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
6029 sNC.ncFlags |= NC_InAggFunc;
6030 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
6031 sNC.ncFlags &= ~NC_InAggFunc;
6033 sAggInfo.mxReg = pParse->nMem;
6034 if( db->mallocFailed ) goto select_end;
6035 #if SELECTTRACE_ENABLED
6036 if( sqlite3SelectTrace & 0x400 ){
6037 int ii;
6038 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6039 sqlite3TreeViewSelect(0, p, 0);
6040 for(ii=0; ii<sAggInfo.nColumn; ii++){
6041 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6042 ii, sAggInfo.aCol[ii].iMem);
6043 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6045 for(ii=0; ii<sAggInfo.nFunc; ii++){
6046 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6047 ii, sAggInfo.aFunc[ii].iMem);
6048 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6051 #endif
6054 /* Processing for aggregates with GROUP BY is very different and
6055 ** much more complex than aggregates without a GROUP BY.
6057 if( pGroupBy ){
6058 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
6059 int addr1; /* A-vs-B comparision jump */
6060 int addrOutputRow; /* Start of subroutine that outputs a result row */
6061 int regOutputRow; /* Return address register for output subroutine */
6062 int addrSetAbort; /* Set the abort flag and return */
6063 int addrTopOfLoop; /* Top of the input loop */
6064 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6065 int addrReset; /* Subroutine for resetting the accumulator */
6066 int regReset; /* Return address register for reset subroutine */
6068 /* If there is a GROUP BY clause we might need a sorting index to
6069 ** implement it. Allocate that sorting index now. If it turns out
6070 ** that we do not need it after all, the OP_SorterOpen instruction
6071 ** will be converted into a Noop.
6073 sAggInfo.sortingIdx = pParse->nTab++;
6074 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6075 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6076 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6077 0, (char*)pKeyInfo, P4_KEYINFO);
6079 /* Initialize memory locations used by GROUP BY aggregate processing
6081 iUseFlag = ++pParse->nMem;
6082 iAbortFlag = ++pParse->nMem;
6083 regOutputRow = ++pParse->nMem;
6084 addrOutputRow = sqlite3VdbeMakeLabel(v);
6085 regReset = ++pParse->nMem;
6086 addrReset = sqlite3VdbeMakeLabel(v);
6087 iAMem = pParse->nMem + 1;
6088 pParse->nMem += pGroupBy->nExpr;
6089 iBMem = pParse->nMem + 1;
6090 pParse->nMem += pGroupBy->nExpr;
6091 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6092 VdbeComment((v, "clear abort flag"));
6093 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6095 /* Begin a loop that will extract all source rows in GROUP BY order.
6096 ** This might involve two separate loops with an OP_Sort in between, or
6097 ** it might be a single loop that uses an index to extract information
6098 ** in the right order to begin with.
6100 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6101 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6102 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6103 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6105 if( pWInfo==0 ) goto select_end;
6106 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6107 /* The optimizer is able to deliver rows in group by order so
6108 ** we do not have to sort. The OP_OpenEphemeral table will be
6109 ** cancelled later because we still need to use the pKeyInfo
6111 groupBySort = 0;
6112 }else{
6113 /* Rows are coming out in undetermined order. We have to push
6114 ** each row into a sorting index, terminate the first loop,
6115 ** then loop over the sorting index in order to get the output
6116 ** in sorted order
6118 int regBase;
6119 int regRecord;
6120 int nCol;
6121 int nGroupBy;
6123 explainTempTable(pParse,
6124 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6125 "DISTINCT" : "GROUP BY");
6127 groupBySort = 1;
6128 nGroupBy = pGroupBy->nExpr;
6129 nCol = nGroupBy;
6130 j = nGroupBy;
6131 for(i=0; i<sAggInfo.nColumn; i++){
6132 if( sAggInfo.aCol[i].iSorterColumn>=j ){
6133 nCol++;
6134 j++;
6137 regBase = sqlite3GetTempRange(pParse, nCol);
6138 sqlite3ExprCacheClear(pParse);
6139 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6140 j = nGroupBy;
6141 for(i=0; i<sAggInfo.nColumn; i++){
6142 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6143 if( pCol->iSorterColumn>=j ){
6144 int r1 = j + regBase;
6145 sqlite3ExprCodeGetColumnToReg(pParse,
6146 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
6147 j++;
6150 regRecord = sqlite3GetTempReg(pParse);
6151 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6152 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6153 sqlite3ReleaseTempReg(pParse, regRecord);
6154 sqlite3ReleaseTempRange(pParse, regBase, nCol);
6155 sqlite3WhereEnd(pWInfo);
6156 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6157 sortOut = sqlite3GetTempReg(pParse);
6158 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6159 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6160 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6161 sAggInfo.useSortingIdx = 1;
6162 sqlite3ExprCacheClear(pParse);
6166 /* If the index or temporary table used by the GROUP BY sort
6167 ** will naturally deliver rows in the order required by the ORDER BY
6168 ** clause, cancel the ephemeral table open coded earlier.
6170 ** This is an optimization - the correct answer should result regardless.
6171 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6172 ** disable this optimization for testing purposes. */
6173 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6174 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6176 sSort.pOrderBy = 0;
6177 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6180 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6181 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6182 ** Then compare the current GROUP BY terms against the GROUP BY terms
6183 ** from the previous row currently stored in a0, a1, a2...
6185 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6186 sqlite3ExprCacheClear(pParse);
6187 if( groupBySort ){
6188 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6189 sortOut, sortPTab);
6191 for(j=0; j<pGroupBy->nExpr; j++){
6192 if( groupBySort ){
6193 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6194 }else{
6195 sAggInfo.directMode = 1;
6196 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6199 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6200 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6201 addr1 = sqlite3VdbeCurrentAddr(v);
6202 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6204 /* Generate code that runs whenever the GROUP BY changes.
6205 ** Changes in the GROUP BY are detected by the previous code
6206 ** block. If there were no changes, this block is skipped.
6208 ** This code copies current group by terms in b0,b1,b2,...
6209 ** over to a0,a1,a2. It then calls the output subroutine
6210 ** and resets the aggregate accumulator registers in preparation
6211 ** for the next GROUP BY batch.
6213 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6214 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6215 VdbeComment((v, "output one row"));
6216 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6217 VdbeComment((v, "check abort flag"));
6218 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6219 VdbeComment((v, "reset accumulator"));
6221 /* Update the aggregate accumulators based on the content of
6222 ** the current row
6224 sqlite3VdbeJumpHere(v, addr1);
6225 updateAccumulator(pParse, iUseFlag, &sAggInfo);
6226 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6227 VdbeComment((v, "indicate data in accumulator"));
6229 /* End of the loop
6231 if( groupBySort ){
6232 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6233 VdbeCoverage(v);
6234 }else{
6235 sqlite3WhereEnd(pWInfo);
6236 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6239 /* Output the final row of result
6241 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6242 VdbeComment((v, "output final row"));
6244 /* Jump over the subroutines
6246 sqlite3VdbeGoto(v, addrEnd);
6248 /* Generate a subroutine that outputs a single row of the result
6249 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
6250 ** is less than or equal to zero, the subroutine is a no-op. If
6251 ** the processing calls for the query to abort, this subroutine
6252 ** increments the iAbortFlag memory location before returning in
6253 ** order to signal the caller to abort.
6255 addrSetAbort = sqlite3VdbeCurrentAddr(v);
6256 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6257 VdbeComment((v, "set abort flag"));
6258 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6259 sqlite3VdbeResolveLabel(v, addrOutputRow);
6260 addrOutputRow = sqlite3VdbeCurrentAddr(v);
6261 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6262 VdbeCoverage(v);
6263 VdbeComment((v, "Groupby result generator entry point"));
6264 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6265 finalizeAggFunctions(pParse, &sAggInfo);
6266 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6267 selectInnerLoop(pParse, p, -1, &sSort,
6268 &sDistinct, pDest,
6269 addrOutputRow+1, addrSetAbort);
6270 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6271 VdbeComment((v, "end groupby result generator"));
6273 /* Generate a subroutine that will reset the group-by accumulator
6275 sqlite3VdbeResolveLabel(v, addrReset);
6276 resetAccumulator(pParse, &sAggInfo);
6277 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6278 VdbeComment((v, "indicate accumulator empty"));
6279 sqlite3VdbeAddOp1(v, OP_Return, regReset);
6281 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
6282 else {
6283 #ifndef SQLITE_OMIT_BTREECOUNT
6284 Table *pTab;
6285 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6286 /* If isSimpleCount() returns a pointer to a Table structure, then
6287 ** the SQL statement is of the form:
6289 ** SELECT count(*) FROM <tbl>
6291 ** where the Table structure returned represents table <tbl>.
6293 ** This statement is so common that it is optimized specially. The
6294 ** OP_Count instruction is executed either on the intkey table that
6295 ** contains the data for table <tbl> or on one of its indexes. It
6296 ** is better to execute the op on an index, as indexes are almost
6297 ** always spread across less pages than their corresponding tables.
6299 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6300 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
6301 Index *pIdx; /* Iterator variable */
6302 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
6303 Index *pBest = 0; /* Best index found so far */
6304 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
6306 sqlite3CodeVerifySchema(pParse, iDb);
6307 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6309 /* Search for the index that has the lowest scan cost.
6311 ** (2011-04-15) Do not do a full scan of an unordered index.
6313 ** (2013-10-03) Do not count the entries in a partial index.
6315 ** In practice the KeyInfo structure will not be used. It is only
6316 ** passed to keep OP_OpenRead happy.
6318 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6319 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6320 if( pIdx->bUnordered==0
6321 && pIdx->szIdxRow<pTab->szTabRow
6322 && pIdx->pPartIdxWhere==0
6323 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6325 pBest = pIdx;
6328 if( pBest ){
6329 iRoot = pBest->tnum;
6330 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6333 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6334 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6335 if( pKeyInfo ){
6336 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6338 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6339 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6340 explainSimpleCount(pParse, pTab, pBest);
6341 }else
6342 #endif /* SQLITE_OMIT_BTREECOUNT */
6344 int regAcc = 0; /* "populate accumulators" flag */
6346 /* If there are accumulator registers but no min() or max() functions,
6347 ** allocate register regAcc. Register regAcc will contain 0 the first
6348 ** time the inner loop runs, and 1 thereafter. The code generated
6349 ** by updateAccumulator() only updates the accumulator registers if
6350 ** regAcc contains 0. */
6351 if( sAggInfo.nAccumulator ){
6352 for(i=0; i<sAggInfo.nFunc; i++){
6353 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6355 if( i==sAggInfo.nFunc ){
6356 regAcc = ++pParse->nMem;
6357 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6361 /* This case runs if the aggregate has no GROUP BY clause. The
6362 ** processing is much simpler since there is only a single row
6363 ** of output.
6365 assert( p->pGroupBy==0 );
6366 resetAccumulator(pParse, &sAggInfo);
6368 /* If this query is a candidate for the min/max optimization, then
6369 ** minMaxFlag will have been previously set to either
6370 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6371 ** be an appropriate ORDER BY expression for the optimization.
6373 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6374 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6376 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6377 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6378 0, minMaxFlag, 0);
6379 if( pWInfo==0 ){
6380 goto select_end;
6382 updateAccumulator(pParse, regAcc, &sAggInfo);
6383 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6384 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6385 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6386 VdbeComment((v, "%s() by index",
6387 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6389 sqlite3WhereEnd(pWInfo);
6390 finalizeAggFunctions(pParse, &sAggInfo);
6393 sSort.pOrderBy = 0;
6394 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6395 selectInnerLoop(pParse, p, -1, 0, 0,
6396 pDest, addrEnd, addrEnd);
6398 sqlite3VdbeResolveLabel(v, addrEnd);
6400 } /* endif aggregate query */
6402 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6403 explainTempTable(pParse, "DISTINCT");
6406 /* If there is an ORDER BY clause, then we need to sort the results
6407 ** and send them to the callback one by one.
6409 if( sSort.pOrderBy ){
6410 explainTempTable(pParse,
6411 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6412 assert( p->pEList==pEList );
6413 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6416 /* Jump here to skip this query
6418 sqlite3VdbeResolveLabel(v, iEnd);
6420 /* The SELECT has been coded. If there is an error in the Parse structure,
6421 ** set the return code to 1. Otherwise 0. */
6422 rc = (pParse->nErr>0);
6424 /* Control jumps to here if an error is encountered above, or upon
6425 ** successful coding of the SELECT.
6427 select_end:
6428 sqlite3ExprListDelete(db, pMinMaxOrderBy);
6429 sqlite3DbFree(db, sAggInfo.aCol);
6430 sqlite3DbFree(db, sAggInfo.aFunc);
6431 #if SELECTTRACE_ENABLED
6432 SELECTTRACE(0x1,pParse,p,("end processing\n"));
6433 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6434 sqlite3TreeViewSelect(0, p, 0);
6436 #endif
6437 ExplainQueryPlanPop(pParse);
6438 return rc;