Identify Select objects within a single statement using small sequential
[sqlite.git] / src / expr.c
blob019bf17b994843452c14e9d0fb4edb002a06bd4e
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25 assert( iCol<pTab->nCol );
26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(Expr *pExpr){
46 int op;
47 pExpr = sqlite3ExprSkipCollate(pExpr);
48 if( pExpr->flags & EP_Generic ) return 0;
49 op = pExpr->op;
50 if( op==TK_SELECT ){
51 assert( pExpr->flags&EP_xIsSelect );
52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
54 if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56 if( op==TK_CAST ){
57 assert( !ExprHasProperty(pExpr, EP_IntValue) );
58 return sqlite3AffinityType(pExpr->u.zToken, 0);
60 #endif
61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
64 if( op==TK_SELECT_COLUMN ){
65 assert( pExpr->pLeft->flags&EP_xIsSelect );
66 return sqlite3ExprAffinity(
67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
70 return pExpr->affinity;
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken. Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
81 Expr *sqlite3ExprAddCollateToken(
82 Parse *pParse, /* Parsing context */
83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
84 const Token *pCollName, /* Name of collating sequence */
85 int dequote /* True to dequote pCollName */
87 if( pCollName->n>0 ){
88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89 if( pNew ){
90 pNew->pLeft = pExpr;
91 pNew->flags |= EP_Collate|EP_Skip;
92 pExpr = pNew;
95 return pExpr;
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98 Token s;
99 assert( zC!=0 );
100 sqlite3TokenInit(&s, (char*)zC);
101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110 if( ExprHasProperty(pExpr, EP_Unlikely) ){
111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112 assert( pExpr->x.pList->nExpr>0 );
113 assert( pExpr->op==TK_FUNCTION );
114 pExpr = pExpr->x.pList->a[0].pExpr;
115 }else{
116 assert( pExpr->op==TK_COLLATE );
117 pExpr = pExpr->pLeft;
120 return pExpr;
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
127 ** See also: sqlite3ExprNNCollSeq()
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence. Left operands take
135 ** precedence over right operands.
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138 sqlite3 *db = pParse->db;
139 CollSeq *pColl = 0;
140 Expr *p = pExpr;
141 while( p ){
142 int op = p->op;
143 if( p->flags & EP_Generic ) break;
144 if( op==TK_CAST || op==TK_UPLUS ){
145 p = p->pLeft;
146 continue;
148 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
149 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
150 break;
152 if( (op==TK_AGG_COLUMN || op==TK_COLUMN
153 || op==TK_REGISTER || op==TK_TRIGGER)
154 && p->pTab!=0
156 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
157 ** a TK_COLUMN but was previously evaluated and cached in a register */
158 int j = p->iColumn;
159 if( j>=0 ){
160 const char *zColl = p->pTab->aCol[j].zColl;
161 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
163 break;
165 if( p->flags & EP_Collate ){
166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167 p = p->pLeft;
168 }else{
169 Expr *pNext = p->pRight;
170 /* The Expr.x union is never used at the same time as Expr.pRight */
171 assert( p->x.pList==0 || p->pRight==0 );
172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And
173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at
174 ** least one EP_Collate. Thus the following two ALWAYS. */
175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176 int i;
177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179 pNext = p->x.pList->a[i].pExpr;
180 break;
184 p = pNext;
186 }else{
187 break;
190 if( sqlite3CheckCollSeq(pParse, pColl) ){
191 pColl = 0;
193 return pColl;
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
201 ** See also: sqlite3ExprCollSeq()
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208 if( p==0 ) p = pParse->db->pDfltColl;
209 assert( p!=0 );
210 return p;
214 ** Return TRUE if the two expressions have equivalent collating sequences.
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
223 ** pExpr is an operand of a comparison operator. aff2 is the
224 ** type affinity of the other operand. This routine returns the
225 ** type affinity that should be used for the comparison operator.
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228 char aff1 = sqlite3ExprAffinity(pExpr);
229 if( aff1 && aff2 ){
230 /* Both sides of the comparison are columns. If one has numeric
231 ** affinity, use that. Otherwise use no affinity.
233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234 return SQLITE_AFF_NUMERIC;
235 }else{
236 return SQLITE_AFF_BLOB;
238 }else if( !aff1 && !aff2 ){
239 /* Neither side of the comparison is a column. Compare the
240 ** results directly.
242 return SQLITE_AFF_BLOB;
243 }else{
244 /* One side is a column, the other is not. Use the columns affinity. */
245 assert( aff1==0 || aff2==0 );
246 return (aff1 + aff2);
251 ** pExpr is a comparison operator. Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
254 static char comparisonAffinity(Expr *pExpr){
255 char aff;
256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259 assert( pExpr->pLeft );
260 aff = sqlite3ExprAffinity(pExpr->pLeft);
261 if( pExpr->pRight ){
262 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265 }else if( aff==0 ){
266 aff = SQLITE_AFF_BLOB;
268 return aff;
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278 char aff = comparisonAffinity(pExpr);
279 switch( aff ){
280 case SQLITE_AFF_BLOB:
281 return 1;
282 case SQLITE_AFF_TEXT:
283 return idx_affinity==SQLITE_AFF_TEXT;
284 default:
285 return sqlite3IsNumericAffinity(idx_affinity);
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296 return aff;
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
311 CollSeq *sqlite3BinaryCompareCollSeq(
312 Parse *pParse,
313 Expr *pLeft,
314 Expr *pRight
316 CollSeq *pColl;
317 assert( pLeft );
318 if( pLeft->flags & EP_Collate ){
319 pColl = sqlite3ExprCollSeq(pParse, pLeft);
320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321 pColl = sqlite3ExprCollSeq(pParse, pRight);
322 }else{
323 pColl = sqlite3ExprCollSeq(pParse, pLeft);
324 if( !pColl ){
325 pColl = sqlite3ExprCollSeq(pParse, pRight);
328 return pColl;
332 ** Generate code for a comparison operator.
334 static int codeCompare(
335 Parse *pParse, /* The parsing (and code generating) context */
336 Expr *pLeft, /* The left operand */
337 Expr *pRight, /* The right operand */
338 int opcode, /* The comparison opcode */
339 int in1, int in2, /* Register holding operands */
340 int dest, /* Jump here if true. */
341 int jumpIfNull /* If true, jump if either operand is NULL */
343 int p5;
344 int addr;
345 CollSeq *p4;
347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350 (void*)p4, P4_COLLSEQ);
351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352 return addr;
356 ** Return true if expression pExpr is a vector, or false otherwise.
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result. Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
364 int sqlite3ExprIsVector(Expr *pExpr){
365 return sqlite3ExprVectorSize(pExpr)>1;
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
374 int sqlite3ExprVectorSize(Expr *pExpr){
375 u8 op = pExpr->op;
376 if( op==TK_REGISTER ) op = pExpr->op2;
377 if( op==TK_VECTOR ){
378 return pExpr->x.pList->nExpr;
379 }else if( op==TK_SELECT ){
380 return pExpr->x.pSelect->pEList->nExpr;
381 }else{
382 return 1;
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0). The caller must
389 ** ensure that i is within range.
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
394 ** pVector retains ownership of the returned subexpression.
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402 assert( i<sqlite3ExprVectorSize(pVector) );
403 if( sqlite3ExprIsVector(pVector) ){
404 assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406 return pVector->x.pSelect->pEList->a[i].pExpr;
407 }else{
408 return pVector->x.pList->a[i].pExpr;
411 return pVector;
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object. If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
435 Expr *sqlite3ExprForVectorField(
436 Parse *pParse, /* Parsing context */
437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */
438 int iField /* Which column of the vector to return */
440 Expr *pRet;
441 if( pVector->op==TK_SELECT ){
442 assert( pVector->flags & EP_xIsSelect );
443 /* The TK_SELECT_COLUMN Expr node:
445 ** pLeft: pVector containing TK_SELECT. Not deleted.
446 ** pRight: not used. But recursively deleted.
447 ** iColumn: Index of a column in pVector
448 ** iTable: 0 or the number of columns on the LHS of an assignment
449 ** pLeft->iTable: First in an array of register holding result, or 0
450 ** if the result is not yet computed.
452 ** sqlite3ExprDelete() specifically skips the recursive delete of
453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
454 ** can be attached to pRight to cause this node to take ownership of
455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
456 ** with the same pLeft pointer to the pVector, but only one of them
457 ** will own the pVector.
459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460 if( pRet ){
461 pRet->iColumn = iField;
462 pRet->pLeft = pVector;
464 assert( pRet==0 || pRet->iTable==0 );
465 }else{
466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467 pRet = sqlite3ExprDup(pParse->db, pVector, 0);
469 return pRet;
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
478 ** If pExpr is not a TK_SELECT expression, return 0.
480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
481 int reg = 0;
482 #ifndef SQLITE_OMIT_SUBQUERY
483 if( pExpr->op==TK_SELECT ){
484 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
486 #endif
487 return reg;
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
508 static int exprVectorRegister(
509 Parse *pParse, /* Parse context */
510 Expr *pVector, /* Vector to extract element from */
511 int iField, /* Field to extract from pVector */
512 int regSelect, /* First in array of registers */
513 Expr **ppExpr, /* OUT: Expression element */
514 int *pRegFree /* OUT: Temp register to free */
516 u8 op = pVector->op;
517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
518 if( op==TK_REGISTER ){
519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
520 return pVector->iTable+iField;
522 if( op==TK_SELECT ){
523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
524 return regSelect+iField;
526 *ppExpr = pVector->x.pList->a[iField].pExpr;
527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
535 ** The caller must satisfy the following preconditions:
537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
539 ** otherwise: op==pExpr->op and p5==0
541 static void codeVectorCompare(
542 Parse *pParse, /* Code generator context */
543 Expr *pExpr, /* The comparison operation */
544 int dest, /* Write results into this register */
545 u8 op, /* Comparison operator */
546 u8 p5 /* SQLITE_NULLEQ or zero */
548 Vdbe *v = pParse->pVdbe;
549 Expr *pLeft = pExpr->pLeft;
550 Expr *pRight = pExpr->pRight;
551 int nLeft = sqlite3ExprVectorSize(pLeft);
552 int i;
553 int regLeft = 0;
554 int regRight = 0;
555 u8 opx = op;
556 int addrDone = sqlite3VdbeMakeLabel(v);
558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){
559 sqlite3ErrorMsg(pParse, "row value misused");
560 return;
562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
564 || pExpr->op==TK_LT || pExpr->op==TK_GT
565 || pExpr->op==TK_LE || pExpr->op==TK_GE
567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
568 || (pExpr->op==TK_ISNOT && op==TK_NE) );
569 assert( p5==0 || pExpr->op!=op );
570 assert( p5==SQLITE_NULLEQ || pExpr->op==op );
572 p5 |= SQLITE_STOREP2;
573 if( opx==TK_LE ) opx = TK_LT;
574 if( opx==TK_GE ) opx = TK_GT;
576 regLeft = exprCodeSubselect(pParse, pLeft);
577 regRight = exprCodeSubselect(pParse, pRight);
579 for(i=0; 1 /*Loop exits by "break"*/; i++){
580 int regFree1 = 0, regFree2 = 0;
581 Expr *pL, *pR;
582 int r1, r2;
583 assert( i>=0 && i<nLeft );
584 if( i>0 ) sqlite3ExprCachePush(pParse);
585 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
586 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
587 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
588 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
589 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
590 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
591 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
592 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
593 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
594 sqlite3ReleaseTempReg(pParse, regFree1);
595 sqlite3ReleaseTempReg(pParse, regFree2);
596 if( i>0 ) sqlite3ExprCachePop(pParse);
597 if( i==nLeft-1 ){
598 break;
600 if( opx==TK_EQ ){
601 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
602 p5 |= SQLITE_KEEPNULL;
603 }else if( opx==TK_NE ){
604 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
605 p5 |= SQLITE_KEEPNULL;
606 }else{
607 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
608 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
609 VdbeCoverageIf(v, op==TK_LT);
610 VdbeCoverageIf(v, op==TK_GT);
611 VdbeCoverageIf(v, op==TK_LE);
612 VdbeCoverageIf(v, op==TK_GE);
613 if( i==nLeft-2 ) opx = op;
616 sqlite3VdbeResolveLabel(v, addrDone);
619 #if SQLITE_MAX_EXPR_DEPTH>0
621 ** Check that argument nHeight is less than or equal to the maximum
622 ** expression depth allowed. If it is not, leave an error message in
623 ** pParse.
625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
626 int rc = SQLITE_OK;
627 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
628 if( nHeight>mxHeight ){
629 sqlite3ErrorMsg(pParse,
630 "Expression tree is too large (maximum depth %d)", mxHeight
632 rc = SQLITE_ERROR;
634 return rc;
637 /* The following three functions, heightOfExpr(), heightOfExprList()
638 ** and heightOfSelect(), are used to determine the maximum height
639 ** of any expression tree referenced by the structure passed as the
640 ** first argument.
642 ** If this maximum height is greater than the current value pointed
643 ** to by pnHeight, the second parameter, then set *pnHeight to that
644 ** value.
646 static void heightOfExpr(Expr *p, int *pnHeight){
647 if( p ){
648 if( p->nHeight>*pnHeight ){
649 *pnHeight = p->nHeight;
653 static void heightOfExprList(ExprList *p, int *pnHeight){
654 if( p ){
655 int i;
656 for(i=0; i<p->nExpr; i++){
657 heightOfExpr(p->a[i].pExpr, pnHeight);
661 static void heightOfSelect(Select *pSelect, int *pnHeight){
662 Select *p;
663 for(p=pSelect; p; p=p->pPrior){
664 heightOfExpr(p->pWhere, pnHeight);
665 heightOfExpr(p->pHaving, pnHeight);
666 heightOfExpr(p->pLimit, pnHeight);
667 heightOfExprList(p->pEList, pnHeight);
668 heightOfExprList(p->pGroupBy, pnHeight);
669 heightOfExprList(p->pOrderBy, pnHeight);
674 ** Set the Expr.nHeight variable in the structure passed as an
675 ** argument. An expression with no children, Expr.pList or
676 ** Expr.pSelect member has a height of 1. Any other expression
677 ** has a height equal to the maximum height of any other
678 ** referenced Expr plus one.
680 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
681 ** if appropriate.
683 static void exprSetHeight(Expr *p){
684 int nHeight = 0;
685 heightOfExpr(p->pLeft, &nHeight);
686 heightOfExpr(p->pRight, &nHeight);
687 if( ExprHasProperty(p, EP_xIsSelect) ){
688 heightOfSelect(p->x.pSelect, &nHeight);
689 }else if( p->x.pList ){
690 heightOfExprList(p->x.pList, &nHeight);
691 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
693 p->nHeight = nHeight + 1;
697 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
698 ** the height is greater than the maximum allowed expression depth,
699 ** leave an error in pParse.
701 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
702 ** Expr.flags.
704 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
705 if( pParse->nErr ) return;
706 exprSetHeight(p);
707 sqlite3ExprCheckHeight(pParse, p->nHeight);
711 ** Return the maximum height of any expression tree referenced
712 ** by the select statement passed as an argument.
714 int sqlite3SelectExprHeight(Select *p){
715 int nHeight = 0;
716 heightOfSelect(p, &nHeight);
717 return nHeight;
719 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
721 ** Propagate all EP_Propagate flags from the Expr.x.pList into
722 ** Expr.flags.
724 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
725 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
726 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
729 #define exprSetHeight(y)
730 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
733 ** This routine is the core allocator for Expr nodes.
735 ** Construct a new expression node and return a pointer to it. Memory
736 ** for this node and for the pToken argument is a single allocation
737 ** obtained from sqlite3DbMalloc(). The calling function
738 ** is responsible for making sure the node eventually gets freed.
740 ** If dequote is true, then the token (if it exists) is dequoted.
741 ** If dequote is false, no dequoting is performed. The deQuote
742 ** parameter is ignored if pToken is NULL or if the token does not
743 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
744 ** then the EP_DblQuoted flag is set on the expression node.
746 ** Special case: If op==TK_INTEGER and pToken points to a string that
747 ** can be translated into a 32-bit integer, then the token is not
748 ** stored in u.zToken. Instead, the integer values is written
749 ** into u.iValue and the EP_IntValue flag is set. No extra storage
750 ** is allocated to hold the integer text and the dequote flag is ignored.
752 Expr *sqlite3ExprAlloc(
753 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */
754 int op, /* Expression opcode */
755 const Token *pToken, /* Token argument. Might be NULL */
756 int dequote /* True to dequote */
758 Expr *pNew;
759 int nExtra = 0;
760 int iValue = 0;
762 assert( db!=0 );
763 if( pToken ){
764 if( op!=TK_INTEGER || pToken->z==0
765 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
766 nExtra = pToken->n+1;
767 assert( iValue>=0 );
770 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
771 if( pNew ){
772 memset(pNew, 0, sizeof(Expr));
773 pNew->op = (u8)op;
774 pNew->iAgg = -1;
775 if( pToken ){
776 if( nExtra==0 ){
777 pNew->flags |= EP_IntValue|EP_Leaf;
778 pNew->u.iValue = iValue;
779 }else{
780 pNew->u.zToken = (char*)&pNew[1];
781 assert( pToken->z!=0 || pToken->n==0 );
782 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
783 pNew->u.zToken[pToken->n] = 0;
784 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
785 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
786 sqlite3Dequote(pNew->u.zToken);
790 #if SQLITE_MAX_EXPR_DEPTH>0
791 pNew->nHeight = 1;
792 #endif
794 return pNew;
798 ** Allocate a new expression node from a zero-terminated token that has
799 ** already been dequoted.
801 Expr *sqlite3Expr(
802 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
803 int op, /* Expression opcode */
804 const char *zToken /* Token argument. Might be NULL */
806 Token x;
807 x.z = zToken;
808 x.n = sqlite3Strlen30(zToken);
809 return sqlite3ExprAlloc(db, op, &x, 0);
813 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
815 ** If pRoot==NULL that means that a memory allocation error has occurred.
816 ** In that case, delete the subtrees pLeft and pRight.
818 void sqlite3ExprAttachSubtrees(
819 sqlite3 *db,
820 Expr *pRoot,
821 Expr *pLeft,
822 Expr *pRight
824 if( pRoot==0 ){
825 assert( db->mallocFailed );
826 sqlite3ExprDelete(db, pLeft);
827 sqlite3ExprDelete(db, pRight);
828 }else{
829 if( pRight ){
830 pRoot->pRight = pRight;
831 pRoot->flags |= EP_Propagate & pRight->flags;
833 if( pLeft ){
834 pRoot->pLeft = pLeft;
835 pRoot->flags |= EP_Propagate & pLeft->flags;
837 exprSetHeight(pRoot);
842 ** Allocate an Expr node which joins as many as two subtrees.
844 ** One or both of the subtrees can be NULL. Return a pointer to the new
845 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
846 ** free the subtrees and return NULL.
848 Expr *sqlite3PExpr(
849 Parse *pParse, /* Parsing context */
850 int op, /* Expression opcode */
851 Expr *pLeft, /* Left operand */
852 Expr *pRight /* Right operand */
854 Expr *p;
855 if( op==TK_AND && pParse->nErr==0 ){
856 /* Take advantage of short-circuit false optimization for AND */
857 p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
858 }else{
859 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
860 if( p ){
861 memset(p, 0, sizeof(Expr));
862 p->op = op & TKFLG_MASK;
863 p->iAgg = -1;
865 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
867 if( p ) {
868 sqlite3ExprCheckHeight(pParse, p->nHeight);
870 return p;
874 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
875 ** do a memory allocation failure) then delete the pSelect object.
877 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
878 if( pExpr ){
879 pExpr->x.pSelect = pSelect;
880 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
881 sqlite3ExprSetHeightAndFlags(pParse, pExpr);
882 }else{
883 assert( pParse->db->mallocFailed );
884 sqlite3SelectDelete(pParse->db, pSelect);
890 ** If the expression is always either TRUE or FALSE (respectively),
891 ** then return 1. If one cannot determine the truth value of the
892 ** expression at compile-time return 0.
894 ** This is an optimization. If is OK to return 0 here even if
895 ** the expression really is always false or false (a false negative).
896 ** But it is a bug to return 1 if the expression might have different
897 ** boolean values in different circumstances (a false positive.)
899 ** Note that if the expression is part of conditional for a
900 ** LEFT JOIN, then we cannot determine at compile-time whether or not
901 ** is it true or false, so always return 0.
903 static int exprAlwaysTrue(Expr *p){
904 int v = 0;
905 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
906 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
907 return v!=0;
909 static int exprAlwaysFalse(Expr *p){
910 int v = 0;
911 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
912 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
913 return v==0;
917 ** Join two expressions using an AND operator. If either expression is
918 ** NULL, then just return the other expression.
920 ** If one side or the other of the AND is known to be false, then instead
921 ** of returning an AND expression, just return a constant expression with
922 ** a value of false.
924 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
925 if( pLeft==0 ){
926 return pRight;
927 }else if( pRight==0 ){
928 return pLeft;
929 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
930 sqlite3ExprDelete(db, pLeft);
931 sqlite3ExprDelete(db, pRight);
932 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
933 }else{
934 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
935 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
936 return pNew;
941 ** Construct a new expression node for a function with multiple
942 ** arguments.
944 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
945 Expr *pNew;
946 sqlite3 *db = pParse->db;
947 assert( pToken );
948 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
949 if( pNew==0 ){
950 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
951 return 0;
953 pNew->x.pList = pList;
954 ExprSetProperty(pNew, EP_HasFunc);
955 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
956 sqlite3ExprSetHeightAndFlags(pParse, pNew);
957 return pNew;
961 ** Assign a variable number to an expression that encodes a wildcard
962 ** in the original SQL statement.
964 ** Wildcards consisting of a single "?" are assigned the next sequential
965 ** variable number.
967 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
968 ** sure "nnn" is not too big to avoid a denial of service attack when
969 ** the SQL statement comes from an external source.
971 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
972 ** as the previous instance of the same wildcard. Or if this is the first
973 ** instance of the wildcard, the next sequential variable number is
974 ** assigned.
976 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
977 sqlite3 *db = pParse->db;
978 const char *z;
979 ynVar x;
981 if( pExpr==0 ) return;
982 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
983 z = pExpr->u.zToken;
984 assert( z!=0 );
985 assert( z[0]!=0 );
986 assert( n==(u32)sqlite3Strlen30(z) );
987 if( z[1]==0 ){
988 /* Wildcard of the form "?". Assign the next variable number */
989 assert( z[0]=='?' );
990 x = (ynVar)(++pParse->nVar);
991 }else{
992 int doAdd = 0;
993 if( z[0]=='?' ){
994 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
995 ** use it as the variable number */
996 i64 i;
997 int bOk;
998 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
999 i = z[1]-'0'; /* The common case of ?N for a single digit N */
1000 bOk = 1;
1001 }else{
1002 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1004 testcase( i==0 );
1005 testcase( i==1 );
1006 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1007 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1008 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1009 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1010 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1011 return;
1013 x = (ynVar)i;
1014 if( x>pParse->nVar ){
1015 pParse->nVar = (int)x;
1016 doAdd = 1;
1017 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1018 doAdd = 1;
1020 }else{
1021 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1022 ** number as the prior appearance of the same name, or if the name
1023 ** has never appeared before, reuse the same variable number
1025 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1026 if( x==0 ){
1027 x = (ynVar)(++pParse->nVar);
1028 doAdd = 1;
1031 if( doAdd ){
1032 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1035 pExpr->iColumn = x;
1036 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1037 sqlite3ErrorMsg(pParse, "too many SQL variables");
1042 ** Recursively delete an expression tree.
1044 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1045 assert( p!=0 );
1046 /* Sanity check: Assert that the IntValue is non-negative if it exists */
1047 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1048 #ifdef SQLITE_DEBUG
1049 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1050 assert( p->pLeft==0 );
1051 assert( p->pRight==0 );
1052 assert( p->x.pSelect==0 );
1054 #endif
1055 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1056 /* The Expr.x union is never used at the same time as Expr.pRight */
1057 assert( p->x.pList==0 || p->pRight==0 );
1058 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1059 if( p->pRight ){
1060 sqlite3ExprDeleteNN(db, p->pRight);
1061 }else if( ExprHasProperty(p, EP_xIsSelect) ){
1062 sqlite3SelectDelete(db, p->x.pSelect);
1063 }else{
1064 sqlite3ExprListDelete(db, p->x.pList);
1066 if( !ExprHasProperty(p, EP_Reduced) ){
1067 sqlite3WindowDelete(db, p->pWin);
1070 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1071 if( !ExprHasProperty(p, EP_Static) ){
1072 sqlite3DbFreeNN(db, p);
1075 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1076 if( p ) sqlite3ExprDeleteNN(db, p);
1080 ** Return the number of bytes allocated for the expression structure
1081 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1082 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1084 static int exprStructSize(Expr *p){
1085 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1086 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1087 return EXPR_FULLSIZE;
1091 ** The dupedExpr*Size() routines each return the number of bytes required
1092 ** to store a copy of an expression or expression tree. They differ in
1093 ** how much of the tree is measured.
1095 ** dupedExprStructSize() Size of only the Expr structure
1096 ** dupedExprNodeSize() Size of Expr + space for token
1097 ** dupedExprSize() Expr + token + subtree components
1099 ***************************************************************************
1101 ** The dupedExprStructSize() function returns two values OR-ed together:
1102 ** (1) the space required for a copy of the Expr structure only and
1103 ** (2) the EP_xxx flags that indicate what the structure size should be.
1104 ** The return values is always one of:
1106 ** EXPR_FULLSIZE
1107 ** EXPR_REDUCEDSIZE | EP_Reduced
1108 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1110 ** The size of the structure can be found by masking the return value
1111 ** of this routine with 0xfff. The flags can be found by masking the
1112 ** return value with EP_Reduced|EP_TokenOnly.
1114 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1115 ** (unreduced) Expr objects as they or originally constructed by the parser.
1116 ** During expression analysis, extra information is computed and moved into
1117 ** later parts of the Expr object and that extra information might get chopped
1118 ** off if the expression is reduced. Note also that it does not work to
1119 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1120 ** to reduce a pristine expression tree from the parser. The implementation
1121 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1122 ** to enforce this constraint.
1124 static int dupedExprStructSize(Expr *p, int flags){
1125 int nSize;
1126 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1127 assert( EXPR_FULLSIZE<=0xfff );
1128 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1129 if( 0==flags || p->op==TK_SELECT_COLUMN
1130 #ifndef SQLITE_OMIT_WINDOWFUNC
1131 || p->pWin
1132 #endif
1134 nSize = EXPR_FULLSIZE;
1135 }else{
1136 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1137 assert( !ExprHasProperty(p, EP_FromJoin) );
1138 assert( !ExprHasProperty(p, EP_MemToken) );
1139 assert( !ExprHasProperty(p, EP_NoReduce) );
1140 if( p->pLeft || p->x.pList ){
1141 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1142 }else{
1143 assert( p->pRight==0 );
1144 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1147 return nSize;
1151 ** This function returns the space in bytes required to store the copy
1152 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1153 ** string is defined.)
1155 static int dupedExprNodeSize(Expr *p, int flags){
1156 int nByte = dupedExprStructSize(p, flags) & 0xfff;
1157 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1158 nByte += sqlite3Strlen30(p->u.zToken)+1;
1160 return ROUND8(nByte);
1164 ** Return the number of bytes required to create a duplicate of the
1165 ** expression passed as the first argument. The second argument is a
1166 ** mask containing EXPRDUP_XXX flags.
1168 ** The value returned includes space to create a copy of the Expr struct
1169 ** itself and the buffer referred to by Expr.u.zToken, if any.
1171 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1172 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1173 ** and Expr.pRight variables (but not for any structures pointed to or
1174 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1176 static int dupedExprSize(Expr *p, int flags){
1177 int nByte = 0;
1178 if( p ){
1179 nByte = dupedExprNodeSize(p, flags);
1180 if( flags&EXPRDUP_REDUCE ){
1181 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1184 return nByte;
1188 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1189 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1190 ** to store the copy of expression p, the copies of p->u.zToken
1191 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1192 ** if any. Before returning, *pzBuffer is set to the first byte past the
1193 ** portion of the buffer copied into by this function.
1195 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1196 Expr *pNew; /* Value to return */
1197 u8 *zAlloc; /* Memory space from which to build Expr object */
1198 u32 staticFlag; /* EP_Static if space not obtained from malloc */
1200 assert( db!=0 );
1201 assert( p );
1202 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1203 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1205 /* Figure out where to write the new Expr structure. */
1206 if( pzBuffer ){
1207 zAlloc = *pzBuffer;
1208 staticFlag = EP_Static;
1209 }else{
1210 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1211 staticFlag = 0;
1213 pNew = (Expr *)zAlloc;
1215 if( pNew ){
1216 /* Set nNewSize to the size allocated for the structure pointed to
1217 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1218 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1219 ** by the copy of the p->u.zToken string (if any).
1221 const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1222 const int nNewSize = nStructSize & 0xfff;
1223 int nToken;
1224 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1225 nToken = sqlite3Strlen30(p->u.zToken) + 1;
1226 }else{
1227 nToken = 0;
1229 if( dupFlags ){
1230 assert( ExprHasProperty(p, EP_Reduced)==0 );
1231 memcpy(zAlloc, p, nNewSize);
1232 }else{
1233 u32 nSize = (u32)exprStructSize(p);
1234 memcpy(zAlloc, p, nSize);
1235 if( nSize<EXPR_FULLSIZE ){
1236 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1240 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1241 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1242 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1243 pNew->flags |= staticFlag;
1245 /* Copy the p->u.zToken string, if any. */
1246 if( nToken ){
1247 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1248 memcpy(zToken, p->u.zToken, nToken);
1251 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1252 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1253 if( ExprHasProperty(p, EP_xIsSelect) ){
1254 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1255 }else{
1256 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1260 /* Fill in pNew->pLeft and pNew->pRight. */
1261 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1262 zAlloc += dupedExprNodeSize(p, dupFlags);
1263 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1264 pNew->pLeft = p->pLeft ?
1265 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1266 pNew->pRight = p->pRight ?
1267 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1269 if( pzBuffer ){
1270 *pzBuffer = zAlloc;
1272 }else{
1273 #ifndef SQLITE_OMIT_WINDOWFUNC
1274 if( ExprHasProperty(p, EP_Reduced|EP_TokenOnly) ){
1275 pNew->pWin = 0;
1276 }else{
1277 pNew->pWin = sqlite3WindowDup(db, pNew, p->pWin);
1279 #endif /* SQLITE_OMIT_WINDOWFUNC */
1280 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1281 if( pNew->op==TK_SELECT_COLUMN ){
1282 pNew->pLeft = p->pLeft;
1283 assert( p->iColumn==0 || p->pRight==0 );
1284 assert( p->pRight==0 || p->pRight==p->pLeft );
1285 }else{
1286 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1288 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1292 return pNew;
1296 ** Create and return a deep copy of the object passed as the second
1297 ** argument. If an OOM condition is encountered, NULL is returned
1298 ** and the db->mallocFailed flag set.
1300 #ifndef SQLITE_OMIT_CTE
1301 static With *withDup(sqlite3 *db, With *p){
1302 With *pRet = 0;
1303 if( p ){
1304 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1305 pRet = sqlite3DbMallocZero(db, nByte);
1306 if( pRet ){
1307 int i;
1308 pRet->nCte = p->nCte;
1309 for(i=0; i<p->nCte; i++){
1310 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1311 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1312 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1316 return pRet;
1318 #else
1319 # define withDup(x,y) 0
1320 #endif
1323 ** The following group of routines make deep copies of expressions,
1324 ** expression lists, ID lists, and select statements. The copies can
1325 ** be deleted (by being passed to their respective ...Delete() routines)
1326 ** without effecting the originals.
1328 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1329 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1330 ** by subsequent calls to sqlite*ListAppend() routines.
1332 ** Any tables that the SrcList might point to are not duplicated.
1334 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1335 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1336 ** truncated version of the usual Expr structure that will be stored as
1337 ** part of the in-memory representation of the database schema.
1339 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1340 assert( flags==0 || flags==EXPRDUP_REDUCE );
1341 return p ? exprDup(db, p, flags, 0) : 0;
1343 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1344 ExprList *pNew;
1345 struct ExprList_item *pItem, *pOldItem;
1346 int i;
1347 Expr *pPriorSelectCol = 0;
1348 assert( db!=0 );
1349 if( p==0 ) return 0;
1350 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1351 if( pNew==0 ) return 0;
1352 pNew->nExpr = p->nExpr;
1353 pItem = pNew->a;
1354 pOldItem = p->a;
1355 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1356 Expr *pOldExpr = pOldItem->pExpr;
1357 Expr *pNewExpr;
1358 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1359 if( pOldExpr
1360 && pOldExpr->op==TK_SELECT_COLUMN
1361 && (pNewExpr = pItem->pExpr)!=0
1363 assert( pNewExpr->iColumn==0 || i>0 );
1364 if( pNewExpr->iColumn==0 ){
1365 assert( pOldExpr->pLeft==pOldExpr->pRight );
1366 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1367 }else{
1368 assert( i>0 );
1369 assert( pItem[-1].pExpr!=0 );
1370 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1371 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1372 pNewExpr->pLeft = pPriorSelectCol;
1375 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1376 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1377 pItem->sortOrder = pOldItem->sortOrder;
1378 pItem->done = 0;
1379 pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1380 pItem->bSorterRef = pOldItem->bSorterRef;
1381 pItem->u = pOldItem->u;
1383 return pNew;
1387 ** If cursors, triggers, views and subqueries are all omitted from
1388 ** the build, then none of the following routines, except for
1389 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1390 ** called with a NULL argument.
1392 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1393 || !defined(SQLITE_OMIT_SUBQUERY)
1394 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1395 SrcList *pNew;
1396 int i;
1397 int nByte;
1398 assert( db!=0 );
1399 if( p==0 ) return 0;
1400 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1401 pNew = sqlite3DbMallocRawNN(db, nByte );
1402 if( pNew==0 ) return 0;
1403 pNew->nSrc = pNew->nAlloc = p->nSrc;
1404 for(i=0; i<p->nSrc; i++){
1405 struct SrcList_item *pNewItem = &pNew->a[i];
1406 struct SrcList_item *pOldItem = &p->a[i];
1407 Table *pTab;
1408 pNewItem->pSchema = pOldItem->pSchema;
1409 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1410 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1411 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1412 pNewItem->fg = pOldItem->fg;
1413 pNewItem->iCursor = pOldItem->iCursor;
1414 pNewItem->addrFillSub = pOldItem->addrFillSub;
1415 pNewItem->regReturn = pOldItem->regReturn;
1416 if( pNewItem->fg.isIndexedBy ){
1417 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1419 pNewItem->pIBIndex = pOldItem->pIBIndex;
1420 if( pNewItem->fg.isTabFunc ){
1421 pNewItem->u1.pFuncArg =
1422 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1424 pTab = pNewItem->pTab = pOldItem->pTab;
1425 if( pTab ){
1426 pTab->nTabRef++;
1428 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1429 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1430 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1431 pNewItem->colUsed = pOldItem->colUsed;
1433 return pNew;
1435 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1436 IdList *pNew;
1437 int i;
1438 assert( db!=0 );
1439 if( p==0 ) return 0;
1440 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1441 if( pNew==0 ) return 0;
1442 pNew->nId = p->nId;
1443 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1444 if( pNew->a==0 ){
1445 sqlite3DbFreeNN(db, pNew);
1446 return 0;
1448 /* Note that because the size of the allocation for p->a[] is not
1449 ** necessarily a power of two, sqlite3IdListAppend() may not be called
1450 ** on the duplicate created by this function. */
1451 for(i=0; i<p->nId; i++){
1452 struct IdList_item *pNewItem = &pNew->a[i];
1453 struct IdList_item *pOldItem = &p->a[i];
1454 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1455 pNewItem->idx = pOldItem->idx;
1457 return pNew;
1459 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1460 Select *pRet = 0;
1461 Select *pNext = 0;
1462 Select **pp = &pRet;
1463 Select *p;
1465 assert( db!=0 );
1466 for(p=pDup; p; p=p->pPrior){
1467 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1468 if( pNew==0 ) break;
1469 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1470 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1471 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1472 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1473 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1474 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1475 pNew->op = p->op;
1476 pNew->pNext = pNext;
1477 pNew->pPrior = 0;
1478 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1479 pNew->iLimit = 0;
1480 pNew->iOffset = 0;
1481 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1482 pNew->addrOpenEphm[0] = -1;
1483 pNew->addrOpenEphm[1] = -1;
1484 pNew->nSelectRow = p->nSelectRow;
1485 pNew->pWith = withDup(db, p->pWith);
1486 #ifndef SQLITE_OMIT_WINDOWFUNC
1487 pNew->pWin = 0;
1488 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1489 #endif
1490 pNew->selId = p->selId;
1491 *pp = pNew;
1492 pp = &pNew->pPrior;
1493 pNext = pNew;
1496 return pRet;
1498 #else
1499 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1500 assert( p==0 );
1501 return 0;
1503 #endif
1507 ** Add a new element to the end of an expression list. If pList is
1508 ** initially NULL, then create a new expression list.
1510 ** The pList argument must be either NULL or a pointer to an ExprList
1511 ** obtained from a prior call to sqlite3ExprListAppend(). This routine
1512 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1513 ** Reason: This routine assumes that the number of slots in pList->a[]
1514 ** is a power of two. That is true for sqlite3ExprListAppend() returns
1515 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1517 ** If a memory allocation error occurs, the entire list is freed and
1518 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1519 ** that the new entry was successfully appended.
1521 ExprList *sqlite3ExprListAppend(
1522 Parse *pParse, /* Parsing context */
1523 ExprList *pList, /* List to which to append. Might be NULL */
1524 Expr *pExpr /* Expression to be appended. Might be NULL */
1526 struct ExprList_item *pItem;
1527 sqlite3 *db = pParse->db;
1528 assert( db!=0 );
1529 if( pList==0 ){
1530 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1531 if( pList==0 ){
1532 goto no_mem;
1534 pList->nExpr = 0;
1535 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1536 ExprList *pNew;
1537 pNew = sqlite3DbRealloc(db, pList,
1538 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1539 if( pNew==0 ){
1540 goto no_mem;
1542 pList = pNew;
1544 pItem = &pList->a[pList->nExpr++];
1545 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1546 assert( offsetof(struct ExprList_item,pExpr)==0 );
1547 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1548 pItem->pExpr = pExpr;
1549 return pList;
1551 no_mem:
1552 /* Avoid leaking memory if malloc has failed. */
1553 sqlite3ExprDelete(db, pExpr);
1554 sqlite3ExprListDelete(db, pList);
1555 return 0;
1559 ** pColumns and pExpr form a vector assignment which is part of the SET
1560 ** clause of an UPDATE statement. Like this:
1562 ** (a,b,c) = (expr1,expr2,expr3)
1563 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
1565 ** For each term of the vector assignment, append new entries to the
1566 ** expression list pList. In the case of a subquery on the RHS, append
1567 ** TK_SELECT_COLUMN expressions.
1569 ExprList *sqlite3ExprListAppendVector(
1570 Parse *pParse, /* Parsing context */
1571 ExprList *pList, /* List to which to append. Might be NULL */
1572 IdList *pColumns, /* List of names of LHS of the assignment */
1573 Expr *pExpr /* Vector expression to be appended. Might be NULL */
1575 sqlite3 *db = pParse->db;
1576 int n;
1577 int i;
1578 int iFirst = pList ? pList->nExpr : 0;
1579 /* pColumns can only be NULL due to an OOM but an OOM will cause an
1580 ** exit prior to this routine being invoked */
1581 if( NEVER(pColumns==0) ) goto vector_append_error;
1582 if( pExpr==0 ) goto vector_append_error;
1584 /* If the RHS is a vector, then we can immediately check to see that
1585 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
1586 ** wildcards ("*") in the result set of the SELECT must be expanded before
1587 ** we can do the size check, so defer the size check until code generation.
1589 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1590 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1591 pColumns->nId, n);
1592 goto vector_append_error;
1595 for(i=0; i<pColumns->nId; i++){
1596 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1597 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1598 if( pList ){
1599 assert( pList->nExpr==iFirst+i+1 );
1600 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1601 pColumns->a[i].zName = 0;
1605 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1606 Expr *pFirst = pList->a[iFirst].pExpr;
1607 assert( pFirst!=0 );
1608 assert( pFirst->op==TK_SELECT_COLUMN );
1610 /* Store the SELECT statement in pRight so it will be deleted when
1611 ** sqlite3ExprListDelete() is called */
1612 pFirst->pRight = pExpr;
1613 pExpr = 0;
1615 /* Remember the size of the LHS in iTable so that we can check that
1616 ** the RHS and LHS sizes match during code generation. */
1617 pFirst->iTable = pColumns->nId;
1620 vector_append_error:
1621 sqlite3ExprDelete(db, pExpr);
1622 sqlite3IdListDelete(db, pColumns);
1623 return pList;
1627 ** Set the sort order for the last element on the given ExprList.
1629 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1630 if( p==0 ) return;
1631 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1632 assert( p->nExpr>0 );
1633 if( iSortOrder<0 ){
1634 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1635 return;
1637 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1641 ** Set the ExprList.a[].zName element of the most recently added item
1642 ** on the expression list.
1644 ** pList might be NULL following an OOM error. But pName should never be
1645 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1646 ** is set.
1648 void sqlite3ExprListSetName(
1649 Parse *pParse, /* Parsing context */
1650 ExprList *pList, /* List to which to add the span. */
1651 Token *pName, /* Name to be added */
1652 int dequote /* True to cause the name to be dequoted */
1654 assert( pList!=0 || pParse->db->mallocFailed!=0 );
1655 if( pList ){
1656 struct ExprList_item *pItem;
1657 assert( pList->nExpr>0 );
1658 pItem = &pList->a[pList->nExpr-1];
1659 assert( pItem->zName==0 );
1660 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1661 if( dequote ) sqlite3Dequote(pItem->zName);
1666 ** Set the ExprList.a[].zSpan element of the most recently added item
1667 ** on the expression list.
1669 ** pList might be NULL following an OOM error. But pSpan should never be
1670 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1671 ** is set.
1673 void sqlite3ExprListSetSpan(
1674 Parse *pParse, /* Parsing context */
1675 ExprList *pList, /* List to which to add the span. */
1676 const char *zStart, /* Start of the span */
1677 const char *zEnd /* End of the span */
1679 sqlite3 *db = pParse->db;
1680 assert( pList!=0 || db->mallocFailed!=0 );
1681 if( pList ){
1682 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1683 assert( pList->nExpr>0 );
1684 sqlite3DbFree(db, pItem->zSpan);
1685 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1690 ** If the expression list pEList contains more than iLimit elements,
1691 ** leave an error message in pParse.
1693 void sqlite3ExprListCheckLength(
1694 Parse *pParse,
1695 ExprList *pEList,
1696 const char *zObject
1698 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1699 testcase( pEList && pEList->nExpr==mx );
1700 testcase( pEList && pEList->nExpr==mx+1 );
1701 if( pEList && pEList->nExpr>mx ){
1702 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1707 ** Delete an entire expression list.
1709 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1710 int i = pList->nExpr;
1711 struct ExprList_item *pItem = pList->a;
1712 assert( pList->nExpr>0 );
1714 sqlite3ExprDelete(db, pItem->pExpr);
1715 sqlite3DbFree(db, pItem->zName);
1716 sqlite3DbFree(db, pItem->zSpan);
1717 pItem++;
1718 }while( --i>0 );
1719 sqlite3DbFreeNN(db, pList);
1721 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1722 if( pList ) exprListDeleteNN(db, pList);
1726 ** Return the bitwise-OR of all Expr.flags fields in the given
1727 ** ExprList.
1729 u32 sqlite3ExprListFlags(const ExprList *pList){
1730 int i;
1731 u32 m = 0;
1732 assert( pList!=0 );
1733 for(i=0; i<pList->nExpr; i++){
1734 Expr *pExpr = pList->a[i].pExpr;
1735 assert( pExpr!=0 );
1736 m |= pExpr->flags;
1738 return m;
1742 ** This is a SELECT-node callback for the expression walker that
1743 ** always "fails". By "fail" in this case, we mean set
1744 ** pWalker->eCode to zero and abort.
1746 ** This callback is used by multiple expression walkers.
1748 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1749 UNUSED_PARAMETER(NotUsed);
1750 pWalker->eCode = 0;
1751 return WRC_Abort;
1755 ** If the input expression is an ID with the name "true" or "false"
1756 ** then convert it into an TK_TRUEFALSE term. Return non-zero if
1757 ** the conversion happened, and zero if the expression is unaltered.
1759 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1760 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1761 if( sqlite3StrICmp(pExpr->u.zToken, "true")==0
1762 || sqlite3StrICmp(pExpr->u.zToken, "false")==0
1764 pExpr->op = TK_TRUEFALSE;
1765 return 1;
1767 return 0;
1771 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
1772 ** and 0 if it is FALSE.
1774 int sqlite3ExprTruthValue(const Expr *pExpr){
1775 assert( pExpr->op==TK_TRUEFALSE );
1776 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1777 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1778 return pExpr->u.zToken[4]==0;
1783 ** These routines are Walker callbacks used to check expressions to
1784 ** see if they are "constant" for some definition of constant. The
1785 ** Walker.eCode value determines the type of "constant" we are looking
1786 ** for.
1788 ** These callback routines are used to implement the following:
1790 ** sqlite3ExprIsConstant() pWalker->eCode==1
1791 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
1792 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
1793 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
1795 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1796 ** is found to not be a constant.
1798 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1799 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing
1800 ** an existing schema and 4 when processing a new statement. A bound
1801 ** parameter raises an error for new statements, but is silently converted
1802 ** to NULL for existing schemas. This allows sqlite_master tables that
1803 ** contain a bound parameter because they were generated by older versions
1804 ** of SQLite to be parsed by newer versions of SQLite without raising a
1805 ** malformed schema error.
1807 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1809 /* If pWalker->eCode is 2 then any term of the expression that comes from
1810 ** the ON or USING clauses of a left join disqualifies the expression
1811 ** from being considered constant. */
1812 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1813 pWalker->eCode = 0;
1814 return WRC_Abort;
1817 switch( pExpr->op ){
1818 /* Consider functions to be constant if all their arguments are constant
1819 ** and either pWalker->eCode==4 or 5 or the function has the
1820 ** SQLITE_FUNC_CONST flag. */
1821 case TK_FUNCTION:
1822 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1823 return WRC_Continue;
1824 }else{
1825 pWalker->eCode = 0;
1826 return WRC_Abort;
1828 case TK_ID:
1829 /* Convert "true" or "false" in a DEFAULT clause into the
1830 ** appropriate TK_TRUEFALSE operator */
1831 if( sqlite3ExprIdToTrueFalse(pExpr) ){
1832 return WRC_Prune;
1834 /* Fall thru */
1835 case TK_COLUMN:
1836 case TK_AGG_FUNCTION:
1837 case TK_AGG_COLUMN:
1838 testcase( pExpr->op==TK_ID );
1839 testcase( pExpr->op==TK_COLUMN );
1840 testcase( pExpr->op==TK_AGG_FUNCTION );
1841 testcase( pExpr->op==TK_AGG_COLUMN );
1842 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1843 return WRC_Continue;
1845 /* Fall through */
1846 case TK_IF_NULL_ROW:
1847 case TK_REGISTER:
1848 testcase( pExpr->op==TK_REGISTER );
1849 testcase( pExpr->op==TK_IF_NULL_ROW );
1850 pWalker->eCode = 0;
1851 return WRC_Abort;
1852 case TK_VARIABLE:
1853 if( pWalker->eCode==5 ){
1854 /* Silently convert bound parameters that appear inside of CREATE
1855 ** statements into a NULL when parsing the CREATE statement text out
1856 ** of the sqlite_master table */
1857 pExpr->op = TK_NULL;
1858 }else if( pWalker->eCode==4 ){
1859 /* A bound parameter in a CREATE statement that originates from
1860 ** sqlite3_prepare() causes an error */
1861 pWalker->eCode = 0;
1862 return WRC_Abort;
1864 /* Fall through */
1865 default:
1866 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1867 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1868 return WRC_Continue;
1871 static int exprIsConst(Expr *p, int initFlag, int iCur){
1872 Walker w;
1873 w.eCode = initFlag;
1874 w.xExprCallback = exprNodeIsConstant;
1875 w.xSelectCallback = sqlite3SelectWalkFail;
1876 #ifdef SQLITE_DEBUG
1877 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1878 #endif
1879 w.u.iCur = iCur;
1880 sqlite3WalkExpr(&w, p);
1881 return w.eCode;
1885 ** Walk an expression tree. Return non-zero if the expression is constant
1886 ** and 0 if it involves variables or function calls.
1888 ** For the purposes of this function, a double-quoted string (ex: "abc")
1889 ** is considered a variable but a single-quoted string (ex: 'abc') is
1890 ** a constant.
1892 int sqlite3ExprIsConstant(Expr *p){
1893 return exprIsConst(p, 1, 0);
1897 ** Walk an expression tree. Return non-zero if the expression is constant
1898 ** that does no originate from the ON or USING clauses of a join.
1899 ** Return 0 if it involves variables or function calls or terms from
1900 ** an ON or USING clause.
1902 int sqlite3ExprIsConstantNotJoin(Expr *p){
1903 return exprIsConst(p, 2, 0);
1907 ** Walk an expression tree. Return non-zero if the expression is constant
1908 ** for any single row of the table with cursor iCur. In other words, the
1909 ** expression must not refer to any non-deterministic function nor any
1910 ** table other than iCur.
1912 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1913 return exprIsConst(p, 3, iCur);
1918 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1920 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1921 ExprList *pGroupBy = pWalker->u.pGroupBy;
1922 int i;
1924 /* Check if pExpr is identical to any GROUP BY term. If so, consider
1925 ** it constant. */
1926 for(i=0; i<pGroupBy->nExpr; i++){
1927 Expr *p = pGroupBy->a[i].pExpr;
1928 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1929 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1930 if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){
1931 return WRC_Prune;
1936 /* Check if pExpr is a sub-select. If so, consider it variable. */
1937 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1938 pWalker->eCode = 0;
1939 return WRC_Abort;
1942 return exprNodeIsConstant(pWalker, pExpr);
1946 ** Walk the expression tree passed as the first argument. Return non-zero
1947 ** if the expression consists entirely of constants or copies of terms
1948 ** in pGroupBy that sort with the BINARY collation sequence.
1950 ** This routine is used to determine if a term of the HAVING clause can
1951 ** be promoted into the WHERE clause. In order for such a promotion to work,
1952 ** the value of the HAVING clause term must be the same for all members of
1953 ** a "group". The requirement that the GROUP BY term must be BINARY
1954 ** assumes that no other collating sequence will have a finer-grained
1955 ** grouping than binary. In other words (A=B COLLATE binary) implies
1956 ** A=B in every other collating sequence. The requirement that the
1957 ** GROUP BY be BINARY is stricter than necessary. It would also work
1958 ** to promote HAVING clauses that use the same alternative collating
1959 ** sequence as the GROUP BY term, but that is much harder to check,
1960 ** alternative collating sequences are uncommon, and this is only an
1961 ** optimization, so we take the easy way out and simply require the
1962 ** GROUP BY to use the BINARY collating sequence.
1964 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
1965 Walker w;
1966 w.eCode = 1;
1967 w.xExprCallback = exprNodeIsConstantOrGroupBy;
1968 w.xSelectCallback = 0;
1969 w.u.pGroupBy = pGroupBy;
1970 w.pParse = pParse;
1971 sqlite3WalkExpr(&w, p);
1972 return w.eCode;
1976 ** Walk an expression tree. Return non-zero if the expression is constant
1977 ** or a function call with constant arguments. Return and 0 if there
1978 ** are any variables.
1980 ** For the purposes of this function, a double-quoted string (ex: "abc")
1981 ** is considered a variable but a single-quoted string (ex: 'abc') is
1982 ** a constant.
1984 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1985 assert( isInit==0 || isInit==1 );
1986 return exprIsConst(p, 4+isInit, 0);
1989 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1991 ** Walk an expression tree. Return 1 if the expression contains a
1992 ** subquery of some kind. Return 0 if there are no subqueries.
1994 int sqlite3ExprContainsSubquery(Expr *p){
1995 Walker w;
1996 w.eCode = 1;
1997 w.xExprCallback = sqlite3ExprWalkNoop;
1998 w.xSelectCallback = sqlite3SelectWalkFail;
1999 #ifdef SQLITE_DEBUG
2000 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2001 #endif
2002 sqlite3WalkExpr(&w, p);
2003 return w.eCode==0;
2005 #endif
2008 ** If the expression p codes a constant integer that is small enough
2009 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2010 ** in *pValue. If the expression is not an integer or if it is too big
2011 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2013 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2014 int rc = 0;
2015 if( p==0 ) return 0; /* Can only happen following on OOM */
2017 /* If an expression is an integer literal that fits in a signed 32-bit
2018 ** integer, then the EP_IntValue flag will have already been set */
2019 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2020 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2022 if( p->flags & EP_IntValue ){
2023 *pValue = p->u.iValue;
2024 return 1;
2026 switch( p->op ){
2027 case TK_UPLUS: {
2028 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2029 break;
2031 case TK_UMINUS: {
2032 int v;
2033 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2034 assert( v!=(-2147483647-1) );
2035 *pValue = -v;
2036 rc = 1;
2038 break;
2040 default: break;
2042 return rc;
2046 ** Return FALSE if there is no chance that the expression can be NULL.
2048 ** If the expression might be NULL or if the expression is too complex
2049 ** to tell return TRUE.
2051 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2052 ** when we know that a value cannot be NULL. Hence, a false positive
2053 ** (returning TRUE when in fact the expression can never be NULL) might
2054 ** be a small performance hit but is otherwise harmless. On the other
2055 ** hand, a false negative (returning FALSE when the result could be NULL)
2056 ** will likely result in an incorrect answer. So when in doubt, return
2057 ** TRUE.
2059 int sqlite3ExprCanBeNull(const Expr *p){
2060 u8 op;
2061 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2062 op = p->op;
2063 if( op==TK_REGISTER ) op = p->op2;
2064 switch( op ){
2065 case TK_INTEGER:
2066 case TK_STRING:
2067 case TK_FLOAT:
2068 case TK_BLOB:
2069 return 0;
2070 case TK_COLUMN:
2071 return ExprHasProperty(p, EP_CanBeNull) ||
2072 p->pTab==0 || /* Reference to column of index on expression */
2073 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
2074 default:
2075 return 1;
2080 ** Return TRUE if the given expression is a constant which would be
2081 ** unchanged by OP_Affinity with the affinity given in the second
2082 ** argument.
2084 ** This routine is used to determine if the OP_Affinity operation
2085 ** can be omitted. When in doubt return FALSE. A false negative
2086 ** is harmless. A false positive, however, can result in the wrong
2087 ** answer.
2089 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2090 u8 op;
2091 if( aff==SQLITE_AFF_BLOB ) return 1;
2092 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2093 op = p->op;
2094 if( op==TK_REGISTER ) op = p->op2;
2095 switch( op ){
2096 case TK_INTEGER: {
2097 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2099 case TK_FLOAT: {
2100 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2102 case TK_STRING: {
2103 return aff==SQLITE_AFF_TEXT;
2105 case TK_BLOB: {
2106 return 1;
2108 case TK_COLUMN: {
2109 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
2110 return p->iColumn<0
2111 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2113 default: {
2114 return 0;
2120 ** Return TRUE if the given string is a row-id column name.
2122 int sqlite3IsRowid(const char *z){
2123 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2124 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2125 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2126 return 0;
2130 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2131 ** that can be simplified to a direct table access, then return
2132 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2133 ** or if the SELECT statement needs to be manifested into a transient
2134 ** table, then return NULL.
2136 #ifndef SQLITE_OMIT_SUBQUERY
2137 static Select *isCandidateForInOpt(Expr *pX){
2138 Select *p;
2139 SrcList *pSrc;
2140 ExprList *pEList;
2141 Table *pTab;
2142 int i;
2143 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */
2144 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */
2145 p = pX->x.pSelect;
2146 if( p->pPrior ) return 0; /* Not a compound SELECT */
2147 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2148 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2149 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2150 return 0; /* No DISTINCT keyword and no aggregate functions */
2152 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
2153 if( p->pLimit ) return 0; /* Has no LIMIT clause */
2154 if( p->pWhere ) return 0; /* Has no WHERE clause */
2155 pSrc = p->pSrc;
2156 assert( pSrc!=0 );
2157 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
2158 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
2159 pTab = pSrc->a[0].pTab;
2160 assert( pTab!=0 );
2161 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
2162 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
2163 pEList = p->pEList;
2164 assert( pEList!=0 );
2165 /* All SELECT results must be columns. */
2166 for(i=0; i<pEList->nExpr; i++){
2167 Expr *pRes = pEList->a[i].pExpr;
2168 if( pRes->op!=TK_COLUMN ) return 0;
2169 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */
2171 return p;
2173 #endif /* SQLITE_OMIT_SUBQUERY */
2175 #ifndef SQLITE_OMIT_SUBQUERY
2177 ** Generate code that checks the left-most column of index table iCur to see if
2178 ** it contains any NULL entries. Cause the register at regHasNull to be set
2179 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
2180 ** to be set to NULL if iCur contains one or more NULL values.
2182 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2183 int addr1;
2184 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2185 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2186 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2187 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2188 VdbeComment((v, "first_entry_in(%d)", iCur));
2189 sqlite3VdbeJumpHere(v, addr1);
2191 #endif
2194 #ifndef SQLITE_OMIT_SUBQUERY
2196 ** The argument is an IN operator with a list (not a subquery) on the
2197 ** right-hand side. Return TRUE if that list is constant.
2199 static int sqlite3InRhsIsConstant(Expr *pIn){
2200 Expr *pLHS;
2201 int res;
2202 assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2203 pLHS = pIn->pLeft;
2204 pIn->pLeft = 0;
2205 res = sqlite3ExprIsConstant(pIn);
2206 pIn->pLeft = pLHS;
2207 return res;
2209 #endif
2212 ** This function is used by the implementation of the IN (...) operator.
2213 ** The pX parameter is the expression on the RHS of the IN operator, which
2214 ** might be either a list of expressions or a subquery.
2216 ** The job of this routine is to find or create a b-tree object that can
2217 ** be used either to test for membership in the RHS set or to iterate through
2218 ** all members of the RHS set, skipping duplicates.
2220 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2221 ** and pX->iTable is set to the index of that cursor.
2223 ** The returned value of this function indicates the b-tree type, as follows:
2225 ** IN_INDEX_ROWID - The cursor was opened on a database table.
2226 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
2227 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2228 ** IN_INDEX_EPH - The cursor was opened on a specially created and
2229 ** populated epheremal table.
2230 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
2231 ** implemented as a sequence of comparisons.
2233 ** An existing b-tree might be used if the RHS expression pX is a simple
2234 ** subquery such as:
2236 ** SELECT <column1>, <column2>... FROM <table>
2238 ** If the RHS of the IN operator is a list or a more complex subquery, then
2239 ** an ephemeral table might need to be generated from the RHS and then
2240 ** pX->iTable made to point to the ephemeral table instead of an
2241 ** existing table.
2243 ** The inFlags parameter must contain, at a minimum, one of the bits
2244 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
2245 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2246 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
2247 ** be used to loop over all values of the RHS of the IN operator.
2249 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2250 ** through the set members) then the b-tree must not contain duplicates.
2251 ** An epheremal table will be created unless the selected columns are guaranteed
2252 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2253 ** a UNIQUE constraint or index.
2255 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2256 ** for fast set membership tests) then an epheremal table must
2257 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2258 ** index can be found with the specified <columns> as its left-most.
2260 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2261 ** if the RHS of the IN operator is a list (not a subquery) then this
2262 ** routine might decide that creating an ephemeral b-tree for membership
2263 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
2264 ** calling routine should implement the IN operator using a sequence
2265 ** of Eq or Ne comparison operations.
2267 ** When the b-tree is being used for membership tests, the calling function
2268 ** might need to know whether or not the RHS side of the IN operator
2269 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
2270 ** if there is any chance that the (...) might contain a NULL value at
2271 ** runtime, then a register is allocated and the register number written
2272 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2273 ** NULL value, then *prRhsHasNull is left unchanged.
2275 ** If a register is allocated and its location stored in *prRhsHasNull, then
2276 ** the value in that register will be NULL if the b-tree contains one or more
2277 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2278 ** NULL values.
2280 ** If the aiMap parameter is not NULL, it must point to an array containing
2281 ** one element for each column returned by the SELECT statement on the RHS
2282 ** of the IN(...) operator. The i'th entry of the array is populated with the
2283 ** offset of the index column that matches the i'th column returned by the
2284 ** SELECT. For example, if the expression and selected index are:
2286 ** (?,?,?) IN (SELECT a, b, c FROM t1)
2287 ** CREATE INDEX i1 ON t1(b, c, a);
2289 ** then aiMap[] is populated with {2, 0, 1}.
2291 #ifndef SQLITE_OMIT_SUBQUERY
2292 int sqlite3FindInIndex(
2293 Parse *pParse, /* Parsing context */
2294 Expr *pX, /* The right-hand side (RHS) of the IN operator */
2295 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2296 int *prRhsHasNull, /* Register holding NULL status. See notes */
2297 int *aiMap /* Mapping from Index fields to RHS fields */
2299 Select *p; /* SELECT to the right of IN operator */
2300 int eType = 0; /* Type of RHS table. IN_INDEX_* */
2301 int iTab = pParse->nTab++; /* Cursor of the RHS table */
2302 int mustBeUnique; /* True if RHS must be unique */
2303 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
2305 assert( pX->op==TK_IN );
2306 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2308 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2309 ** whether or not the SELECT result contains NULL values, check whether
2310 ** or not NULL is actually possible (it may not be, for example, due
2311 ** to NOT NULL constraints in the schema). If no NULL values are possible,
2312 ** set prRhsHasNull to 0 before continuing. */
2313 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2314 int i;
2315 ExprList *pEList = pX->x.pSelect->pEList;
2316 for(i=0; i<pEList->nExpr; i++){
2317 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2319 if( i==pEList->nExpr ){
2320 prRhsHasNull = 0;
2324 /* Check to see if an existing table or index can be used to
2325 ** satisfy the query. This is preferable to generating a new
2326 ** ephemeral table. */
2327 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2328 sqlite3 *db = pParse->db; /* Database connection */
2329 Table *pTab; /* Table <table>. */
2330 i16 iDb; /* Database idx for pTab */
2331 ExprList *pEList = p->pEList;
2332 int nExpr = pEList->nExpr;
2334 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
2335 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2336 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
2337 pTab = p->pSrc->a[0].pTab;
2339 /* Code an OP_Transaction and OP_TableLock for <table>. */
2340 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2341 sqlite3CodeVerifySchema(pParse, iDb);
2342 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2344 assert(v); /* sqlite3GetVdbe() has always been previously called */
2345 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2346 /* The "x IN (SELECT rowid FROM table)" case */
2347 int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2348 VdbeCoverage(v);
2350 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2351 eType = IN_INDEX_ROWID;
2353 sqlite3VdbeJumpHere(v, iAddr);
2354 }else{
2355 Index *pIdx; /* Iterator variable */
2356 int affinity_ok = 1;
2357 int i;
2359 /* Check that the affinity that will be used to perform each
2360 ** comparison is the same as the affinity of each column in table
2361 ** on the RHS of the IN operator. If it not, it is not possible to
2362 ** use any index of the RHS table. */
2363 for(i=0; i<nExpr && affinity_ok; i++){
2364 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2365 int iCol = pEList->a[i].pExpr->iColumn;
2366 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2367 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2368 testcase( cmpaff==SQLITE_AFF_BLOB );
2369 testcase( cmpaff==SQLITE_AFF_TEXT );
2370 switch( cmpaff ){
2371 case SQLITE_AFF_BLOB:
2372 break;
2373 case SQLITE_AFF_TEXT:
2374 /* sqlite3CompareAffinity() only returns TEXT if one side or the
2375 ** other has no affinity and the other side is TEXT. Hence,
2376 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2377 ** and for the term on the LHS of the IN to have no affinity. */
2378 assert( idxaff==SQLITE_AFF_TEXT );
2379 break;
2380 default:
2381 affinity_ok = sqlite3IsNumericAffinity(idxaff);
2385 if( affinity_ok ){
2386 /* Search for an existing index that will work for this IN operator */
2387 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2388 Bitmask colUsed; /* Columns of the index used */
2389 Bitmask mCol; /* Mask for the current column */
2390 if( pIdx->nColumn<nExpr ) continue;
2391 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2392 ** BITMASK(nExpr) without overflowing */
2393 testcase( pIdx->nColumn==BMS-2 );
2394 testcase( pIdx->nColumn==BMS-1 );
2395 if( pIdx->nColumn>=BMS-1 ) continue;
2396 if( mustBeUnique ){
2397 if( pIdx->nKeyCol>nExpr
2398 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2400 continue; /* This index is not unique over the IN RHS columns */
2404 colUsed = 0; /* Columns of index used so far */
2405 for(i=0; i<nExpr; i++){
2406 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2407 Expr *pRhs = pEList->a[i].pExpr;
2408 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2409 int j;
2411 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2412 for(j=0; j<nExpr; j++){
2413 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2414 assert( pIdx->azColl[j] );
2415 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2416 continue;
2418 break;
2420 if( j==nExpr ) break;
2421 mCol = MASKBIT(j);
2422 if( mCol & colUsed ) break; /* Each column used only once */
2423 colUsed |= mCol;
2424 if( aiMap ) aiMap[i] = j;
2427 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2428 if( colUsed==(MASKBIT(nExpr)-1) ){
2429 /* If we reach this point, that means the index pIdx is usable */
2430 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2431 ExplainQueryPlan((pParse, 0,
2432 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2433 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2434 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2435 VdbeComment((v, "%s", pIdx->zName));
2436 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2437 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2439 if( prRhsHasNull ){
2440 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2441 i64 mask = (1<<nExpr)-1;
2442 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2443 iTab, 0, 0, (u8*)&mask, P4_INT64);
2444 #endif
2445 *prRhsHasNull = ++pParse->nMem;
2446 if( nExpr==1 ){
2447 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2450 sqlite3VdbeJumpHere(v, iAddr);
2452 } /* End loop over indexes */
2453 } /* End if( affinity_ok ) */
2454 } /* End if not an rowid index */
2455 } /* End attempt to optimize using an index */
2457 /* If no preexisting index is available for the IN clause
2458 ** and IN_INDEX_NOOP is an allowed reply
2459 ** and the RHS of the IN operator is a list, not a subquery
2460 ** and the RHS is not constant or has two or fewer terms,
2461 ** then it is not worth creating an ephemeral table to evaluate
2462 ** the IN operator so return IN_INDEX_NOOP.
2464 if( eType==0
2465 && (inFlags & IN_INDEX_NOOP_OK)
2466 && !ExprHasProperty(pX, EP_xIsSelect)
2467 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2469 eType = IN_INDEX_NOOP;
2472 if( eType==0 ){
2473 /* Could not find an existing table or index to use as the RHS b-tree.
2474 ** We will have to generate an ephemeral table to do the job.
2476 u32 savedNQueryLoop = pParse->nQueryLoop;
2477 int rMayHaveNull = 0;
2478 eType = IN_INDEX_EPH;
2479 if( inFlags & IN_INDEX_LOOP ){
2480 pParse->nQueryLoop = 0;
2481 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2482 eType = IN_INDEX_ROWID;
2484 }else if( prRhsHasNull ){
2485 *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2487 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2488 pParse->nQueryLoop = savedNQueryLoop;
2489 }else{
2490 pX->iTable = iTab;
2493 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2494 int i, n;
2495 n = sqlite3ExprVectorSize(pX->pLeft);
2496 for(i=0; i<n; i++) aiMap[i] = i;
2498 return eType;
2500 #endif
2502 #ifndef SQLITE_OMIT_SUBQUERY
2504 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2505 ** function allocates and returns a nul-terminated string containing
2506 ** the affinities to be used for each column of the comparison.
2508 ** It is the responsibility of the caller to ensure that the returned
2509 ** string is eventually freed using sqlite3DbFree().
2511 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2512 Expr *pLeft = pExpr->pLeft;
2513 int nVal = sqlite3ExprVectorSize(pLeft);
2514 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2515 char *zRet;
2517 assert( pExpr->op==TK_IN );
2518 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2519 if( zRet ){
2520 int i;
2521 for(i=0; i<nVal; i++){
2522 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2523 char a = sqlite3ExprAffinity(pA);
2524 if( pSelect ){
2525 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2526 }else{
2527 zRet[i] = a;
2530 zRet[nVal] = '\0';
2532 return zRet;
2534 #endif
2536 #ifndef SQLITE_OMIT_SUBQUERY
2538 ** Load the Parse object passed as the first argument with an error
2539 ** message of the form:
2541 ** "sub-select returns N columns - expected M"
2543 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2544 const char *zFmt = "sub-select returns %d columns - expected %d";
2545 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2547 #endif
2550 ** Expression pExpr is a vector that has been used in a context where
2551 ** it is not permitted. If pExpr is a sub-select vector, this routine
2552 ** loads the Parse object with a message of the form:
2554 ** "sub-select returns N columns - expected 1"
2556 ** Or, if it is a regular scalar vector:
2558 ** "row value misused"
2560 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2561 #ifndef SQLITE_OMIT_SUBQUERY
2562 if( pExpr->flags & EP_xIsSelect ){
2563 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2564 }else
2565 #endif
2567 sqlite3ErrorMsg(pParse, "row value misused");
2572 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2573 ** or IN operators. Examples:
2575 ** (SELECT a FROM b) -- subquery
2576 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
2577 ** x IN (4,5,11) -- IN operator with list on right-hand side
2578 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
2580 ** The pExpr parameter describes the expression that contains the IN
2581 ** operator or subquery.
2583 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2584 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2585 ** to some integer key column of a table B-Tree. In this case, use an
2586 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2587 ** (slower) variable length keys B-Tree.
2589 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2590 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2591 ** All this routine does is initialize the register given by rMayHaveNull
2592 ** to NULL. Calling routines will take care of changing this register
2593 ** value to non-NULL if the RHS is NULL-free.
2595 ** For a SELECT or EXISTS operator, return the register that holds the
2596 ** result. For a multi-column SELECT, the result is stored in a contiguous
2597 ** array of registers and the return value is the register of the left-most
2598 ** result column. Return 0 for IN operators or if an error occurs.
2600 #ifndef SQLITE_OMIT_SUBQUERY
2601 int sqlite3CodeSubselect(
2602 Parse *pParse, /* Parsing context */
2603 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
2604 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */
2605 int isRowid /* If true, LHS of IN operator is a rowid */
2607 int jmpIfDynamic = -1; /* One-time test address */
2608 int rReg = 0; /* Register storing resulting */
2609 Vdbe *v = sqlite3GetVdbe(pParse);
2610 if( NEVER(v==0) ) return 0;
2611 sqlite3ExprCachePush(pParse);
2613 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2614 ** is encountered if any of the following is true:
2616 ** * The right-hand side is a correlated subquery
2617 ** * The right-hand side is an expression list containing variables
2618 ** * We are inside a trigger
2620 ** If all of the above are false, then we can run this code just once
2621 ** save the results, and reuse the same result on subsequent invocations.
2623 if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2624 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2627 switch( pExpr->op ){
2628 case TK_IN: {
2629 int addr; /* Address of OP_OpenEphemeral instruction */
2630 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2631 KeyInfo *pKeyInfo = 0; /* Key information */
2632 int nVal; /* Size of vector pLeft */
2634 nVal = sqlite3ExprVectorSize(pLeft);
2635 assert( !isRowid || nVal==1 );
2637 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2638 ** expression it is handled the same way. An ephemeral table is
2639 ** filled with index keys representing the results from the
2640 ** SELECT or the <exprlist>.
2642 ** If the 'x' expression is a column value, or the SELECT...
2643 ** statement returns a column value, then the affinity of that
2644 ** column is used to build the index keys. If both 'x' and the
2645 ** SELECT... statement are columns, then numeric affinity is used
2646 ** if either column has NUMERIC or INTEGER affinity. If neither
2647 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2648 ** is used.
2650 pExpr->iTable = pParse->nTab++;
2651 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2652 pExpr->iTable, (isRowid?0:nVal));
2653 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2655 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2656 /* Case 1: expr IN (SELECT ...)
2658 ** Generate code to write the results of the select into the temporary
2659 ** table allocated and opened above.
2661 Select *pSelect = pExpr->x.pSelect;
2662 ExprList *pEList = pSelect->pEList;
2664 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY",
2665 jmpIfDynamic>=0?"":"CORRELATED "
2667 assert( !isRowid );
2668 /* If the LHS and RHS of the IN operator do not match, that
2669 ** error will have been caught long before we reach this point. */
2670 if( ALWAYS(pEList->nExpr==nVal) ){
2671 SelectDest dest;
2672 int i;
2673 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2674 dest.zAffSdst = exprINAffinity(pParse, pExpr);
2675 pSelect->iLimit = 0;
2676 testcase( pSelect->selFlags & SF_Distinct );
2677 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2678 if( sqlite3Select(pParse, pSelect, &dest) ){
2679 sqlite3DbFree(pParse->db, dest.zAffSdst);
2680 sqlite3KeyInfoUnref(pKeyInfo);
2681 return 0;
2683 sqlite3DbFree(pParse->db, dest.zAffSdst);
2684 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2685 assert( pEList!=0 );
2686 assert( pEList->nExpr>0 );
2687 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2688 for(i=0; i<nVal; i++){
2689 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2690 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2691 pParse, p, pEList->a[i].pExpr
2695 }else if( ALWAYS(pExpr->x.pList!=0) ){
2696 /* Case 2: expr IN (exprlist)
2698 ** For each expression, build an index key from the evaluation and
2699 ** store it in the temporary table. If <expr> is a column, then use
2700 ** that columns affinity when building index keys. If <expr> is not
2701 ** a column, use numeric affinity.
2703 char affinity; /* Affinity of the LHS of the IN */
2704 int i;
2705 ExprList *pList = pExpr->x.pList;
2706 struct ExprList_item *pItem;
2707 int r1, r2, r3;
2708 affinity = sqlite3ExprAffinity(pLeft);
2709 if( !affinity ){
2710 affinity = SQLITE_AFF_BLOB;
2712 if( pKeyInfo ){
2713 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2714 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2717 /* Loop through each expression in <exprlist>. */
2718 r1 = sqlite3GetTempReg(pParse);
2719 r2 = sqlite3GetTempReg(pParse);
2720 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC);
2721 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2722 Expr *pE2 = pItem->pExpr;
2723 int iValToIns;
2725 /* If the expression is not constant then we will need to
2726 ** disable the test that was generated above that makes sure
2727 ** this code only executes once. Because for a non-constant
2728 ** expression we need to rerun this code each time.
2730 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2731 sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2732 jmpIfDynamic = -1;
2735 /* Evaluate the expression and insert it into the temp table */
2736 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2737 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2738 }else{
2739 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2740 if( isRowid ){
2741 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2742 sqlite3VdbeCurrentAddr(v)+2);
2743 VdbeCoverage(v);
2744 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2745 }else{
2746 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2747 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2748 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2752 sqlite3ReleaseTempReg(pParse, r1);
2753 sqlite3ReleaseTempReg(pParse, r2);
2755 if( pKeyInfo ){
2756 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2758 break;
2761 case TK_EXISTS:
2762 case TK_SELECT:
2763 default: {
2764 /* Case 3: (SELECT ... FROM ...)
2765 ** or: EXISTS(SELECT ... FROM ...)
2767 ** For a SELECT, generate code to put the values for all columns of
2768 ** the first row into an array of registers and return the index of
2769 ** the first register.
2771 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2772 ** into a register and return that register number.
2774 ** In both cases, the query is augmented with "LIMIT 1". Any
2775 ** preexisting limit is discarded in place of the new LIMIT 1.
2777 Select *pSel; /* SELECT statement to encode */
2778 SelectDest dest; /* How to deal with SELECT result */
2779 int nReg; /* Registers to allocate */
2780 Expr *pLimit; /* New limit expression */
2782 testcase( pExpr->op==TK_EXISTS );
2783 testcase( pExpr->op==TK_SELECT );
2784 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2785 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2787 pSel = pExpr->x.pSelect;
2788 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY",
2789 jmpIfDynamic>=0?"":"CORRELATED "));
2790 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2791 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2792 pParse->nMem += nReg;
2793 if( pExpr->op==TK_SELECT ){
2794 dest.eDest = SRT_Mem;
2795 dest.iSdst = dest.iSDParm;
2796 dest.nSdst = nReg;
2797 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2798 VdbeComment((v, "Init subquery result"));
2799 }else{
2800 dest.eDest = SRT_Exists;
2801 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2802 VdbeComment((v, "Init EXISTS result"));
2804 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2805 if( pSel->pLimit ){
2806 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2807 pSel->pLimit->pLeft = pLimit;
2808 }else{
2809 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2811 pSel->iLimit = 0;
2812 if( sqlite3Select(pParse, pSel, &dest) ){
2813 return 0;
2815 rReg = dest.iSDParm;
2816 ExprSetVVAProperty(pExpr, EP_NoReduce);
2817 break;
2821 if( rHasNullFlag ){
2822 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2825 if( jmpIfDynamic>=0 ){
2826 sqlite3VdbeJumpHere(v, jmpIfDynamic);
2828 sqlite3ExprCachePop(pParse);
2830 return rReg;
2832 #endif /* SQLITE_OMIT_SUBQUERY */
2834 #ifndef SQLITE_OMIT_SUBQUERY
2836 ** Expr pIn is an IN(...) expression. This function checks that the
2837 ** sub-select on the RHS of the IN() operator has the same number of
2838 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2839 ** a sub-query, that the LHS is a vector of size 1.
2841 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2842 int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2843 if( (pIn->flags & EP_xIsSelect) ){
2844 if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2845 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2846 return 1;
2848 }else if( nVector!=1 ){
2849 sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2850 return 1;
2852 return 0;
2854 #endif
2856 #ifndef SQLITE_OMIT_SUBQUERY
2858 ** Generate code for an IN expression.
2860 ** x IN (SELECT ...)
2861 ** x IN (value, value, ...)
2863 ** The left-hand side (LHS) is a scalar or vector expression. The
2864 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2865 ** subquery. If the RHS is a subquery, the number of result columns must
2866 ** match the number of columns in the vector on the LHS. If the RHS is
2867 ** a list of values, the LHS must be a scalar.
2869 ** The IN operator is true if the LHS value is contained within the RHS.
2870 ** The result is false if the LHS is definitely not in the RHS. The
2871 ** result is NULL if the presence of the LHS in the RHS cannot be
2872 ** determined due to NULLs.
2874 ** This routine generates code that jumps to destIfFalse if the LHS is not
2875 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
2876 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
2877 ** within the RHS then fall through.
2879 ** See the separate in-operator.md documentation file in the canonical
2880 ** SQLite source tree for additional information.
2882 static void sqlite3ExprCodeIN(
2883 Parse *pParse, /* Parsing and code generating context */
2884 Expr *pExpr, /* The IN expression */
2885 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
2886 int destIfNull /* Jump here if the results are unknown due to NULLs */
2888 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
2889 int eType; /* Type of the RHS */
2890 int rLhs; /* Register(s) holding the LHS values */
2891 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */
2892 Vdbe *v; /* Statement under construction */
2893 int *aiMap = 0; /* Map from vector field to index column */
2894 char *zAff = 0; /* Affinity string for comparisons */
2895 int nVector; /* Size of vectors for this IN operator */
2896 int iDummy; /* Dummy parameter to exprCodeVector() */
2897 Expr *pLeft; /* The LHS of the IN operator */
2898 int i; /* loop counter */
2899 int destStep2; /* Where to jump when NULLs seen in step 2 */
2900 int destStep6 = 0; /* Start of code for Step 6 */
2901 int addrTruthOp; /* Address of opcode that determines the IN is true */
2902 int destNotNull; /* Jump here if a comparison is not true in step 6 */
2903 int addrTop; /* Top of the step-6 loop */
2905 pLeft = pExpr->pLeft;
2906 if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2907 zAff = exprINAffinity(pParse, pExpr);
2908 nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2909 aiMap = (int*)sqlite3DbMallocZero(
2910 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2912 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2914 /* Attempt to compute the RHS. After this step, if anything other than
2915 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2916 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2917 ** the RHS has not yet been coded. */
2918 v = pParse->pVdbe;
2919 assert( v!=0 ); /* OOM detected prior to this routine */
2920 VdbeNoopComment((v, "begin IN expr"));
2921 eType = sqlite3FindInIndex(pParse, pExpr,
2922 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2923 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2925 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2926 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2928 #ifdef SQLITE_DEBUG
2929 /* Confirm that aiMap[] contains nVector integer values between 0 and
2930 ** nVector-1. */
2931 for(i=0; i<nVector; i++){
2932 int j, cnt;
2933 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2934 assert( cnt==1 );
2936 #endif
2938 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2939 ** vector, then it is stored in an array of nVector registers starting
2940 ** at r1.
2942 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2943 ** so that the fields are in the same order as an existing index. The
2944 ** aiMap[] array contains a mapping from the original LHS field order to
2945 ** the field order that matches the RHS index.
2947 sqlite3ExprCachePush(pParse);
2948 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2949 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2950 if( i==nVector ){
2951 /* LHS fields are not reordered */
2952 rLhs = rLhsOrig;
2953 }else{
2954 /* Need to reorder the LHS fields according to aiMap */
2955 rLhs = sqlite3GetTempRange(pParse, nVector);
2956 for(i=0; i<nVector; i++){
2957 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2961 /* If sqlite3FindInIndex() did not find or create an index that is
2962 ** suitable for evaluating the IN operator, then evaluate using a
2963 ** sequence of comparisons.
2965 ** This is step (1) in the in-operator.md optimized algorithm.
2967 if( eType==IN_INDEX_NOOP ){
2968 ExprList *pList = pExpr->x.pList;
2969 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2970 int labelOk = sqlite3VdbeMakeLabel(v);
2971 int r2, regToFree;
2972 int regCkNull = 0;
2973 int ii;
2974 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2975 if( destIfNull!=destIfFalse ){
2976 regCkNull = sqlite3GetTempReg(pParse);
2977 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2979 for(ii=0; ii<pList->nExpr; ii++){
2980 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2981 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2982 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2984 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2985 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2986 (void*)pColl, P4_COLLSEQ);
2987 VdbeCoverageIf(v, ii<pList->nExpr-1);
2988 VdbeCoverageIf(v, ii==pList->nExpr-1);
2989 sqlite3VdbeChangeP5(v, zAff[0]);
2990 }else{
2991 assert( destIfNull==destIfFalse );
2992 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2993 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2994 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2996 sqlite3ReleaseTempReg(pParse, regToFree);
2998 if( regCkNull ){
2999 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3000 sqlite3VdbeGoto(v, destIfFalse);
3002 sqlite3VdbeResolveLabel(v, labelOk);
3003 sqlite3ReleaseTempReg(pParse, regCkNull);
3004 goto sqlite3ExprCodeIN_finished;
3007 /* Step 2: Check to see if the LHS contains any NULL columns. If the
3008 ** LHS does contain NULLs then the result must be either FALSE or NULL.
3009 ** We will then skip the binary search of the RHS.
3011 if( destIfNull==destIfFalse ){
3012 destStep2 = destIfFalse;
3013 }else{
3014 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
3016 for(i=0; i<nVector; i++){
3017 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3018 if( sqlite3ExprCanBeNull(p) ){
3019 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3020 VdbeCoverage(v);
3024 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
3025 ** of the RHS using the LHS as a probe. If found, the result is
3026 ** true.
3028 if( eType==IN_INDEX_ROWID ){
3029 /* In this case, the RHS is the ROWID of table b-tree and so we also
3030 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
3031 ** into a single opcode. */
3032 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
3033 VdbeCoverage(v);
3034 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */
3035 }else{
3036 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3037 if( destIfFalse==destIfNull ){
3038 /* Combine Step 3 and Step 5 into a single opcode */
3039 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
3040 rLhs, nVector); VdbeCoverage(v);
3041 goto sqlite3ExprCodeIN_finished;
3043 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3044 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
3045 rLhs, nVector); VdbeCoverage(v);
3048 /* Step 4. If the RHS is known to be non-NULL and we did not find
3049 ** an match on the search above, then the result must be FALSE.
3051 if( rRhsHasNull && nVector==1 ){
3052 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3053 VdbeCoverage(v);
3056 /* Step 5. If we do not care about the difference between NULL and
3057 ** FALSE, then just return false.
3059 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3061 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
3062 ** If any comparison is NULL, then the result is NULL. If all
3063 ** comparisons are FALSE then the final result is FALSE.
3065 ** For a scalar LHS, it is sufficient to check just the first row
3066 ** of the RHS.
3068 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3069 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
3070 VdbeCoverage(v);
3071 if( nVector>1 ){
3072 destNotNull = sqlite3VdbeMakeLabel(v);
3073 }else{
3074 /* For nVector==1, combine steps 6 and 7 by immediately returning
3075 ** FALSE if the first comparison is not NULL */
3076 destNotNull = destIfFalse;
3078 for(i=0; i<nVector; i++){
3079 Expr *p;
3080 CollSeq *pColl;
3081 int r3 = sqlite3GetTempReg(pParse);
3082 p = sqlite3VectorFieldSubexpr(pLeft, i);
3083 pColl = sqlite3ExprCollSeq(pParse, p);
3084 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3085 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3086 (void*)pColl, P4_COLLSEQ);
3087 VdbeCoverage(v);
3088 sqlite3ReleaseTempReg(pParse, r3);
3090 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3091 if( nVector>1 ){
3092 sqlite3VdbeResolveLabel(v, destNotNull);
3093 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3094 VdbeCoverage(v);
3096 /* Step 7: If we reach this point, we know that the result must
3097 ** be false. */
3098 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3101 /* Jumps here in order to return true. */
3102 sqlite3VdbeJumpHere(v, addrTruthOp);
3104 sqlite3ExprCodeIN_finished:
3105 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3106 sqlite3ExprCachePop(pParse);
3107 VdbeComment((v, "end IN expr"));
3108 sqlite3ExprCodeIN_oom_error:
3109 sqlite3DbFree(pParse->db, aiMap);
3110 sqlite3DbFree(pParse->db, zAff);
3112 #endif /* SQLITE_OMIT_SUBQUERY */
3114 #ifndef SQLITE_OMIT_FLOATING_POINT
3116 ** Generate an instruction that will put the floating point
3117 ** value described by z[0..n-1] into register iMem.
3119 ** The z[] string will probably not be zero-terminated. But the
3120 ** z[n] character is guaranteed to be something that does not look
3121 ** like the continuation of the number.
3123 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3124 if( ALWAYS(z!=0) ){
3125 double value;
3126 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3127 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3128 if( negateFlag ) value = -value;
3129 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3132 #endif
3136 ** Generate an instruction that will put the integer describe by
3137 ** text z[0..n-1] into register iMem.
3139 ** Expr.u.zToken is always UTF8 and zero-terminated.
3141 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3142 Vdbe *v = pParse->pVdbe;
3143 if( pExpr->flags & EP_IntValue ){
3144 int i = pExpr->u.iValue;
3145 assert( i>=0 );
3146 if( negFlag ) i = -i;
3147 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3148 }else{
3149 int c;
3150 i64 value;
3151 const char *z = pExpr->u.zToken;
3152 assert( z!=0 );
3153 c = sqlite3DecOrHexToI64(z, &value);
3154 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3155 #ifdef SQLITE_OMIT_FLOATING_POINT
3156 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3157 #else
3158 #ifndef SQLITE_OMIT_HEX_INTEGER
3159 if( sqlite3_strnicmp(z,"0x",2)==0 ){
3160 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3161 }else
3162 #endif
3164 codeReal(v, z, negFlag, iMem);
3166 #endif
3167 }else{
3168 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3169 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3175 ** Erase column-cache entry number i
3177 static void cacheEntryClear(Parse *pParse, int i){
3178 if( pParse->aColCache[i].tempReg ){
3179 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3180 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3183 pParse->nColCache--;
3184 if( i<pParse->nColCache ){
3185 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
3191 ** Record in the column cache that a particular column from a
3192 ** particular table is stored in a particular register.
3194 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
3195 int i;
3196 int minLru;
3197 int idxLru;
3198 struct yColCache *p;
3200 /* Unless an error has occurred, register numbers are always positive. */
3201 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
3202 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
3204 /* The SQLITE_ColumnCache flag disables the column cache. This is used
3205 ** for testing only - to verify that SQLite always gets the same answer
3206 ** with and without the column cache.
3208 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3210 /* First replace any existing entry.
3212 ** Actually, the way the column cache is currently used, we are guaranteed
3213 ** that the object will never already be in cache. Verify this guarantee.
3215 #ifndef NDEBUG
3216 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3217 assert( p->iTable!=iTab || p->iColumn!=iCol );
3219 #endif
3221 #ifdef SQLITE_DEBUG_COLUMNCACHE
3222 /* Add a SetTabCol opcode for run-time verification that the column
3223 ** cache is working correctly.
3225 sqlite3VdbeAddOp3(pParse->pVdbe, OP_SetTabCol, iTab, iCol, iReg);
3226 #endif
3228 /* If the cache is already full, delete the least recently used entry */
3229 if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3230 minLru = 0x7fffffff;
3231 idxLru = -1;
3232 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3233 if( p->lru<minLru ){
3234 idxLru = i;
3235 minLru = p->lru;
3238 p = &pParse->aColCache[idxLru];
3239 }else{
3240 p = &pParse->aColCache[pParse->nColCache++];
3243 /* Add the new entry to the end of the cache */
3244 p->iLevel = pParse->iCacheLevel;
3245 p->iTable = iTab;
3246 p->iColumn = iCol;
3247 p->iReg = iReg;
3248 p->tempReg = 0;
3249 p->lru = pParse->iCacheCnt++;
3253 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3254 ** Purge the range of registers from the column cache.
3256 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3257 int i = 0;
3258 while( i<pParse->nColCache ){
3259 struct yColCache *p = &pParse->aColCache[i];
3260 if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3261 cacheEntryClear(pParse, i);
3262 }else{
3263 i++;
3269 ** Remember the current column cache context. Any new entries added
3270 ** added to the column cache after this call are removed when the
3271 ** corresponding pop occurs.
3273 void sqlite3ExprCachePush(Parse *pParse){
3274 pParse->iCacheLevel++;
3275 #ifdef SQLITE_DEBUG
3276 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3277 printf("PUSH to %d\n", pParse->iCacheLevel);
3279 #endif
3283 ** Remove from the column cache any entries that were added since the
3284 ** the previous sqlite3ExprCachePush operation. In other words, restore
3285 ** the cache to the state it was in prior the most recent Push.
3287 void sqlite3ExprCachePop(Parse *pParse){
3288 int i = 0;
3289 assert( pParse->iCacheLevel>=1 );
3290 pParse->iCacheLevel--;
3291 #ifdef SQLITE_DEBUG
3292 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3293 printf("POP to %d\n", pParse->iCacheLevel);
3295 #endif
3296 while( i<pParse->nColCache ){
3297 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3298 cacheEntryClear(pParse, i);
3299 }else{
3300 i++;
3306 ** When a cached column is reused, make sure that its register is
3307 ** no longer available as a temp register. ticket #3879: that same
3308 ** register might be in the cache in multiple places, so be sure to
3309 ** get them all.
3311 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3312 int i;
3313 struct yColCache *p;
3314 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3315 if( p->iReg==iReg ){
3316 p->tempReg = 0;
3321 /* Generate code that will load into register regOut a value that is
3322 ** appropriate for the iIdxCol-th column of index pIdx.
3324 void sqlite3ExprCodeLoadIndexColumn(
3325 Parse *pParse, /* The parsing context */
3326 Index *pIdx, /* The index whose column is to be loaded */
3327 int iTabCur, /* Cursor pointing to a table row */
3328 int iIdxCol, /* The column of the index to be loaded */
3329 int regOut /* Store the index column value in this register */
3331 i16 iTabCol = pIdx->aiColumn[iIdxCol];
3332 if( iTabCol==XN_EXPR ){
3333 assert( pIdx->aColExpr );
3334 assert( pIdx->aColExpr->nExpr>iIdxCol );
3335 pParse->iSelfTab = iTabCur + 1;
3336 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3337 pParse->iSelfTab = 0;
3338 }else{
3339 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3340 iTabCol, regOut);
3345 ** Generate code to extract the value of the iCol-th column of a table.
3347 void sqlite3ExprCodeGetColumnOfTable(
3348 Vdbe *v, /* The VDBE under construction */
3349 Table *pTab, /* The table containing the value */
3350 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
3351 int iCol, /* Index of the column to extract */
3352 int regOut /* Extract the value into this register */
3354 if( pTab==0 ){
3355 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3356 return;
3358 if( iCol<0 || iCol==pTab->iPKey ){
3359 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3360 }else{
3361 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3362 int x = iCol;
3363 if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3364 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3366 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3368 if( iCol>=0 ){
3369 sqlite3ColumnDefault(v, pTab, iCol, regOut);
3374 ** Generate code that will extract the iColumn-th column from
3375 ** table pTab and store the column value in a register.
3377 ** An effort is made to store the column value in register iReg. This
3378 ** is not garanteeed for GetColumn() - the result can be stored in
3379 ** any register. But the result is guaranteed to land in register iReg
3380 ** for GetColumnToReg().
3382 ** There must be an open cursor to pTab in iTable when this routine
3383 ** is called. If iColumn<0 then code is generated that extracts the rowid.
3385 int sqlite3ExprCodeGetColumn(
3386 Parse *pParse, /* Parsing and code generating context */
3387 Table *pTab, /* Description of the table we are reading from */
3388 int iColumn, /* Index of the table column */
3389 int iTable, /* The cursor pointing to the table */
3390 int iReg, /* Store results here */
3391 u8 p5 /* P5 value for OP_Column + FLAGS */
3393 Vdbe *v = pParse->pVdbe;
3394 int i;
3395 struct yColCache *p;
3397 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3398 if( p->iTable==iTable && p->iColumn==iColumn ){
3399 p->lru = pParse->iCacheCnt++;
3400 sqlite3ExprCachePinRegister(pParse, p->iReg);
3401 #ifdef SQLITE_DEBUG_COLUMNCACHE
3402 sqlite3VdbeAddOp3(v, OP_VerifyTabCol, iTable, iColumn, p->iReg);
3403 #endif
3404 return p->iReg;
3407 assert( v!=0 );
3408 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3409 if( p5 ){
3410 sqlite3VdbeChangeP5(v, p5);
3411 }else{
3412 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3414 return iReg;
3416 void sqlite3ExprCodeGetColumnToReg(
3417 Parse *pParse, /* Parsing and code generating context */
3418 Table *pTab, /* Description of the table we are reading from */
3419 int iColumn, /* Index of the table column */
3420 int iTable, /* The cursor pointing to the table */
3421 int iReg /* Store results here */
3423 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3424 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3429 ** Clear all column cache entries.
3431 void sqlite3ExprCacheClear(Parse *pParse){
3432 int i;
3434 #ifdef SQLITE_DEBUG
3435 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3436 printf("CLEAR\n");
3438 #endif
3439 for(i=0; i<pParse->nColCache; i++){
3440 if( pParse->aColCache[i].tempReg
3441 && pParse->nTempReg<ArraySize(pParse->aTempReg)
3443 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3446 pParse->nColCache = 0;
3450 ** Record the fact that an affinity change has occurred on iCount
3451 ** registers starting with iStart.
3453 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3454 sqlite3ExprCacheRemove(pParse, iStart, iCount);
3458 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3459 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3461 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3462 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3463 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3464 sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3467 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3469 ** Return true if any register in the range iFrom..iTo (inclusive)
3470 ** is used as part of the column cache.
3472 ** This routine is used within assert() and testcase() macros only
3473 ** and does not appear in a normal build.
3475 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3476 int i;
3477 struct yColCache *p;
3478 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3479 int r = p->iReg;
3480 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
3482 return 0;
3484 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3488 ** Convert a scalar expression node to a TK_REGISTER referencing
3489 ** register iReg. The caller must ensure that iReg already contains
3490 ** the correct value for the expression.
3492 static void exprToRegister(Expr *p, int iReg){
3493 p->op2 = p->op;
3494 p->op = TK_REGISTER;
3495 p->iTable = iReg;
3496 ExprClearProperty(p, EP_Skip);
3500 ** Evaluate an expression (either a vector or a scalar expression) and store
3501 ** the result in continguous temporary registers. Return the index of
3502 ** the first register used to store the result.
3504 ** If the returned result register is a temporary scalar, then also write
3505 ** that register number into *piFreeable. If the returned result register
3506 ** is not a temporary or if the expression is a vector set *piFreeable
3507 ** to 0.
3509 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3510 int iResult;
3511 int nResult = sqlite3ExprVectorSize(p);
3512 if( nResult==1 ){
3513 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3514 }else{
3515 *piFreeable = 0;
3516 if( p->op==TK_SELECT ){
3517 #if SQLITE_OMIT_SUBQUERY
3518 iResult = 0;
3519 #else
3520 iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3521 #endif
3522 }else{
3523 int i;
3524 iResult = pParse->nMem+1;
3525 pParse->nMem += nResult;
3526 for(i=0; i<nResult; i++){
3527 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3531 return iResult;
3536 ** Generate code into the current Vdbe to evaluate the given
3537 ** expression. Attempt to store the results in register "target".
3538 ** Return the register where results are stored.
3540 ** With this routine, there is no guarantee that results will
3541 ** be stored in target. The result might be stored in some other
3542 ** register if it is convenient to do so. The calling function
3543 ** must check the return code and move the results to the desired
3544 ** register.
3546 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3547 Vdbe *v = pParse->pVdbe; /* The VM under construction */
3548 int op; /* The opcode being coded */
3549 int inReg = target; /* Results stored in register inReg */
3550 int regFree1 = 0; /* If non-zero free this temporary register */
3551 int regFree2 = 0; /* If non-zero free this temporary register */
3552 int r1, r2; /* Various register numbers */
3553 Expr tempX; /* Temporary expression node */
3554 int p5 = 0;
3556 assert( target>0 && target<=pParse->nMem );
3557 if( v==0 ){
3558 assert( pParse->db->mallocFailed );
3559 return 0;
3562 expr_code_doover:
3563 if( pExpr==0 ){
3564 op = TK_NULL;
3565 }else{
3566 op = pExpr->op;
3568 switch( op ){
3569 case TK_AGG_COLUMN: {
3570 AggInfo *pAggInfo = pExpr->pAggInfo;
3571 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3572 if( !pAggInfo->directMode ){
3573 assert( pCol->iMem>0 );
3574 return pCol->iMem;
3575 }else if( pAggInfo->useSortingIdx ){
3576 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3577 pCol->iSorterColumn, target);
3578 return target;
3580 /* Otherwise, fall thru into the TK_COLUMN case */
3582 case TK_COLUMN: {
3583 int iTab = pExpr->iTable;
3584 if( iTab<0 ){
3585 if( pParse->iSelfTab<0 ){
3586 /* Generating CHECK constraints or inserting into partial index */
3587 return pExpr->iColumn - pParse->iSelfTab;
3588 }else{
3589 /* Coding an expression that is part of an index where column names
3590 ** in the index refer to the table to which the index belongs */
3591 iTab = pParse->iSelfTab - 1;
3594 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3595 pExpr->iColumn, iTab, target,
3596 pExpr->op2);
3598 case TK_INTEGER: {
3599 codeInteger(pParse, pExpr, 0, target);
3600 return target;
3602 case TK_TRUEFALSE: {
3603 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3604 return target;
3606 #ifndef SQLITE_OMIT_FLOATING_POINT
3607 case TK_FLOAT: {
3608 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3609 codeReal(v, pExpr->u.zToken, 0, target);
3610 return target;
3612 #endif
3613 case TK_STRING: {
3614 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3615 sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3616 return target;
3618 case TK_NULL: {
3619 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3620 return target;
3622 #ifndef SQLITE_OMIT_BLOB_LITERAL
3623 case TK_BLOB: {
3624 int n;
3625 const char *z;
3626 char *zBlob;
3627 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3628 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3629 assert( pExpr->u.zToken[1]=='\'' );
3630 z = &pExpr->u.zToken[2];
3631 n = sqlite3Strlen30(z) - 1;
3632 assert( z[n]=='\'' );
3633 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3634 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3635 return target;
3637 #endif
3638 case TK_VARIABLE: {
3639 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3640 assert( pExpr->u.zToken!=0 );
3641 assert( pExpr->u.zToken[0]!=0 );
3642 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3643 if( pExpr->u.zToken[1]!=0 ){
3644 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3645 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3646 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3647 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3649 return target;
3651 case TK_REGISTER: {
3652 return pExpr->iTable;
3654 #ifndef SQLITE_OMIT_CAST
3655 case TK_CAST: {
3656 /* Expressions of the form: CAST(pLeft AS token) */
3657 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3658 if( inReg!=target ){
3659 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3660 inReg = target;
3662 sqlite3VdbeAddOp2(v, OP_Cast, target,
3663 sqlite3AffinityType(pExpr->u.zToken, 0));
3664 testcase( usedAsColumnCache(pParse, inReg, inReg) );
3665 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3666 return inReg;
3668 #endif /* SQLITE_OMIT_CAST */
3669 case TK_IS:
3670 case TK_ISNOT:
3671 op = (op==TK_IS) ? TK_EQ : TK_NE;
3672 p5 = SQLITE_NULLEQ;
3673 /* fall-through */
3674 case TK_LT:
3675 case TK_LE:
3676 case TK_GT:
3677 case TK_GE:
3678 case TK_NE:
3679 case TK_EQ: {
3680 Expr *pLeft = pExpr->pLeft;
3681 if( sqlite3ExprIsVector(pLeft) ){
3682 codeVectorCompare(pParse, pExpr, target, op, p5);
3683 }else{
3684 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3685 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3686 codeCompare(pParse, pLeft, pExpr->pRight, op,
3687 r1, r2, inReg, SQLITE_STOREP2 | p5);
3688 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3689 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3690 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3691 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3692 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3693 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3694 testcase( regFree1==0 );
3695 testcase( regFree2==0 );
3697 break;
3699 case TK_AND:
3700 case TK_OR:
3701 case TK_PLUS:
3702 case TK_STAR:
3703 case TK_MINUS:
3704 case TK_REM:
3705 case TK_BITAND:
3706 case TK_BITOR:
3707 case TK_SLASH:
3708 case TK_LSHIFT:
3709 case TK_RSHIFT:
3710 case TK_CONCAT: {
3711 assert( TK_AND==OP_And ); testcase( op==TK_AND );
3712 assert( TK_OR==OP_Or ); testcase( op==TK_OR );
3713 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
3714 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
3715 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
3716 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
3717 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
3718 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
3719 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
3720 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
3721 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
3722 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3723 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3724 sqlite3VdbeAddOp3(v, op, r2, r1, target);
3725 testcase( regFree1==0 );
3726 testcase( regFree2==0 );
3727 break;
3729 case TK_UMINUS: {
3730 Expr *pLeft = pExpr->pLeft;
3731 assert( pLeft );
3732 if( pLeft->op==TK_INTEGER ){
3733 codeInteger(pParse, pLeft, 1, target);
3734 return target;
3735 #ifndef SQLITE_OMIT_FLOATING_POINT
3736 }else if( pLeft->op==TK_FLOAT ){
3737 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3738 codeReal(v, pLeft->u.zToken, 1, target);
3739 return target;
3740 #endif
3741 }else{
3742 tempX.op = TK_INTEGER;
3743 tempX.flags = EP_IntValue|EP_TokenOnly;
3744 tempX.u.iValue = 0;
3745 r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3746 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3747 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3748 testcase( regFree2==0 );
3750 break;
3752 case TK_BITNOT:
3753 case TK_NOT: {
3754 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
3755 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
3756 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3757 testcase( regFree1==0 );
3758 sqlite3VdbeAddOp2(v, op, r1, inReg);
3759 break;
3761 case TK_TRUTH: {
3762 int isTrue; /* IS TRUE or IS NOT TRUE */
3763 int bNormal; /* IS TRUE or IS FALSE */
3764 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3765 testcase( regFree1==0 );
3766 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3767 bNormal = pExpr->op2==TK_IS;
3768 testcase( isTrue && bNormal);
3769 testcase( !isTrue && bNormal);
3770 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3771 break;
3773 case TK_ISNULL:
3774 case TK_NOTNULL: {
3775 int addr;
3776 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
3777 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3778 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3779 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3780 testcase( regFree1==0 );
3781 addr = sqlite3VdbeAddOp1(v, op, r1);
3782 VdbeCoverageIf(v, op==TK_ISNULL);
3783 VdbeCoverageIf(v, op==TK_NOTNULL);
3784 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3785 sqlite3VdbeJumpHere(v, addr);
3786 break;
3788 case TK_AGG_FUNCTION: {
3789 AggInfo *pInfo = pExpr->pAggInfo;
3790 if( pInfo==0 ){
3791 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3792 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3793 }else{
3794 return pInfo->aFunc[pExpr->iAgg].iMem;
3796 break;
3798 case TK_FUNCTION: {
3799 ExprList *pFarg; /* List of function arguments */
3800 int nFarg; /* Number of function arguments */
3801 FuncDef *pDef; /* The function definition object */
3802 const char *zId; /* The function name */
3803 u32 constMask = 0; /* Mask of function arguments that are constant */
3804 int i; /* Loop counter */
3805 sqlite3 *db = pParse->db; /* The database connection */
3806 u8 enc = ENC(db); /* The text encoding used by this database */
3807 CollSeq *pColl = 0; /* A collating sequence */
3809 #ifndef SQLITE_OMIT_WINDOWFUNC
3810 if( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) && pExpr->pWin ){
3811 return pExpr->pWin->regResult;
3813 #endif
3815 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3816 /* SQL functions can be expensive. So try to move constant functions
3817 ** out of the inner loop, even if that means an extra OP_Copy. */
3818 return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3820 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3821 if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3822 pFarg = 0;
3823 }else{
3824 pFarg = pExpr->x.pList;
3826 nFarg = pFarg ? pFarg->nExpr : 0;
3827 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3828 zId = pExpr->u.zToken;
3829 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3830 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3831 if( pDef==0 && pParse->explain ){
3832 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3834 #endif
3835 if( pDef==0 || pDef->xFinalize!=0 ){
3836 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3837 break;
3840 /* Attempt a direct implementation of the built-in COALESCE() and
3841 ** IFNULL() functions. This avoids unnecessary evaluation of
3842 ** arguments past the first non-NULL argument.
3844 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3845 int endCoalesce = sqlite3VdbeMakeLabel(v);
3846 assert( nFarg>=2 );
3847 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3848 for(i=1; i<nFarg; i++){
3849 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3850 VdbeCoverage(v);
3851 sqlite3ExprCacheRemove(pParse, target, 1);
3852 sqlite3ExprCachePush(pParse);
3853 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3854 sqlite3ExprCachePop(pParse);
3856 sqlite3VdbeResolveLabel(v, endCoalesce);
3857 break;
3860 /* The UNLIKELY() function is a no-op. The result is the value
3861 ** of the first argument.
3863 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3864 assert( nFarg>=1 );
3865 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3868 #ifdef SQLITE_DEBUG
3869 /* The AFFINITY() function evaluates to a string that describes
3870 ** the type affinity of the argument. This is used for testing of
3871 ** the SQLite type logic.
3873 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3874 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3875 char aff;
3876 assert( nFarg==1 );
3877 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3878 sqlite3VdbeLoadString(v, target,
3879 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3880 return target;
3882 #endif
3884 for(i=0; i<nFarg; i++){
3885 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3886 testcase( i==31 );
3887 constMask |= MASKBIT32(i);
3889 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3890 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3893 if( pFarg ){
3894 if( constMask ){
3895 r1 = pParse->nMem+1;
3896 pParse->nMem += nFarg;
3897 }else{
3898 r1 = sqlite3GetTempRange(pParse, nFarg);
3901 /* For length() and typeof() functions with a column argument,
3902 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3903 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3904 ** loading.
3906 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3907 u8 exprOp;
3908 assert( nFarg==1 );
3909 assert( pFarg->a[0].pExpr!=0 );
3910 exprOp = pFarg->a[0].pExpr->op;
3911 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3912 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3913 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3914 testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3915 pFarg->a[0].pExpr->op2 =
3916 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3920 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
3921 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3922 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3923 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */
3924 }else{
3925 r1 = 0;
3927 #ifndef SQLITE_OMIT_VIRTUALTABLE
3928 /* Possibly overload the function if the first argument is
3929 ** a virtual table column.
3931 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3932 ** second argument, not the first, as the argument to test to
3933 ** see if it is a column in a virtual table. This is done because
3934 ** the left operand of infix functions (the operand we want to
3935 ** control overloading) ends up as the second argument to the
3936 ** function. The expression "A glob B" is equivalent to
3937 ** "glob(B,A). We want to use the A in "A glob B" to test
3938 ** for function overloading. But we use the B term in "glob(B,A)".
3940 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3941 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3942 }else if( nFarg>0 ){
3943 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3945 #endif
3946 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3947 if( !pColl ) pColl = db->pDfltColl;
3948 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3950 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3951 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3952 Expr *pArg = pFarg->a[0].pExpr;
3953 if( pArg->op==TK_COLUMN ){
3954 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3955 }else{
3956 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3958 }else
3959 #endif
3961 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3962 constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3963 sqlite3VdbeChangeP5(v, (u8)nFarg);
3965 if( nFarg && constMask==0 ){
3966 sqlite3ReleaseTempRange(pParse, r1, nFarg);
3968 return target;
3970 #ifndef SQLITE_OMIT_SUBQUERY
3971 case TK_EXISTS:
3972 case TK_SELECT: {
3973 int nCol;
3974 testcase( op==TK_EXISTS );
3975 testcase( op==TK_SELECT );
3976 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3977 sqlite3SubselectError(pParse, nCol, 1);
3978 }else{
3979 return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3981 break;
3983 case TK_SELECT_COLUMN: {
3984 int n;
3985 if( pExpr->pLeft->iTable==0 ){
3986 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3988 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3989 if( pExpr->iTable
3990 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3992 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3993 pExpr->iTable, n);
3995 return pExpr->pLeft->iTable + pExpr->iColumn;
3997 case TK_IN: {
3998 int destIfFalse = sqlite3VdbeMakeLabel(v);
3999 int destIfNull = sqlite3VdbeMakeLabel(v);
4000 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4001 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4002 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4003 sqlite3VdbeResolveLabel(v, destIfFalse);
4004 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4005 sqlite3VdbeResolveLabel(v, destIfNull);
4006 return target;
4008 #endif /* SQLITE_OMIT_SUBQUERY */
4012 ** x BETWEEN y AND z
4014 ** This is equivalent to
4016 ** x>=y AND x<=z
4018 ** X is stored in pExpr->pLeft.
4019 ** Y is stored in pExpr->pList->a[0].pExpr.
4020 ** Z is stored in pExpr->pList->a[1].pExpr.
4022 case TK_BETWEEN: {
4023 exprCodeBetween(pParse, pExpr, target, 0, 0);
4024 return target;
4026 case TK_SPAN:
4027 case TK_COLLATE:
4028 case TK_UPLUS: {
4029 pExpr = pExpr->pLeft;
4030 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4033 case TK_TRIGGER: {
4034 /* If the opcode is TK_TRIGGER, then the expression is a reference
4035 ** to a column in the new.* or old.* pseudo-tables available to
4036 ** trigger programs. In this case Expr.iTable is set to 1 for the
4037 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4038 ** is set to the column of the pseudo-table to read, or to -1 to
4039 ** read the rowid field.
4041 ** The expression is implemented using an OP_Param opcode. The p1
4042 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4043 ** to reference another column of the old.* pseudo-table, where
4044 ** i is the index of the column. For a new.rowid reference, p1 is
4045 ** set to (n+1), where n is the number of columns in each pseudo-table.
4046 ** For a reference to any other column in the new.* pseudo-table, p1
4047 ** is set to (n+2+i), where n and i are as defined previously. For
4048 ** example, if the table on which triggers are being fired is
4049 ** declared as:
4051 ** CREATE TABLE t1(a, b);
4053 ** Then p1 is interpreted as follows:
4055 ** p1==0 -> old.rowid p1==3 -> new.rowid
4056 ** p1==1 -> old.a p1==4 -> new.a
4057 ** p1==2 -> old.b p1==5 -> new.b
4059 Table *pTab = pExpr->pTab;
4060 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
4062 assert( pExpr->iTable==0 || pExpr->iTable==1 );
4063 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
4064 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
4065 assert( p1>=0 && p1<(pTab->nCol*2+2) );
4067 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4068 VdbeComment((v, "r[%d]=%s.%s", target,
4069 (pExpr->iTable ? "new" : "old"),
4070 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName)
4073 #ifndef SQLITE_OMIT_FLOATING_POINT
4074 /* If the column has REAL affinity, it may currently be stored as an
4075 ** integer. Use OP_RealAffinity to make sure it is really real.
4077 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4078 ** floating point when extracting it from the record. */
4079 if( pExpr->iColumn>=0
4080 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
4082 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4084 #endif
4085 break;
4088 case TK_VECTOR: {
4089 sqlite3ErrorMsg(pParse, "row value misused");
4090 break;
4093 case TK_IF_NULL_ROW: {
4094 int addrINR;
4095 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4096 sqlite3ExprCachePush(pParse);
4097 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4098 sqlite3ExprCachePop(pParse);
4099 sqlite3VdbeJumpHere(v, addrINR);
4100 sqlite3VdbeChangeP3(v, addrINR, inReg);
4101 break;
4105 ** Form A:
4106 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4108 ** Form B:
4109 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4111 ** Form A is can be transformed into the equivalent form B as follows:
4112 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4113 ** WHEN x=eN THEN rN ELSE y END
4115 ** X (if it exists) is in pExpr->pLeft.
4116 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4117 ** odd. The Y is also optional. If the number of elements in x.pList
4118 ** is even, then Y is omitted and the "otherwise" result is NULL.
4119 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4121 ** The result of the expression is the Ri for the first matching Ei,
4122 ** or if there is no matching Ei, the ELSE term Y, or if there is
4123 ** no ELSE term, NULL.
4125 default: assert( op==TK_CASE ); {
4126 int endLabel; /* GOTO label for end of CASE stmt */
4127 int nextCase; /* GOTO label for next WHEN clause */
4128 int nExpr; /* 2x number of WHEN terms */
4129 int i; /* Loop counter */
4130 ExprList *pEList; /* List of WHEN terms */
4131 struct ExprList_item *aListelem; /* Array of WHEN terms */
4132 Expr opCompare; /* The X==Ei expression */
4133 Expr *pX; /* The X expression */
4134 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
4135 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
4137 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4138 assert(pExpr->x.pList->nExpr > 0);
4139 pEList = pExpr->x.pList;
4140 aListelem = pEList->a;
4141 nExpr = pEList->nExpr;
4142 endLabel = sqlite3VdbeMakeLabel(v);
4143 if( (pX = pExpr->pLeft)!=0 ){
4144 tempX = *pX;
4145 testcase( pX->op==TK_COLUMN );
4146 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
4147 testcase( regFree1==0 );
4148 memset(&opCompare, 0, sizeof(opCompare));
4149 opCompare.op = TK_EQ;
4150 opCompare.pLeft = &tempX;
4151 pTest = &opCompare;
4152 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4153 ** The value in regFree1 might get SCopy-ed into the file result.
4154 ** So make sure that the regFree1 register is not reused for other
4155 ** purposes and possibly overwritten. */
4156 regFree1 = 0;
4158 for(i=0; i<nExpr-1; i=i+2){
4159 sqlite3ExprCachePush(pParse);
4160 if( pX ){
4161 assert( pTest!=0 );
4162 opCompare.pRight = aListelem[i].pExpr;
4163 }else{
4164 pTest = aListelem[i].pExpr;
4166 nextCase = sqlite3VdbeMakeLabel(v);
4167 testcase( pTest->op==TK_COLUMN );
4168 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4169 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4170 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4171 sqlite3VdbeGoto(v, endLabel);
4172 sqlite3ExprCachePop(pParse);
4173 sqlite3VdbeResolveLabel(v, nextCase);
4175 if( (nExpr&1)!=0 ){
4176 sqlite3ExprCachePush(pParse);
4177 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4178 sqlite3ExprCachePop(pParse);
4179 }else{
4180 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4182 assert( pParse->db->mallocFailed || pParse->nErr>0
4183 || pParse->iCacheLevel==iCacheLevel );
4184 sqlite3VdbeResolveLabel(v, endLabel);
4185 break;
4187 #ifndef SQLITE_OMIT_TRIGGER
4188 case TK_RAISE: {
4189 assert( pExpr->affinity==OE_Rollback
4190 || pExpr->affinity==OE_Abort
4191 || pExpr->affinity==OE_Fail
4192 || pExpr->affinity==OE_Ignore
4194 if( !pParse->pTriggerTab ){
4195 sqlite3ErrorMsg(pParse,
4196 "RAISE() may only be used within a trigger-program");
4197 return 0;
4199 if( pExpr->affinity==OE_Abort ){
4200 sqlite3MayAbort(pParse);
4202 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4203 if( pExpr->affinity==OE_Ignore ){
4204 sqlite3VdbeAddOp4(
4205 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4206 VdbeCoverage(v);
4207 }else{
4208 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4209 pExpr->affinity, pExpr->u.zToken, 0, 0);
4212 break;
4214 #endif
4216 sqlite3ReleaseTempReg(pParse, regFree1);
4217 sqlite3ReleaseTempReg(pParse, regFree2);
4218 return inReg;
4222 ** Factor out the code of the given expression to initialization time.
4224 ** If regDest>=0 then the result is always stored in that register and the
4225 ** result is not reusable. If regDest<0 then this routine is free to
4226 ** store the value whereever it wants. The register where the expression
4227 ** is stored is returned. When regDest<0, two identical expressions will
4228 ** code to the same register.
4230 int sqlite3ExprCodeAtInit(
4231 Parse *pParse, /* Parsing context */
4232 Expr *pExpr, /* The expression to code when the VDBE initializes */
4233 int regDest /* Store the value in this register */
4235 ExprList *p;
4236 assert( ConstFactorOk(pParse) );
4237 p = pParse->pConstExpr;
4238 if( regDest<0 && p ){
4239 struct ExprList_item *pItem;
4240 int i;
4241 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4242 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4243 return pItem->u.iConstExprReg;
4247 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4248 p = sqlite3ExprListAppend(pParse, p, pExpr);
4249 if( p ){
4250 struct ExprList_item *pItem = &p->a[p->nExpr-1];
4251 pItem->reusable = regDest<0;
4252 if( regDest<0 ) regDest = ++pParse->nMem;
4253 pItem->u.iConstExprReg = regDest;
4255 pParse->pConstExpr = p;
4256 return regDest;
4260 ** Generate code to evaluate an expression and store the results
4261 ** into a register. Return the register number where the results
4262 ** are stored.
4264 ** If the register is a temporary register that can be deallocated,
4265 ** then write its number into *pReg. If the result register is not
4266 ** a temporary, then set *pReg to zero.
4268 ** If pExpr is a constant, then this routine might generate this
4269 ** code to fill the register in the initialization section of the
4270 ** VDBE program, in order to factor it out of the evaluation loop.
4272 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4273 int r2;
4274 pExpr = sqlite3ExprSkipCollate(pExpr);
4275 if( ConstFactorOk(pParse)
4276 && pExpr->op!=TK_REGISTER
4277 && sqlite3ExprIsConstantNotJoin(pExpr)
4279 *pReg = 0;
4280 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4281 }else{
4282 int r1 = sqlite3GetTempReg(pParse);
4283 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4284 if( r2==r1 ){
4285 *pReg = r1;
4286 }else{
4287 sqlite3ReleaseTempReg(pParse, r1);
4288 *pReg = 0;
4291 return r2;
4295 ** Generate code that will evaluate expression pExpr and store the
4296 ** results in register target. The results are guaranteed to appear
4297 ** in register target.
4299 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4300 int inReg;
4302 assert( target>0 && target<=pParse->nMem );
4303 if( pExpr && pExpr->op==TK_REGISTER ){
4304 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4305 }else{
4306 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4307 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4308 if( inReg!=target && pParse->pVdbe ){
4309 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4315 ** Make a transient copy of expression pExpr and then code it using
4316 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
4317 ** except that the input expression is guaranteed to be unchanged.
4319 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4320 sqlite3 *db = pParse->db;
4321 pExpr = sqlite3ExprDup(db, pExpr, 0);
4322 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4323 sqlite3ExprDelete(db, pExpr);
4327 ** Generate code that will evaluate expression pExpr and store the
4328 ** results in register target. The results are guaranteed to appear
4329 ** in register target. If the expression is constant, then this routine
4330 ** might choose to code the expression at initialization time.
4332 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4333 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4334 sqlite3ExprCodeAtInit(pParse, pExpr, target);
4335 }else{
4336 sqlite3ExprCode(pParse, pExpr, target);
4341 ** Generate code that evaluates the given expression and puts the result
4342 ** in register target.
4344 ** Also make a copy of the expression results into another "cache" register
4345 ** and modify the expression so that the next time it is evaluated,
4346 ** the result is a copy of the cache register.
4348 ** This routine is used for expressions that are used multiple
4349 ** times. They are evaluated once and the results of the expression
4350 ** are reused.
4352 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4353 Vdbe *v = pParse->pVdbe;
4354 int iMem;
4356 assert( target>0 );
4357 assert( pExpr->op!=TK_REGISTER );
4358 sqlite3ExprCode(pParse, pExpr, target);
4359 iMem = ++pParse->nMem;
4360 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4361 exprToRegister(pExpr, iMem);
4365 ** Generate code that pushes the value of every element of the given
4366 ** expression list into a sequence of registers beginning at target.
4368 ** Return the number of elements evaluated. The number returned will
4369 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4370 ** is defined.
4372 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4373 ** filled using OP_SCopy. OP_Copy must be used instead.
4375 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4376 ** factored out into initialization code.
4378 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4379 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4380 ** in registers at srcReg, and so the value can be copied from there.
4381 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4382 ** are simply omitted rather than being copied from srcReg.
4384 int sqlite3ExprCodeExprList(
4385 Parse *pParse, /* Parsing context */
4386 ExprList *pList, /* The expression list to be coded */
4387 int target, /* Where to write results */
4388 int srcReg, /* Source registers if SQLITE_ECEL_REF */
4389 u8 flags /* SQLITE_ECEL_* flags */
4391 struct ExprList_item *pItem;
4392 int i, j, n;
4393 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4394 Vdbe *v = pParse->pVdbe;
4395 assert( pList!=0 );
4396 assert( target>0 );
4397 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
4398 n = pList->nExpr;
4399 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4400 for(pItem=pList->a, i=0; i<n; i++, pItem++){
4401 Expr *pExpr = pItem->pExpr;
4402 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4403 if( pItem->bSorterRef ){
4404 i--;
4405 n--;
4406 }else
4407 #endif
4408 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4409 if( flags & SQLITE_ECEL_OMITREF ){
4410 i--;
4411 n--;
4412 }else{
4413 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4415 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4416 sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4417 }else{
4418 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4419 if( inReg!=target+i ){
4420 VdbeOp *pOp;
4421 if( copyOp==OP_Copy
4422 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4423 && pOp->p1+pOp->p3+1==inReg
4424 && pOp->p2+pOp->p3+1==target+i
4426 pOp->p3++;
4427 }else{
4428 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4433 return n;
4437 ** Generate code for a BETWEEN operator.
4439 ** x BETWEEN y AND z
4441 ** The above is equivalent to
4443 ** x>=y AND x<=z
4445 ** Code it as such, taking care to do the common subexpression
4446 ** elimination of x.
4448 ** The xJumpIf parameter determines details:
4450 ** NULL: Store the boolean result in reg[dest]
4451 ** sqlite3ExprIfTrue: Jump to dest if true
4452 ** sqlite3ExprIfFalse: Jump to dest if false
4454 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4456 static void exprCodeBetween(
4457 Parse *pParse, /* Parsing and code generating context */
4458 Expr *pExpr, /* The BETWEEN expression */
4459 int dest, /* Jump destination or storage location */
4460 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4461 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
4463 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
4464 Expr compLeft; /* The x>=y term */
4465 Expr compRight; /* The x<=z term */
4466 Expr exprX; /* The x subexpression */
4467 int regFree1 = 0; /* Temporary use register */
4470 memset(&compLeft, 0, sizeof(Expr));
4471 memset(&compRight, 0, sizeof(Expr));
4472 memset(&exprAnd, 0, sizeof(Expr));
4474 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4475 exprX = *pExpr->pLeft;
4476 exprAnd.op = TK_AND;
4477 exprAnd.pLeft = &compLeft;
4478 exprAnd.pRight = &compRight;
4479 compLeft.op = TK_GE;
4480 compLeft.pLeft = &exprX;
4481 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4482 compRight.op = TK_LE;
4483 compRight.pLeft = &exprX;
4484 compRight.pRight = pExpr->x.pList->a[1].pExpr;
4485 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4486 if( xJump ){
4487 xJump(pParse, &exprAnd, dest, jumpIfNull);
4488 }else{
4489 /* Mark the expression is being from the ON or USING clause of a join
4490 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4491 ** it into the Parse.pConstExpr list. We should use a new bit for this,
4492 ** for clarity, but we are out of bits in the Expr.flags field so we
4493 ** have to reuse the EP_FromJoin bit. Bummer. */
4494 exprX.flags |= EP_FromJoin;
4495 sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4497 sqlite3ReleaseTempReg(pParse, regFree1);
4499 /* Ensure adequate test coverage */
4500 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 );
4501 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 );
4502 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 );
4503 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 );
4504 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4505 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4506 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4507 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4508 testcase( xJump==0 );
4512 ** Generate code for a boolean expression such that a jump is made
4513 ** to the label "dest" if the expression is true but execution
4514 ** continues straight thru if the expression is false.
4516 ** If the expression evaluates to NULL (neither true nor false), then
4517 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4519 ** This code depends on the fact that certain token values (ex: TK_EQ)
4520 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4521 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
4522 ** the make process cause these values to align. Assert()s in the code
4523 ** below verify that the numbers are aligned correctly.
4525 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4526 Vdbe *v = pParse->pVdbe;
4527 int op = 0;
4528 int regFree1 = 0;
4529 int regFree2 = 0;
4530 int r1, r2;
4532 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4533 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4534 if( NEVER(pExpr==0) ) return; /* No way this can happen */
4535 op = pExpr->op;
4536 switch( op ){
4537 case TK_AND: {
4538 int d2 = sqlite3VdbeMakeLabel(v);
4539 testcase( jumpIfNull==0 );
4540 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4541 sqlite3ExprCachePush(pParse);
4542 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4543 sqlite3VdbeResolveLabel(v, d2);
4544 sqlite3ExprCachePop(pParse);
4545 break;
4547 case TK_OR: {
4548 testcase( jumpIfNull==0 );
4549 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4550 sqlite3ExprCachePush(pParse);
4551 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4552 sqlite3ExprCachePop(pParse);
4553 break;
4555 case TK_NOT: {
4556 testcase( jumpIfNull==0 );
4557 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4558 break;
4560 case TK_TRUTH: {
4561 int isNot; /* IS NOT TRUE or IS NOT FALSE */
4562 int isTrue; /* IS TRUE or IS NOT TRUE */
4563 testcase( jumpIfNull==0 );
4564 isNot = pExpr->op2==TK_ISNOT;
4565 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4566 testcase( isTrue && isNot );
4567 testcase( !isTrue && isNot );
4568 if( isTrue ^ isNot ){
4569 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4570 isNot ? SQLITE_JUMPIFNULL : 0);
4571 }else{
4572 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4573 isNot ? SQLITE_JUMPIFNULL : 0);
4575 break;
4577 case TK_IS:
4578 case TK_ISNOT:
4579 testcase( op==TK_IS );
4580 testcase( op==TK_ISNOT );
4581 op = (op==TK_IS) ? TK_EQ : TK_NE;
4582 jumpIfNull = SQLITE_NULLEQ;
4583 /* Fall thru */
4584 case TK_LT:
4585 case TK_LE:
4586 case TK_GT:
4587 case TK_GE:
4588 case TK_NE:
4589 case TK_EQ: {
4590 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4591 testcase( jumpIfNull==0 );
4592 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4593 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4594 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4595 r1, r2, dest, jumpIfNull);
4596 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4597 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4598 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4599 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4600 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4601 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4602 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4603 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4604 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4605 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4606 testcase( regFree1==0 );
4607 testcase( regFree2==0 );
4608 break;
4610 case TK_ISNULL:
4611 case TK_NOTNULL: {
4612 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
4613 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4614 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4615 sqlite3VdbeAddOp2(v, op, r1, dest);
4616 VdbeCoverageIf(v, op==TK_ISNULL);
4617 VdbeCoverageIf(v, op==TK_NOTNULL);
4618 testcase( regFree1==0 );
4619 break;
4621 case TK_BETWEEN: {
4622 testcase( jumpIfNull==0 );
4623 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4624 break;
4626 #ifndef SQLITE_OMIT_SUBQUERY
4627 case TK_IN: {
4628 int destIfFalse = sqlite3VdbeMakeLabel(v);
4629 int destIfNull = jumpIfNull ? dest : destIfFalse;
4630 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4631 sqlite3VdbeGoto(v, dest);
4632 sqlite3VdbeResolveLabel(v, destIfFalse);
4633 break;
4635 #endif
4636 default: {
4637 default_expr:
4638 if( exprAlwaysTrue(pExpr) ){
4639 sqlite3VdbeGoto(v, dest);
4640 }else if( exprAlwaysFalse(pExpr) ){
4641 /* No-op */
4642 }else{
4643 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4644 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4645 VdbeCoverage(v);
4646 testcase( regFree1==0 );
4647 testcase( jumpIfNull==0 );
4649 break;
4652 sqlite3ReleaseTempReg(pParse, regFree1);
4653 sqlite3ReleaseTempReg(pParse, regFree2);
4657 ** Generate code for a boolean expression such that a jump is made
4658 ** to the label "dest" if the expression is false but execution
4659 ** continues straight thru if the expression is true.
4661 ** If the expression evaluates to NULL (neither true nor false) then
4662 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4663 ** is 0.
4665 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4666 Vdbe *v = pParse->pVdbe;
4667 int op = 0;
4668 int regFree1 = 0;
4669 int regFree2 = 0;
4670 int r1, r2;
4672 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4673 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4674 if( pExpr==0 ) return;
4676 /* The value of pExpr->op and op are related as follows:
4678 ** pExpr->op op
4679 ** --------- ----------
4680 ** TK_ISNULL OP_NotNull
4681 ** TK_NOTNULL OP_IsNull
4682 ** TK_NE OP_Eq
4683 ** TK_EQ OP_Ne
4684 ** TK_GT OP_Le
4685 ** TK_LE OP_Gt
4686 ** TK_GE OP_Lt
4687 ** TK_LT OP_Ge
4689 ** For other values of pExpr->op, op is undefined and unused.
4690 ** The value of TK_ and OP_ constants are arranged such that we
4691 ** can compute the mapping above using the following expression.
4692 ** Assert()s verify that the computation is correct.
4694 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4696 /* Verify correct alignment of TK_ and OP_ constants
4698 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4699 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4700 assert( pExpr->op!=TK_NE || op==OP_Eq );
4701 assert( pExpr->op!=TK_EQ || op==OP_Ne );
4702 assert( pExpr->op!=TK_LT || op==OP_Ge );
4703 assert( pExpr->op!=TK_LE || op==OP_Gt );
4704 assert( pExpr->op!=TK_GT || op==OP_Le );
4705 assert( pExpr->op!=TK_GE || op==OP_Lt );
4707 switch( pExpr->op ){
4708 case TK_AND: {
4709 testcase( jumpIfNull==0 );
4710 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4711 sqlite3ExprCachePush(pParse);
4712 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4713 sqlite3ExprCachePop(pParse);
4714 break;
4716 case TK_OR: {
4717 int d2 = sqlite3VdbeMakeLabel(v);
4718 testcase( jumpIfNull==0 );
4719 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4720 sqlite3ExprCachePush(pParse);
4721 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4722 sqlite3VdbeResolveLabel(v, d2);
4723 sqlite3ExprCachePop(pParse);
4724 break;
4726 case TK_NOT: {
4727 testcase( jumpIfNull==0 );
4728 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4729 break;
4731 case TK_TRUTH: {
4732 int isNot; /* IS NOT TRUE or IS NOT FALSE */
4733 int isTrue; /* IS TRUE or IS NOT TRUE */
4734 testcase( jumpIfNull==0 );
4735 isNot = pExpr->op2==TK_ISNOT;
4736 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4737 testcase( isTrue && isNot );
4738 testcase( !isTrue && isNot );
4739 if( isTrue ^ isNot ){
4740 /* IS TRUE and IS NOT FALSE */
4741 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4742 isNot ? 0 : SQLITE_JUMPIFNULL);
4744 }else{
4745 /* IS FALSE and IS NOT TRUE */
4746 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4747 isNot ? 0 : SQLITE_JUMPIFNULL);
4749 break;
4751 case TK_IS:
4752 case TK_ISNOT:
4753 testcase( pExpr->op==TK_IS );
4754 testcase( pExpr->op==TK_ISNOT );
4755 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4756 jumpIfNull = SQLITE_NULLEQ;
4757 /* Fall thru */
4758 case TK_LT:
4759 case TK_LE:
4760 case TK_GT:
4761 case TK_GE:
4762 case TK_NE:
4763 case TK_EQ: {
4764 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4765 testcase( jumpIfNull==0 );
4766 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4767 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4768 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4769 r1, r2, dest, jumpIfNull);
4770 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4771 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4772 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4773 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4774 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4775 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4776 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4777 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4778 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4779 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4780 testcase( regFree1==0 );
4781 testcase( regFree2==0 );
4782 break;
4784 case TK_ISNULL:
4785 case TK_NOTNULL: {
4786 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4787 sqlite3VdbeAddOp2(v, op, r1, dest);
4788 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
4789 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
4790 testcase( regFree1==0 );
4791 break;
4793 case TK_BETWEEN: {
4794 testcase( jumpIfNull==0 );
4795 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4796 break;
4798 #ifndef SQLITE_OMIT_SUBQUERY
4799 case TK_IN: {
4800 if( jumpIfNull ){
4801 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4802 }else{
4803 int destIfNull = sqlite3VdbeMakeLabel(v);
4804 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4805 sqlite3VdbeResolveLabel(v, destIfNull);
4807 break;
4809 #endif
4810 default: {
4811 default_expr:
4812 if( exprAlwaysFalse(pExpr) ){
4813 sqlite3VdbeGoto(v, dest);
4814 }else if( exprAlwaysTrue(pExpr) ){
4815 /* no-op */
4816 }else{
4817 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4818 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4819 VdbeCoverage(v);
4820 testcase( regFree1==0 );
4821 testcase( jumpIfNull==0 );
4823 break;
4826 sqlite3ReleaseTempReg(pParse, regFree1);
4827 sqlite3ReleaseTempReg(pParse, regFree2);
4831 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4832 ** code generation, and that copy is deleted after code generation. This
4833 ** ensures that the original pExpr is unchanged.
4835 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4836 sqlite3 *db = pParse->db;
4837 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4838 if( db->mallocFailed==0 ){
4839 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4841 sqlite3ExprDelete(db, pCopy);
4845 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4846 ** type of expression.
4848 ** If pExpr is a simple SQL value - an integer, real, string, blob
4849 ** or NULL value - then the VDBE currently being prepared is configured
4850 ** to re-prepare each time a new value is bound to variable pVar.
4852 ** Additionally, if pExpr is a simple SQL value and the value is the
4853 ** same as that currently bound to variable pVar, non-zero is returned.
4854 ** Otherwise, if the values are not the same or if pExpr is not a simple
4855 ** SQL value, zero is returned.
4857 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4858 int res = 0;
4859 int iVar;
4860 sqlite3_value *pL, *pR = 0;
4862 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4863 if( pR ){
4864 iVar = pVar->iColumn;
4865 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4866 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4867 if( pL ){
4868 if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4869 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4871 res = 0==sqlite3MemCompare(pL, pR, 0);
4873 sqlite3ValueFree(pR);
4874 sqlite3ValueFree(pL);
4877 return res;
4881 ** Do a deep comparison of two expression trees. Return 0 if the two
4882 ** expressions are completely identical. Return 1 if they differ only
4883 ** by a COLLATE operator at the top level. Return 2 if there are differences
4884 ** other than the top-level COLLATE operator.
4886 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4887 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4889 ** The pA side might be using TK_REGISTER. If that is the case and pB is
4890 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4892 ** Sometimes this routine will return 2 even if the two expressions
4893 ** really are equivalent. If we cannot prove that the expressions are
4894 ** identical, we return 2 just to be safe. So if this routine
4895 ** returns 2, then you do not really know for certain if the two
4896 ** expressions are the same. But if you get a 0 or 1 return, then you
4897 ** can be sure the expressions are the same. In the places where
4898 ** this routine is used, it does not hurt to get an extra 2 - that
4899 ** just might result in some slightly slower code. But returning
4900 ** an incorrect 0 or 1 could lead to a malfunction.
4902 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4903 ** pParse->pReprepare can be matched against literals in pB. The
4904 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4905 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4906 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4907 ** pB causes a return value of 2.
4909 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4910 u32 combinedFlags;
4911 if( pA==0 || pB==0 ){
4912 return pB==pA ? 0 : 2;
4914 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4915 return 0;
4917 combinedFlags = pA->flags | pB->flags;
4918 if( combinedFlags & EP_IntValue ){
4919 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4920 return 0;
4922 return 2;
4924 if( pA->op!=pB->op ){
4925 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4926 return 1;
4928 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4929 return 1;
4931 return 2;
4933 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4934 if( pA->op==TK_FUNCTION ){
4935 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4936 }else if( pA->op==TK_COLLATE ){
4937 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4938 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4939 return 2;
4942 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4943 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4944 if( combinedFlags & EP_xIsSelect ) return 2;
4945 if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4946 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4947 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4948 assert( (combinedFlags & EP_Reduced)==0 );
4949 if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){
4950 if( pA->iColumn!=pB->iColumn ) return 2;
4951 if( pA->iTable!=pB->iTable
4952 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4954 #ifndef SQLITE_OMIT_WINDOWFUNC
4955 /* Justification for the assert():
4956 ** window functions have p->op==TK_FUNCTION but aggregate functions
4957 ** have p->op==TK_AGG_FUNCTION. So any comparison between an aggregate
4958 ** function and a window function should have failed before reaching
4959 ** this point. And, it is not possible to have a window function and
4960 ** a scalar function with the same name and number of arguments. So
4961 ** if we reach this point, either A and B both window functions or
4962 ** neither are a window functions. */
4963 assert( (pA->pWin==0)==(pB->pWin==0) );
4965 if( pA->pWin!=0 ){
4966 if( sqlite3WindowCompare(pParse,pA->pWin,pB->pWin)!=0 ) return 2;
4968 #endif
4970 return 0;
4974 ** Compare two ExprList objects. Return 0 if they are identical and
4975 ** non-zero if they differ in any way.
4977 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4978 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4980 ** This routine might return non-zero for equivalent ExprLists. The
4981 ** only consequence will be disabled optimizations. But this routine
4982 ** must never return 0 if the two ExprList objects are different, or
4983 ** a malfunction will result.
4985 ** Two NULL pointers are considered to be the same. But a NULL pointer
4986 ** always differs from a non-NULL pointer.
4988 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4989 int i;
4990 if( pA==0 && pB==0 ) return 0;
4991 if( pA==0 || pB==0 ) return 1;
4992 if( pA->nExpr!=pB->nExpr ) return 1;
4993 for(i=0; i<pA->nExpr; i++){
4994 Expr *pExprA = pA->a[i].pExpr;
4995 Expr *pExprB = pB->a[i].pExpr;
4996 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4997 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4999 return 0;
5003 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5004 ** are ignored.
5006 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5007 return sqlite3ExprCompare(0,
5008 sqlite3ExprSkipCollate(pA),
5009 sqlite3ExprSkipCollate(pB),
5010 iTab);
5014 ** Return true if we can prove the pE2 will always be true if pE1 is
5015 ** true. Return false if we cannot complete the proof or if pE2 might
5016 ** be false. Examples:
5018 ** pE1: x==5 pE2: x==5 Result: true
5019 ** pE1: x>0 pE2: x==5 Result: false
5020 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
5021 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
5022 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
5023 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
5024 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
5026 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5027 ** Expr.iTable<0 then assume a table number given by iTab.
5029 ** If pParse is not NULL, then the values of bound variables in pE1 are
5030 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5031 ** modified to record which bound variables are referenced. If pParse
5032 ** is NULL, then false will be returned if pE1 contains any bound variables.
5034 ** When in doubt, return false. Returning true might give a performance
5035 ** improvement. Returning false might cause a performance reduction, but
5036 ** it will always give the correct answer and is hence always safe.
5038 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5039 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5040 return 1;
5042 if( pE2->op==TK_OR
5043 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5044 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5046 return 1;
5048 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
5049 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
5050 testcase( pX!=pE1->pLeft );
5051 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
5053 return 0;
5057 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
5058 ** If the expression node requires that the table at pWalker->iCur
5059 ** have a non-NULL column, then set pWalker->eCode to 1 and abort.
5061 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5062 /* This routine is only called for WHERE clause expressions and so it
5063 ** cannot have any TK_AGG_COLUMN entries because those are only found
5064 ** in HAVING clauses. We can get a TK_AGG_FUNCTION in a WHERE clause,
5065 ** but that is an illegal construct and the query will be rejected at
5066 ** a later stage of processing, so the TK_AGG_FUNCTION case does not
5067 ** need to be considered here. */
5068 assert( pExpr->op!=TK_AGG_COLUMN );
5069 testcase( pExpr->op==TK_AGG_FUNCTION );
5071 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5072 switch( pExpr->op ){
5073 case TK_ISNOT:
5074 case TK_NOT:
5075 case TK_ISNULL:
5076 case TK_IS:
5077 case TK_OR:
5078 case TK_CASE:
5079 case TK_IN:
5080 case TK_FUNCTION:
5081 testcase( pExpr->op==TK_ISNOT );
5082 testcase( pExpr->op==TK_NOT );
5083 testcase( pExpr->op==TK_ISNULL );
5084 testcase( pExpr->op==TK_IS );
5085 testcase( pExpr->op==TK_OR );
5086 testcase( pExpr->op==TK_CASE );
5087 testcase( pExpr->op==TK_IN );
5088 testcase( pExpr->op==TK_FUNCTION );
5089 return WRC_Prune;
5090 case TK_COLUMN:
5091 if( pWalker->u.iCur==pExpr->iTable ){
5092 pWalker->eCode = 1;
5093 return WRC_Abort;
5095 return WRC_Prune;
5097 /* Virtual tables are allowed to use constraints like x=NULL. So
5098 ** a term of the form x=y does not prove that y is not null if x
5099 ** is the column of a virtual table */
5100 case TK_EQ:
5101 case TK_NE:
5102 case TK_LT:
5103 case TK_LE:
5104 case TK_GT:
5105 case TK_GE:
5106 testcase( pExpr->op==TK_EQ );
5107 testcase( pExpr->op==TK_NE );
5108 testcase( pExpr->op==TK_LT );
5109 testcase( pExpr->op==TK_LE );
5110 testcase( pExpr->op==TK_GT );
5111 testcase( pExpr->op==TK_GE );
5112 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->pTab))
5113 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->pTab))
5115 return WRC_Prune;
5117 default:
5118 return WRC_Continue;
5123 ** Return true (non-zero) if expression p can only be true if at least
5124 ** one column of table iTab is non-null. In other words, return true
5125 ** if expression p will always be NULL or false if every column of iTab
5126 ** is NULL.
5128 ** False negatives are acceptable. In other words, it is ok to return
5129 ** zero even if expression p will never be true of every column of iTab
5130 ** is NULL. A false negative is merely a missed optimization opportunity.
5132 ** False positives are not allowed, however. A false positive may result
5133 ** in an incorrect answer.
5135 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5136 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5138 ** This routine is used to check if a LEFT JOIN can be converted into
5139 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
5140 ** clause requires that some column of the right table of the LEFT JOIN
5141 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5142 ** ordinary join.
5144 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5145 Walker w;
5146 w.xExprCallback = impliesNotNullRow;
5147 w.xSelectCallback = 0;
5148 w.xSelectCallback2 = 0;
5149 w.eCode = 0;
5150 w.u.iCur = iTab;
5151 sqlite3WalkExpr(&w, p);
5152 return w.eCode;
5156 ** An instance of the following structure is used by the tree walker
5157 ** to determine if an expression can be evaluated by reference to the
5158 ** index only, without having to do a search for the corresponding
5159 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
5160 ** is the cursor for the table.
5162 struct IdxCover {
5163 Index *pIdx; /* The index to be tested for coverage */
5164 int iCur; /* Cursor number for the table corresponding to the index */
5168 ** Check to see if there are references to columns in table
5169 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5170 ** pWalker->u.pIdxCover->pIdx.
5172 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5173 if( pExpr->op==TK_COLUMN
5174 && pExpr->iTable==pWalker->u.pIdxCover->iCur
5175 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5177 pWalker->eCode = 1;
5178 return WRC_Abort;
5180 return WRC_Continue;
5184 ** Determine if an index pIdx on table with cursor iCur contains will
5185 ** the expression pExpr. Return true if the index does cover the
5186 ** expression and false if the pExpr expression references table columns
5187 ** that are not found in the index pIdx.
5189 ** An index covering an expression means that the expression can be
5190 ** evaluated using only the index and without having to lookup the
5191 ** corresponding table entry.
5193 int sqlite3ExprCoveredByIndex(
5194 Expr *pExpr, /* The index to be tested */
5195 int iCur, /* The cursor number for the corresponding table */
5196 Index *pIdx /* The index that might be used for coverage */
5198 Walker w;
5199 struct IdxCover xcov;
5200 memset(&w, 0, sizeof(w));
5201 xcov.iCur = iCur;
5202 xcov.pIdx = pIdx;
5203 w.xExprCallback = exprIdxCover;
5204 w.u.pIdxCover = &xcov;
5205 sqlite3WalkExpr(&w, pExpr);
5206 return !w.eCode;
5211 ** An instance of the following structure is used by the tree walker
5212 ** to count references to table columns in the arguments of an
5213 ** aggregate function, in order to implement the
5214 ** sqlite3FunctionThisSrc() routine.
5216 struct SrcCount {
5217 SrcList *pSrc; /* One particular FROM clause in a nested query */
5218 int nThis; /* Number of references to columns in pSrcList */
5219 int nOther; /* Number of references to columns in other FROM clauses */
5223 ** Count the number of references to columns.
5225 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5226 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5227 ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5228 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
5229 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5230 ** NEVER() will need to be removed. */
5231 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5232 int i;
5233 struct SrcCount *p = pWalker->u.pSrcCount;
5234 SrcList *pSrc = p->pSrc;
5235 int nSrc = pSrc ? pSrc->nSrc : 0;
5236 for(i=0; i<nSrc; i++){
5237 if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5239 if( i<nSrc ){
5240 p->nThis++;
5241 }else{
5242 p->nOther++;
5245 return WRC_Continue;
5249 ** Determine if any of the arguments to the pExpr Function reference
5250 ** pSrcList. Return true if they do. Also return true if the function
5251 ** has no arguments or has only constant arguments. Return false if pExpr
5252 ** references columns but not columns of tables found in pSrcList.
5254 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5255 Walker w;
5256 struct SrcCount cnt;
5257 assert( pExpr->op==TK_AGG_FUNCTION );
5258 w.xExprCallback = exprSrcCount;
5259 w.xSelectCallback = 0;
5260 w.u.pSrcCount = &cnt;
5261 cnt.pSrc = pSrcList;
5262 cnt.nThis = 0;
5263 cnt.nOther = 0;
5264 sqlite3WalkExprList(&w, pExpr->x.pList);
5265 return cnt.nThis>0 || cnt.nOther==0;
5269 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
5270 ** the new element. Return a negative number if malloc fails.
5272 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5273 int i;
5274 pInfo->aCol = sqlite3ArrayAllocate(
5276 pInfo->aCol,
5277 sizeof(pInfo->aCol[0]),
5278 &pInfo->nColumn,
5281 return i;
5285 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
5286 ** the new element. Return a negative number if malloc fails.
5288 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5289 int i;
5290 pInfo->aFunc = sqlite3ArrayAllocate(
5291 db,
5292 pInfo->aFunc,
5293 sizeof(pInfo->aFunc[0]),
5294 &pInfo->nFunc,
5297 return i;
5301 ** This is the xExprCallback for a tree walker. It is used to
5302 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
5303 ** for additional information.
5305 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5306 int i;
5307 NameContext *pNC = pWalker->u.pNC;
5308 Parse *pParse = pNC->pParse;
5309 SrcList *pSrcList = pNC->pSrcList;
5310 AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5312 assert( pNC->ncFlags & NC_UAggInfo );
5313 switch( pExpr->op ){
5314 case TK_AGG_COLUMN:
5315 case TK_COLUMN: {
5316 testcase( pExpr->op==TK_AGG_COLUMN );
5317 testcase( pExpr->op==TK_COLUMN );
5318 /* Check to see if the column is in one of the tables in the FROM
5319 ** clause of the aggregate query */
5320 if( ALWAYS(pSrcList!=0) ){
5321 struct SrcList_item *pItem = pSrcList->a;
5322 for(i=0; i<pSrcList->nSrc; i++, pItem++){
5323 struct AggInfo_col *pCol;
5324 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5325 if( pExpr->iTable==pItem->iCursor ){
5326 /* If we reach this point, it means that pExpr refers to a table
5327 ** that is in the FROM clause of the aggregate query.
5329 ** Make an entry for the column in pAggInfo->aCol[] if there
5330 ** is not an entry there already.
5332 int k;
5333 pCol = pAggInfo->aCol;
5334 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5335 if( pCol->iTable==pExpr->iTable &&
5336 pCol->iColumn==pExpr->iColumn ){
5337 break;
5340 if( (k>=pAggInfo->nColumn)
5341 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5343 pCol = &pAggInfo->aCol[k];
5344 pCol->pTab = pExpr->pTab;
5345 pCol->iTable = pExpr->iTable;
5346 pCol->iColumn = pExpr->iColumn;
5347 pCol->iMem = ++pParse->nMem;
5348 pCol->iSorterColumn = -1;
5349 pCol->pExpr = pExpr;
5350 if( pAggInfo->pGroupBy ){
5351 int j, n;
5352 ExprList *pGB = pAggInfo->pGroupBy;
5353 struct ExprList_item *pTerm = pGB->a;
5354 n = pGB->nExpr;
5355 for(j=0; j<n; j++, pTerm++){
5356 Expr *pE = pTerm->pExpr;
5357 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5358 pE->iColumn==pExpr->iColumn ){
5359 pCol->iSorterColumn = j;
5360 break;
5364 if( pCol->iSorterColumn<0 ){
5365 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5368 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5369 ** because it was there before or because we just created it).
5370 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5371 ** pAggInfo->aCol[] entry.
5373 ExprSetVVAProperty(pExpr, EP_NoReduce);
5374 pExpr->pAggInfo = pAggInfo;
5375 pExpr->op = TK_AGG_COLUMN;
5376 pExpr->iAgg = (i16)k;
5377 break;
5378 } /* endif pExpr->iTable==pItem->iCursor */
5379 } /* end loop over pSrcList */
5381 return WRC_Prune;
5383 case TK_AGG_FUNCTION: {
5384 if( (pNC->ncFlags & NC_InAggFunc)==0
5385 && pWalker->walkerDepth==pExpr->op2
5387 /* Check to see if pExpr is a duplicate of another aggregate
5388 ** function that is already in the pAggInfo structure
5390 struct AggInfo_func *pItem = pAggInfo->aFunc;
5391 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5392 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5393 break;
5396 if( i>=pAggInfo->nFunc ){
5397 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
5399 u8 enc = ENC(pParse->db);
5400 i = addAggInfoFunc(pParse->db, pAggInfo);
5401 if( i>=0 ){
5402 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5403 pItem = &pAggInfo->aFunc[i];
5404 pItem->pExpr = pExpr;
5405 pItem->iMem = ++pParse->nMem;
5406 assert( !ExprHasProperty(pExpr, EP_IntValue) );
5407 pItem->pFunc = sqlite3FindFunction(pParse->db,
5408 pExpr->u.zToken,
5409 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5410 if( pExpr->flags & EP_Distinct ){
5411 pItem->iDistinct = pParse->nTab++;
5412 }else{
5413 pItem->iDistinct = -1;
5417 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5419 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5420 ExprSetVVAProperty(pExpr, EP_NoReduce);
5421 pExpr->iAgg = (i16)i;
5422 pExpr->pAggInfo = pAggInfo;
5423 return WRC_Prune;
5424 }else{
5425 return WRC_Continue;
5429 return WRC_Continue;
5431 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5432 UNUSED_PARAMETER(pSelect);
5433 pWalker->walkerDepth++;
5434 return WRC_Continue;
5436 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5437 UNUSED_PARAMETER(pSelect);
5438 pWalker->walkerDepth--;
5442 ** Analyze the pExpr expression looking for aggregate functions and
5443 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5444 ** points to. Additional entries are made on the AggInfo object as
5445 ** necessary.
5447 ** This routine should only be called after the expression has been
5448 ** analyzed by sqlite3ResolveExprNames().
5450 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5451 Walker w;
5452 w.xExprCallback = analyzeAggregate;
5453 w.xSelectCallback = analyzeAggregatesInSelect;
5454 w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5455 w.walkerDepth = 0;
5456 w.u.pNC = pNC;
5457 assert( pNC->pSrcList!=0 );
5458 sqlite3WalkExpr(&w, pExpr);
5462 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5463 ** expression list. Return the number of errors.
5465 ** If an error is found, the analysis is cut short.
5467 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5468 struct ExprList_item *pItem;
5469 int i;
5470 if( pList ){
5471 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5472 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5478 ** Allocate a single new register for use to hold some intermediate result.
5480 int sqlite3GetTempReg(Parse *pParse){
5481 if( pParse->nTempReg==0 ){
5482 return ++pParse->nMem;
5484 return pParse->aTempReg[--pParse->nTempReg];
5488 ** Deallocate a register, making available for reuse for some other
5489 ** purpose.
5491 ** If a register is currently being used by the column cache, then
5492 ** the deallocation is deferred until the column cache line that uses
5493 ** the register becomes stale.
5495 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5496 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5497 int i;
5498 struct yColCache *p;
5499 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
5500 if( p->iReg==iReg ){
5501 p->tempReg = 1;
5502 return;
5505 pParse->aTempReg[pParse->nTempReg++] = iReg;
5510 ** Allocate or deallocate a block of nReg consecutive registers.
5512 int sqlite3GetTempRange(Parse *pParse, int nReg){
5513 int i, n;
5514 if( nReg==1 ) return sqlite3GetTempReg(pParse);
5515 i = pParse->iRangeReg;
5516 n = pParse->nRangeReg;
5517 if( nReg<=n ){
5518 assert( !usedAsColumnCache(pParse, i, i+n-1) );
5519 pParse->iRangeReg += nReg;
5520 pParse->nRangeReg -= nReg;
5521 }else{
5522 i = pParse->nMem+1;
5523 pParse->nMem += nReg;
5525 return i;
5527 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5528 if( nReg==1 ){
5529 sqlite3ReleaseTempReg(pParse, iReg);
5530 return;
5532 sqlite3ExprCacheRemove(pParse, iReg, nReg);
5533 if( nReg>pParse->nRangeReg ){
5534 pParse->nRangeReg = nReg;
5535 pParse->iRangeReg = iReg;
5540 ** Mark all temporary registers as being unavailable for reuse.
5542 void sqlite3ClearTempRegCache(Parse *pParse){
5543 pParse->nTempReg = 0;
5544 pParse->nRangeReg = 0;
5548 ** Validate that no temporary register falls within the range of
5549 ** iFirst..iLast, inclusive. This routine is only call from within assert()
5550 ** statements.
5552 #ifdef SQLITE_DEBUG
5553 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5554 int i;
5555 if( pParse->nRangeReg>0
5556 && pParse->iRangeReg+pParse->nRangeReg > iFirst
5557 && pParse->iRangeReg <= iLast
5559 return 0;
5561 for(i=0; i<pParse->nTempReg; i++){
5562 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5563 return 0;
5566 return 1;
5568 #endif /* SQLITE_DEBUG */