Prepare to release sgt-puzzles (20170606.272beef-1).
[sgt-puzzles.git] / solo.c
blob0d383c39aad22ed904447435b1c99ba338fb7cc2
1 /*
2 * solo.c: the number-placing puzzle most popularly known as `Sudoku'.
4 * TODO:
6 * - reports from users are that `Trivial'-mode puzzles are still
7 * rather hard compared to newspapers' easy ones, so some better
8 * low-end difficulty grading would be nice
9 * + it's possible that really easy puzzles always have
10 * _several_ things you can do, so don't make you hunt too
11 * hard for the one deduction you can currently make
12 * + it's also possible that easy puzzles require fewer
13 * cross-eliminations: perhaps there's a higher incidence of
14 * things you can deduce by looking only at (say) rows,
15 * rather than things you have to check both rows and columns
16 * for
17 * + but really, what I need to do is find some really easy
18 * puzzles and _play_ them, to see what's actually easy about
19 * them
20 * + while I'm revamping this area, filling in the _last_
21 * number in a nearly-full row or column should certainly be
22 * permitted even at the lowest difficulty level.
23 * + also Owen noticed that `Basic' grids requiring numeric
24 * elimination are actually very hard, so I wonder if a
25 * difficulty gradation between that and positional-
26 * elimination-only might be in order
27 * + but it's not good to have _too_ many difficulty levels, or
28 * it'll take too long to randomly generate a given level.
30 * - it might still be nice to do some prioritisation on the
31 * removal of numbers from the grid
32 * + one possibility is to try to minimise the maximum number
33 * of filled squares in any block, which in particular ought
34 * to enforce never leaving a completely filled block in the
35 * puzzle as presented.
37 * - alternative interface modes
38 * + sudoku.com's Windows program has a palette of possible
39 * entries; you select a palette entry first and then click
40 * on the square you want it to go in, thus enabling
41 * mouse-only play. Useful for PDAs! I don't think it's
42 * actually incompatible with the current highlight-then-type
43 * approach: you _either_ highlight a palette entry and then
44 * click, _or_ you highlight a square and then type. At most
45 * one thing is ever highlighted at a time, so there's no way
46 * to confuse the two.
47 * + then again, I don't actually like sudoku.com's interface;
48 * it's too much like a paint package whereas I prefer to
49 * think of Solo as a text editor.
50 * + another PDA-friendly possibility is a drag interface:
51 * _drag_ numbers from the palette into the grid squares.
52 * Thought experiments suggest I'd prefer that to the
53 * sudoku.com approach, but I haven't actually tried it.
57 * Solo puzzles need to be square overall (since each row and each
58 * column must contain one of every digit), but they need not be
59 * subdivided the same way internally. I am going to adopt a
60 * convention whereby I _always_ refer to `r' as the number of rows
61 * of _big_ divisions, and `c' as the number of columns of _big_
62 * divisions. Thus, a 2c by 3r puzzle looks something like this:
64 * 4 5 1 | 2 6 3
65 * 6 3 2 | 5 4 1
66 * ------+------ (Of course, you can't subdivide it the other way
67 * 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the
68 * 3 2 6 | 4 1 5 top left would conflict with the 4 in the second
69 * ------+------ box down on the left-hand side.)
70 * 5 1 4 | 3 2 6
71 * 2 6 3 | 1 5 4
73 * The need for a strong naming convention should now be clear:
74 * each small box is two rows of digits by three columns, while the
75 * overall puzzle has three rows of small boxes by two columns. So
76 * I will (hopefully) consistently use `r' to denote the number of
77 * rows _of small boxes_ (here 3), which is also the number of
78 * columns of digits in each small box; and `c' vice versa (here
79 * 2).
81 * I'm also going to choose arbitrarily to list c first wherever
82 * possible: the above is a 2x3 puzzle, not a 3x2 one.
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <string.h>
88 #include <assert.h>
89 #include <ctype.h>
90 #include <math.h>
92 #ifdef STANDALONE_SOLVER
93 #include <stdarg.h>
94 int solver_show_working, solver_recurse_depth;
95 #endif
97 #include "puzzles.h"
100 * To save space, I store digits internally as unsigned char. This
101 * imposes a hard limit of 255 on the order of the puzzle. Since
102 * even a 5x5 takes unacceptably long to generate, I don't see this
103 * as a serious limitation unless something _really_ impressive
104 * happens in computing technology; but here's a typedef anyway for
105 * general good practice.
107 typedef unsigned char digit;
108 #define ORDER_MAX 255
110 #define PREFERRED_TILE_SIZE 48
111 #define TILE_SIZE (ds->tilesize)
112 #define BORDER (TILE_SIZE / 2)
113 #define GRIDEXTRA max((TILE_SIZE / 32),1)
115 #define FLASH_TIME 0.4F
117 enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF2, SYMM_REF2D, SYMM_REF4,
118 SYMM_REF4D, SYMM_REF8 };
120 enum { DIFF_BLOCK,
121 DIFF_SIMPLE, DIFF_INTERSECT, DIFF_SET, DIFF_EXTREME, DIFF_RECURSIVE,
122 DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
124 enum { DIFF_KSINGLE, DIFF_KMINMAX, DIFF_KSUMS, DIFF_KINTERSECT };
126 enum {
127 COL_BACKGROUND,
128 COL_XDIAGONALS,
129 COL_GRID,
130 COL_CLUE,
131 COL_USER,
132 COL_HIGHLIGHT,
133 COL_ERROR,
134 COL_PENCIL,
135 COL_KILLER,
136 NCOLOURS
140 * To determine all possible ways to reach a given sum by adding two or
141 * three numbers from 1..9, each of which occurs exactly once in the sum,
142 * these arrays contain a list of bitmasks for each sum value, where if
143 * bit N is set, it means that N occurs in the sum. Each list is
144 * terminated by a zero if it is shorter than the size of the array.
146 #define MAX_2SUMS 5
147 #define MAX_3SUMS 8
148 #define MAX_4SUMS 12
149 unsigned long sum_bits2[18][MAX_2SUMS];
150 unsigned long sum_bits3[25][MAX_3SUMS];
151 unsigned long sum_bits4[31][MAX_4SUMS];
153 static int find_sum_bits(unsigned long *array, int idx, int value_left,
154 int addends_left, int min_addend,
155 unsigned long bitmask_so_far)
157 int i;
158 assert(addends_left >= 2);
160 for (i = min_addend; i < value_left; i++) {
161 unsigned long new_bitmask = bitmask_so_far | (1L << i);
162 assert(bitmask_so_far != new_bitmask);
164 if (addends_left == 2) {
165 int j = value_left - i;
166 if (j <= i)
167 break;
168 if (j > 9)
169 continue;
170 array[idx++] = new_bitmask | (1L << j);
171 } else
172 idx = find_sum_bits(array, idx, value_left - i,
173 addends_left - 1, i + 1,
174 new_bitmask);
176 return idx;
179 static void precompute_sum_bits(void)
181 int i;
182 for (i = 3; i < 31; i++) {
183 int j;
184 if (i < 18) {
185 j = find_sum_bits(sum_bits2[i], 0, i, 2, 1, 0);
186 assert (j <= MAX_2SUMS);
187 if (j < MAX_2SUMS)
188 sum_bits2[i][j] = 0;
190 if (i < 25) {
191 j = find_sum_bits(sum_bits3[i], 0, i, 3, 1, 0);
192 assert (j <= MAX_3SUMS);
193 if (j < MAX_3SUMS)
194 sum_bits3[i][j] = 0;
196 j = find_sum_bits(sum_bits4[i], 0, i, 4, 1, 0);
197 assert (j <= MAX_4SUMS);
198 if (j < MAX_4SUMS)
199 sum_bits4[i][j] = 0;
203 struct game_params {
205 * For a square puzzle, `c' and `r' indicate the puzzle
206 * parameters as described above.
208 * A jigsaw-style puzzle is indicated by r==1, in which case c
209 * can be whatever it likes (there is no constraint on
210 * compositeness - a 7x7 jigsaw sudoku makes perfect sense).
212 int c, r, symm, diff, kdiff;
213 int xtype; /* require all digits in X-diagonals */
214 int killer;
217 struct block_structure {
218 int refcount;
221 * For text formatting, we do need c and r here.
223 int c, r, area;
226 * For any square index, whichblock[i] gives its block index.
228 * For 0 <= b,i < cr, blocks[b][i] gives the index of the ith
229 * square in block b. nr_squares[b] gives the number of squares
230 * in block b (also the number of valid elements in blocks[b]).
232 * blocks_data holds the data pointed to by blocks.
234 * nr_squares may be NULL for block structures where all blocks are
235 * the same size.
237 int *whichblock, **blocks, *nr_squares, *blocks_data;
238 int nr_blocks, max_nr_squares;
240 #ifdef STANDALONE_SOLVER
242 * Textual descriptions of each block. For normal Sudoku these
243 * are of the form "(1,3)"; for jigsaw they are "starting at
244 * (5,7)". So the sensible usage in both cases is to say
245 * "elimination within block %s" with one of these strings.
247 * Only blocknames itself needs individually freeing; it's all
248 * one block.
250 char **blocknames;
251 #endif
254 struct game_state {
256 * For historical reasons, I use `cr' to denote the overall
257 * width/height of the puzzle. It was a natural notation when
258 * all puzzles were divided into blocks in a grid, but doesn't
259 * really make much sense given jigsaw puzzles. However, the
260 * obvious `n' is heavily used in the solver to describe the
261 * index of a number being placed, so `cr' will have to stay.
263 int cr;
264 struct block_structure *blocks;
265 struct block_structure *kblocks; /* Blocks for killer puzzles. */
266 int xtype, killer;
267 digit *grid, *kgrid;
268 unsigned char *pencil; /* c*r*c*r elements */
269 unsigned char *immutable; /* marks which digits are clues */
270 int completed, cheated;
273 static game_params *default_params(void)
275 game_params *ret = snew(game_params);
277 ret->c = ret->r = 3;
278 ret->xtype = FALSE;
279 ret->killer = FALSE;
280 ret->symm = SYMM_ROT2; /* a plausible default */
281 ret->diff = DIFF_BLOCK; /* so is this */
282 ret->kdiff = DIFF_KINTERSECT; /* so is this */
284 return ret;
287 static void free_params(game_params *params)
289 sfree(params);
292 static game_params *dup_params(const game_params *params)
294 game_params *ret = snew(game_params);
295 *ret = *params; /* structure copy */
296 return ret;
299 static int game_fetch_preset(int i, char **name, game_params **params)
301 static struct {
302 char *title;
303 game_params params;
304 } presets[] = {
305 { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK, DIFF_KMINMAX, FALSE, FALSE } },
306 { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
307 { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK, DIFF_KMINMAX, FALSE, FALSE } },
308 { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
309 { "3x3 Basic X", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, TRUE } },
310 { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT, DIFF_KMINMAX, FALSE, FALSE } },
311 { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, FALSE, FALSE } },
312 { "3x3 Advanced X", { 3, 3, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, TRUE } },
313 { "3x3 Extreme", { 3, 3, SYMM_ROT2, DIFF_EXTREME, DIFF_KMINMAX, FALSE, FALSE } },
314 { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE, DIFF_KMINMAX, FALSE, FALSE } },
315 { "3x3 Killer", { 3, 3, SYMM_NONE, DIFF_BLOCK, DIFF_KINTERSECT, FALSE, TRUE } },
316 { "9 Jigsaw Basic", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
317 { "9 Jigsaw Basic X", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, TRUE } },
318 { "9 Jigsaw Advanced", { 9, 1, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, FALSE, FALSE } },
319 #ifndef SLOW_SYSTEM
320 { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
321 { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
322 #endif
325 if (i < 0 || i >= lenof(presets))
326 return FALSE;
328 *name = dupstr(presets[i].title);
329 *params = dup_params(&presets[i].params);
331 return TRUE;
334 static void decode_params(game_params *ret, char const *string)
336 int seen_r = FALSE;
338 ret->c = ret->r = atoi(string);
339 ret->xtype = FALSE;
340 ret->killer = FALSE;
341 while (*string && isdigit((unsigned char)*string)) string++;
342 if (*string == 'x') {
343 string++;
344 ret->r = atoi(string);
345 seen_r = TRUE;
346 while (*string && isdigit((unsigned char)*string)) string++;
348 while (*string) {
349 if (*string == 'j') {
350 string++;
351 if (seen_r)
352 ret->c *= ret->r;
353 ret->r = 1;
354 } else if (*string == 'x') {
355 string++;
356 ret->xtype = TRUE;
357 } else if (*string == 'k') {
358 string++;
359 ret->killer = TRUE;
360 } else if (*string == 'r' || *string == 'm' || *string == 'a') {
361 int sn, sc, sd;
362 sc = *string++;
363 if (sc == 'm' && *string == 'd') {
364 sd = TRUE;
365 string++;
366 } else {
367 sd = FALSE;
369 sn = atoi(string);
370 while (*string && isdigit((unsigned char)*string)) string++;
371 if (sc == 'm' && sn == 8)
372 ret->symm = SYMM_REF8;
373 if (sc == 'm' && sn == 4)
374 ret->symm = sd ? SYMM_REF4D : SYMM_REF4;
375 if (sc == 'm' && sn == 2)
376 ret->symm = sd ? SYMM_REF2D : SYMM_REF2;
377 if (sc == 'r' && sn == 4)
378 ret->symm = SYMM_ROT4;
379 if (sc == 'r' && sn == 2)
380 ret->symm = SYMM_ROT2;
381 if (sc == 'a')
382 ret->symm = SYMM_NONE;
383 } else if (*string == 'd') {
384 string++;
385 if (*string == 't') /* trivial */
386 string++, ret->diff = DIFF_BLOCK;
387 else if (*string == 'b') /* basic */
388 string++, ret->diff = DIFF_SIMPLE;
389 else if (*string == 'i') /* intermediate */
390 string++, ret->diff = DIFF_INTERSECT;
391 else if (*string == 'a') /* advanced */
392 string++, ret->diff = DIFF_SET;
393 else if (*string == 'e') /* extreme */
394 string++, ret->diff = DIFF_EXTREME;
395 else if (*string == 'u') /* unreasonable */
396 string++, ret->diff = DIFF_RECURSIVE;
397 } else
398 string++; /* eat unknown character */
402 static char *encode_params(const game_params *params, int full)
404 char str[80];
406 if (params->r > 1)
407 sprintf(str, "%dx%d", params->c, params->r);
408 else
409 sprintf(str, "%dj", params->c);
410 if (params->xtype)
411 strcat(str, "x");
412 if (params->killer)
413 strcat(str, "k");
415 if (full) {
416 switch (params->symm) {
417 case SYMM_REF8: strcat(str, "m8"); break;
418 case SYMM_REF4: strcat(str, "m4"); break;
419 case SYMM_REF4D: strcat(str, "md4"); break;
420 case SYMM_REF2: strcat(str, "m2"); break;
421 case SYMM_REF2D: strcat(str, "md2"); break;
422 case SYMM_ROT4: strcat(str, "r4"); break;
423 /* case SYMM_ROT2: strcat(str, "r2"); break; [default] */
424 case SYMM_NONE: strcat(str, "a"); break;
426 switch (params->diff) {
427 /* case DIFF_BLOCK: strcat(str, "dt"); break; [default] */
428 case DIFF_SIMPLE: strcat(str, "db"); break;
429 case DIFF_INTERSECT: strcat(str, "di"); break;
430 case DIFF_SET: strcat(str, "da"); break;
431 case DIFF_EXTREME: strcat(str, "de"); break;
432 case DIFF_RECURSIVE: strcat(str, "du"); break;
435 return dupstr(str);
438 static config_item *game_configure(const game_params *params)
440 config_item *ret;
441 char buf[80];
443 ret = snewn(8, config_item);
445 ret[0].name = "Columns of sub-blocks";
446 ret[0].type = C_STRING;
447 sprintf(buf, "%d", params->c);
448 ret[0].sval = dupstr(buf);
449 ret[0].ival = 0;
451 ret[1].name = "Rows of sub-blocks";
452 ret[1].type = C_STRING;
453 sprintf(buf, "%d", params->r);
454 ret[1].sval = dupstr(buf);
455 ret[1].ival = 0;
457 ret[2].name = "\"X\" (require every number in each main diagonal)";
458 ret[2].type = C_BOOLEAN;
459 ret[2].sval = NULL;
460 ret[2].ival = params->xtype;
462 ret[3].name = "Jigsaw (irregularly shaped sub-blocks)";
463 ret[3].type = C_BOOLEAN;
464 ret[3].sval = NULL;
465 ret[3].ival = (params->r == 1);
467 ret[4].name = "Killer (digit sums)";
468 ret[4].type = C_BOOLEAN;
469 ret[4].sval = NULL;
470 ret[4].ival = params->killer;
472 ret[5].name = "Symmetry";
473 ret[5].type = C_CHOICES;
474 ret[5].sval = ":None:2-way rotation:4-way rotation:2-way mirror:"
475 "2-way diagonal mirror:4-way mirror:4-way diagonal mirror:"
476 "8-way mirror";
477 ret[5].ival = params->symm;
479 ret[6].name = "Difficulty";
480 ret[6].type = C_CHOICES;
481 ret[6].sval = ":Trivial:Basic:Intermediate:Advanced:Extreme:Unreasonable";
482 ret[6].ival = params->diff;
484 ret[7].name = NULL;
485 ret[7].type = C_END;
486 ret[7].sval = NULL;
487 ret[7].ival = 0;
489 return ret;
492 static game_params *custom_params(const config_item *cfg)
494 game_params *ret = snew(game_params);
496 ret->c = atoi(cfg[0].sval);
497 ret->r = atoi(cfg[1].sval);
498 ret->xtype = cfg[2].ival;
499 if (cfg[3].ival) {
500 ret->c *= ret->r;
501 ret->r = 1;
503 ret->killer = cfg[4].ival;
504 ret->symm = cfg[5].ival;
505 ret->diff = cfg[6].ival;
506 ret->kdiff = DIFF_KINTERSECT;
508 return ret;
511 static char *validate_params(const game_params *params, int full)
513 if (params->c < 2)
514 return "Both dimensions must be at least 2";
515 if (params->c > ORDER_MAX || params->r > ORDER_MAX)
516 return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
517 if ((params->c * params->r) > 31)
518 return "Unable to support more than 31 distinct symbols in a puzzle";
519 if (params->killer && params->c * params->r > 9)
520 return "Killer puzzle dimensions must be smaller than 10.";
521 return NULL;
525 * ----------------------------------------------------------------------
526 * Block structure functions.
529 static struct block_structure *alloc_block_structure(int c, int r, int area,
530 int max_nr_squares,
531 int nr_blocks)
533 int i;
534 struct block_structure *b = snew(struct block_structure);
536 b->refcount = 1;
537 b->nr_blocks = nr_blocks;
538 b->max_nr_squares = max_nr_squares;
539 b->c = c; b->r = r; b->area = area;
540 b->whichblock = snewn(area, int);
541 b->blocks_data = snewn(nr_blocks * max_nr_squares, int);
542 b->blocks = snewn(nr_blocks, int *);
543 b->nr_squares = snewn(nr_blocks, int);
545 for (i = 0; i < nr_blocks; i++)
546 b->blocks[i] = b->blocks_data + i*max_nr_squares;
548 #ifdef STANDALONE_SOLVER
549 b->blocknames = (char **)smalloc(c*r*(sizeof(char *)+80));
550 for (i = 0; i < c * r; i++)
551 b->blocknames[i] = NULL;
552 #endif
553 return b;
556 static void free_block_structure(struct block_structure *b)
558 if (--b->refcount == 0) {
559 sfree(b->whichblock);
560 sfree(b->blocks);
561 sfree(b->blocks_data);
562 #ifdef STANDALONE_SOLVER
563 sfree(b->blocknames);
564 #endif
565 sfree(b->nr_squares);
566 sfree(b);
570 static struct block_structure *dup_block_structure(struct block_structure *b)
572 struct block_structure *nb;
573 int i;
575 nb = alloc_block_structure(b->c, b->r, b->area, b->max_nr_squares,
576 b->nr_blocks);
577 memcpy(nb->nr_squares, b->nr_squares, b->nr_blocks * sizeof *b->nr_squares);
578 memcpy(nb->whichblock, b->whichblock, b->area * sizeof *b->whichblock);
579 memcpy(nb->blocks_data, b->blocks_data,
580 b->nr_blocks * b->max_nr_squares * sizeof *b->blocks_data);
581 for (i = 0; i < b->nr_blocks; i++)
582 nb->blocks[i] = nb->blocks_data + i*nb->max_nr_squares;
584 #ifdef STANDALONE_SOLVER
585 memcpy(nb->blocknames, b->blocknames, b->c * b->r *(sizeof(char *)+80));
587 int i;
588 for (i = 0; i < b->c * b->r; i++)
589 if (b->blocknames[i] == NULL)
590 nb->blocknames[i] = NULL;
591 else
592 nb->blocknames[i] = ((char *)nb->blocknames) + (b->blocknames[i] - (char *)b->blocknames);
594 #endif
595 return nb;
598 static void split_block(struct block_structure *b, int *squares, int nr_squares)
600 int i, j;
601 int previous_block = b->whichblock[squares[0]];
602 int newblock = b->nr_blocks;
604 assert(b->max_nr_squares >= nr_squares);
605 assert(b->nr_squares[previous_block] > nr_squares);
607 b->nr_blocks++;
608 b->blocks_data = sresize(b->blocks_data,
609 b->nr_blocks * b->max_nr_squares, int);
610 b->nr_squares = sresize(b->nr_squares, b->nr_blocks, int);
611 sfree(b->blocks);
612 b->blocks = snewn(b->nr_blocks, int *);
613 for (i = 0; i < b->nr_blocks; i++)
614 b->blocks[i] = b->blocks_data + i*b->max_nr_squares;
615 for (i = 0; i < nr_squares; i++) {
616 assert(b->whichblock[squares[i]] == previous_block);
617 b->whichblock[squares[i]] = newblock;
618 b->blocks[newblock][i] = squares[i];
620 for (i = j = 0; i < b->nr_squares[previous_block]; i++) {
621 int k;
622 int sq = b->blocks[previous_block][i];
623 for (k = 0; k < nr_squares; k++)
624 if (squares[k] == sq)
625 break;
626 if (k == nr_squares)
627 b->blocks[previous_block][j++] = sq;
629 b->nr_squares[previous_block] -= nr_squares;
630 b->nr_squares[newblock] = nr_squares;
633 static void remove_from_block(struct block_structure *blocks, int b, int n)
635 int i, j;
636 blocks->whichblock[n] = -1;
637 for (i = j = 0; i < blocks->nr_squares[b]; i++)
638 if (blocks->blocks[b][i] != n)
639 blocks->blocks[b][j++] = blocks->blocks[b][i];
640 assert(j+1 == i);
641 blocks->nr_squares[b]--;
644 /* ----------------------------------------------------------------------
645 * Solver.
647 * This solver is used for two purposes:
648 * + to check solubility of a grid as we gradually remove numbers
649 * from it
650 * + to solve an externally generated puzzle when the user selects
651 * `Solve'.
653 * It supports a variety of specific modes of reasoning. By
654 * enabling or disabling subsets of these modes we can arrange a
655 * range of difficulty levels.
659 * Modes of reasoning currently supported:
661 * - Positional elimination: a number must go in a particular
662 * square because all the other empty squares in a given
663 * row/col/blk are ruled out.
665 * - Killer minmax elimination: for killer-type puzzles, a number
666 * is impossible if choosing it would cause the sum in a killer
667 * region to be guaranteed to be too large or too small.
669 * - Numeric elimination: a square must have a particular number
670 * in because all the other numbers that could go in it are
671 * ruled out.
673 * - Intersectional analysis: given two domains which overlap
674 * (hence one must be a block, and the other can be a row or
675 * col), if the possible locations for a particular number in
676 * one of the domains can be narrowed down to the overlap, then
677 * that number can be ruled out everywhere but the overlap in
678 * the other domain too.
680 * - Set elimination: if there is a subset of the empty squares
681 * within a domain such that the union of the possible numbers
682 * in that subset has the same size as the subset itself, then
683 * those numbers can be ruled out everywhere else in the domain.
684 * (For example, if there are five empty squares and the
685 * possible numbers in each are 12, 23, 13, 134 and 1345, then
686 * the first three empty squares form such a subset: the numbers
687 * 1, 2 and 3 _must_ be in those three squares in some
688 * permutation, and hence we can deduce none of them can be in
689 * the fourth or fifth squares.)
690 * + You can also see this the other way round, concentrating
691 * on numbers rather than squares: if there is a subset of
692 * the unplaced numbers within a domain such that the union
693 * of all their possible positions has the same size as the
694 * subset itself, then all other numbers can be ruled out for
695 * those positions. However, it turns out that this is
696 * exactly equivalent to the first formulation at all times:
697 * there is a 1-1 correspondence between suitable subsets of
698 * the unplaced numbers and suitable subsets of the unfilled
699 * places, found by taking the _complement_ of the union of
700 * the numbers' possible positions (or the spaces' possible
701 * contents).
703 * - Forcing chains (see comment for solver_forcing().)
705 * - Recursion. If all else fails, we pick one of the currently
706 * most constrained empty squares and take a random guess at its
707 * contents, then continue solving on that basis and see if we
708 * get any further.
711 struct solver_usage {
712 int cr;
713 struct block_structure *blocks, *kblocks, *extra_cages;
715 * We set up a cubic array, indexed by x, y and digit; each
716 * element of this array is TRUE or FALSE according to whether
717 * or not that digit _could_ in principle go in that position.
719 * The way to index this array is cube[(y*cr+x)*cr+n-1]; there
720 * are macros below to help with this.
722 unsigned char *cube;
724 * This is the grid in which we write down our final
725 * deductions. y-coordinates in here are _not_ transformed.
727 digit *grid;
729 * For killer-type puzzles, kclues holds the secondary clue for
730 * each cage. For derived cages, the clue is in extra_clues.
732 digit *kclues, *extra_clues;
734 * Now we keep track, at a slightly higher level, of what we
735 * have yet to work out, to prevent doing the same deduction
736 * many times.
738 /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
739 unsigned char *row;
740 /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
741 unsigned char *col;
742 /* blk[i*cr+n-1] TRUE if digit n has been placed in block i */
743 unsigned char *blk;
744 /* diag[i*cr+n-1] TRUE if digit n has been placed in diagonal i */
745 unsigned char *diag; /* diag 0 is \, 1 is / */
747 int *regions;
748 int nr_regions;
749 int **sq2region;
751 #define cubepos2(xy,n) ((xy)*usage->cr+(n)-1)
752 #define cubepos(x,y,n) cubepos2((y)*usage->cr+(x),n)
753 #define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
754 #define cube2(xy,n) (usage->cube[cubepos2(xy,n)])
756 #define ondiag0(xy) ((xy) % (cr+1) == 0)
757 #define ondiag1(xy) ((xy) % (cr-1) == 0 && (xy) > 0 && (xy) < cr*cr-1)
758 #define diag0(i) ((i) * (cr+1))
759 #define diag1(i) ((i+1) * (cr-1))
762 * Function called when we are certain that a particular square has
763 * a particular number in it. The y-coordinate passed in here is
764 * transformed.
766 static void solver_place(struct solver_usage *usage, int x, int y, int n)
768 int cr = usage->cr;
769 int sqindex = y*cr+x;
770 int i, bi;
772 assert(cube(x,y,n));
775 * Rule out all other numbers in this square.
777 for (i = 1; i <= cr; i++)
778 if (i != n)
779 cube(x,y,i) = FALSE;
782 * Rule out this number in all other positions in the row.
784 for (i = 0; i < cr; i++)
785 if (i != y)
786 cube(x,i,n) = FALSE;
789 * Rule out this number in all other positions in the column.
791 for (i = 0; i < cr; i++)
792 if (i != x)
793 cube(i,y,n) = FALSE;
796 * Rule out this number in all other positions in the block.
798 bi = usage->blocks->whichblock[sqindex];
799 for (i = 0; i < cr; i++) {
800 int bp = usage->blocks->blocks[bi][i];
801 if (bp != sqindex)
802 cube2(bp,n) = FALSE;
806 * Enter the number in the result grid.
808 usage->grid[sqindex] = n;
811 * Cross out this number from the list of numbers left to place
812 * in its row, its column and its block.
814 usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
815 usage->blk[bi*cr+n-1] = TRUE;
817 if (usage->diag) {
818 if (ondiag0(sqindex)) {
819 for (i = 0; i < cr; i++)
820 if (diag0(i) != sqindex)
821 cube2(diag0(i),n) = FALSE;
822 usage->diag[n-1] = TRUE;
824 if (ondiag1(sqindex)) {
825 for (i = 0; i < cr; i++)
826 if (diag1(i) != sqindex)
827 cube2(diag1(i),n) = FALSE;
828 usage->diag[cr+n-1] = TRUE;
833 #if defined STANDALONE_SOLVER && defined __GNUC__
835 * Forward-declare the functions taking printf-like format arguments
836 * with __attribute__((format)) so as to ensure the argument syntax
837 * gets debugged.
839 struct solver_scratch;
840 static int solver_elim(struct solver_usage *usage, int *indices,
841 char *fmt, ...) __attribute__((format(printf,3,4)));
842 static int solver_intersect(struct solver_usage *usage,
843 int *indices1, int *indices2, char *fmt, ...)
844 __attribute__((format(printf,4,5)));
845 static int solver_set(struct solver_usage *usage,
846 struct solver_scratch *scratch,
847 int *indices, char *fmt, ...)
848 __attribute__((format(printf,4,5)));
849 #endif
851 static int solver_elim(struct solver_usage *usage, int *indices
852 #ifdef STANDALONE_SOLVER
853 , char *fmt, ...
854 #endif
857 int cr = usage->cr;
858 int fpos, m, i;
861 * Count the number of set bits within this section of the
862 * cube.
864 m = 0;
865 fpos = -1;
866 for (i = 0; i < cr; i++)
867 if (usage->cube[indices[i]]) {
868 fpos = indices[i];
869 m++;
872 if (m == 1) {
873 int x, y, n;
874 assert(fpos >= 0);
876 n = 1 + fpos % cr;
877 x = fpos / cr;
878 y = x / cr;
879 x %= cr;
881 if (!usage->grid[y*cr+x]) {
882 #ifdef STANDALONE_SOLVER
883 if (solver_show_working) {
884 va_list ap;
885 printf("%*s", solver_recurse_depth*4, "");
886 va_start(ap, fmt);
887 vprintf(fmt, ap);
888 va_end(ap);
889 printf(":\n%*s placing %d at (%d,%d)\n",
890 solver_recurse_depth*4, "", n, 1+x, 1+y);
892 #endif
893 solver_place(usage, x, y, n);
894 return +1;
896 } else if (m == 0) {
897 #ifdef STANDALONE_SOLVER
898 if (solver_show_working) {
899 va_list ap;
900 printf("%*s", solver_recurse_depth*4, "");
901 va_start(ap, fmt);
902 vprintf(fmt, ap);
903 va_end(ap);
904 printf(":\n%*s no possibilities available\n",
905 solver_recurse_depth*4, "");
907 #endif
908 return -1;
911 return 0;
914 static int solver_intersect(struct solver_usage *usage,
915 int *indices1, int *indices2
916 #ifdef STANDALONE_SOLVER
917 , char *fmt, ...
918 #endif
921 int cr = usage->cr;
922 int ret, i, j;
925 * Loop over the first domain and see if there's any set bit
926 * not also in the second.
928 for (i = j = 0; i < cr; i++) {
929 int p = indices1[i];
930 while (j < cr && indices2[j] < p)
931 j++;
932 if (usage->cube[p]) {
933 if (j < cr && indices2[j] == p)
934 continue; /* both domains contain this index */
935 else
936 return 0; /* there is, so we can't deduce */
941 * We have determined that all set bits in the first domain are
942 * within its overlap with the second. So loop over the second
943 * domain and remove all set bits that aren't also in that
944 * overlap; return +1 iff we actually _did_ anything.
946 ret = 0;
947 for (i = j = 0; i < cr; i++) {
948 int p = indices2[i];
949 while (j < cr && indices1[j] < p)
950 j++;
951 if (usage->cube[p] && (j >= cr || indices1[j] != p)) {
952 #ifdef STANDALONE_SOLVER
953 if (solver_show_working) {
954 int px, py, pn;
956 if (!ret) {
957 va_list ap;
958 printf("%*s", solver_recurse_depth*4, "");
959 va_start(ap, fmt);
960 vprintf(fmt, ap);
961 va_end(ap);
962 printf(":\n");
965 pn = 1 + p % cr;
966 px = p / cr;
967 py = px / cr;
968 px %= cr;
970 printf("%*s ruling out %d at (%d,%d)\n",
971 solver_recurse_depth*4, "", pn, 1+px, 1+py);
973 #endif
974 ret = +1; /* we did something */
975 usage->cube[p] = 0;
979 return ret;
982 struct solver_scratch {
983 unsigned char *grid, *rowidx, *colidx, *set;
984 int *neighbours, *bfsqueue;
985 int *indexlist, *indexlist2;
986 #ifdef STANDALONE_SOLVER
987 int *bfsprev;
988 #endif
991 static int solver_set(struct solver_usage *usage,
992 struct solver_scratch *scratch,
993 int *indices
994 #ifdef STANDALONE_SOLVER
995 , char *fmt, ...
996 #endif
999 int cr = usage->cr;
1000 int i, j, n, count;
1001 unsigned char *grid = scratch->grid;
1002 unsigned char *rowidx = scratch->rowidx;
1003 unsigned char *colidx = scratch->colidx;
1004 unsigned char *set = scratch->set;
1007 * We are passed a cr-by-cr matrix of booleans. Our first job
1008 * is to winnow it by finding any definite placements - i.e.
1009 * any row with a solitary 1 - and discarding that row and the
1010 * column containing the 1.
1012 memset(rowidx, TRUE, cr);
1013 memset(colidx, TRUE, cr);
1014 for (i = 0; i < cr; i++) {
1015 int count = 0, first = -1;
1016 for (j = 0; j < cr; j++)
1017 if (usage->cube[indices[i*cr+j]])
1018 first = j, count++;
1021 * If count == 0, then there's a row with no 1s at all and
1022 * the puzzle is internally inconsistent. However, we ought
1023 * to have caught this already during the simpler reasoning
1024 * methods, so we can safely fail an assertion if we reach
1025 * this point here.
1027 assert(count > 0);
1028 if (count == 1)
1029 rowidx[i] = colidx[first] = FALSE;
1033 * Convert each of rowidx/colidx from a list of 0s and 1s to a
1034 * list of the indices of the 1s.
1036 for (i = j = 0; i < cr; i++)
1037 if (rowidx[i])
1038 rowidx[j++] = i;
1039 n = j;
1040 for (i = j = 0; i < cr; i++)
1041 if (colidx[i])
1042 colidx[j++] = i;
1043 assert(n == j);
1046 * And create the smaller matrix.
1048 for (i = 0; i < n; i++)
1049 for (j = 0; j < n; j++)
1050 grid[i*cr+j] = usage->cube[indices[rowidx[i]*cr+colidx[j]]];
1053 * Having done that, we now have a matrix in which every row
1054 * has at least two 1s in. Now we search to see if we can find
1055 * a rectangle of zeroes (in the set-theoretic sense of
1056 * `rectangle', i.e. a subset of rows crossed with a subset of
1057 * columns) whose width and height add up to n.
1060 memset(set, 0, n);
1061 count = 0;
1062 while (1) {
1064 * We have a candidate set. If its size is <=1 or >=n-1
1065 * then we move on immediately.
1067 if (count > 1 && count < n-1) {
1069 * The number of rows we need is n-count. See if we can
1070 * find that many rows which each have a zero in all
1071 * the positions listed in `set'.
1073 int rows = 0;
1074 for (i = 0; i < n; i++) {
1075 int ok = TRUE;
1076 for (j = 0; j < n; j++)
1077 if (set[j] && grid[i*cr+j]) {
1078 ok = FALSE;
1079 break;
1081 if (ok)
1082 rows++;
1086 * We expect never to be able to get _more_ than
1087 * n-count suitable rows: this would imply that (for
1088 * example) there are four numbers which between them
1089 * have at most three possible positions, and hence it
1090 * indicates a faulty deduction before this point or
1091 * even a bogus clue.
1093 if (rows > n - count) {
1094 #ifdef STANDALONE_SOLVER
1095 if (solver_show_working) {
1096 va_list ap;
1097 printf("%*s", solver_recurse_depth*4,
1098 "");
1099 va_start(ap, fmt);
1100 vprintf(fmt, ap);
1101 va_end(ap);
1102 printf(":\n%*s contradiction reached\n",
1103 solver_recurse_depth*4, "");
1105 #endif
1106 return -1;
1109 if (rows >= n - count) {
1110 int progress = FALSE;
1113 * We've got one! Now, for each row which _doesn't_
1114 * satisfy the criterion, eliminate all its set
1115 * bits in the positions _not_ listed in `set'.
1116 * Return +1 (meaning progress has been made) if we
1117 * successfully eliminated anything at all.
1119 * This involves referring back through
1120 * rowidx/colidx in order to work out which actual
1121 * positions in the cube to meddle with.
1123 for (i = 0; i < n; i++) {
1124 int ok = TRUE;
1125 for (j = 0; j < n; j++)
1126 if (set[j] && grid[i*cr+j]) {
1127 ok = FALSE;
1128 break;
1130 if (!ok) {
1131 for (j = 0; j < n; j++)
1132 if (!set[j] && grid[i*cr+j]) {
1133 int fpos = indices[rowidx[i]*cr+colidx[j]];
1134 #ifdef STANDALONE_SOLVER
1135 if (solver_show_working) {
1136 int px, py, pn;
1138 if (!progress) {
1139 va_list ap;
1140 printf("%*s", solver_recurse_depth*4,
1141 "");
1142 va_start(ap, fmt);
1143 vprintf(fmt, ap);
1144 va_end(ap);
1145 printf(":\n");
1148 pn = 1 + fpos % cr;
1149 px = fpos / cr;
1150 py = px / cr;
1151 px %= cr;
1153 printf("%*s ruling out %d at (%d,%d)\n",
1154 solver_recurse_depth*4, "",
1155 pn, 1+px, 1+py);
1157 #endif
1158 progress = TRUE;
1159 usage->cube[fpos] = FALSE;
1164 if (progress) {
1165 return +1;
1171 * Binary increment: change the rightmost 0 to a 1, and
1172 * change all 1s to the right of it to 0s.
1174 i = n;
1175 while (i > 0 && set[i-1])
1176 set[--i] = 0, count--;
1177 if (i > 0)
1178 set[--i] = 1, count++;
1179 else
1180 break; /* done */
1183 return 0;
1187 * Look for forcing chains. A forcing chain is a path of
1188 * pairwise-exclusive squares (i.e. each pair of adjacent squares
1189 * in the path are in the same row, column or block) with the
1190 * following properties:
1192 * (a) Each square on the path has precisely two possible numbers.
1194 * (b) Each pair of squares which are adjacent on the path share
1195 * at least one possible number in common.
1197 * (c) Each square in the middle of the path shares _both_ of its
1198 * numbers with at least one of its neighbours (not the same
1199 * one with both neighbours).
1201 * These together imply that at least one of the possible number
1202 * choices at one end of the path forces _all_ the rest of the
1203 * numbers along the path. In order to make real use of this, we
1204 * need further properties:
1206 * (c) Ruling out some number N from the square at one end of the
1207 * path forces the square at the other end to take the same
1208 * number N.
1210 * (d) The two end squares are both in line with some third
1211 * square.
1213 * (e) That third square currently has N as a possibility.
1215 * If we can find all of that lot, we can deduce that at least one
1216 * of the two ends of the forcing chain has number N, and that
1217 * therefore the mutually adjacent third square does not.
1219 * To find forcing chains, we're going to start a bfs at each
1220 * suitable square, once for each of its two possible numbers.
1222 static int solver_forcing(struct solver_usage *usage,
1223 struct solver_scratch *scratch)
1225 int cr = usage->cr;
1226 int *bfsqueue = scratch->bfsqueue;
1227 #ifdef STANDALONE_SOLVER
1228 int *bfsprev = scratch->bfsprev;
1229 #endif
1230 unsigned char *number = scratch->grid;
1231 int *neighbours = scratch->neighbours;
1232 int x, y;
1234 for (y = 0; y < cr; y++)
1235 for (x = 0; x < cr; x++) {
1236 int count, t, n;
1239 * If this square doesn't have exactly two candidate
1240 * numbers, don't try it.
1242 * In this loop we also sum the candidate numbers,
1243 * which is a nasty hack to allow us to quickly find
1244 * `the other one' (since we will shortly know there
1245 * are exactly two).
1247 for (count = t = 0, n = 1; n <= cr; n++)
1248 if (cube(x, y, n))
1249 count++, t += n;
1250 if (count != 2)
1251 continue;
1254 * Now attempt a bfs for each candidate.
1256 for (n = 1; n <= cr; n++)
1257 if (cube(x, y, n)) {
1258 int orign, currn, head, tail;
1261 * Begin a bfs.
1263 orign = n;
1265 memset(number, cr+1, cr*cr);
1266 head = tail = 0;
1267 bfsqueue[tail++] = y*cr+x;
1268 #ifdef STANDALONE_SOLVER
1269 bfsprev[y*cr+x] = -1;
1270 #endif
1271 number[y*cr+x] = t - n;
1273 while (head < tail) {
1274 int xx, yy, nneighbours, xt, yt, i;
1276 xx = bfsqueue[head++];
1277 yy = xx / cr;
1278 xx %= cr;
1280 currn = number[yy*cr+xx];
1283 * Find neighbours of yy,xx.
1285 nneighbours = 0;
1286 for (yt = 0; yt < cr; yt++)
1287 neighbours[nneighbours++] = yt*cr+xx;
1288 for (xt = 0; xt < cr; xt++)
1289 neighbours[nneighbours++] = yy*cr+xt;
1290 xt = usage->blocks->whichblock[yy*cr+xx];
1291 for (yt = 0; yt < cr; yt++)
1292 neighbours[nneighbours++] = usage->blocks->blocks[xt][yt];
1293 if (usage->diag) {
1294 int sqindex = yy*cr+xx;
1295 if (ondiag0(sqindex)) {
1296 for (i = 0; i < cr; i++)
1297 neighbours[nneighbours++] = diag0(i);
1299 if (ondiag1(sqindex)) {
1300 for (i = 0; i < cr; i++)
1301 neighbours[nneighbours++] = diag1(i);
1306 * Try visiting each of those neighbours.
1308 for (i = 0; i < nneighbours; i++) {
1309 int cc, tt, nn;
1311 xt = neighbours[i] % cr;
1312 yt = neighbours[i] / cr;
1315 * We need this square to not be
1316 * already visited, and to include
1317 * currn as a possible number.
1319 if (number[yt*cr+xt] <= cr)
1320 continue;
1321 if (!cube(xt, yt, currn))
1322 continue;
1325 * Don't visit _this_ square a second
1326 * time!
1328 if (xt == xx && yt == yy)
1329 continue;
1332 * To continue with the bfs, we need
1333 * this square to have exactly two
1334 * possible numbers.
1336 for (cc = tt = 0, nn = 1; nn <= cr; nn++)
1337 if (cube(xt, yt, nn))
1338 cc++, tt += nn;
1339 if (cc == 2) {
1340 bfsqueue[tail++] = yt*cr+xt;
1341 #ifdef STANDALONE_SOLVER
1342 bfsprev[yt*cr+xt] = yy*cr+xx;
1343 #endif
1344 number[yt*cr+xt] = tt - currn;
1348 * One other possibility is that this
1349 * might be the square in which we can
1350 * make a real deduction: if it's
1351 * adjacent to x,y, and currn is equal
1352 * to the original number we ruled out.
1354 if (currn == orign &&
1355 (xt == x || yt == y ||
1356 (usage->blocks->whichblock[yt*cr+xt] == usage->blocks->whichblock[y*cr+x]) ||
1357 (usage->diag && ((ondiag0(yt*cr+xt) && ondiag0(y*cr+x)) ||
1358 (ondiag1(yt*cr+xt) && ondiag1(y*cr+x)))))) {
1359 #ifdef STANDALONE_SOLVER
1360 if (solver_show_working) {
1361 char *sep = "";
1362 int xl, yl;
1363 printf("%*sforcing chain, %d at ends of ",
1364 solver_recurse_depth*4, "", orign);
1365 xl = xx;
1366 yl = yy;
1367 while (1) {
1368 printf("%s(%d,%d)", sep, 1+xl,
1369 1+yl);
1370 xl = bfsprev[yl*cr+xl];
1371 if (xl < 0)
1372 break;
1373 yl = xl / cr;
1374 xl %= cr;
1375 sep = "-";
1377 printf("\n%*s ruling out %d at (%d,%d)\n",
1378 solver_recurse_depth*4, "",
1379 orign, 1+xt, 1+yt);
1381 #endif
1382 cube(xt, yt, orign) = FALSE;
1383 return 1;
1390 return 0;
1393 static int solver_killer_minmax(struct solver_usage *usage,
1394 struct block_structure *cages, digit *clues,
1395 int b
1396 #ifdef STANDALONE_SOLVER
1397 , const char *extra
1398 #endif
1401 int cr = usage->cr;
1402 int i;
1403 int ret = 0;
1404 int nsquares = cages->nr_squares[b];
1406 if (clues[b] == 0)
1407 return 0;
1409 for (i = 0; i < nsquares; i++) {
1410 int n, x = cages->blocks[b][i];
1412 for (n = 1; n <= cr; n++)
1413 if (cube2(x, n)) {
1414 int maxval = 0, minval = 0;
1415 int j;
1416 for (j = 0; j < nsquares; j++) {
1417 int m;
1418 int y = cages->blocks[b][j];
1419 if (i == j)
1420 continue;
1421 for (m = 1; m <= cr; m++)
1422 if (cube2(y, m)) {
1423 minval += m;
1424 break;
1426 for (m = cr; m > 0; m--)
1427 if (cube2(y, m)) {
1428 maxval += m;
1429 break;
1432 if (maxval + n < clues[b]) {
1433 cube2(x, n) = FALSE;
1434 ret = 1;
1435 #ifdef STANDALONE_SOLVER
1436 if (solver_show_working)
1437 printf("%*s ruling out %d at (%d,%d) as too low %s\n",
1438 solver_recurse_depth*4, "killer minmax analysis",
1439 n, 1 + x%cr, 1 + x/cr, extra);
1440 #endif
1442 if (minval + n > clues[b]) {
1443 cube2(x, n) = FALSE;
1444 ret = 1;
1445 #ifdef STANDALONE_SOLVER
1446 if (solver_show_working)
1447 printf("%*s ruling out %d at (%d,%d) as too high %s\n",
1448 solver_recurse_depth*4, "killer minmax analysis",
1449 n, 1 + x%cr, 1 + x/cr, extra);
1450 #endif
1454 return ret;
1457 static int solver_killer_sums(struct solver_usage *usage, int b,
1458 struct block_structure *cages, int clue,
1459 int cage_is_region
1460 #ifdef STANDALONE_SOLVER
1461 , const char *cage_type
1462 #endif
1465 int cr = usage->cr;
1466 int i, ret, max_sums;
1467 int nsquares = cages->nr_squares[b];
1468 unsigned long *sumbits, possible_addends;
1470 if (clue == 0) {
1471 assert(nsquares == 0);
1472 return 0;
1474 assert(nsquares > 0);
1476 if (nsquares < 2 || nsquares > 4)
1477 return 0;
1479 if (!cage_is_region) {
1480 int known_row = -1, known_col = -1, known_block = -1;
1482 * Verify that the cage lies entirely within one region,
1483 * so that using the precomputed sums is valid.
1485 for (i = 0; i < nsquares; i++) {
1486 int x = cages->blocks[b][i];
1488 assert(usage->grid[x] == 0);
1490 if (i == 0) {
1491 known_row = x/cr;
1492 known_col = x%cr;
1493 known_block = usage->blocks->whichblock[x];
1494 } else {
1495 if (known_row != x/cr)
1496 known_row = -1;
1497 if (known_col != x%cr)
1498 known_col = -1;
1499 if (known_block != usage->blocks->whichblock[x])
1500 known_block = -1;
1503 if (known_block == -1 && known_col == -1 && known_row == -1)
1504 return 0;
1506 if (nsquares == 2) {
1507 if (clue < 3 || clue > 17)
1508 return -1;
1510 sumbits = sum_bits2[clue];
1511 max_sums = MAX_2SUMS;
1512 } else if (nsquares == 3) {
1513 if (clue < 6 || clue > 24)
1514 return -1;
1516 sumbits = sum_bits3[clue];
1517 max_sums = MAX_3SUMS;
1518 } else {
1519 if (clue < 10 || clue > 30)
1520 return -1;
1522 sumbits = sum_bits4[clue];
1523 max_sums = MAX_4SUMS;
1526 * For every possible way to get the sum, see if there is
1527 * one square in the cage that disallows all the required
1528 * addends. If we find one such square, this way to compute
1529 * the sum is impossible.
1531 possible_addends = 0;
1532 for (i = 0; i < max_sums; i++) {
1533 int j;
1534 unsigned long bits = sumbits[i];
1536 if (bits == 0)
1537 break;
1539 for (j = 0; j < nsquares; j++) {
1540 int n;
1541 unsigned long square_bits = bits;
1542 int x = cages->blocks[b][j];
1543 for (n = 1; n <= cr; n++)
1544 if (!cube2(x, n))
1545 square_bits &= ~(1L << n);
1546 if (square_bits == 0) {
1547 break;
1550 if (j == nsquares)
1551 possible_addends |= bits;
1554 * Now we know which addends can possibly be used to
1555 * compute the sum. Remove all other digits from the
1556 * set of possibilities.
1558 if (possible_addends == 0)
1559 return -1;
1561 ret = 0;
1562 for (i = 0; i < nsquares; i++) {
1563 int n;
1564 int x = cages->blocks[b][i];
1565 for (n = 1; n <= cr; n++) {
1566 if (!cube2(x, n))
1567 continue;
1568 if ((possible_addends & (1 << n)) == 0) {
1569 cube2(x, n) = FALSE;
1570 ret = 1;
1571 #ifdef STANDALONE_SOLVER
1572 if (solver_show_working) {
1573 printf("%*s using %s\n",
1574 solver_recurse_depth*4, "killer sums analysis",
1575 cage_type);
1576 printf("%*s ruling out %d at (%d,%d) due to impossible %d-sum\n",
1577 solver_recurse_depth*4, "",
1578 n, 1 + x%cr, 1 + x/cr, nsquares);
1580 #endif
1584 return ret;
1587 static int filter_whole_cages(struct solver_usage *usage, int *squares, int n,
1588 int *filtered_sum)
1590 int b, i, j, off;
1591 *filtered_sum = 0;
1593 /* First, filter squares with a clue. */
1594 for (i = j = 0; i < n; i++)
1595 if (usage->grid[squares[i]])
1596 *filtered_sum += usage->grid[squares[i]];
1597 else
1598 squares[j++] = squares[i];
1599 n = j;
1602 * Filter all cages that are covered entirely by the list of
1603 * squares.
1605 off = 0;
1606 for (b = 0; b < usage->kblocks->nr_blocks && off < n; b++) {
1607 int b_squares = usage->kblocks->nr_squares[b];
1608 int matched = 0;
1610 if (b_squares == 0)
1611 continue;
1614 * Find all squares of block b that lie in our list,
1615 * and make them contiguous at off, which is the current position
1616 * in the output list.
1618 for (i = 0; i < b_squares; i++) {
1619 for (j = off; j < n; j++)
1620 if (squares[j] == usage->kblocks->blocks[b][i]) {
1621 int t = squares[off + matched];
1622 squares[off + matched] = squares[j];
1623 squares[j] = t;
1624 matched++;
1625 break;
1628 /* If so, filter out all squares of b from the list. */
1629 if (matched != usage->kblocks->nr_squares[b]) {
1630 off += matched;
1631 continue;
1633 memmove(squares + off, squares + off + matched,
1634 (n - off - matched) * sizeof *squares);
1635 n -= matched;
1637 *filtered_sum += usage->kclues[b];
1639 assert(off == n);
1640 return off;
1643 static struct solver_scratch *solver_new_scratch(struct solver_usage *usage)
1645 struct solver_scratch *scratch = snew(struct solver_scratch);
1646 int cr = usage->cr;
1647 scratch->grid = snewn(cr*cr, unsigned char);
1648 scratch->rowidx = snewn(cr, unsigned char);
1649 scratch->colidx = snewn(cr, unsigned char);
1650 scratch->set = snewn(cr, unsigned char);
1651 scratch->neighbours = snewn(5*cr, int);
1652 scratch->bfsqueue = snewn(cr*cr, int);
1653 #ifdef STANDALONE_SOLVER
1654 scratch->bfsprev = snewn(cr*cr, int);
1655 #endif
1656 scratch->indexlist = snewn(cr*cr, int); /* used for set elimination */
1657 scratch->indexlist2 = snewn(cr, int); /* only used for intersect() */
1658 return scratch;
1661 static void solver_free_scratch(struct solver_scratch *scratch)
1663 #ifdef STANDALONE_SOLVER
1664 sfree(scratch->bfsprev);
1665 #endif
1666 sfree(scratch->bfsqueue);
1667 sfree(scratch->neighbours);
1668 sfree(scratch->set);
1669 sfree(scratch->colidx);
1670 sfree(scratch->rowidx);
1671 sfree(scratch->grid);
1672 sfree(scratch->indexlist);
1673 sfree(scratch->indexlist2);
1674 sfree(scratch);
1678 * Used for passing information about difficulty levels between the solver
1679 * and its callers.
1681 struct difficulty {
1682 /* Maximum levels allowed. */
1683 int maxdiff, maxkdiff;
1684 /* Levels reached by the solver. */
1685 int diff, kdiff;
1688 static void solver(int cr, struct block_structure *blocks,
1689 struct block_structure *kblocks, int xtype,
1690 digit *grid, digit *kgrid, struct difficulty *dlev)
1692 struct solver_usage *usage;
1693 struct solver_scratch *scratch;
1694 int x, y, b, i, n, ret;
1695 int diff = DIFF_BLOCK;
1696 int kdiff = DIFF_KSINGLE;
1699 * Set up a usage structure as a clean slate (everything
1700 * possible).
1702 usage = snew(struct solver_usage);
1703 usage->cr = cr;
1704 usage->blocks = blocks;
1705 if (kblocks) {
1706 usage->kblocks = dup_block_structure(kblocks);
1707 usage->extra_cages = alloc_block_structure (kblocks->c, kblocks->r,
1708 cr * cr, cr, cr * cr);
1709 usage->extra_clues = snewn(cr*cr, digit);
1710 } else {
1711 usage->kblocks = usage->extra_cages = NULL;
1712 usage->extra_clues = NULL;
1714 usage->cube = snewn(cr*cr*cr, unsigned char);
1715 usage->grid = grid; /* write straight back to the input */
1716 if (kgrid) {
1717 int nclues;
1719 assert(kblocks);
1720 nclues = kblocks->nr_blocks;
1722 * Allow for expansion of the killer regions, the absolute
1723 * limit is obviously one region per square.
1725 usage->kclues = snewn(cr*cr, digit);
1726 for (i = 0; i < nclues; i++) {
1727 for (n = 0; n < kblocks->nr_squares[i]; n++)
1728 if (kgrid[kblocks->blocks[i][n]] != 0)
1729 usage->kclues[i] = kgrid[kblocks->blocks[i][n]];
1730 assert(usage->kclues[i] > 0);
1732 memset(usage->kclues + nclues, 0, cr*cr - nclues);
1733 } else {
1734 usage->kclues = NULL;
1737 memset(usage->cube, TRUE, cr*cr*cr);
1739 usage->row = snewn(cr * cr, unsigned char);
1740 usage->col = snewn(cr * cr, unsigned char);
1741 usage->blk = snewn(cr * cr, unsigned char);
1742 memset(usage->row, FALSE, cr * cr);
1743 memset(usage->col, FALSE, cr * cr);
1744 memset(usage->blk, FALSE, cr * cr);
1746 if (xtype) {
1747 usage->diag = snewn(cr * 2, unsigned char);
1748 memset(usage->diag, FALSE, cr * 2);
1749 } else
1750 usage->diag = NULL;
1752 usage->nr_regions = cr * 3 + (xtype ? 2 : 0);
1753 usage->regions = snewn(cr * usage->nr_regions, int);
1754 usage->sq2region = snewn(cr * cr * 3, int *);
1756 for (n = 0; n < cr; n++) {
1757 for (i = 0; i < cr; i++) {
1758 x = n*cr+i;
1759 y = i*cr+n;
1760 b = usage->blocks->blocks[n][i];
1761 usage->regions[cr*n*3 + i] = x;
1762 usage->regions[cr*n*3 + cr + i] = y;
1763 usage->regions[cr*n*3 + 2*cr + i] = b;
1764 usage->sq2region[x*3] = usage->regions + cr*n*3;
1765 usage->sq2region[y*3 + 1] = usage->regions + cr*n*3 + cr;
1766 usage->sq2region[b*3 + 2] = usage->regions + cr*n*3 + 2*cr;
1770 scratch = solver_new_scratch(usage);
1773 * Place all the clue numbers we are given.
1775 for (x = 0; x < cr; x++)
1776 for (y = 0; y < cr; y++) {
1777 int n = grid[y*cr+x];
1778 if (n) {
1779 if (!cube(x,y,n)) {
1780 diff = DIFF_IMPOSSIBLE;
1781 goto got_result;
1783 solver_place(usage, x, y, grid[y*cr+x]);
1788 * Now loop over the grid repeatedly trying all permitted modes
1789 * of reasoning. The loop terminates if we complete an
1790 * iteration without making any progress; we then return
1791 * failure or success depending on whether the grid is full or
1792 * not.
1794 while (1) {
1796 * I'd like to write `continue;' inside each of the
1797 * following loops, so that the solver returns here after
1798 * making some progress. However, I can't specify that I
1799 * want to continue an outer loop rather than the innermost
1800 * one, so I'm apologetically resorting to a goto.
1802 cont:
1805 * Blockwise positional elimination.
1807 for (b = 0; b < cr; b++)
1808 for (n = 1; n <= cr; n++)
1809 if (!usage->blk[b*cr+n-1]) {
1810 for (i = 0; i < cr; i++)
1811 scratch->indexlist[i] = cubepos2(usage->blocks->blocks[b][i],n);
1812 ret = solver_elim(usage, scratch->indexlist
1813 #ifdef STANDALONE_SOLVER
1814 , "positional elimination,"
1815 " %d in block %s", n,
1816 usage->blocks->blocknames[b]
1817 #endif
1819 if (ret < 0) {
1820 diff = DIFF_IMPOSSIBLE;
1821 goto got_result;
1822 } else if (ret > 0) {
1823 diff = max(diff, DIFF_BLOCK);
1824 goto cont;
1828 if (usage->kclues != NULL) {
1829 int changed = FALSE;
1832 * First, bring the kblocks into a more useful form: remove
1833 * all filled-in squares, and reduce the sum by their values.
1834 * Walk in reverse order, since otherwise remove_from_block
1835 * can move element past our loop counter.
1837 for (b = 0; b < usage->kblocks->nr_blocks; b++)
1838 for (i = usage->kblocks->nr_squares[b] -1; i >= 0; i--) {
1839 int x = usage->kblocks->blocks[b][i];
1840 int t = usage->grid[x];
1842 if (t == 0)
1843 continue;
1844 remove_from_block(usage->kblocks, b, x);
1845 if (t > usage->kclues[b]) {
1846 diff = DIFF_IMPOSSIBLE;
1847 goto got_result;
1849 usage->kclues[b] -= t;
1851 * Since cages are regions, this tells us something
1852 * about the other squares in the cage.
1854 for (n = 0; n < usage->kblocks->nr_squares[b]; n++) {
1855 cube2(usage->kblocks->blocks[b][n], t) = FALSE;
1860 * The most trivial kind of solver for killer puzzles: fill
1861 * single-square cages.
1863 for (b = 0; b < usage->kblocks->nr_blocks; b++) {
1864 int squares = usage->kblocks->nr_squares[b];
1865 if (squares == 1) {
1866 int v = usage->kclues[b];
1867 if (v < 1 || v > cr) {
1868 diff = DIFF_IMPOSSIBLE;
1869 goto got_result;
1871 x = usage->kblocks->blocks[b][0] % cr;
1872 y = usage->kblocks->blocks[b][0] / cr;
1873 if (!cube(x, y, v)) {
1874 diff = DIFF_IMPOSSIBLE;
1875 goto got_result;
1877 solver_place(usage, x, y, v);
1879 #ifdef STANDALONE_SOLVER
1880 if (solver_show_working) {
1881 printf("%*s placing %d at (%d,%d)\n",
1882 solver_recurse_depth*4, "killer single-square cage",
1883 v, 1 + x%cr, 1 + x/cr);
1885 #endif
1886 changed = TRUE;
1890 if (changed) {
1891 kdiff = max(kdiff, DIFF_KSINGLE);
1892 goto cont;
1895 if (dlev->maxkdiff >= DIFF_KINTERSECT && usage->kclues != NULL) {
1896 int changed = FALSE;
1898 * Now, create the extra_cages information. Every full region
1899 * (row, column, or block) has the same sum total (45 for 3x3
1900 * puzzles. After we try to cover these regions with cages that
1901 * lie entirely within them, any squares that remain must bring
1902 * the total to this known value, and so they form additional
1903 * cages which aren't immediately evident in the displayed form
1904 * of the puzzle.
1906 usage->extra_cages->nr_blocks = 0;
1907 for (i = 0; i < 3; i++) {
1908 for (n = 0; n < cr; n++) {
1909 int *region = usage->regions + cr*n*3 + i*cr;
1910 int sum = cr * (cr + 1) / 2;
1911 int nsquares = cr;
1912 int filtered;
1913 int n_extra = usage->extra_cages->nr_blocks;
1914 int *extra_list = usage->extra_cages->blocks[n_extra];
1915 memcpy(extra_list, region, cr * sizeof *extra_list);
1917 nsquares = filter_whole_cages(usage, extra_list, nsquares, &filtered);
1918 sum -= filtered;
1919 if (nsquares == cr || nsquares == 0)
1920 continue;
1921 if (dlev->maxdiff >= DIFF_RECURSIVE) {
1922 if (sum <= 0) {
1923 dlev->diff = DIFF_IMPOSSIBLE;
1924 goto got_result;
1927 assert(sum > 0);
1929 if (nsquares == 1) {
1930 if (sum > cr) {
1931 diff = DIFF_IMPOSSIBLE;
1932 goto got_result;
1934 x = extra_list[0] % cr;
1935 y = extra_list[0] / cr;
1936 if (!cube(x, y, sum)) {
1937 diff = DIFF_IMPOSSIBLE;
1938 goto got_result;
1940 solver_place(usage, x, y, sum);
1941 changed = TRUE;
1942 #ifdef STANDALONE_SOLVER
1943 if (solver_show_working) {
1944 printf("%*s placing %d at (%d,%d)\n",
1945 solver_recurse_depth*4, "killer single-square deduced cage",
1946 sum, 1 + x, 1 + y);
1948 #endif
1951 b = usage->kblocks->whichblock[extra_list[0]];
1952 for (x = 1; x < nsquares; x++)
1953 if (usage->kblocks->whichblock[extra_list[x]] != b)
1954 break;
1955 if (x == nsquares) {
1956 assert(usage->kblocks->nr_squares[b] > nsquares);
1957 split_block(usage->kblocks, extra_list, nsquares);
1958 assert(usage->kblocks->nr_squares[usage->kblocks->nr_blocks - 1] == nsquares);
1959 usage->kclues[usage->kblocks->nr_blocks - 1] = sum;
1960 usage->kclues[b] -= sum;
1961 } else {
1962 usage->extra_cages->nr_squares[n_extra] = nsquares;
1963 usage->extra_cages->nr_blocks++;
1964 usage->extra_clues[n_extra] = sum;
1968 if (changed) {
1969 kdiff = max(kdiff, DIFF_KINTERSECT);
1970 goto cont;
1975 * Another simple killer-type elimination. For every square in a
1976 * cage, find the minimum and maximum possible sums of all the
1977 * other squares in the same cage, and rule out possibilities
1978 * for the given square based on whether they are guaranteed to
1979 * cause the sum to be either too high or too low.
1980 * This is a special case of trying all possible sums across a
1981 * region, which is a recursive algorithm. We should probably
1982 * implement it for a higher difficulty level.
1984 if (dlev->maxkdiff >= DIFF_KMINMAX && usage->kclues != NULL) {
1985 int changed = FALSE;
1986 for (b = 0; b < usage->kblocks->nr_blocks; b++) {
1987 int ret = solver_killer_minmax(usage, usage->kblocks,
1988 usage->kclues, b
1989 #ifdef STANDALONE_SOLVER
1990 , ""
1991 #endif
1993 if (ret < 0) {
1994 diff = DIFF_IMPOSSIBLE;
1995 goto got_result;
1996 } else if (ret > 0)
1997 changed = TRUE;
1999 for (b = 0; b < usage->extra_cages->nr_blocks; b++) {
2000 int ret = solver_killer_minmax(usage, usage->extra_cages,
2001 usage->extra_clues, b
2002 #ifdef STANDALONE_SOLVER
2003 , "using deduced cages"
2004 #endif
2006 if (ret < 0) {
2007 diff = DIFF_IMPOSSIBLE;
2008 goto got_result;
2009 } else if (ret > 0)
2010 changed = TRUE;
2012 if (changed) {
2013 kdiff = max(kdiff, DIFF_KMINMAX);
2014 goto cont;
2019 * Try to use knowledge of which numbers can be used to generate
2020 * a given sum.
2021 * This can only be used if a cage lies entirely within a region.
2023 if (dlev->maxkdiff >= DIFF_KSUMS && usage->kclues != NULL) {
2024 int changed = FALSE;
2026 for (b = 0; b < usage->kblocks->nr_blocks; b++) {
2027 int ret = solver_killer_sums(usage, b, usage->kblocks,
2028 usage->kclues[b], TRUE
2029 #ifdef STANDALONE_SOLVER
2030 , "regular clues"
2031 #endif
2033 if (ret > 0) {
2034 changed = TRUE;
2035 kdiff = max(kdiff, DIFF_KSUMS);
2036 } else if (ret < 0) {
2037 diff = DIFF_IMPOSSIBLE;
2038 goto got_result;
2042 for (b = 0; b < usage->extra_cages->nr_blocks; b++) {
2043 int ret = solver_killer_sums(usage, b, usage->extra_cages,
2044 usage->extra_clues[b], FALSE
2045 #ifdef STANDALONE_SOLVER
2046 , "deduced clues"
2047 #endif
2049 if (ret > 0) {
2050 changed = TRUE;
2051 kdiff = max(kdiff, DIFF_KSUMS);
2052 } else if (ret < 0) {
2053 diff = DIFF_IMPOSSIBLE;
2054 goto got_result;
2058 if (changed)
2059 goto cont;
2062 if (dlev->maxdiff <= DIFF_BLOCK)
2063 break;
2066 * Row-wise positional elimination.
2068 for (y = 0; y < cr; y++)
2069 for (n = 1; n <= cr; n++)
2070 if (!usage->row[y*cr+n-1]) {
2071 for (x = 0; x < cr; x++)
2072 scratch->indexlist[x] = cubepos(x, y, n);
2073 ret = solver_elim(usage, scratch->indexlist
2074 #ifdef STANDALONE_SOLVER
2075 , "positional elimination,"
2076 " %d in row %d", n, 1+y
2077 #endif
2079 if (ret < 0) {
2080 diff = DIFF_IMPOSSIBLE;
2081 goto got_result;
2082 } else if (ret > 0) {
2083 diff = max(diff, DIFF_SIMPLE);
2084 goto cont;
2088 * Column-wise positional elimination.
2090 for (x = 0; x < cr; x++)
2091 for (n = 1; n <= cr; n++)
2092 if (!usage->col[x*cr+n-1]) {
2093 for (y = 0; y < cr; y++)
2094 scratch->indexlist[y] = cubepos(x, y, n);
2095 ret = solver_elim(usage, scratch->indexlist
2096 #ifdef STANDALONE_SOLVER
2097 , "positional elimination,"
2098 " %d in column %d", n, 1+x
2099 #endif
2101 if (ret < 0) {
2102 diff = DIFF_IMPOSSIBLE;
2103 goto got_result;
2104 } else if (ret > 0) {
2105 diff = max(diff, DIFF_SIMPLE);
2106 goto cont;
2111 * X-diagonal positional elimination.
2113 if (usage->diag) {
2114 for (n = 1; n <= cr; n++)
2115 if (!usage->diag[n-1]) {
2116 for (i = 0; i < cr; i++)
2117 scratch->indexlist[i] = cubepos2(diag0(i), n);
2118 ret = solver_elim(usage, scratch->indexlist
2119 #ifdef STANDALONE_SOLVER
2120 , "positional elimination,"
2121 " %d in \\-diagonal", n
2122 #endif
2124 if (ret < 0) {
2125 diff = DIFF_IMPOSSIBLE;
2126 goto got_result;
2127 } else if (ret > 0) {
2128 diff = max(diff, DIFF_SIMPLE);
2129 goto cont;
2132 for (n = 1; n <= cr; n++)
2133 if (!usage->diag[cr+n-1]) {
2134 for (i = 0; i < cr; i++)
2135 scratch->indexlist[i] = cubepos2(diag1(i), n);
2136 ret = solver_elim(usage, scratch->indexlist
2137 #ifdef STANDALONE_SOLVER
2138 , "positional elimination,"
2139 " %d in /-diagonal", n
2140 #endif
2142 if (ret < 0) {
2143 diff = DIFF_IMPOSSIBLE;
2144 goto got_result;
2145 } else if (ret > 0) {
2146 diff = max(diff, DIFF_SIMPLE);
2147 goto cont;
2153 * Numeric elimination.
2155 for (x = 0; x < cr; x++)
2156 for (y = 0; y < cr; y++)
2157 if (!usage->grid[y*cr+x]) {
2158 for (n = 1; n <= cr; n++)
2159 scratch->indexlist[n-1] = cubepos(x, y, n);
2160 ret = solver_elim(usage, scratch->indexlist
2161 #ifdef STANDALONE_SOLVER
2162 , "numeric elimination at (%d,%d)",
2163 1+x, 1+y
2164 #endif
2166 if (ret < 0) {
2167 diff = DIFF_IMPOSSIBLE;
2168 goto got_result;
2169 } else if (ret > 0) {
2170 diff = max(diff, DIFF_SIMPLE);
2171 goto cont;
2175 if (dlev->maxdiff <= DIFF_SIMPLE)
2176 break;
2179 * Intersectional analysis, rows vs blocks.
2181 for (y = 0; y < cr; y++)
2182 for (b = 0; b < cr; b++)
2183 for (n = 1; n <= cr; n++) {
2184 if (usage->row[y*cr+n-1] ||
2185 usage->blk[b*cr+n-1])
2186 continue;
2187 for (i = 0; i < cr; i++) {
2188 scratch->indexlist[i] = cubepos(i, y, n);
2189 scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
2192 * solver_intersect() never returns -1.
2194 if (solver_intersect(usage, scratch->indexlist,
2195 scratch->indexlist2
2196 #ifdef STANDALONE_SOLVER
2197 , "intersectional analysis,"
2198 " %d in row %d vs block %s",
2199 n, 1+y, usage->blocks->blocknames[b]
2200 #endif
2201 ) ||
2202 solver_intersect(usage, scratch->indexlist2,
2203 scratch->indexlist
2204 #ifdef STANDALONE_SOLVER
2205 , "intersectional analysis,"
2206 " %d in block %s vs row %d",
2207 n, usage->blocks->blocknames[b], 1+y
2208 #endif
2209 )) {
2210 diff = max(diff, DIFF_INTERSECT);
2211 goto cont;
2216 * Intersectional analysis, columns vs blocks.
2218 for (x = 0; x < cr; x++)
2219 for (b = 0; b < cr; b++)
2220 for (n = 1; n <= cr; n++) {
2221 if (usage->col[x*cr+n-1] ||
2222 usage->blk[b*cr+n-1])
2223 continue;
2224 for (i = 0; i < cr; i++) {
2225 scratch->indexlist[i] = cubepos(x, i, n);
2226 scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
2228 if (solver_intersect(usage, scratch->indexlist,
2229 scratch->indexlist2
2230 #ifdef STANDALONE_SOLVER
2231 , "intersectional analysis,"
2232 " %d in column %d vs block %s",
2233 n, 1+x, usage->blocks->blocknames[b]
2234 #endif
2235 ) ||
2236 solver_intersect(usage, scratch->indexlist2,
2237 scratch->indexlist
2238 #ifdef STANDALONE_SOLVER
2239 , "intersectional analysis,"
2240 " %d in block %s vs column %d",
2241 n, usage->blocks->blocknames[b], 1+x
2242 #endif
2243 )) {
2244 diff = max(diff, DIFF_INTERSECT);
2245 goto cont;
2249 if (usage->diag) {
2251 * Intersectional analysis, \-diagonal vs blocks.
2253 for (b = 0; b < cr; b++)
2254 for (n = 1; n <= cr; n++) {
2255 if (usage->diag[n-1] ||
2256 usage->blk[b*cr+n-1])
2257 continue;
2258 for (i = 0; i < cr; i++) {
2259 scratch->indexlist[i] = cubepos2(diag0(i), n);
2260 scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
2262 if (solver_intersect(usage, scratch->indexlist,
2263 scratch->indexlist2
2264 #ifdef STANDALONE_SOLVER
2265 , "intersectional analysis,"
2266 " %d in \\-diagonal vs block %s",
2267 n, usage->blocks->blocknames[b]
2268 #endif
2269 ) ||
2270 solver_intersect(usage, scratch->indexlist2,
2271 scratch->indexlist
2272 #ifdef STANDALONE_SOLVER
2273 , "intersectional analysis,"
2274 " %d in block %s vs \\-diagonal",
2275 n, usage->blocks->blocknames[b]
2276 #endif
2277 )) {
2278 diff = max(diff, DIFF_INTERSECT);
2279 goto cont;
2284 * Intersectional analysis, /-diagonal vs blocks.
2286 for (b = 0; b < cr; b++)
2287 for (n = 1; n <= cr; n++) {
2288 if (usage->diag[cr+n-1] ||
2289 usage->blk[b*cr+n-1])
2290 continue;
2291 for (i = 0; i < cr; i++) {
2292 scratch->indexlist[i] = cubepos2(diag1(i), n);
2293 scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
2295 if (solver_intersect(usage, scratch->indexlist,
2296 scratch->indexlist2
2297 #ifdef STANDALONE_SOLVER
2298 , "intersectional analysis,"
2299 " %d in /-diagonal vs block %s",
2300 n, usage->blocks->blocknames[b]
2301 #endif
2302 ) ||
2303 solver_intersect(usage, scratch->indexlist2,
2304 scratch->indexlist
2305 #ifdef STANDALONE_SOLVER
2306 , "intersectional analysis,"
2307 " %d in block %s vs /-diagonal",
2308 n, usage->blocks->blocknames[b]
2309 #endif
2310 )) {
2311 diff = max(diff, DIFF_INTERSECT);
2312 goto cont;
2317 if (dlev->maxdiff <= DIFF_INTERSECT)
2318 break;
2321 * Blockwise set elimination.
2323 for (b = 0; b < cr; b++) {
2324 for (i = 0; i < cr; i++)
2325 for (n = 1; n <= cr; n++)
2326 scratch->indexlist[i*cr+n-1] = cubepos2(usage->blocks->blocks[b][i], n);
2327 ret = solver_set(usage, scratch, scratch->indexlist
2328 #ifdef STANDALONE_SOLVER
2329 , "set elimination, block %s",
2330 usage->blocks->blocknames[b]
2331 #endif
2333 if (ret < 0) {
2334 diff = DIFF_IMPOSSIBLE;
2335 goto got_result;
2336 } else if (ret > 0) {
2337 diff = max(diff, DIFF_SET);
2338 goto cont;
2343 * Row-wise set elimination.
2345 for (y = 0; y < cr; y++) {
2346 for (x = 0; x < cr; x++)
2347 for (n = 1; n <= cr; n++)
2348 scratch->indexlist[x*cr+n-1] = cubepos(x, y, n);
2349 ret = solver_set(usage, scratch, scratch->indexlist
2350 #ifdef STANDALONE_SOLVER
2351 , "set elimination, row %d", 1+y
2352 #endif
2354 if (ret < 0) {
2355 diff = DIFF_IMPOSSIBLE;
2356 goto got_result;
2357 } else if (ret > 0) {
2358 diff = max(diff, DIFF_SET);
2359 goto cont;
2364 * Column-wise set elimination.
2366 for (x = 0; x < cr; x++) {
2367 for (y = 0; y < cr; y++)
2368 for (n = 1; n <= cr; n++)
2369 scratch->indexlist[y*cr+n-1] = cubepos(x, y, n);
2370 ret = solver_set(usage, scratch, scratch->indexlist
2371 #ifdef STANDALONE_SOLVER
2372 , "set elimination, column %d", 1+x
2373 #endif
2375 if (ret < 0) {
2376 diff = DIFF_IMPOSSIBLE;
2377 goto got_result;
2378 } else if (ret > 0) {
2379 diff = max(diff, DIFF_SET);
2380 goto cont;
2384 if (usage->diag) {
2386 * \-diagonal set elimination.
2388 for (i = 0; i < cr; i++)
2389 for (n = 1; n <= cr; n++)
2390 scratch->indexlist[i*cr+n-1] = cubepos2(diag0(i), n);
2391 ret = solver_set(usage, scratch, scratch->indexlist
2392 #ifdef STANDALONE_SOLVER
2393 , "set elimination, \\-diagonal"
2394 #endif
2396 if (ret < 0) {
2397 diff = DIFF_IMPOSSIBLE;
2398 goto got_result;
2399 } else if (ret > 0) {
2400 diff = max(diff, DIFF_SET);
2401 goto cont;
2405 * /-diagonal set elimination.
2407 for (i = 0; i < cr; i++)
2408 for (n = 1; n <= cr; n++)
2409 scratch->indexlist[i*cr+n-1] = cubepos2(diag1(i), n);
2410 ret = solver_set(usage, scratch, scratch->indexlist
2411 #ifdef STANDALONE_SOLVER
2412 , "set elimination, /-diagonal"
2413 #endif
2415 if (ret < 0) {
2416 diff = DIFF_IMPOSSIBLE;
2417 goto got_result;
2418 } else if (ret > 0) {
2419 diff = max(diff, DIFF_SET);
2420 goto cont;
2424 if (dlev->maxdiff <= DIFF_SET)
2425 break;
2428 * Row-vs-column set elimination on a single number.
2430 for (n = 1; n <= cr; n++) {
2431 for (y = 0; y < cr; y++)
2432 for (x = 0; x < cr; x++)
2433 scratch->indexlist[y*cr+x] = cubepos(x, y, n);
2434 ret = solver_set(usage, scratch, scratch->indexlist
2435 #ifdef STANDALONE_SOLVER
2436 , "positional set elimination, number %d", n
2437 #endif
2439 if (ret < 0) {
2440 diff = DIFF_IMPOSSIBLE;
2441 goto got_result;
2442 } else if (ret > 0) {
2443 diff = max(diff, DIFF_EXTREME);
2444 goto cont;
2449 * Forcing chains.
2451 if (solver_forcing(usage, scratch)) {
2452 diff = max(diff, DIFF_EXTREME);
2453 goto cont;
2457 * If we reach here, we have made no deductions in this
2458 * iteration, so the algorithm terminates.
2460 break;
2464 * Last chance: if we haven't fully solved the puzzle yet, try
2465 * recursing based on guesses for a particular square. We pick
2466 * one of the most constrained empty squares we can find, which
2467 * has the effect of pruning the search tree as much as
2468 * possible.
2470 if (dlev->maxdiff >= DIFF_RECURSIVE) {
2471 int best, bestcount;
2473 best = -1;
2474 bestcount = cr+1;
2476 for (y = 0; y < cr; y++)
2477 for (x = 0; x < cr; x++)
2478 if (!grid[y*cr+x]) {
2479 int count;
2482 * An unfilled square. Count the number of
2483 * possible digits in it.
2485 count = 0;
2486 for (n = 1; n <= cr; n++)
2487 if (cube(x,y,n))
2488 count++;
2491 * We should have found any impossibilities
2492 * already, so this can safely be an assert.
2494 assert(count > 1);
2496 if (count < bestcount) {
2497 bestcount = count;
2498 best = y*cr+x;
2502 if (best != -1) {
2503 int i, j;
2504 digit *list, *ingrid, *outgrid;
2506 diff = DIFF_IMPOSSIBLE; /* no solution found yet */
2509 * Attempt recursion.
2511 y = best / cr;
2512 x = best % cr;
2514 list = snewn(cr, digit);
2515 ingrid = snewn(cr * cr, digit);
2516 outgrid = snewn(cr * cr, digit);
2517 memcpy(ingrid, grid, cr * cr);
2519 /* Make a list of the possible digits. */
2520 for (j = 0, n = 1; n <= cr; n++)
2521 if (cube(x,y,n))
2522 list[j++] = n;
2524 #ifdef STANDALONE_SOLVER
2525 if (solver_show_working) {
2526 char *sep = "";
2527 printf("%*srecursing on (%d,%d) [",
2528 solver_recurse_depth*4, "", x + 1, y + 1);
2529 for (i = 0; i < j; i++) {
2530 printf("%s%d", sep, list[i]);
2531 sep = " or ";
2533 printf("]\n");
2535 #endif
2538 * And step along the list, recursing back into the
2539 * main solver at every stage.
2541 for (i = 0; i < j; i++) {
2542 memcpy(outgrid, ingrid, cr * cr);
2543 outgrid[y*cr+x] = list[i];
2545 #ifdef STANDALONE_SOLVER
2546 if (solver_show_working)
2547 printf("%*sguessing %d at (%d,%d)\n",
2548 solver_recurse_depth*4, "", list[i], x + 1, y + 1);
2549 solver_recurse_depth++;
2550 #endif
2552 solver(cr, blocks, kblocks, xtype, outgrid, kgrid, dlev);
2554 #ifdef STANDALONE_SOLVER
2555 solver_recurse_depth--;
2556 if (solver_show_working) {
2557 printf("%*sretracting %d at (%d,%d)\n",
2558 solver_recurse_depth*4, "", list[i], x + 1, y + 1);
2560 #endif
2563 * If we have our first solution, copy it into the
2564 * grid we will return.
2566 if (diff == DIFF_IMPOSSIBLE && dlev->diff != DIFF_IMPOSSIBLE)
2567 memcpy(grid, outgrid, cr*cr);
2569 if (dlev->diff == DIFF_AMBIGUOUS)
2570 diff = DIFF_AMBIGUOUS;
2571 else if (dlev->diff == DIFF_IMPOSSIBLE)
2572 /* do not change our return value */;
2573 else {
2574 /* the recursion turned up exactly one solution */
2575 if (diff == DIFF_IMPOSSIBLE)
2576 diff = DIFF_RECURSIVE;
2577 else
2578 diff = DIFF_AMBIGUOUS;
2582 * As soon as we've found more than one solution,
2583 * give up immediately.
2585 if (diff == DIFF_AMBIGUOUS)
2586 break;
2589 sfree(outgrid);
2590 sfree(ingrid);
2591 sfree(list);
2594 } else {
2596 * We're forbidden to use recursion, so we just see whether
2597 * our grid is fully solved, and return DIFF_IMPOSSIBLE
2598 * otherwise.
2600 for (y = 0; y < cr; y++)
2601 for (x = 0; x < cr; x++)
2602 if (!grid[y*cr+x])
2603 diff = DIFF_IMPOSSIBLE;
2606 got_result:
2607 dlev->diff = diff;
2608 dlev->kdiff = kdiff;
2610 #ifdef STANDALONE_SOLVER
2611 if (solver_show_working)
2612 printf("%*s%s found\n",
2613 solver_recurse_depth*4, "",
2614 diff == DIFF_IMPOSSIBLE ? "no solution" :
2615 diff == DIFF_AMBIGUOUS ? "multiple solutions" :
2616 "one solution");
2617 #endif
2619 sfree(usage->sq2region);
2620 sfree(usage->regions);
2621 sfree(usage->cube);
2622 sfree(usage->row);
2623 sfree(usage->col);
2624 sfree(usage->blk);
2625 if (usage->kblocks) {
2626 free_block_structure(usage->kblocks);
2627 free_block_structure(usage->extra_cages);
2628 sfree(usage->extra_clues);
2630 if (usage->kclues) sfree(usage->kclues);
2631 sfree(usage);
2633 solver_free_scratch(scratch);
2636 /* ----------------------------------------------------------------------
2637 * End of solver code.
2640 /* ----------------------------------------------------------------------
2641 * Killer set generator.
2644 /* ----------------------------------------------------------------------
2645 * Solo filled-grid generator.
2647 * This grid generator works by essentially trying to solve a grid
2648 * starting from no clues, and not worrying that there's more than
2649 * one possible solution. Unfortunately, it isn't computationally
2650 * feasible to do this by calling the above solver with an empty
2651 * grid, because that one needs to allocate a lot of scratch space
2652 * at every recursion level. Instead, I have a much simpler
2653 * algorithm which I shamelessly copied from a Python solver
2654 * written by Andrew Wilkinson (which is GPLed, but I've reused
2655 * only ideas and no code). It mostly just does the obvious
2656 * recursive thing: pick an empty square, put one of the possible
2657 * digits in it, recurse until all squares are filled, backtrack
2658 * and change some choices if necessary.
2660 * The clever bit is that every time it chooses which square to
2661 * fill in next, it does so by counting the number of _possible_
2662 * numbers that can go in each square, and it prioritises so that
2663 * it picks a square with the _lowest_ number of possibilities. The
2664 * idea is that filling in lots of the obvious bits (particularly
2665 * any squares with only one possibility) will cut down on the list
2666 * of possibilities for other squares and hence reduce the enormous
2667 * search space as much as possible as early as possible.
2669 * The use of bit sets implies that we support puzzles up to a size of
2670 * 32x32 (less if anyone finds a 16-bit machine to compile this on).
2674 * Internal data structure used in gridgen to keep track of
2675 * progress.
2677 struct gridgen_coord { int x, y, r; };
2678 struct gridgen_usage {
2679 int cr;
2680 struct block_structure *blocks, *kblocks;
2681 /* grid is a copy of the input grid, modified as we go along */
2682 digit *grid;
2684 * Bitsets. In each of them, bit n is set if digit n has been placed
2685 * in the corresponding region. row, col and blk are used for all
2686 * puzzles. cge is used only for killer puzzles, and diag is used
2687 * only for x-type puzzles.
2688 * All of these have cr entries, except diag which only has 2,
2689 * and cge, which has as many entries as kblocks.
2691 unsigned int *row, *col, *blk, *cge, *diag;
2692 /* This lists all the empty spaces remaining in the grid. */
2693 struct gridgen_coord *spaces;
2694 int nspaces;
2695 /* If we need randomisation in the solve, this is our random state. */
2696 random_state *rs;
2699 static void gridgen_place(struct gridgen_usage *usage, int x, int y, digit n)
2701 unsigned int bit = 1 << n;
2702 int cr = usage->cr;
2703 usage->row[y] |= bit;
2704 usage->col[x] |= bit;
2705 usage->blk[usage->blocks->whichblock[y*cr+x]] |= bit;
2706 if (usage->cge)
2707 usage->cge[usage->kblocks->whichblock[y*cr+x]] |= bit;
2708 if (usage->diag) {
2709 if (ondiag0(y*cr+x))
2710 usage->diag[0] |= bit;
2711 if (ondiag1(y*cr+x))
2712 usage->diag[1] |= bit;
2714 usage->grid[y*cr+x] = n;
2717 static void gridgen_remove(struct gridgen_usage *usage, int x, int y, digit n)
2719 unsigned int mask = ~(1 << n);
2720 int cr = usage->cr;
2721 usage->row[y] &= mask;
2722 usage->col[x] &= mask;
2723 usage->blk[usage->blocks->whichblock[y*cr+x]] &= mask;
2724 if (usage->cge)
2725 usage->cge[usage->kblocks->whichblock[y*cr+x]] &= mask;
2726 if (usage->diag) {
2727 if (ondiag0(y*cr+x))
2728 usage->diag[0] &= mask;
2729 if (ondiag1(y*cr+x))
2730 usage->diag[1] &= mask;
2732 usage->grid[y*cr+x] = 0;
2735 #define N_SINGLE 32
2738 * The real recursive step in the generating function.
2740 * Return values: 1 means solution found, 0 means no solution
2741 * found on this branch.
2743 static int gridgen_real(struct gridgen_usage *usage, digit *grid, int *steps)
2745 int cr = usage->cr;
2746 int i, j, n, sx, sy, bestm, bestr, ret;
2747 int *digits;
2748 unsigned int used;
2751 * Firstly, check for completion! If there are no spaces left
2752 * in the grid, we have a solution.
2754 if (usage->nspaces == 0)
2755 return TRUE;
2758 * Next, abandon generation if we went over our steps limit.
2760 if (*steps <= 0)
2761 return FALSE;
2762 (*steps)--;
2765 * Otherwise, there must be at least one space. Find the most
2766 * constrained space, using the `r' field as a tie-breaker.
2768 bestm = cr+1; /* so that any space will beat it */
2769 bestr = 0;
2770 used = ~0;
2771 i = sx = sy = -1;
2772 for (j = 0; j < usage->nspaces; j++) {
2773 int x = usage->spaces[j].x, y = usage->spaces[j].y;
2774 unsigned int used_xy;
2775 int m;
2777 m = usage->blocks->whichblock[y*cr+x];
2778 used_xy = usage->row[y] | usage->col[x] | usage->blk[m];
2779 if (usage->cge != NULL)
2780 used_xy |= usage->cge[usage->kblocks->whichblock[y*cr+x]];
2781 if (usage->cge != NULL)
2782 used_xy |= usage->cge[usage->kblocks->whichblock[y*cr+x]];
2783 if (usage->diag != NULL) {
2784 if (ondiag0(y*cr+x))
2785 used_xy |= usage->diag[0];
2786 if (ondiag1(y*cr+x))
2787 used_xy |= usage->diag[1];
2791 * Find the number of digits that could go in this space.
2793 m = 0;
2794 for (n = 1; n <= cr; n++) {
2795 unsigned int bit = 1 << n;
2796 if ((used_xy & bit) == 0)
2797 m++;
2799 if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
2800 bestm = m;
2801 bestr = usage->spaces[j].r;
2802 sx = x;
2803 sy = y;
2804 i = j;
2805 used = used_xy;
2810 * Swap that square into the final place in the spaces array,
2811 * so that decrementing nspaces will remove it from the list.
2813 if (i != usage->nspaces-1) {
2814 struct gridgen_coord t;
2815 t = usage->spaces[usage->nspaces-1];
2816 usage->spaces[usage->nspaces-1] = usage->spaces[i];
2817 usage->spaces[i] = t;
2821 * Now we've decided which square to start our recursion at,
2822 * simply go through all possible values, shuffling them
2823 * randomly first if necessary.
2825 digits = snewn(bestm, int);
2827 j = 0;
2828 for (n = 1; n <= cr; n++) {
2829 unsigned int bit = 1 << n;
2831 if ((used & bit) == 0)
2832 digits[j++] = n;
2835 if (usage->rs)
2836 shuffle(digits, j, sizeof(*digits), usage->rs);
2838 /* And finally, go through the digit list and actually recurse. */
2839 ret = FALSE;
2840 for (i = 0; i < j; i++) {
2841 n = digits[i];
2843 /* Update the usage structure to reflect the placing of this digit. */
2844 gridgen_place(usage, sx, sy, n);
2845 usage->nspaces--;
2847 /* Call the solver recursively. Stop when we find a solution. */
2848 if (gridgen_real(usage, grid, steps)) {
2849 ret = TRUE;
2850 break;
2853 /* Revert the usage structure. */
2854 gridgen_remove(usage, sx, sy, n);
2855 usage->nspaces++;
2858 sfree(digits);
2859 return ret;
2863 * Entry point to generator. You give it parameters and a starting
2864 * grid, which is simply an array of cr*cr digits.
2866 static int gridgen(int cr, struct block_structure *blocks,
2867 struct block_structure *kblocks, int xtype,
2868 digit *grid, random_state *rs, int maxsteps)
2870 struct gridgen_usage *usage;
2871 int x, y, ret;
2874 * Clear the grid to start with.
2876 memset(grid, 0, cr*cr);
2879 * Create a gridgen_usage structure.
2881 usage = snew(struct gridgen_usage);
2883 usage->cr = cr;
2884 usage->blocks = blocks;
2886 usage->grid = grid;
2888 usage->row = snewn(cr, unsigned int);
2889 usage->col = snewn(cr, unsigned int);
2890 usage->blk = snewn(cr, unsigned int);
2891 if (kblocks != NULL) {
2892 usage->kblocks = kblocks;
2893 usage->cge = snewn(usage->kblocks->nr_blocks, unsigned int);
2894 memset(usage->cge, FALSE, kblocks->nr_blocks * sizeof *usage->cge);
2895 } else {
2896 usage->cge = NULL;
2899 memset(usage->row, 0, cr * sizeof *usage->row);
2900 memset(usage->col, 0, cr * sizeof *usage->col);
2901 memset(usage->blk, 0, cr * sizeof *usage->blk);
2903 if (xtype) {
2904 usage->diag = snewn(2, unsigned int);
2905 memset(usage->diag, 0, 2 * sizeof *usage->diag);
2906 } else {
2907 usage->diag = NULL;
2911 * Begin by filling in the whole top row with randomly chosen
2912 * numbers. This cannot introduce any bias or restriction on
2913 * the available grids, since we already know those numbers
2914 * are all distinct so all we're doing is choosing their
2915 * labels.
2917 for (x = 0; x < cr; x++)
2918 grid[x] = x+1;
2919 shuffle(grid, cr, sizeof(*grid), rs);
2920 for (x = 0; x < cr; x++)
2921 gridgen_place(usage, x, 0, grid[x]);
2923 usage->spaces = snewn(cr * cr, struct gridgen_coord);
2924 usage->nspaces = 0;
2926 usage->rs = rs;
2929 * Initialise the list of grid spaces, taking care to leave
2930 * out the row I've already filled in above.
2932 for (y = 1; y < cr; y++) {
2933 for (x = 0; x < cr; x++) {
2934 usage->spaces[usage->nspaces].x = x;
2935 usage->spaces[usage->nspaces].y = y;
2936 usage->spaces[usage->nspaces].r = random_bits(rs, 31);
2937 usage->nspaces++;
2942 * Run the real generator function.
2944 ret = gridgen_real(usage, grid, &maxsteps);
2947 * Clean up the usage structure now we have our answer.
2949 sfree(usage->spaces);
2950 sfree(usage->cge);
2951 sfree(usage->blk);
2952 sfree(usage->col);
2953 sfree(usage->row);
2954 sfree(usage);
2956 return ret;
2959 /* ----------------------------------------------------------------------
2960 * End of grid generator code.
2963 static int check_killer_cage_sum(struct block_structure *kblocks,
2964 digit *kgrid, digit *grid, int blk)
2967 * Returns: -1 if the cage has any empty square; 0 if all squares
2968 * are full but the sum is wrong; +1 if all squares are full and
2969 * they have the right sum.
2971 * Does not check uniqueness of numbers within the cage; that's
2972 * done elsewhere (because in error highlighting it needs to be
2973 * detected separately so as to flag the error in a visually
2974 * different way).
2976 int n_squares = kblocks->nr_squares[blk];
2977 int sum = 0, clue = 0;
2978 int i;
2980 for (i = 0; i < n_squares; i++) {
2981 int xy = kblocks->blocks[blk][i];
2983 if (grid[xy] == 0)
2984 return -1;
2985 sum += grid[xy];
2987 if (kgrid[xy]) {
2988 assert(clue == 0);
2989 clue = kgrid[xy];
2993 assert(clue != 0);
2994 return sum == clue;
2998 * Check whether a grid contains a valid complete puzzle.
3000 static int check_valid(int cr, struct block_structure *blocks,
3001 struct block_structure *kblocks,
3002 digit *kgrid, int xtype, digit *grid)
3004 unsigned char *used;
3005 int x, y, i, j, n;
3007 used = snewn(cr, unsigned char);
3010 * Check that each row contains precisely one of everything.
3012 for (y = 0; y < cr; y++) {
3013 memset(used, FALSE, cr);
3014 for (x = 0; x < cr; x++)
3015 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
3016 used[grid[y*cr+x]-1] = TRUE;
3017 for (n = 0; n < cr; n++)
3018 if (!used[n]) {
3019 sfree(used);
3020 return FALSE;
3025 * Check that each column contains precisely one of everything.
3027 for (x = 0; x < cr; x++) {
3028 memset(used, FALSE, cr);
3029 for (y = 0; y < cr; y++)
3030 if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
3031 used[grid[y*cr+x]-1] = TRUE;
3032 for (n = 0; n < cr; n++)
3033 if (!used[n]) {
3034 sfree(used);
3035 return FALSE;
3040 * Check that each block contains precisely one of everything.
3042 for (i = 0; i < cr; i++) {
3043 memset(used, FALSE, cr);
3044 for (j = 0; j < cr; j++)
3045 if (grid[blocks->blocks[i][j]] > 0 &&
3046 grid[blocks->blocks[i][j]] <= cr)
3047 used[grid[blocks->blocks[i][j]]-1] = TRUE;
3048 for (n = 0; n < cr; n++)
3049 if (!used[n]) {
3050 sfree(used);
3051 return FALSE;
3056 * Check that each Killer cage, if any, contains at most one of
3057 * everything. If we also know the clues for those cages (which we
3058 * might not, when this function is called early in puzzle
3059 * generation), we also check that they all have the right sum.
3061 if (kblocks) {
3062 for (i = 0; i < kblocks->nr_blocks; i++) {
3063 memset(used, FALSE, cr);
3064 for (j = 0; j < kblocks->nr_squares[i]; j++)
3065 if (grid[kblocks->blocks[i][j]] > 0 &&
3066 grid[kblocks->blocks[i][j]] <= cr) {
3067 if (used[grid[kblocks->blocks[i][j]]-1]) {
3068 sfree(used);
3069 return FALSE;
3071 used[grid[kblocks->blocks[i][j]]-1] = TRUE;
3074 if (kgrid && check_killer_cage_sum(kblocks, kgrid, grid, i) != 1) {
3075 sfree(used);
3076 return FALSE;
3082 * Check that each diagonal contains precisely one of everything.
3084 if (xtype) {
3085 memset(used, FALSE, cr);
3086 for (i = 0; i < cr; i++)
3087 if (grid[diag0(i)] > 0 && grid[diag0(i)] <= cr)
3088 used[grid[diag0(i)]-1] = TRUE;
3089 for (n = 0; n < cr; n++)
3090 if (!used[n]) {
3091 sfree(used);
3092 return FALSE;
3094 for (i = 0; i < cr; i++)
3095 if (grid[diag1(i)] > 0 && grid[diag1(i)] <= cr)
3096 used[grid[diag1(i)]-1] = TRUE;
3097 for (n = 0; n < cr; n++)
3098 if (!used[n]) {
3099 sfree(used);
3100 return FALSE;
3104 sfree(used);
3105 return TRUE;
3108 static int symmetries(const game_params *params, int x, int y,
3109 int *output, int s)
3111 int c = params->c, r = params->r, cr = c*r;
3112 int i = 0;
3114 #define ADD(x,y) (*output++ = (x), *output++ = (y), i++)
3116 ADD(x, y);
3118 switch (s) {
3119 case SYMM_NONE:
3120 break; /* just x,y is all we need */
3121 case SYMM_ROT2:
3122 ADD(cr - 1 - x, cr - 1 - y);
3123 break;
3124 case SYMM_ROT4:
3125 ADD(cr - 1 - y, x);
3126 ADD(y, cr - 1 - x);
3127 ADD(cr - 1 - x, cr - 1 - y);
3128 break;
3129 case SYMM_REF2:
3130 ADD(cr - 1 - x, y);
3131 break;
3132 case SYMM_REF2D:
3133 ADD(y, x);
3134 break;
3135 case SYMM_REF4:
3136 ADD(cr - 1 - x, y);
3137 ADD(x, cr - 1 - y);
3138 ADD(cr - 1 - x, cr - 1 - y);
3139 break;
3140 case SYMM_REF4D:
3141 ADD(y, x);
3142 ADD(cr - 1 - x, cr - 1 - y);
3143 ADD(cr - 1 - y, cr - 1 - x);
3144 break;
3145 case SYMM_REF8:
3146 ADD(cr - 1 - x, y);
3147 ADD(x, cr - 1 - y);
3148 ADD(cr - 1 - x, cr - 1 - y);
3149 ADD(y, x);
3150 ADD(y, cr - 1 - x);
3151 ADD(cr - 1 - y, x);
3152 ADD(cr - 1 - y, cr - 1 - x);
3153 break;
3156 #undef ADD
3158 return i;
3161 static char *encode_solve_move(int cr, digit *grid)
3163 int i, len;
3164 char *ret, *p, *sep;
3167 * It's surprisingly easy to work out _exactly_ how long this
3168 * string needs to be. To decimal-encode all the numbers from 1
3169 * to n:
3171 * - every number has a units digit; total is n.
3172 * - all numbers above 9 have a tens digit; total is max(n-9,0).
3173 * - all numbers above 99 have a hundreds digit; total is max(n-99,0).
3174 * - and so on.
3176 len = 0;
3177 for (i = 1; i <= cr; i *= 10)
3178 len += max(cr - i + 1, 0);
3179 len += cr; /* don't forget the commas */
3180 len *= cr; /* there are cr rows of these */
3183 * Now len is one bigger than the total size of the
3184 * comma-separated numbers (because we counted an
3185 * additional leading comma). We need to have a leading S
3186 * and a trailing NUL, so we're off by one in total.
3188 len++;
3190 ret = snewn(len, char);
3191 p = ret;
3192 *p++ = 'S';
3193 sep = "";
3194 for (i = 0; i < cr*cr; i++) {
3195 p += sprintf(p, "%s%d", sep, grid[i]);
3196 sep = ",";
3198 *p++ = '\0';
3199 assert(p - ret == len);
3201 return ret;
3204 static void dsf_to_blocks(int *dsf, struct block_structure *blocks,
3205 int min_expected, int max_expected)
3207 int cr = blocks->c * blocks->r, area = cr * cr;
3208 int i, nb = 0;
3210 for (i = 0; i < area; i++)
3211 blocks->whichblock[i] = -1;
3212 for (i = 0; i < area; i++) {
3213 int j = dsf_canonify(dsf, i);
3214 if (blocks->whichblock[j] < 0)
3215 blocks->whichblock[j] = nb++;
3216 blocks->whichblock[i] = blocks->whichblock[j];
3218 assert(nb >= min_expected && nb <= max_expected);
3219 blocks->nr_blocks = nb;
3222 static void make_blocks_from_whichblock(struct block_structure *blocks)
3224 int i;
3226 for (i = 0; i < blocks->nr_blocks; i++) {
3227 blocks->blocks[i][blocks->max_nr_squares-1] = 0;
3228 blocks->nr_squares[i] = 0;
3230 for (i = 0; i < blocks->area; i++) {
3231 int b = blocks->whichblock[i];
3232 int j = blocks->blocks[b][blocks->max_nr_squares-1]++;
3233 assert(j < blocks->max_nr_squares);
3234 blocks->blocks[b][j] = i;
3235 blocks->nr_squares[b]++;
3239 static char *encode_block_structure_desc(char *p, struct block_structure *blocks)
3241 int i, currrun = 0;
3242 int c = blocks->c, r = blocks->r, cr = c * r;
3245 * Encode the block structure. We do this by encoding
3246 * the pattern of dividing lines: first we iterate
3247 * over the cr*(cr-1) internal vertical grid lines in
3248 * ordinary reading order, then over the cr*(cr-1)
3249 * internal horizontal ones in transposed reading
3250 * order.
3252 * We encode the number of non-lines between the
3253 * lines; _ means zero (two adjacent divisions), a
3254 * means 1, ..., y means 25, and z means 25 non-lines
3255 * _and no following line_ (so that za means 26, zb 27
3256 * etc).
3258 for (i = 0; i <= 2*cr*(cr-1); i++) {
3259 int x, y, p0, p1, edge;
3261 if (i == 2*cr*(cr-1)) {
3262 edge = TRUE; /* terminating virtual edge */
3263 } else {
3264 if (i < cr*(cr-1)) {
3265 y = i/(cr-1);
3266 x = i%(cr-1);
3267 p0 = y*cr+x;
3268 p1 = y*cr+x+1;
3269 } else {
3270 x = i/(cr-1) - cr;
3271 y = i%(cr-1);
3272 p0 = y*cr+x;
3273 p1 = (y+1)*cr+x;
3275 edge = (blocks->whichblock[p0] != blocks->whichblock[p1]);
3278 if (edge) {
3279 while (currrun > 25)
3280 *p++ = 'z', currrun -= 25;
3281 if (currrun)
3282 *p++ = 'a'-1 + currrun;
3283 else
3284 *p++ = '_';
3285 currrun = 0;
3286 } else
3287 currrun++;
3289 return p;
3292 static char *encode_grid(char *desc, digit *grid, int area)
3294 int run, i;
3295 char *p = desc;
3297 run = 0;
3298 for (i = 0; i <= area; i++) {
3299 int n = (i < area ? grid[i] : -1);
3301 if (!n)
3302 run++;
3303 else {
3304 if (run) {
3305 while (run > 0) {
3306 int c = 'a' - 1 + run;
3307 if (run > 26)
3308 c = 'z';
3309 *p++ = c;
3310 run -= c - ('a' - 1);
3312 } else {
3314 * If there's a number in the very top left or
3315 * bottom right, there's no point putting an
3316 * unnecessary _ before or after it.
3318 if (p > desc && n > 0)
3319 *p++ = '_';
3321 if (n > 0)
3322 p += sprintf(p, "%d", n);
3323 run = 0;
3326 return p;
3330 * Conservatively stimate the number of characters required for
3331 * encoding a grid of a certain area.
3333 static int grid_encode_space (int area)
3335 int t, count;
3336 for (count = 1, t = area; t > 26; t -= 26)
3337 count++;
3338 return count * area;
3342 * Conservatively stimate the number of characters required for
3343 * encoding a given blocks structure.
3345 static int blocks_encode_space(struct block_structure *blocks)
3347 int cr = blocks->c * blocks->r, area = cr * cr;
3348 return grid_encode_space(area);
3351 static char *encode_puzzle_desc(const game_params *params, digit *grid,
3352 struct block_structure *blocks,
3353 digit *kgrid,
3354 struct block_structure *kblocks)
3356 int c = params->c, r = params->r, cr = c*r;
3357 int area = cr*cr;
3358 char *p, *desc;
3359 int space;
3361 space = grid_encode_space(area) + 1;
3362 if (r == 1)
3363 space += blocks_encode_space(blocks) + 1;
3364 if (params->killer) {
3365 space += blocks_encode_space(kblocks) + 1;
3366 space += grid_encode_space(area) + 1;
3368 desc = snewn(space, char);
3369 p = encode_grid(desc, grid, area);
3371 if (r == 1) {
3372 *p++ = ',';
3373 p = encode_block_structure_desc(p, blocks);
3375 if (params->killer) {
3376 *p++ = ',';
3377 p = encode_block_structure_desc(p, kblocks);
3378 *p++ = ',';
3379 p = encode_grid(p, kgrid, area);
3381 assert(p - desc < space);
3382 *p++ = '\0';
3383 desc = sresize(desc, p - desc, char);
3385 return desc;
3388 static void merge_blocks(struct block_structure *b, int n1, int n2)
3390 int i;
3391 /* Move data towards the lower block number. */
3392 if (n2 < n1) {
3393 int t = n2;
3394 n2 = n1;
3395 n1 = t;
3398 /* Merge n2 into n1, and move the last block into n2's position. */
3399 for (i = 0; i < b->nr_squares[n2]; i++)
3400 b->whichblock[b->blocks[n2][i]] = n1;
3401 memcpy(b->blocks[n1] + b->nr_squares[n1], b->blocks[n2],
3402 b->nr_squares[n2] * sizeof **b->blocks);
3403 b->nr_squares[n1] += b->nr_squares[n2];
3405 n1 = b->nr_blocks - 1;
3406 if (n2 != n1) {
3407 memcpy(b->blocks[n2], b->blocks[n1],
3408 b->nr_squares[n1] * sizeof **b->blocks);
3409 for (i = 0; i < b->nr_squares[n1]; i++)
3410 b->whichblock[b->blocks[n1][i]] = n2;
3411 b->nr_squares[n2] = b->nr_squares[n1];
3413 b->nr_blocks = n1;
3416 static int merge_some_cages(struct block_structure *b, int cr, int area,
3417 digit *grid, random_state *rs)
3420 * Make a list of all the pairs of adjacent blocks.
3422 int i, j, k;
3423 struct pair {
3424 int b1, b2;
3425 } *pairs;
3426 int npairs;
3428 pairs = snewn(b->nr_blocks * b->nr_blocks, struct pair);
3429 npairs = 0;
3431 for (i = 0; i < b->nr_blocks; i++) {
3432 for (j = i+1; j < b->nr_blocks; j++) {
3435 * Rule the merger out of consideration if it's
3436 * obviously not viable.
3438 if (b->nr_squares[i] + b->nr_squares[j] > b->max_nr_squares)
3439 continue; /* we couldn't merge these anyway */
3442 * See if these two blocks have a pair of squares
3443 * adjacent to each other.
3445 for (k = 0; k < b->nr_squares[i]; k++) {
3446 int xy = b->blocks[i][k];
3447 int y = xy / cr, x = xy % cr;
3448 if ((y > 0 && b->whichblock[xy - cr] == j) ||
3449 (y+1 < cr && b->whichblock[xy + cr] == j) ||
3450 (x > 0 && b->whichblock[xy - 1] == j) ||
3451 (x+1 < cr && b->whichblock[xy + 1] == j)) {
3453 * Yes! Add this pair to our list.
3455 pairs[npairs].b1 = i;
3456 pairs[npairs].b2 = j;
3457 break;
3464 * Now go through that list in random order until we find a pair
3465 * of blocks we can merge.
3467 while (npairs > 0) {
3468 int n1, n2;
3469 unsigned int digits_found;
3472 * Pick a random pair, and remove it from the list.
3474 i = random_upto(rs, npairs);
3475 n1 = pairs[i].b1;
3476 n2 = pairs[i].b2;
3477 if (i != npairs-1)
3478 pairs[i] = pairs[npairs-1];
3479 npairs--;
3481 /* Guarantee that the merged cage would still be a region. */
3482 digits_found = 0;
3483 for (i = 0; i < b->nr_squares[n1]; i++)
3484 digits_found |= 1 << grid[b->blocks[n1][i]];
3485 for (i = 0; i < b->nr_squares[n2]; i++)
3486 if (digits_found & (1 << grid[b->blocks[n2][i]]))
3487 break;
3488 if (i != b->nr_squares[n2])
3489 continue;
3492 * Got one! Do the merge.
3494 merge_blocks(b, n1, n2);
3495 sfree(pairs);
3496 return TRUE;
3499 sfree(pairs);
3500 return FALSE;
3503 static void compute_kclues(struct block_structure *cages, digit *kclues,
3504 digit *grid, int area)
3506 int i;
3507 memset(kclues, 0, area * sizeof *kclues);
3508 for (i = 0; i < cages->nr_blocks; i++) {
3509 int j, sum = 0;
3510 for (j = 0; j < area; j++)
3511 if (cages->whichblock[j] == i)
3512 sum += grid[j];
3513 for (j = 0; j < area; j++)
3514 if (cages->whichblock[j] == i)
3515 break;
3516 assert (j != area);
3517 kclues[j] = sum;
3521 static struct block_structure *gen_killer_cages(int cr, random_state *rs,
3522 int remove_singletons)
3524 int nr;
3525 int x, y, area = cr * cr;
3526 int n_singletons = 0;
3527 struct block_structure *b = alloc_block_structure (1, cr, area, cr, area);
3529 for (x = 0; x < area; x++)
3530 b->whichblock[x] = -1;
3531 nr = 0;
3532 for (y = 0; y < cr; y++)
3533 for (x = 0; x < cr; x++) {
3534 int rnd;
3535 int xy = y*cr+x;
3536 if (b->whichblock[xy] != -1)
3537 continue;
3538 b->whichblock[xy] = nr;
3540 rnd = random_bits(rs, 4);
3541 if (xy + 1 < area && (rnd >= 4 || (!remove_singletons && rnd >= 1))) {
3542 int xy2 = xy + 1;
3543 if (x + 1 == cr || b->whichblock[xy2] != -1 ||
3544 (xy + cr < area && random_bits(rs, 1) == 0))
3545 xy2 = xy + cr;
3546 if (xy2 >= area)
3547 n_singletons++;
3548 else
3549 b->whichblock[xy2] = nr;
3550 } else
3551 n_singletons++;
3552 nr++;
3555 b->nr_blocks = nr;
3556 make_blocks_from_whichblock(b);
3558 for (x = y = 0; x < b->nr_blocks; x++)
3559 if (b->nr_squares[x] == 1)
3560 y++;
3561 assert(y == n_singletons);
3563 if (n_singletons > 0 && remove_singletons) {
3564 int n;
3565 for (n = 0; n < b->nr_blocks;) {
3566 int xy, x, y, xy2, other;
3567 if (b->nr_squares[n] > 1) {
3568 n++;
3569 continue;
3571 xy = b->blocks[n][0];
3572 x = xy % cr;
3573 y = xy / cr;
3574 if (xy + 1 == area)
3575 xy2 = xy - 1;
3576 else if (x + 1 < cr && (y + 1 == cr || random_bits(rs, 1) == 0))
3577 xy2 = xy + 1;
3578 else
3579 xy2 = xy + cr;
3580 other = b->whichblock[xy2];
3582 if (b->nr_squares[other] == 1)
3583 n_singletons--;
3584 n_singletons--;
3585 merge_blocks(b, n, other);
3586 if (n < other)
3587 n++;
3589 assert(n_singletons == 0);
3591 return b;
3594 static char *new_game_desc(const game_params *params, random_state *rs,
3595 char **aux, int interactive)
3597 int c = params->c, r = params->r, cr = c*r;
3598 int area = cr*cr;
3599 struct block_structure *blocks, *kblocks;
3600 digit *grid, *grid2, *kgrid;
3601 struct xy { int x, y; } *locs;
3602 int nlocs;
3603 char *desc;
3604 int coords[16], ncoords;
3605 int x, y, i, j;
3606 struct difficulty dlev;
3608 precompute_sum_bits();
3611 * Adjust the maximum difficulty level to be consistent with
3612 * the puzzle size: all 2x2 puzzles appear to be Trivial
3613 * (DIFF_BLOCK) so we cannot hold out for even a Basic
3614 * (DIFF_SIMPLE) one.
3616 dlev.maxdiff = params->diff;
3617 dlev.maxkdiff = params->kdiff;
3618 if (c == 2 && r == 2)
3619 dlev.maxdiff = DIFF_BLOCK;
3621 grid = snewn(area, digit);
3622 locs = snewn(area, struct xy);
3623 grid2 = snewn(area, digit);
3625 blocks = alloc_block_structure (c, r, area, cr, cr);
3627 kblocks = NULL;
3628 kgrid = (params->killer) ? snewn(area, digit) : NULL;
3630 #ifdef STANDALONE_SOLVER
3631 assert(!"This should never happen, so we don't need to create blocknames");
3632 #endif
3635 * Loop until we get a grid of the required difficulty. This is
3636 * nasty, but it seems to be unpleasantly hard to generate
3637 * difficult grids otherwise.
3639 while (1) {
3641 * Generate a random solved state, starting by
3642 * constructing the block structure.
3644 if (r == 1) { /* jigsaw mode */
3645 int *dsf = divvy_rectangle(cr, cr, cr, rs);
3647 dsf_to_blocks (dsf, blocks, cr, cr);
3649 sfree(dsf);
3650 } else { /* basic Sudoku mode */
3651 for (y = 0; y < cr; y++)
3652 for (x = 0; x < cr; x++)
3653 blocks->whichblock[y*cr+x] = (y/c) * c + (x/r);
3655 make_blocks_from_whichblock(blocks);
3657 if (params->killer) {
3658 if (kblocks) free_block_structure(kblocks);
3659 kblocks = gen_killer_cages(cr, rs, params->kdiff > DIFF_KSINGLE);
3662 if (!gridgen(cr, blocks, kblocks, params->xtype, grid, rs, area*area))
3663 continue;
3664 assert(check_valid(cr, blocks, kblocks, NULL, params->xtype, grid));
3667 * Save the solved grid in aux.
3671 * We might already have written *aux the last time we
3672 * went round this loop, in which case we should free
3673 * the old aux before overwriting it with the new one.
3675 if (*aux) {
3676 sfree(*aux);
3679 *aux = encode_solve_move(cr, grid);
3683 * Now we have a solved grid. For normal puzzles, we start removing
3684 * things from it while preserving solubility. Killer puzzles are
3685 * different: we just pass the empty grid to the solver, and use
3686 * the puzzle if it comes back solved.
3689 if (params->killer) {
3690 struct block_structure *good_cages = NULL;
3691 struct block_structure *last_cages = NULL;
3692 int ntries = 0;
3694 memcpy(grid2, grid, area);
3696 for (;;) {
3697 compute_kclues(kblocks, kgrid, grid2, area);
3699 memset(grid, 0, area * sizeof *grid);
3700 solver(cr, blocks, kblocks, params->xtype, grid, kgrid, &dlev);
3701 if (dlev.diff == dlev.maxdiff && dlev.kdiff == dlev.maxkdiff) {
3703 * We have one that matches our difficulty. Store it for
3704 * later, but keep going.
3706 if (good_cages)
3707 free_block_structure(good_cages);
3708 ntries = 0;
3709 good_cages = dup_block_structure(kblocks);
3710 if (!merge_some_cages(kblocks, cr, area, grid2, rs))
3711 break;
3712 } else if (dlev.diff > dlev.maxdiff || dlev.kdiff > dlev.maxkdiff) {
3714 * Give up after too many tries and either use the good one we
3715 * found, or generate a new grid.
3717 if (++ntries > 50)
3718 break;
3720 * The difficulty level got too high. If we have a good
3721 * one, use it, otherwise go back to the last one that
3722 * was at a lower difficulty and restart the process from
3723 * there.
3725 if (good_cages != NULL) {
3726 free_block_structure(kblocks);
3727 kblocks = dup_block_structure(good_cages);
3728 if (!merge_some_cages(kblocks, cr, area, grid2, rs))
3729 break;
3730 } else {
3731 if (last_cages == NULL)
3732 break;
3733 free_block_structure(kblocks);
3734 kblocks = last_cages;
3735 last_cages = NULL;
3737 } else {
3738 if (last_cages)
3739 free_block_structure(last_cages);
3740 last_cages = dup_block_structure(kblocks);
3741 if (!merge_some_cages(kblocks, cr, area, grid2, rs))
3742 break;
3745 if (last_cages)
3746 free_block_structure(last_cages);
3747 if (good_cages != NULL) {
3748 free_block_structure(kblocks);
3749 kblocks = good_cages;
3750 compute_kclues(kblocks, kgrid, grid2, area);
3751 memset(grid, 0, area * sizeof *grid);
3752 break;
3754 continue;
3758 * Find the set of equivalence classes of squares permitted
3759 * by the selected symmetry. We do this by enumerating all
3760 * the grid squares which have no symmetric companion
3761 * sorting lower than themselves.
3763 nlocs = 0;
3764 for (y = 0; y < cr; y++)
3765 for (x = 0; x < cr; x++) {
3766 int i = y*cr+x;
3767 int j;
3769 ncoords = symmetries(params, x, y, coords, params->symm);
3770 for (j = 0; j < ncoords; j++)
3771 if (coords[2*j+1]*cr+coords[2*j] < i)
3772 break;
3773 if (j == ncoords) {
3774 locs[nlocs].x = x;
3775 locs[nlocs].y = y;
3776 nlocs++;
3781 * Now shuffle that list.
3783 shuffle(locs, nlocs, sizeof(*locs), rs);
3786 * Now loop over the shuffled list and, for each element,
3787 * see whether removing that element (and its reflections)
3788 * from the grid will still leave the grid soluble.
3790 for (i = 0; i < nlocs; i++) {
3791 x = locs[i].x;
3792 y = locs[i].y;
3794 memcpy(grid2, grid, area);
3795 ncoords = symmetries(params, x, y, coords, params->symm);
3796 for (j = 0; j < ncoords; j++)
3797 grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
3799 solver(cr, blocks, kblocks, params->xtype, grid2, kgrid, &dlev);
3800 if (dlev.diff <= dlev.maxdiff &&
3801 (!params->killer || dlev.kdiff <= dlev.maxkdiff)) {
3802 for (j = 0; j < ncoords; j++)
3803 grid[coords[2*j+1]*cr+coords[2*j]] = 0;
3807 memcpy(grid2, grid, area);
3809 solver(cr, blocks, kblocks, params->xtype, grid2, kgrid, &dlev);
3810 if (dlev.diff == dlev.maxdiff &&
3811 (!params->killer || dlev.kdiff == dlev.maxkdiff))
3812 break; /* found one! */
3815 sfree(grid2);
3816 sfree(locs);
3819 * Now we have the grid as it will be presented to the user.
3820 * Encode it in a game desc.
3822 desc = encode_puzzle_desc(params, grid, blocks, kgrid, kblocks);
3824 sfree(grid);
3825 free_block_structure(blocks);
3826 if (params->killer) {
3827 free_block_structure(kblocks);
3828 sfree(kgrid);
3831 return desc;
3834 static const char *spec_to_grid(const char *desc, digit *grid, int area)
3836 int i = 0;
3837 while (*desc && *desc != ',') {
3838 int n = *desc++;
3839 if (n >= 'a' && n <= 'z') {
3840 int run = n - 'a' + 1;
3841 assert(i + run <= area);
3842 while (run-- > 0)
3843 grid[i++] = 0;
3844 } else if (n == '_') {
3845 /* do nothing */;
3846 } else if (n > '0' && n <= '9') {
3847 assert(i < area);
3848 grid[i++] = atoi(desc-1);
3849 while (*desc >= '0' && *desc <= '9')
3850 desc++;
3851 } else {
3852 assert(!"We can't get here");
3855 assert(i == area);
3856 return desc;
3860 * Create a DSF from a spec found in *pdesc. Update this to point past the
3861 * end of the block spec, and return an error string or NULL if everything
3862 * is OK. The DSF is stored in *PDSF.
3864 static char *spec_to_dsf(const char **pdesc, int **pdsf, int cr, int area)
3866 const char *desc = *pdesc;
3867 int pos = 0;
3868 int *dsf;
3870 *pdsf = dsf = snew_dsf(area);
3872 while (*desc && *desc != ',') {
3873 int c, adv;
3875 if (*desc == '_')
3876 c = 0;
3877 else if (*desc >= 'a' && *desc <= 'z')
3878 c = *desc - 'a' + 1;
3879 else {
3880 sfree(dsf);
3881 return "Invalid character in game description";
3883 desc++;
3885 adv = (c != 26); /* 'z' is a special case */
3887 while (c-- > 0) {
3888 int p0, p1;
3891 * Non-edge; merge the two dsf classes on either
3892 * side of it.
3894 if (pos >= 2*cr*(cr-1)) {
3895 sfree(dsf);
3896 return "Too much data in block structure specification";
3899 if (pos < cr*(cr-1)) {
3900 int y = pos/(cr-1);
3901 int x = pos%(cr-1);
3902 p0 = y*cr+x;
3903 p1 = y*cr+x+1;
3904 } else {
3905 int x = pos/(cr-1) - cr;
3906 int y = pos%(cr-1);
3907 p0 = y*cr+x;
3908 p1 = (y+1)*cr+x;
3910 dsf_merge(dsf, p0, p1);
3912 pos++;
3914 if (adv)
3915 pos++;
3917 *pdesc = desc;
3920 * When desc is exhausted, we expect to have gone exactly
3921 * one space _past_ the end of the grid, due to the dummy
3922 * edge at the end.
3924 if (pos != 2*cr*(cr-1)+1) {
3925 sfree(dsf);
3926 return "Not enough data in block structure specification";
3929 return NULL;
3932 static char *validate_grid_desc(const char **pdesc, int range, int area)
3934 const char *desc = *pdesc;
3935 int squares = 0;
3936 while (*desc && *desc != ',') {
3937 int n = *desc++;
3938 if (n >= 'a' && n <= 'z') {
3939 squares += n - 'a' + 1;
3940 } else if (n == '_') {
3941 /* do nothing */;
3942 } else if (n > '0' && n <= '9') {
3943 int val = atoi(desc-1);
3944 if (val < 1 || val > range)
3945 return "Out-of-range number in game description";
3946 squares++;
3947 while (*desc >= '0' && *desc <= '9')
3948 desc++;
3949 } else
3950 return "Invalid character in game description";
3953 if (squares < area)
3954 return "Not enough data to fill grid";
3956 if (squares > area)
3957 return "Too much data to fit in grid";
3958 *pdesc = desc;
3959 return NULL;
3962 static char *validate_block_desc(const char **pdesc, int cr, int area,
3963 int min_nr_blocks, int max_nr_blocks,
3964 int min_nr_squares, int max_nr_squares)
3966 char *err;
3967 int *dsf;
3969 err = spec_to_dsf(pdesc, &dsf, cr, area);
3970 if (err) {
3971 return err;
3974 if (min_nr_squares == max_nr_squares) {
3975 assert(min_nr_blocks == max_nr_blocks);
3976 assert(min_nr_blocks * min_nr_squares == area);
3979 * Now we've got our dsf. Verify that it matches
3980 * expectations.
3983 int *canons, *counts;
3984 int i, j, c, ncanons = 0;
3986 canons = snewn(max_nr_blocks, int);
3987 counts = snewn(max_nr_blocks, int);
3989 for (i = 0; i < area; i++) {
3990 j = dsf_canonify(dsf, i);
3992 for (c = 0; c < ncanons; c++)
3993 if (canons[c] == j) {
3994 counts[c]++;
3995 if (counts[c] > max_nr_squares) {
3996 sfree(dsf);
3997 sfree(canons);
3998 sfree(counts);
3999 return "A jigsaw block is too big";
4001 break;
4004 if (c == ncanons) {
4005 if (ncanons >= max_nr_blocks) {
4006 sfree(dsf);
4007 sfree(canons);
4008 sfree(counts);
4009 return "Too many distinct jigsaw blocks";
4011 canons[ncanons] = j;
4012 counts[ncanons] = 1;
4013 ncanons++;
4017 if (ncanons < min_nr_blocks) {
4018 sfree(dsf);
4019 sfree(canons);
4020 sfree(counts);
4021 return "Not enough distinct jigsaw blocks";
4023 for (c = 0; c < ncanons; c++) {
4024 if (counts[c] < min_nr_squares) {
4025 sfree(dsf);
4026 sfree(canons);
4027 sfree(counts);
4028 return "A jigsaw block is too small";
4031 sfree(canons);
4032 sfree(counts);
4035 sfree(dsf);
4036 return NULL;
4039 static char *validate_desc(const game_params *params, const char *desc)
4041 int cr = params->c * params->r, area = cr*cr;
4042 char *err;
4044 err = validate_grid_desc(&desc, cr, area);
4045 if (err)
4046 return err;
4048 if (params->r == 1) {
4050 * Now we expect a suffix giving the jigsaw block
4051 * structure. Parse it and validate that it divides the
4052 * grid into the right number of regions which are the
4053 * right size.
4055 if (*desc != ',')
4056 return "Expected jigsaw block structure in game description";
4057 desc++;
4058 err = validate_block_desc(&desc, cr, area, cr, cr, cr, cr);
4059 if (err)
4060 return err;
4063 if (params->killer) {
4064 if (*desc != ',')
4065 return "Expected killer block structure in game description";
4066 desc++;
4067 err = validate_block_desc(&desc, cr, area, cr, area, 2, cr);
4068 if (err)
4069 return err;
4070 if (*desc != ',')
4071 return "Expected killer clue grid in game description";
4072 desc++;
4073 err = validate_grid_desc(&desc, cr * area, area);
4074 if (err)
4075 return err;
4077 if (*desc)
4078 return "Unexpected data at end of game description";
4080 return NULL;
4083 static game_state *new_game(midend *me, const game_params *params,
4084 const char *desc)
4086 game_state *state = snew(game_state);
4087 int c = params->c, r = params->r, cr = c*r, area = cr * cr;
4088 int i;
4090 precompute_sum_bits();
4092 state->cr = cr;
4093 state->xtype = params->xtype;
4094 state->killer = params->killer;
4096 state->grid = snewn(area, digit);
4097 state->pencil = snewn(area * cr, unsigned char);
4098 memset(state->pencil, 0, area * cr);
4099 state->immutable = snewn(area, unsigned char);
4100 memset(state->immutable, FALSE, area);
4102 state->blocks = alloc_block_structure (c, r, area, cr, cr);
4104 if (params->killer) {
4105 state->kblocks = alloc_block_structure (c, r, area, cr, area);
4106 state->kgrid = snewn(area, digit);
4107 } else {
4108 state->kblocks = NULL;
4109 state->kgrid = NULL;
4111 state->completed = state->cheated = FALSE;
4113 desc = spec_to_grid(desc, state->grid, area);
4114 for (i = 0; i < area; i++)
4115 if (state->grid[i] != 0)
4116 state->immutable[i] = TRUE;
4118 if (r == 1) {
4119 char *err;
4120 int *dsf;
4121 assert(*desc == ',');
4122 desc++;
4123 err = spec_to_dsf(&desc, &dsf, cr, area);
4124 assert(err == NULL);
4125 dsf_to_blocks(dsf, state->blocks, cr, cr);
4126 sfree(dsf);
4127 } else {
4128 int x, y;
4130 for (y = 0; y < cr; y++)
4131 for (x = 0; x < cr; x++)
4132 state->blocks->whichblock[y*cr+x] = (y/c) * c + (x/r);
4134 make_blocks_from_whichblock(state->blocks);
4136 if (params->killer) {
4137 char *err;
4138 int *dsf;
4139 assert(*desc == ',');
4140 desc++;
4141 err = spec_to_dsf(&desc, &dsf, cr, area);
4142 assert(err == NULL);
4143 dsf_to_blocks(dsf, state->kblocks, cr, area);
4144 sfree(dsf);
4145 make_blocks_from_whichblock(state->kblocks);
4147 assert(*desc == ',');
4148 desc++;
4149 desc = spec_to_grid(desc, state->kgrid, area);
4151 assert(!*desc);
4153 #ifdef STANDALONE_SOLVER
4155 * Set up the block names for solver diagnostic output.
4158 char *p = (char *)(state->blocks->blocknames + cr);
4160 if (r == 1) {
4161 for (i = 0; i < area; i++) {
4162 int j = state->blocks->whichblock[i];
4163 if (!state->blocks->blocknames[j]) {
4164 state->blocks->blocknames[j] = p;
4165 p += 1 + sprintf(p, "starting at (%d,%d)",
4166 1 + i%cr, 1 + i/cr);
4169 } else {
4170 int bx, by;
4171 for (by = 0; by < r; by++)
4172 for (bx = 0; bx < c; bx++) {
4173 state->blocks->blocknames[by*c+bx] = p;
4174 p += 1 + sprintf(p, "(%d,%d)", bx+1, by+1);
4177 assert(p - (char *)state->blocks->blocknames < (int)(cr*(sizeof(char *)+80)));
4178 for (i = 0; i < cr; i++)
4179 assert(state->blocks->blocknames[i]);
4181 #endif
4183 return state;
4186 static game_state *dup_game(const game_state *state)
4188 game_state *ret = snew(game_state);
4189 int cr = state->cr, area = cr * cr;
4191 ret->cr = state->cr;
4192 ret->xtype = state->xtype;
4193 ret->killer = state->killer;
4195 ret->blocks = state->blocks;
4196 ret->blocks->refcount++;
4198 ret->kblocks = state->kblocks;
4199 if (ret->kblocks)
4200 ret->kblocks->refcount++;
4202 ret->grid = snewn(area, digit);
4203 memcpy(ret->grid, state->grid, area);
4205 if (state->killer) {
4206 ret->kgrid = snewn(area, digit);
4207 memcpy(ret->kgrid, state->kgrid, area);
4208 } else
4209 ret->kgrid = NULL;
4211 ret->pencil = snewn(area * cr, unsigned char);
4212 memcpy(ret->pencil, state->pencil, area * cr);
4214 ret->immutable = snewn(area, unsigned char);
4215 memcpy(ret->immutable, state->immutable, area);
4217 ret->completed = state->completed;
4218 ret->cheated = state->cheated;
4220 return ret;
4223 static void free_game(game_state *state)
4225 free_block_structure(state->blocks);
4226 if (state->kblocks)
4227 free_block_structure(state->kblocks);
4229 sfree(state->immutable);
4230 sfree(state->pencil);
4231 sfree(state->grid);
4232 if (state->kgrid) sfree(state->kgrid);
4233 sfree(state);
4236 static char *solve_game(const game_state *state, const game_state *currstate,
4237 const char *ai, char **error)
4239 int cr = state->cr;
4240 char *ret;
4241 digit *grid;
4242 struct difficulty dlev;
4245 * If we already have the solution in ai, save ourselves some
4246 * time.
4248 if (ai)
4249 return dupstr(ai);
4251 grid = snewn(cr*cr, digit);
4252 memcpy(grid, state->grid, cr*cr);
4253 dlev.maxdiff = DIFF_RECURSIVE;
4254 dlev.maxkdiff = DIFF_KINTERSECT;
4255 solver(cr, state->blocks, state->kblocks, state->xtype, grid,
4256 state->kgrid, &dlev);
4258 *error = NULL;
4260 if (dlev.diff == DIFF_IMPOSSIBLE)
4261 *error = "No solution exists for this puzzle";
4262 else if (dlev.diff == DIFF_AMBIGUOUS)
4263 *error = "Multiple solutions exist for this puzzle";
4265 if (*error) {
4266 sfree(grid);
4267 return NULL;
4270 ret = encode_solve_move(cr, grid);
4272 sfree(grid);
4274 return ret;
4277 static char *grid_text_format(int cr, struct block_structure *blocks,
4278 int xtype, digit *grid)
4280 int vmod, hmod;
4281 int x, y;
4282 int totallen, linelen, nlines;
4283 char *ret, *p, ch;
4286 * For non-jigsaw Sudoku, we format in the way we always have,
4287 * by having the digits unevenly spaced so that the dividing
4288 * lines can fit in:
4290 * . . | . .
4291 * . . | . .
4292 * ----+----
4293 * . . | . .
4294 * . . | . .
4296 * For jigsaw puzzles, however, we must leave space between
4297 * _all_ pairs of digits for an optional dividing line, so we
4298 * have to move to the rather ugly
4300 * . . . .
4301 * ------+------
4302 * . . | . .
4303 * +---+
4304 * . . | . | .
4305 * ------+ |
4306 * . . . | .
4308 * We deal with both cases using the same formatting code; we
4309 * simply invent a vmod value such that there's a vertical
4310 * dividing line before column i iff i is divisible by vmod
4311 * (so it's r in the first case and 1 in the second), and hmod
4312 * likewise for horizontal dividing lines.
4315 if (blocks->r != 1) {
4316 vmod = blocks->r;
4317 hmod = blocks->c;
4318 } else {
4319 vmod = hmod = 1;
4323 * Line length: we have cr digits, each with a space after it,
4324 * and (cr-1)/vmod dividing lines, each with a space after it.
4325 * The final space is replaced by a newline, but that doesn't
4326 * affect the length.
4328 linelen = 2*(cr + (cr-1)/vmod);
4331 * Number of lines: we have cr rows of digits, and (cr-1)/hmod
4332 * dividing rows.
4334 nlines = cr + (cr-1)/hmod;
4337 * Allocate the space.
4339 totallen = linelen * nlines;
4340 ret = snewn(totallen+1, char); /* leave room for terminating NUL */
4343 * Write the text.
4345 p = ret;
4346 for (y = 0; y < cr; y++) {
4348 * Row of digits.
4350 for (x = 0; x < cr; x++) {
4352 * Digit.
4354 digit d = grid[y*cr+x];
4356 if (d == 0) {
4358 * Empty space: we usually write a dot, but we'll
4359 * highlight spaces on the X-diagonals (in X mode)
4360 * by using underscores instead.
4362 if (xtype && (ondiag0(y*cr+x) || ondiag1(y*cr+x)))
4363 ch = '_';
4364 else
4365 ch = '.';
4366 } else if (d <= 9) {
4367 ch = '0' + d;
4368 } else {
4369 ch = 'a' + d-10;
4372 *p++ = ch;
4373 if (x == cr-1) {
4374 *p++ = '\n';
4375 continue;
4377 *p++ = ' ';
4379 if ((x+1) % vmod)
4380 continue;
4383 * Optional dividing line.
4385 if (blocks->whichblock[y*cr+x] != blocks->whichblock[y*cr+x+1])
4386 ch = '|';
4387 else
4388 ch = ' ';
4389 *p++ = ch;
4390 *p++ = ' ';
4392 if (y == cr-1 || (y+1) % hmod)
4393 continue;
4396 * Dividing row.
4398 for (x = 0; x < cr; x++) {
4399 int dwid;
4400 int tl, tr, bl, br;
4403 * Division between two squares. This varies
4404 * complicatedly in length.
4406 dwid = 2; /* digit and its following space */
4407 if (x == cr-1)
4408 dwid--; /* no following space at end of line */
4409 if (x > 0 && x % vmod == 0)
4410 dwid++; /* preceding space after a divider */
4412 if (blocks->whichblock[y*cr+x] != blocks->whichblock[(y+1)*cr+x])
4413 ch = '-';
4414 else
4415 ch = ' ';
4417 while (dwid-- > 0)
4418 *p++ = ch;
4420 if (x == cr-1) {
4421 *p++ = '\n';
4422 break;
4425 if ((x+1) % vmod)
4426 continue;
4429 * Corner square. This is:
4430 * - a space if all four surrounding squares are in
4431 * the same block
4432 * - a vertical line if the two left ones are in one
4433 * block and the two right in another
4434 * - a horizontal line if the two top ones are in one
4435 * block and the two bottom in another
4436 * - a plus sign in all other cases. (If we had a
4437 * richer character set available we could break
4438 * this case up further by doing fun things with
4439 * line-drawing T-pieces.)
4441 tl = blocks->whichblock[y*cr+x];
4442 tr = blocks->whichblock[y*cr+x+1];
4443 bl = blocks->whichblock[(y+1)*cr+x];
4444 br = blocks->whichblock[(y+1)*cr+x+1];
4446 if (tl == tr && tr == bl && bl == br)
4447 ch = ' ';
4448 else if (tl == bl && tr == br)
4449 ch = '|';
4450 else if (tl == tr && bl == br)
4451 ch = '-';
4452 else
4453 ch = '+';
4455 *p++ = ch;
4459 assert(p - ret == totallen);
4460 *p = '\0';
4461 return ret;
4464 static int game_can_format_as_text_now(const game_params *params)
4467 * Formatting Killer puzzles as text is currently unsupported. I
4468 * can't think of any sensible way of doing it which doesn't
4469 * involve expanding the puzzle to such a large scale as to make
4470 * it unusable.
4472 if (params->killer)
4473 return FALSE;
4474 return TRUE;
4477 static char *game_text_format(const game_state *state)
4479 assert(!state->kblocks);
4480 return grid_text_format(state->cr, state->blocks, state->xtype,
4481 state->grid);
4484 struct game_ui {
4486 * These are the coordinates of the currently highlighted
4487 * square on the grid, if hshow = 1.
4489 int hx, hy;
4491 * This indicates whether the current highlight is a
4492 * pencil-mark one or a real one.
4494 int hpencil;
4496 * This indicates whether or not we're showing the highlight
4497 * (used to be hx = hy = -1); important so that when we're
4498 * using the cursor keys it doesn't keep coming back at a
4499 * fixed position. When hshow = 1, pressing a valid number
4500 * or letter key or Space will enter that number or letter in the grid.
4502 int hshow;
4504 * This indicates whether we're using the highlight as a cursor;
4505 * it means that it doesn't vanish on a keypress, and that it is
4506 * allowed on immutable squares.
4508 int hcursor;
4511 static game_ui *new_ui(const game_state *state)
4513 game_ui *ui = snew(game_ui);
4515 ui->hx = ui->hy = 0;
4516 ui->hpencil = ui->hshow = ui->hcursor = 0;
4518 return ui;
4521 static void free_ui(game_ui *ui)
4523 sfree(ui);
4526 static char *encode_ui(const game_ui *ui)
4528 return NULL;
4531 static void decode_ui(game_ui *ui, const char *encoding)
4535 static void game_changed_state(game_ui *ui, const game_state *oldstate,
4536 const game_state *newstate)
4538 int cr = newstate->cr;
4540 * We prevent pencil-mode highlighting of a filled square, unless
4541 * we're using the cursor keys. So if the user has just filled in
4542 * a square which we had a pencil-mode highlight in (by Undo, or
4543 * by Redo, or by Solve), then we cancel the highlight.
4545 if (ui->hshow && ui->hpencil && !ui->hcursor &&
4546 newstate->grid[ui->hy * cr + ui->hx] != 0) {
4547 ui->hshow = 0;
4551 struct game_drawstate {
4552 int started;
4553 int cr, xtype;
4554 int tilesize;
4555 digit *grid;
4556 unsigned char *pencil;
4557 unsigned char *hl;
4558 /* This is scratch space used within a single call to game_redraw. */
4559 int nregions, *entered_items;
4562 static char *interpret_move(const game_state *state, game_ui *ui,
4563 const game_drawstate *ds,
4564 int x, int y, int button)
4566 int cr = state->cr;
4567 int tx, ty;
4568 char buf[80];
4570 button &= ~MOD_MASK;
4572 tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
4573 ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
4575 if (tx >= 0 && tx < cr && ty >= 0 && ty < cr) {
4576 if (button == LEFT_BUTTON) {
4577 if (state->immutable[ty*cr+tx]) {
4578 ui->hshow = 0;
4579 } else if (tx == ui->hx && ty == ui->hy &&
4580 ui->hshow && ui->hpencil == 0) {
4581 ui->hshow = 0;
4582 } else {
4583 ui->hx = tx;
4584 ui->hy = ty;
4585 ui->hshow = 1;
4586 ui->hpencil = 0;
4588 ui->hcursor = 0;
4589 return ""; /* UI activity occurred */
4591 if (button == RIGHT_BUTTON) {
4593 * Pencil-mode highlighting for non filled squares.
4595 if (state->grid[ty*cr+tx] == 0) {
4596 if (tx == ui->hx && ty == ui->hy &&
4597 ui->hshow && ui->hpencil) {
4598 ui->hshow = 0;
4599 } else {
4600 ui->hpencil = 1;
4601 ui->hx = tx;
4602 ui->hy = ty;
4603 ui->hshow = 1;
4605 } else {
4606 ui->hshow = 0;
4608 ui->hcursor = 0;
4609 return ""; /* UI activity occurred */
4612 if (IS_CURSOR_MOVE(button)) {
4613 move_cursor(button, &ui->hx, &ui->hy, cr, cr, 0);
4614 ui->hshow = ui->hcursor = 1;
4615 return "";
4617 if (ui->hshow &&
4618 (button == CURSOR_SELECT)) {
4619 ui->hpencil = 1 - ui->hpencil;
4620 ui->hcursor = 1;
4621 return "";
4624 if (ui->hshow &&
4625 ((button >= '0' && button <= '9' && button - '0' <= cr) ||
4626 (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
4627 (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
4628 button == CURSOR_SELECT2 || button == '\b')) {
4629 int n = button - '0';
4630 if (button >= 'A' && button <= 'Z')
4631 n = button - 'A' + 10;
4632 if (button >= 'a' && button <= 'z')
4633 n = button - 'a' + 10;
4634 if (button == CURSOR_SELECT2 || button == '\b')
4635 n = 0;
4638 * Can't overwrite this square. This can only happen here
4639 * if we're using the cursor keys.
4641 if (state->immutable[ui->hy*cr+ui->hx])
4642 return NULL;
4645 * Can't make pencil marks in a filled square. Again, this
4646 * can only become highlighted if we're using cursor keys.
4648 if (ui->hpencil && state->grid[ui->hy*cr+ui->hx])
4649 return NULL;
4651 sprintf(buf, "%c%d,%d,%d",
4652 (char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n);
4654 if (!ui->hcursor) ui->hshow = 0;
4656 return dupstr(buf);
4659 if (button == 'M' || button == 'm')
4660 return dupstr("M");
4662 return NULL;
4665 static game_state *execute_move(const game_state *from, const char *move)
4667 int cr = from->cr;
4668 game_state *ret;
4669 int x, y, n;
4671 if (move[0] == 'S') {
4672 const char *p;
4674 ret = dup_game(from);
4675 ret->completed = ret->cheated = TRUE;
4677 p = move+1;
4678 for (n = 0; n < cr*cr; n++) {
4679 ret->grid[n] = atoi(p);
4681 if (!*p || ret->grid[n] < 1 || ret->grid[n] > cr) {
4682 free_game(ret);
4683 return NULL;
4686 while (*p && isdigit((unsigned char)*p)) p++;
4687 if (*p == ',') p++;
4690 return ret;
4691 } else if ((move[0] == 'P' || move[0] == 'R') &&
4692 sscanf(move+1, "%d,%d,%d", &x, &y, &n) == 3 &&
4693 x >= 0 && x < cr && y >= 0 && y < cr && n >= 0 && n <= cr) {
4695 ret = dup_game(from);
4696 if (move[0] == 'P' && n > 0) {
4697 int index = (y*cr+x) * cr + (n-1);
4698 ret->pencil[index] = !ret->pencil[index];
4699 } else {
4700 ret->grid[y*cr+x] = n;
4701 memset(ret->pencil + (y*cr+x)*cr, 0, cr);
4704 * We've made a real change to the grid. Check to see
4705 * if the game has been completed.
4707 if (!ret->completed && check_valid(
4708 cr, ret->blocks, ret->kblocks, ret->kgrid,
4709 ret->xtype, ret->grid)) {
4710 ret->completed = TRUE;
4713 return ret;
4714 } else if (move[0] == 'M') {
4716 * Fill in absolutely all pencil marks in unfilled squares,
4717 * for those who like to play by the rigorous approach of
4718 * starting off in that state and eliminating things.
4720 ret = dup_game(from);
4721 for (y = 0; y < cr; y++) {
4722 for (x = 0; x < cr; x++) {
4723 if (!ret->grid[y*cr+x]) {
4724 memset(ret->pencil + (y*cr+x)*cr, 1, cr);
4728 return ret;
4729 } else
4730 return NULL; /* couldn't parse move string */
4733 /* ----------------------------------------------------------------------
4734 * Drawing routines.
4737 #define SIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
4738 #define GETTILESIZE(cr, w) ( (double)(w-1) / (double)(cr+1) )
4740 static void game_compute_size(const game_params *params, int tilesize,
4741 int *x, int *y)
4743 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
4744 struct { int tilesize; } ads, *ds = &ads;
4745 ads.tilesize = tilesize;
4747 *x = SIZE(params->c * params->r);
4748 *y = SIZE(params->c * params->r);
4751 static void game_set_size(drawing *dr, game_drawstate *ds,
4752 const game_params *params, int tilesize)
4754 ds->tilesize = tilesize;
4757 static float *game_colours(frontend *fe, int *ncolours)
4759 float *ret = snewn(3 * NCOLOURS, float);
4761 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
4763 ret[COL_XDIAGONALS * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0];
4764 ret[COL_XDIAGONALS * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1];
4765 ret[COL_XDIAGONALS * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2];
4767 ret[COL_GRID * 3 + 0] = 0.0F;
4768 ret[COL_GRID * 3 + 1] = 0.0F;
4769 ret[COL_GRID * 3 + 2] = 0.0F;
4771 ret[COL_CLUE * 3 + 0] = 0.0F;
4772 ret[COL_CLUE * 3 + 1] = 0.0F;
4773 ret[COL_CLUE * 3 + 2] = 0.0F;
4775 ret[COL_USER * 3 + 0] = 0.0F;
4776 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
4777 ret[COL_USER * 3 + 2] = 0.0F;
4779 ret[COL_HIGHLIGHT * 3 + 0] = 0.78F * ret[COL_BACKGROUND * 3 + 0];
4780 ret[COL_HIGHLIGHT * 3 + 1] = 0.78F * ret[COL_BACKGROUND * 3 + 1];
4781 ret[COL_HIGHLIGHT * 3 + 2] = 0.78F * ret[COL_BACKGROUND * 3 + 2];
4783 ret[COL_ERROR * 3 + 0] = 1.0F;
4784 ret[COL_ERROR * 3 + 1] = 0.0F;
4785 ret[COL_ERROR * 3 + 2] = 0.0F;
4787 ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
4788 ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
4789 ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
4791 ret[COL_KILLER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
4792 ret[COL_KILLER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
4793 ret[COL_KILLER * 3 + 2] = 0.1F * ret[COL_BACKGROUND * 3 + 2];
4795 *ncolours = NCOLOURS;
4796 return ret;
4799 static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
4801 struct game_drawstate *ds = snew(struct game_drawstate);
4802 int cr = state->cr;
4804 ds->started = FALSE;
4805 ds->cr = cr;
4806 ds->xtype = state->xtype;
4807 ds->grid = snewn(cr*cr, digit);
4808 memset(ds->grid, cr+2, cr*cr);
4809 ds->pencil = snewn(cr*cr*cr, digit);
4810 memset(ds->pencil, 0, cr*cr*cr);
4811 ds->hl = snewn(cr*cr, unsigned char);
4812 memset(ds->hl, 0, cr*cr);
4814 * ds->entered_items needs one row of cr entries per entity in
4815 * which digits may not be duplicated. That's one for each row,
4816 * each column, each block, each diagonal, and each Killer cage.
4818 ds->nregions = cr*3 + 2;
4819 if (state->kblocks)
4820 ds->nregions += state->kblocks->nr_blocks;
4821 ds->entered_items = snewn(cr * ds->nregions, int);
4822 ds->tilesize = 0; /* not decided yet */
4823 return ds;
4826 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
4828 sfree(ds->hl);
4829 sfree(ds->pencil);
4830 sfree(ds->grid);
4831 sfree(ds->entered_items);
4832 sfree(ds);
4835 static void draw_number(drawing *dr, game_drawstate *ds,
4836 const game_state *state, int x, int y, int hl)
4838 int cr = state->cr;
4839 int tx, ty, tw, th;
4840 int cx, cy, cw, ch;
4841 int col_killer = (hl & 32 ? COL_ERROR : COL_KILLER);
4842 char str[20];
4844 if (ds->grid[y*cr+x] == state->grid[y*cr+x] &&
4845 ds->hl[y*cr+x] == hl &&
4846 !memcmp(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr))
4847 return; /* no change required */
4849 tx = BORDER + x * TILE_SIZE + 1 + GRIDEXTRA;
4850 ty = BORDER + y * TILE_SIZE + 1 + GRIDEXTRA;
4852 cx = tx;
4853 cy = ty;
4854 cw = tw = TILE_SIZE-1-2*GRIDEXTRA;
4855 ch = th = TILE_SIZE-1-2*GRIDEXTRA;
4857 if (x > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x-1])
4858 cx -= GRIDEXTRA, cw += GRIDEXTRA;
4859 if (x+1 < cr && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x+1])
4860 cw += GRIDEXTRA;
4861 if (y > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[(y-1)*cr+x])
4862 cy -= GRIDEXTRA, ch += GRIDEXTRA;
4863 if (y+1 < cr && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[(y+1)*cr+x])
4864 ch += GRIDEXTRA;
4866 clip(dr, cx, cy, cw, ch);
4868 /* background needs erasing */
4869 draw_rect(dr, cx, cy, cw, ch,
4870 ((hl & 15) == 1 ? COL_HIGHLIGHT :
4871 (ds->xtype && (ondiag0(y*cr+x) || ondiag1(y*cr+x))) ? COL_XDIAGONALS :
4872 COL_BACKGROUND));
4875 * Draw the corners of thick lines in corner-adjacent squares,
4876 * which jut into this square by one pixel.
4878 if (x > 0 && y > 0 && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y-1)*cr+x-1])
4879 draw_rect(dr, tx-GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
4880 if (x+1 < cr && y > 0 && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y-1)*cr+x+1])
4881 draw_rect(dr, tx+TILE_SIZE-1-2*GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
4882 if (x > 0 && y+1 < cr && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y+1)*cr+x-1])
4883 draw_rect(dr, tx-GRIDEXTRA, ty+TILE_SIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
4884 if (x+1 < cr && y+1 < cr && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y+1)*cr+x+1])
4885 draw_rect(dr, tx+TILE_SIZE-1-2*GRIDEXTRA, ty+TILE_SIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
4887 /* pencil-mode highlight */
4888 if ((hl & 15) == 2) {
4889 int coords[6];
4890 coords[0] = cx;
4891 coords[1] = cy;
4892 coords[2] = cx+cw/2;
4893 coords[3] = cy;
4894 coords[4] = cx;
4895 coords[5] = cy+ch/2;
4896 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
4899 if (state->kblocks) {
4900 int t = GRIDEXTRA * 3;
4901 int kcx, kcy, kcw, kch;
4902 int kl, kt, kr, kb;
4903 int has_left = 0, has_right = 0, has_top = 0, has_bottom = 0;
4906 * In non-jigsaw mode, the Killer cages are placed at a
4907 * fixed offset from the outer edge of the cell dividing
4908 * lines, so that they look right whether those lines are
4909 * thick or thin. In jigsaw mode, however, doing this will
4910 * sometimes cause the cage outlines in adjacent squares to
4911 * fail to match up with each other, so we must offset a
4912 * fixed amount from the _centre_ of the cell dividing
4913 * lines.
4915 if (state->blocks->r == 1) {
4916 kcx = tx;
4917 kcy = ty;
4918 kcw = tw;
4919 kch = th;
4920 } else {
4921 kcx = cx;
4922 kcy = cy;
4923 kcw = cw;
4924 kch = ch;
4926 kl = kcx - 1;
4927 kt = kcy - 1;
4928 kr = kcx + kcw;
4929 kb = kcy + kch;
4932 * First, draw the lines dividing this area from neighbouring
4933 * different areas.
4935 if (x == 0 || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[y*cr+x-1])
4936 has_left = 1, kl += t;
4937 if (x+1 >= cr || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[y*cr+x+1])
4938 has_right = 1, kr -= t;
4939 if (y == 0 || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x])
4940 has_top = 1, kt += t;
4941 if (y+1 >= cr || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x])
4942 has_bottom = 1, kb -= t;
4943 if (has_top)
4944 draw_line(dr, kl, kt, kr, kt, col_killer);
4945 if (has_bottom)
4946 draw_line(dr, kl, kb, kr, kb, col_killer);
4947 if (has_left)
4948 draw_line(dr, kl, kt, kl, kb, col_killer);
4949 if (has_right)
4950 draw_line(dr, kr, kt, kr, kb, col_killer);
4952 * Now, take care of the corners (just as for the normal borders).
4953 * We only need a corner if there wasn't a full edge.
4955 if (x > 0 && y > 0 && !has_left && !has_top
4956 && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x-1])
4958 draw_line(dr, kl, kt + t, kl + t, kt + t, col_killer);
4959 draw_line(dr, kl + t, kt, kl + t, kt + t, col_killer);
4961 if (x+1 < cr && y > 0 && !has_right && !has_top
4962 && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x+1])
4964 draw_line(dr, kcx + kcw - t, kt + t, kcx + kcw, kt + t, col_killer);
4965 draw_line(dr, kcx + kcw - t, kt, kcx + kcw - t, kt + t, col_killer);
4967 if (x > 0 && y+1 < cr && !has_left && !has_bottom
4968 && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x-1])
4970 draw_line(dr, kl, kcy + kch - t, kl + t, kcy + kch - t, col_killer);
4971 draw_line(dr, kl + t, kcy + kch - t, kl + t, kcy + kch, col_killer);
4973 if (x+1 < cr && y+1 < cr && !has_right && !has_bottom
4974 && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x+1])
4976 draw_line(dr, kcx + kcw - t, kcy + kch - t, kcx + kcw - t, kcy + kch, col_killer);
4977 draw_line(dr, kcx + kcw - t, kcy + kch - t, kcx + kcw, kcy + kch - t, col_killer);
4982 if (state->killer && state->kgrid[y*cr+x]) {
4983 sprintf (str, "%d", state->kgrid[y*cr+x]);
4984 draw_text(dr, tx + GRIDEXTRA * 4, ty + GRIDEXTRA * 4 + TILE_SIZE/4,
4985 FONT_VARIABLE, TILE_SIZE/4, ALIGN_VNORMAL | ALIGN_HLEFT,
4986 col_killer, str);
4989 /* new number needs drawing? */
4990 if (state->grid[y*cr+x]) {
4991 str[1] = '\0';
4992 str[0] = state->grid[y*cr+x] + '0';
4993 if (str[0] > '9')
4994 str[0] += 'a' - ('9'+1);
4995 draw_text(dr, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
4996 FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
4997 state->immutable[y*cr+x] ? COL_CLUE : (hl & 16) ? COL_ERROR : COL_USER, str);
4998 } else {
4999 int i, j, npencil;
5000 int pl, pr, pt, pb;
5001 float bestsize;
5002 int pw, ph, minph, pbest, fontsize;
5004 /* Count the pencil marks required. */
5005 for (i = npencil = 0; i < cr; i++)
5006 if (state->pencil[(y*cr+x)*cr+i])
5007 npencil++;
5008 if (npencil) {
5010 minph = 2;
5013 * Determine the bounding rectangle within which we're going
5014 * to put the pencil marks.
5016 /* Start with the whole square */
5017 pl = tx + GRIDEXTRA;
5018 pr = pl + TILE_SIZE - GRIDEXTRA;
5019 pt = ty + GRIDEXTRA;
5020 pb = pt + TILE_SIZE - GRIDEXTRA;
5021 if (state->killer) {
5023 * Make space for the Killer cages. We do this
5024 * unconditionally, for uniformity between squares,
5025 * rather than making it depend on whether a Killer
5026 * cage edge is actually present on any given side.
5028 pl += GRIDEXTRA * 3;
5029 pr -= GRIDEXTRA * 3;
5030 pt += GRIDEXTRA * 3;
5031 pb -= GRIDEXTRA * 3;
5032 if (state->kgrid[y*cr+x] != 0) {
5033 /* Make further space for the Killer number. */
5034 pt += TILE_SIZE/4;
5035 /* minph--; */
5040 * We arrange our pencil marks in a grid layout, with
5041 * the number of rows and columns adjusted to allow the
5042 * maximum font size.
5044 * So now we work out what the grid size ought to be.
5046 bestsize = 0.0;
5047 pbest = 0;
5048 /* Minimum */
5049 for (pw = 3; pw < max(npencil,4); pw++) {
5050 float fw, fh, fs;
5052 ph = (npencil + pw - 1) / pw;
5053 ph = max(ph, minph);
5054 fw = (pr - pl) / (float)pw;
5055 fh = (pb - pt) / (float)ph;
5056 fs = min(fw, fh);
5057 if (fs > bestsize) {
5058 bestsize = fs;
5059 pbest = pw;
5062 assert(pbest > 0);
5063 pw = pbest;
5064 ph = (npencil + pw - 1) / pw;
5065 ph = max(ph, minph);
5068 * Now we've got our grid dimensions, work out the pixel
5069 * size of a grid element, and round it to the nearest
5070 * pixel. (We don't want rounding errors to make the
5071 * grid look uneven at low pixel sizes.)
5073 fontsize = min((pr - pl) / pw, (pb - pt) / ph);
5076 * Centre the resulting figure in the square.
5078 pl = tx + (TILE_SIZE - fontsize * pw) / 2;
5079 pt = ty + (TILE_SIZE - fontsize * ph) / 2;
5082 * And move it down a bit if it's collided with the
5083 * Killer cage number.
5085 if (state->killer && state->kgrid[y*cr+x] != 0) {
5086 pt = max(pt, ty + GRIDEXTRA * 3 + TILE_SIZE/4);
5090 * Now actually draw the pencil marks.
5092 for (i = j = 0; i < cr; i++)
5093 if (state->pencil[(y*cr+x)*cr+i]) {
5094 int dx = j % pw, dy = j / pw;
5096 str[1] = '\0';
5097 str[0] = i + '1';
5098 if (str[0] > '9')
5099 str[0] += 'a' - ('9'+1);
5100 draw_text(dr, pl + fontsize * (2*dx+1) / 2,
5101 pt + fontsize * (2*dy+1) / 2,
5102 FONT_VARIABLE, fontsize,
5103 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
5104 j++;
5109 unclip(dr);
5111 draw_update(dr, cx, cy, cw, ch);
5113 ds->grid[y*cr+x] = state->grid[y*cr+x];
5114 memcpy(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr);
5115 ds->hl[y*cr+x] = hl;
5118 static void game_redraw(drawing *dr, game_drawstate *ds,
5119 const game_state *oldstate, const game_state *state,
5120 int dir, const game_ui *ui,
5121 float animtime, float flashtime)
5123 int cr = state->cr;
5124 int x, y;
5126 if (!ds->started) {
5128 * The initial contents of the window are not guaranteed
5129 * and can vary with front ends. To be on the safe side,
5130 * all games should start by drawing a big
5131 * background-colour rectangle covering the whole window.
5133 draw_rect(dr, 0, 0, SIZE(cr), SIZE(cr), COL_BACKGROUND);
5136 * Draw the grid. We draw it as a big thick rectangle of
5137 * COL_GRID initially; individual calls to draw_number()
5138 * will poke the right-shaped holes in it.
5140 draw_rect(dr, BORDER-GRIDEXTRA, BORDER-GRIDEXTRA,
5141 cr*TILE_SIZE+1+2*GRIDEXTRA, cr*TILE_SIZE+1+2*GRIDEXTRA,
5142 COL_GRID);
5146 * This array is used to keep track of rows, columns and boxes
5147 * which contain a number more than once.
5149 for (x = 0; x < cr * ds->nregions; x++)
5150 ds->entered_items[x] = 0;
5151 for (x = 0; x < cr; x++)
5152 for (y = 0; y < cr; y++) {
5153 digit d = state->grid[y*cr+x];
5154 if (d) {
5155 int box, kbox;
5157 /* Rows */
5158 ds->entered_items[x*cr+d-1]++;
5160 /* Columns */
5161 ds->entered_items[(y+cr)*cr+d-1]++;
5163 /* Blocks */
5164 box = state->blocks->whichblock[y*cr+x];
5165 ds->entered_items[(box+2*cr)*cr+d-1]++;
5167 /* Diagonals */
5168 if (ds->xtype) {
5169 if (ondiag0(y*cr+x))
5170 ds->entered_items[(3*cr)*cr+d-1]++;
5171 if (ondiag1(y*cr+x))
5172 ds->entered_items[(3*cr+1)*cr+d-1]++;
5175 /* Killer cages */
5176 if (state->kblocks) {
5177 kbox = state->kblocks->whichblock[y*cr+x];
5178 ds->entered_items[(kbox+3*cr+2)*cr+d-1]++;
5184 * Draw any numbers which need redrawing.
5186 for (x = 0; x < cr; x++) {
5187 for (y = 0; y < cr; y++) {
5188 int highlight = 0;
5189 digit d = state->grid[y*cr+x];
5191 if (flashtime > 0 &&
5192 (flashtime <= FLASH_TIME/3 ||
5193 flashtime >= FLASH_TIME*2/3))
5194 highlight = 1;
5196 /* Highlight active input areas. */
5197 if (x == ui->hx && y == ui->hy && ui->hshow)
5198 highlight = ui->hpencil ? 2 : 1;
5200 /* Mark obvious errors (ie, numbers which occur more than once
5201 * in a single row, column, or box). */
5202 if (d && (ds->entered_items[x*cr+d-1] > 1 ||
5203 ds->entered_items[(y+cr)*cr+d-1] > 1 ||
5204 ds->entered_items[(state->blocks->whichblock[y*cr+x]
5205 +2*cr)*cr+d-1] > 1 ||
5206 (ds->xtype && ((ondiag0(y*cr+x) &&
5207 ds->entered_items[(3*cr)*cr+d-1] > 1) ||
5208 (ondiag1(y*cr+x) &&
5209 ds->entered_items[(3*cr+1)*cr+d-1]>1)))||
5210 (state->kblocks &&
5211 ds->entered_items[(state->kblocks->whichblock[y*cr+x]
5212 +3*cr+2)*cr+d-1] > 1)))
5213 highlight |= 16;
5215 if (d && state->kblocks) {
5216 if (check_killer_cage_sum(
5217 state->kblocks, state->kgrid, state->grid,
5218 state->kblocks->whichblock[y*cr+x]) == 0)
5219 highlight |= 32;
5222 draw_number(dr, ds, state, x, y, highlight);
5227 * Update the _entire_ grid if necessary.
5229 if (!ds->started) {
5230 draw_update(dr, 0, 0, SIZE(cr), SIZE(cr));
5231 ds->started = TRUE;
5235 static float game_anim_length(const game_state *oldstate,
5236 const game_state *newstate, int dir, game_ui *ui)
5238 return 0.0F;
5241 static float game_flash_length(const game_state *oldstate,
5242 const game_state *newstate, int dir, game_ui *ui)
5244 if (!oldstate->completed && newstate->completed &&
5245 !oldstate->cheated && !newstate->cheated)
5246 return FLASH_TIME;
5247 return 0.0F;
5250 static int game_status(const game_state *state)
5252 return state->completed ? +1 : 0;
5255 static int game_timing_state(const game_state *state, game_ui *ui)
5257 if (state->completed)
5258 return FALSE;
5259 return TRUE;
5262 static void game_print_size(const game_params *params, float *x, float *y)
5264 int pw, ph;
5267 * I'll use 9mm squares by default. They should be quite big
5268 * for this game, because players will want to jot down no end
5269 * of pencil marks in the squares.
5271 game_compute_size(params, 900, &pw, &ph);
5272 *x = pw / 100.0F;
5273 *y = ph / 100.0F;
5277 * Subfunction to draw the thick lines between cells. In order to do
5278 * this using the line-drawing rather than rectangle-drawing API (so
5279 * as to get line thicknesses to scale correctly) and yet have
5280 * correctly mitred joins between lines, we must do this by tracing
5281 * the boundary of each sub-block and drawing it in one go as a
5282 * single polygon.
5284 * This subfunction is also reused with thinner dotted lines to
5285 * outline the Killer cages, this time offsetting the outline toward
5286 * the interior of the affected squares.
5288 static void outline_block_structure(drawing *dr, game_drawstate *ds,
5289 const game_state *state,
5290 struct block_structure *blocks,
5291 int ink, int inset)
5293 int cr = state->cr;
5294 int *coords;
5295 int bi, i, n;
5296 int x, y, dx, dy, sx, sy, sdx, sdy;
5299 * Maximum perimeter of a k-omino is 2k+2. (Proof: start
5300 * with k unconnected squares, with total perimeter 4k.
5301 * Now repeatedly join two disconnected components
5302 * together into a larger one; every time you do so you
5303 * remove at least two unit edges, and you require k-1 of
5304 * these operations to create a single connected piece, so
5305 * you must have at most 4k-2(k-1) = 2k+2 unit edges left
5306 * afterwards.)
5308 coords = snewn(4*cr+4, int); /* 2k+2 points, 2 coords per point */
5311 * Iterate over all the blocks.
5313 for (bi = 0; bi < blocks->nr_blocks; bi++) {
5314 if (blocks->nr_squares[bi] == 0)
5315 continue;
5318 * For each block, find a starting square within it
5319 * which has a boundary at the left.
5321 for (i = 0; i < cr; i++) {
5322 int j = blocks->blocks[bi][i];
5323 if (j % cr == 0 || blocks->whichblock[j-1] != bi)
5324 break;
5326 assert(i < cr); /* every block must have _some_ leftmost square */
5327 x = blocks->blocks[bi][i] % cr;
5328 y = blocks->blocks[bi][i] / cr;
5329 dx = -1;
5330 dy = 0;
5333 * Now begin tracing round the perimeter. At all
5334 * times, (x,y) describes some square within the
5335 * block, and (x+dx,y+dy) is some adjacent square
5336 * outside it; so the edge between those two squares
5337 * is always an edge of the block.
5339 sx = x, sy = y, sdx = dx, sdy = dy; /* save starting position */
5340 n = 0;
5341 do {
5342 int cx, cy, tx, ty, nin;
5345 * Advance to the next edge, by looking at the two
5346 * squares beyond it. If they're both outside the block,
5347 * we turn right (by leaving x,y the same and rotating
5348 * dx,dy clockwise); if they're both inside, we turn
5349 * left (by rotating dx,dy anticlockwise and contriving
5350 * to leave x+dx,y+dy unchanged); if one of each, we go
5351 * straight on (and may enforce by assertion that
5352 * they're one of each the _right_ way round).
5354 nin = 0;
5355 tx = x - dy + dx;
5356 ty = y + dx + dy;
5357 nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
5358 blocks->whichblock[ty*cr+tx] == bi);
5359 tx = x - dy;
5360 ty = y + dx;
5361 nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
5362 blocks->whichblock[ty*cr+tx] == bi);
5363 if (nin == 0) {
5365 * Turn right.
5367 int tmp;
5368 tmp = dx;
5369 dx = -dy;
5370 dy = tmp;
5371 } else if (nin == 2) {
5373 * Turn left.
5375 int tmp;
5377 x += dx;
5378 y += dy;
5380 tmp = dx;
5381 dx = dy;
5382 dy = -tmp;
5384 x -= dx;
5385 y -= dy;
5386 } else {
5388 * Go straight on.
5390 x -= dy;
5391 y += dx;
5395 * Now enforce by assertion that we ended up
5396 * somewhere sensible.
5398 assert(x >= 0 && x < cr && y >= 0 && y < cr &&
5399 blocks->whichblock[y*cr+x] == bi);
5400 assert(x+dx < 0 || x+dx >= cr || y+dy < 0 || y+dy >= cr ||
5401 blocks->whichblock[(y+dy)*cr+(x+dx)] != bi);
5404 * Record the point we just went past at one end of the
5405 * edge. To do this, we translate (x,y) down and right
5406 * by half a unit (so they're describing a point in the
5407 * _centre_ of the square) and then translate back again
5408 * in a manner rotated by dy and dx.
5410 assert(n < 2*cr+2);
5411 cx = ((2*x+1) + dy + dx) / 2;
5412 cy = ((2*y+1) - dx + dy) / 2;
5413 coords[2*n+0] = BORDER + cx * TILE_SIZE;
5414 coords[2*n+1] = BORDER + cy * TILE_SIZE;
5415 coords[2*n+0] -= dx * inset;
5416 coords[2*n+1] -= dy * inset;
5417 if (nin == 0) {
5419 * We turned right, so inset this corner back along
5420 * the edge towards the centre of the square.
5422 coords[2*n+0] -= dy * inset;
5423 coords[2*n+1] += dx * inset;
5424 } else if (nin == 2) {
5426 * We turned left, so inset this corner further
5427 * _out_ along the edge into the next square.
5429 coords[2*n+0] += dy * inset;
5430 coords[2*n+1] -= dx * inset;
5432 n++;
5434 } while (x != sx || y != sy || dx != sdx || dy != sdy);
5437 * That's our polygon; now draw it.
5439 draw_polygon(dr, coords, n, -1, ink);
5442 sfree(coords);
5445 static void game_print(drawing *dr, const game_state *state, int tilesize)
5447 int cr = state->cr;
5448 int ink = print_mono_colour(dr, 0);
5449 int x, y;
5451 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
5452 game_drawstate ads, *ds = &ads;
5453 game_set_size(dr, ds, NULL, tilesize);
5456 * Border.
5458 print_line_width(dr, 3 * TILE_SIZE / 40);
5459 draw_rect_outline(dr, BORDER, BORDER, cr*TILE_SIZE, cr*TILE_SIZE, ink);
5462 * Highlight X-diagonal squares.
5464 if (state->xtype) {
5465 int i;
5466 int xhighlight = print_grey_colour(dr, 0.90F);
5468 for (i = 0; i < cr; i++)
5469 draw_rect(dr, BORDER + i*TILE_SIZE, BORDER + i*TILE_SIZE,
5470 TILE_SIZE, TILE_SIZE, xhighlight);
5471 for (i = 0; i < cr; i++)
5472 if (i*2 != cr-1) /* avoid redoing centre square, just for fun */
5473 draw_rect(dr, BORDER + i*TILE_SIZE,
5474 BORDER + (cr-1-i)*TILE_SIZE,
5475 TILE_SIZE, TILE_SIZE, xhighlight);
5479 * Main grid.
5481 for (x = 1; x < cr; x++) {
5482 print_line_width(dr, TILE_SIZE / 40);
5483 draw_line(dr, BORDER+x*TILE_SIZE, BORDER,
5484 BORDER+x*TILE_SIZE, BORDER+cr*TILE_SIZE, ink);
5486 for (y = 1; y < cr; y++) {
5487 print_line_width(dr, TILE_SIZE / 40);
5488 draw_line(dr, BORDER, BORDER+y*TILE_SIZE,
5489 BORDER+cr*TILE_SIZE, BORDER+y*TILE_SIZE, ink);
5493 * Thick lines between cells.
5495 print_line_width(dr, 3 * TILE_SIZE / 40);
5496 outline_block_structure(dr, ds, state, state->blocks, ink, 0);
5499 * Killer cages and their totals.
5501 if (state->kblocks) {
5502 print_line_width(dr, TILE_SIZE / 40);
5503 print_line_dotted(dr, TRUE);
5504 outline_block_structure(dr, ds, state, state->kblocks, ink,
5505 5 * TILE_SIZE / 40);
5506 print_line_dotted(dr, FALSE);
5507 for (y = 0; y < cr; y++)
5508 for (x = 0; x < cr; x++)
5509 if (state->kgrid[y*cr+x]) {
5510 char str[20];
5511 sprintf(str, "%d", state->kgrid[y*cr+x]);
5512 draw_text(dr,
5513 BORDER+x*TILE_SIZE + 7*TILE_SIZE/40,
5514 BORDER+y*TILE_SIZE + 16*TILE_SIZE/40,
5515 FONT_VARIABLE, TILE_SIZE/4,
5516 ALIGN_VNORMAL | ALIGN_HLEFT,
5517 ink, str);
5522 * Standard (non-Killer) clue numbers.
5524 for (y = 0; y < cr; y++)
5525 for (x = 0; x < cr; x++)
5526 if (state->grid[y*cr+x]) {
5527 char str[2];
5528 str[1] = '\0';
5529 str[0] = state->grid[y*cr+x] + '0';
5530 if (str[0] > '9')
5531 str[0] += 'a' - ('9'+1);
5532 draw_text(dr, BORDER + x*TILE_SIZE + TILE_SIZE/2,
5533 BORDER + y*TILE_SIZE + TILE_SIZE/2,
5534 FONT_VARIABLE, TILE_SIZE/2,
5535 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
5539 #ifdef COMBINED
5540 #define thegame solo
5541 #endif
5543 const struct game thegame = {
5544 "Solo", "games.solo", "solo",
5545 default_params,
5546 game_fetch_preset, NULL,
5547 decode_params,
5548 encode_params,
5549 free_params,
5550 dup_params,
5551 TRUE, game_configure, custom_params,
5552 validate_params,
5553 new_game_desc,
5554 validate_desc,
5555 new_game,
5556 dup_game,
5557 free_game,
5558 TRUE, solve_game,
5559 TRUE, game_can_format_as_text_now, game_text_format,
5560 new_ui,
5561 free_ui,
5562 encode_ui,
5563 decode_ui,
5564 game_changed_state,
5565 interpret_move,
5566 execute_move,
5567 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
5568 game_colours,
5569 game_new_drawstate,
5570 game_free_drawstate,
5571 game_redraw,
5572 game_anim_length,
5573 game_flash_length,
5574 game_status,
5575 TRUE, FALSE, game_print_size, game_print,
5576 FALSE, /* wants_statusbar */
5577 FALSE, game_timing_state,
5578 REQUIRE_RBUTTON | REQUIRE_NUMPAD, /* flags */
5581 #ifdef STANDALONE_SOLVER
5583 int main(int argc, char **argv)
5585 game_params *p;
5586 game_state *s;
5587 char *id = NULL, *desc, *err;
5588 int grade = FALSE;
5589 struct difficulty dlev;
5591 while (--argc > 0) {
5592 char *p = *++argv;
5593 if (!strcmp(p, "-v")) {
5594 solver_show_working = TRUE;
5595 } else if (!strcmp(p, "-g")) {
5596 grade = TRUE;
5597 } else if (*p == '-') {
5598 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
5599 return 1;
5600 } else {
5601 id = p;
5605 if (!id) {
5606 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
5607 return 1;
5610 desc = strchr(id, ':');
5611 if (!desc) {
5612 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
5613 return 1;
5615 *desc++ = '\0';
5617 p = default_params();
5618 decode_params(p, id);
5619 err = validate_desc(p, desc);
5620 if (err) {
5621 fprintf(stderr, "%s: %s\n", argv[0], err);
5622 return 1;
5624 s = new_game(NULL, p, desc);
5626 dlev.maxdiff = DIFF_RECURSIVE;
5627 dlev.maxkdiff = DIFF_KINTERSECT;
5628 solver(s->cr, s->blocks, s->kblocks, s->xtype, s->grid, s->kgrid, &dlev);
5629 if (grade) {
5630 printf("Difficulty rating: %s\n",
5631 dlev.diff==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
5632 dlev.diff==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
5633 dlev.diff==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
5634 dlev.diff==DIFF_SET ? "Advanced (set elimination required)":
5635 dlev.diff==DIFF_EXTREME ? "Extreme (complex non-recursive techniques required)":
5636 dlev.diff==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
5637 dlev.diff==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
5638 dlev.diff==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
5639 "INTERNAL ERROR: unrecognised difficulty code");
5640 if (p->killer)
5641 printf("Killer difficulty: %s\n",
5642 dlev.kdiff==DIFF_KSINGLE ? "Trivial (single square cages only)":
5643 dlev.kdiff==DIFF_KMINMAX ? "Simple (maximum sum analysis required)":
5644 dlev.kdiff==DIFF_KSUMS ? "Intermediate (sum possibilities)":
5645 dlev.kdiff==DIFF_KINTERSECT ? "Advanced (sum region intersections)":
5646 "INTERNAL ERROR: unrecognised difficulty code");
5647 } else {
5648 printf("%s\n", grid_text_format(s->cr, s->blocks, s->xtype, s->grid));
5651 return 0;
5654 #endif
5656 /* vim: set shiftwidth=4 tabstop=8: */