Prepare to release sgt-puzzles (20170606.272beef-1).
[sgt-puzzles.git] / flip.c
blobc7126fb7d964fa240cfef570eae446f9daa4bf8e
1 /*
2 * flip.c: Puzzle involving lighting up all the squares on a grid,
3 * where each click toggles an overlapping set of lights.
4 */
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <assert.h>
10 #include <ctype.h>
11 #include <math.h>
13 #include "puzzles.h"
14 #include "tree234.h"
16 enum {
17 COL_BACKGROUND,
18 COL_WRONG,
19 COL_RIGHT,
20 COL_GRID,
21 COL_DIAG,
22 COL_HINT,
23 COL_CURSOR,
24 NCOLOURS
27 #define PREFERRED_TILE_SIZE 48
28 #define TILE_SIZE (ds->tilesize)
29 #define BORDER (TILE_SIZE / 2)
30 #define COORD(x) ( (x) * TILE_SIZE + BORDER )
31 #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
33 #define ANIM_TIME 0.25F
34 #define FLASH_FRAME 0.07F
37 * Possible ways to decide which lights are toggled by each click.
38 * Essentially, each of these describes a means of inventing a
39 * matrix over GF(2).
41 enum {
42 CROSSES, RANDOM
45 struct game_params {
46 int w, h;
47 int matrix_type;
51 * This structure is shared between all the game_states describing
52 * a particular game, so it's reference-counted.
54 struct matrix {
55 int refcount;
56 unsigned char *matrix; /* array of (w*h) by (w*h) */
59 struct game_state {
60 int w, h;
61 int moves, completed, cheated, hints_active;
62 unsigned char *grid; /* array of w*h */
63 struct matrix *matrix;
66 static game_params *default_params(void)
68 game_params *ret = snew(game_params);
70 ret->w = ret->h = 5;
71 ret->matrix_type = CROSSES;
73 return ret;
76 static const struct game_params flip_presets[] = {
77 {3, 3, CROSSES},
78 {4, 4, CROSSES},
79 {5, 5, CROSSES},
80 {3, 3, RANDOM},
81 {4, 4, RANDOM},
82 {5, 5, RANDOM},
85 static int game_fetch_preset(int i, char **name, game_params **params)
87 game_params *ret;
88 char str[80];
90 if (i < 0 || i >= lenof(flip_presets))
91 return FALSE;
93 ret = snew(game_params);
94 *ret = flip_presets[i];
96 sprintf(str, "%dx%d %s", ret->w, ret->h,
97 ret->matrix_type == CROSSES ? "Crosses" : "Random");
99 *name = dupstr(str);
100 *params = ret;
101 return TRUE;
104 static void free_params(game_params *params)
106 sfree(params);
109 static game_params *dup_params(const game_params *params)
111 game_params *ret = snew(game_params);
112 *ret = *params; /* structure copy */
113 return ret;
116 static void decode_params(game_params *ret, char const *string)
118 ret->w = ret->h = atoi(string);
119 while (*string && isdigit((unsigned char)*string)) string++;
120 if (*string == 'x') {
121 string++;
122 ret->h = atoi(string);
123 while (*string && isdigit((unsigned char)*string)) string++;
125 if (*string == 'r') {
126 string++;
127 ret->matrix_type = RANDOM;
128 } else if (*string == 'c') {
129 string++;
130 ret->matrix_type = CROSSES;
134 static char *encode_params(const game_params *params, int full)
136 char data[256];
138 sprintf(data, "%dx%d%s", params->w, params->h,
139 !full ? "" : params->matrix_type == CROSSES ? "c" : "r");
141 return dupstr(data);
144 static config_item *game_configure(const game_params *params)
146 config_item *ret = snewn(4, config_item);
147 char buf[80];
149 ret[0].name = "Width";
150 ret[0].type = C_STRING;
151 sprintf(buf, "%d", params->w);
152 ret[0].sval = dupstr(buf);
153 ret[0].ival = 0;
155 ret[1].name = "Height";
156 ret[1].type = C_STRING;
157 sprintf(buf, "%d", params->h);
158 ret[1].sval = dupstr(buf);
159 ret[1].ival = 0;
161 ret[2].name = "Shape type";
162 ret[2].type = C_CHOICES;
163 ret[2].sval = ":Crosses:Random";
164 ret[2].ival = params->matrix_type;
166 ret[3].name = NULL;
167 ret[3].type = C_END;
168 ret[3].sval = NULL;
169 ret[3].ival = 0;
171 return ret;
174 static game_params *custom_params(const config_item *cfg)
176 game_params *ret = snew(game_params);
178 ret->w = atoi(cfg[0].sval);
179 ret->h = atoi(cfg[1].sval);
180 ret->matrix_type = cfg[2].ival;
182 return ret;
185 static char *validate_params(const game_params *params, int full)
187 if (params->w <= 0 || params->h <= 0)
188 return "Width and height must both be greater than zero";
189 return NULL;
192 static char *encode_bitmap(unsigned char *bmp, int len)
194 int slen = (len + 3) / 4;
195 char *ret;
196 int i;
198 ret = snewn(slen + 1, char);
199 for (i = 0; i < slen; i++) {
200 int j, v;
201 v = 0;
202 for (j = 0; j < 4; j++)
203 if (i*4+j < len && bmp[i*4+j])
204 v |= 8 >> j;
205 ret[i] = "0123456789abcdef"[v];
207 ret[slen] = '\0';
208 return ret;
211 static void decode_bitmap(unsigned char *bmp, int len, const char *hex)
213 int slen = (len + 3) / 4;
214 int i;
216 for (i = 0; i < slen; i++) {
217 int j, v, c = hex[i];
218 if (c >= '0' && c <= '9')
219 v = c - '0';
220 else if (c >= 'A' && c <= 'F')
221 v = c - 'A' + 10;
222 else if (c >= 'a' && c <= 'f')
223 v = c - 'a' + 10;
224 else
225 v = 0; /* shouldn't happen */
226 for (j = 0; j < 4; j++) {
227 if (i*4+j < len) {
228 if (v & (8 >> j))
229 bmp[i*4+j] = 1;
230 else
231 bmp[i*4+j] = 0;
238 * Structure used during random matrix generation, and a compare
239 * function to permit storage in a tree234.
241 struct sq {
242 int cx, cy; /* coords of click square */
243 int x, y; /* coords of output square */
245 * Number of click squares which currently affect this output
246 * square.
248 int coverage;
250 * Number of output squares currently affected by this click
251 * square.
253 int ominosize;
255 #define SORT(field) do { \
256 if (a->field < b->field) \
257 return -1; \
258 else if (a->field > b->field) \
259 return +1; \
260 } while (0)
262 * Compare function for choosing the next square to add. We must
263 * sort by coverage, then by omino size, then everything else.
265 static int sqcmp_pick(void *av, void *bv)
267 struct sq *a = (struct sq *)av;
268 struct sq *b = (struct sq *)bv;
269 SORT(coverage);
270 SORT(ominosize);
271 SORT(cy);
272 SORT(cx);
273 SORT(y);
274 SORT(x);
275 return 0;
278 * Compare function for adjusting the coverage figures after a
279 * change. We sort first by coverage and output square, then by
280 * everything else.
282 static int sqcmp_cov(void *av, void *bv)
284 struct sq *a = (struct sq *)av;
285 struct sq *b = (struct sq *)bv;
286 SORT(coverage);
287 SORT(y);
288 SORT(x);
289 SORT(ominosize);
290 SORT(cy);
291 SORT(cx);
292 return 0;
295 * Compare function for adjusting the omino sizes after a change.
296 * We sort first by omino size and input square, then by everything
297 * else.
299 static int sqcmp_osize(void *av, void *bv)
301 struct sq *a = (struct sq *)av;
302 struct sq *b = (struct sq *)bv;
303 SORT(ominosize);
304 SORT(cy);
305 SORT(cx);
306 SORT(coverage);
307 SORT(y);
308 SORT(x);
309 return 0;
311 static void addsq(tree234 *t, int w, int h, int cx, int cy,
312 int x, int y, unsigned char *matrix)
314 int wh = w * h;
315 struct sq *sq;
316 int i;
318 if (x < 0 || x >= w || y < 0 || y >= h)
319 return;
320 if (abs(x-cx) > 1 || abs(y-cy) > 1)
321 return;
322 if (matrix[(cy*w+cx) * wh + y*w+x])
323 return;
325 sq = snew(struct sq);
326 sq->cx = cx;
327 sq->cy = cy;
328 sq->x = x;
329 sq->y = y;
330 sq->coverage = sq->ominosize = 0;
331 for (i = 0; i < wh; i++) {
332 if (matrix[i * wh + y*w+x])
333 sq->coverage++;
334 if (matrix[(cy*w+cx) * wh + i])
335 sq->ominosize++;
338 if (add234(t, sq) != sq)
339 sfree(sq); /* already there */
341 static void addneighbours(tree234 *t, int w, int h, int cx, int cy,
342 int x, int y, unsigned char *matrix)
344 addsq(t, w, h, cx, cy, x-1, y, matrix);
345 addsq(t, w, h, cx, cy, x+1, y, matrix);
346 addsq(t, w, h, cx, cy, x, y-1, matrix);
347 addsq(t, w, h, cx, cy, x, y+1, matrix);
350 static char *new_game_desc(const game_params *params, random_state *rs,
351 char **aux, int interactive)
353 int w = params->w, h = params->h, wh = w * h;
354 int i, j;
355 unsigned char *matrix, *grid;
356 char *mbmp, *gbmp, *ret;
358 matrix = snewn(wh * wh, unsigned char);
359 grid = snewn(wh, unsigned char);
362 * First set up the matrix.
364 switch (params->matrix_type) {
365 case CROSSES:
366 for (i = 0; i < wh; i++) {
367 int ix = i % w, iy = i / w;
368 for (j = 0; j < wh; j++) {
369 int jx = j % w, jy = j / w;
370 if (abs(jx - ix) + abs(jy - iy) <= 1)
371 matrix[i*wh+j] = 1;
372 else
373 matrix[i*wh+j] = 0;
376 break;
377 case RANDOM:
378 while (1) {
379 tree234 *pick, *cov, *osize;
380 int limit;
382 pick = newtree234(sqcmp_pick);
383 cov = newtree234(sqcmp_cov);
384 osize = newtree234(sqcmp_osize);
386 memset(matrix, 0, wh * wh);
387 for (i = 0; i < wh; i++) {
388 matrix[i*wh+i] = 1;
391 for (i = 0; i < wh; i++) {
392 int ix = i % w, iy = i / w;
393 addneighbours(pick, w, h, ix, iy, ix, iy, matrix);
394 addneighbours(cov, w, h, ix, iy, ix, iy, matrix);
395 addneighbours(osize, w, h, ix, iy, ix, iy, matrix);
399 * Repeatedly choose a square to add to the matrix,
400 * until we have enough. I'll arbitrarily choose our
401 * limit to be the same as the total number of set bits
402 * in the crosses matrix.
404 limit = 4*wh - 2*(w+h); /* centre squares already present */
406 while (limit-- > 0) {
407 struct sq *sq, *sq2, sqlocal;
408 int k;
411 * Find the lowest element in the pick tree.
413 sq = index234(pick, 0);
416 * Find the highest element with the same coverage
417 * and omino size, by setting all other elements to
418 * lots.
420 sqlocal = *sq;
421 sqlocal.cx = sqlocal.cy = sqlocal.x = sqlocal.y = wh;
422 sq = findrelpos234(pick, &sqlocal, NULL, REL234_LT, &k);
423 assert(sq != 0);
426 * Pick at random from all elements up to k of the
427 * pick tree.
429 k = random_upto(rs, k+1);
430 sq = delpos234(pick, k);
431 del234(cov, sq);
432 del234(osize, sq);
435 * Add this square to the matrix.
437 matrix[(sq->cy * w + sq->cx) * wh + (sq->y * w + sq->x)] = 1;
440 * Correct the matrix coverage field of any sq
441 * which points at this output square.
443 sqlocal = *sq;
444 sqlocal.cx = sqlocal.cy = sqlocal.ominosize = -1;
445 while ((sq2 = findrel234(cov, &sqlocal, NULL,
446 REL234_GT)) != NULL &&
447 sq2->coverage == sq->coverage &&
448 sq2->x == sq->x && sq2->y == sq->y) {
449 del234(pick, sq2);
450 del234(cov, sq2);
451 del234(osize, sq2);
452 sq2->coverage++;
453 add234(pick, sq2);
454 add234(cov, sq2);
455 add234(osize, sq2);
459 * Correct the omino size field of any sq which
460 * points at this input square.
462 sqlocal = *sq;
463 sqlocal.x = sqlocal.y = sqlocal.coverage = -1;
464 while ((sq2 = findrel234(osize, &sqlocal, NULL,
465 REL234_GT)) != NULL &&
466 sq2->ominosize == sq->ominosize &&
467 sq2->cx == sq->cx && sq2->cy == sq->cy) {
468 del234(pick, sq2);
469 del234(cov, sq2);
470 del234(osize, sq2);
471 sq2->ominosize++;
472 add234(pick, sq2);
473 add234(cov, sq2);
474 add234(osize, sq2);
478 * The sq we actually picked out of the tree is
479 * finished with; but its neighbours now need to
480 * appear.
482 addneighbours(pick, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
483 addneighbours(cov, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
484 addneighbours(osize, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
485 sfree(sq);
489 * Free all remaining sq structures.
492 struct sq *sq;
493 while ((sq = delpos234(pick, 0)) != NULL)
494 sfree(sq);
496 freetree234(pick);
497 freetree234(cov);
498 freetree234(osize);
501 * Finally, check to see if any two matrix rows are
502 * exactly identical. If so, this is not an acceptable
503 * matrix, and we give up and go round again.
505 * I haven't been immediately able to think of a
506 * plausible means of algorithmically avoiding this
507 * situation (by, say, making a small perturbation to
508 * an offending matrix), so for the moment I'm just
509 * going to deal with it by throwing the whole thing
510 * away. I suspect this will lead to scalability
511 * problems (since most of the things happening in
512 * these matrices are local, the chance of _some_
513 * neighbourhood having two identical regions will
514 * increase with the grid area), but so far this puzzle
515 * seems to be really hard at large sizes so I'm not
516 * massively worried yet. Anyone needs this done
517 * better, they're welcome to submit a patch.
519 for (i = 0; i < wh; i++) {
520 for (j = 0; j < wh; j++)
521 if (i != j &&
522 !memcmp(matrix + i * wh, matrix + j * wh, wh))
523 break;
524 if (j < wh)
525 break;
527 if (i == wh)
528 break; /* no matches found */
530 break;
534 * Now invent a random initial set of lights.
536 * At first glance it looks as if it might be quite difficult
537 * to choose equiprobably from all soluble light sets. After
538 * all, soluble light sets are those in the image space of the
539 * transformation matrix; so first we'd have to identify that
540 * space and its dimension, then pick a random coordinate for
541 * each basis vector and recombine. Lot of fiddly matrix
542 * algebra there.
544 * However, vector spaces are nicely orthogonal and relieve us
545 * of all that difficulty. For every point in the image space,
546 * there are precisely as many points in the input space that
547 * map to it as there are elements in the kernel of the
548 * transformation matrix (because adding any kernel element to
549 * the input does not change the output, and because any two
550 * inputs mapping to the same output must differ by an element
551 * of the kernel because that's what the kernel _is_); and
552 * these cosets are all disjoint (obviously, since no input
553 * point can map to more than one output point) and cover the
554 * whole space (equally obviously, because no input point can
555 * map to fewer than one output point!).
557 * So the input space contains the same number of points for
558 * each point in the output space; thus, we can simply choose
559 * equiprobably from elements of the _input_ space, and filter
560 * the result through the transformation matrix in the obvious
561 * way, and we thereby guarantee to choose equiprobably from
562 * all the output points. Phew!
564 while (1) {
565 memset(grid, 0, wh);
566 for (i = 0; i < wh; i++) {
567 int v = random_upto(rs, 2);
568 if (v) {
569 for (j = 0; j < wh; j++)
570 grid[j] ^= matrix[i*wh+j];
574 * Ensure we don't have the starting state already!
576 for (i = 0; i < wh; i++)
577 if (grid[i])
578 break;
579 if (i < wh)
580 break;
584 * Now encode the matrix and the starting grid as a game
585 * description. We'll do this by concatenating two great big
586 * hex bitmaps.
588 mbmp = encode_bitmap(matrix, wh*wh);
589 gbmp = encode_bitmap(grid, wh);
590 ret = snewn(strlen(mbmp) + strlen(gbmp) + 2, char);
591 sprintf(ret, "%s,%s", mbmp, gbmp);
592 sfree(mbmp);
593 sfree(gbmp);
594 sfree(matrix);
595 sfree(grid);
596 return ret;
599 static char *validate_desc(const game_params *params, const char *desc)
601 int w = params->w, h = params->h, wh = w * h;
602 int mlen = (wh*wh+3)/4, glen = (wh+3)/4;
604 if (strspn(desc, "0123456789abcdefABCDEF") != mlen)
605 return "Matrix description is wrong length";
606 if (desc[mlen] != ',')
607 return "Expected comma after matrix description";
608 if (strspn(desc+mlen+1, "0123456789abcdefABCDEF") != glen)
609 return "Grid description is wrong length";
610 if (desc[mlen+1+glen])
611 return "Unexpected data after grid description";
613 return NULL;
616 static game_state *new_game(midend *me, const game_params *params,
617 const char *desc)
619 int w = params->w, h = params->h, wh = w * h;
620 int mlen = (wh*wh+3)/4;
622 game_state *state = snew(game_state);
624 state->w = w;
625 state->h = h;
626 state->completed = FALSE;
627 state->cheated = FALSE;
628 state->hints_active = FALSE;
629 state->moves = 0;
630 state->matrix = snew(struct matrix);
631 state->matrix->refcount = 1;
632 state->matrix->matrix = snewn(wh*wh, unsigned char);
633 decode_bitmap(state->matrix->matrix, wh*wh, desc);
634 state->grid = snewn(wh, unsigned char);
635 decode_bitmap(state->grid, wh, desc + mlen + 1);
637 return state;
640 static game_state *dup_game(const game_state *state)
642 game_state *ret = snew(game_state);
644 ret->w = state->w;
645 ret->h = state->h;
646 ret->completed = state->completed;
647 ret->cheated = state->cheated;
648 ret->hints_active = state->hints_active;
649 ret->moves = state->moves;
650 ret->matrix = state->matrix;
651 state->matrix->refcount++;
652 ret->grid = snewn(ret->w * ret->h, unsigned char);
653 memcpy(ret->grid, state->grid, ret->w * ret->h);
655 return ret;
658 static void free_game(game_state *state)
660 sfree(state->grid);
661 if (--state->matrix->refcount <= 0) {
662 sfree(state->matrix->matrix);
663 sfree(state->matrix);
665 sfree(state);
668 static void rowxor(unsigned char *row1, unsigned char *row2, int len)
670 int i;
671 for (i = 0; i < len; i++)
672 row1[i] ^= row2[i];
675 static char *solve_game(const game_state *state, const game_state *currstate,
676 const char *aux, char **error)
678 int w = state->w, h = state->h, wh = w * h;
679 unsigned char *equations, *solution, *shortest;
680 int *und, nund;
681 int rowsdone, colsdone;
682 int i, j, k, len, bestlen;
683 char *ret;
686 * Set up a list of simultaneous equations. Each one is of
687 * length (wh+1) and has wh coefficients followed by a value.
689 equations = snewn((wh + 1) * wh, unsigned char);
690 for (i = 0; i < wh; i++) {
691 for (j = 0; j < wh; j++)
692 equations[i * (wh+1) + j] = currstate->matrix->matrix[j*wh+i];
693 equations[i * (wh+1) + wh] = currstate->grid[i] & 1;
697 * Perform Gaussian elimination over GF(2).
699 rowsdone = colsdone = 0;
700 nund = 0;
701 und = snewn(wh, int);
702 do {
704 * Find the leftmost column which has a 1 in it somewhere
705 * outside the first `rowsdone' rows.
707 j = -1;
708 for (i = colsdone; i < wh; i++) {
709 for (j = rowsdone; j < wh; j++)
710 if (equations[j * (wh+1) + i])
711 break;
712 if (j < wh)
713 break; /* found one */
715 * This is a column which will not have an equation
716 * controlling it. Mark it as undetermined.
718 und[nund++] = i;
722 * If there wasn't one, then we've finished: all remaining
723 * equations are of the form 0 = constant. Check to see if
724 * any of them wants 0 to be equal to 1; this is the
725 * condition which indicates an insoluble problem
726 * (therefore _hopefully_ one typed in by a user!).
728 if (i == wh) {
729 for (j = rowsdone; j < wh; j++)
730 if (equations[j * (wh+1) + wh]) {
731 *error = "No solution exists for this position";
732 sfree(equations);
733 sfree(und);
734 return NULL;
736 break;
740 * We've found a 1. It's in column i, and the topmost 1 in
741 * that column is in row j. Do a row-XOR to move it up to
742 * the topmost row if it isn't already there.
744 assert(j != -1);
745 if (j > rowsdone)
746 rowxor(equations + rowsdone*(wh+1), equations + j*(wh+1), wh+1);
749 * Do row-XORs to eliminate that 1 from all rows below the
750 * topmost row.
752 for (j = rowsdone + 1; j < wh; j++)
753 if (equations[j*(wh+1) + i])
754 rowxor(equations + j*(wh+1),
755 equations + rowsdone*(wh+1), wh+1);
758 * Mark this row and column as done.
760 rowsdone++;
761 colsdone = i+1;
764 * If we've done all the rows, terminate.
766 } while (rowsdone < wh);
769 * If we reach here, we have the ability to produce a solution.
770 * So we go through _all_ possible solutions (each
771 * corresponding to a set of arbitrary choices of those
772 * components not directly determined by an equation), and pick
773 * one requiring the smallest number of flips.
775 solution = snewn(wh, unsigned char);
776 shortest = snewn(wh, unsigned char);
777 memset(solution, 0, wh);
778 bestlen = wh + 1;
779 while (1) {
781 * Find a solution based on the current values of the
782 * undetermined variables.
784 for (j = rowsdone; j-- ;) {
785 int v;
788 * Find the leftmost set bit in this equation.
790 for (i = 0; i < wh; i++)
791 if (equations[j * (wh+1) + i])
792 break;
793 assert(i < wh); /* there must have been one! */
796 * Compute this variable using the rest.
798 v = equations[j * (wh+1) + wh];
799 for (k = i+1; k < wh; k++)
800 if (equations[j * (wh+1) + k])
801 v ^= solution[k];
803 solution[i] = v;
807 * Compare this solution to the current best one, and
808 * replace the best one if this one is shorter.
810 len = 0;
811 for (i = 0; i < wh; i++)
812 if (solution[i])
813 len++;
814 if (len < bestlen) {
815 bestlen = len;
816 memcpy(shortest, solution, wh);
820 * Now increment the binary number given by the
821 * undetermined variables: turn all 1s into 0s until we see
822 * a 0, at which point we turn it into a 1.
824 for (i = 0; i < nund; i++) {
825 solution[und[i]] = !solution[und[i]];
826 if (solution[und[i]])
827 break;
831 * If we didn't find a 0 at any point, we have wrapped
832 * round and are back at the start, i.e. we have enumerated
833 * all solutions.
835 if (i == nund)
836 break;
840 * We have a solution. Produce a move string encoding the
841 * solution.
843 ret = snewn(wh + 2, char);
844 ret[0] = 'S';
845 for (i = 0; i < wh; i++)
846 ret[i+1] = shortest[i] ? '1' : '0';
847 ret[wh+1] = '\0';
849 sfree(shortest);
850 sfree(solution);
851 sfree(equations);
852 sfree(und);
854 return ret;
857 static int game_can_format_as_text_now(const game_params *params)
859 return TRUE;
862 #define RIGHT 1
863 #define DOWN gw
865 static char *game_text_format(const game_state *state)
867 int w = state->w, h = state->h, wh = w*h, r, c, dx, dy;
868 int cw = 4, ch = 4, gw = w * cw + 2, gh = h * ch + 1, len = gw * gh;
869 char *board = snewn(len + 1, char);
871 memset(board, ' ', len - 1);
873 for (r = 0; r < h; ++r) {
874 for (c = 0; c < w; ++c) {
875 int cell = r*ch*gw + c*cw, center = cell+(ch/2)*DOWN + cw/2*RIGHT;
876 char flip = (state->grid[r*w + c] & 1) ? '#' : '.';
877 for (dy = -1 + (r == 0); dy <= 1 - (r == h - 1); ++dy)
878 for (dx = -1 + (c == 0); dx <= 1 - (c == w - 1); ++dx)
879 if (state->matrix->matrix[(r*w+c)*wh + ((r+dy)*w + c+dx)])
880 board[center + dy*DOWN + dx*RIGHT] = flip;
881 board[cell] = '+';
882 for (dx = 1; dx < cw; ++dx) board[cell+dx*RIGHT] = '-';
883 for (dy = 1; dy < ch; ++dy) board[cell+dy*DOWN] = '|';
885 board[r*ch*gw + gw - 2] = '+';
886 board[r*ch*gw + gw - 1] = '\n';
887 for (dy = 1; dy < ch; ++dy) {
888 board[r*ch*gw + gw - 2 + dy*DOWN] = '|';
889 board[r*ch*gw + gw - 1 + dy*DOWN] = '\n';
892 memset(board + len - gw, '-', gw - 2);
893 for (c = 0; c <= w; ++c) board[len - gw + cw*c] = '+';
894 board[len - 1] = '\n';
895 board[len] = '\0';
896 return board;
899 #undef RIGHT
900 #undef DOWN
902 struct game_ui {
903 int cx, cy, cdraw;
906 static game_ui *new_ui(const game_state *state)
908 game_ui *ui = snew(game_ui);
909 ui->cx = ui->cy = ui->cdraw = 0;
910 return ui;
913 static void free_ui(game_ui *ui)
915 sfree(ui);
918 static char *encode_ui(const game_ui *ui)
920 return NULL;
923 static void decode_ui(game_ui *ui, const char *encoding)
927 static void game_changed_state(game_ui *ui, const game_state *oldstate,
928 const game_state *newstate)
932 struct game_drawstate {
933 int w, h, started;
934 unsigned char *tiles;
935 int tilesize;
938 static char *interpret_move(const game_state *state, game_ui *ui,
939 const game_drawstate *ds,
940 int x, int y, int button)
942 int w = state->w, h = state->h, wh = w * h;
943 char buf[80], *nullret = NULL;
945 if (button == LEFT_BUTTON || IS_CURSOR_SELECT(button)) {
946 int tx, ty;
947 if (button == LEFT_BUTTON) {
948 tx = FROMCOORD(x), ty = FROMCOORD(y);
949 ui->cdraw = 0;
950 } else {
951 tx = ui->cx; ty = ui->cy;
952 ui->cdraw = 1;
954 nullret = "";
956 if (tx >= 0 && tx < w && ty >= 0 && ty < h) {
958 * It's just possible that a manually entered game ID
959 * will have at least one square do nothing whatsoever.
960 * If so, we avoid encoding a move at all.
962 int i = ty*w+tx, j, makemove = FALSE;
963 for (j = 0; j < wh; j++) {
964 if (state->matrix->matrix[i*wh+j])
965 makemove = TRUE;
967 if (makemove) {
968 sprintf(buf, "M%d,%d", tx, ty);
969 return dupstr(buf);
970 } else {
971 return NULL;
975 else if (IS_CURSOR_MOVE(button)) {
976 int dx = 0, dy = 0;
977 switch (button) {
978 case CURSOR_UP: dy = -1; break;
979 case CURSOR_DOWN: dy = 1; break;
980 case CURSOR_RIGHT: dx = 1; break;
981 case CURSOR_LEFT: dx = -1; break;
982 default: assert(!"shouldn't get here");
984 ui->cx += dx; ui->cy += dy;
985 ui->cx = min(max(ui->cx, 0), state->w - 1);
986 ui->cy = min(max(ui->cy, 0), state->h - 1);
987 ui->cdraw = 1;
988 nullret = "";
991 return nullret;
994 static game_state *execute_move(const game_state *from, const char *move)
996 int w = from->w, h = from->h, wh = w * h;
997 game_state *ret;
998 int x, y;
1000 if (move[0] == 'S' && strlen(move) == wh+1) {
1001 int i;
1003 ret = dup_game(from);
1004 ret->hints_active = TRUE;
1005 ret->cheated = TRUE;
1006 for (i = 0; i < wh; i++) {
1007 ret->grid[i] &= ~2;
1008 if (move[i+1] != '0')
1009 ret->grid[i] |= 2;
1011 return ret;
1012 } else if (move[0] == 'M' &&
1013 sscanf(move+1, "%d,%d", &x, &y) == 2 &&
1014 x >= 0 && x < w && y >= 0 && y < h) {
1015 int i, j, done;
1017 ret = dup_game(from);
1019 if (!ret->completed)
1020 ret->moves++;
1022 i = y * w + x;
1024 done = TRUE;
1025 for (j = 0; j < wh; j++) {
1026 ret->grid[j] ^= ret->matrix->matrix[i*wh+j];
1027 if (ret->grid[j] & 1)
1028 done = FALSE;
1030 ret->grid[i] ^= 2; /* toggle hint */
1031 if (done) {
1032 ret->completed = TRUE;
1033 ret->hints_active = FALSE;
1036 return ret;
1037 } else
1038 return NULL; /* can't parse move string */
1041 /* ----------------------------------------------------------------------
1042 * Drawing routines.
1045 static void game_compute_size(const game_params *params, int tilesize,
1046 int *x, int *y)
1048 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1049 struct { int tilesize; } ads, *ds = &ads;
1050 ads.tilesize = tilesize;
1052 *x = TILE_SIZE * params->w + 2 * BORDER;
1053 *y = TILE_SIZE * params->h + 2 * BORDER;
1056 static void game_set_size(drawing *dr, game_drawstate *ds,
1057 const game_params *params, int tilesize)
1059 ds->tilesize = tilesize;
1062 static float *game_colours(frontend *fe, int *ncolours)
1064 float *ret = snewn(3 * NCOLOURS, float);
1066 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1068 ret[COL_WRONG * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] / 3;
1069 ret[COL_WRONG * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] / 3;
1070 ret[COL_WRONG * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] / 3;
1072 ret[COL_RIGHT * 3 + 0] = 1.0F;
1073 ret[COL_RIGHT * 3 + 1] = 1.0F;
1074 ret[COL_RIGHT * 3 + 2] = 1.0F;
1076 ret[COL_GRID * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] / 1.5F;
1077 ret[COL_GRID * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] / 1.5F;
1078 ret[COL_GRID * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] / 1.5F;
1080 ret[COL_DIAG * 3 + 0] = ret[COL_GRID * 3 + 0];
1081 ret[COL_DIAG * 3 + 1] = ret[COL_GRID * 3 + 1];
1082 ret[COL_DIAG * 3 + 2] = ret[COL_GRID * 3 + 2];
1084 ret[COL_HINT * 3 + 0] = 1.0F;
1085 ret[COL_HINT * 3 + 1] = 0.0F;
1086 ret[COL_HINT * 3 + 2] = 0.0F;
1088 ret[COL_CURSOR * 3 + 0] = 0.8F;
1089 ret[COL_CURSOR * 3 + 1] = 0.0F;
1090 ret[COL_CURSOR * 3 + 2] = 0.0F;
1092 *ncolours = NCOLOURS;
1093 return ret;
1096 static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
1098 struct game_drawstate *ds = snew(struct game_drawstate);
1099 int i;
1101 ds->started = FALSE;
1102 ds->w = state->w;
1103 ds->h = state->h;
1104 ds->tiles = snewn(ds->w*ds->h, unsigned char);
1105 ds->tilesize = 0; /* haven't decided yet */
1106 for (i = 0; i < ds->w*ds->h; i++)
1107 ds->tiles[i] = -1;
1109 return ds;
1112 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1114 sfree(ds->tiles);
1115 sfree(ds);
1118 static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state,
1119 int x, int y, int tile, int anim, float animtime)
1121 int w = ds->w, h = ds->h, wh = w * h;
1122 int bx = x * TILE_SIZE + BORDER, by = y * TILE_SIZE + BORDER;
1123 int i, j, dcol = (tile & 4) ? COL_CURSOR : COL_DIAG;
1125 clip(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1);
1127 draw_rect(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1,
1128 anim ? COL_BACKGROUND : tile & 1 ? COL_WRONG : COL_RIGHT);
1129 if (anim) {
1131 * Draw a polygon indicating that the square is diagonally
1132 * flipping over.
1134 int coords[8], colour;
1136 coords[0] = bx + TILE_SIZE;
1137 coords[1] = by;
1138 coords[2] = bx + (int)((float)TILE_SIZE * animtime);
1139 coords[3] = by + (int)((float)TILE_SIZE * animtime);
1140 coords[4] = bx;
1141 coords[5] = by + TILE_SIZE;
1142 coords[6] = bx + TILE_SIZE - (int)((float)TILE_SIZE * animtime);
1143 coords[7] = by + TILE_SIZE - (int)((float)TILE_SIZE * animtime);
1145 colour = (tile & 1 ? COL_WRONG : COL_RIGHT);
1146 if (animtime < 0.5)
1147 colour = COL_WRONG + COL_RIGHT - colour;
1149 draw_polygon(dr, coords, 4, colour, COL_GRID);
1153 * Draw a little diagram in the tile which indicates which
1154 * surrounding tiles flip when this one is clicked.
1156 for (i = 0; i < h; i++)
1157 for (j = 0; j < w; j++)
1158 if (state->matrix->matrix[(y*w+x)*wh + i*w+j]) {
1159 int ox = j - x, oy = i - y;
1160 int td = TILE_SIZE / 16;
1161 int cx = (bx + TILE_SIZE/2) + (2 * ox - 1) * td;
1162 int cy = (by + TILE_SIZE/2) + (2 * oy - 1) * td;
1163 if (ox == 0 && oy == 0)
1164 draw_rect(dr, cx, cy, 2*td+1, 2*td+1, dcol);
1165 else {
1166 draw_line(dr, cx, cy, cx+2*td, cy, dcol);
1167 draw_line(dr, cx, cy+2*td, cx+2*td, cy+2*td, dcol);
1168 draw_line(dr, cx, cy, cx, cy+2*td, dcol);
1169 draw_line(dr, cx+2*td, cy, cx+2*td, cy+2*td, dcol);
1174 * Draw a hint rectangle if required.
1176 if (tile & 2) {
1177 int x1 = bx + TILE_SIZE / 20, x2 = bx + TILE_SIZE - TILE_SIZE / 20;
1178 int y1 = by + TILE_SIZE / 20, y2 = by + TILE_SIZE - TILE_SIZE / 20;
1179 int i = 3;
1180 while (i--) {
1181 draw_line(dr, x1, y1, x2, y1, COL_HINT);
1182 draw_line(dr, x1, y2, x2, y2, COL_HINT);
1183 draw_line(dr, x1, y1, x1, y2, COL_HINT);
1184 draw_line(dr, x2, y1, x2, y2, COL_HINT);
1185 x1++, y1++, x2--, y2--;
1189 unclip(dr);
1191 draw_update(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1);
1194 static void game_redraw(drawing *dr, game_drawstate *ds,
1195 const game_state *oldstate, const game_state *state,
1196 int dir, const game_ui *ui,
1197 float animtime, float flashtime)
1199 int w = ds->w, h = ds->h, wh = w * h;
1200 int i, flashframe;
1202 if (!ds->started) {
1203 draw_rect(dr, 0, 0, TILE_SIZE * w + 2 * BORDER,
1204 TILE_SIZE * h + 2 * BORDER, COL_BACKGROUND);
1207 * Draw the grid lines.
1209 for (i = 0; i <= w; i++)
1210 draw_line(dr, i * TILE_SIZE + BORDER, BORDER,
1211 i * TILE_SIZE + BORDER, h * TILE_SIZE + BORDER,
1212 COL_GRID);
1213 for (i = 0; i <= h; i++)
1214 draw_line(dr, BORDER, i * TILE_SIZE + BORDER,
1215 w * TILE_SIZE + BORDER, i * TILE_SIZE + BORDER,
1216 COL_GRID);
1218 draw_update(dr, 0, 0, TILE_SIZE * w + 2 * BORDER,
1219 TILE_SIZE * h + 2 * BORDER);
1221 ds->started = TRUE;
1224 if (flashtime)
1225 flashframe = (int)(flashtime / FLASH_FRAME);
1226 else
1227 flashframe = -1;
1229 animtime /= ANIM_TIME; /* scale it so it goes from 0 to 1 */
1231 for (i = 0; i < wh; i++) {
1232 int x = i % w, y = i / w;
1233 int fx, fy, fd;
1234 int v = state->grid[i];
1235 int vv;
1237 if (flashframe >= 0) {
1238 fx = (w+1)/2 - min(x+1, w-x);
1239 fy = (h+1)/2 - min(y+1, h-y);
1240 fd = max(fx, fy);
1241 if (fd == flashframe)
1242 v |= 1;
1243 else if (fd == flashframe - 1)
1244 v &= ~1;
1247 if (!state->hints_active)
1248 v &= ~2;
1249 if (ui->cdraw && ui->cx == x && ui->cy == y)
1250 v |= 4;
1252 if (oldstate && ((state->grid[i] ^ oldstate->grid[i]) &~ 2))
1253 vv = 255; /* means `animated' */
1254 else
1255 vv = v;
1257 if (ds->tiles[i] == 255 || vv == 255 || ds->tiles[i] != vv) {
1258 draw_tile(dr, ds, state, x, y, v, vv == 255, animtime);
1259 ds->tiles[i] = vv;
1264 char buf[256];
1266 sprintf(buf, "%sMoves: %d",
1267 (state->completed ?
1268 (state->cheated ? "Auto-solved. " : "COMPLETED! ") :
1269 (state->cheated ? "Auto-solver used. " : "")),
1270 state->moves);
1272 status_bar(dr, buf);
1276 static float game_anim_length(const game_state *oldstate,
1277 const game_state *newstate, int dir, game_ui *ui)
1279 return ANIM_TIME;
1282 static float game_flash_length(const game_state *oldstate,
1283 const game_state *newstate, int dir, game_ui *ui)
1285 if (!oldstate->completed && newstate->completed)
1286 return FLASH_FRAME * (max((newstate->w+1)/2, (newstate->h+1)/2)+1);
1288 return 0.0F;
1291 static int game_status(const game_state *state)
1293 return state->completed ? +1 : 0;
1296 static int game_timing_state(const game_state *state, game_ui *ui)
1298 return TRUE;
1301 static void game_print_size(const game_params *params, float *x, float *y)
1305 static void game_print(drawing *dr, const game_state *state, int tilesize)
1309 #ifdef COMBINED
1310 #define thegame flip
1311 #endif
1313 const struct game thegame = {
1314 "Flip", "games.flip", "flip",
1315 default_params,
1316 game_fetch_preset, NULL,
1317 decode_params,
1318 encode_params,
1319 free_params,
1320 dup_params,
1321 TRUE, game_configure, custom_params,
1322 validate_params,
1323 new_game_desc,
1324 validate_desc,
1325 new_game,
1326 dup_game,
1327 free_game,
1328 TRUE, solve_game,
1329 TRUE, game_can_format_as_text_now, game_text_format,
1330 new_ui,
1331 free_ui,
1332 encode_ui,
1333 decode_ui,
1334 game_changed_state,
1335 interpret_move,
1336 execute_move,
1337 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1338 game_colours,
1339 game_new_drawstate,
1340 game_free_drawstate,
1341 game_redraw,
1342 game_anim_length,
1343 game_flash_length,
1344 game_status,
1345 FALSE, FALSE, game_print_size, game_print,
1346 TRUE, /* wants_statusbar */
1347 FALSE, game_timing_state,
1348 0, /* flags */