1.0.23.10: allocate code objects using allocation CODE_PAGE_FLAG
[sbcl/tcr.git] / src / runtime / gencgc.c
blob49b7a1655f517206f45987e1c2d1aefc08b6deeb
1 /*
2 * GENerational Conservative Garbage Collector for SBCL
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <signal.h>
30 #include <errno.h>
31 #include <string.h>
32 #include "sbcl.h"
33 #include "runtime.h"
34 #include "os.h"
35 #include "interr.h"
36 #include "globals.h"
37 #include "interrupt.h"
38 #include "validate.h"
39 #include "lispregs.h"
40 #include "arch.h"
41 #include "gc.h"
42 #include "gc-internal.h"
43 #include "thread.h"
44 #include "alloc.h"
45 #include "genesis/vector.h"
46 #include "genesis/weak-pointer.h"
47 #include "genesis/fdefn.h"
48 #include "genesis/simple-fun.h"
49 #include "save.h"
50 #include "genesis/hash-table.h"
51 #include "genesis/instance.h"
52 #include "genesis/layout.h"
53 #include "gencgc.h"
54 #if defined(LUTEX_WIDETAG)
55 #include "pthread-lutex.h"
56 #endif
58 /* forward declarations */
59 page_index_t gc_find_freeish_pages(long *restart_page_ptr, long nbytes,
60 int page_type_flag);
64 * GC parameters
67 /* Generations 0-5 are normal collected generations, 6 is only used as
68 * scratch space by the collector, and should never get collected.
70 enum {
71 HIGHEST_NORMAL_GENERATION = 5,
72 PSEUDO_STATIC_GENERATION,
73 SCRATCH_GENERATION,
74 NUM_GENERATIONS
77 /* Should we use page protection to help avoid the scavenging of pages
78 * that don't have pointers to younger generations? */
79 boolean enable_page_protection = 1;
81 /* the minimum size (in bytes) for a large object*/
82 long large_object_size = 4 * PAGE_BYTES;
86 * debugging
89 /* the verbosity level. All non-error messages are disabled at level 0;
90 * and only a few rare messages are printed at level 1. */
91 #ifdef QSHOW
92 boolean gencgc_verbose = 1;
93 #else
94 boolean gencgc_verbose = 0;
95 #endif
97 /* FIXME: At some point enable the various error-checking things below
98 * and see what they say. */
100 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
101 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
102 * check. */
103 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
105 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
106 boolean pre_verify_gen_0 = 0;
108 /* Should we check for bad pointers after gc_free_heap is called
109 * from Lisp PURIFY? */
110 boolean verify_after_free_heap = 0;
112 /* Should we print a note when code objects are found in the dynamic space
113 * during a heap verify? */
114 boolean verify_dynamic_code_check = 0;
116 /* Should we check code objects for fixup errors after they are transported? */
117 boolean check_code_fixups = 0;
119 /* Should we check that newly allocated regions are zero filled? */
120 boolean gencgc_zero_check = 0;
122 /* Should we check that the free space is zero filled? */
123 boolean gencgc_enable_verify_zero_fill = 0;
125 /* Should we check that free pages are zero filled during gc_free_heap
126 * called after Lisp PURIFY? */
127 boolean gencgc_zero_check_during_free_heap = 0;
129 /* When loading a core, don't do a full scan of the memory for the
130 * memory region boundaries. (Set to true by coreparse.c if the core
131 * contained a pagetable entry).
133 boolean gencgc_partial_pickup = 0;
135 /* If defined, free pages are read-protected to ensure that nothing
136 * accesses them.
139 /* #define READ_PROTECT_FREE_PAGES */
143 * GC structures and variables
146 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
147 unsigned long bytes_allocated = 0;
148 unsigned long auto_gc_trigger = 0;
150 /* the source and destination generations. These are set before a GC starts
151 * scavenging. */
152 generation_index_t from_space;
153 generation_index_t new_space;
155 /* Set to 1 when in GC */
156 boolean gc_active_p = 0;
158 /* should the GC be conservative on stack. If false (only right before
159 * saving a core), don't scan the stack / mark pages dont_move. */
160 static boolean conservative_stack = 1;
162 /* An array of page structures is allocated on gc initialization.
163 * This helps quickly map between an address its page structure.
164 * page_table_pages is set from the size of the dynamic space. */
165 page_index_t page_table_pages;
166 struct page *page_table;
168 static inline boolean page_allocated_p(page_index_t page) {
169 return (page_table[page].allocated != FREE_PAGE_FLAG);
172 static inline boolean page_no_region_p(page_index_t page) {
173 return !(page_table[page].allocated & OPEN_REGION_PAGE_FLAG);
176 static inline boolean page_allocated_no_region_p(page_index_t page) {
177 return ((page_table[page].allocated & (UNBOXED_PAGE_FLAG | BOXED_PAGE_FLAG))
178 && page_no_region_p(page));
181 static inline boolean page_free_p(page_index_t page) {
182 return (page_table[page].allocated == FREE_PAGE_FLAG);
185 static inline boolean page_boxed_p(page_index_t page) {
186 return (page_table[page].allocated & BOXED_PAGE_FLAG);
189 static inline boolean code_page_p(page_index_t page) {
190 return (page_table[page].allocated & CODE_PAGE_FLAG);
193 static inline boolean page_boxed_no_region_p(page_index_t page) {
194 return page_boxed_p(page) && page_no_region_p(page);
197 static inline boolean page_unboxed_p(page_index_t page) {
198 /* Both flags set == boxed code page */
199 return ((page_table[page].allocated & UNBOXED_PAGE_FLAG)
200 && !page_boxed_p(page));
203 static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
204 return (page_boxed_no_region_p(page)
205 && (page_table[page].bytes_used != 0)
206 && !page_table[page].dont_move
207 && (page_table[page].gen == generation));
210 /* To map addresses to page structures the address of the first page
211 * is needed. */
212 static void *heap_base = NULL;
214 /* Calculate the start address for the given page number. */
215 inline void *
216 page_address(page_index_t page_num)
218 return (heap_base + (page_num * PAGE_BYTES));
221 /* Calculate the address where the allocation region associated with
222 * the page starts. */
223 static inline void *
224 page_region_start(page_index_t page_index)
226 return page_address(page_index)-page_table[page_index].region_start_offset;
229 /* Find the page index within the page_table for the given
230 * address. Return -1 on failure. */
231 inline page_index_t
232 find_page_index(void *addr)
234 if (addr >= heap_base) {
235 page_index_t index = ((pointer_sized_uint_t)addr -
236 (pointer_sized_uint_t)heap_base) / PAGE_BYTES;
237 if (index < page_table_pages)
238 return (index);
240 return (-1);
243 static size_t
244 npage_bytes(long npages)
246 gc_assert(npages>=0);
247 return ((unsigned long)npages)*PAGE_BYTES;
250 /* Check that X is a higher address than Y and return offset from Y to
251 * X in bytes. */
252 static inline
253 size_t void_diff(void *x, void *y)
255 gc_assert(x >= y);
256 return (pointer_sized_uint_t)x - (pointer_sized_uint_t)y;
259 /* a structure to hold the state of a generation */
260 struct generation {
262 /* the first page that gc_alloc() checks on its next call */
263 page_index_t alloc_start_page;
265 /* the first page that gc_alloc_unboxed() checks on its next call */
266 page_index_t alloc_unboxed_start_page;
268 /* the first page that gc_alloc_large (boxed) considers on its next
269 * call. (Although it always allocates after the boxed_region.) */
270 page_index_t alloc_large_start_page;
272 /* the first page that gc_alloc_large (unboxed) considers on its
273 * next call. (Although it always allocates after the
274 * current_unboxed_region.) */
275 page_index_t alloc_large_unboxed_start_page;
277 /* the bytes allocated to this generation */
278 unsigned long bytes_allocated;
280 /* the number of bytes at which to trigger a GC */
281 unsigned long gc_trigger;
283 /* to calculate a new level for gc_trigger */
284 unsigned long bytes_consed_between_gc;
286 /* the number of GCs since the last raise */
287 int num_gc;
289 /* the average age after which a GC will raise objects to the
290 * next generation */
291 int trigger_age;
293 /* the cumulative sum of the bytes allocated to this generation. It is
294 * cleared after a GC on this generations, and update before new
295 * objects are added from a GC of a younger generation. Dividing by
296 * the bytes_allocated will give the average age of the memory in
297 * this generation since its last GC. */
298 unsigned long cum_sum_bytes_allocated;
300 /* a minimum average memory age before a GC will occur helps
301 * prevent a GC when a large number of new live objects have been
302 * added, in which case a GC could be a waste of time */
303 double min_av_mem_age;
305 /* A linked list of lutex structures in this generation, used for
306 * implementing lutex finalization. */
307 #ifdef LUTEX_WIDETAG
308 struct lutex *lutexes;
309 #else
310 void *lutexes;
311 #endif
314 /* an array of generation structures. There needs to be one more
315 * generation structure than actual generations as the oldest
316 * generation is temporarily raised then lowered. */
317 struct generation generations[NUM_GENERATIONS];
319 /* the oldest generation that is will currently be GCed by default.
320 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
322 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
324 * Setting this to 0 effectively disables the generational nature of
325 * the GC. In some applications generational GC may not be useful
326 * because there are no long-lived objects.
328 * An intermediate value could be handy after moving long-lived data
329 * into an older generation so an unnecessary GC of this long-lived
330 * data can be avoided. */
331 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
333 /* The maximum free page in the heap is maintained and used to update
334 * ALLOCATION_POINTER which is used by the room function to limit its
335 * search of the heap. XX Gencgc obviously needs to be better
336 * integrated with the Lisp code. */
337 page_index_t last_free_page;
339 #ifdef LISP_FEATURE_SB_THREAD
340 /* This lock is to prevent multiple threads from simultaneously
341 * allocating new regions which overlap each other. Note that the
342 * majority of GC is single-threaded, but alloc() may be called from
343 * >1 thread at a time and must be thread-safe. This lock must be
344 * seized before all accesses to generations[] or to parts of
345 * page_table[] that other threads may want to see */
346 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
347 /* This lock is used to protect non-thread-local allocation. */
348 static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
349 #endif
353 * miscellaneous heap functions
356 /* Count the number of pages which are write-protected within the
357 * given generation. */
358 static long
359 count_write_protect_generation_pages(generation_index_t generation)
361 page_index_t i;
362 unsigned long count = 0;
364 for (i = 0; i < last_free_page; i++)
365 if (page_allocated_p(i)
366 && (page_table[i].gen == generation)
367 && (page_table[i].write_protected == 1))
368 count++;
369 return count;
372 /* Count the number of pages within the given generation. */
373 static long
374 count_generation_pages(generation_index_t generation)
376 page_index_t i;
377 long count = 0;
379 for (i = 0; i < last_free_page; i++)
380 if (page_allocated_p(i)
381 && (page_table[i].gen == generation))
382 count++;
383 return count;
386 #ifdef QSHOW
387 static long
388 count_dont_move_pages(void)
390 page_index_t i;
391 long count = 0;
392 for (i = 0; i < last_free_page; i++) {
393 if (page_allocated_p(i)
394 && (page_table[i].dont_move != 0)) {
395 ++count;
398 return count;
400 #endif /* QSHOW */
402 /* Work through the pages and add up the number of bytes used for the
403 * given generation. */
404 static unsigned long
405 count_generation_bytes_allocated (generation_index_t gen)
407 page_index_t i;
408 unsigned long result = 0;
409 for (i = 0; i < last_free_page; i++) {
410 if (page_allocated_p(i)
411 && (page_table[i].gen == gen))
412 result += page_table[i].bytes_used;
414 return result;
417 /* Return the average age of the memory in a generation. */
418 static double
419 gen_av_mem_age(generation_index_t gen)
421 if (generations[gen].bytes_allocated == 0)
422 return 0.0;
424 return
425 ((double)generations[gen].cum_sum_bytes_allocated)
426 / ((double)generations[gen].bytes_allocated);
429 /* The verbose argument controls how much to print: 0 for normal
430 * level of detail; 1 for debugging. */
431 static void
432 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
434 generation_index_t i, gens;
436 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
437 #define FPU_STATE_SIZE 27
438 int fpu_state[FPU_STATE_SIZE];
439 #elif defined(LISP_FEATURE_PPC)
440 #define FPU_STATE_SIZE 32
441 long long fpu_state[FPU_STATE_SIZE];
442 #endif
444 /* This code uses the FP instructions which may be set up for Lisp
445 * so they need to be saved and reset for C. */
446 fpu_save(fpu_state);
448 /* highest generation to print */
449 if (verbose)
450 gens = SCRATCH_GENERATION;
451 else
452 gens = PSEUDO_STATIC_GENERATION;
454 /* Print the heap stats. */
455 fprintf(stderr,
456 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
458 for (i = 0; i < gens; i++) {
459 page_index_t j;
460 long boxed_cnt = 0;
461 long unboxed_cnt = 0;
462 long large_boxed_cnt = 0;
463 long large_unboxed_cnt = 0;
464 long pinned_cnt=0;
466 for (j = 0; j < last_free_page; j++)
467 if (page_table[j].gen == i) {
469 /* Count the number of boxed pages within the given
470 * generation. */
471 if (page_boxed_p(j)) {
472 if (page_table[j].large_object)
473 large_boxed_cnt++;
474 else
475 boxed_cnt++;
477 if(page_table[j].dont_move) pinned_cnt++;
478 /* Count the number of unboxed pages within the given
479 * generation. */
480 if (page_unboxed_p(j)) {
481 if (page_table[j].large_object)
482 large_unboxed_cnt++;
483 else
484 unboxed_cnt++;
488 gc_assert(generations[i].bytes_allocated
489 == count_generation_bytes_allocated(i));
490 fprintf(stderr,
491 " %1d: %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %8ld %5ld %8ld %4ld %3d %7.4f\n",
493 generations[i].alloc_start_page,
494 generations[i].alloc_unboxed_start_page,
495 generations[i].alloc_large_start_page,
496 generations[i].alloc_large_unboxed_start_page,
497 boxed_cnt,
498 unboxed_cnt,
499 large_boxed_cnt,
500 large_unboxed_cnt,
501 pinned_cnt,
502 generations[i].bytes_allocated,
503 (npage_bytes(count_generation_pages(i))
504 - generations[i].bytes_allocated),
505 generations[i].gc_trigger,
506 count_write_protect_generation_pages(i),
507 generations[i].num_gc,
508 gen_av_mem_age(i));
510 fprintf(stderr," Total bytes allocated=%ld\n", bytes_allocated);
512 fpu_restore(fpu_state);
516 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
517 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
518 #endif
520 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
521 * if zeroing it ourselves, i.e. in practice give the memory back to the
522 * OS. Generally done after a large GC.
524 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
525 int i;
526 void *addr = page_address(start), *new_addr;
527 size_t length = npage_bytes(1+end-start);
529 if (start > end)
530 return;
532 os_invalidate(addr, length);
533 new_addr = os_validate(addr, length);
534 if (new_addr == NULL || new_addr != addr) {
535 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
536 start, new_addr);
539 for (i = start; i <= end; i++) {
540 page_table[i].need_to_zero = 0;
544 /* Zero the pages from START to END (inclusive). Generally done just after
545 * a new region has been allocated.
547 static void
548 zero_pages(page_index_t start, page_index_t end) {
549 if (start > end)
550 return;
552 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
553 fast_bzero(page_address(start), npage_bytes(1+end-start));
554 #else
555 bzero(page_address(start), npage_bytes(1+end-start));
556 #endif
560 /* Zero the pages from START to END (inclusive), except for those
561 * pages that are known to already zeroed. Mark all pages in the
562 * ranges as non-zeroed.
564 static void
565 zero_dirty_pages(page_index_t start, page_index_t end) {
566 page_index_t i;
568 for (i = start; i <= end; i++) {
569 if (page_table[i].need_to_zero == 1) {
570 zero_pages(start, end);
571 break;
575 for (i = start; i <= end; i++) {
576 page_table[i].need_to_zero = 1;
582 * To support quick and inline allocation, regions of memory can be
583 * allocated and then allocated from with just a free pointer and a
584 * check against an end address.
586 * Since objects can be allocated to spaces with different properties
587 * e.g. boxed/unboxed, generation, ages; there may need to be many
588 * allocation regions.
590 * Each allocation region may start within a partly used page. Many
591 * features of memory use are noted on a page wise basis, e.g. the
592 * generation; so if a region starts within an existing allocated page
593 * it must be consistent with this page.
595 * During the scavenging of the newspace, objects will be transported
596 * into an allocation region, and pointers updated to point to this
597 * allocation region. It is possible that these pointers will be
598 * scavenged again before the allocation region is closed, e.g. due to
599 * trans_list which jumps all over the place to cleanup the list. It
600 * is important to be able to determine properties of all objects
601 * pointed to when scavenging, e.g to detect pointers to the oldspace.
602 * Thus it's important that the allocation regions have the correct
603 * properties set when allocated, and not just set when closed. The
604 * region allocation routines return regions with the specified
605 * properties, and grab all the pages, setting their properties
606 * appropriately, except that the amount used is not known.
608 * These regions are used to support quicker allocation using just a
609 * free pointer. The actual space used by the region is not reflected
610 * in the pages tables until it is closed. It can't be scavenged until
611 * closed.
613 * When finished with the region it should be closed, which will
614 * update the page tables for the actual space used returning unused
615 * space. Further it may be noted in the new regions which is
616 * necessary when scavenging the newspace.
618 * Large objects may be allocated directly without an allocation
619 * region, the page tables are updated immediately.
621 * Unboxed objects don't contain pointers to other objects and so
622 * don't need scavenging. Further they can't contain pointers to
623 * younger generations so WP is not needed. By allocating pages to
624 * unboxed objects the whole page never needs scavenging or
625 * write-protecting. */
627 /* We are only using two regions at present. Both are for the current
628 * newspace generation. */
629 struct alloc_region boxed_region;
630 struct alloc_region unboxed_region;
632 /* The generation currently being allocated to. */
633 static generation_index_t gc_alloc_generation;
635 static inline page_index_t
636 generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
638 if (large) {
639 if (UNBOXED_PAGE_FLAG == page_type_flag) {
640 return generations[generation].alloc_large_unboxed_start_page;
641 } else if (BOXED_PAGE_FLAG & page_type_flag) {
642 /* Both code and data. */
643 return generations[generation].alloc_large_start_page;
644 } else {
645 lose("bad page type flag: %d", page_type_flag);
647 } else {
648 if (UNBOXED_PAGE_FLAG == page_type_flag) {
649 return generations[generation].alloc_unboxed_start_page;
650 } else if (BOXED_PAGE_FLAG & page_type_flag) {
651 /* Both code and data. */
652 return generations[generation].alloc_start_page;
653 } else {
654 lose("bad page_type_flag: %d", page_type_flag);
659 static inline void
660 set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
661 page_index_t page)
663 if (large) {
664 if (UNBOXED_PAGE_FLAG == page_type_flag) {
665 generations[generation].alloc_large_unboxed_start_page = page;
666 } else if (BOXED_PAGE_FLAG & page_type_flag) {
667 /* Both code and data. */
668 generations[generation].alloc_large_start_page = page;
669 } else {
670 lose("bad page type flag: %d", page_type_flag);
672 } else {
673 if (UNBOXED_PAGE_FLAG == page_type_flag) {
674 generations[generation].alloc_unboxed_start_page = page;
675 } else if (BOXED_PAGE_FLAG & page_type_flag) {
676 /* Both code and data. */
677 generations[generation].alloc_start_page = page;
678 } else {
679 lose("bad page type flag: %d", page_type_flag);
684 /* Find a new region with room for at least the given number of bytes.
686 * It starts looking at the current generation's alloc_start_page. So
687 * may pick up from the previous region if there is enough space. This
688 * keeps the allocation contiguous when scavenging the newspace.
690 * The alloc_region should have been closed by a call to
691 * gc_alloc_update_page_tables(), and will thus be in an empty state.
693 * To assist the scavenging functions write-protected pages are not
694 * used. Free pages should not be write-protected.
696 * It is critical to the conservative GC that the start of regions be
697 * known. To help achieve this only small regions are allocated at a
698 * time.
700 * During scavenging, pointers may be found to within the current
701 * region and the page generation must be set so that pointers to the
702 * from space can be recognized. Therefore the generation of pages in
703 * the region are set to gc_alloc_generation. To prevent another
704 * allocation call using the same pages, all the pages in the region
705 * are allocated, although they will initially be empty.
707 static void
708 gc_alloc_new_region(long nbytes, int page_type_flag, struct alloc_region *alloc_region)
710 page_index_t first_page;
711 page_index_t last_page;
712 unsigned long bytes_found;
713 page_index_t i;
714 int ret;
717 FSHOW((stderr,
718 "/alloc_new_region for %d bytes from gen %d\n",
719 nbytes, gc_alloc_generation));
722 /* Check that the region is in a reset state. */
723 gc_assert((alloc_region->first_page == 0)
724 && (alloc_region->last_page == -1)
725 && (alloc_region->free_pointer == alloc_region->end_addr));
726 ret = thread_mutex_lock(&free_pages_lock);
727 gc_assert(ret == 0);
728 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
729 last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
730 bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
731 + npage_bytes(last_page-first_page);
733 /* Set up the alloc_region. */
734 alloc_region->first_page = first_page;
735 alloc_region->last_page = last_page;
736 alloc_region->start_addr = page_table[first_page].bytes_used
737 + page_address(first_page);
738 alloc_region->free_pointer = alloc_region->start_addr;
739 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
741 /* Set up the pages. */
743 /* The first page may have already been in use. */
744 if (page_table[first_page].bytes_used == 0) {
745 page_table[first_page].allocated = page_type_flag;
746 page_table[first_page].gen = gc_alloc_generation;
747 page_table[first_page].large_object = 0;
748 page_table[first_page].region_start_offset = 0;
751 gc_assert(page_table[first_page].allocated == page_type_flag);
752 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
754 gc_assert(page_table[first_page].gen == gc_alloc_generation);
755 gc_assert(page_table[first_page].large_object == 0);
757 for (i = first_page+1; i <= last_page; i++) {
758 page_table[i].allocated = page_type_flag;
759 page_table[i].gen = gc_alloc_generation;
760 page_table[i].large_object = 0;
761 /* This may not be necessary for unboxed regions (think it was
762 * broken before!) */
763 page_table[i].region_start_offset =
764 void_diff(page_address(i),alloc_region->start_addr);
765 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
767 /* Bump up last_free_page. */
768 if (last_page+1 > last_free_page) {
769 last_free_page = last_page+1;
770 /* do we only want to call this on special occasions? like for
771 * boxed_region? */
772 set_alloc_pointer((lispobj)page_address(last_free_page));
774 ret = thread_mutex_unlock(&free_pages_lock);
775 gc_assert(ret == 0);
777 #ifdef READ_PROTECT_FREE_PAGES
778 os_protect(page_address(first_page),
779 npage_bytes(1+last_page-first_page),
780 OS_VM_PROT_ALL);
781 #endif
783 /* If the first page was only partial, don't check whether it's
784 * zeroed (it won't be) and don't zero it (since the parts that
785 * we're interested in are guaranteed to be zeroed).
787 if (page_table[first_page].bytes_used) {
788 first_page++;
791 zero_dirty_pages(first_page, last_page);
793 /* we can do this after releasing free_pages_lock */
794 if (gencgc_zero_check) {
795 long *p;
796 for (p = (long *)alloc_region->start_addr;
797 p < (long *)alloc_region->end_addr; p++) {
798 if (*p != 0) {
799 /* KLUDGE: It would be nice to use %lx and explicit casts
800 * (long) in code like this, so that it is less likely to
801 * break randomly when running on a machine with different
802 * word sizes. -- WHN 19991129 */
803 lose("The new region at %x is not zero (start=%p, end=%p).\n",
804 p, alloc_region->start_addr, alloc_region->end_addr);
810 /* If the record_new_objects flag is 2 then all new regions created
811 * are recorded.
813 * If it's 1 then then it is only recorded if the first page of the
814 * current region is <= new_areas_ignore_page. This helps avoid
815 * unnecessary recording when doing full scavenge pass.
817 * The new_object structure holds the page, byte offset, and size of
818 * new regions of objects. Each new area is placed in the array of
819 * these structures pointer to by new_areas. new_areas_index holds the
820 * offset into new_areas.
822 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
823 * later code must detect this and handle it, probably by doing a full
824 * scavenge of a generation. */
825 #define NUM_NEW_AREAS 512
826 static int record_new_objects = 0;
827 static page_index_t new_areas_ignore_page;
828 struct new_area {
829 page_index_t page;
830 size_t offset;
831 size_t size;
833 static struct new_area (*new_areas)[];
834 static long new_areas_index;
835 long max_new_areas;
837 /* Add a new area to new_areas. */
838 static void
839 add_new_area(page_index_t first_page, size_t offset, size_t size)
841 unsigned long new_area_start,c;
842 long i;
844 /* Ignore if full. */
845 if (new_areas_index >= NUM_NEW_AREAS)
846 return;
848 switch (record_new_objects) {
849 case 0:
850 return;
851 case 1:
852 if (first_page > new_areas_ignore_page)
853 return;
854 break;
855 case 2:
856 break;
857 default:
858 gc_abort();
861 new_area_start = npage_bytes(first_page) + offset;
863 /* Search backwards for a prior area that this follows from. If
864 found this will save adding a new area. */
865 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
866 unsigned long area_end =
867 npage_bytes((*new_areas)[i].page)
868 + (*new_areas)[i].offset
869 + (*new_areas)[i].size;
870 /*FSHOW((stderr,
871 "/add_new_area S1 %d %d %d %d\n",
872 i, c, new_area_start, area_end));*/
873 if (new_area_start == area_end) {
874 /*FSHOW((stderr,
875 "/adding to [%d] %d %d %d with %d %d %d:\n",
877 (*new_areas)[i].page,
878 (*new_areas)[i].offset,
879 (*new_areas)[i].size,
880 first_page,
881 offset,
882 size);*/
883 (*new_areas)[i].size += size;
884 return;
888 (*new_areas)[new_areas_index].page = first_page;
889 (*new_areas)[new_areas_index].offset = offset;
890 (*new_areas)[new_areas_index].size = size;
891 /*FSHOW((stderr,
892 "/new_area %d page %d offset %d size %d\n",
893 new_areas_index, first_page, offset, size));*/
894 new_areas_index++;
896 /* Note the max new_areas used. */
897 if (new_areas_index > max_new_areas)
898 max_new_areas = new_areas_index;
901 /* Update the tables for the alloc_region. The region may be added to
902 * the new_areas.
904 * When done the alloc_region is set up so that the next quick alloc
905 * will fail safely and thus a new region will be allocated. Further
906 * it is safe to try to re-update the page table of this reset
907 * alloc_region. */
908 void
909 gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
911 int more;
912 page_index_t first_page;
913 page_index_t next_page;
914 unsigned long bytes_used;
915 unsigned long orig_first_page_bytes_used;
916 unsigned long region_size;
917 unsigned long byte_cnt;
918 int ret;
921 first_page = alloc_region->first_page;
923 /* Catch an unused alloc_region. */
924 if ((first_page == 0) && (alloc_region->last_page == -1))
925 return;
927 next_page = first_page+1;
929 ret = thread_mutex_lock(&free_pages_lock);
930 gc_assert(ret == 0);
931 if (alloc_region->free_pointer != alloc_region->start_addr) {
932 /* some bytes were allocated in the region */
933 orig_first_page_bytes_used = page_table[first_page].bytes_used;
935 gc_assert(alloc_region->start_addr ==
936 (page_address(first_page)
937 + page_table[first_page].bytes_used));
939 /* All the pages used need to be updated */
941 /* Update the first page. */
943 /* If the page was free then set up the gen, and
944 * region_start_offset. */
945 if (page_table[first_page].bytes_used == 0)
946 gc_assert(page_table[first_page].region_start_offset == 0);
947 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
949 gc_assert(page_table[first_page].allocated & page_type_flag);
950 gc_assert(page_table[first_page].gen == gc_alloc_generation);
951 gc_assert(page_table[first_page].large_object == 0);
953 byte_cnt = 0;
955 /* Calculate the number of bytes used in this page. This is not
956 * always the number of new bytes, unless it was free. */
957 more = 0;
958 if ((bytes_used = void_diff(alloc_region->free_pointer,
959 page_address(first_page)))
960 >PAGE_BYTES) {
961 bytes_used = PAGE_BYTES;
962 more = 1;
964 page_table[first_page].bytes_used = bytes_used;
965 byte_cnt += bytes_used;
968 /* All the rest of the pages should be free. We need to set
969 * their region_start_offset pointer to the start of the
970 * region, and set the bytes_used. */
971 while (more) {
972 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
973 gc_assert(page_table[next_page].allocated & page_type_flag);
974 gc_assert(page_table[next_page].bytes_used == 0);
975 gc_assert(page_table[next_page].gen == gc_alloc_generation);
976 gc_assert(page_table[next_page].large_object == 0);
978 gc_assert(page_table[next_page].region_start_offset ==
979 void_diff(page_address(next_page),
980 alloc_region->start_addr));
982 /* Calculate the number of bytes used in this page. */
983 more = 0;
984 if ((bytes_used = void_diff(alloc_region->free_pointer,
985 page_address(next_page)))>PAGE_BYTES) {
986 bytes_used = PAGE_BYTES;
987 more = 1;
989 page_table[next_page].bytes_used = bytes_used;
990 byte_cnt += bytes_used;
992 next_page++;
995 region_size = void_diff(alloc_region->free_pointer,
996 alloc_region->start_addr);
997 bytes_allocated += region_size;
998 generations[gc_alloc_generation].bytes_allocated += region_size;
1000 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
1002 /* Set the generations alloc restart page to the last page of
1003 * the region. */
1004 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
1006 /* Add the region to the new_areas if requested. */
1007 if (BOXED_PAGE_FLAG & page_type_flag)
1008 add_new_area(first_page,orig_first_page_bytes_used, region_size);
1011 FSHOW((stderr,
1012 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
1013 region_size,
1014 gc_alloc_generation));
1016 } else {
1017 /* There are no bytes allocated. Unallocate the first_page if
1018 * there are 0 bytes_used. */
1019 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1020 if (page_table[first_page].bytes_used == 0)
1021 page_table[first_page].allocated = FREE_PAGE_FLAG;
1024 /* Unallocate any unused pages. */
1025 while (next_page <= alloc_region->last_page) {
1026 gc_assert(page_table[next_page].bytes_used == 0);
1027 page_table[next_page].allocated = FREE_PAGE_FLAG;
1028 next_page++;
1030 ret = thread_mutex_unlock(&free_pages_lock);
1031 gc_assert(ret == 0);
1033 /* alloc_region is per-thread, we're ok to do this unlocked */
1034 gc_set_region_empty(alloc_region);
1037 static inline void *gc_quick_alloc(long nbytes);
1039 /* Allocate a possibly large object. */
1040 void *
1041 gc_alloc_large(long nbytes, int page_type_flag, struct alloc_region *alloc_region)
1043 page_index_t first_page;
1044 page_index_t last_page;
1045 int orig_first_page_bytes_used;
1046 long byte_cnt;
1047 int more;
1048 long bytes_used;
1049 page_index_t next_page;
1050 int ret;
1052 ret = thread_mutex_lock(&free_pages_lock);
1053 gc_assert(ret == 0);
1055 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
1056 if (first_page <= alloc_region->last_page) {
1057 first_page = alloc_region->last_page+1;
1060 last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
1062 gc_assert(first_page > alloc_region->last_page);
1064 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
1066 /* Set up the pages. */
1067 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1069 /* If the first page was free then set up the gen, and
1070 * region_start_offset. */
1071 if (page_table[first_page].bytes_used == 0) {
1072 page_table[first_page].allocated = page_type_flag;
1073 page_table[first_page].gen = gc_alloc_generation;
1074 page_table[first_page].region_start_offset = 0;
1075 page_table[first_page].large_object = 1;
1078 gc_assert(page_table[first_page].allocated == page_type_flag);
1079 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1080 gc_assert(page_table[first_page].large_object == 1);
1082 byte_cnt = 0;
1084 /* Calc. the number of bytes used in this page. This is not
1085 * always the number of new bytes, unless it was free. */
1086 more = 0;
1087 if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
1088 bytes_used = PAGE_BYTES;
1089 more = 1;
1091 page_table[first_page].bytes_used = bytes_used;
1092 byte_cnt += bytes_used;
1094 next_page = first_page+1;
1096 /* All the rest of the pages should be free. We need to set their
1097 * region_start_offset pointer to the start of the region, and set
1098 * the bytes_used. */
1099 while (more) {
1100 gc_assert(page_free_p(next_page));
1101 gc_assert(page_table[next_page].bytes_used == 0);
1102 page_table[next_page].allocated = page_type_flag;
1103 page_table[next_page].gen = gc_alloc_generation;
1104 page_table[next_page].large_object = 1;
1106 page_table[next_page].region_start_offset =
1107 npage_bytes(next_page-first_page) - orig_first_page_bytes_used;
1109 /* Calculate the number of bytes used in this page. */
1110 more = 0;
1111 bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt;
1112 if (bytes_used > PAGE_BYTES) {
1113 bytes_used = PAGE_BYTES;
1114 more = 1;
1116 page_table[next_page].bytes_used = bytes_used;
1117 page_table[next_page].write_protected=0;
1118 page_table[next_page].dont_move=0;
1119 byte_cnt += bytes_used;
1120 next_page++;
1123 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
1125 bytes_allocated += nbytes;
1126 generations[gc_alloc_generation].bytes_allocated += nbytes;
1128 /* Add the region to the new_areas if requested. */
1129 if (BOXED_PAGE_FLAG & page_type_flag)
1130 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1132 /* Bump up last_free_page */
1133 if (last_page+1 > last_free_page) {
1134 last_free_page = last_page+1;
1135 set_alloc_pointer((lispobj)(page_address(last_free_page)));
1137 ret = thread_mutex_unlock(&free_pages_lock);
1138 gc_assert(ret == 0);
1140 #ifdef READ_PROTECT_FREE_PAGES
1141 os_protect(page_address(first_page),
1142 npage_bytes(1+last_page-first_page),
1143 OS_VM_PROT_ALL);
1144 #endif
1146 zero_dirty_pages(first_page, last_page);
1148 return page_address(first_page);
1151 static page_index_t gencgc_alloc_start_page = -1;
1153 void
1154 gc_heap_exhausted_error_or_lose (long available, long requested)
1156 /* Write basic information before doing anything else: if we don't
1157 * call to lisp this is a must, and even if we do there is always
1158 * the danger that we bounce back here before the error has been
1159 * handled, or indeed even printed.
1161 fprintf(stderr, "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
1162 gc_active_p ? "garbage collection" : "allocation",
1163 available, requested);
1164 if (gc_active_p || (available == 0)) {
1165 /* If we are in GC, or totally out of memory there is no way
1166 * to sanely transfer control to the lisp-side of things.
1168 struct thread *thread = arch_os_get_current_thread();
1169 print_generation_stats(1);
1170 fprintf(stderr, "GC control variables:\n");
1171 fprintf(stderr, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
1172 SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
1173 SymbolValue(GC_PENDING,thread)==NIL ? "false" : "true");
1174 #ifdef LISP_FEATURE_SB_THREAD
1175 fprintf(stderr, " *STOP-FOR-GC-PENDING* = %s\n",
1176 SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
1177 #endif
1178 lose("Heap exhausted, game over.");
1180 else {
1181 /* FIXME: assert free_pages_lock held */
1182 (void)thread_mutex_unlock(&free_pages_lock);
1183 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
1184 alloc_number(available), alloc_number(requested));
1185 lose("HEAP-EXHAUSTED-ERROR fell through");
1189 page_index_t
1190 gc_find_freeish_pages(page_index_t *restart_page_ptr, long nbytes, int page_type_flag)
1192 page_index_t first_page, last_page;
1193 page_index_t restart_page = *restart_page_ptr;
1194 long bytes_found = 0;
1195 long most_bytes_found = 0;
1196 /* FIXME: assert(free_pages_lock is held); */
1198 /* Toggled by gc_and_save for heap compaction, normally -1. */
1199 if (gencgc_alloc_start_page != -1) {
1200 restart_page = gencgc_alloc_start_page;
1203 if (nbytes>=PAGE_BYTES) {
1204 /* Search for a contiguous free space of at least nbytes,
1205 * aligned on a page boundary. The page-alignment is strictly
1206 * speaking needed only for objects at least large_object_size
1207 * bytes in size. */
1208 do {
1209 first_page = restart_page;
1210 while ((first_page < page_table_pages) &&
1211 page_allocated_p(first_page))
1212 first_page++;
1214 last_page = first_page;
1215 bytes_found = PAGE_BYTES;
1216 while ((bytes_found < nbytes) &&
1217 (last_page < (page_table_pages-1)) &&
1218 page_free_p(last_page+1)) {
1219 last_page++;
1220 bytes_found += PAGE_BYTES;
1221 gc_assert(0 == page_table[last_page].bytes_used);
1222 gc_assert(0 == page_table[last_page].write_protected);
1224 if (bytes_found > most_bytes_found)
1225 most_bytes_found = bytes_found;
1226 restart_page = last_page + 1;
1227 } while ((restart_page < page_table_pages) && (bytes_found < nbytes));
1229 } else {
1230 /* Search for a page with at least nbytes of space. We prefer
1231 * not to split small objects on multiple pages, to reduce the
1232 * number of contiguous allocation regions spaning multiple
1233 * pages: this helps avoid excessive conservativism. */
1234 first_page = restart_page;
1235 while (first_page < page_table_pages) {
1236 if (page_free_p(first_page))
1238 gc_assert(0 == page_table[first_page].bytes_used);
1239 bytes_found = PAGE_BYTES;
1240 break;
1242 else if ((page_table[first_page].allocated == page_type_flag) &&
1243 (page_table[first_page].large_object == 0) &&
1244 (page_table[first_page].gen == gc_alloc_generation) &&
1245 (page_table[first_page].write_protected == 0) &&
1246 (page_table[first_page].dont_move == 0))
1248 bytes_found = PAGE_BYTES
1249 - page_table[first_page].bytes_used;
1250 if (bytes_found > most_bytes_found)
1251 most_bytes_found = bytes_found;
1252 if (bytes_found >= nbytes)
1253 break;
1255 first_page++;
1257 last_page = first_page;
1258 restart_page = first_page + 1;
1261 /* Check for a failure */
1262 if (bytes_found < nbytes) {
1263 gc_assert(restart_page >= page_table_pages);
1264 gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
1267 gc_assert(page_table[first_page].write_protected == 0);
1269 *restart_page_ptr = first_page;
1270 return last_page;
1273 /* Allocate bytes. All the rest of the special-purpose allocation
1274 * functions will eventually call this */
1276 void *
1277 gc_alloc_with_region(long nbytes,int page_type_flag, struct alloc_region *my_region,
1278 int quick_p)
1280 void *new_free_pointer;
1282 if (nbytes>=large_object_size)
1283 return gc_alloc_large(nbytes, page_type_flag, my_region);
1285 /* Check whether there is room in the current alloc region. */
1286 new_free_pointer = my_region->free_pointer + nbytes;
1288 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1289 my_region->free_pointer, new_free_pointer); */
1291 if (new_free_pointer <= my_region->end_addr) {
1292 /* If so then allocate from the current alloc region. */
1293 void *new_obj = my_region->free_pointer;
1294 my_region->free_pointer = new_free_pointer;
1296 /* Unless a `quick' alloc was requested, check whether the
1297 alloc region is almost empty. */
1298 if (!quick_p &&
1299 void_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
1300 /* If so, finished with the current region. */
1301 gc_alloc_update_page_tables(page_type_flag, my_region);
1302 /* Set up a new region. */
1303 gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
1306 return((void *)new_obj);
1309 /* Else not enough free space in the current region: retry with a
1310 * new region. */
1312 gc_alloc_update_page_tables(page_type_flag, my_region);
1313 gc_alloc_new_region(nbytes, page_type_flag, my_region);
1314 return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
1317 /* these are only used during GC: all allocation from the mutator calls
1318 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1319 * region */
1321 static inline void *
1322 gc_quick_alloc(long nbytes)
1324 return gc_general_alloc(nbytes, BOXED_PAGE_FLAG, ALLOC_QUICK);
1327 static inline void *
1328 gc_quick_alloc_large(long nbytes)
1330 return gc_general_alloc(nbytes, BOXED_PAGE_FLAG ,ALLOC_QUICK);
1333 static inline void *
1334 gc_alloc_unboxed(long nbytes)
1336 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, 0);
1339 static inline void *
1340 gc_quick_alloc_unboxed(long nbytes)
1342 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
1345 static inline void *
1346 gc_quick_alloc_large_unboxed(long nbytes)
1348 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
1352 /* Copy a large boxed object. If the object is in a large object
1353 * region then it is simply promoted, else it is copied. If it's large
1354 * enough then it's copied to a large object region.
1356 * Vectors may have shrunk. If the object is not copied the space
1357 * needs to be reclaimed, and the page_tables corrected. */
1358 lispobj
1359 copy_large_object(lispobj object, long nwords)
1361 int tag;
1362 lispobj *new;
1363 page_index_t first_page;
1365 gc_assert(is_lisp_pointer(object));
1366 gc_assert(from_space_p(object));
1367 gc_assert((nwords & 0x01) == 0);
1370 /* Check whether it's in a large object region. */
1371 first_page = find_page_index((void *)object);
1372 gc_assert(first_page >= 0);
1374 if (page_table[first_page].large_object) {
1376 /* Promote the object. */
1378 unsigned long remaining_bytes;
1379 page_index_t next_page;
1380 unsigned long bytes_freed;
1381 unsigned long old_bytes_used;
1383 /* Note: Any page write-protection must be removed, else a
1384 * later scavenge_newspace may incorrectly not scavenge these
1385 * pages. This would not be necessary if they are added to the
1386 * new areas, but let's do it for them all (they'll probably
1387 * be written anyway?). */
1389 gc_assert(page_table[first_page].region_start_offset == 0);
1391 next_page = first_page;
1392 remaining_bytes = nwords*N_WORD_BYTES;
1393 while (remaining_bytes > PAGE_BYTES) {
1394 gc_assert(page_table[next_page].gen == from_space);
1395 gc_assert(page_boxed_p(next_page));
1396 gc_assert(page_table[next_page].large_object);
1397 gc_assert(page_table[next_page].region_start_offset ==
1398 npage_bytes(next_page-first_page));
1399 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1401 page_table[next_page].gen = new_space;
1403 /* Remove any write-protection. We should be able to rely
1404 * on the write-protect flag to avoid redundant calls. */
1405 if (page_table[next_page].write_protected) {
1406 os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
1407 page_table[next_page].write_protected = 0;
1409 remaining_bytes -= PAGE_BYTES;
1410 next_page++;
1413 /* Now only one page remains, but the object may have shrunk
1414 * so there may be more unused pages which will be freed. */
1416 /* The object may have shrunk but shouldn't have grown. */
1417 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1419 page_table[next_page].gen = new_space;
1420 gc_assert(page_boxed_p(next_page));
1422 /* Adjust the bytes_used. */
1423 old_bytes_used = page_table[next_page].bytes_used;
1424 page_table[next_page].bytes_used = remaining_bytes;
1426 bytes_freed = old_bytes_used - remaining_bytes;
1428 /* Free any remaining pages; needs care. */
1429 next_page++;
1430 while ((old_bytes_used == PAGE_BYTES) &&
1431 (page_table[next_page].gen == from_space) &&
1432 page_boxed_p(next_page) &&
1433 page_table[next_page].large_object &&
1434 (page_table[next_page].region_start_offset ==
1435 npage_bytes(next_page - first_page))) {
1436 /* Checks out OK, free the page. Don't need to bother zeroing
1437 * pages as this should have been done before shrinking the
1438 * object. These pages shouldn't be write-protected as they
1439 * should be zero filled. */
1440 gc_assert(page_table[next_page].write_protected == 0);
1442 old_bytes_used = page_table[next_page].bytes_used;
1443 page_table[next_page].allocated = FREE_PAGE_FLAG;
1444 page_table[next_page].bytes_used = 0;
1445 bytes_freed += old_bytes_used;
1446 next_page++;
1449 generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords
1450 + bytes_freed;
1451 generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
1452 bytes_allocated -= bytes_freed;
1454 /* Add the region to the new_areas if requested. */
1455 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1457 return(object);
1458 } else {
1459 /* Get tag of object. */
1460 tag = lowtag_of(object);
1462 /* Allocate space. */
1463 new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
1465 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1467 /* Return Lisp pointer of new object. */
1468 return ((lispobj) new) | tag;
1472 /* to copy unboxed objects */
1473 lispobj
1474 copy_unboxed_object(lispobj object, long nwords)
1476 long tag;
1477 lispobj *new;
1479 gc_assert(is_lisp_pointer(object));
1480 gc_assert(from_space_p(object));
1481 gc_assert((nwords & 0x01) == 0);
1483 /* Get tag of object. */
1484 tag = lowtag_of(object);
1486 /* Allocate space. */
1487 new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
1489 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1491 /* Return Lisp pointer of new object. */
1492 return ((lispobj) new) | tag;
1495 /* to copy large unboxed objects
1497 * If the object is in a large object region then it is simply
1498 * promoted, else it is copied. If it's large enough then it's copied
1499 * to a large object region.
1501 * Bignums and vectors may have shrunk. If the object is not copied
1502 * the space needs to be reclaimed, and the page_tables corrected.
1504 * KLUDGE: There's a lot of cut-and-paste duplication between this
1505 * function and copy_large_object(..). -- WHN 20000619 */
1506 lispobj
1507 copy_large_unboxed_object(lispobj object, long nwords)
1509 int tag;
1510 lispobj *new;
1511 page_index_t first_page;
1513 gc_assert(is_lisp_pointer(object));
1514 gc_assert(from_space_p(object));
1515 gc_assert((nwords & 0x01) == 0);
1517 if ((nwords > 1024*1024) && gencgc_verbose)
1518 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n",
1519 nwords*N_WORD_BYTES));
1521 /* Check whether it's a large object. */
1522 first_page = find_page_index((void *)object);
1523 gc_assert(first_page >= 0);
1525 if (page_table[first_page].large_object) {
1526 /* Promote the object. Note: Unboxed objects may have been
1527 * allocated to a BOXED region so it may be necessary to
1528 * change the region to UNBOXED. */
1529 unsigned long remaining_bytes;
1530 page_index_t next_page;
1531 unsigned long bytes_freed;
1532 unsigned long old_bytes_used;
1534 gc_assert(page_table[first_page].region_start_offset == 0);
1536 next_page = first_page;
1537 remaining_bytes = nwords*N_WORD_BYTES;
1538 while (remaining_bytes > PAGE_BYTES) {
1539 gc_assert(page_table[next_page].gen == from_space);
1540 gc_assert(page_allocated_no_region_p(next_page));
1541 gc_assert(page_table[next_page].large_object);
1542 gc_assert(page_table[next_page].region_start_offset ==
1543 npage_bytes(next_page-first_page));
1544 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1546 page_table[next_page].gen = new_space;
1547 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1548 remaining_bytes -= PAGE_BYTES;
1549 next_page++;
1552 /* Now only one page remains, but the object may have shrunk so
1553 * there may be more unused pages which will be freed. */
1555 /* Object may have shrunk but shouldn't have grown - check. */
1556 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1558 page_table[next_page].gen = new_space;
1559 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1561 /* Adjust the bytes_used. */
1562 old_bytes_used = page_table[next_page].bytes_used;
1563 page_table[next_page].bytes_used = remaining_bytes;
1565 bytes_freed = old_bytes_used - remaining_bytes;
1567 /* Free any remaining pages; needs care. */
1568 next_page++;
1569 while ((old_bytes_used == PAGE_BYTES) &&
1570 (page_table[next_page].gen == from_space) &&
1571 page_allocated_no_region_p(next_page) &&
1572 page_table[next_page].large_object &&
1573 (page_table[next_page].region_start_offset ==
1574 npage_bytes(next_page - first_page))) {
1575 /* Checks out OK, free the page. Don't need to both zeroing
1576 * pages as this should have been done before shrinking the
1577 * object. These pages shouldn't be write-protected, even if
1578 * boxed they should be zero filled. */
1579 gc_assert(page_table[next_page].write_protected == 0);
1581 old_bytes_used = page_table[next_page].bytes_used;
1582 page_table[next_page].allocated = FREE_PAGE_FLAG;
1583 page_table[next_page].bytes_used = 0;
1584 bytes_freed += old_bytes_used;
1585 next_page++;
1588 if ((bytes_freed > 0) && gencgc_verbose)
1589 FSHOW((stderr,
1590 "/copy_large_unboxed bytes_freed=%d\n",
1591 bytes_freed));
1593 generations[from_space].bytes_allocated -=
1594 nwords*N_WORD_BYTES + bytes_freed;
1595 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1596 bytes_allocated -= bytes_freed;
1598 return(object);
1600 else {
1601 /* Get tag of object. */
1602 tag = lowtag_of(object);
1604 /* Allocate space. */
1605 new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
1607 /* Copy the object. */
1608 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1610 /* Return Lisp pointer of new object. */
1611 return ((lispobj) new) | tag;
1620 * code and code-related objects
1623 static lispobj trans_fun_header(lispobj object);
1624 static lispobj trans_boxed(lispobj object);
1627 /* Scan a x86 compiled code object, looking for possible fixups that
1628 * have been missed after a move.
1630 * Two types of fixups are needed:
1631 * 1. Absolute fixups to within the code object.
1632 * 2. Relative fixups to outside the code object.
1634 * Currently only absolute fixups to the constant vector, or to the
1635 * code area are checked. */
1636 void
1637 sniff_code_object(struct code *code, unsigned long displacement)
1639 #ifdef LISP_FEATURE_X86
1640 long nheader_words, ncode_words, nwords;
1641 void *p;
1642 void *constants_start_addr = NULL, *constants_end_addr;
1643 void *code_start_addr, *code_end_addr;
1644 int fixup_found = 0;
1646 if (!check_code_fixups)
1647 return;
1649 FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
1651 ncode_words = fixnum_value(code->code_size);
1652 nheader_words = HeaderValue(*(lispobj *)code);
1653 nwords = ncode_words + nheader_words;
1655 constants_start_addr = (void *)code + 5*N_WORD_BYTES;
1656 constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
1657 code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
1658 code_end_addr = (void *)code + nwords*N_WORD_BYTES;
1660 /* Work through the unboxed code. */
1661 for (p = code_start_addr; p < code_end_addr; p++) {
1662 void *data = *(void **)p;
1663 unsigned d1 = *((unsigned char *)p - 1);
1664 unsigned d2 = *((unsigned char *)p - 2);
1665 unsigned d3 = *((unsigned char *)p - 3);
1666 unsigned d4 = *((unsigned char *)p - 4);
1667 #ifdef QSHOW
1668 unsigned d5 = *((unsigned char *)p - 5);
1669 unsigned d6 = *((unsigned char *)p - 6);
1670 #endif
1672 /* Check for code references. */
1673 /* Check for a 32 bit word that looks like an absolute
1674 reference to within the code adea of the code object. */
1675 if ((data >= (code_start_addr-displacement))
1676 && (data < (code_end_addr-displacement))) {
1677 /* function header */
1678 if ((d4 == 0x5e)
1679 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) ==
1680 (unsigned)code)) {
1681 /* Skip the function header */
1682 p += 6*4 - 4 - 1;
1683 continue;
1685 /* the case of PUSH imm32 */
1686 if (d1 == 0x68) {
1687 fixup_found = 1;
1688 FSHOW((stderr,
1689 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1690 p, d6, d5, d4, d3, d2, d1, data));
1691 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1693 /* the case of MOV [reg-8],imm32 */
1694 if ((d3 == 0xc7)
1695 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1696 || d2==0x45 || d2==0x46 || d2==0x47)
1697 && (d1 == 0xf8)) {
1698 fixup_found = 1;
1699 FSHOW((stderr,
1700 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1701 p, d6, d5, d4, d3, d2, d1, data));
1702 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1704 /* the case of LEA reg,[disp32] */
1705 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1706 fixup_found = 1;
1707 FSHOW((stderr,
1708 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1709 p, d6, d5, d4, d3, d2, d1, data));
1710 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1714 /* Check for constant references. */
1715 /* Check for a 32 bit word that looks like an absolute
1716 reference to within the constant vector. Constant references
1717 will be aligned. */
1718 if ((data >= (constants_start_addr-displacement))
1719 && (data < (constants_end_addr-displacement))
1720 && (((unsigned)data & 0x3) == 0)) {
1721 /* Mov eax,m32 */
1722 if (d1 == 0xa1) {
1723 fixup_found = 1;
1724 FSHOW((stderr,
1725 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1726 p, d6, d5, d4, d3, d2, d1, data));
1727 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1730 /* the case of MOV m32,EAX */
1731 if (d1 == 0xa3) {
1732 fixup_found = 1;
1733 FSHOW((stderr,
1734 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1735 p, d6, d5, d4, d3, d2, d1, data));
1736 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1739 /* the case of CMP m32,imm32 */
1740 if ((d1 == 0x3d) && (d2 == 0x81)) {
1741 fixup_found = 1;
1742 FSHOW((stderr,
1743 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1744 p, d6, d5, d4, d3, d2, d1, data));
1745 /* XX Check this */
1746 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1749 /* Check for a mod=00, r/m=101 byte. */
1750 if ((d1 & 0xc7) == 5) {
1751 /* Cmp m32,reg */
1752 if (d2 == 0x39) {
1753 fixup_found = 1;
1754 FSHOW((stderr,
1755 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1756 p, d6, d5, d4, d3, d2, d1, data));
1757 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1759 /* the case of CMP reg32,m32 */
1760 if (d2 == 0x3b) {
1761 fixup_found = 1;
1762 FSHOW((stderr,
1763 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1764 p, d6, d5, d4, d3, d2, d1, data));
1765 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1767 /* the case of MOV m32,reg32 */
1768 if (d2 == 0x89) {
1769 fixup_found = 1;
1770 FSHOW((stderr,
1771 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1772 p, d6, d5, d4, d3, d2, d1, data));
1773 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1775 /* the case of MOV reg32,m32 */
1776 if (d2 == 0x8b) {
1777 fixup_found = 1;
1778 FSHOW((stderr,
1779 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1780 p, d6, d5, d4, d3, d2, d1, data));
1781 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1783 /* the case of LEA reg32,m32 */
1784 if (d2 == 0x8d) {
1785 fixup_found = 1;
1786 FSHOW((stderr,
1787 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1788 p, d6, d5, d4, d3, d2, d1, data));
1789 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1795 /* If anything was found, print some information on the code
1796 * object. */
1797 if (fixup_found) {
1798 FSHOW((stderr,
1799 "/compiled code object at %x: header words = %d, code words = %d\n",
1800 code, nheader_words, ncode_words));
1801 FSHOW((stderr,
1802 "/const start = %x, end = %x\n",
1803 constants_start_addr, constants_end_addr));
1804 FSHOW((stderr,
1805 "/code start = %x, end = %x\n",
1806 code_start_addr, code_end_addr));
1808 #endif
1811 void
1812 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1814 /* x86-64 uses pc-relative addressing instead of this kludge */
1815 #ifndef LISP_FEATURE_X86_64
1816 long nheader_words, ncode_words, nwords;
1817 void *constants_start_addr, *constants_end_addr;
1818 void *code_start_addr, *code_end_addr;
1819 lispobj fixups = NIL;
1820 unsigned long displacement =
1821 (unsigned long)new_code - (unsigned long)old_code;
1822 struct vector *fixups_vector;
1824 ncode_words = fixnum_value(new_code->code_size);
1825 nheader_words = HeaderValue(*(lispobj *)new_code);
1826 nwords = ncode_words + nheader_words;
1827 /* FSHOW((stderr,
1828 "/compiled code object at %x: header words = %d, code words = %d\n",
1829 new_code, nheader_words, ncode_words)); */
1830 constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
1831 constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1832 code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1833 code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
1835 FSHOW((stderr,
1836 "/const start = %x, end = %x\n",
1837 constants_start_addr,constants_end_addr));
1838 FSHOW((stderr,
1839 "/code start = %x; end = %x\n",
1840 code_start_addr,code_end_addr));
1843 /* The first constant should be a pointer to the fixups for this
1844 code objects. Check. */
1845 fixups = new_code->constants[0];
1847 /* It will be 0 or the unbound-marker if there are no fixups (as
1848 * will be the case if the code object has been purified, for
1849 * example) and will be an other pointer if it is valid. */
1850 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1851 !is_lisp_pointer(fixups)) {
1852 /* Check for possible errors. */
1853 if (check_code_fixups)
1854 sniff_code_object(new_code, displacement);
1856 return;
1859 fixups_vector = (struct vector *)native_pointer(fixups);
1861 /* Could be pointing to a forwarding pointer. */
1862 /* FIXME is this always in from_space? if so, could replace this code with
1863 * forwarding_pointer_p/forwarding_pointer_value */
1864 if (is_lisp_pointer(fixups) &&
1865 (find_page_index((void*)fixups_vector) != -1) &&
1866 (fixups_vector->header == 0x01)) {
1867 /* If so, then follow it. */
1868 /*SHOW("following pointer to a forwarding pointer");*/
1869 fixups_vector =
1870 (struct vector *)native_pointer((lispobj)fixups_vector->length);
1873 /*SHOW("got fixups");*/
1875 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1876 /* Got the fixups for the code block. Now work through the vector,
1877 and apply a fixup at each address. */
1878 long length = fixnum_value(fixups_vector->length);
1879 long i;
1880 for (i = 0; i < length; i++) {
1881 unsigned long offset = fixups_vector->data[i];
1882 /* Now check the current value of offset. */
1883 unsigned long old_value =
1884 *(unsigned long *)((unsigned long)code_start_addr + offset);
1886 /* If it's within the old_code object then it must be an
1887 * absolute fixup (relative ones are not saved) */
1888 if ((old_value >= (unsigned long)old_code)
1889 && (old_value < ((unsigned long)old_code
1890 + nwords*N_WORD_BYTES)))
1891 /* So add the dispacement. */
1892 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1893 old_value + displacement;
1894 else
1895 /* It is outside the old code object so it must be a
1896 * relative fixup (absolute fixups are not saved). So
1897 * subtract the displacement. */
1898 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1899 old_value - displacement;
1901 } else {
1902 /* This used to just print a note to stderr, but a bogus fixup seems to
1903 * indicate real heap corruption, so a hard hailure is in order. */
1904 lose("fixup vector %p has a bad widetag: %d\n",
1905 fixups_vector, widetag_of(fixups_vector->header));
1908 /* Check for possible errors. */
1909 if (check_code_fixups) {
1910 sniff_code_object(new_code,displacement);
1912 #endif
1916 static lispobj
1917 trans_boxed_large(lispobj object)
1919 lispobj header;
1920 unsigned long length;
1922 gc_assert(is_lisp_pointer(object));
1924 header = *((lispobj *) native_pointer(object));
1925 length = HeaderValue(header) + 1;
1926 length = CEILING(length, 2);
1928 return copy_large_object(object, length);
1931 /* Doesn't seem to be used, delete it after the grace period. */
1932 #if 0
1933 static lispobj
1934 trans_unboxed_large(lispobj object)
1936 lispobj header;
1937 unsigned long length;
1939 gc_assert(is_lisp_pointer(object));
1941 header = *((lispobj *) native_pointer(object));
1942 length = HeaderValue(header) + 1;
1943 length = CEILING(length, 2);
1945 return copy_large_unboxed_object(object, length);
1947 #endif
1951 * Lutexes. Using the normal finalization machinery for finalizing
1952 * lutexes is tricky, since the finalization depends on working lutexes.
1953 * So we track the lutexes in the GC and finalize them manually.
1956 #if defined(LUTEX_WIDETAG)
1959 * Start tracking LUTEX in the GC, by adding it to the linked list of
1960 * lutexes in the nursery generation. The caller is responsible for
1961 * locking, and GCs must be inhibited until the registration is
1962 * complete.
1964 void
1965 gencgc_register_lutex (struct lutex *lutex) {
1966 int index = find_page_index(lutex);
1967 generation_index_t gen;
1968 struct lutex *head;
1970 /* This lutex is in static space, so we don't need to worry about
1971 * finalizing it.
1973 if (index == -1)
1974 return;
1976 gen = page_table[index].gen;
1978 gc_assert(gen >= 0);
1979 gc_assert(gen < NUM_GENERATIONS);
1981 head = generations[gen].lutexes;
1983 lutex->gen = gen;
1984 lutex->next = head;
1985 lutex->prev = NULL;
1986 if (head)
1987 head->prev = lutex;
1988 generations[gen].lutexes = lutex;
1992 * Stop tracking LUTEX in the GC by removing it from the appropriate
1993 * linked lists. This will only be called during GC, so no locking is
1994 * needed.
1996 void
1997 gencgc_unregister_lutex (struct lutex *lutex) {
1998 if (lutex->prev) {
1999 lutex->prev->next = lutex->next;
2000 } else {
2001 generations[lutex->gen].lutexes = lutex->next;
2004 if (lutex->next) {
2005 lutex->next->prev = lutex->prev;
2008 lutex->next = NULL;
2009 lutex->prev = NULL;
2010 lutex->gen = -1;
2014 * Mark all lutexes in generation GEN as not live.
2016 static void
2017 unmark_lutexes (generation_index_t gen) {
2018 struct lutex *lutex = generations[gen].lutexes;
2020 while (lutex) {
2021 lutex->live = 0;
2022 lutex = lutex->next;
2027 * Finalize all lutexes in generation GEN that have not been marked live.
2029 static void
2030 reap_lutexes (generation_index_t gen) {
2031 struct lutex *lutex = generations[gen].lutexes;
2033 while (lutex) {
2034 struct lutex *next = lutex->next;
2035 if (!lutex->live) {
2036 lutex_destroy((tagged_lutex_t) lutex);
2037 gencgc_unregister_lutex(lutex);
2039 lutex = next;
2044 * Mark LUTEX as live.
2046 static void
2047 mark_lutex (lispobj tagged_lutex) {
2048 struct lutex *lutex = (struct lutex*) native_pointer(tagged_lutex);
2050 lutex->live = 1;
2054 * Move all lutexes in generation FROM to generation TO.
2056 static void
2057 move_lutexes (generation_index_t from, generation_index_t to) {
2058 struct lutex *tail = generations[from].lutexes;
2060 /* Nothing to move */
2061 if (!tail)
2062 return;
2064 /* Change the generation of the lutexes in FROM. */
2065 while (tail->next) {
2066 tail->gen = to;
2067 tail = tail->next;
2069 tail->gen = to;
2071 /* Link the last lutex in the FROM list to the start of the TO list */
2072 tail->next = generations[to].lutexes;
2074 /* And vice versa */
2075 if (generations[to].lutexes) {
2076 generations[to].lutexes->prev = tail;
2079 /* And update the generations structures to match this */
2080 generations[to].lutexes = generations[from].lutexes;
2081 generations[from].lutexes = NULL;
2084 static long
2085 scav_lutex(lispobj *where, lispobj object)
2087 mark_lutex((lispobj) where);
2089 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2092 static lispobj
2093 trans_lutex(lispobj object)
2095 struct lutex *lutex = (struct lutex *) native_pointer(object);
2096 lispobj copied;
2097 size_t words = CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2098 gc_assert(is_lisp_pointer(object));
2099 copied = copy_object(object, words);
2101 /* Update the links, since the lutex moved in memory. */
2102 if (lutex->next) {
2103 lutex->next->prev = (struct lutex *) native_pointer(copied);
2106 if (lutex->prev) {
2107 lutex->prev->next = (struct lutex *) native_pointer(copied);
2108 } else {
2109 generations[lutex->gen].lutexes =
2110 (struct lutex *) native_pointer(copied);
2113 return copied;
2116 static long
2117 size_lutex(lispobj *where)
2119 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2121 #endif /* LUTEX_WIDETAG */
2125 * weak pointers
2128 /* XX This is a hack adapted from cgc.c. These don't work too
2129 * efficiently with the gencgc as a list of the weak pointers is
2130 * maintained within the objects which causes writes to the pages. A
2131 * limited attempt is made to avoid unnecessary writes, but this needs
2132 * a re-think. */
2133 #define WEAK_POINTER_NWORDS \
2134 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2136 static long
2137 scav_weak_pointer(lispobj *where, lispobj object)
2139 /* Since we overwrite the 'next' field, we have to make
2140 * sure not to do so for pointers already in the list.
2141 * Instead of searching the list of weak_pointers each
2142 * time, we ensure that next is always NULL when the weak
2143 * pointer isn't in the list, and not NULL otherwise.
2144 * Since we can't use NULL to denote end of list, we
2145 * use a pointer back to the same weak_pointer.
2147 struct weak_pointer * wp = (struct weak_pointer*)where;
2149 if (NULL == wp->next) {
2150 wp->next = weak_pointers;
2151 weak_pointers = wp;
2152 if (NULL == wp->next)
2153 wp->next = wp;
2156 /* Do not let GC scavenge the value slot of the weak pointer.
2157 * (That is why it is a weak pointer.) */
2159 return WEAK_POINTER_NWORDS;
2163 lispobj *
2164 search_read_only_space(void *pointer)
2166 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
2167 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2168 if ((pointer < (void *)start) || (pointer >= (void *)end))
2169 return NULL;
2170 return (gc_search_space(start,
2171 (((lispobj *)pointer)+2)-start,
2172 (lispobj *) pointer));
2175 lispobj *
2176 search_static_space(void *pointer)
2178 lispobj *start = (lispobj *)STATIC_SPACE_START;
2179 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2180 if ((pointer < (void *)start) || (pointer >= (void *)end))
2181 return NULL;
2182 return (gc_search_space(start,
2183 (((lispobj *)pointer)+2)-start,
2184 (lispobj *) pointer));
2187 /* a faster version for searching the dynamic space. This will work even
2188 * if the object is in a current allocation region. */
2189 lispobj *
2190 search_dynamic_space(void *pointer)
2192 page_index_t page_index = find_page_index(pointer);
2193 lispobj *start;
2195 /* The address may be invalid, so do some checks. */
2196 if ((page_index == -1) || page_free_p(page_index))
2197 return NULL;
2198 start = (lispobj *)page_region_start(page_index);
2199 return (gc_search_space(start,
2200 (((lispobj *)pointer)+2)-start,
2201 (lispobj *)pointer));
2204 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2206 /* Helper for valid_lisp_pointer_p and
2207 * possibly_valid_dynamic_space_pointer.
2209 * pointer is the pointer to validate, and start_addr is the address
2210 * of the enclosing object.
2212 static int
2213 looks_like_valid_lisp_pointer_p(lispobj *pointer, lispobj *start_addr)
2215 if (!is_lisp_pointer((lispobj)pointer)) {
2216 return 0;
2219 /* Check that the object pointed to is consistent with the pointer
2220 * low tag. */
2221 switch (lowtag_of((lispobj)pointer)) {
2222 case FUN_POINTER_LOWTAG:
2223 /* Start_addr should be the enclosing code object, or a closure
2224 * header. */
2225 switch (widetag_of(*start_addr)) {
2226 case CODE_HEADER_WIDETAG:
2227 /* This case is probably caught above. */
2228 break;
2229 case CLOSURE_HEADER_WIDETAG:
2230 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2231 if ((unsigned long)pointer !=
2232 ((unsigned long)start_addr+FUN_POINTER_LOWTAG)) {
2233 if (gencgc_verbose)
2234 FSHOW((stderr,
2235 "/Wf2: %x %x %x\n",
2236 pointer, start_addr, *start_addr));
2237 return 0;
2239 break;
2240 default:
2241 if (gencgc_verbose)
2242 FSHOW((stderr,
2243 "/Wf3: %x %x %x\n",
2244 pointer, start_addr, *start_addr));
2245 return 0;
2247 break;
2248 case LIST_POINTER_LOWTAG:
2249 if ((unsigned long)pointer !=
2250 ((unsigned long)start_addr+LIST_POINTER_LOWTAG)) {
2251 if (gencgc_verbose)
2252 FSHOW((stderr,
2253 "/Wl1: %x %x %x\n",
2254 pointer, start_addr, *start_addr));
2255 return 0;
2257 /* Is it plausible cons? */
2258 if ((is_lisp_pointer(start_addr[0]) ||
2259 is_lisp_immediate(start_addr[0])) &&
2260 (is_lisp_pointer(start_addr[1]) ||
2261 is_lisp_immediate(start_addr[1])))
2262 break;
2263 else {
2264 if (gencgc_verbose)
2265 FSHOW((stderr,
2266 "/Wl2: %x %x %x\n",
2267 pointer, start_addr, *start_addr));
2268 return 0;
2270 case INSTANCE_POINTER_LOWTAG:
2271 if ((unsigned long)pointer !=
2272 ((unsigned long)start_addr+INSTANCE_POINTER_LOWTAG)) {
2273 if (gencgc_verbose)
2274 FSHOW((stderr,
2275 "/Wi1: %x %x %x\n",
2276 pointer, start_addr, *start_addr));
2277 return 0;
2279 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2280 if (gencgc_verbose)
2281 FSHOW((stderr,
2282 "/Wi2: %x %x %x\n",
2283 pointer, start_addr, *start_addr));
2284 return 0;
2286 break;
2287 case OTHER_POINTER_LOWTAG:
2288 if ((unsigned long)pointer !=
2289 ((unsigned long)start_addr+OTHER_POINTER_LOWTAG)) {
2290 if (gencgc_verbose)
2291 FSHOW((stderr,
2292 "/Wo1: %x %x %x\n",
2293 pointer, start_addr, *start_addr));
2294 return 0;
2296 /* Is it plausible? Not a cons. XXX should check the headers. */
2297 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2298 if (gencgc_verbose)
2299 FSHOW((stderr,
2300 "/Wo2: %x %x %x\n",
2301 pointer, start_addr, *start_addr));
2302 return 0;
2304 switch (widetag_of(start_addr[0])) {
2305 case UNBOUND_MARKER_WIDETAG:
2306 case NO_TLS_VALUE_MARKER_WIDETAG:
2307 case CHARACTER_WIDETAG:
2308 #if N_WORD_BITS == 64
2309 case SINGLE_FLOAT_WIDETAG:
2310 #endif
2311 if (gencgc_verbose)
2312 FSHOW((stderr,
2313 "*Wo3: %x %x %x\n",
2314 pointer, start_addr, *start_addr));
2315 return 0;
2317 /* only pointed to by function pointers? */
2318 case CLOSURE_HEADER_WIDETAG:
2319 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2320 if (gencgc_verbose)
2321 FSHOW((stderr,
2322 "*Wo4: %x %x %x\n",
2323 pointer, start_addr, *start_addr));
2324 return 0;
2326 case INSTANCE_HEADER_WIDETAG:
2327 if (gencgc_verbose)
2328 FSHOW((stderr,
2329 "*Wo5: %x %x %x\n",
2330 pointer, start_addr, *start_addr));
2331 return 0;
2333 /* the valid other immediate pointer objects */
2334 case SIMPLE_VECTOR_WIDETAG:
2335 case RATIO_WIDETAG:
2336 case COMPLEX_WIDETAG:
2337 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2338 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2339 #endif
2340 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2341 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2342 #endif
2343 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2344 case COMPLEX_LONG_FLOAT_WIDETAG:
2345 #endif
2346 case SIMPLE_ARRAY_WIDETAG:
2347 case COMPLEX_BASE_STRING_WIDETAG:
2348 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
2349 case COMPLEX_CHARACTER_STRING_WIDETAG:
2350 #endif
2351 case COMPLEX_VECTOR_NIL_WIDETAG:
2352 case COMPLEX_BIT_VECTOR_WIDETAG:
2353 case COMPLEX_VECTOR_WIDETAG:
2354 case COMPLEX_ARRAY_WIDETAG:
2355 case VALUE_CELL_HEADER_WIDETAG:
2356 case SYMBOL_HEADER_WIDETAG:
2357 case FDEFN_WIDETAG:
2358 case CODE_HEADER_WIDETAG:
2359 case BIGNUM_WIDETAG:
2360 #if N_WORD_BITS != 64
2361 case SINGLE_FLOAT_WIDETAG:
2362 #endif
2363 case DOUBLE_FLOAT_WIDETAG:
2364 #ifdef LONG_FLOAT_WIDETAG
2365 case LONG_FLOAT_WIDETAG:
2366 #endif
2367 case SIMPLE_BASE_STRING_WIDETAG:
2368 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2369 case SIMPLE_CHARACTER_STRING_WIDETAG:
2370 #endif
2371 case SIMPLE_BIT_VECTOR_WIDETAG:
2372 case SIMPLE_ARRAY_NIL_WIDETAG:
2373 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2374 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2375 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2376 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2377 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2378 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2379 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2380 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2381 #endif
2382 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2383 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2384 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2385 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2386 #endif
2387 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2388 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2389 #endif
2390 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2391 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2392 #endif
2393 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2394 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2395 #endif
2396 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2397 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2398 #endif
2399 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2400 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2401 #endif
2402 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2403 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2404 #endif
2405 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2406 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2407 #endif
2408 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2409 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2410 #endif
2411 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2412 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2413 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2414 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2415 #endif
2416 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2417 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2418 #endif
2419 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2420 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2421 #endif
2422 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2423 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2424 #endif
2425 case SAP_WIDETAG:
2426 case WEAK_POINTER_WIDETAG:
2427 #ifdef LUTEX_WIDETAG
2428 case LUTEX_WIDETAG:
2429 #endif
2430 break;
2432 default:
2433 if (gencgc_verbose)
2434 FSHOW((stderr,
2435 "/Wo6: %x %x %x\n",
2436 pointer, start_addr, *start_addr));
2437 return 0;
2439 break;
2440 default:
2441 if (gencgc_verbose)
2442 FSHOW((stderr,
2443 "*W?: %x %x %x\n",
2444 pointer, start_addr, *start_addr));
2445 return 0;
2448 /* looks good */
2449 return 1;
2452 /* Used by the debugger to validate possibly bogus pointers before
2453 * calling MAKE-LISP-OBJ on them.
2455 * FIXME: We would like to make this perfect, because if the debugger
2456 * constructs a reference to a bugs lisp object, and it ends up in a
2457 * location scavenged by the GC all hell breaks loose.
2459 * Whereas possibly_valid_dynamic_space_pointer has to be conservative
2460 * and return true for all valid pointers, this could actually be eager
2461 * and lie about a few pointers without bad results... but that should
2462 * be reflected in the name.
2465 valid_lisp_pointer_p(lispobj *pointer)
2467 lispobj *start;
2468 if (((start=search_dynamic_space(pointer))!=NULL) ||
2469 ((start=search_static_space(pointer))!=NULL) ||
2470 ((start=search_read_only_space(pointer))!=NULL))
2471 return looks_like_valid_lisp_pointer_p(pointer, start);
2472 else
2473 return 0;
2476 /* Is there any possibility that pointer is a valid Lisp object
2477 * reference, and/or something else (e.g. subroutine call return
2478 * address) which should prevent us from moving the referred-to thing?
2479 * This is called from preserve_pointers() */
2480 static int
2481 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2483 lispobj *start_addr;
2485 /* Find the object start address. */
2486 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2487 return 0;
2490 return looks_like_valid_lisp_pointer_p(pointer, start_addr);
2493 /* Adjust large bignum and vector objects. This will adjust the
2494 * allocated region if the size has shrunk, and move unboxed objects
2495 * into unboxed pages. The pages are not promoted here, and the
2496 * promoted region is not added to the new_regions; this is really
2497 * only designed to be called from preserve_pointer(). Shouldn't fail
2498 * if this is missed, just may delay the moving of objects to unboxed
2499 * pages, and the freeing of pages. */
2500 static void
2501 maybe_adjust_large_object(lispobj *where)
2503 page_index_t first_page;
2504 page_index_t next_page;
2505 long nwords;
2507 unsigned long remaining_bytes;
2508 unsigned long bytes_freed;
2509 unsigned long old_bytes_used;
2511 int boxed;
2513 /* Check whether it's a vector or bignum object. */
2514 switch (widetag_of(where[0])) {
2515 case SIMPLE_VECTOR_WIDETAG:
2516 boxed = BOXED_PAGE_FLAG;
2517 break;
2518 case BIGNUM_WIDETAG:
2519 case SIMPLE_BASE_STRING_WIDETAG:
2520 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2521 case SIMPLE_CHARACTER_STRING_WIDETAG:
2522 #endif
2523 case SIMPLE_BIT_VECTOR_WIDETAG:
2524 case SIMPLE_ARRAY_NIL_WIDETAG:
2525 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2526 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2527 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2528 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2529 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2530 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2531 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2532 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2533 #endif
2534 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2535 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2536 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2537 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2538 #endif
2539 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2540 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2541 #endif
2542 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2543 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2544 #endif
2545 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2546 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2547 #endif
2548 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2549 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2550 #endif
2551 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2552 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2553 #endif
2554 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2555 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2556 #endif
2557 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2558 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2559 #endif
2560 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2561 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2562 #endif
2563 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2564 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2565 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2566 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2567 #endif
2568 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2569 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2570 #endif
2571 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2572 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2573 #endif
2574 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2575 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2576 #endif
2577 boxed = UNBOXED_PAGE_FLAG;
2578 break;
2579 default:
2580 return;
2583 /* Find its current size. */
2584 nwords = (sizetab[widetag_of(where[0])])(where);
2586 first_page = find_page_index((void *)where);
2587 gc_assert(first_page >= 0);
2589 /* Note: Any page write-protection must be removed, else a later
2590 * scavenge_newspace may incorrectly not scavenge these pages.
2591 * This would not be necessary if they are added to the new areas,
2592 * but lets do it for them all (they'll probably be written
2593 * anyway?). */
2595 gc_assert(page_table[first_page].region_start_offset == 0);
2597 next_page = first_page;
2598 remaining_bytes = nwords*N_WORD_BYTES;
2599 while (remaining_bytes > PAGE_BYTES) {
2600 gc_assert(page_table[next_page].gen == from_space);
2601 gc_assert(page_allocated_no_region_p(next_page));
2602 gc_assert(page_table[next_page].large_object);
2603 gc_assert(page_table[next_page].region_start_offset ==
2604 npage_bytes(next_page-first_page));
2605 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
2607 page_table[next_page].allocated = boxed;
2609 /* Shouldn't be write-protected at this stage. Essential that the
2610 * pages aren't. */
2611 gc_assert(!page_table[next_page].write_protected);
2612 remaining_bytes -= PAGE_BYTES;
2613 next_page++;
2616 /* Now only one page remains, but the object may have shrunk so
2617 * there may be more unused pages which will be freed. */
2619 /* Object may have shrunk but shouldn't have grown - check. */
2620 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2622 page_table[next_page].allocated = boxed;
2623 gc_assert(page_table[next_page].allocated ==
2624 page_table[first_page].allocated);
2626 /* Adjust the bytes_used. */
2627 old_bytes_used = page_table[next_page].bytes_used;
2628 page_table[next_page].bytes_used = remaining_bytes;
2630 bytes_freed = old_bytes_used - remaining_bytes;
2632 /* Free any remaining pages; needs care. */
2633 next_page++;
2634 while ((old_bytes_used == PAGE_BYTES) &&
2635 (page_table[next_page].gen == from_space) &&
2636 page_allocated_no_region_p(next_page) &&
2637 page_table[next_page].large_object &&
2638 (page_table[next_page].region_start_offset ==
2639 npage_bytes(next_page - first_page))) {
2640 /* It checks out OK, free the page. We don't need to both zeroing
2641 * pages as this should have been done before shrinking the
2642 * object. These pages shouldn't be write protected as they
2643 * should be zero filled. */
2644 gc_assert(page_table[next_page].write_protected == 0);
2646 old_bytes_used = page_table[next_page].bytes_used;
2647 page_table[next_page].allocated = FREE_PAGE_FLAG;
2648 page_table[next_page].bytes_used = 0;
2649 bytes_freed += old_bytes_used;
2650 next_page++;
2653 if ((bytes_freed > 0) && gencgc_verbose) {
2654 FSHOW((stderr,
2655 "/maybe_adjust_large_object() freed %d\n",
2656 bytes_freed));
2659 generations[from_space].bytes_allocated -= bytes_freed;
2660 bytes_allocated -= bytes_freed;
2662 return;
2665 /* Take a possible pointer to a Lisp object and mark its page in the
2666 * page_table so that it will not be relocated during a GC.
2668 * This involves locating the page it points to, then backing up to
2669 * the start of its region, then marking all pages dont_move from there
2670 * up to the first page that's not full or has a different generation
2672 * It is assumed that all the page static flags have been cleared at
2673 * the start of a GC.
2675 * It is also assumed that the current gc_alloc() region has been
2676 * flushed and the tables updated. */
2678 static void
2679 preserve_pointer(void *addr)
2681 page_index_t addr_page_index = find_page_index(addr);
2682 page_index_t first_page;
2683 page_index_t i;
2684 unsigned int region_allocation;
2686 /* quick check 1: Address is quite likely to have been invalid. */
2687 if ((addr_page_index == -1)
2688 || page_free_p(addr_page_index)
2689 || (page_table[addr_page_index].bytes_used == 0)
2690 || (page_table[addr_page_index].gen != from_space)
2691 /* Skip if already marked dont_move. */
2692 || (page_table[addr_page_index].dont_move != 0))
2693 return;
2694 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2695 /* (Now that we know that addr_page_index is in range, it's
2696 * safe to index into page_table[] with it.) */
2697 region_allocation = page_table[addr_page_index].allocated;
2699 /* quick check 2: Check the offset within the page.
2702 if (((unsigned long)addr & (PAGE_BYTES - 1)) >
2703 page_table[addr_page_index].bytes_used)
2704 return;
2706 /* Filter out anything which can't be a pointer to a Lisp object
2707 * (or, as a special case which also requires dont_move, a return
2708 * address referring to something in a CodeObject). This is
2709 * expensive but important, since it vastly reduces the
2710 * probability that random garbage will be bogusly interpreted as
2711 * a pointer which prevents a page from moving. */
2712 if (!(code_page_p(addr_page_index)
2713 || (is_lisp_pointer(addr) &&
2714 possibly_valid_dynamic_space_pointer(addr))))
2715 return;
2717 /* Find the beginning of the region. Note that there may be
2718 * objects in the region preceding the one that we were passed a
2719 * pointer to: if this is the case, we will write-protect all the
2720 * previous objects' pages too. */
2722 #if 0
2723 /* I think this'd work just as well, but without the assertions.
2724 * -dan 2004.01.01 */
2725 first_page = find_page_index(page_region_start(addr_page_index))
2726 #else
2727 first_page = addr_page_index;
2728 while (page_table[first_page].region_start_offset != 0) {
2729 --first_page;
2730 /* Do some checks. */
2731 gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
2732 gc_assert(page_table[first_page].gen == from_space);
2733 gc_assert(page_table[first_page].allocated == region_allocation);
2735 #endif
2737 /* Adjust any large objects before promotion as they won't be
2738 * copied after promotion. */
2739 if (page_table[first_page].large_object) {
2740 maybe_adjust_large_object(page_address(first_page));
2741 /* If a large object has shrunk then addr may now point to a
2742 * free area in which case it's ignored here. Note it gets
2743 * through the valid pointer test above because the tail looks
2744 * like conses. */
2745 if (page_free_p(addr_page_index)
2746 || (page_table[addr_page_index].bytes_used == 0)
2747 /* Check the offset within the page. */
2748 || (((unsigned long)addr & (PAGE_BYTES - 1))
2749 > page_table[addr_page_index].bytes_used)) {
2750 FSHOW((stderr,
2751 "weird? ignore ptr 0x%x to freed area of large object\n",
2752 addr));
2753 return;
2755 /* It may have moved to unboxed pages. */
2756 region_allocation = page_table[first_page].allocated;
2759 /* Now work forward until the end of this contiguous area is found,
2760 * marking all pages as dont_move. */
2761 for (i = first_page; ;i++) {
2762 gc_assert(page_table[i].allocated == region_allocation);
2764 /* Mark the page static. */
2765 page_table[i].dont_move = 1;
2767 /* Move the page to the new_space. XX I'd rather not do this
2768 * but the GC logic is not quite able to copy with the static
2769 * pages remaining in the from space. This also requires the
2770 * generation bytes_allocated counters be updated. */
2771 page_table[i].gen = new_space;
2772 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2773 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2775 /* It is essential that the pages are not write protected as
2776 * they may have pointers into the old-space which need
2777 * scavenging. They shouldn't be write protected at this
2778 * stage. */
2779 gc_assert(!page_table[i].write_protected);
2781 /* Check whether this is the last page in this contiguous block.. */
2782 if ((page_table[i].bytes_used < PAGE_BYTES)
2783 /* ..or it is PAGE_BYTES and is the last in the block */
2784 || page_free_p(i+1)
2785 || (page_table[i+1].bytes_used == 0) /* next page free */
2786 || (page_table[i+1].gen != from_space) /* diff. gen */
2787 || (page_table[i+1].region_start_offset == 0))
2788 break;
2791 /* Check that the page is now static. */
2792 gc_assert(page_table[addr_page_index].dont_move != 0);
2795 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2798 /* If the given page is not write-protected, then scan it for pointers
2799 * to younger generations or the top temp. generation, if no
2800 * suspicious pointers are found then the page is write-protected.
2802 * Care is taken to check for pointers to the current gc_alloc()
2803 * region if it is a younger generation or the temp. generation. This
2804 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2805 * the gc_alloc_generation does not need to be checked as this is only
2806 * called from scavenge_generation() when the gc_alloc generation is
2807 * younger, so it just checks if there is a pointer to the current
2808 * region.
2810 * We return 1 if the page was write-protected, else 0. */
2811 static int
2812 update_page_write_prot(page_index_t page)
2814 generation_index_t gen = page_table[page].gen;
2815 long j;
2816 int wp_it = 1;
2817 void **page_addr = (void **)page_address(page);
2818 long num_words = page_table[page].bytes_used / N_WORD_BYTES;
2820 /* Shouldn't be a free page. */
2821 gc_assert(page_allocated_p(page));
2822 gc_assert(page_table[page].bytes_used != 0);
2824 /* Skip if it's already write-protected, pinned, or unboxed */
2825 if (page_table[page].write_protected
2826 /* FIXME: What's the reason for not write-protecting pinned pages? */
2827 || page_table[page].dont_move
2828 || page_unboxed_p(page))
2829 return (0);
2831 /* Scan the page for pointers to younger generations or the
2832 * top temp. generation. */
2834 for (j = 0; j < num_words; j++) {
2835 void *ptr = *(page_addr+j);
2836 page_index_t index = find_page_index(ptr);
2838 /* Check that it's in the dynamic space */
2839 if (index != -1)
2840 if (/* Does it point to a younger or the temp. generation? */
2841 (page_allocated_p(index)
2842 && (page_table[index].bytes_used != 0)
2843 && ((page_table[index].gen < gen)
2844 || (page_table[index].gen == SCRATCH_GENERATION)))
2846 /* Or does it point within a current gc_alloc() region? */
2847 || ((boxed_region.start_addr <= ptr)
2848 && (ptr <= boxed_region.free_pointer))
2849 || ((unboxed_region.start_addr <= ptr)
2850 && (ptr <= unboxed_region.free_pointer))) {
2851 wp_it = 0;
2852 break;
2856 if (wp_it == 1) {
2857 /* Write-protect the page. */
2858 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2860 os_protect((void *)page_addr,
2861 PAGE_BYTES,
2862 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2864 /* Note the page as protected in the page tables. */
2865 page_table[page].write_protected = 1;
2868 return (wp_it);
2871 /* Scavenge all generations from FROM to TO, inclusive, except for
2872 * new_space which needs special handling, as new objects may be
2873 * added which are not checked here - use scavenge_newspace generation.
2875 * Write-protected pages should not have any pointers to the
2876 * from_space so do need scavenging; thus write-protected pages are
2877 * not always scavenged. There is some code to check that these pages
2878 * are not written; but to check fully the write-protected pages need
2879 * to be scavenged by disabling the code to skip them.
2881 * Under the current scheme when a generation is GCed the younger
2882 * generations will be empty. So, when a generation is being GCed it
2883 * is only necessary to scavenge the older generations for pointers
2884 * not the younger. So a page that does not have pointers to younger
2885 * generations does not need to be scavenged.
2887 * The write-protection can be used to note pages that don't have
2888 * pointers to younger pages. But pages can be written without having
2889 * pointers to younger generations. After the pages are scavenged here
2890 * they can be scanned for pointers to younger generations and if
2891 * there are none the page can be write-protected.
2893 * One complication is when the newspace is the top temp. generation.
2895 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2896 * that none were written, which they shouldn't be as they should have
2897 * no pointers to younger generations. This breaks down for weak
2898 * pointers as the objects contain a link to the next and are written
2899 * if a weak pointer is scavenged. Still it's a useful check. */
2900 static void
2901 scavenge_generations(generation_index_t from, generation_index_t to)
2903 page_index_t i;
2904 int num_wp = 0;
2906 #define SC_GEN_CK 0
2907 #if SC_GEN_CK
2908 /* Clear the write_protected_cleared flags on all pages. */
2909 for (i = 0; i < page_table_pages; i++)
2910 page_table[i].write_protected_cleared = 0;
2911 #endif
2913 for (i = 0; i < last_free_page; i++) {
2914 generation_index_t generation = page_table[i].gen;
2915 if (page_boxed_p(i)
2916 && (page_table[i].bytes_used != 0)
2917 && (generation != new_space)
2918 && (generation >= from)
2919 && (generation <= to)) {
2920 page_index_t last_page,j;
2921 int write_protected=1;
2923 /* This should be the start of a region */
2924 gc_assert(page_table[i].region_start_offset == 0);
2926 /* Now work forward until the end of the region */
2927 for (last_page = i; ; last_page++) {
2928 write_protected =
2929 write_protected && page_table[last_page].write_protected;
2930 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2931 /* Or it is PAGE_BYTES and is the last in the block */
2932 || (!page_boxed_p(last_page+1))
2933 || (page_table[last_page+1].bytes_used == 0)
2934 || (page_table[last_page+1].gen != generation)
2935 || (page_table[last_page+1].region_start_offset == 0))
2936 break;
2938 if (!write_protected) {
2939 scavenge(page_address(i),
2940 ((unsigned long)(page_table[last_page].bytes_used
2941 + npage_bytes(last_page-i)))
2942 /N_WORD_BYTES);
2944 /* Now scan the pages and write protect those that
2945 * don't have pointers to younger generations. */
2946 if (enable_page_protection) {
2947 for (j = i; j <= last_page; j++) {
2948 num_wp += update_page_write_prot(j);
2951 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2952 FSHOW((stderr,
2953 "/write protected %d pages within generation %d\n",
2954 num_wp, generation));
2957 i = last_page;
2961 #if SC_GEN_CK
2962 /* Check that none of the write_protected pages in this generation
2963 * have been written to. */
2964 for (i = 0; i < page_table_pages; i++) {
2965 if (page_allocated_p(i)
2966 && (page_table[i].bytes_used != 0)
2967 && (page_table[i].gen == generation)
2968 && (page_table[i].write_protected_cleared != 0)) {
2969 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2970 FSHOW((stderr,
2971 "/page bytes_used=%d region_start_offset=%lu dont_move=%d\n",
2972 page_table[i].bytes_used,
2973 page_table[i].region_start_offset,
2974 page_table[i].dont_move));
2975 lose("write to protected page %d in scavenge_generation()\n", i);
2978 #endif
2982 /* Scavenge a newspace generation. As it is scavenged new objects may
2983 * be allocated to it; these will also need to be scavenged. This
2984 * repeats until there are no more objects unscavenged in the
2985 * newspace generation.
2987 * To help improve the efficiency, areas written are recorded by
2988 * gc_alloc() and only these scavenged. Sometimes a little more will be
2989 * scavenged, but this causes no harm. An easy check is done that the
2990 * scavenged bytes equals the number allocated in the previous
2991 * scavenge.
2993 * Write-protected pages are not scanned except if they are marked
2994 * dont_move in which case they may have been promoted and still have
2995 * pointers to the from space.
2997 * Write-protected pages could potentially be written by alloc however
2998 * to avoid having to handle re-scavenging of write-protected pages
2999 * gc_alloc() does not write to write-protected pages.
3001 * New areas of objects allocated are recorded alternatively in the two
3002 * new_areas arrays below. */
3003 static struct new_area new_areas_1[NUM_NEW_AREAS];
3004 static struct new_area new_areas_2[NUM_NEW_AREAS];
3006 /* Do one full scan of the new space generation. This is not enough to
3007 * complete the job as new objects may be added to the generation in
3008 * the process which are not scavenged. */
3009 static void
3010 scavenge_newspace_generation_one_scan(generation_index_t generation)
3012 page_index_t i;
3014 FSHOW((stderr,
3015 "/starting one full scan of newspace generation %d\n",
3016 generation));
3017 for (i = 0; i < last_free_page; i++) {
3018 /* Note that this skips over open regions when it encounters them. */
3019 if (page_boxed_p(i)
3020 && (page_table[i].bytes_used != 0)
3021 && (page_table[i].gen == generation)
3022 && ((page_table[i].write_protected == 0)
3023 /* (This may be redundant as write_protected is now
3024 * cleared before promotion.) */
3025 || (page_table[i].dont_move == 1))) {
3026 page_index_t last_page;
3027 int all_wp=1;
3029 /* The scavenge will start at the region_start_offset of
3030 * page i.
3032 * We need to find the full extent of this contiguous
3033 * block in case objects span pages.
3035 * Now work forward until the end of this contiguous area
3036 * is found. A small area is preferred as there is a
3037 * better chance of its pages being write-protected. */
3038 for (last_page = i; ;last_page++) {
3039 /* If all pages are write-protected and movable,
3040 * then no need to scavenge */
3041 all_wp=all_wp && page_table[last_page].write_protected &&
3042 !page_table[last_page].dont_move;
3044 /* Check whether this is the last page in this
3045 * contiguous block */
3046 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3047 /* Or it is PAGE_BYTES and is the last in the block */
3048 || (!page_boxed_p(last_page+1))
3049 || (page_table[last_page+1].bytes_used == 0)
3050 || (page_table[last_page+1].gen != generation)
3051 || (page_table[last_page+1].region_start_offset == 0))
3052 break;
3055 /* Do a limited check for write-protected pages. */
3056 if (!all_wp) {
3057 long nwords = (((unsigned long)
3058 (page_table[last_page].bytes_used
3059 + npage_bytes(last_page-i)
3060 + page_table[i].region_start_offset))
3061 / N_WORD_BYTES);
3062 new_areas_ignore_page = last_page;
3064 scavenge(page_region_start(i), nwords);
3067 i = last_page;
3070 FSHOW((stderr,
3071 "/done with one full scan of newspace generation %d\n",
3072 generation));
3075 /* Do a complete scavenge of the newspace generation. */
3076 static void
3077 scavenge_newspace_generation(generation_index_t generation)
3079 long i;
3081 /* the new_areas array currently being written to by gc_alloc() */
3082 struct new_area (*current_new_areas)[] = &new_areas_1;
3083 long current_new_areas_index;
3085 /* the new_areas created by the previous scavenge cycle */
3086 struct new_area (*previous_new_areas)[] = NULL;
3087 long previous_new_areas_index;
3089 /* Flush the current regions updating the tables. */
3090 gc_alloc_update_all_page_tables();
3092 /* Turn on the recording of new areas by gc_alloc(). */
3093 new_areas = current_new_areas;
3094 new_areas_index = 0;
3096 /* Don't need to record new areas that get scavenged anyway during
3097 * scavenge_newspace_generation_one_scan. */
3098 record_new_objects = 1;
3100 /* Start with a full scavenge. */
3101 scavenge_newspace_generation_one_scan(generation);
3103 /* Record all new areas now. */
3104 record_new_objects = 2;
3106 /* Give a chance to weak hash tables to make other objects live.
3107 * FIXME: The algorithm implemented here for weak hash table gcing
3108 * is O(W^2+N) as Bruno Haible warns in
3109 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
3110 * see "Implementation 2". */
3111 scav_weak_hash_tables();
3113 /* Flush the current regions updating the tables. */
3114 gc_alloc_update_all_page_tables();
3116 /* Grab new_areas_index. */
3117 current_new_areas_index = new_areas_index;
3119 /*FSHOW((stderr,
3120 "The first scan is finished; current_new_areas_index=%d.\n",
3121 current_new_areas_index));*/
3123 while (current_new_areas_index > 0) {
3124 /* Move the current to the previous new areas */
3125 previous_new_areas = current_new_areas;
3126 previous_new_areas_index = current_new_areas_index;
3128 /* Scavenge all the areas in previous new areas. Any new areas
3129 * allocated are saved in current_new_areas. */
3131 /* Allocate an array for current_new_areas; alternating between
3132 * new_areas_1 and 2 */
3133 if (previous_new_areas == &new_areas_1)
3134 current_new_areas = &new_areas_2;
3135 else
3136 current_new_areas = &new_areas_1;
3138 /* Set up for gc_alloc(). */
3139 new_areas = current_new_areas;
3140 new_areas_index = 0;
3142 /* Check whether previous_new_areas had overflowed. */
3143 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3145 /* New areas of objects allocated have been lost so need to do a
3146 * full scan to be sure! If this becomes a problem try
3147 * increasing NUM_NEW_AREAS. */
3148 if (gencgc_verbose)
3149 SHOW("new_areas overflow, doing full scavenge");
3151 /* Don't need to record new areas that get scavenged
3152 * anyway during scavenge_newspace_generation_one_scan. */
3153 record_new_objects = 1;
3155 scavenge_newspace_generation_one_scan(generation);
3157 /* Record all new areas now. */
3158 record_new_objects = 2;
3160 scav_weak_hash_tables();
3162 /* Flush the current regions updating the tables. */
3163 gc_alloc_update_all_page_tables();
3165 } else {
3167 /* Work through previous_new_areas. */
3168 for (i = 0; i < previous_new_areas_index; i++) {
3169 page_index_t page = (*previous_new_areas)[i].page;
3170 size_t offset = (*previous_new_areas)[i].offset;
3171 size_t size = (*previous_new_areas)[i].size / N_WORD_BYTES;
3172 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
3173 scavenge(page_address(page)+offset, size);
3176 scav_weak_hash_tables();
3178 /* Flush the current regions updating the tables. */
3179 gc_alloc_update_all_page_tables();
3182 current_new_areas_index = new_areas_index;
3184 /*FSHOW((stderr,
3185 "The re-scan has finished; current_new_areas_index=%d.\n",
3186 current_new_areas_index));*/
3189 /* Turn off recording of areas allocated by gc_alloc(). */
3190 record_new_objects = 0;
3192 #if SC_NS_GEN_CK
3193 /* Check that none of the write_protected pages in this generation
3194 * have been written to. */
3195 for (i = 0; i < page_table_pages; i++) {
3196 if (page_allocated_p(i)
3197 && (page_table[i].bytes_used != 0)
3198 && (page_table[i].gen == generation)
3199 && (page_table[i].write_protected_cleared != 0)
3200 && (page_table[i].dont_move == 0)) {
3201 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
3202 i, generation, page_table[i].dont_move);
3205 #endif
3208 /* Un-write-protect all the pages in from_space. This is done at the
3209 * start of a GC else there may be many page faults while scavenging
3210 * the newspace (I've seen drive the system time to 99%). These pages
3211 * would need to be unprotected anyway before unmapping in
3212 * free_oldspace; not sure what effect this has on paging.. */
3213 static void
3214 unprotect_oldspace(void)
3216 page_index_t i;
3218 for (i = 0; i < last_free_page; i++) {
3219 if (page_allocated_p(i)
3220 && (page_table[i].bytes_used != 0)
3221 && (page_table[i].gen == from_space)) {
3222 void *page_start;
3224 page_start = (void *)page_address(i);
3226 /* Remove any write-protection. We should be able to rely
3227 * on the write-protect flag to avoid redundant calls. */
3228 if (page_table[i].write_protected) {
3229 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3230 page_table[i].write_protected = 0;
3236 /* Work through all the pages and free any in from_space. This
3237 * assumes that all objects have been copied or promoted to an older
3238 * generation. Bytes_allocated and the generation bytes_allocated
3239 * counter are updated. The number of bytes freed is returned. */
3240 static unsigned long
3241 free_oldspace(void)
3243 unsigned long bytes_freed = 0;
3244 page_index_t first_page, last_page;
3246 first_page = 0;
3248 do {
3249 /* Find a first page for the next region of pages. */
3250 while ((first_page < last_free_page)
3251 && (page_free_p(first_page)
3252 || (page_table[first_page].bytes_used == 0)
3253 || (page_table[first_page].gen != from_space)))
3254 first_page++;
3256 if (first_page >= last_free_page)
3257 break;
3259 /* Find the last page of this region. */
3260 last_page = first_page;
3262 do {
3263 /* Free the page. */
3264 bytes_freed += page_table[last_page].bytes_used;
3265 generations[page_table[last_page].gen].bytes_allocated -=
3266 page_table[last_page].bytes_used;
3267 page_table[last_page].allocated = FREE_PAGE_FLAG;
3268 page_table[last_page].bytes_used = 0;
3270 /* Remove any write-protection. We should be able to rely
3271 * on the write-protect flag to avoid redundant calls. */
3273 void *page_start = (void *)page_address(last_page);
3275 if (page_table[last_page].write_protected) {
3276 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3277 page_table[last_page].write_protected = 0;
3280 last_page++;
3282 while ((last_page < last_free_page)
3283 && page_allocated_p(last_page)
3284 && (page_table[last_page].bytes_used != 0)
3285 && (page_table[last_page].gen == from_space));
3287 #ifdef READ_PROTECT_FREE_PAGES
3288 os_protect(page_address(first_page),
3289 npage_bytes(last_page-first_page),
3290 OS_VM_PROT_NONE);
3291 #endif
3292 first_page = last_page;
3293 } while (first_page < last_free_page);
3295 bytes_allocated -= bytes_freed;
3296 return bytes_freed;
3299 #if 0
3300 /* Print some information about a pointer at the given address. */
3301 static void
3302 print_ptr(lispobj *addr)
3304 /* If addr is in the dynamic space then out the page information. */
3305 page_index_t pi1 = find_page_index((void*)addr);
3307 if (pi1 != -1)
3308 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %lu dont_move %d\n",
3309 (unsigned long) addr,
3310 pi1,
3311 page_table[pi1].allocated,
3312 page_table[pi1].gen,
3313 page_table[pi1].bytes_used,
3314 page_table[pi1].region_start_offset,
3315 page_table[pi1].dont_move);
3316 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3317 *(addr-4),
3318 *(addr-3),
3319 *(addr-2),
3320 *(addr-1),
3321 *(addr-0),
3322 *(addr+1),
3323 *(addr+2),
3324 *(addr+3),
3325 *(addr+4));
3327 #endif
3329 static void
3330 verify_space(lispobj *start, size_t words)
3332 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3333 int is_in_readonly_space =
3334 (READ_ONLY_SPACE_START <= (unsigned long)start &&
3335 (unsigned long)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3337 while (words > 0) {
3338 size_t count = 1;
3339 lispobj thing = *(lispobj*)start;
3341 if (is_lisp_pointer(thing)) {
3342 page_index_t page_index = find_page_index((void*)thing);
3343 long to_readonly_space =
3344 (READ_ONLY_SPACE_START <= thing &&
3345 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3346 long to_static_space =
3347 (STATIC_SPACE_START <= thing &&
3348 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3350 /* Does it point to the dynamic space? */
3351 if (page_index != -1) {
3352 /* If it's within the dynamic space it should point to a used
3353 * page. XX Could check the offset too. */
3354 if (page_allocated_p(page_index)
3355 && (page_table[page_index].bytes_used == 0))
3356 lose ("Ptr %x @ %x sees free page.\n", thing, start);
3357 /* Check that it doesn't point to a forwarding pointer! */
3358 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3359 lose("Ptr %x @ %x sees forwarding ptr.\n", thing, start);
3361 /* Check that its not in the RO space as it would then be a
3362 * pointer from the RO to the dynamic space. */
3363 if (is_in_readonly_space) {
3364 lose("ptr to dynamic space %x from RO space %x\n",
3365 thing, start);
3367 /* Does it point to a plausible object? This check slows
3368 * it down a lot (so it's commented out).
3370 * "a lot" is serious: it ate 50 minutes cpu time on
3371 * my duron 950 before I came back from lunch and
3372 * killed it.
3374 * FIXME: Add a variable to enable this
3375 * dynamically. */
3377 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3378 lose("ptr %x to invalid object %x\n", thing, start);
3381 } else {
3382 /* Verify that it points to another valid space. */
3383 if (!to_readonly_space && !to_static_space) {
3384 lose("Ptr %x @ %x sees junk.\n", thing, start);
3387 } else {
3388 if (!(fixnump(thing))) {
3389 /* skip fixnums */
3390 switch(widetag_of(*start)) {
3392 /* boxed objects */
3393 case SIMPLE_VECTOR_WIDETAG:
3394 case RATIO_WIDETAG:
3395 case COMPLEX_WIDETAG:
3396 case SIMPLE_ARRAY_WIDETAG:
3397 case COMPLEX_BASE_STRING_WIDETAG:
3398 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3399 case COMPLEX_CHARACTER_STRING_WIDETAG:
3400 #endif
3401 case COMPLEX_VECTOR_NIL_WIDETAG:
3402 case COMPLEX_BIT_VECTOR_WIDETAG:
3403 case COMPLEX_VECTOR_WIDETAG:
3404 case COMPLEX_ARRAY_WIDETAG:
3405 case CLOSURE_HEADER_WIDETAG:
3406 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3407 case VALUE_CELL_HEADER_WIDETAG:
3408 case SYMBOL_HEADER_WIDETAG:
3409 case CHARACTER_WIDETAG:
3410 #if N_WORD_BITS == 64
3411 case SINGLE_FLOAT_WIDETAG:
3412 #endif
3413 case UNBOUND_MARKER_WIDETAG:
3414 case FDEFN_WIDETAG:
3415 count = 1;
3416 break;
3418 case INSTANCE_HEADER_WIDETAG:
3420 lispobj nuntagged;
3421 long ntotal = HeaderValue(thing);
3422 lispobj layout = ((struct instance *)start)->slots[0];
3423 if (!layout) {
3424 count = 1;
3425 break;
3427 nuntagged = ((struct layout *)
3428 native_pointer(layout))->n_untagged_slots;
3429 verify_space(start + 1,
3430 ntotal - fixnum_value(nuntagged));
3431 count = ntotal + 1;
3432 break;
3434 case CODE_HEADER_WIDETAG:
3436 lispobj object = *start;
3437 struct code *code;
3438 long nheader_words, ncode_words, nwords;
3439 lispobj fheaderl;
3440 struct simple_fun *fheaderp;
3442 code = (struct code *) start;
3444 /* Check that it's not in the dynamic space.
3445 * FIXME: Isn't is supposed to be OK for code
3446 * objects to be in the dynamic space these days? */
3447 if (is_in_dynamic_space
3448 /* It's ok if it's byte compiled code. The trace
3449 * table offset will be a fixnum if it's x86
3450 * compiled code - check.
3452 * FIXME: #^#@@! lack of abstraction here..
3453 * This line can probably go away now that
3454 * there's no byte compiler, but I've got
3455 * too much to worry about right now to try
3456 * to make sure. -- WHN 2001-10-06 */
3457 && fixnump(code->trace_table_offset)
3458 /* Only when enabled */
3459 && verify_dynamic_code_check) {
3460 FSHOW((stderr,
3461 "/code object at %x in the dynamic space\n",
3462 start));
3465 ncode_words = fixnum_value(code->code_size);
3466 nheader_words = HeaderValue(object);
3467 nwords = ncode_words + nheader_words;
3468 nwords = CEILING(nwords, 2);
3469 /* Scavenge the boxed section of the code data block */
3470 verify_space(start + 1, nheader_words - 1);
3472 /* Scavenge the boxed section of each function
3473 * object in the code data block. */
3474 fheaderl = code->entry_points;
3475 while (fheaderl != NIL) {
3476 fheaderp =
3477 (struct simple_fun *) native_pointer(fheaderl);
3478 gc_assert(widetag_of(fheaderp->header) ==
3479 SIMPLE_FUN_HEADER_WIDETAG);
3480 verify_space(&fheaderp->name, 1);
3481 verify_space(&fheaderp->arglist, 1);
3482 verify_space(&fheaderp->type, 1);
3483 fheaderl = fheaderp->next;
3485 count = nwords;
3486 break;
3489 /* unboxed objects */
3490 case BIGNUM_WIDETAG:
3491 #if N_WORD_BITS != 64
3492 case SINGLE_FLOAT_WIDETAG:
3493 #endif
3494 case DOUBLE_FLOAT_WIDETAG:
3495 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3496 case LONG_FLOAT_WIDETAG:
3497 #endif
3498 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3499 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3500 #endif
3501 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3502 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3503 #endif
3504 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3505 case COMPLEX_LONG_FLOAT_WIDETAG:
3506 #endif
3507 case SIMPLE_BASE_STRING_WIDETAG:
3508 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3509 case SIMPLE_CHARACTER_STRING_WIDETAG:
3510 #endif
3511 case SIMPLE_BIT_VECTOR_WIDETAG:
3512 case SIMPLE_ARRAY_NIL_WIDETAG:
3513 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3514 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3515 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3516 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3517 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3518 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3519 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
3520 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
3521 #endif
3522 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3523 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3524 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
3525 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
3526 #endif
3527 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3528 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3529 #endif
3530 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3531 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3532 #endif
3533 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3534 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3535 #endif
3536 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3537 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3538 #endif
3539 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3540 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3541 #endif
3542 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3543 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3544 #endif
3545 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
3546 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
3547 #endif
3548 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3549 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3550 #endif
3551 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3552 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3553 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3554 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3555 #endif
3556 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3557 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3558 #endif
3559 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3560 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3561 #endif
3562 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3563 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3564 #endif
3565 case SAP_WIDETAG:
3566 case WEAK_POINTER_WIDETAG:
3567 #ifdef LUTEX_WIDETAG
3568 case LUTEX_WIDETAG:
3569 #endif
3570 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3571 case NO_TLS_VALUE_MARKER_WIDETAG:
3572 #endif
3573 count = (sizetab[widetag_of(*start)])(start);
3574 break;
3576 default:
3577 lose("Unhandled widetag 0x%x at 0x%x\n",
3578 widetag_of(*start), start);
3582 start += count;
3583 words -= count;
3587 static void
3588 verify_gc(void)
3590 /* FIXME: It would be nice to make names consistent so that
3591 * foo_size meant size *in* *bytes* instead of size in some
3592 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3593 * Some counts of lispobjs are called foo_count; it might be good
3594 * to grep for all foo_size and rename the appropriate ones to
3595 * foo_count. */
3596 long read_only_space_size =
3597 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3598 - (lispobj*)READ_ONLY_SPACE_START;
3599 long static_space_size =
3600 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3601 - (lispobj*)STATIC_SPACE_START;
3602 struct thread *th;
3603 for_each_thread(th) {
3604 long binding_stack_size =
3605 (lispobj*)get_binding_stack_pointer(th)
3606 - (lispobj*)th->binding_stack_start;
3607 verify_space(th->binding_stack_start, binding_stack_size);
3609 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3610 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3613 static void
3614 verify_generation(generation_index_t generation)
3616 page_index_t i;
3618 for (i = 0; i < last_free_page; i++) {
3619 if (page_allocated_p(i)
3620 && (page_table[i].bytes_used != 0)
3621 && (page_table[i].gen == generation)) {
3622 page_index_t last_page;
3623 int region_allocation = page_table[i].allocated;
3625 /* This should be the start of a contiguous block */
3626 gc_assert(page_table[i].region_start_offset == 0);
3628 /* Need to find the full extent of this contiguous block in case
3629 objects span pages. */
3631 /* Now work forward until the end of this contiguous area is
3632 found. */
3633 for (last_page = i; ;last_page++)
3634 /* Check whether this is the last page in this contiguous
3635 * block. */
3636 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3637 /* Or it is PAGE_BYTES and is the last in the block */
3638 || (page_table[last_page+1].allocated != region_allocation)
3639 || (page_table[last_page+1].bytes_used == 0)
3640 || (page_table[last_page+1].gen != generation)
3641 || (page_table[last_page+1].region_start_offset == 0))
3642 break;
3644 verify_space(page_address(i),
3645 ((unsigned long)
3646 (page_table[last_page].bytes_used
3647 + npage_bytes(last_page-i)))
3648 / N_WORD_BYTES);
3649 i = last_page;
3654 /* Check that all the free space is zero filled. */
3655 static void
3656 verify_zero_fill(void)
3658 page_index_t page;
3660 for (page = 0; page < last_free_page; page++) {
3661 if (page_free_p(page)) {
3662 /* The whole page should be zero filled. */
3663 long *start_addr = (long *)page_address(page);
3664 long size = 1024;
3665 long i;
3666 for (i = 0; i < size; i++) {
3667 if (start_addr[i] != 0) {
3668 lose("free page not zero at %x\n", start_addr + i);
3671 } else {
3672 long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
3673 if (free_bytes > 0) {
3674 long *start_addr = (long *)((unsigned long)page_address(page)
3675 + page_table[page].bytes_used);
3676 long size = free_bytes / N_WORD_BYTES;
3677 long i;
3678 for (i = 0; i < size; i++) {
3679 if (start_addr[i] != 0) {
3680 lose("free region not zero at %x\n", start_addr + i);
3688 /* External entry point for verify_zero_fill */
3689 void
3690 gencgc_verify_zero_fill(void)
3692 /* Flush the alloc regions updating the tables. */
3693 gc_alloc_update_all_page_tables();
3694 SHOW("verifying zero fill");
3695 verify_zero_fill();
3698 static void
3699 verify_dynamic_space(void)
3701 generation_index_t i;
3703 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3704 verify_generation(i);
3706 if (gencgc_enable_verify_zero_fill)
3707 verify_zero_fill();
3710 /* Write-protect all the dynamic boxed pages in the given generation. */
3711 static void
3712 write_protect_generation_pages(generation_index_t generation)
3714 page_index_t start;
3716 gc_assert(generation < SCRATCH_GENERATION);
3718 for (start = 0; start < last_free_page; start++) {
3719 if (protect_page_p(start, generation)) {
3720 void *page_start;
3721 page_index_t last;
3723 /* Note the page as protected in the page tables. */
3724 page_table[start].write_protected = 1;
3726 for (last = start + 1; last < last_free_page; last++) {
3727 if (!protect_page_p(last, generation))
3728 break;
3729 page_table[last].write_protected = 1;
3732 page_start = (void *)page_address(start);
3734 os_protect(page_start,
3735 npage_bytes(last - start),
3736 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3738 start = last;
3742 if (gencgc_verbose > 1) {
3743 FSHOW((stderr,
3744 "/write protected %d of %d pages in generation %d\n",
3745 count_write_protect_generation_pages(generation),
3746 count_generation_pages(generation),
3747 generation));
3751 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3753 static void
3754 scavenge_control_stack()
3756 unsigned long control_stack_size;
3758 /* This is going to be a big problem when we try to port threads
3759 * to PPC... CLH */
3760 struct thread *th = arch_os_get_current_thread();
3761 lispobj *control_stack =
3762 (lispobj *)(th->control_stack_start);
3764 control_stack_size = current_control_stack_pointer - control_stack;
3765 scavenge(control_stack, control_stack_size);
3768 /* Scavenging Interrupt Contexts */
3770 static int boxed_registers[] = BOXED_REGISTERS;
3772 static void
3773 scavenge_interrupt_context(os_context_t * context)
3775 int i;
3777 #ifdef reg_LIP
3778 unsigned long lip;
3779 unsigned long lip_offset;
3780 int lip_register_pair;
3781 #endif
3782 unsigned long pc_code_offset;
3784 #ifdef ARCH_HAS_LINK_REGISTER
3785 unsigned long lr_code_offset;
3786 #endif
3787 #ifdef ARCH_HAS_NPC_REGISTER
3788 unsigned long npc_code_offset;
3789 #endif
3791 #ifdef reg_LIP
3792 /* Find the LIP's register pair and calculate it's offset */
3793 /* before we scavenge the context. */
3796 * I (RLT) think this is trying to find the boxed register that is
3797 * closest to the LIP address, without going past it. Usually, it's
3798 * reg_CODE or reg_LRA. But sometimes, nothing can be found.
3800 lip = *os_context_register_addr(context, reg_LIP);
3801 lip_offset = 0x7FFFFFFF;
3802 lip_register_pair = -1;
3803 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3804 unsigned long reg;
3805 long offset;
3806 int index;
3808 index = boxed_registers[i];
3809 reg = *os_context_register_addr(context, index);
3810 if ((reg & ~((1L<<N_LOWTAG_BITS)-1)) <= lip) {
3811 offset = lip - reg;
3812 if (offset < lip_offset) {
3813 lip_offset = offset;
3814 lip_register_pair = index;
3818 #endif /* reg_LIP */
3820 /* Compute the PC's offset from the start of the CODE */
3821 /* register. */
3822 pc_code_offset = *os_context_pc_addr(context)
3823 - *os_context_register_addr(context, reg_CODE);
3824 #ifdef ARCH_HAS_NPC_REGISTER
3825 npc_code_offset = *os_context_npc_addr(context)
3826 - *os_context_register_addr(context, reg_CODE);
3827 #endif /* ARCH_HAS_NPC_REGISTER */
3829 #ifdef ARCH_HAS_LINK_REGISTER
3830 lr_code_offset =
3831 *os_context_lr_addr(context) -
3832 *os_context_register_addr(context, reg_CODE);
3833 #endif
3835 /* Scanvenge all boxed registers in the context. */
3836 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3837 int index;
3838 lispobj foo;
3840 index = boxed_registers[i];
3841 foo = *os_context_register_addr(context, index);
3842 scavenge(&foo, 1);
3843 *os_context_register_addr(context, index) = foo;
3845 scavenge((lispobj*) &(*os_context_register_addr(context, index)), 1);
3848 #ifdef reg_LIP
3849 /* Fix the LIP */
3852 * But what happens if lip_register_pair is -1?
3853 * *os_context_register_addr on Solaris (see
3854 * solaris_register_address in solaris-os.c) will return
3855 * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
3856 * that what we really want? My guess is that that is not what we
3857 * want, so if lip_register_pair is -1, we don't touch reg_LIP at
3858 * all. But maybe it doesn't really matter if LIP is trashed?
3860 if (lip_register_pair >= 0) {
3861 *os_context_register_addr(context, reg_LIP) =
3862 *os_context_register_addr(context, lip_register_pair)
3863 + lip_offset;
3865 #endif /* reg_LIP */
3867 /* Fix the PC if it was in from space */
3868 if (from_space_p(*os_context_pc_addr(context)))
3869 *os_context_pc_addr(context) =
3870 *os_context_register_addr(context, reg_CODE) + pc_code_offset;
3872 #ifdef ARCH_HAS_LINK_REGISTER
3873 /* Fix the LR ditto; important if we're being called from
3874 * an assembly routine that expects to return using blr, otherwise
3875 * harmless */
3876 if (from_space_p(*os_context_lr_addr(context)))
3877 *os_context_lr_addr(context) =
3878 *os_context_register_addr(context, reg_CODE) + lr_code_offset;
3879 #endif
3881 #ifdef ARCH_HAS_NPC_REGISTER
3882 if (from_space_p(*os_context_npc_addr(context)))
3883 *os_context_npc_addr(context) =
3884 *os_context_register_addr(context, reg_CODE) + npc_code_offset;
3885 #endif /* ARCH_HAS_NPC_REGISTER */
3888 void
3889 scavenge_interrupt_contexts(void)
3891 int i, index;
3892 os_context_t *context;
3894 struct thread *th=arch_os_get_current_thread();
3896 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,0));
3898 #if defined(DEBUG_PRINT_CONTEXT_INDEX)
3899 printf("Number of active contexts: %d\n", index);
3900 #endif
3902 for (i = 0; i < index; i++) {
3903 context = th->interrupt_contexts[i];
3904 scavenge_interrupt_context(context);
3908 #endif
3910 #if defined(LISP_FEATURE_SB_THREAD)
3911 static void
3912 preserve_context_registers (os_context_t *c)
3914 void **ptr;
3915 /* On Darwin the signal context isn't a contiguous block of memory,
3916 * so just preserve_pointering its contents won't be sufficient.
3918 #if defined(LISP_FEATURE_DARWIN)
3919 #if defined LISP_FEATURE_X86
3920 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3921 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3922 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3923 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3924 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3925 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3926 preserve_pointer((void*)*os_context_pc_addr(c));
3927 #elif defined LISP_FEATURE_X86_64
3928 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3929 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3930 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3931 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3932 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3933 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3934 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3935 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3936 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3937 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3938 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3939 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3940 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3941 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3942 preserve_pointer((void*)*os_context_pc_addr(c));
3943 #else
3944 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3945 #endif
3946 #endif
3947 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3948 preserve_pointer(*ptr);
3951 #endif
3953 /* Garbage collect a generation. If raise is 0 then the remains of the
3954 * generation are not raised to the next generation. */
3955 static void
3956 garbage_collect_generation(generation_index_t generation, int raise)
3958 unsigned long bytes_freed;
3959 page_index_t i;
3960 unsigned long static_space_size;
3961 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3962 struct thread *th;
3963 #endif
3964 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
3966 /* The oldest generation can't be raised. */
3967 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
3969 /* Check if weak hash tables were processed in the previous GC. */
3970 gc_assert(weak_hash_tables == NULL);
3972 /* Initialize the weak pointer list. */
3973 weak_pointers = NULL;
3975 #ifdef LUTEX_WIDETAG
3976 unmark_lutexes(generation);
3977 #endif
3979 /* When a generation is not being raised it is transported to a
3980 * temporary generation (NUM_GENERATIONS), and lowered when
3981 * done. Set up this new generation. There should be no pages
3982 * allocated to it yet. */
3983 if (!raise) {
3984 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3987 /* Set the global src and dest. generations */
3988 from_space = generation;
3989 if (raise)
3990 new_space = generation+1;
3991 else
3992 new_space = SCRATCH_GENERATION;
3994 /* Change to a new space for allocation, resetting the alloc_start_page */
3995 gc_alloc_generation = new_space;
3996 generations[new_space].alloc_start_page = 0;
3997 generations[new_space].alloc_unboxed_start_page = 0;
3998 generations[new_space].alloc_large_start_page = 0;
3999 generations[new_space].alloc_large_unboxed_start_page = 0;
4001 /* Before any pointers are preserved, the dont_move flags on the
4002 * pages need to be cleared. */
4003 for (i = 0; i < last_free_page; i++)
4004 if(page_table[i].gen==from_space)
4005 page_table[i].dont_move = 0;
4007 /* Un-write-protect the old-space pages. This is essential for the
4008 * promoted pages as they may contain pointers into the old-space
4009 * which need to be scavenged. It also helps avoid unnecessary page
4010 * faults as forwarding pointers are written into them. They need to
4011 * be un-protected anyway before unmapping later. */
4012 unprotect_oldspace();
4014 /* Scavenge the stacks' conservative roots. */
4016 /* there are potentially two stacks for each thread: the main
4017 * stack, which may contain Lisp pointers, and the alternate stack.
4018 * We don't ever run Lisp code on the altstack, but it may
4019 * host a sigcontext with lisp objects in it */
4021 /* what we need to do: (1) find the stack pointer for the main
4022 * stack; scavenge it (2) find the interrupt context on the
4023 * alternate stack that might contain lisp values, and scavenge
4024 * that */
4026 /* we assume that none of the preceding applies to the thread that
4027 * initiates GC. If you ever call GC from inside an altstack
4028 * handler, you will lose. */
4030 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
4031 /* And if we're saving a core, there's no point in being conservative. */
4032 if (conservative_stack) {
4033 for_each_thread(th) {
4034 void **ptr;
4035 void **esp=(void **)-1;
4036 #ifdef LISP_FEATURE_SB_THREAD
4037 long i,free;
4038 if(th==arch_os_get_current_thread()) {
4039 /* Somebody is going to burn in hell for this, but casting
4040 * it in two steps shuts gcc up about strict aliasing. */
4041 esp = (void **)((void *)&raise);
4042 } else {
4043 void **esp1;
4044 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
4045 for(i=free-1;i>=0;i--) {
4046 os_context_t *c=th->interrupt_contexts[i];
4047 esp1 = (void **) *os_context_register_addr(c,reg_SP);
4048 if (esp1>=(void **)th->control_stack_start &&
4049 esp1<(void **)th->control_stack_end) {
4050 if(esp1<esp) esp=esp1;
4051 preserve_context_registers(c);
4055 #else
4056 esp = (void **)((void *)&raise);
4057 #endif
4058 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
4059 preserve_pointer(*ptr);
4063 #endif
4065 #ifdef QSHOW
4066 if (gencgc_verbose > 1) {
4067 long num_dont_move_pages = count_dont_move_pages();
4068 fprintf(stderr,
4069 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
4070 num_dont_move_pages,
4071 npage_bytes(num_dont_move_pages);
4073 #endif
4075 /* Scavenge all the rest of the roots. */
4077 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
4079 * If not x86, we need to scavenge the interrupt context(s) and the
4080 * control stack.
4082 scavenge_interrupt_contexts();
4083 scavenge_control_stack();
4084 #endif
4086 /* Scavenge the Lisp functions of the interrupt handlers, taking
4087 * care to avoid SIG_DFL and SIG_IGN. */
4088 for (i = 0; i < NSIG; i++) {
4089 union interrupt_handler handler = interrupt_handlers[i];
4090 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
4091 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
4092 scavenge((lispobj *)(interrupt_handlers + i), 1);
4095 /* Scavenge the binding stacks. */
4097 struct thread *th;
4098 for_each_thread(th) {
4099 long len= (lispobj *)get_binding_stack_pointer(th) -
4100 th->binding_stack_start;
4101 scavenge((lispobj *) th->binding_stack_start,len);
4102 #ifdef LISP_FEATURE_SB_THREAD
4103 /* do the tls as well */
4104 len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
4105 (sizeof (struct thread))/(sizeof (lispobj));
4106 scavenge((lispobj *) (th+1),len);
4107 #endif
4111 /* The original CMU CL code had scavenge-read-only-space code
4112 * controlled by the Lisp-level variable
4113 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
4114 * wasn't documented under what circumstances it was useful or
4115 * safe to turn it on, so it's been turned off in SBCL. If you
4116 * want/need this functionality, and can test and document it,
4117 * please submit a patch. */
4118 #if 0
4119 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
4120 unsigned long read_only_space_size =
4121 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
4122 (lispobj*)READ_ONLY_SPACE_START;
4123 FSHOW((stderr,
4124 "/scavenge read only space: %d bytes\n",
4125 read_only_space_size * sizeof(lispobj)));
4126 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
4128 #endif
4130 /* Scavenge static space. */
4131 static_space_size =
4132 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
4133 (lispobj *)STATIC_SPACE_START;
4134 if (gencgc_verbose > 1) {
4135 FSHOW((stderr,
4136 "/scavenge static space: %d bytes\n",
4137 static_space_size * sizeof(lispobj)));
4139 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
4141 /* All generations but the generation being GCed need to be
4142 * scavenged. The new_space generation needs special handling as
4143 * objects may be moved in - it is handled separately below. */
4144 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
4146 /* Finally scavenge the new_space generation. Keep going until no
4147 * more objects are moved into the new generation */
4148 scavenge_newspace_generation(new_space);
4150 /* FIXME: I tried reenabling this check when debugging unrelated
4151 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
4152 * Since the current GC code seems to work well, I'm guessing that
4153 * this debugging code is just stale, but I haven't tried to
4154 * figure it out. It should be figured out and then either made to
4155 * work or just deleted. */
4156 #define RESCAN_CHECK 0
4157 #if RESCAN_CHECK
4158 /* As a check re-scavenge the newspace once; no new objects should
4159 * be found. */
4161 long old_bytes_allocated = bytes_allocated;
4162 long bytes_allocated;
4164 /* Start with a full scavenge. */
4165 scavenge_newspace_generation_one_scan(new_space);
4167 /* Flush the current regions, updating the tables. */
4168 gc_alloc_update_all_page_tables();
4170 bytes_allocated = bytes_allocated - old_bytes_allocated;
4172 if (bytes_allocated != 0) {
4173 lose("Rescan of new_space allocated %d more bytes.\n",
4174 bytes_allocated);
4177 #endif
4179 scan_weak_hash_tables();
4180 scan_weak_pointers();
4182 /* Flush the current regions, updating the tables. */
4183 gc_alloc_update_all_page_tables();
4185 /* Free the pages in oldspace, but not those marked dont_move. */
4186 bytes_freed = free_oldspace();
4188 /* If the GC is not raising the age then lower the generation back
4189 * to its normal generation number */
4190 if (!raise) {
4191 for (i = 0; i < last_free_page; i++)
4192 if ((page_table[i].bytes_used != 0)
4193 && (page_table[i].gen == SCRATCH_GENERATION))
4194 page_table[i].gen = generation;
4195 gc_assert(generations[generation].bytes_allocated == 0);
4196 generations[generation].bytes_allocated =
4197 generations[SCRATCH_GENERATION].bytes_allocated;
4198 generations[SCRATCH_GENERATION].bytes_allocated = 0;
4201 /* Reset the alloc_start_page for generation. */
4202 generations[generation].alloc_start_page = 0;
4203 generations[generation].alloc_unboxed_start_page = 0;
4204 generations[generation].alloc_large_start_page = 0;
4205 generations[generation].alloc_large_unboxed_start_page = 0;
4207 if (generation >= verify_gens) {
4208 if (gencgc_verbose)
4209 SHOW("verifying");
4210 verify_gc();
4211 verify_dynamic_space();
4214 /* Set the new gc trigger for the GCed generation. */
4215 generations[generation].gc_trigger =
4216 generations[generation].bytes_allocated
4217 + generations[generation].bytes_consed_between_gc;
4219 if (raise)
4220 generations[generation].num_gc = 0;
4221 else
4222 ++generations[generation].num_gc;
4224 #ifdef LUTEX_WIDETAG
4225 reap_lutexes(generation);
4226 if (raise)
4227 move_lutexes(generation, generation+1);
4228 #endif
4231 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
4232 long
4233 update_dynamic_space_free_pointer(void)
4235 page_index_t last_page = -1, i;
4237 for (i = 0; i < last_free_page; i++)
4238 if (page_allocated_p(i) && (page_table[i].bytes_used != 0))
4239 last_page = i;
4241 last_free_page = last_page+1;
4243 set_alloc_pointer((lispobj)(page_address(last_free_page)));
4244 return 0; /* dummy value: return something ... */
4247 static void
4248 remap_free_pages (page_index_t from, page_index_t to)
4250 page_index_t first_page, last_page;
4252 for (first_page = from; first_page <= to; first_page++) {
4253 if (page_allocated_p(first_page) ||
4254 (page_table[first_page].need_to_zero == 0)) {
4255 continue;
4258 last_page = first_page + 1;
4259 while (page_free_p(last_page) &&
4260 (last_page < to) &&
4261 (page_table[last_page].need_to_zero == 1)) {
4262 last_page++;
4265 /* There's a mysterious Solaris/x86 problem with using mmap
4266 * tricks for memory zeroing. See sbcl-devel thread
4267 * "Re: patch: standalone executable redux".
4269 #if defined(LISP_FEATURE_SUNOS)
4270 zero_pages(first_page, last_page-1);
4271 #else
4272 zero_pages_with_mmap(first_page, last_page-1);
4273 #endif
4275 first_page = last_page;
4279 generation_index_t small_generation_limit = 1;
4281 /* GC all generations newer than last_gen, raising the objects in each
4282 * to the next older generation - we finish when all generations below
4283 * last_gen are empty. Then if last_gen is due for a GC, or if
4284 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
4285 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
4287 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4288 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4289 void
4290 collect_garbage(generation_index_t last_gen)
4292 generation_index_t gen = 0, i;
4293 int raise;
4294 int gen_to_wp;
4295 /* The largest value of last_free_page seen since the time
4296 * remap_free_pages was called. */
4297 static page_index_t high_water_mark = 0;
4299 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
4301 gc_active_p = 1;
4303 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
4304 FSHOW((stderr,
4305 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4306 last_gen));
4307 last_gen = 0;
4310 /* Flush the alloc regions updating the tables. */
4311 gc_alloc_update_all_page_tables();
4313 /* Verify the new objects created by Lisp code. */
4314 if (pre_verify_gen_0) {
4315 FSHOW((stderr, "pre-checking generation 0\n"));
4316 verify_generation(0);
4319 if (gencgc_verbose > 1)
4320 print_generation_stats(0);
4322 do {
4323 /* Collect the generation. */
4325 if (gen >= gencgc_oldest_gen_to_gc) {
4326 /* Never raise the oldest generation. */
4327 raise = 0;
4328 } else {
4329 raise =
4330 (gen < last_gen)
4331 || (generations[gen].num_gc >= generations[gen].trigger_age);
4334 if (gencgc_verbose > 1) {
4335 FSHOW((stderr,
4336 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4337 gen,
4338 raise,
4339 generations[gen].bytes_allocated,
4340 generations[gen].gc_trigger,
4341 generations[gen].num_gc));
4344 /* If an older generation is being filled, then update its
4345 * memory age. */
4346 if (raise == 1) {
4347 generations[gen+1].cum_sum_bytes_allocated +=
4348 generations[gen+1].bytes_allocated;
4351 garbage_collect_generation(gen, raise);
4353 /* Reset the memory age cum_sum. */
4354 generations[gen].cum_sum_bytes_allocated = 0;
4356 if (gencgc_verbose > 1) {
4357 FSHOW((stderr, "GC of generation %d finished:\n", gen));
4358 print_generation_stats(0);
4361 gen++;
4362 } while ((gen <= gencgc_oldest_gen_to_gc)
4363 && ((gen < last_gen)
4364 || ((gen <= gencgc_oldest_gen_to_gc)
4365 && raise
4366 && (generations[gen].bytes_allocated
4367 > generations[gen].gc_trigger)
4368 && (gen_av_mem_age(gen)
4369 > generations[gen].min_av_mem_age))));
4371 /* Now if gen-1 was raised all generations before gen are empty.
4372 * If it wasn't raised then all generations before gen-1 are empty.
4374 * Now objects within this gen's pages cannot point to younger
4375 * generations unless they are written to. This can be exploited
4376 * by write-protecting the pages of gen; then when younger
4377 * generations are GCed only the pages which have been written
4378 * need scanning. */
4379 if (raise)
4380 gen_to_wp = gen;
4381 else
4382 gen_to_wp = gen - 1;
4384 /* There's not much point in WPing pages in generation 0 as it is
4385 * never scavenged (except promoted pages). */
4386 if ((gen_to_wp > 0) && enable_page_protection) {
4387 /* Check that they are all empty. */
4388 for (i = 0; i < gen_to_wp; i++) {
4389 if (generations[i].bytes_allocated)
4390 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4391 gen_to_wp, i);
4393 write_protect_generation_pages(gen_to_wp);
4396 /* Set gc_alloc() back to generation 0. The current regions should
4397 * be flushed after the above GCs. */
4398 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4399 gc_alloc_generation = 0;
4401 /* Save the high-water mark before updating last_free_page */
4402 if (last_free_page > high_water_mark)
4403 high_water_mark = last_free_page;
4405 update_dynamic_space_free_pointer();
4407 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4408 if(gencgc_verbose)
4409 fprintf(stderr,"Next gc when %ld bytes have been consed\n",
4410 auto_gc_trigger);
4412 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4413 * back to the OS.
4415 if (gen > small_generation_limit) {
4416 if (last_free_page > high_water_mark)
4417 high_water_mark = last_free_page;
4418 remap_free_pages(0, high_water_mark);
4419 high_water_mark = 0;
4422 gc_active_p = 0;
4424 SHOW("returning from collect_garbage");
4427 /* This is called by Lisp PURIFY when it is finished. All live objects
4428 * will have been moved to the RO and Static heaps. The dynamic space
4429 * will need a full re-initialization. We don't bother having Lisp
4430 * PURIFY flush the current gc_alloc() region, as the page_tables are
4431 * re-initialized, and every page is zeroed to be sure. */
4432 void
4433 gc_free_heap(void)
4435 page_index_t page;
4437 if (gencgc_verbose > 1)
4438 SHOW("entering gc_free_heap");
4440 for (page = 0; page < page_table_pages; page++) {
4441 /* Skip free pages which should already be zero filled. */
4442 if (page_allocated_p(page)) {
4443 void *page_start, *addr;
4445 /* Mark the page free. The other slots are assumed invalid
4446 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4447 * should not be write-protected -- except that the
4448 * generation is used for the current region but it sets
4449 * that up. */
4450 page_table[page].allocated = FREE_PAGE_FLAG;
4451 page_table[page].bytes_used = 0;
4453 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure
4454 * about this change. */
4455 /* Zero the page. */
4456 page_start = (void *)page_address(page);
4458 /* First, remove any write-protection. */
4459 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
4460 page_table[page].write_protected = 0;
4462 os_invalidate(page_start,PAGE_BYTES);
4463 addr = os_validate(page_start,PAGE_BYTES);
4464 if (addr == NULL || addr != page_start) {
4465 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x\n",
4466 page_start,
4467 addr);
4469 #else
4470 page_table[page].write_protected = 0;
4471 #endif
4472 } else if (gencgc_zero_check_during_free_heap) {
4473 /* Double-check that the page is zero filled. */
4474 long *page_start;
4475 page_index_t i;
4476 gc_assert(page_free_p(page));
4477 gc_assert(page_table[page].bytes_used == 0);
4478 page_start = (long *)page_address(page);
4479 for (i=0; i<1024; i++) {
4480 if (page_start[i] != 0) {
4481 lose("free region not zero at %x\n", page_start + i);
4487 bytes_allocated = 0;
4489 /* Initialize the generations. */
4490 for (page = 0; page < NUM_GENERATIONS; page++) {
4491 generations[page].alloc_start_page = 0;
4492 generations[page].alloc_unboxed_start_page = 0;
4493 generations[page].alloc_large_start_page = 0;
4494 generations[page].alloc_large_unboxed_start_page = 0;
4495 generations[page].bytes_allocated = 0;
4496 generations[page].gc_trigger = 2000000;
4497 generations[page].num_gc = 0;
4498 generations[page].cum_sum_bytes_allocated = 0;
4499 generations[page].lutexes = NULL;
4502 if (gencgc_verbose > 1)
4503 print_generation_stats(0);
4505 /* Initialize gc_alloc(). */
4506 gc_alloc_generation = 0;
4508 gc_set_region_empty(&boxed_region);
4509 gc_set_region_empty(&unboxed_region);
4511 last_free_page = 0;
4512 set_alloc_pointer((lispobj)((char *)heap_base));
4514 if (verify_after_free_heap) {
4515 /* Check whether purify has left any bad pointers. */
4516 FSHOW((stderr, "checking after free_heap\n"));
4517 verify_gc();
4521 void
4522 gc_init(void)
4524 page_index_t i;
4526 /* Compute the number of pages needed for the dynamic space.
4527 * Dynamic space size should be aligned on page size. */
4528 page_table_pages = dynamic_space_size/PAGE_BYTES;
4529 gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
4531 page_table = calloc(page_table_pages, sizeof(struct page));
4532 gc_assert(page_table);
4534 gc_init_tables();
4535 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4536 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4538 #ifdef LUTEX_WIDETAG
4539 scavtab[LUTEX_WIDETAG] = scav_lutex;
4540 transother[LUTEX_WIDETAG] = trans_lutex;
4541 sizetab[LUTEX_WIDETAG] = size_lutex;
4542 #endif
4544 heap_base = (void*)DYNAMIC_SPACE_START;
4546 /* Initialize each page structure. */
4547 for (i = 0; i < page_table_pages; i++) {
4548 /* Initialize all pages as free. */
4549 page_table[i].allocated = FREE_PAGE_FLAG;
4550 page_table[i].bytes_used = 0;
4552 /* Pages are not write-protected at startup. */
4553 page_table[i].write_protected = 0;
4556 bytes_allocated = 0;
4558 /* Initialize the generations.
4560 * FIXME: very similar to code in gc_free_heap(), should be shared */
4561 for (i = 0; i < NUM_GENERATIONS; i++) {
4562 generations[i].alloc_start_page = 0;
4563 generations[i].alloc_unboxed_start_page = 0;
4564 generations[i].alloc_large_start_page = 0;
4565 generations[i].alloc_large_unboxed_start_page = 0;
4566 generations[i].bytes_allocated = 0;
4567 generations[i].gc_trigger = 2000000;
4568 generations[i].num_gc = 0;
4569 generations[i].cum_sum_bytes_allocated = 0;
4570 /* the tune-able parameters */
4571 generations[i].bytes_consed_between_gc = 2000000;
4572 generations[i].trigger_age = 1;
4573 generations[i].min_av_mem_age = 0.75;
4574 generations[i].lutexes = NULL;
4577 /* Initialize gc_alloc. */
4578 gc_alloc_generation = 0;
4579 gc_set_region_empty(&boxed_region);
4580 gc_set_region_empty(&unboxed_region);
4582 last_free_page = 0;
4585 /* Pick up the dynamic space from after a core load.
4587 * The ALLOCATION_POINTER points to the end of the dynamic space.
4590 static void
4591 gencgc_pickup_dynamic(void)
4593 page_index_t page = 0;
4594 void *alloc_ptr = (void *)get_alloc_pointer();
4595 lispobj *prev=(lispobj *)page_address(page);
4596 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4597 do {
4598 lispobj *first,*ptr= (lispobj *)page_address(page);
4599 page_table[page].allocated = BOXED_PAGE_FLAG;
4600 page_table[page].gen = gen;
4601 page_table[page].bytes_used = PAGE_BYTES;
4602 page_table[page].large_object = 0;
4603 page_table[page].write_protected = 0;
4604 page_table[page].write_protected_cleared = 0;
4605 page_table[page].dont_move = 0;
4606 page_table[page].need_to_zero = 1;
4608 if (!gencgc_partial_pickup) {
4609 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4610 if(ptr == first) prev=ptr;
4611 page_table[page].region_start_offset =
4612 page_address(page) - (void *)prev;
4614 page++;
4615 } while (page_address(page) < alloc_ptr);
4617 #ifdef LUTEX_WIDETAG
4618 /* Lutexes have been registered in generation 0 by coreparse, and
4619 * need to be moved to the right one manually.
4621 move_lutexes(0, PSEUDO_STATIC_GENERATION);
4622 #endif
4624 last_free_page = page;
4626 generations[gen].bytes_allocated = npage_bytes(page);
4627 bytes_allocated = npage_bytes(page);
4629 gc_alloc_update_all_page_tables();
4630 write_protect_generation_pages(gen);
4633 void
4634 gc_initialize_pointers(void)
4636 gencgc_pickup_dynamic();
4640 /* alloc(..) is the external interface for memory allocation. It
4641 * allocates to generation 0. It is not called from within the garbage
4642 * collector as it is only external uses that need the check for heap
4643 * size (GC trigger) and to disable the interrupts (interrupts are
4644 * always disabled during a GC).
4646 * The vops that call alloc(..) assume that the returned space is zero-filled.
4647 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4649 * The check for a GC trigger is only performed when the current
4650 * region is full, so in most cases it's not needed. */
4652 static inline lispobj *
4653 general_alloc_internal(long nbytes, int page_type_flag, struct alloc_region *region,
4654 struct thread *thread)
4656 #ifndef LISP_FEATURE_WIN32
4657 lispobj alloc_signal;
4658 #endif
4659 void *new_obj;
4660 void *new_free_pointer;
4662 gc_assert(nbytes>0);
4664 /* Check for alignment allocation problems. */
4665 gc_assert((((unsigned long)region->free_pointer & LOWTAG_MASK) == 0)
4666 && ((nbytes & LOWTAG_MASK) == 0));
4668 /* Must be inside a PA section. */
4669 gc_assert(get_pseudo_atomic_atomic(thread));
4671 /* maybe we can do this quickly ... */
4672 new_free_pointer = region->free_pointer + nbytes;
4673 if (new_free_pointer <= region->end_addr) {
4674 new_obj = (void*)(region->free_pointer);
4675 region->free_pointer = new_free_pointer;
4676 return(new_obj); /* yup */
4679 /* we have to go the long way around, it seems. Check whether we
4680 * should GC in the near future
4682 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4683 /* Don't flood the system with interrupts if the need to gc is
4684 * already noted. This can happen for example when SUB-GC
4685 * allocates or after a gc triggered in a WITHOUT-GCING. */
4686 if (SymbolValue(GC_PENDING,thread) == NIL) {
4687 /* set things up so that GC happens when we finish the PA
4688 * section */
4689 SetSymbolValue(GC_PENDING,T,thread);
4690 if (SymbolValue(GC_INHIBIT,thread) == NIL)
4691 set_pseudo_atomic_interrupted(thread);
4694 new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
4696 #ifndef LISP_FEATURE_WIN32
4697 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4698 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4699 if ((signed long) alloc_signal <= 0) {
4700 SetSymbolValue(ALLOC_SIGNAL, T, thread);
4701 #ifdef LISP_FEATURE_SB_THREAD
4702 kill_thread_safely(thread->os_thread, SIGPROF);
4703 #else
4704 raise(SIGPROF);
4705 #endif
4706 } else {
4707 SetSymbolValue(ALLOC_SIGNAL,
4708 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4709 thread);
4712 #endif
4714 return (new_obj);
4717 lispobj *
4718 general_alloc(long nbytes, int page_type_flag)
4720 struct thread *thread = arch_os_get_current_thread();
4721 /* Select correct region, and call general_alloc_internal with it.
4722 * For other then boxed allocation we must lock first, since the
4723 * region is shared. */
4724 if (BOXED_PAGE_FLAG & page_type_flag) {
4725 #ifdef LISP_FEATURE_SB_THREAD
4726 struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
4727 #else
4728 struct alloc_region *region = &boxed_region;
4729 #endif
4730 return general_alloc_internal(nbytes, page_type_flag, region, thread);
4731 } else if (UNBOXED_PAGE_FLAG == page_type_flag) {
4732 lispobj * obj;
4733 gc_assert(0 == thread_mutex_lock(&allocation_lock));
4734 obj = general_alloc_internal(nbytes, page_type_flag, &unboxed_region, thread);
4735 gc_assert(0 == thread_mutex_unlock(&allocation_lock));
4736 return obj;
4737 } else {
4738 lose("bad page type flag: %d", page_type_flag);
4742 lispobj *
4743 alloc(long nbytes)
4745 return general_alloc(nbytes, BOXED_PAGE_FLAG);
4749 * shared support for the OS-dependent signal handlers which
4750 * catch GENCGC-related write-protect violations
4752 void unhandled_sigmemoryfault(void* addr);
4754 /* Depending on which OS we're running under, different signals might
4755 * be raised for a violation of write protection in the heap. This
4756 * function factors out the common generational GC magic which needs
4757 * to invoked in this case, and should be called from whatever signal
4758 * handler is appropriate for the OS we're running under.
4760 * Return true if this signal is a normal generational GC thing that
4761 * we were able to handle, or false if it was abnormal and control
4762 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4765 gencgc_handle_wp_violation(void* fault_addr)
4767 page_index_t page_index = find_page_index(fault_addr);
4769 #ifdef QSHOW_SIGNALS
4770 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4771 fault_addr, page_index));
4772 #endif
4774 /* Check whether the fault is within the dynamic space. */
4775 if (page_index == (-1)) {
4777 /* It can be helpful to be able to put a breakpoint on this
4778 * case to help diagnose low-level problems. */
4779 unhandled_sigmemoryfault(fault_addr);
4781 /* not within the dynamic space -- not our responsibility */
4782 return 0;
4784 } else {
4785 if (page_table[page_index].write_protected) {
4786 /* Unprotect the page. */
4787 os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
4788 page_table[page_index].write_protected_cleared = 1;
4789 page_table[page_index].write_protected = 0;
4790 } else {
4791 /* The only acceptable reason for this signal on a heap
4792 * access is that GENCGC write-protected the page.
4793 * However, if two CPUs hit a wp page near-simultaneously,
4794 * we had better not have the second one lose here if it
4795 * does this test after the first one has already set wp=0
4797 if(page_table[page_index].write_protected_cleared != 1)
4798 lose("fault in heap page %d not marked as write-protected\nboxed_region.first_page: %d, boxed_region.last_page %d\n",
4799 page_index, boxed_region.first_page,
4800 boxed_region.last_page);
4802 /* Don't worry, we can handle it. */
4803 return 1;
4806 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4807 * it's not just a case of the program hitting the write barrier, and
4808 * are about to let Lisp deal with it. It's basically just a
4809 * convenient place to set a gdb breakpoint. */
4810 void
4811 unhandled_sigmemoryfault(void *addr)
4814 void gc_alloc_update_all_page_tables(void)
4816 /* Flush the alloc regions updating the tables. */
4817 struct thread *th;
4818 for_each_thread(th)
4819 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
4820 gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
4821 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
4824 void
4825 gc_set_region_empty(struct alloc_region *region)
4827 region->first_page = 0;
4828 region->last_page = -1;
4829 region->start_addr = page_address(0);
4830 region->free_pointer = page_address(0);
4831 region->end_addr = page_address(0);
4834 static void
4835 zero_all_free_pages()
4837 page_index_t i;
4839 for (i = 0; i < last_free_page; i++) {
4840 if (page_free_p(i)) {
4841 #ifdef READ_PROTECT_FREE_PAGES
4842 os_protect(page_address(i),
4843 PAGE_BYTES,
4844 OS_VM_PROT_ALL);
4845 #endif
4846 zero_pages(i, i);
4851 /* Things to do before doing a final GC before saving a core (without
4852 * purify).
4854 * + Pages in large_object pages aren't moved by the GC, so we need to
4855 * unset that flag from all pages.
4856 * + The pseudo-static generation isn't normally collected, but it seems
4857 * reasonable to collect it at least when saving a core. So move the
4858 * pages to a normal generation.
4860 static void
4861 prepare_for_final_gc ()
4863 page_index_t i;
4864 for (i = 0; i < last_free_page; i++) {
4865 page_table[i].large_object = 0;
4866 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4867 int used = page_table[i].bytes_used;
4868 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4869 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4870 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4876 /* Do a non-conservative GC, and then save a core with the initial
4877 * function being set to the value of the static symbol
4878 * SB!VM:RESTART-LISP-FUNCTION */
4879 void
4880 gc_and_save(char *filename, boolean prepend_runtime,
4881 boolean save_runtime_options)
4883 FILE *file;
4884 void *runtime_bytes = NULL;
4885 size_t runtime_size;
4887 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4888 &runtime_size);
4889 if (file == NULL)
4890 return;
4892 conservative_stack = 0;
4894 /* The filename might come from Lisp, and be moved by the now
4895 * non-conservative GC. */
4896 filename = strdup(filename);
4898 /* Collect twice: once into relatively high memory, and then back
4899 * into low memory. This compacts the retained data into the lower
4900 * pages, minimizing the size of the core file.
4902 prepare_for_final_gc();
4903 gencgc_alloc_start_page = last_free_page;
4904 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4906 prepare_for_final_gc();
4907 gencgc_alloc_start_page = -1;
4908 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4910 if (prepend_runtime)
4911 save_runtime_to_filehandle(file, runtime_bytes, runtime_size);
4913 /* The dumper doesn't know that pages need to be zeroed before use. */
4914 zero_all_free_pages();
4915 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4916 prepend_runtime, save_runtime_options);
4917 /* Oops. Save still managed to fail. Since we've mangled the stack
4918 * beyond hope, there's not much we can do.
4919 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4920 * going to be rather unsatisfactory too... */
4921 lose("Attempt to save core after non-conservative GC failed.\n");