1.0.10.47: proper fix for "high-debug-known-function-inlining"
[sbcl/simd.git] / src / compiler / ir1opt.lisp
blob98a5a9367655fafd13a44af59336c348963a883a
1 ;;;; This file implements the IR1 optimization phase of the compiler.
2 ;;;; IR1 optimization is a grab-bag of optimizations that don't make
3 ;;;; major changes to the block-level control flow and don't use flow
4 ;;;; analysis. These optimizations can mostly be classified as
5 ;;;; "meta-evaluation", but there is a sizable top-down component as
6 ;;;; well.
8 ;;;; This software is part of the SBCL system. See the README file for
9 ;;;; more information.
10 ;;;;
11 ;;;; This software is derived from the CMU CL system, which was
12 ;;;; written at Carnegie Mellon University and released into the
13 ;;;; public domain. The software is in the public domain and is
14 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
15 ;;;; files for more information.
17 (in-package "SB!C")
19 ;;;; interface for obtaining results of constant folding
21 ;;; Return true for an LVAR whose sole use is a reference to a
22 ;;; constant leaf.
23 (defun constant-lvar-p (thing)
24 (declare (type (or lvar null) thing))
25 (and (lvar-p thing)
26 (let ((use (principal-lvar-use thing)))
27 (and (ref-p use) (constant-p (ref-leaf use))))))
29 ;;; Return the constant value for an LVAR whose only use is a constant
30 ;;; node.
31 (declaim (ftype (function (lvar) t) lvar-value))
32 (defun lvar-value (lvar)
33 (let ((use (principal-lvar-use lvar)))
34 (constant-value (ref-leaf use))))
36 ;;;; interface for obtaining results of type inference
38 ;;; Our best guess for the type of this lvar's value. Note that this
39 ;;; may be VALUES or FUNCTION type, which cannot be passed as an
40 ;;; argument to the normal type operations. See LVAR-TYPE.
41 ;;;
42 ;;; The result value is cached in the LVAR-%DERIVED-TYPE slot. If the
43 ;;; slot is true, just return that value, otherwise recompute and
44 ;;; stash the value there.
45 #!-sb-fluid (declaim (inline lvar-derived-type))
46 (defun lvar-derived-type (lvar)
47 (declare (type lvar lvar))
48 (or (lvar-%derived-type lvar)
49 (setf (lvar-%derived-type lvar)
50 (%lvar-derived-type lvar))))
51 (defun %lvar-derived-type (lvar)
52 (declare (type lvar lvar))
53 (let ((uses (lvar-uses lvar)))
54 (cond ((null uses) *empty-type*)
55 ((listp uses)
56 (do ((res (node-derived-type (first uses))
57 (values-type-union (node-derived-type (first current))
58 res))
59 (current (rest uses) (rest current)))
60 ((null current) res)))
62 (node-derived-type (lvar-uses lvar))))))
64 ;;; Return the derived type for LVAR's first value. This is guaranteed
65 ;;; not to be a VALUES or FUNCTION type.
66 (declaim (ftype (sfunction (lvar) ctype) lvar-type))
67 (defun lvar-type (lvar)
68 (single-value-type (lvar-derived-type lvar)))
70 ;;; If LVAR is an argument of a function, return a type which the
71 ;;; function checks LVAR for.
72 #!-sb-fluid (declaim (inline lvar-externally-checkable-type))
73 (defun lvar-externally-checkable-type (lvar)
74 (or (lvar-%externally-checkable-type lvar)
75 (%lvar-%externally-checkable-type lvar)))
76 (defun %lvar-%externally-checkable-type (lvar)
77 (declare (type lvar lvar))
78 (let ((dest (lvar-dest lvar)))
79 (if (not (and dest (combination-p dest)))
80 ;; TODO: MV-COMBINATION
81 (setf (lvar-%externally-checkable-type lvar) *wild-type*)
82 (let* ((fun (combination-fun dest))
83 (args (combination-args dest))
84 (fun-type (lvar-type fun)))
85 (setf (lvar-%externally-checkable-type fun) *wild-type*)
86 (if (or (not (call-full-like-p dest))
87 (not (fun-type-p fun-type))
88 ;; FUN-TYPE might be (AND FUNCTION (SATISFIES ...)).
89 (fun-type-wild-args fun-type))
90 (dolist (arg args)
91 (when arg
92 (setf (lvar-%externally-checkable-type arg)
93 *wild-type*)))
94 (map-combination-args-and-types
95 (lambda (arg type)
96 (setf (lvar-%externally-checkable-type arg)
97 (acond ((lvar-%externally-checkable-type arg)
98 (values-type-intersection
99 it (coerce-to-values type)))
100 (t (coerce-to-values type)))))
101 dest)))))
102 (lvar-%externally-checkable-type lvar))
103 #!-sb-fluid(declaim (inline flush-lvar-externally-checkable-type))
104 (defun flush-lvar-externally-checkable-type (lvar)
105 (declare (type lvar lvar))
106 (setf (lvar-%externally-checkable-type lvar) nil))
108 ;;;; interface routines used by optimizers
110 (declaim (inline reoptimize-component))
111 (defun reoptimize-component (component kind)
112 (declare (type component component)
113 (type (member nil :maybe t) kind))
114 (aver kind)
115 (unless (eq (component-reoptimize component) t)
116 (setf (component-reoptimize component) kind)))
118 ;;; This function is called by optimizers to indicate that something
119 ;;; interesting has happened to the value of LVAR. Optimizers must
120 ;;; make sure that they don't call for reoptimization when nothing has
121 ;;; happened, since optimization will fail to terminate.
123 ;;; We clear any cached type for the lvar and set the reoptimize flags
124 ;;; on everything in sight.
125 (defun reoptimize-lvar (lvar)
126 (declare (type (or lvar null) lvar))
127 (when lvar
128 (setf (lvar-%derived-type lvar) nil)
129 (let ((dest (lvar-dest lvar)))
130 (when dest
131 (setf (lvar-reoptimize lvar) t)
132 (setf (node-reoptimize dest) t)
133 (binding* (;; Since this may be called during IR1 conversion,
134 ;; PREV may be missing.
135 (prev (node-prev dest) :exit-if-null)
136 (block (ctran-block prev))
137 (component (block-component block)))
138 (when (typep dest 'cif)
139 (setf (block-test-modified block) t))
140 (setf (block-reoptimize block) t)
141 (reoptimize-component component :maybe))))
142 (do-uses (node lvar)
143 (setf (block-type-check (node-block node)) t)))
144 (values))
146 (defun reoptimize-lvar-uses (lvar)
147 (declare (type lvar lvar))
148 (do-uses (use lvar)
149 (setf (node-reoptimize use) t)
150 (setf (block-reoptimize (node-block use)) t)
151 (reoptimize-component (node-component use) :maybe)))
153 ;;; Annotate NODE to indicate that its result has been proven to be
154 ;;; TYPEP to RTYPE. After IR1 conversion has happened, this is the
155 ;;; only correct way to supply information discovered about a node's
156 ;;; type. If you screw with the NODE-DERIVED-TYPE directly, then
157 ;;; information may be lost and reoptimization may not happen.
159 ;;; What we do is intersect RTYPE with NODE's DERIVED-TYPE. If the
160 ;;; intersection is different from the old type, then we do a
161 ;;; REOPTIMIZE-LVAR on the NODE-LVAR.
162 (defun derive-node-type (node rtype)
163 (declare (type valued-node node) (type ctype rtype))
164 (let ((node-type (node-derived-type node)))
165 (unless (eq node-type rtype)
166 (let ((int (values-type-intersection node-type rtype))
167 (lvar (node-lvar node)))
168 (when (type/= node-type int)
169 (when (and *check-consistency*
170 (eq int *empty-type*)
171 (not (eq rtype *empty-type*)))
172 (let ((*compiler-error-context* node))
173 (compiler-warn
174 "New inferred type ~S conflicts with old type:~
175 ~% ~S~%*** possible internal error? Please report this."
176 (type-specifier rtype) (type-specifier node-type))))
177 (setf (node-derived-type node) int)
178 ;; If the new type consists of only one object, replace the
179 ;; node with a constant reference.
180 (when (and (ref-p node)
181 (lambda-var-p (ref-leaf node)))
182 (let ((type (single-value-type int)))
183 (when (and (member-type-p type)
184 (null (rest (member-type-members type))))
185 (change-ref-leaf node (find-constant
186 (first (member-type-members type)))))))
187 (reoptimize-lvar lvar)))))
188 (values))
190 ;;; This is similar to DERIVE-NODE-TYPE, but asserts that it is an
191 ;;; error for LVAR's value not to be TYPEP to TYPE. We implement it
192 ;;; splitting off DEST a new CAST node; old LVAR will deliver values
193 ;;; to CAST. If we improve the assertion, we set TYPE-CHECK and
194 ;;; TYPE-ASSERTED to guarantee that the new assertion will be checked.
195 (defun assert-lvar-type (lvar type policy)
196 (declare (type lvar lvar) (type ctype type))
197 (unless (values-subtypep (lvar-derived-type lvar) type)
198 (let ((internal-lvar (make-lvar))
199 (dest (lvar-dest lvar)))
200 (substitute-lvar internal-lvar lvar)
201 (let ((cast (insert-cast-before dest lvar type policy)))
202 (use-lvar cast internal-lvar))))
203 (values))
206 ;;;; IR1-OPTIMIZE
208 ;;; Do one forward pass over COMPONENT, deleting unreachable blocks
209 ;;; and doing IR1 optimizations. We can ignore all blocks that don't
210 ;;; have the REOPTIMIZE flag set. If COMPONENT-REOPTIMIZE is true when
211 ;;; we are done, then another iteration would be beneficial.
212 (defun ir1-optimize (component fastp)
213 (declare (type component component))
214 (setf (component-reoptimize component) nil)
215 (loop with block = (block-next (component-head component))
216 with tail = (component-tail component)
217 for last-block = block
218 until (eq block tail)
219 do (cond
220 ;; We delete blocks when there is either no predecessor or the
221 ;; block is in a lambda that has been deleted. These blocks
222 ;; would eventually be deleted by DFO recomputation, but doing
223 ;; it here immediately makes the effect available to IR1
224 ;; optimization.
225 ((or (block-delete-p block)
226 (null (block-pred block)))
227 (delete-block-lazily block)
228 (setq block (clean-component component block)))
229 ((eq (functional-kind (block-home-lambda block)) :deleted)
230 ;; Preserve the BLOCK-SUCC invariant that almost every block has
231 ;; one successor (and a block with DELETE-P set is an acceptable
232 ;; exception).
233 (mark-for-deletion block)
234 (setq block (clean-component component block)))
236 (loop
237 (let ((succ (block-succ block)))
238 (unless (singleton-p succ)
239 (return)))
241 (let ((last (block-last block)))
242 (typecase last
243 (cif
244 (flush-dest (if-test last))
245 (when (unlink-node last)
246 (return)))
247 (exit
248 (when (maybe-delete-exit last)
249 (return)))))
251 (unless (join-successor-if-possible block)
252 (return)))
254 (when (and (not fastp) (block-reoptimize block) (block-component block))
255 (aver (not (block-delete-p block)))
256 (ir1-optimize-block block))
258 (cond ((and (block-delete-p block) (block-component block))
259 (setq block (clean-component component block)))
260 ((and (block-flush-p block) (block-component block))
261 (flush-dead-code block)))))
262 do (when (eq block last-block)
263 (setq block (block-next block))))
265 (values))
267 ;;; Loop over the nodes in BLOCK, acting on (and clearing) REOPTIMIZE
268 ;;; flags.
270 ;;; Note that although they are cleared here, REOPTIMIZE flags might
271 ;;; still be set upon return from this function, meaning that further
272 ;;; optimization is wanted (as a consequence of optimizations we did).
273 (defun ir1-optimize-block (block)
274 (declare (type cblock block))
275 ;; We clear the node and block REOPTIMIZE flags before doing the
276 ;; optimization, not after. This ensures that the node or block will
277 ;; be reoptimized if necessary.
278 (setf (block-reoptimize block) nil)
279 (do-nodes (node nil block :restart-p t)
280 (when (node-reoptimize node)
281 ;; As above, we clear the node REOPTIMIZE flag before optimizing.
282 (setf (node-reoptimize node) nil)
283 (typecase node
284 (ref)
285 (combination
286 ;; With a COMBINATION, we call PROPAGATE-FUN-CHANGE whenever
287 ;; the function changes, and call IR1-OPTIMIZE-COMBINATION if
288 ;; any argument changes.
289 (ir1-optimize-combination node))
290 (cif
291 (ir1-optimize-if node))
292 (creturn
293 ;; KLUDGE: We leave the NODE-OPTIMIZE flag set going into
294 ;; IR1-OPTIMIZE-RETURN, since IR1-OPTIMIZE-RETURN wants to
295 ;; clear the flag itself. -- WHN 2002-02-02, quoting original
296 ;; CMU CL comments
297 (setf (node-reoptimize node) t)
298 (ir1-optimize-return node))
299 (mv-combination
300 (ir1-optimize-mv-combination node))
301 (exit
302 ;; With an EXIT, we derive the node's type from the VALUE's
303 ;; type.
304 (let ((value (exit-value node)))
305 (when value
306 (derive-node-type node (lvar-derived-type value)))))
307 (cset
308 (ir1-optimize-set node))
309 (cast
310 (ir1-optimize-cast node)))))
312 (values))
314 ;;; Try to join with a successor block. If we succeed, we return true,
315 ;;; otherwise false.
316 (defun join-successor-if-possible (block)
317 (declare (type cblock block))
318 (let ((next (first (block-succ block))))
319 (when (block-start next) ; NEXT is not an END-OF-COMPONENT marker
320 (cond ( ;; We cannot combine with a successor block if:
322 ;; the successor has more than one predecessor;
323 (rest (block-pred next))
324 ;; the successor is the current block (infinite loop);
325 (eq next block)
326 ;; the next block has a different cleanup, and thus
327 ;; we may want to insert cleanup code between the
328 ;; two blocks at some point;
329 (not (eq (block-end-cleanup block)
330 (block-start-cleanup next)))
331 ;; the next block has a different home lambda, and
332 ;; thus the control transfer is a non-local exit.
333 (not (eq (block-home-lambda block)
334 (block-home-lambda next)))
335 ;; Stack analysis phase wants ENTRY to start a block...
336 (entry-p (block-start-node next))
337 (let ((last (block-last block)))
338 (and (valued-node-p last)
339 (awhen (node-lvar last)
341 ;; ... and a DX-allocator to end a block.
342 (lvar-dynamic-extent it)
343 ;; FIXME: This is a partial workaround for bug 303.
344 (consp (lvar-uses it)))))))
345 nil)
347 (join-blocks block next)
348 t)))))
350 ;;; Join together two blocks. The code in BLOCK2 is moved into BLOCK1
351 ;;; and BLOCK2 is deleted from the DFO. We combine the optimize flags
352 ;;; for the two blocks so that any indicated optimization gets done.
353 (defun join-blocks (block1 block2)
354 (declare (type cblock block1 block2))
355 (let* ((last1 (block-last block1))
356 (last2 (block-last block2))
357 (succ (block-succ block2))
358 (start2 (block-start block2)))
359 (do ((ctran start2 (node-next (ctran-next ctran))))
360 ((not ctran))
361 (setf (ctran-block ctran) block1))
363 (unlink-blocks block1 block2)
364 (dolist (block succ)
365 (unlink-blocks block2 block)
366 (link-blocks block1 block))
368 (setf (ctran-kind start2) :inside-block)
369 (setf (node-next last1) start2)
370 (setf (ctran-use start2) last1)
371 (setf (block-last block1) last2))
373 (setf (block-flags block1)
374 (attributes-union (block-flags block1)
375 (block-flags block2)
376 (block-attributes type-asserted test-modified)))
378 (let ((next (block-next block2))
379 (prev (block-prev block2)))
380 (setf (block-next prev) next)
381 (setf (block-prev next) prev))
383 (values))
385 ;;; Delete any nodes in BLOCK whose value is unused and which have no
386 ;;; side effects. We can delete sets of lexical variables when the set
387 ;;; variable has no references.
388 (defun flush-dead-code (block)
389 (declare (type cblock block))
390 (setf (block-flush-p block) nil)
391 (do-nodes-backwards (node lvar block :restart-p t)
392 (unless lvar
393 (typecase node
394 (ref
395 (delete-ref node)
396 (unlink-node node))
397 (combination
398 (let ((kind (combination-kind node))
399 (info (combination-fun-info node)))
400 (when (and (eq kind :known) (fun-info-p info))
401 (let ((attr (fun-info-attributes info)))
402 (when (and (not (ir1-attributep attr call))
403 ;; ### For now, don't delete potentially
404 ;; flushable calls when they have the CALL
405 ;; attribute. Someday we should look at the
406 ;; functional args to determine if they have
407 ;; any side effects.
408 (if (policy node (= safety 3))
409 (ir1-attributep attr flushable)
410 (ir1-attributep attr unsafely-flushable)))
411 (flush-combination node))))))
412 (mv-combination
413 (when (eq (basic-combination-kind node) :local)
414 (let ((fun (combination-lambda node)))
415 (when (dolist (var (lambda-vars fun) t)
416 (when (or (leaf-refs var)
417 (lambda-var-sets var))
418 (return nil)))
419 (flush-dest (first (basic-combination-args node)))
420 (delete-let fun)))))
421 (exit
422 (let ((value (exit-value node)))
423 (when value
424 (flush-dest value)
425 (setf (exit-value node) nil))))
426 (cset
427 (let ((var (set-var node)))
428 (when (and (lambda-var-p var)
429 (null (leaf-refs var)))
430 (flush-dest (set-value node))
431 (setf (basic-var-sets var)
432 (delq node (basic-var-sets var)))
433 (unlink-node node))))
434 (cast
435 (unless (cast-type-check node)
436 (flush-dest (cast-value node))
437 (unlink-node node))))))
439 (values))
441 ;;;; local call return type propagation
443 ;;; This function is called on RETURN nodes that have their REOPTIMIZE
444 ;;; flag set. It iterates over the uses of the RESULT, looking for
445 ;;; interesting stuff to update the TAIL-SET. If a use isn't a local
446 ;;; call, then we union its type together with the types of other such
447 ;;; uses. We assign to the RETURN-RESULT-TYPE the intersection of this
448 ;;; type with the RESULT's asserted type. We can make this
449 ;;; intersection now (potentially before type checking) because this
450 ;;; assertion on the result will eventually be checked (if
451 ;;; appropriate.)
453 ;;; We call MAYBE-CONVERT-TAIL-LOCAL-CALL on each local non-MV
454 ;;; combination, which may change the successor of the call to be the
455 ;;; called function, and if so, checks if the call can become an
456 ;;; assignment. If we convert to an assignment, we abort, since the
457 ;;; RETURN has been deleted.
458 (defun find-result-type (node)
459 (declare (type creturn node))
460 (let ((result (return-result node)))
461 (collect ((use-union *empty-type* values-type-union))
462 (do-uses (use result)
463 (let ((use-home (node-home-lambda use)))
464 (cond ((or (eq (functional-kind use-home) :deleted)
465 (block-delete-p (node-block use))))
466 ((and (basic-combination-p use)
467 (eq (basic-combination-kind use) :local))
468 (aver (eq (lambda-tail-set use-home)
469 (lambda-tail-set (combination-lambda use))))
470 (when (combination-p use)
471 (when (nth-value 1 (maybe-convert-tail-local-call use))
472 (return-from find-result-type t))))
474 (use-union (node-derived-type use))))))
475 (let ((int
476 ;; (values-type-intersection
477 ;; (continuation-asserted-type result) ; FIXME -- APD, 2002-01-26
478 (use-union)
479 ;; )
481 (setf (return-result-type node) int))))
482 nil)
484 ;;; Do stuff to realize that something has changed about the value
485 ;;; delivered to a return node. Since we consider the return values of
486 ;;; all functions in the tail set to be equivalent, this amounts to
487 ;;; bringing the entire tail set up to date. We iterate over the
488 ;;; returns for all the functions in the tail set, reanalyzing them
489 ;;; all (not treating NODE specially.)
491 ;;; When we are done, we check whether the new type is different from
492 ;;; the old TAIL-SET-TYPE. If so, we set the type and also reoptimize
493 ;;; all the lvars for references to functions in the tail set. This
494 ;;; will cause IR1-OPTIMIZE-COMBINATION to derive the new type as the
495 ;;; results of the calls.
496 (defun ir1-optimize-return (node)
497 (declare (type creturn node))
498 (tagbody
499 :restart
500 (let* ((tails (lambda-tail-set (return-lambda node)))
501 (funs (tail-set-funs tails)))
502 (collect ((res *empty-type* values-type-union))
503 (dolist (fun funs)
504 (let ((return (lambda-return fun)))
505 (when return
506 (when (node-reoptimize return)
507 (setf (node-reoptimize return) nil)
508 (when (find-result-type return)
509 (go :restart)))
510 (res (return-result-type return)))))
512 (when (type/= (res) (tail-set-type tails))
513 (setf (tail-set-type tails) (res))
514 (dolist (fun (tail-set-funs tails))
515 (dolist (ref (leaf-refs fun))
516 (reoptimize-lvar (node-lvar ref))))))))
518 (values))
520 ;;;; IF optimization
522 ;;; If the test has multiple uses, replicate the node when possible.
523 ;;; Also check whether the predicate is known to be true or false,
524 ;;; deleting the IF node in favor of the appropriate branch when this
525 ;;; is the case.
526 (defun ir1-optimize-if (node)
527 (declare (type cif node))
528 (let ((test (if-test node))
529 (block (node-block node)))
531 (when (and (eq (block-start-node block) node)
532 (listp (lvar-uses test)))
533 (do-uses (use test)
534 (when (immediately-used-p test use)
535 (convert-if-if use node)
536 (when (not (listp (lvar-uses test))) (return)))))
538 (let* ((type (lvar-type test))
539 (victim
540 (cond ((constant-lvar-p test)
541 (if (lvar-value test)
542 (if-alternative node)
543 (if-consequent node)))
544 ((not (types-equal-or-intersect type (specifier-type 'null)))
545 (if-alternative node))
546 ((type= type (specifier-type 'null))
547 (if-consequent node)))))
548 (when victim
549 (flush-dest test)
550 (when (rest (block-succ block))
551 (unlink-blocks block victim))
552 (setf (component-reanalyze (node-component node)) t)
553 (unlink-node node))))
554 (values))
556 ;;; Create a new copy of an IF node that tests the value of the node
557 ;;; USE. The test must have >1 use, and must be immediately used by
558 ;;; USE. NODE must be the only node in its block (implying that
559 ;;; block-start = if-test).
561 ;;; This optimization has an effect semantically similar to the
562 ;;; source-to-source transformation:
563 ;;; (IF (IF A B C) D E) ==>
564 ;;; (IF A (IF B D E) (IF C D E))
566 ;;; We clobber the NODE-SOURCE-PATH of both the original and the new
567 ;;; node so that dead code deletion notes will definitely not consider
568 ;;; either node to be part of the original source. One node might
569 ;;; become unreachable, resulting in a spurious note.
570 (defun convert-if-if (use node)
571 (declare (type node use) (type cif node))
572 (with-ir1-environment-from-node node
573 (let* ((block (node-block node))
574 (test (if-test node))
575 (cblock (if-consequent node))
576 (ablock (if-alternative node))
577 (use-block (node-block use))
578 (new-ctran (make-ctran))
579 (new-lvar (make-lvar))
580 (new-node (make-if :test new-lvar
581 :consequent cblock
582 :alternative ablock))
583 (new-block (ctran-starts-block new-ctran)))
584 (link-node-to-previous-ctran new-node new-ctran)
585 (setf (lvar-dest new-lvar) new-node)
586 (setf (block-last new-block) new-node)
588 (unlink-blocks use-block block)
589 (%delete-lvar-use use)
590 (add-lvar-use use new-lvar)
591 (link-blocks use-block new-block)
593 (link-blocks new-block cblock)
594 (link-blocks new-block ablock)
596 (push "<IF Duplication>" (node-source-path node))
597 (push "<IF Duplication>" (node-source-path new-node))
599 (reoptimize-lvar test)
600 (reoptimize-lvar new-lvar)
601 (setf (component-reanalyze *current-component*) t)))
602 (values))
604 ;;;; exit IR1 optimization
606 ;;; This function attempts to delete an exit node, returning true if
607 ;;; it deletes the block as a consequence:
608 ;;; -- If the exit is degenerate (has no ENTRY), then we don't do
609 ;;; anything, since there is nothing to be done.
610 ;;; -- If the exit node and its ENTRY have the same home lambda then
611 ;;; we know the exit is local, and can delete the exit. We change
612 ;;; uses of the Exit-Value to be uses of the original lvar,
613 ;;; then unlink the node. If the exit is to a TR context, then we
614 ;;; must do MERGE-TAIL-SETS on any local calls which delivered
615 ;;; their value to this exit.
616 ;;; -- If there is no value (as in a GO), then we skip the value
617 ;;; semantics.
619 ;;; This function is also called by environment analysis, since it
620 ;;; wants all exits to be optimized even if normal optimization was
621 ;;; omitted.
622 (defun maybe-delete-exit (node)
623 (declare (type exit node))
624 (let ((value (exit-value node))
625 (entry (exit-entry node)))
626 (when (and entry
627 (eq (node-home-lambda node) (node-home-lambda entry)))
628 (setf (entry-exits entry) (delq node (entry-exits entry)))
629 (if value
630 (delete-filter node (node-lvar node) value)
631 (unlink-node node)))))
634 ;;;; combination IR1 optimization
636 ;;; Report as we try each transform?
637 #!+sb-show
638 (defvar *show-transforms-p* nil)
640 (defun check-important-result (node info)
641 (when (and (null (node-lvar node))
642 (ir1-attributep (fun-info-attributes info) important-result))
643 (let ((*compiler-error-context* node))
644 (compiler-style-warn
645 "The return value of ~A should not be discarded."
646 (lvar-fun-name (basic-combination-fun node))))))
648 ;;; Do IR1 optimizations on a COMBINATION node.
649 (declaim (ftype (function (combination) (values)) ir1-optimize-combination))
650 (defun ir1-optimize-combination (node)
651 (when (lvar-reoptimize (basic-combination-fun node))
652 (propagate-fun-change node)
653 (maybe-terminate-block node nil))
654 (let ((args (basic-combination-args node))
655 (kind (basic-combination-kind node))
656 (info (basic-combination-fun-info node)))
657 (ecase kind
658 (:local
659 (let ((fun (combination-lambda node)))
660 (if (eq (functional-kind fun) :let)
661 (propagate-let-args node fun)
662 (propagate-local-call-args node fun))))
663 (:error
664 (dolist (arg args)
665 (when arg
666 (setf (lvar-reoptimize arg) nil))))
667 (:full
668 (dolist (arg args)
669 (when arg
670 (setf (lvar-reoptimize arg) nil)))
671 (when info
672 (check-important-result node info)
673 (let ((fun (fun-info-destroyed-constant-args info)))
674 (when fun
675 (let ((destroyed-constant-args (funcall fun args)))
676 (when destroyed-constant-args
677 (let ((*compiler-error-context* node))
678 (warn 'constant-modified
679 :fun-name (lvar-fun-name
680 (basic-combination-fun node)))
681 (setf (basic-combination-kind node) :error)
682 (return-from ir1-optimize-combination))))))
683 (let ((fun (fun-info-derive-type info)))
684 (when fun
685 (let ((res (funcall fun node)))
686 (when res
687 (derive-node-type node (coerce-to-values res))
688 (maybe-terminate-block node nil)))))))
689 (:known
690 (aver info)
691 (dolist (arg args)
692 (when arg
693 (setf (lvar-reoptimize arg) nil)))
694 (check-important-result node info)
695 (let ((fun (fun-info-destroyed-constant-args info)))
696 (when (and fun
697 ;; If somebody is really sure that they want to modify
698 ;; constants, let them.
699 (policy node (> safety 0)))
700 (let ((destroyed-constant-args (funcall fun args)))
701 (when destroyed-constant-args
702 (let ((*compiler-error-context* node))
703 (warn 'constant-modified
704 :fun-name (lvar-fun-name
705 (basic-combination-fun node)))
706 (setf (basic-combination-kind node) :error)
707 (return-from ir1-optimize-combination))))))
709 (let ((attr (fun-info-attributes info)))
710 (when (and (ir1-attributep attr foldable)
711 ;; KLUDGE: The next test could be made more sensitive,
712 ;; only suppressing constant-folding of functions with
713 ;; CALL attributes when they're actually passed
714 ;; function arguments. -- WHN 19990918
715 (not (ir1-attributep attr call))
716 (every #'constant-lvar-p args)
717 (node-lvar node))
718 (constant-fold-call node)
719 (return-from ir1-optimize-combination)))
721 (let ((fun (fun-info-derive-type info)))
722 (when fun
723 (let ((res (funcall fun node)))
724 (when res
725 (derive-node-type node (coerce-to-values res))
726 (maybe-terminate-block node nil)))))
728 (let ((fun (fun-info-optimizer info)))
729 (unless (and fun (funcall fun node))
730 ;; First give the VM a peek at the call
731 (multiple-value-bind (style transform)
732 (combination-implementation-style node)
733 (ecase style
734 (:direct
735 ;; The VM knows how to handle this.
737 (:transform
738 ;; The VM mostly knows how to handle this. We need
739 ;; to massage the call slightly, though.
740 (transform-call node transform (combination-fun-source-name node)))
741 (:default
742 ;; Let transforms have a crack at it.
743 (dolist (x (fun-info-transforms info))
744 #!+sb-show
745 (when *show-transforms-p*
746 (let* ((lvar (basic-combination-fun node))
747 (fname (lvar-fun-name lvar t)))
748 (/show "trying transform" x (transform-function x) "for" fname)))
749 (unless (ir1-transform node x)
750 #!+sb-show
751 (when *show-transforms-p*
752 (/show "quitting because IR1-TRANSFORM result was NIL"))
753 (return)))))))))))
755 (values))
757 ;;; If NODE doesn't return (i.e. return type is NIL), then terminate
758 ;;; the block there, and link it to the component tail.
760 ;;; Except when called during IR1 convertion, we delete the
761 ;;; continuation if it has no other uses. (If it does have other uses,
762 ;;; we reoptimize.)
764 ;;; Termination on the basis of a continuation type is
765 ;;; inhibited when:
766 ;;; -- The continuation is deleted (hence the assertion is spurious), or
767 ;;; -- We are in IR1 conversion (where THE assertions are subject to
768 ;;; weakening.) FIXME: Now THE assertions are not weakened, but new
769 ;;; uses can(?) be added later. -- APD, 2003-07-17
771 ;;; Why do we need to consider LVAR type? -- APD, 2003-07-30
772 (defun maybe-terminate-block (node ir1-converting-not-optimizing-p)
773 (declare (type (or basic-combination cast ref) node))
774 (let* ((block (node-block node))
775 (lvar (node-lvar node))
776 (ctran (node-next node))
777 (tail (component-tail (block-component block)))
778 (succ (first (block-succ block))))
779 (declare (ignore lvar))
780 (unless (or (and (eq node (block-last block)) (eq succ tail))
781 (block-delete-p block))
782 (when (eq (node-derived-type node) *empty-type*)
783 (cond (ir1-converting-not-optimizing-p
784 (cond
785 ((block-last block)
786 (aver (eq (block-last block) node)))
788 (setf (block-last block) node)
789 (setf (ctran-use ctran) nil)
790 (setf (ctran-kind ctran) :unused)
791 (setf (ctran-block ctran) nil)
792 (setf (node-next node) nil)
793 (link-blocks block (ctran-starts-block ctran)))))
795 (node-ends-block node)))
797 (let ((succ (first (block-succ block))))
798 (unlink-blocks block succ)
799 (setf (component-reanalyze (block-component block)) t)
800 (aver (not (block-succ block)))
801 (link-blocks block tail)
802 (cond (ir1-converting-not-optimizing-p
803 (%delete-lvar-use node))
804 (t (delete-lvar-use node)
805 (when (null (block-pred succ))
806 (mark-for-deletion succ)))))
807 t))))
809 ;;; This is called both by IR1 conversion and IR1 optimization when
810 ;;; they have verified the type signature for the call, and are
811 ;;; wondering if something should be done to special-case the call. If
812 ;;; CALL is a call to a global function, then see whether it defined
813 ;;; or known:
814 ;;; -- If a DEFINED-FUN should be inline expanded, then convert
815 ;;; the expansion and change the call to call it. Expansion is
816 ;;; enabled if :INLINE or if SPACE=0. If the FUNCTIONAL slot is
817 ;;; true, we never expand, since this function has already been
818 ;;; converted. Local call analysis will duplicate the definition
819 ;;; if necessary. We claim that the parent form is LABELS for
820 ;;; context declarations, since we don't want it to be considered
821 ;;; a real global function.
822 ;;; -- If it is a known function, mark it as such by setting the KIND.
824 ;;; We return the leaf referenced (NIL if not a leaf) and the
825 ;;; FUN-INFO assigned.
826 (defun recognize-known-call (call ir1-converting-not-optimizing-p)
827 (declare (type combination call))
828 (let* ((ref (lvar-uses (basic-combination-fun call)))
829 (leaf (when (ref-p ref) (ref-leaf ref)))
830 (inlinep (if (defined-fun-p leaf)
831 (defined-fun-inlinep leaf)
832 :no-chance)))
833 (cond
834 ((eq inlinep :notinline)
835 (let ((info (info :function :info (leaf-source-name leaf))))
836 (when info
837 (setf (basic-combination-fun-info call) info))
838 (values nil nil)))
839 ((not (and (global-var-p leaf)
840 (eq (global-var-kind leaf) :global-function)))
841 (values leaf nil))
842 ((and (ecase inlinep
843 (:inline t)
844 (:no-chance nil)
845 ((nil :maybe-inline) (policy call (zerop space))))
846 (defined-fun-p leaf)
847 (defined-fun-inline-expansion leaf)
848 (let ((fun (defined-fun-functional leaf)))
849 (or (not fun)
850 (and (eq inlinep :inline) (functional-kind fun))))
851 (inline-expansion-ok call))
852 (flet (;; FIXME: Is this what the old CMU CL internal documentation
853 ;; called semi-inlining? A more descriptive name would
854 ;; be nice. -- WHN 2002-01-07
855 (frob ()
856 (let* ((name (leaf-source-name leaf))
857 (res (ir1-convert-inline-expansion
858 name
859 (defined-fun-inline-expansion leaf)
860 leaf
861 inlinep
862 (info :function :info name))))
863 ;; allow backward references to this function from
864 ;; following top level forms
865 (setf (defined-fun-functional leaf) res)
866 (change-ref-leaf ref res))))
867 (if ir1-converting-not-optimizing-p
868 (frob)
869 (with-ir1-environment-from-node call
870 (frob)
871 (locall-analyze-component *current-component*))))
873 (values (ref-leaf (lvar-uses (basic-combination-fun call)))
874 nil))
876 (let ((info (info :function :info (leaf-source-name leaf))))
877 (if info
878 (values leaf
879 (progn
880 (setf (basic-combination-kind call) :known)
881 (setf (basic-combination-fun-info call) info)))
882 (values leaf nil)))))))
884 ;;; Check whether CALL satisfies TYPE. If so, apply the type to the
885 ;;; call, and do MAYBE-TERMINATE-BLOCK and return the values of
886 ;;; RECOGNIZE-KNOWN-CALL. If an error, set the combination kind and
887 ;;; return NIL, NIL. If the type is just FUNCTION, then skip the
888 ;;; syntax check, arg/result type processing, but still call
889 ;;; RECOGNIZE-KNOWN-CALL, since the call might be to a known lambda,
890 ;;; and that checking is done by local call analysis.
891 (defun validate-call-type (call type ir1-converting-not-optimizing-p)
892 (declare (type combination call) (type ctype type))
893 (cond ((not (fun-type-p type))
894 (aver (multiple-value-bind (val win)
895 (csubtypep type (specifier-type 'function))
896 (or val (not win))))
897 (recognize-known-call call ir1-converting-not-optimizing-p))
898 ((valid-fun-use call type
899 :argument-test #'always-subtypep
900 :result-test nil
901 ;; KLUDGE: Common Lisp is such a dynamic
902 ;; language that all we can do here in
903 ;; general is issue a STYLE-WARNING. It
904 ;; would be nice to issue a full WARNING
905 ;; in the special case of of type
906 ;; mismatches within a compilation unit
907 ;; (as in section 3.2.2.3 of the spec)
908 ;; but at least as of sbcl-0.6.11, we
909 ;; don't keep track of whether the
910 ;; mismatched data came from the same
911 ;; compilation unit, so we can't do that.
912 ;; -- WHN 2001-02-11
914 ;; FIXME: Actually, I think we could
915 ;; issue a full WARNING if the call
916 ;; violates a DECLAIM FTYPE.
917 :lossage-fun #'compiler-style-warn
918 :unwinnage-fun #'compiler-notify)
919 (assert-call-type call type)
920 (maybe-terminate-block call ir1-converting-not-optimizing-p)
921 (recognize-known-call call ir1-converting-not-optimizing-p))
923 (setf (combination-kind call) :error)
924 (values nil nil))))
926 ;;; This is called by IR1-OPTIMIZE when the function for a call has
927 ;;; changed. If the call is local, we try to LET-convert it, and
928 ;;; derive the result type. If it is a :FULL call, we validate it
929 ;;; against the type, which recognizes known calls, does inline
930 ;;; expansion, etc. If a call to a predicate in a non-conditional
931 ;;; position or to a function with a source transform, then we
932 ;;; reconvert the form to give IR1 another chance.
933 (defun propagate-fun-change (call)
934 (declare (type combination call))
935 (let ((*compiler-error-context* call)
936 (fun-lvar (basic-combination-fun call)))
937 (setf (lvar-reoptimize fun-lvar) nil)
938 (case (combination-kind call)
939 (:local
940 (let ((fun (combination-lambda call)))
941 (maybe-let-convert fun)
942 (unless (member (functional-kind fun) '(:let :assignment :deleted))
943 (derive-node-type call (tail-set-type (lambda-tail-set fun))))))
944 (:full
945 (multiple-value-bind (leaf info)
946 (validate-call-type call (lvar-type fun-lvar) nil)
947 (cond ((functional-p leaf)
948 (convert-call-if-possible
949 (lvar-uses (basic-combination-fun call))
950 call))
951 ((not leaf))
952 ((and (global-var-p leaf)
953 (eq (global-var-kind leaf) :global-function)
954 (leaf-has-source-name-p leaf)
955 (or (info :function :source-transform (leaf-source-name leaf))
956 (and info
957 (ir1-attributep (fun-info-attributes info)
958 predicate)
959 (let ((lvar (node-lvar call)))
960 (and lvar (not (if-p (lvar-dest lvar))))))))
961 (let ((name (leaf-source-name leaf))
962 (dummies (make-gensym-list
963 (length (combination-args call)))))
964 (transform-call call
965 `(lambda ,dummies
966 (,@(if (symbolp name)
967 `(,name)
968 `(funcall #',name))
969 ,@dummies))
970 (leaf-source-name leaf)))))))))
971 (values))
973 ;;;; known function optimization
975 ;;; Add a failed optimization note to FAILED-OPTIMZATIONS for NODE,
976 ;;; FUN and ARGS. If there is already a note for NODE and TRANSFORM,
977 ;;; replace it, otherwise add a new one.
978 (defun record-optimization-failure (node transform args)
979 (declare (type combination node) (type transform transform)
980 (type (or fun-type list) args))
981 (let* ((table (component-failed-optimizations *component-being-compiled*))
982 (found (assoc transform (gethash node table))))
983 (if found
984 (setf (cdr found) args)
985 (push (cons transform args) (gethash node table))))
986 (values))
988 ;;; Attempt to transform NODE using TRANSFORM-FUNCTION, subject to the
989 ;;; call type constraint TRANSFORM-TYPE. If we are inhibited from
990 ;;; doing the transform for some reason and FLAME is true, then we
991 ;;; make a note of the message in FAILED-OPTIMIZATIONS for IR1
992 ;;; finalize to pick up. We return true if the transform failed, and
993 ;;; thus further transformation should be attempted. We return false
994 ;;; if either the transform succeeded or was aborted.
995 (defun ir1-transform (node transform)
996 (declare (type combination node) (type transform transform))
997 (let* ((type (transform-type transform))
998 (fun (transform-function transform))
999 (constrained (fun-type-p type))
1000 (table (component-failed-optimizations *component-being-compiled*))
1001 (flame (if (transform-important transform)
1002 (policy node (>= speed inhibit-warnings))
1003 (policy node (> speed inhibit-warnings))))
1004 (*compiler-error-context* node))
1005 (cond ((or (not constrained)
1006 (valid-fun-use node type))
1007 (multiple-value-bind (severity args)
1008 (catch 'give-up-ir1-transform
1009 (transform-call node
1010 (funcall fun node)
1011 (combination-fun-source-name node))
1012 (values :none nil))
1013 (ecase severity
1014 (:none
1015 (remhash node table)
1016 nil)
1017 (:aborted
1018 (setf (combination-kind node) :error)
1019 (when args
1020 (apply #'warn args))
1021 (remhash node table)
1022 nil)
1023 (:failure
1024 (if args
1025 (when flame
1026 (record-optimization-failure node transform args))
1027 (setf (gethash node table)
1028 (remove transform (gethash node table) :key #'car)))
1030 (:delayed
1031 (remhash node table)
1032 nil))))
1033 ((and flame
1034 (valid-fun-use node
1035 type
1036 :argument-test #'types-equal-or-intersect
1037 :result-test #'values-types-equal-or-intersect))
1038 (record-optimization-failure node transform type)
1041 t))))
1043 ;;; When we don't like an IR1 transform, we throw the severity/reason
1044 ;;; and args.
1046 ;;; GIVE-UP-IR1-TRANSFORM is used to throw out of an IR1 transform,
1047 ;;; aborting this attempt to transform the call, but admitting the
1048 ;;; possibility that this or some other transform will later succeed.
1049 ;;; If arguments are supplied, they are format arguments for an
1050 ;;; efficiency note.
1052 ;;; ABORT-IR1-TRANSFORM is used to throw out of an IR1 transform and
1053 ;;; force a normal call to the function at run time. No further
1054 ;;; optimizations will be attempted.
1056 ;;; DELAY-IR1-TRANSFORM is used to throw out of an IR1 transform, and
1057 ;;; delay the transform on the node until later. REASONS specifies
1058 ;;; when the transform will be later retried. The :OPTIMIZE reason
1059 ;;; causes the transform to be delayed until after the current IR1
1060 ;;; optimization pass. The :CONSTRAINT reason causes the transform to
1061 ;;; be delayed until after constraint propagation.
1063 ;;; FIXME: Now (0.6.11.44) that there are 4 variants of this (GIVE-UP,
1064 ;;; ABORT, DELAY/:OPTIMIZE, DELAY/:CONSTRAINT) and we're starting to
1065 ;;; do CASE operations on the various REASON values, it might be a
1066 ;;; good idea to go OO, representing the reasons by objects, using
1067 ;;; CLOS methods on the objects instead of CASE, and (possibly) using
1068 ;;; SIGNAL instead of THROW.
1069 (declaim (ftype (function (&rest t) nil) give-up-ir1-transform))
1070 (defun give-up-ir1-transform (&rest args)
1071 (throw 'give-up-ir1-transform (values :failure args)))
1072 (defun abort-ir1-transform (&rest args)
1073 (throw 'give-up-ir1-transform (values :aborted args)))
1074 (defun delay-ir1-transform (node &rest reasons)
1075 (let ((assoc (assoc node *delayed-ir1-transforms*)))
1076 (cond ((not assoc)
1077 (setf *delayed-ir1-transforms*
1078 (acons node reasons *delayed-ir1-transforms*))
1079 (throw 'give-up-ir1-transform :delayed))
1080 ((cdr assoc)
1081 (dolist (reason reasons)
1082 (pushnew reason (cdr assoc)))
1083 (throw 'give-up-ir1-transform :delayed)))))
1085 ;;; Clear any delayed transform with no reasons - these should have
1086 ;;; been tried in the last pass. Then remove the reason from the
1087 ;;; delayed transform reasons, and if any become empty then set
1088 ;;; reoptimize flags for the node. Return true if any transforms are
1089 ;;; to be retried.
1090 (defun retry-delayed-ir1-transforms (reason)
1091 (setf *delayed-ir1-transforms*
1092 (remove-if-not #'cdr *delayed-ir1-transforms*))
1093 (let ((reoptimize nil))
1094 (dolist (assoc *delayed-ir1-transforms*)
1095 (let ((reasons (remove reason (cdr assoc))))
1096 (setf (cdr assoc) reasons)
1097 (unless reasons
1098 (let ((node (car assoc)))
1099 (unless (node-deleted node)
1100 (setf reoptimize t)
1101 (setf (node-reoptimize node) t)
1102 (let ((block (node-block node)))
1103 (setf (block-reoptimize block) t)
1104 (reoptimize-component (block-component block) :maybe)))))))
1105 reoptimize))
1107 ;;; Take the lambda-expression RES, IR1 convert it in the proper
1108 ;;; environment, and then install it as the function for the call
1109 ;;; NODE. We do local call analysis so that the new function is
1110 ;;; integrated into the control flow.
1112 ;;; We require the original function source name in order to generate
1113 ;;; a meaningful debug name for the lambda we set up. (It'd be
1114 ;;; possible to do this starting from debug names as well as source
1115 ;;; names, but as of sbcl-0.7.1.5, there was no need for this
1116 ;;; generality, since source names are always known to our callers.)
1117 (defun transform-call (call res source-name)
1118 (declare (type combination call) (list res))
1119 (aver (and (legal-fun-name-p source-name)
1120 (not (eql source-name '.anonymous.))))
1121 (node-ends-block call)
1122 ;; The internal variables of a transform are not going to be
1123 ;; interesting to the debugger, so there's no sense in
1124 ;; suppressing the substitution of variables with only one use
1125 ;; (the extra variables can slow down constraint propagation).
1127 ;; This needs to be done before the WITH-IR1-ENVIRONMENT-FROM-NODE,
1128 ;; so that it will bind *LEXENV* to the right environment.
1129 (setf (combination-lexenv call)
1130 (make-lexenv :default (combination-lexenv call)
1131 :policy (process-optimize-decl
1132 '(optimize
1133 (preserve-single-use-debug-variables 0))
1134 (lexenv-policy
1135 (combination-lexenv call)))))
1136 (with-ir1-environment-from-node call
1137 (with-component-last-block (*current-component*
1138 (block-next (node-block call)))
1140 (let ((new-fun (ir1-convert-inline-lambda
1142 :debug-name (debug-name 'lambda-inlined source-name)
1143 :system-lambda t))
1144 (ref (lvar-use (combination-fun call))))
1145 (change-ref-leaf ref new-fun)
1146 (setf (combination-kind call) :full)
1147 (locall-analyze-component *current-component*))))
1148 (values))
1150 ;;; Replace a call to a foldable function of constant arguments with
1151 ;;; the result of evaluating the form. If there is an error during the
1152 ;;; evaluation, we give a warning and leave the call alone, making the
1153 ;;; call a :ERROR call.
1155 ;;; If there is more than one value, then we transform the call into a
1156 ;;; VALUES form.
1157 (defun constant-fold-call (call)
1158 (let ((args (mapcar #'lvar-value (combination-args call)))
1159 (fun-name (combination-fun-source-name call)))
1160 (multiple-value-bind (values win)
1161 (careful-call fun-name
1162 args
1163 call
1164 ;; Note: CMU CL had COMPILER-WARN here, and that
1165 ;; seems more natural, but it's probably not.
1167 ;; It's especially not while bug 173 exists:
1168 ;; Expressions like
1169 ;; (COND (END
1170 ;; (UNLESS (OR UNSAFE? (<= END SIZE)))
1171 ;; ...))
1172 ;; can cause constant-folding TYPE-ERRORs (in
1173 ;; #'<=) when END can be proved to be NIL, even
1174 ;; though the code is perfectly legal and safe
1175 ;; because a NIL value of END means that the
1176 ;; #'<= will never be executed.
1178 ;; Moreover, even without bug 173,
1179 ;; quite-possibly-valid code like
1180 ;; (COND ((NONINLINED-PREDICATE END)
1181 ;; (UNLESS (<= END SIZE))
1182 ;; ...))
1183 ;; (where NONINLINED-PREDICATE is something the
1184 ;; compiler can't do at compile time, but which
1185 ;; turns out to make the #'<= expression
1186 ;; unreachable when END=NIL) could cause errors
1187 ;; when the compiler tries to constant-fold (<=
1188 ;; END SIZE).
1190 ;; So, with or without bug 173, it'd be
1191 ;; unnecessarily evil to do a full
1192 ;; COMPILER-WARNING (and thus return FAILURE-P=T
1193 ;; from COMPILE-FILE) for legal code, so we we
1194 ;; use a wimpier COMPILE-STYLE-WARNING instead.
1195 #-sb-xc-host #'compiler-style-warn
1196 ;; On the other hand, for code we control, we
1197 ;; should be able to work around any bug
1198 ;; 173-related problems, and in particular we
1199 ;; want to be alerted to calls to our own
1200 ;; functions which aren't being folded away; a
1201 ;; COMPILER-WARNING is butch enough to stop the
1202 ;; SBCL build itself in its tracks.
1203 #+sb-xc-host #'compiler-warn
1204 "constant folding")
1205 (cond ((not win)
1206 (setf (combination-kind call) :error))
1207 ((and (proper-list-of-length-p values 1))
1208 (with-ir1-environment-from-node call
1209 (let* ((lvar (node-lvar call))
1210 (prev (node-prev call))
1211 (intermediate-ctran (make-ctran)))
1212 (%delete-lvar-use call)
1213 (setf (ctran-next prev) nil)
1214 (setf (node-prev call) nil)
1215 (reference-constant prev intermediate-ctran lvar
1216 (first values))
1217 (link-node-to-previous-ctran call intermediate-ctran)
1218 (reoptimize-lvar lvar)
1219 (flush-combination call))))
1220 (t (let ((dummies (make-gensym-list (length args))))
1221 (transform-call
1222 call
1223 `(lambda ,dummies
1224 (declare (ignore ,@dummies))
1225 (values ,@(mapcar (lambda (x) `',x) values)))
1226 fun-name))))))
1227 (values))
1229 ;;;; local call optimization
1231 ;;; Propagate TYPE to LEAF and its REFS, marking things changed. If
1232 ;;; the leaf type is a function type, then just leave it alone, since
1233 ;;; TYPE is never going to be more specific than that (and
1234 ;;; TYPE-INTERSECTION would choke.)
1235 (defun propagate-to-refs (leaf type)
1236 (declare (type leaf leaf) (type ctype type))
1237 (let ((var-type (leaf-type leaf)))
1238 (unless (fun-type-p var-type)
1239 (let ((int (type-approx-intersection2 var-type type)))
1240 (when (type/= int var-type)
1241 (setf (leaf-type leaf) int)
1242 (dolist (ref (leaf-refs leaf))
1243 (derive-node-type ref (make-single-value-type int))
1244 ;; KLUDGE: LET var substitution
1245 (let* ((lvar (node-lvar ref)))
1246 (when (and lvar (combination-p (lvar-dest lvar)))
1247 (reoptimize-lvar lvar))))))
1248 (values))))
1250 ;;; Iteration variable: exactly one SETQ of the form:
1252 ;;; (let ((var initial))
1253 ;;; ...
1254 ;;; (setq var (+ var step))
1255 ;;; ...)
1256 (defun maybe-infer-iteration-var-type (var initial-type)
1257 (binding* ((sets (lambda-var-sets var) :exit-if-null)
1258 (set (first sets))
1259 (() (null (rest sets)) :exit-if-null)
1260 (set-use (principal-lvar-use (set-value set)))
1261 (() (and (combination-p set-use)
1262 (eq (combination-kind set-use) :known)
1263 (fun-info-p (combination-fun-info set-use))
1264 (not (node-to-be-deleted-p set-use))
1265 (or (eq (combination-fun-source-name set-use) '+)
1266 (eq (combination-fun-source-name set-use) '-)))
1267 :exit-if-null)
1268 (minusp (eq (combination-fun-source-name set-use) '-))
1269 (+-args (basic-combination-args set-use))
1270 (() (and (proper-list-of-length-p +-args 2 2)
1271 (let ((first (principal-lvar-use
1272 (first +-args))))
1273 (and (ref-p first)
1274 (eq (ref-leaf first) var))))
1275 :exit-if-null)
1276 (step-type (lvar-type (second +-args)))
1277 (set-type (lvar-type (set-value set))))
1278 (when (and (numeric-type-p initial-type)
1279 (numeric-type-p step-type)
1280 (or (numeric-type-equal initial-type step-type)
1281 ;; Detect cases like (LOOP FOR 1.0 to 5.0 ...), where
1282 ;; the initial and the step are of different types,
1283 ;; and the step is less contagious.
1284 (numeric-type-equal initial-type
1285 (numeric-contagion initial-type
1286 step-type))))
1287 (labels ((leftmost (x y cmp cmp=)
1288 (cond ((eq x nil) nil)
1289 ((eq y nil) nil)
1290 ((listp x)
1291 (let ((x1 (first x)))
1292 (cond ((listp y)
1293 (let ((y1 (first y)))
1294 (if (funcall cmp x1 y1) x y)))
1296 (if (funcall cmp x1 y) x y)))))
1297 ((listp y)
1298 (let ((y1 (first y)))
1299 (if (funcall cmp= x y1) x y)))
1300 (t (if (funcall cmp x y) x y))))
1301 (max* (x y) (leftmost x y #'> #'>=))
1302 (min* (x y) (leftmost x y #'< #'<=)))
1303 (multiple-value-bind (low high)
1304 (let ((step-type-non-negative (csubtypep step-type (specifier-type
1305 '(real 0 *))))
1306 (step-type-non-positive (csubtypep step-type (specifier-type
1307 '(real * 0)))))
1308 (cond ((or (and step-type-non-negative (not minusp))
1309 (and step-type-non-positive minusp))
1310 (values (numeric-type-low initial-type)
1311 (when (and (numeric-type-p set-type)
1312 (numeric-type-equal set-type initial-type))
1313 (max* (numeric-type-high initial-type)
1314 (numeric-type-high set-type)))))
1315 ((or (and step-type-non-positive (not minusp))
1316 (and step-type-non-negative minusp))
1317 (values (when (and (numeric-type-p set-type)
1318 (numeric-type-equal set-type initial-type))
1319 (min* (numeric-type-low initial-type)
1320 (numeric-type-low set-type)))
1321 (numeric-type-high initial-type)))
1323 (values nil nil))))
1324 (modified-numeric-type initial-type
1325 :low low
1326 :high high
1327 :enumerable nil))))))
1328 (deftransform + ((x y) * * :result result)
1329 "check for iteration variable reoptimization"
1330 (let ((dest (principal-lvar-end result))
1331 (use (principal-lvar-use x)))
1332 (when (and (ref-p use)
1333 (set-p dest)
1334 (eq (ref-leaf use)
1335 (set-var dest)))
1336 (reoptimize-lvar (set-value dest))))
1337 (give-up-ir1-transform))
1339 ;;; Figure out the type of a LET variable that has sets. We compute
1340 ;;; the union of the INITIAL-TYPE and the types of all the set
1341 ;;; values and to a PROPAGATE-TO-REFS with this type.
1342 (defun propagate-from-sets (var initial-type)
1343 (collect ((res initial-type type-union))
1344 (dolist (set (basic-var-sets var))
1345 (let ((type (lvar-type (set-value set))))
1346 (res type)
1347 (when (node-reoptimize set)
1348 (derive-node-type set (make-single-value-type type))
1349 (setf (node-reoptimize set) nil))))
1350 (let ((res (res)))
1351 (awhen (maybe-infer-iteration-var-type var initial-type)
1352 (setq res it))
1353 (propagate-to-refs var res)))
1354 (values))
1356 ;;; If a LET variable, find the initial value's type and do
1357 ;;; PROPAGATE-FROM-SETS. We also derive the VALUE's type as the node's
1358 ;;; type.
1359 (defun ir1-optimize-set (node)
1360 (declare (type cset node))
1361 (let ((var (set-var node)))
1362 (when (and (lambda-var-p var) (leaf-refs var))
1363 (let ((home (lambda-var-home var)))
1364 (when (eq (functional-kind home) :let)
1365 (let* ((initial-value (let-var-initial-value var))
1366 (initial-type (lvar-type initial-value)))
1367 (setf (lvar-reoptimize initial-value) nil)
1368 (propagate-from-sets var initial-type))))))
1370 (derive-node-type node (make-single-value-type
1371 (lvar-type (set-value node))))
1372 (values))
1374 ;;; Return true if the value of REF will always be the same (and is
1375 ;;; thus legal to substitute.)
1376 (defun constant-reference-p (ref)
1377 (declare (type ref ref))
1378 (let ((leaf (ref-leaf ref)))
1379 (typecase leaf
1380 ((or constant functional) t)
1381 (lambda-var
1382 (null (lambda-var-sets leaf)))
1383 (defined-fun
1384 (not (eq (defined-fun-inlinep leaf) :notinline)))
1385 (global-var
1386 (case (global-var-kind leaf)
1387 (:global-function
1388 (let ((name (leaf-source-name leaf)))
1389 (or #-sb-xc-host
1390 (eq (symbol-package (fun-name-block-name name))
1391 *cl-package*)
1392 (info :function :info name)))))))))
1394 ;;; If we have a non-set LET var with a single use, then (if possible)
1395 ;;; replace the variable reference's LVAR with the arg lvar.
1397 ;;; We change the REF to be a reference to NIL with unused value, and
1398 ;;; let it be flushed as dead code. A side effect of this substitution
1399 ;;; is to delete the variable.
1400 (defun substitute-single-use-lvar (arg var)
1401 (declare (type lvar arg) (type lambda-var var))
1402 (binding* ((ref (first (leaf-refs var)))
1403 (lvar (node-lvar ref) :exit-if-null)
1404 (dest (lvar-dest lvar)))
1405 (when (and
1406 ;; Think about (LET ((A ...)) (IF ... A ...)): two
1407 ;; LVAR-USEs should not be met on one path. Another problem
1408 ;; is with dynamic-extent.
1409 (eq (lvar-uses lvar) ref)
1410 (not (block-delete-p (node-block ref)))
1411 (typecase dest
1412 ;; we should not change lifetime of unknown values lvars
1413 (cast
1414 (and (type-single-value-p (lvar-derived-type arg))
1415 (multiple-value-bind (pdest pprev)
1416 (principal-lvar-end lvar)
1417 (declare (ignore pdest))
1418 (lvar-single-value-p pprev))))
1419 (mv-combination
1420 (or (eq (basic-combination-fun dest) lvar)
1421 (and (eq (basic-combination-kind dest) :local)
1422 (type-single-value-p (lvar-derived-type arg)))))
1423 ((or creturn exit)
1424 ;; While CRETURN and EXIT nodes may be known-values,
1425 ;; they have their own complications, such as
1426 ;; substitution into CRETURN may create new tail calls.
1427 nil)
1429 (aver (lvar-single-value-p lvar))
1431 (eq (node-home-lambda ref)
1432 (lambda-home (lambda-var-home var))))
1433 (let ((ref-type (single-value-type (node-derived-type ref))))
1434 (cond ((csubtypep (single-value-type (lvar-type arg)) ref-type)
1435 (substitute-lvar-uses lvar arg
1436 ;; Really it is (EQ (LVAR-USES LVAR) REF):
1438 (delete-lvar-use ref))
1440 (let* ((value (make-lvar))
1441 (cast (insert-cast-before ref value ref-type
1442 ;; KLUDGE: it should be (TYPE-CHECK 0)
1443 *policy*)))
1444 (setf (cast-type-to-check cast) *wild-type*)
1445 (substitute-lvar-uses value arg
1446 ;; FIXME
1448 (%delete-lvar-use ref)
1449 (add-lvar-use cast lvar)))))
1450 (setf (node-derived-type ref) *wild-type*)
1451 (change-ref-leaf ref (find-constant nil))
1452 (delete-ref ref)
1453 (unlink-node ref)
1454 (reoptimize-lvar lvar)
1455 t)))
1457 ;;; Delete a LET, removing the call and bind nodes, and warning about
1458 ;;; any unreferenced variables. Note that FLUSH-DEAD-CODE will come
1459 ;;; along right away and delete the REF and then the lambda, since we
1460 ;;; flush the FUN lvar.
1461 (defun delete-let (clambda)
1462 (declare (type clambda clambda))
1463 (aver (functional-letlike-p clambda))
1464 (note-unreferenced-vars clambda)
1465 (let ((call (let-combination clambda)))
1466 (flush-dest (basic-combination-fun call))
1467 (unlink-node call)
1468 (unlink-node (lambda-bind clambda))
1469 (setf (lambda-bind clambda) nil))
1470 (setf (functional-kind clambda) :zombie)
1471 (let ((home (lambda-home clambda)))
1472 (setf (lambda-lets home) (delete clambda (lambda-lets home))))
1473 (values))
1475 ;;; This function is called when one of the arguments to a LET
1476 ;;; changes. We look at each changed argument. If the corresponding
1477 ;;; variable is set, then we call PROPAGATE-FROM-SETS. Otherwise, we
1478 ;;; consider substituting for the variable, and also propagate
1479 ;;; derived-type information for the arg to all the VAR's refs.
1481 ;;; Substitution is inhibited when the arg leaf's derived type isn't a
1482 ;;; subtype of the argument's leaf type. This prevents type checking
1483 ;;; from being defeated, and also ensures that the best representation
1484 ;;; for the variable can be used.
1486 ;;; Substitution of individual references is inhibited if the
1487 ;;; reference is in a different component from the home. This can only
1488 ;;; happen with closures over top level lambda vars. In such cases,
1489 ;;; the references may have already been compiled, and thus can't be
1490 ;;; retroactively modified.
1492 ;;; If all of the variables are deleted (have no references) when we
1493 ;;; are done, then we delete the LET.
1495 ;;; Note that we are responsible for clearing the LVAR-REOPTIMIZE
1496 ;;; flags.
1497 (defun propagate-let-args (call fun)
1498 (declare (type combination call) (type clambda fun))
1499 (loop for arg in (combination-args call)
1500 and var in (lambda-vars fun) do
1501 (when (and arg (lvar-reoptimize arg))
1502 (setf (lvar-reoptimize arg) nil)
1503 (cond
1504 ((lambda-var-sets var)
1505 (propagate-from-sets var (lvar-type arg)))
1506 ((let ((use (lvar-uses arg)))
1507 (when (ref-p use)
1508 (let ((leaf (ref-leaf use)))
1509 (when (and (constant-reference-p use)
1510 (csubtypep (leaf-type leaf)
1511 ;; (NODE-DERIVED-TYPE USE) would
1512 ;; be better -- APD, 2003-05-15
1513 (leaf-type var)))
1514 (propagate-to-refs var (lvar-type arg))
1515 (let ((use-component (node-component use)))
1516 (prog1 (substitute-leaf-if
1517 (lambda (ref)
1518 (cond ((eq (node-component ref) use-component)
1521 (aver (lambda-toplevelish-p (lambda-home fun)))
1522 nil)))
1523 leaf var)))
1524 t)))))
1525 ((and (null (rest (leaf-refs var)))
1526 ;; Don't substitute single-ref variables on high-debug /
1527 ;; low speed, to improve the debugging experience.
1528 (policy call (< preserve-single-use-debug-variables 3))
1529 (substitute-single-use-lvar arg var)))
1531 (propagate-to-refs var (lvar-type arg))))))
1533 (when (every #'not (combination-args call))
1534 (delete-let fun))
1536 (values))
1538 ;;; This function is called when one of the args to a non-LET local
1539 ;;; call changes. For each changed argument corresponding to an unset
1540 ;;; variable, we compute the union of the types across all calls and
1541 ;;; propagate this type information to the var's refs.
1543 ;;; If the function has an XEP, then we don't do anything, since we
1544 ;;; won't discover anything.
1546 ;;; We can clear the LVAR-REOPTIMIZE flags for arguments in all calls
1547 ;;; corresponding to changed arguments in CALL, since the only use in
1548 ;;; IR1 optimization of the REOPTIMIZE flag for local call args is
1549 ;;; right here.
1550 (defun propagate-local-call-args (call fun)
1551 (declare (type combination call) (type clambda fun))
1553 (unless (or (functional-entry-fun fun)
1554 (lambda-optional-dispatch fun))
1555 (let* ((vars (lambda-vars fun))
1556 (union (mapcar (lambda (arg var)
1557 (when (and arg
1558 (lvar-reoptimize arg)
1559 (null (basic-var-sets var)))
1560 (lvar-type arg)))
1561 (basic-combination-args call)
1562 vars))
1563 (this-ref (lvar-use (basic-combination-fun call))))
1565 (dolist (arg (basic-combination-args call))
1566 (when arg
1567 (setf (lvar-reoptimize arg) nil)))
1569 (dolist (ref (leaf-refs fun))
1570 (let ((dest (node-dest ref)))
1571 (unless (or (eq ref this-ref) (not dest))
1572 (setq union
1573 (mapcar (lambda (this-arg old)
1574 (when old
1575 (setf (lvar-reoptimize this-arg) nil)
1576 (type-union (lvar-type this-arg) old)))
1577 (basic-combination-args dest)
1578 union)))))
1580 (loop for var in vars
1581 and type in union
1582 when type do (propagate-to-refs var type))))
1584 (values))
1586 ;;;; multiple values optimization
1588 ;;; Do stuff to notice a change to a MV combination node. There are
1589 ;;; two main branches here:
1590 ;;; -- If the call is local, then it is already a MV let, or should
1591 ;;; become one. Note that although all :LOCAL MV calls must eventually
1592 ;;; be converted to :MV-LETs, there can be a window when the call
1593 ;;; is local, but has not been LET converted yet. This is because
1594 ;;; the entry-point lambdas may have stray references (in other
1595 ;;; entry points) that have not been deleted yet.
1596 ;;; -- The call is full. This case is somewhat similar to the non-MV
1597 ;;; combination optimization: we propagate return type information and
1598 ;;; notice non-returning calls. We also have an optimization
1599 ;;; which tries to convert MV-CALLs into MV-binds.
1600 (defun ir1-optimize-mv-combination (node)
1601 (ecase (basic-combination-kind node)
1602 (:local
1603 (let ((fun-lvar (basic-combination-fun node)))
1604 (when (lvar-reoptimize fun-lvar)
1605 (setf (lvar-reoptimize fun-lvar) nil)
1606 (maybe-let-convert (combination-lambda node))))
1607 (setf (lvar-reoptimize (first (basic-combination-args node))) nil)
1608 (when (eq (functional-kind (combination-lambda node)) :mv-let)
1609 (unless (convert-mv-bind-to-let node)
1610 (ir1-optimize-mv-bind node))))
1611 (:full
1612 (let* ((fun (basic-combination-fun node))
1613 (fun-changed (lvar-reoptimize fun))
1614 (args (basic-combination-args node)))
1615 (when fun-changed
1616 (setf (lvar-reoptimize fun) nil)
1617 (let ((type (lvar-type fun)))
1618 (when (fun-type-p type)
1619 (derive-node-type node (fun-type-returns type))))
1620 (maybe-terminate-block node nil)
1621 (let ((use (lvar-uses fun)))
1622 (when (and (ref-p use) (functional-p (ref-leaf use)))
1623 (convert-call-if-possible use node)
1624 (when (eq (basic-combination-kind node) :local)
1625 (maybe-let-convert (ref-leaf use))))))
1626 (unless (or (eq (basic-combination-kind node) :local)
1627 (eq (lvar-fun-name fun) '%throw))
1628 (ir1-optimize-mv-call node))
1629 (dolist (arg args)
1630 (setf (lvar-reoptimize arg) nil))))
1631 (:error))
1632 (values))
1634 ;;; Propagate derived type info from the values lvar to the vars.
1635 (defun ir1-optimize-mv-bind (node)
1636 (declare (type mv-combination node))
1637 (let* ((arg (first (basic-combination-args node)))
1638 (vars (lambda-vars (combination-lambda node)))
1639 (n-vars (length vars))
1640 (types (values-type-in (lvar-derived-type arg)
1641 n-vars)))
1642 (loop for var in vars
1643 and type in types
1644 do (if (basic-var-sets var)
1645 (propagate-from-sets var type)
1646 (propagate-to-refs var type)))
1647 (setf (lvar-reoptimize arg) nil))
1648 (values))
1650 ;;; If possible, convert a general MV call to an MV-BIND. We can do
1651 ;;; this if:
1652 ;;; -- The call has only one argument, and
1653 ;;; -- The function has a known fixed number of arguments, or
1654 ;;; -- The argument yields a known fixed number of values.
1656 ;;; What we do is change the function in the MV-CALL to be a lambda
1657 ;;; that "looks like an MV bind", which allows
1658 ;;; IR1-OPTIMIZE-MV-COMBINATION to notice that this call can be
1659 ;;; converted (the next time around.) This new lambda just calls the
1660 ;;; actual function with the MV-BIND variables as arguments. Note that
1661 ;;; this new MV bind is not let-converted immediately, as there are
1662 ;;; going to be stray references from the entry-point functions until
1663 ;;; they get deleted.
1665 ;;; In order to avoid loss of argument count checking, we only do the
1666 ;;; transformation according to a known number of expected argument if
1667 ;;; safety is unimportant. We can always convert if we know the number
1668 ;;; of actual values, since the normal call that we build will still
1669 ;;; do any appropriate argument count checking.
1671 ;;; We only attempt the transformation if the called function is a
1672 ;;; constant reference. This allows us to just splice the leaf into
1673 ;;; the new function, instead of trying to somehow bind the function
1674 ;;; expression. The leaf must be constant because we are evaluating it
1675 ;;; again in a different place. This also has the effect of squelching
1676 ;;; multiple warnings when there is an argument count error.
1677 (defun ir1-optimize-mv-call (node)
1678 (let ((fun (basic-combination-fun node))
1679 (*compiler-error-context* node)
1680 (ref (lvar-uses (basic-combination-fun node)))
1681 (args (basic-combination-args node)))
1683 (unless (and (ref-p ref) (constant-reference-p ref)
1684 (singleton-p args))
1685 (return-from ir1-optimize-mv-call))
1687 (multiple-value-bind (min max)
1688 (fun-type-nargs (lvar-type fun))
1689 (let ((total-nvals
1690 (multiple-value-bind (types nvals)
1691 (values-types (lvar-derived-type (first args)))
1692 (declare (ignore types))
1693 (if (eq nvals :unknown) nil nvals))))
1695 (when total-nvals
1696 (when (and min (< total-nvals min))
1697 (compiler-warn
1698 "MULTIPLE-VALUE-CALL with ~R values when the function expects ~
1699 at least ~R."
1700 total-nvals min)
1701 (setf (basic-combination-kind node) :error)
1702 (return-from ir1-optimize-mv-call))
1703 (when (and max (> total-nvals max))
1704 (compiler-warn
1705 "MULTIPLE-VALUE-CALL with ~R values when the function expects ~
1706 at most ~R."
1707 total-nvals max)
1708 (setf (basic-combination-kind node) :error)
1709 (return-from ir1-optimize-mv-call)))
1711 (let ((count (cond (total-nvals)
1712 ((and (policy node (zerop verify-arg-count))
1713 (eql min max))
1714 min)
1715 (t nil))))
1716 (when count
1717 (with-ir1-environment-from-node node
1718 (let* ((dums (make-gensym-list count))
1719 (ignore (gensym))
1720 (fun (ir1-convert-lambda
1721 `(lambda (&optional ,@dums &rest ,ignore)
1722 (declare (ignore ,ignore))
1723 (funcall ,(ref-leaf ref) ,@dums)))))
1724 (change-ref-leaf ref fun)
1725 (aver (eq (basic-combination-kind node) :full))
1726 (locall-analyze-component *current-component*)
1727 (aver (eq (basic-combination-kind node) :local)))))))))
1728 (values))
1730 ;;; If we see:
1731 ;;; (multiple-value-bind
1732 ;;; (x y)
1733 ;;; (values xx yy)
1734 ;;; ...)
1735 ;;; Convert to:
1736 ;;; (let ((x xx)
1737 ;;; (y yy))
1738 ;;; ...)
1740 ;;; What we actually do is convert the VALUES combination into a
1741 ;;; normal LET combination calling the original :MV-LET lambda. If
1742 ;;; there are extra args to VALUES, discard the corresponding
1743 ;;; lvars. If there are insufficient args, insert references to NIL.
1744 (defun convert-mv-bind-to-let (call)
1745 (declare (type mv-combination call))
1746 (let* ((arg (first (basic-combination-args call)))
1747 (use (lvar-uses arg)))
1748 (when (and (combination-p use)
1749 (eq (lvar-fun-name (combination-fun use))
1750 'values))
1751 (let* ((fun (combination-lambda call))
1752 (vars (lambda-vars fun))
1753 (vals (combination-args use))
1754 (nvars (length vars))
1755 (nvals (length vals)))
1756 (cond ((> nvals nvars)
1757 (mapc #'flush-dest (subseq vals nvars))
1758 (setq vals (subseq vals 0 nvars)))
1759 ((< nvals nvars)
1760 (with-ir1-environment-from-node use
1761 (let ((node-prev (node-prev use)))
1762 (setf (node-prev use) nil)
1763 (setf (ctran-next node-prev) nil)
1764 (collect ((res vals))
1765 (loop for count below (- nvars nvals)
1766 for prev = node-prev then ctran
1767 for ctran = (make-ctran)
1768 and lvar = (make-lvar use)
1769 do (reference-constant prev ctran lvar nil)
1770 (res lvar)
1771 finally (link-node-to-previous-ctran
1772 use ctran))
1773 (setq vals (res)))))))
1774 (setf (combination-args use) vals)
1775 (flush-dest (combination-fun use))
1776 (let ((fun-lvar (basic-combination-fun call)))
1777 (setf (lvar-dest fun-lvar) use)
1778 (setf (combination-fun use) fun-lvar)
1779 (flush-lvar-externally-checkable-type fun-lvar))
1780 (setf (combination-kind use) :local)
1781 (setf (functional-kind fun) :let)
1782 (flush-dest (first (basic-combination-args call)))
1783 (unlink-node call)
1784 (when vals
1785 (reoptimize-lvar (first vals)))
1786 (propagate-to-args use fun)
1787 (reoptimize-call use))
1788 t)))
1790 ;;; If we see:
1791 ;;; (values-list (list x y z))
1793 ;;; Convert to:
1794 ;;; (values x y z)
1796 ;;; In implementation, this is somewhat similar to
1797 ;;; CONVERT-MV-BIND-TO-LET. We grab the args of LIST and make them
1798 ;;; args of the VALUES-LIST call, flushing the old argument lvar
1799 ;;; (allowing the LIST to be flushed.)
1801 ;;; FIXME: Thus we lose possible type assertions on (LIST ...).
1802 (defoptimizer (values-list optimizer) ((list) node)
1803 (let ((use (lvar-uses list)))
1804 (when (and (combination-p use)
1805 (eq (lvar-fun-name (combination-fun use))
1806 'list))
1808 ;; FIXME: VALUES might not satisfy an assertion on NODE-LVAR.
1809 (change-ref-leaf (lvar-uses (combination-fun node))
1810 (find-free-fun 'values "in a strange place"))
1811 (setf (combination-kind node) :full)
1812 (let ((args (combination-args use)))
1813 (dolist (arg args)
1814 (setf (lvar-dest arg) node)
1815 (flush-lvar-externally-checkable-type arg))
1816 (setf (combination-args use) nil)
1817 (flush-dest list)
1818 (setf (combination-args node) args))
1819 t)))
1821 ;;; If VALUES appears in a non-MV context, then effectively convert it
1822 ;;; to a PROG1. This allows the computation of the additional values
1823 ;;; to become dead code.
1824 (deftransform values ((&rest vals) * * :node node)
1825 (unless (lvar-single-value-p (node-lvar node))
1826 (give-up-ir1-transform))
1827 (setf (node-derived-type node)
1828 (make-short-values-type (list (single-value-type
1829 (node-derived-type node)))))
1830 (principal-lvar-single-valuify (node-lvar node))
1831 (if vals
1832 (let ((dummies (make-gensym-list (length (cdr vals)))))
1833 `(lambda (val ,@dummies)
1834 (declare (ignore ,@dummies))
1835 val))
1836 nil))
1838 ;;; TODO:
1839 ;;; - CAST chains;
1840 (defun delete-cast (cast)
1841 (declare (type cast cast))
1842 (let ((value (cast-value cast))
1843 (lvar (node-lvar cast)))
1844 (delete-filter cast lvar value)
1845 (when lvar
1846 (reoptimize-lvar lvar)
1847 (when (lvar-single-value-p lvar)
1848 (note-single-valuified-lvar lvar)))
1849 (values)))
1851 (defun ir1-optimize-cast (cast &optional do-not-optimize)
1852 (declare (type cast cast))
1853 (let ((value (cast-value cast))
1854 (atype (cast-asserted-type cast)))
1855 (when (not do-not-optimize)
1856 (let ((lvar (node-lvar cast)))
1857 (when (values-subtypep (lvar-derived-type value)
1858 (cast-asserted-type cast))
1859 (delete-cast cast)
1860 (return-from ir1-optimize-cast t))
1862 (when (and (listp (lvar-uses value))
1863 lvar)
1864 ;; Pathwise removing of CAST
1865 (let ((ctran (node-next cast))
1866 (dest (lvar-dest lvar))
1867 next-block)
1868 (collect ((merges))
1869 (do-uses (use value)
1870 (when (and (values-subtypep (node-derived-type use) atype)
1871 (immediately-used-p value use))
1872 (unless next-block
1873 (when ctran (ensure-block-start ctran))
1874 (setq next-block (first (block-succ (node-block cast))))
1875 (ensure-block-start (node-prev cast))
1876 (reoptimize-lvar lvar)
1877 (setf (lvar-%derived-type value) nil))
1878 (%delete-lvar-use use)
1879 (add-lvar-use use lvar)
1880 (unlink-blocks (node-block use) (node-block cast))
1881 (link-blocks (node-block use) next-block)
1882 (when (and (return-p dest)
1883 (basic-combination-p use)
1884 (eq (basic-combination-kind use) :local))
1885 (merges use))))
1886 (dolist (use (merges))
1887 (merge-tail-sets use)))))))
1889 (let* ((value-type (lvar-derived-type value))
1890 (int (values-type-intersection value-type atype)))
1891 (derive-node-type cast int)
1892 (when (eq int *empty-type*)
1893 (unless (eq value-type *empty-type*)
1895 ;; FIXME: Do it in one step.
1896 (filter-lvar
1897 value
1898 (if (cast-single-value-p cast)
1899 `(list 'dummy)
1900 `(multiple-value-call #'list 'dummy)))
1901 (filter-lvar
1902 (cast-value cast)
1903 ;; FIXME: Derived type.
1904 `(%compile-time-type-error 'dummy
1905 ',(type-specifier atype)
1906 ',(type-specifier value-type)))
1907 ;; KLUDGE: FILTER-LVAR does not work for non-returning
1908 ;; functions, so we declare the return type of
1909 ;; %COMPILE-TIME-TYPE-ERROR to be * and derive the real type
1910 ;; here.
1911 (setq value (cast-value cast))
1912 (derive-node-type (lvar-uses value) *empty-type*)
1913 (maybe-terminate-block (lvar-uses value) nil)
1914 ;; FIXME: Is it necessary?
1915 (aver (null (block-pred (node-block cast))))
1916 (delete-block-lazily (node-block cast))
1917 (return-from ir1-optimize-cast)))
1918 (when (eq (node-derived-type cast) *empty-type*)
1919 (maybe-terminate-block cast nil))
1921 (when (and (cast-%type-check cast)
1922 (values-subtypep value-type
1923 (cast-type-to-check cast)))
1924 (setf (cast-%type-check cast) nil))))
1926 (unless do-not-optimize
1927 (setf (node-reoptimize cast) nil)))
1929 (deftransform make-symbol ((string) (simple-string))
1930 `(%make-symbol string))