1.0.10.4: Use variable for SIG_MEMORY_FAULT on FreeBSD
[sbcl/simd.git] / src / runtime / interrupt.c
blobc702e58a44d790252fecd075271f801abdb16f3b
1 /*
2 * interrupt-handling magic
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
43 #include "sbcl.h"
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <string.h>
48 #include <signal.h>
49 #include <sys/types.h>
50 #ifndef LISP_FEATURE_WIN32
51 #include <sys/wait.h>
52 #endif
53 #include <errno.h>
55 #include "runtime.h"
56 #include "arch.h"
57 #include "os.h"
58 #include "interrupt.h"
59 #include "globals.h"
60 #include "lispregs.h"
61 #include "validate.h"
62 #include "gc.h"
63 #include "alloc.h"
64 #include "dynbind.h"
65 #include "interr.h"
66 #include "genesis/fdefn.h"
67 #include "genesis/simple-fun.h"
68 #include "genesis/cons.h"
70 static void run_deferred_handler(struct interrupt_data *data, void *v_context);
71 #ifndef LISP_FEATURE_WIN32
72 static void store_signal_data_for_later (struct interrupt_data *data,
73 void *handler, int signal,
74 siginfo_t *info,
75 os_context_t *context);
77 void
78 sigaddset_deferrable(sigset_t *s)
80 sigaddset(s, SIGHUP);
81 sigaddset(s, SIGINT);
82 sigaddset(s, SIGQUIT);
83 sigaddset(s, SIGPIPE);
84 sigaddset(s, SIGALRM);
85 sigaddset(s, SIGURG);
86 sigaddset(s, SIGTSTP);
87 sigaddset(s, SIGCHLD);
88 sigaddset(s, SIGIO);
89 sigaddset(s, SIGXCPU);
90 sigaddset(s, SIGXFSZ);
91 sigaddset(s, SIGVTALRM);
92 sigaddset(s, SIGPROF);
93 sigaddset(s, SIGWINCH);
95 #if !((defined(LISP_FEATURE_DARWIN) || defined(LISP_FEATURE_FREEBSD)) && defined(LISP_FEATURE_SB_THREAD))
96 sigaddset(s, SIGUSR1);
97 sigaddset(s, SIGUSR2);
98 #endif
100 #ifdef LISP_FEATURE_SB_THREAD
101 sigaddset(s, SIG_INTERRUPT_THREAD);
102 #endif
105 void
106 sigaddset_blockable(sigset_t *s)
108 sigaddset_deferrable(s);
109 #ifdef LISP_FEATURE_SB_THREAD
110 #ifdef SIG_RESUME_FROM_GC
111 sigaddset(s, SIG_RESUME_FROM_GC);
112 #endif
113 sigaddset(s, SIG_STOP_FOR_GC);
114 #endif
117 /* initialized in interrupt_init */
118 static sigset_t deferrable_sigset;
119 static sigset_t blockable_sigset;
120 #endif
122 void
123 check_blockables_blocked_or_lose(void)
125 #if !defined(LISP_FEATURE_WIN32)
126 /* Get the current sigmask, by blocking the empty set. */
127 sigset_t empty,current;
128 int i;
129 sigemptyset(&empty);
130 thread_sigmask(SIG_BLOCK, &empty, &current);
131 for(i = 1; i < NSIG; i++) {
132 if (sigismember(&blockable_sigset, i) && !sigismember(&current, i))
133 lose("blockable signal %d not blocked\n",i);
135 #endif
138 void
139 unblock_gc_signals(void)
141 #ifdef LISP_FEATURE_SB_THREAD
142 sigset_t new;
143 sigemptyset(&new);
144 #if defined(SIG_RESUME_FROM_GC)
145 sigaddset(&new,SIG_RESUME_FROM_GC);
146 #endif
147 sigaddset(&new,SIG_STOP_FOR_GC);
148 thread_sigmask(SIG_UNBLOCK,&new,0);
149 #endif
152 inline static void
153 check_interrupts_enabled_or_lose(os_context_t *context)
155 struct thread *thread=arch_os_get_current_thread();
156 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
157 lose("interrupts not enabled\n");
158 if (arch_pseudo_atomic_atomic(context))
159 lose ("in pseudo atomic section\n");
162 /* When we catch an internal error, should we pass it back to Lisp to
163 * be handled in a high-level way? (Early in cold init, the answer is
164 * 'no', because Lisp is still too brain-dead to handle anything.
165 * After sufficient initialization has been completed, the answer
166 * becomes 'yes'.) */
167 boolean internal_errors_enabled = 0;
169 #ifndef LISP_FEATURE_WIN32
170 static void (*interrupt_low_level_handlers[NSIG]) (int, siginfo_t*, void*);
171 #endif
172 union interrupt_handler interrupt_handlers[NSIG];
174 /* At the toplevel repl we routinely call this function. The signal
175 * mask ought to be clear anyway most of the time, but may be non-zero
176 * if we were interrupted e.g. while waiting for a queue. */
178 void
179 reset_signal_mask(void)
181 #ifndef LISP_FEATURE_WIN32
182 sigset_t new;
183 sigemptyset(&new);
184 thread_sigmask(SIG_SETMASK,&new,0);
185 #endif
188 void
189 block_blockable_signals(void)
191 #ifndef LISP_FEATURE_WIN32
192 thread_sigmask(SIG_BLOCK, &blockable_sigset, 0);
193 #endif
196 void
197 block_deferrable_signals(void)
199 #ifndef LISP_FEATURE_WIN32
200 thread_sigmask(SIG_BLOCK, &deferrable_sigset, 0);
201 #endif
206 * utility routines used by various signal handlers
209 static void
210 build_fake_control_stack_frames(struct thread *th,os_context_t *context)
212 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
214 lispobj oldcont;
216 /* Build a fake stack frame or frames */
218 current_control_frame_pointer =
219 (lispobj *)(unsigned long)
220 (*os_context_register_addr(context, reg_CSP));
221 if ((lispobj *)(unsigned long)
222 (*os_context_register_addr(context, reg_CFP))
223 == current_control_frame_pointer) {
224 /* There is a small window during call where the callee's
225 * frame isn't built yet. */
226 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
227 == FUN_POINTER_LOWTAG) {
228 /* We have called, but not built the new frame, so
229 * build it for them. */
230 current_control_frame_pointer[0] =
231 *os_context_register_addr(context, reg_OCFP);
232 current_control_frame_pointer[1] =
233 *os_context_register_addr(context, reg_LRA);
234 current_control_frame_pointer += 8;
235 /* Build our frame on top of it. */
236 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
238 else {
239 /* We haven't yet called, build our frame as if the
240 * partial frame wasn't there. */
241 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
244 /* We can't tell whether we are still in the caller if it had to
245 * allocate a stack frame due to stack arguments. */
246 /* This observation provoked some past CMUCL maintainer to ask
247 * "Can anything strange happen during return?" */
248 else {
249 /* normal case */
250 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
253 current_control_stack_pointer = current_control_frame_pointer + 8;
255 current_control_frame_pointer[0] = oldcont;
256 current_control_frame_pointer[1] = NIL;
257 current_control_frame_pointer[2] =
258 (lispobj)(*os_context_register_addr(context, reg_CODE));
259 #endif
262 /* Stores the context for gc to scavange and builds fake stack
263 * frames. */
264 void
265 fake_foreign_function_call(os_context_t *context)
267 int context_index;
268 struct thread *thread=arch_os_get_current_thread();
270 /* context_index incrementing must not be interrupted */
271 check_blockables_blocked_or_lose();
273 /* Get current Lisp state from context. */
274 #ifdef reg_ALLOC
275 dynamic_space_free_pointer =
276 (lispobj *)(unsigned long)
277 (*os_context_register_addr(context, reg_ALLOC));
278 /* fprintf(stderr,"dynamic_space_free_pointer: %p\n", dynamic_space_free_pointer); */
279 #if defined(LISP_FEATURE_ALPHA)
280 if ((long)dynamic_space_free_pointer & 1) {
281 lose("dead in fake_foreign_function_call, context = %x\n", context);
283 #endif
284 #endif
285 #ifdef reg_BSP
286 current_binding_stack_pointer =
287 (lispobj *)(unsigned long)
288 (*os_context_register_addr(context, reg_BSP));
289 #endif
291 build_fake_control_stack_frames(thread,context);
293 /* Do dynamic binding of the active interrupt context index
294 * and save the context in the context array. */
295 context_index =
296 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread));
298 if (context_index >= MAX_INTERRUPTS) {
299 lose("maximum interrupt nesting depth (%d) exceeded\n", MAX_INTERRUPTS);
302 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
303 make_fixnum(context_index + 1),thread);
305 thread->interrupt_contexts[context_index] = context;
307 #ifdef FOREIGN_FUNCTION_CALL_FLAG
308 foreign_function_call_active = 1;
309 #endif
312 /* blocks all blockable signals. If you are calling from a signal handler,
313 * the usual signal mask will be restored from the context when the handler
314 * finishes. Otherwise, be careful */
315 void
316 undo_fake_foreign_function_call(os_context_t *context)
318 struct thread *thread=arch_os_get_current_thread();
319 /* Block all blockable signals. */
320 block_blockable_signals();
322 #ifdef FOREIGN_FUNCTION_CALL_FLAG
323 foreign_function_call_active = 0;
324 #endif
326 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
327 unbind(thread);
329 #ifdef reg_ALLOC
330 /* Put the dynamic space free pointer back into the context. */
331 *os_context_register_addr(context, reg_ALLOC) =
332 (unsigned long) dynamic_space_free_pointer
333 | (*os_context_register_addr(context, reg_ALLOC)
334 & LOWTAG_MASK);
336 ((unsigned long)(*os_context_register_addr(context, reg_ALLOC)) & ~LOWTAG_MASK)
337 | ((unsigned long) dynamic_space_free_pointer & LOWTAG_MASK);
339 #endif
342 /* a handler for the signal caused by execution of a trap opcode
343 * signalling an internal error */
344 void
345 interrupt_internal_error(os_context_t *context, boolean continuable)
347 lispobj context_sap;
349 fake_foreign_function_call(context);
351 if (!internal_errors_enabled) {
352 describe_internal_error(context);
353 /* There's no good way to recover from an internal error
354 * before the Lisp error handling mechanism is set up. */
355 lose("internal error too early in init, can't recover\n");
358 /* Allocate the SAP object while the interrupts are still
359 * disabled. */
360 context_sap = alloc_sap(context);
362 #ifndef LISP_FEATURE_WIN32
363 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
364 #endif
366 SHOW("in interrupt_internal_error");
367 #ifdef QSHOW
368 /* Display some rudimentary debugging information about the
369 * error, so that even if the Lisp error handler gets badly
370 * confused, we have a chance to determine what's going on. */
371 describe_internal_error(context);
372 #endif
373 funcall2(SymbolFunction(INTERNAL_ERROR), context_sap,
374 continuable ? T : NIL);
376 undo_fake_foreign_function_call(context); /* blocks signals again */
377 if (continuable)
378 arch_skip_instruction(context);
381 void
382 interrupt_handle_pending(os_context_t *context)
384 /* There are three ways we can get here. First, if an interrupt
385 * occurs within pseudo-atomic, it will be deferred, and we'll
386 * trap to here at the end of the pseudo-atomic block. Second, if
387 * the GC (in alloc()) decides that a GC is required, it will set
388 * *GC-PENDING* and pseudo-atomic-interrupted, and alloc() is
389 * always called from within pseudo-atomic, and thus we end up
390 * here again. Third, when calling GC-ON or at the end of a
391 * WITHOUT-GCING, MAYBE-HANDLE-PENDING-GC will trap to here if
392 * there is a pending GC. */
394 /* Win32 only needs to handle the GC cases (for now?) */
396 struct thread *thread;
398 /* Punt if in PA section, marking it as interrupted. This can
399 * happenat least if we pick up a GC request while in a
400 * WITHOUT-GCING with an outer PA -- it is not immediately clear
401 * to me that this should/could ever happen, but better safe then
402 * sorry. --NS 2007-05-15 */
403 if (arch_pseudo_atomic_atomic(context)) {
404 arch_set_pseudo_atomic_interrupted(context);
405 return;
408 thread = arch_os_get_current_thread();
410 FSHOW_SIGNAL((stderr, "/entering interrupt_handle_pending\n"));
412 check_blockables_blocked_or_lose();
414 /* If pseudo_atomic_interrupted is set then the interrupt is going
415 * to be handled now, ergo it's safe to clear it. */
416 arch_clear_pseudo_atomic_interrupted(context);
418 if (SymbolValue(GC_INHIBIT,thread)==NIL) {
419 #ifdef LISP_FEATURE_SB_THREAD
420 if (SymbolValue(STOP_FOR_GC_PENDING,thread) != NIL) {
421 /* STOP_FOR_GC_PENDING and GC_PENDING are cleared by
422 * the signal handler if it actually stops us. */
423 sig_stop_for_gc_handler(SIG_STOP_FOR_GC,NULL,context);
424 } else
425 #endif
426 if (SymbolValue(GC_PENDING,thread) != NIL) {
427 /* GC_PENDING is cleared in SUB-GC, or if another thread
428 * is doing a gc already we will get a SIG_STOP_FOR_GC and
429 * that will clear it. */
430 maybe_gc(context);
432 check_blockables_blocked_or_lose();
435 #ifndef LISP_FEATURE_WIN32
436 /* we may be here only to do the gc stuff, if interrupts are
437 * enabled run the pending handler */
438 if (SymbolValue(INTERRUPTS_ENABLED,thread) != NIL) {
439 struct interrupt_data *data = thread->interrupt_data;
441 /* There may be no pending handler, because it was only a gc
442 * that had to be executed or because pseudo atomic triggered
443 * twice for a single interrupt. For the interested reader,
444 * that may happen if an interrupt hits after the interrupted
445 * flag is cleared but before pseduo-atomic is set and a
446 * pseudo atomic is interrupted in that interrupt. */
447 if (data->pending_handler) {
449 /* If we're here as the result of a pseudo-atomic as opposed
450 * to WITHOUT-INTERRUPTS, then INTERRUPT_PENDING is already
451 * NIL, because maybe_defer_handler sets
452 * PSEUDO_ATOMIC_INTERRUPTED only if interrupts are enabled.*/
453 SetSymbolValue(INTERRUPT_PENDING, NIL, thread);
455 /* restore the saved signal mask from the original signal (the
456 * one that interrupted us during the critical section) into the
457 * os_context for the signal we're currently in the handler for.
458 * This should ensure that when we return from the handler the
459 * blocked signals are unblocked */
460 sigcopyset(os_context_sigmask_addr(context), &data->pending_mask);
462 sigemptyset(&data->pending_mask);
463 /* This will break on sparc linux: the deferred handler really wants
464 * to be called with a void_context */
465 run_deferred_handler(data,(void *)context);
468 #endif
472 * the two main signal handlers:
473 * interrupt_handle_now(..)
474 * maybe_now_maybe_later(..)
476 * to which we have added interrupt_handle_now_handler(..). Why?
477 * Well, mostly because the SPARC/Linux platform doesn't quite do
478 * signals the way we want them done. The third argument in the
479 * handler isn't filled in by the kernel properly, so we fix it up
480 * ourselves in the arch_os_get_context(..) function; however, we only
481 * want to do this when we first hit the handler, and not when
482 * interrupt_handle_now(..) is being called from some other handler
483 * (when the fixup will already have been done). -- CSR, 2002-07-23
486 void
487 interrupt_handle_now(int signal, siginfo_t *info, os_context_t *context)
489 #ifdef FOREIGN_FUNCTION_CALL_FLAG
490 boolean were_in_lisp;
491 #endif
492 union interrupt_handler handler;
494 check_blockables_blocked_or_lose();
496 #ifndef LISP_FEATURE_WIN32
497 if (sigismember(&deferrable_sigset,signal))
498 check_interrupts_enabled_or_lose(context);
499 #endif
501 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
502 /* Under Linux on some architectures, we appear to have to restore
503 the FPU control word from the context, as after the signal is
504 delivered we appear to have a null FPU control word. */
505 os_restore_fp_control(context);
506 #endif
508 handler = interrupt_handlers[signal];
510 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
511 return;
514 #ifdef FOREIGN_FUNCTION_CALL_FLAG
515 were_in_lisp = !foreign_function_call_active;
516 if (were_in_lisp)
517 #endif
519 fake_foreign_function_call(context);
522 FSHOW_SIGNAL((stderr,
523 "/entering interrupt_handle_now(%d, info, context)\n",
524 signal));
526 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
528 /* This can happen if someone tries to ignore or default one
529 * of the signals we need for runtime support, and the runtime
530 * support decides to pass on it. */
531 lose("no handler for signal %d in interrupt_handle_now(..)\n", signal);
533 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
534 /* Once we've decided what to do about contexts in a
535 * return-elsewhere world (the original context will no longer
536 * be available; should we copy it or was nobody using it anyway?)
537 * then we should convert this to return-elsewhere */
539 /* CMUCL comment said "Allocate the SAPs while the interrupts
540 * are still disabled.". I (dan, 2003.08.21) assume this is
541 * because we're not in pseudoatomic and allocation shouldn't
542 * be interrupted. In which case it's no longer an issue as
543 * all our allocation from C now goes through a PA wrapper,
544 * but still, doesn't hurt.
546 * Yeah, but non-gencgc platforms don't really wrap allocation
547 * in PA. MG - 2005-08-29 */
549 lispobj info_sap,context_sap = alloc_sap(context);
550 info_sap = alloc_sap(info);
551 /* Leave deferrable signals blocked, the handler itself will
552 * allow signals again when it sees fit. */
553 #ifdef LISP_FEATURE_SB_THREAD
555 sigset_t unblock;
556 sigemptyset(&unblock);
557 sigaddset(&unblock, SIG_STOP_FOR_GC);
558 #ifdef SIG_RESUME_FROM_GC
559 sigaddset(&unblock, SIG_RESUME_FROM_GC);
560 #endif
561 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
563 #endif
565 FSHOW_SIGNAL((stderr,"/calling Lisp-level handler\n"));
567 funcall3(handler.lisp,
568 make_fixnum(signal),
569 info_sap,
570 context_sap);
571 } else {
573 FSHOW_SIGNAL((stderr,"/calling C-level handler\n"));
575 #ifndef LISP_FEATURE_WIN32
576 /* Allow signals again. */
577 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
578 #endif
579 (*handler.c)(signal, info, context);
582 #ifdef FOREIGN_FUNCTION_CALL_FLAG
583 if (were_in_lisp)
584 #endif
586 undo_fake_foreign_function_call(context); /* block signals again */
589 FSHOW_SIGNAL((stderr,
590 "/returning from interrupt_handle_now(%d, info, context)\n",
591 signal));
594 /* This is called at the end of a critical section if the indications
595 * are that some signal was deferred during the section. Note that as
596 * far as C or the kernel is concerned we dealt with the signal
597 * already; we're just doing the Lisp-level processing now that we
598 * put off then */
599 static void
600 run_deferred_handler(struct interrupt_data *data, void *v_context)
602 /* The pending_handler may enable interrupts and then another
603 * interrupt may hit, overwrite interrupt_data, so reset the
604 * pending handler before calling it. Trust the handler to finish
605 * with the siginfo before enabling interrupts. */
606 void (*pending_handler) (int, siginfo_t*, void*)=data->pending_handler;
608 data->pending_handler=0;
609 (*pending_handler)(data->pending_signal,&(data->pending_info), v_context);
612 #ifndef LISP_FEATURE_WIN32
613 boolean
614 maybe_defer_handler(void *handler, struct interrupt_data *data,
615 int signal, siginfo_t *info, os_context_t *context)
617 struct thread *thread=arch_os_get_current_thread();
619 check_blockables_blocked_or_lose();
621 if (SymbolValue(INTERRUPT_PENDING,thread) != NIL)
622 lose("interrupt already pending\n");
623 /* If interrupts are disabled then INTERRUPT_PENDING is set and
624 * not PSEDUO_ATOMIC_INTERRUPTED. This is important for a pseudo
625 * atomic section inside a WITHOUT-INTERRUPTS.
627 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) {
628 store_signal_data_for_later(data,handler,signal,info,context);
629 SetSymbolValue(INTERRUPT_PENDING, T,thread);
630 FSHOW_SIGNAL((stderr,
631 "/maybe_defer_handler(%x,%d),thread=%lu: deferred\n",
632 (unsigned int)handler,signal,
633 (unsigned long)thread->os_thread));
634 return 1;
636 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
637 * actually use its argument for anything on x86, so this branch
638 * may succeed even when context is null (gencgc alloc()) */
639 if (arch_pseudo_atomic_atomic(context)) {
640 store_signal_data_for_later(data,handler,signal,info,context);
641 arch_set_pseudo_atomic_interrupted(context);
642 FSHOW_SIGNAL((stderr,
643 "/maybe_defer_handler(%x,%d),thread=%lu: deferred(PA)\n",
644 (unsigned int)handler,signal,
645 (unsigned long)thread->os_thread));
646 return 1;
648 FSHOW_SIGNAL((stderr,
649 "/maybe_defer_handler(%x,%d),thread=%lu: not deferred\n",
650 (unsigned int)handler,signal,
651 (unsigned long)thread->os_thread));
652 return 0;
655 static void
656 store_signal_data_for_later (struct interrupt_data *data, void *handler,
657 int signal,
658 siginfo_t *info, os_context_t *context)
660 if (data->pending_handler)
661 lose("tried to overwrite pending interrupt handler %x with %x\n",
662 data->pending_handler, handler);
663 if (!handler)
664 lose("tried to defer null interrupt handler\n");
665 data->pending_handler = handler;
666 data->pending_signal = signal;
667 if(info)
668 memcpy(&(data->pending_info), info, sizeof(siginfo_t));
670 FSHOW_SIGNAL((stderr, "/store_signal_data_for_later: signal: %d\n", signal));
672 if(context) {
673 /* the signal mask in the context (from before we were
674 * interrupted) is copied to be restored when
675 * run_deferred_handler happens. Then the usually-blocked
676 * signals are added to the mask in the context so that we are
677 * running with blocked signals when the handler returns */
678 sigcopyset(&(data->pending_mask),os_context_sigmask_addr(context));
679 sigaddset_deferrable(os_context_sigmask_addr(context));
683 static void
684 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
686 os_context_t *context = arch_os_get_context(&void_context);
687 struct thread *thread = arch_os_get_current_thread();
688 struct interrupt_data *data = thread->interrupt_data;
690 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
691 os_restore_fp_control(context);
692 #endif
694 if(!maybe_defer_handler(interrupt_handle_now,data,signal,info,context))
695 interrupt_handle_now(signal, info, context);
697 #ifdef LISP_FEATURE_DARWIN
698 DARWIN_FIX_CONTEXT(context);
699 #endif
702 static void
703 low_level_interrupt_handle_now(int signal, siginfo_t *info, os_context_t *context)
705 /* No FP control fixage needed, caller has done that. */
706 check_blockables_blocked_or_lose();
707 check_interrupts_enabled_or_lose(context);
708 interrupt_low_level_handlers[signal](signal, info, context);
709 /* No Darwin context fixage needed, caller does that. */
712 static void
713 low_level_maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
715 os_context_t *context = arch_os_get_context(&void_context);
716 struct thread *thread = arch_os_get_current_thread();
717 struct interrupt_data *data = thread->interrupt_data;
719 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
720 os_restore_fp_control(context);
721 #endif
723 if(!maybe_defer_handler(low_level_interrupt_handle_now,data,
724 signal,info,context))
725 low_level_interrupt_handle_now(signal, info, context);
727 #ifdef LISP_FEATURE_DARWIN
728 DARWIN_FIX_CONTEXT(context);
729 #endif
731 #endif
733 #ifdef LISP_FEATURE_SB_THREAD
735 void
736 sig_stop_for_gc_handler(int signal, siginfo_t *info, void *void_context)
738 os_context_t *context = arch_os_get_context(&void_context);
740 struct thread *thread=arch_os_get_current_thread();
741 sigset_t ss;
743 if (arch_pseudo_atomic_atomic(context)) {
744 SetSymbolValue(STOP_FOR_GC_PENDING,T,thread);
745 arch_set_pseudo_atomic_interrupted(context);
746 FSHOW_SIGNAL((stderr,"thread=%lu sig_stop_for_gc deferred (PA)\n",
747 thread->os_thread));
748 return;
750 else if (SymbolValue(GC_INHIBIT,thread) != NIL) {
751 SetSymbolValue(STOP_FOR_GC_PENDING,T,thread);
752 FSHOW_SIGNAL((stderr,
753 "thread=%lu sig_stop_for_gc deferred (*GC-INHIBIT*)\n",
754 thread->os_thread));
755 return;
758 /* Not PA and GC not inhibited -- we can stop now. */
760 /* need the context stored so it can have registers scavenged */
761 fake_foreign_function_call(context);
763 /* Block everything. */
764 sigfillset(&ss);
765 thread_sigmask(SIG_BLOCK,&ss,0);
767 /* Not pending anymore. */
768 SetSymbolValue(GC_PENDING,NIL,thread);
769 SetSymbolValue(STOP_FOR_GC_PENDING,NIL,thread);
771 if(thread->state!=STATE_RUNNING) {
772 lose("sig_stop_for_gc_handler: wrong thread state: %ld\n",
773 fixnum_value(thread->state));
776 thread->state=STATE_SUSPENDED;
777 FSHOW_SIGNAL((stderr,"thread=%lu suspended\n",thread->os_thread));
779 sigemptyset(&ss);
780 #if defined(SIG_RESUME_FROM_GC)
781 sigaddset(&ss,SIG_RESUME_FROM_GC);
782 #else
783 sigaddset(&ss,SIG_STOP_FOR_GC);
784 #endif
786 /* It is possible to get SIGCONT (and probably other non-blockable
787 * signals) here. */
788 #ifdef SIG_RESUME_FROM_GC
790 int sigret;
791 do { sigwait(&ss, &sigret); }
792 while (sigret != SIG_RESUME_FROM_GC);
794 #else
795 while (sigwaitinfo(&ss,0) != SIG_STOP_FOR_GC);
796 #endif
798 FSHOW_SIGNAL((stderr,"thread=%lu resumed\n",thread->os_thread));
799 if(thread->state!=STATE_RUNNING) {
800 lose("sig_stop_for_gc_handler: wrong thread state on wakeup: %ld\n",
801 fixnum_value(thread->state));
804 undo_fake_foreign_function_call(context);
806 #endif
808 void
809 interrupt_handle_now_handler(int signal, siginfo_t *info, void *void_context)
811 os_context_t *context = arch_os_get_context(&void_context);
812 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
813 os_restore_fp_control(context);
814 #endif
815 interrupt_handle_now(signal, info, context);
816 #ifdef LISP_FEATURE_DARWIN
817 DARWIN_FIX_CONTEXT(context);
818 #endif
821 /* manipulate the signal context and stack such that when the handler
822 * returns, it will call function instead of whatever it was doing
823 * previously
826 #if (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
827 extern int *context_eflags_addr(os_context_t *context);
828 #endif
830 extern lispobj call_into_lisp(lispobj fun, lispobj *args, int nargs);
831 extern void post_signal_tramp(void);
832 extern void call_into_lisp_tramp(void);
833 void
834 arrange_return_to_lisp_function(os_context_t *context, lispobj function)
836 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
837 void * fun=native_pointer(function);
838 void *code = &(((struct simple_fun *) fun)->code);
839 #endif
841 /* Build a stack frame showing `interrupted' so that the
842 * user's backtrace makes (as much) sense (as usual) */
844 /* FIXME: what about restoring fp state? */
845 /* FIXME: what about restoring errno? */
846 #ifdef LISP_FEATURE_X86
847 /* Suppose the existence of some function that saved all
848 * registers, called call_into_lisp, then restored GP registers and
849 * returned. It would look something like this:
851 push ebp
852 mov ebp esp
853 pushfl
854 pushal
855 push $0
856 push $0
857 pushl {address of function to call}
858 call 0x8058db0 <call_into_lisp>
859 addl $12,%esp
860 popal
861 popfl
862 leave
865 * What we do here is set up the stack that call_into_lisp would
866 * expect to see if it had been called by this code, and frob the
867 * signal context so that signal return goes directly to call_into_lisp,
868 * and when that function (and the lisp function it invoked) returns,
869 * it returns to the second half of this imaginary function which
870 * restores all registers and returns to C
872 * For this to work, the latter part of the imaginary function
873 * must obviously exist in reality. That would be post_signal_tramp
876 u32 *sp=(u32 *)*os_context_register_addr(context,reg_ESP);
878 #if defined(LISP_FEATURE_DARWIN)
879 u32 *register_save_area = (u32 *)os_validate(0, 0x40);
881 FSHOW_SIGNAL((stderr, "/arrange_return_to_lisp_function: preparing to go to function %x, sp: %x\n", function, sp));
882 FSHOW_SIGNAL((stderr, "/arrange_return_to_lisp_function: context: %x, &context %x\n", context, &context));
884 /* 1. os_validate (malloc/mmap) register_save_block
885 * 2. copy register state into register_save_block
886 * 3. put a pointer to register_save_block in a register in the context
887 * 4. set the context's EIP to point to a trampoline which:
888 * a. builds the fake stack frame from the block
889 * b. frees the block
890 * c. calls the function
893 *register_save_area = *os_context_pc_addr(context);
894 *(register_save_area + 1) = function;
895 *(register_save_area + 2) = *os_context_register_addr(context,reg_EDI);
896 *(register_save_area + 3) = *os_context_register_addr(context,reg_ESI);
897 *(register_save_area + 4) = *os_context_register_addr(context,reg_EDX);
898 *(register_save_area + 5) = *os_context_register_addr(context,reg_ECX);
899 *(register_save_area + 6) = *os_context_register_addr(context,reg_EBX);
900 *(register_save_area + 7) = *os_context_register_addr(context,reg_EAX);
901 *(register_save_area + 8) = *context_eflags_addr(context);
903 *os_context_pc_addr(context) =
904 (os_context_register_t) call_into_lisp_tramp;
905 *os_context_register_addr(context,reg_ECX) =
906 (os_context_register_t) register_save_area;
907 #else
909 /* return address for call_into_lisp: */
910 *(sp-15) = (u32)post_signal_tramp;
911 *(sp-14) = function; /* args for call_into_lisp : function*/
912 *(sp-13) = 0; /* arg array */
913 *(sp-12) = 0; /* no. args */
914 /* this order matches that used in POPAD */
915 *(sp-11)=*os_context_register_addr(context,reg_EDI);
916 *(sp-10)=*os_context_register_addr(context,reg_ESI);
918 *(sp-9)=*os_context_register_addr(context,reg_ESP)-8;
919 /* POPAD ignores the value of ESP: */
920 *(sp-8)=0;
921 *(sp-7)=*os_context_register_addr(context,reg_EBX);
923 *(sp-6)=*os_context_register_addr(context,reg_EDX);
924 *(sp-5)=*os_context_register_addr(context,reg_ECX);
925 *(sp-4)=*os_context_register_addr(context,reg_EAX);
926 *(sp-3)=*context_eflags_addr(context);
927 *(sp-2)=*os_context_register_addr(context,reg_EBP);
928 *(sp-1)=*os_context_pc_addr(context);
930 #endif
932 #elif defined(LISP_FEATURE_X86_64)
933 u64 *sp=(u64 *)*os_context_register_addr(context,reg_RSP);
935 /* return address for call_into_lisp: */
936 *(sp-18) = (u64)post_signal_tramp;
938 *(sp-17)=*os_context_register_addr(context,reg_R15);
939 *(sp-16)=*os_context_register_addr(context,reg_R14);
940 *(sp-15)=*os_context_register_addr(context,reg_R13);
941 *(sp-14)=*os_context_register_addr(context,reg_R12);
942 *(sp-13)=*os_context_register_addr(context,reg_R11);
943 *(sp-12)=*os_context_register_addr(context,reg_R10);
944 *(sp-11)=*os_context_register_addr(context,reg_R9);
945 *(sp-10)=*os_context_register_addr(context,reg_R8);
946 *(sp-9)=*os_context_register_addr(context,reg_RDI);
947 *(sp-8)=*os_context_register_addr(context,reg_RSI);
948 /* skip RBP and RSP */
949 *(sp-7)=*os_context_register_addr(context,reg_RBX);
950 *(sp-6)=*os_context_register_addr(context,reg_RDX);
951 *(sp-5)=*os_context_register_addr(context,reg_RCX);
952 *(sp-4)=*os_context_register_addr(context,reg_RAX);
953 *(sp-3)=*context_eflags_addr(context);
954 *(sp-2)=*os_context_register_addr(context,reg_RBP);
955 *(sp-1)=*os_context_pc_addr(context);
957 *os_context_register_addr(context,reg_RDI) =
958 (os_context_register_t)function; /* function */
959 *os_context_register_addr(context,reg_RSI) = 0; /* arg. array */
960 *os_context_register_addr(context,reg_RDX) = 0; /* no. args */
961 #else
962 struct thread *th=arch_os_get_current_thread();
963 build_fake_control_stack_frames(th,context);
964 #endif
966 #ifdef LISP_FEATURE_X86
968 #if !defined(LISP_FEATURE_DARWIN)
969 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
970 *os_context_register_addr(context,reg_ECX) = 0;
971 *os_context_register_addr(context,reg_EBP) = (os_context_register_t)(sp-2);
972 #ifdef __NetBSD__
973 *os_context_register_addr(context,reg_UESP) =
974 (os_context_register_t)(sp-15);
975 #else
976 *os_context_register_addr(context,reg_ESP) = (os_context_register_t)(sp-15);
977 #endif /* __NETBSD__ */
978 #endif /* LISP_FEATURE_DARWIN */
980 #elif defined(LISP_FEATURE_X86_64)
981 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
982 *os_context_register_addr(context,reg_RCX) = 0;
983 *os_context_register_addr(context,reg_RBP) = (os_context_register_t)(sp-2);
984 *os_context_register_addr(context,reg_RSP) = (os_context_register_t)(sp-18);
985 #else
986 /* this much of the calling convention is common to all
987 non-x86 ports */
988 *os_context_pc_addr(context) = (os_context_register_t)(unsigned long)code;
989 *os_context_register_addr(context,reg_NARGS) = 0;
990 *os_context_register_addr(context,reg_LIP) =
991 (os_context_register_t)(unsigned long)code;
992 *os_context_register_addr(context,reg_CFP) =
993 (os_context_register_t)(unsigned long)current_control_frame_pointer;
994 #endif
995 #ifdef ARCH_HAS_NPC_REGISTER
996 *os_context_npc_addr(context) =
997 4 + *os_context_pc_addr(context);
998 #endif
999 #ifdef LISP_FEATURE_SPARC
1000 *os_context_register_addr(context,reg_CODE) =
1001 (os_context_register_t)(fun + FUN_POINTER_LOWTAG);
1002 #endif
1005 #ifdef LISP_FEATURE_SB_THREAD
1007 /* FIXME: this function can go away when all lisp handlers are invoked
1008 * via arrange_return_to_lisp_function. */
1009 void
1010 interrupt_thread_handler(int num, siginfo_t *info, void *v_context)
1012 os_context_t *context = (os_context_t*)arch_os_get_context(&v_context);
1014 /* let the handler enable interrupts again when it sees fit */
1015 sigaddset_deferrable(os_context_sigmask_addr(context));
1016 arrange_return_to_lisp_function(context, SymbolFunction(RUN_INTERRUPTION));
1019 #endif
1021 /* KLUDGE: Theoretically the approach we use for undefined alien
1022 * variables should work for functions as well, but on PPC/Darwin
1023 * we get bus error at bogus addresses instead, hence this workaround,
1024 * that has the added benefit of automatically discriminating between
1025 * functions and variables.
1027 void
1028 undefined_alien_function(void)
1030 funcall0(SymbolFunction(UNDEFINED_ALIEN_FUNCTION_ERROR));
1033 boolean
1034 handle_guard_page_triggered(os_context_t *context,os_vm_address_t addr)
1036 struct thread *th=arch_os_get_current_thread();
1038 /* note the os_context hackery here. When the signal handler returns,
1039 * it won't go back to what it was doing ... */
1040 if(addr >= CONTROL_STACK_GUARD_PAGE(th) &&
1041 addr < CONTROL_STACK_GUARD_PAGE(th) + os_vm_page_size) {
1042 /* We hit the end of the control stack: disable guard page
1043 * protection so the error handler has some headroom, protect the
1044 * previous page so that we can catch returns from the guard page
1045 * and restore it. */
1046 protect_control_stack_guard_page(0);
1047 protect_control_stack_return_guard_page(1);
1049 arrange_return_to_lisp_function
1050 (context, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
1051 return 1;
1053 else if(addr >= CONTROL_STACK_RETURN_GUARD_PAGE(th) &&
1054 addr < CONTROL_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
1055 /* We're returning from the guard page: reprotect it, and
1056 * unprotect this one. This works even if we somehow missed
1057 * the return-guard-page, and hit it on our way to new
1058 * exhaustion instead. */
1059 protect_control_stack_guard_page(1);
1060 protect_control_stack_return_guard_page(0);
1061 return 1;
1063 else if (addr >= undefined_alien_address &&
1064 addr < undefined_alien_address + os_vm_page_size) {
1065 arrange_return_to_lisp_function
1066 (context, SymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
1067 return 1;
1069 else return 0;
1073 * noise to install handlers
1076 #ifndef LISP_FEATURE_WIN32
1077 /* In Linux 2.4 synchronous signals (sigtrap & co) can be delivered if
1078 * they are blocked, in Linux 2.6 the default handler is invoked
1079 * instead that usually coredumps. One might hastily think that adding
1080 * SA_NODEFER helps, but until ~2.6.13 if SA_NODEFER is specified then
1081 * the whole sa_mask is ignored and instead of not adding the signal
1082 * in question to the mask. That means if it's not blockable the
1083 * signal must be unblocked at the beginning of signal handlers.
1085 * It turns out that NetBSD's SA_NODEFER doesn't DTRT in a different
1086 * way: if SA_NODEFER is set and the signal is in sa_mask, the signal
1087 * will be unblocked in the sigmask during the signal handler. -- RMK
1088 * X-mas day, 2005
1090 static volatile int sigaction_nodefer_works = -1;
1092 #define SA_NODEFER_TEST_BLOCK_SIGNAL SIGABRT
1093 #define SA_NODEFER_TEST_KILL_SIGNAL SIGUSR1
1095 static void
1096 sigaction_nodefer_test_handler(int signal, siginfo_t *info, void *void_context)
1098 sigset_t empty, current;
1099 int i;
1100 sigemptyset(&empty);
1101 thread_sigmask(SIG_BLOCK, &empty, &current);
1102 /* There should be exactly two blocked signals: the two we added
1103 * to sa_mask when setting up the handler. NetBSD doesn't block
1104 * the signal we're handling when SA_NODEFER is set; Linux before
1105 * 2.6.13 or so also doesn't block the other signal when
1106 * SA_NODEFER is set. */
1107 for(i = 1; i < NSIG; i++)
1108 if (sigismember(&current, i) !=
1109 (((i == SA_NODEFER_TEST_BLOCK_SIGNAL) || (i == signal)) ? 1 : 0)) {
1110 FSHOW_SIGNAL((stderr, "SA_NODEFER doesn't work, signal %d\n", i));
1111 sigaction_nodefer_works = 0;
1113 if (sigaction_nodefer_works == -1)
1114 sigaction_nodefer_works = 1;
1117 static void
1118 see_if_sigaction_nodefer_works(void)
1120 struct sigaction sa, old_sa;
1122 sa.sa_flags = SA_SIGINFO | SA_NODEFER;
1123 sa.sa_sigaction = sigaction_nodefer_test_handler;
1124 sigemptyset(&sa.sa_mask);
1125 sigaddset(&sa.sa_mask, SA_NODEFER_TEST_BLOCK_SIGNAL);
1126 sigaddset(&sa.sa_mask, SA_NODEFER_TEST_KILL_SIGNAL);
1127 sigaction(SA_NODEFER_TEST_KILL_SIGNAL, &sa, &old_sa);
1128 /* Make sure no signals are blocked. */
1130 sigset_t empty;
1131 sigemptyset(&empty);
1132 thread_sigmask(SIG_SETMASK, &empty, 0);
1134 kill(getpid(), SA_NODEFER_TEST_KILL_SIGNAL);
1135 while (sigaction_nodefer_works == -1);
1136 sigaction(SA_NODEFER_TEST_KILL_SIGNAL, &old_sa, NULL);
1139 #undef SA_NODEFER_TEST_BLOCK_SIGNAL
1140 #undef SA_NODEFER_TEST_KILL_SIGNAL
1142 static void
1143 unblock_me_trampoline(int signal, siginfo_t *info, void *void_context)
1145 sigset_t unblock;
1147 sigemptyset(&unblock);
1148 sigaddset(&unblock, signal);
1149 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
1150 interrupt_handle_now_handler(signal, info, void_context);
1153 static void
1154 low_level_unblock_me_trampoline(int signal, siginfo_t *info, void *void_context)
1156 sigset_t unblock;
1158 sigemptyset(&unblock);
1159 sigaddset(&unblock, signal);
1160 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
1161 (*interrupt_low_level_handlers[signal])(signal, info, void_context);
1164 void
1165 undoably_install_low_level_interrupt_handler (int signal,
1166 interrupt_handler_t handler)
1168 struct sigaction sa;
1170 if (0 > signal || signal >= NSIG) {
1171 lose("bad signal number %d\n", signal);
1174 if (ARE_SAME_HANDLER(handler, SIG_DFL))
1175 sa.sa_sigaction = handler;
1176 else if (sigismember(&deferrable_sigset,signal))
1177 sa.sa_sigaction = low_level_maybe_now_maybe_later;
1178 /* The use of a trampoline appears to break the
1179 arch_os_get_context() workaround for SPARC/Linux. For now,
1180 don't use the trampoline (and so be vulnerable to the problems
1181 that SA_NODEFER is meant to solve. */
1182 #if !(defined(LISP_FEATURE_SPARC) && defined(LISP_FEATURE_LINUX))
1183 else if (!sigaction_nodefer_works &&
1184 !sigismember(&blockable_sigset, signal))
1185 sa.sa_sigaction = low_level_unblock_me_trampoline;
1186 #endif
1187 else
1188 sa.sa_sigaction = handler;
1190 sigcopyset(&sa.sa_mask, &blockable_sigset);
1191 sa.sa_flags = SA_SIGINFO | SA_RESTART
1192 | (sigaction_nodefer_works ? SA_NODEFER : 0);
1193 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
1194 if((signal==SIG_MEMORY_FAULT)
1195 #ifdef SIG_INTERRUPT_THREAD
1196 || (signal==SIG_INTERRUPT_THREAD)
1197 #endif
1199 sa.sa_flags |= SA_ONSTACK;
1200 #endif
1202 sigaction(signal, &sa, NULL);
1203 interrupt_low_level_handlers[signal] =
1204 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
1206 #endif
1208 /* This is called from Lisp. */
1209 unsigned long
1210 install_handler(int signal, void handler(int, siginfo_t*, void*))
1212 #ifndef LISP_FEATURE_WIN32
1213 struct sigaction sa;
1214 sigset_t old, new;
1215 union interrupt_handler oldhandler;
1217 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
1219 sigemptyset(&new);
1220 sigaddset(&new, signal);
1221 thread_sigmask(SIG_BLOCK, &new, &old);
1223 FSHOW((stderr, "/interrupt_low_level_handlers[signal]=%x\n",
1224 (unsigned int)interrupt_low_level_handlers[signal]));
1225 if (interrupt_low_level_handlers[signal]==0) {
1226 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
1227 ARE_SAME_HANDLER(handler, SIG_IGN))
1228 sa.sa_sigaction = handler;
1229 else if (sigismember(&deferrable_sigset, signal))
1230 sa.sa_sigaction = maybe_now_maybe_later;
1231 else if (!sigaction_nodefer_works &&
1232 !sigismember(&blockable_sigset, signal))
1233 sa.sa_sigaction = unblock_me_trampoline;
1234 else
1235 sa.sa_sigaction = interrupt_handle_now_handler;
1237 sigcopyset(&sa.sa_mask, &blockable_sigset);
1238 sa.sa_flags = SA_SIGINFO | SA_RESTART |
1239 (sigaction_nodefer_works ? SA_NODEFER : 0);
1240 sigaction(signal, &sa, NULL);
1243 oldhandler = interrupt_handlers[signal];
1244 interrupt_handlers[signal].c = handler;
1246 thread_sigmask(SIG_SETMASK, &old, 0);
1248 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
1250 return (unsigned long)oldhandler.lisp;
1251 #else
1252 /* Probably-wrong Win32 hack */
1253 return 0;
1254 #endif
1257 void
1258 interrupt_init(void)
1260 #ifndef LISP_FEATURE_WIN32
1261 int i;
1262 SHOW("entering interrupt_init()");
1263 see_if_sigaction_nodefer_works();
1264 sigemptyset(&deferrable_sigset);
1265 sigemptyset(&blockable_sigset);
1266 sigaddset_deferrable(&deferrable_sigset);
1267 sigaddset_blockable(&blockable_sigset);
1269 /* Set up high level handler information. */
1270 for (i = 0; i < NSIG; i++) {
1271 interrupt_handlers[i].c =
1272 /* (The cast here blasts away the distinction between
1273 * SA_SIGACTION-style three-argument handlers and
1274 * signal(..)-style one-argument handlers, which is OK
1275 * because it works to call the 1-argument form where the
1276 * 3-argument form is expected.) */
1277 (void (*)(int, siginfo_t*, void*))SIG_DFL;
1280 SHOW("returning from interrupt_init()");
1281 #endif
1284 #ifndef LISP_FEATURE_WIN32
1286 siginfo_code(siginfo_t *info)
1288 return info->si_code;
1290 os_vm_address_t current_memory_fault_address;
1292 void
1293 lisp_memory_fault_error(os_context_t *context, os_vm_address_t addr)
1295 /* FIXME: This is lossy: if we get another memory fault (eg. from
1296 * another thread) before lisp has read this, we lose the information.
1297 * However, since this is mostly informative, we'll live with that for
1298 * now -- some address is better then no address in this case.
1300 current_memory_fault_address = addr;
1301 arrange_return_to_lisp_function(context, SymbolFunction(MEMORY_FAULT_ERROR));
1303 #endif
1305 static void
1306 unhandled_trap_error(os_context_t *context)
1308 lispobj context_sap;
1309 fake_foreign_function_call(context);
1310 context_sap = alloc_sap(context);
1311 #ifndef LISP_FEATURE_WIN32
1312 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
1313 #endif
1314 funcall1(SymbolFunction(UNHANDLED_TRAP_ERROR), context_sap);
1315 lose("UNHANDLED-TRAP-ERROR fell through");
1318 /* Common logic for trapping instructions. How we actually handle each
1319 * case is highly architecture dependent, but the overall shape is
1320 * this. */
1321 void
1322 handle_trap(os_context_t *context, int trap)
1324 switch(trap) {
1325 case trap_PendingInterrupt:
1326 FSHOW((stderr, "/<trap pending interrupt>\n"));
1327 arch_skip_instruction(context);
1328 interrupt_handle_pending(context);
1329 break;
1330 case trap_Error:
1331 case trap_Cerror:
1332 FSHOW((stderr, "/<trap error/cerror %d>\n", trap));
1333 interrupt_internal_error(context, trap==trap_Cerror);
1334 break;
1335 case trap_Breakpoint:
1336 arch_handle_breakpoint(context);
1337 break;
1338 case trap_FunEndBreakpoint:
1339 arch_handle_fun_end_breakpoint(context);
1340 break;
1341 #ifdef trap_AfterBreakpoint
1342 case trap_AfterBreakpoint:
1343 arch_handle_after_breakpoint(context);
1344 break;
1345 #endif
1346 #ifdef trap_SingleStepAround
1347 case trap_SingleStepAround:
1348 case trap_SingleStepBefore:
1349 arch_handle_single_step_trap(context, trap);
1350 break;
1351 #endif
1352 case trap_Halt:
1353 fake_foreign_function_call(context);
1354 lose("%%PRIMITIVE HALT called; the party is over.\n");
1355 default:
1356 unhandled_trap_error(context);