1.0.20.16: make LOCK and FS prefixes part of the affected instruction
[sbcl/pkhuong.git] / src / compiler / x86-64 / insts.lisp
blobec48990a2a04a7497632ac9996eb0ee2bd8764a7
1 ;;;; that part of the description of the x86-64 instruction set
2 ;;;; which can live on the cross-compilation host
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!VM")
14 ;;; FIXME: SB!DISASSEM: prefixes are used so widely in this file that
15 ;;; I wonder whether the separation of the disassembler from the
16 ;;; virtual machine is valid or adds value.
18 ;;; Note: In CMU CL, this used to be a call to SET-DISASSEM-PARAMS.
19 (setf sb!disassem:*disassem-inst-alignment-bytes* 1)
21 ;;; This type is used mostly in disassembly and represents legacy
22 ;;; registers only. R8-R15 are handled separately.
23 (deftype reg () '(unsigned-byte 3))
25 ;;; This includes legacy registers and R8-R15.
26 (deftype full-reg () '(unsigned-byte 4))
28 ;;; The XMM registers XMM0 - XMM15.
29 (deftype xmmreg () '(unsigned-byte 4))
31 ;;; Default word size for the chip: if the operand size /= :dword
32 ;;; we need to output #x66 (or REX) prefix
33 (def!constant +default-operand-size+ :dword)
35 ;;; The default address size for the chip. It could be overwritten
36 ;;; to :dword with a #x67 prefix, but this is never needed by SBCL
37 ;;; and thus not supported by this assembler/disassembler.
38 (def!constant +default-address-size+ :qword)
40 (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute)
42 (defun offset-next (value dstate)
43 (declare (type integer value)
44 (type sb!disassem:disassem-state dstate))
45 (+ (sb!disassem:dstate-next-addr dstate) value))
47 (defparameter *byte-reg-names*
48 #(al cl dl bl spl bpl sil dil r8b r9b r10b r11b r12b r13b r14b r15b))
49 (defparameter *high-byte-reg-names*
50 #(ah ch dh bh))
51 (defparameter *word-reg-names*
52 #(ax cx dx bx sp bp si di r8w r9w r10w r11w r12w r13w r14w r15w))
53 (defparameter *dword-reg-names*
54 #(eax ecx edx ebx esp ebp esi edi r8d r9d r10d r11d r12d r13d r14d r15d))
55 (defparameter *qword-reg-names*
56 #(rax rcx rdx rbx rsp rbp rsi rdi r8 r9 r10 r11 r12 r13 r14 r15))
58 ;;; The printers for registers, memory references and immediates need to
59 ;;; take into account the width bit in the instruction, whether a #x66
60 ;;; or a REX prefix was issued, and the contents of the REX prefix.
61 ;;; This is implemented using prefilters to put flags into the slot
62 ;;; INST-PROPERTIES of the DSTATE. These flags are the following
63 ;;; symbols:
64 ;;;
65 ;;; OPERAND-SIZE-8 The width bit was zero
66 ;;; OPERAND-SIZE-16 The "operand size override" prefix (#x66) was found
67 ;;; REX A REX prefix was found
68 ;;; REX-W A REX prefix with the "operand width" bit set was
69 ;;; found
70 ;;; REX-R A REX prefix with the "register" bit set was found
71 ;;; REX-X A REX prefix with the "index" bit set was found
72 ;;; REX-B A REX prefix with the "base" bit set was found
74 ;;; Return the operand size depending on the prefixes and width bit as
75 ;;; stored in DSTATE.
76 (defun inst-operand-size (dstate)
77 (declare (type sb!disassem:disassem-state dstate))
78 (cond ((sb!disassem:dstate-get-inst-prop dstate 'operand-size-8)
79 :byte)
80 ((sb!disassem:dstate-get-inst-prop dstate 'rex-w)
81 :qword)
82 ((sb!disassem:dstate-get-inst-prop dstate 'operand-size-16)
83 :word)
85 +default-operand-size+)))
87 ;;; The same as INST-OPERAND-SIZE, but for those instructions (e.g.
88 ;;; PUSH, JMP) that have a default operand size of :qword. It can only
89 ;;; be overwritten to :word.
90 (defun inst-operand-size-default-qword (dstate)
91 (declare (type sb!disassem:disassem-state dstate))
92 (if (sb!disassem:dstate-get-inst-prop dstate 'operand-size-16)
93 :word
94 :qword))
96 ;;; Print to STREAM the name of the general-purpose register encoded by
97 ;;; VALUE and of size WIDTH. For robustness, the high byte registers
98 ;;; (AH, BH, CH, DH) are correctly detected, too, although the compiler
99 ;;; does not use them.
100 (defun print-reg-with-width (value width stream dstate)
101 (declare (type full-reg value)
102 (type stream stream)
103 (type sb!disassem:disassem-state dstate))
104 (princ (if (and (eq width :byte)
105 (<= 4 value 7)
106 (not (sb!disassem:dstate-get-inst-prop dstate 'rex)))
107 (aref *high-byte-reg-names* (- value 4))
108 (aref (ecase width
109 (:byte *byte-reg-names*)
110 (:word *word-reg-names*)
111 (:dword *dword-reg-names*)
112 (:qword *qword-reg-names*))
113 value))
114 stream)
115 ;; XXX plus should do some source-var notes
118 (defun print-reg (value stream dstate)
119 (declare (type full-reg value)
120 (type stream stream)
121 (type sb!disassem:disassem-state dstate))
122 (print-reg-with-width value
123 (inst-operand-size dstate)
124 stream
125 dstate))
127 (defun print-reg-default-qword (value stream dstate)
128 (declare (type full-reg value)
129 (type stream stream)
130 (type sb!disassem:disassem-state dstate))
131 (print-reg-with-width value
132 (inst-operand-size-default-qword dstate)
133 stream
134 dstate))
136 (defun print-byte-reg (value stream dstate)
137 (declare (type full-reg value)
138 (type stream stream)
139 (type sb!disassem:disassem-state dstate))
140 (print-reg-with-width value :byte stream dstate))
142 (defun print-addr-reg (value stream dstate)
143 (declare (type full-reg value)
144 (type stream stream)
145 (type sb!disassem:disassem-state dstate))
146 (print-reg-with-width value +default-address-size+ stream dstate))
148 ;;; Print a register or a memory reference of the given WIDTH.
149 ;;; If SIZED-P is true, add an explicit size indicator for memory
150 ;;; references.
151 (defun print-reg/mem-with-width (value width sized-p stream dstate)
152 (declare (type (or list full-reg) value)
153 (type (member :byte :word :dword :qword) width)
154 (type boolean sized-p)
155 (type stream stream)
156 (type sb!disassem:disassem-state dstate))
157 (if (typep value 'full-reg)
158 (print-reg-with-width value width stream dstate)
159 (print-mem-access value (and sized-p width) stream dstate)))
161 ;;; Print a register or a memory reference. The width is determined by
162 ;;; calling INST-OPERAND-SIZE.
163 (defun print-reg/mem (value stream dstate)
164 (declare (type (or list full-reg) value)
165 (type stream stream)
166 (type sb!disassem:disassem-state dstate))
167 (print-reg/mem-with-width
168 value (inst-operand-size dstate) nil stream dstate))
170 ;; Same as print-reg/mem, but prints an explicit size indicator for
171 ;; memory references.
172 (defun print-sized-reg/mem (value stream dstate)
173 (declare (type (or list full-reg) value)
174 (type stream stream)
175 (type sb!disassem:disassem-state dstate))
176 (print-reg/mem-with-width
177 value (inst-operand-size dstate) t stream dstate))
179 ;;; Same as print-sized-reg/mem, but with a default operand size of
180 ;;; :qword.
181 (defun print-sized-reg/mem-default-qword (value stream dstate)
182 (declare (type (or list full-reg) value)
183 (type stream stream)
184 (type sb!disassem:disassem-state dstate))
185 (print-reg/mem-with-width
186 value (inst-operand-size-default-qword dstate) t stream dstate))
188 (defun print-sized-byte-reg/mem (value stream dstate)
189 (declare (type (or list full-reg) value)
190 (type stream stream)
191 (type sb!disassem:disassem-state dstate))
192 (print-reg/mem-with-width value :byte t stream dstate))
194 (defun print-sized-word-reg/mem (value stream dstate)
195 (declare (type (or list full-reg) value)
196 (type stream stream)
197 (type sb!disassem:disassem-state dstate))
198 (print-reg/mem-with-width value :word t stream dstate))
200 (defun print-sized-dword-reg/mem (value stream dstate)
201 (declare (type (or list full-reg) value)
202 (type stream stream)
203 (type sb!disassem:disassem-state dstate))
204 (print-reg/mem-with-width value :dword t stream dstate))
206 (defun print-label (value stream dstate)
207 (declare (ignore dstate))
208 (sb!disassem:princ16 value stream))
210 (defun print-xmmreg (value stream dstate)
211 (declare (type xmmreg value)
212 (type stream stream)
213 (ignore dstate))
214 (format stream "XMM~d" value))
216 (defun print-xmmreg/mem (value stream dstate)
217 (declare (type (or list xmmreg) value)
218 (type stream stream)
219 (type sb!disassem:disassem-state dstate))
220 (if (typep value 'xmmreg)
221 (print-xmmreg value stream dstate)
222 (print-mem-access value nil stream dstate)))
224 ;; Same as print-xmmreg/mem, but prints an explicit size indicator for
225 ;; memory references.
226 (defun print-sized-xmmreg/mem (value stream dstate)
227 (declare (type (or list xmmreg) value)
228 (type stream stream)
229 (type sb!disassem:disassem-state dstate))
230 (if (typep value 'xmmreg)
231 (print-xmmreg value stream dstate)
232 (print-mem-access value (inst-operand-size dstate) stream dstate)))
234 ;;; This prefilter is used solely for its side effects, namely to put
235 ;;; the bits found in the REX prefix into the DSTATE for use by other
236 ;;; prefilters and by printers.
237 (defun prefilter-wrxb (value dstate)
238 (declare (type (unsigned-byte 4) value)
239 (type sb!disassem:disassem-state dstate))
240 (sb!disassem:dstate-put-inst-prop dstate 'rex)
241 (when (plusp (logand value #b1000))
242 (sb!disassem:dstate-put-inst-prop dstate 'rex-w))
243 (when (plusp (logand value #b0100))
244 (sb!disassem:dstate-put-inst-prop dstate 'rex-r))
245 (when (plusp (logand value #b0010))
246 (sb!disassem:dstate-put-inst-prop dstate 'rex-x))
247 (when (plusp (logand value #b0001))
248 (sb!disassem:dstate-put-inst-prop dstate 'rex-b))
249 value)
251 ;;; This prefilter is used solely for its side effect, namely to put
252 ;;; the property OPERAND-SIZE-8 into the DSTATE if VALUE is 0.
253 (defun prefilter-width (value dstate)
254 (declare (type bit value)
255 (type sb!disassem:disassem-state dstate))
256 (when (zerop value)
257 (sb!disassem:dstate-put-inst-prop dstate 'operand-size-8))
258 value)
260 ;;; This prefilter is used solely for its side effect, namely to put
261 ;;; the property OPERAND-SIZE-16 into the DSTATE.
262 (defun prefilter-x66 (value dstate)
263 (declare (type (eql #x66) value)
264 (ignore value)
265 (type sb!disassem:disassem-state dstate))
266 (sb!disassem:dstate-put-inst-prop dstate 'operand-size-16))
268 ;;; A register field that can be extended by REX.R.
269 (defun prefilter-reg-r (value dstate)
270 (declare (type reg value)
271 (type sb!disassem:disassem-state dstate))
272 (if (sb!disassem::dstate-get-inst-prop dstate 'rex-r)
273 (+ value 8)
274 value))
276 ;;; A register field that can be extended by REX.B.
277 (defun prefilter-reg-b (value dstate)
278 (declare (type reg value)
279 (type sb!disassem:disassem-state dstate))
280 (if (sb!disassem::dstate-get-inst-prop dstate 'rex-b)
281 (+ value 8)
282 value))
284 ;;; Returns either an integer, meaning a register, or a list of
285 ;;; (BASE-REG OFFSET INDEX-REG INDEX-SCALE), where any component
286 ;;; may be missing or nil to indicate that it's not used or has the
287 ;;; obvious default value (e.g., 1 for the index-scale). VALUE is a list
288 ;;; of the mod and r/m field of the ModRM byte of the instruction.
289 ;;; Depending on VALUE a SIB byte and/or an offset may be read. The
290 ;;; REX.B bit from DSTATE is used to extend the sole register or the
291 ;;; BASE-REG to a full register, the REX.X bit does the same for the
292 ;;; INDEX-REG.
293 (defun prefilter-reg/mem (value dstate)
294 (declare (type list value)
295 (type sb!disassem:disassem-state dstate))
296 (let ((mod (first value))
297 (r/m (second value)))
298 (declare (type (unsigned-byte 2) mod)
299 (type (unsigned-byte 3) r/m))
300 (let ((full-reg (if (sb!disassem:dstate-get-inst-prop dstate 'rex-b)
301 (+ r/m 8)
302 r/m)))
303 (declare (type full-reg full-reg))
304 (cond ((= mod #b11)
305 ;; registers
306 full-reg)
307 ((= r/m #b100)
308 ;; sib byte
309 (let ((sib (sb!disassem:read-suffix 8 dstate)))
310 (declare (type (unsigned-byte 8) sib))
311 (let ((base-reg (ldb (byte 3 0) sib))
312 (index-reg (ldb (byte 3 3) sib))
313 (index-scale (ldb (byte 2 6) sib)))
314 (declare (type (unsigned-byte 3) base-reg index-reg)
315 (type (unsigned-byte 2) index-scale))
316 (let* ((offset
317 (case mod
318 (#b00
319 (if (= base-reg #b101)
320 (sb!disassem:read-signed-suffix 32 dstate)
321 nil))
322 (#b01
323 (sb!disassem:read-signed-suffix 8 dstate))
324 (#b10
325 (sb!disassem:read-signed-suffix 32 dstate)))))
326 (list (unless (and (= mod #b00) (= base-reg #b101))
327 (if (sb!disassem:dstate-get-inst-prop dstate 'rex-b)
328 (+ base-reg 8)
329 base-reg))
330 offset
331 (unless (= index-reg #b100)
332 (if (sb!disassem:dstate-get-inst-prop dstate 'rex-x)
333 (+ index-reg 8)
334 index-reg))
335 (ash 1 index-scale))))))
336 ((and (= mod #b00) (= r/m #b101))
337 (list 'rip (sb!disassem:read-signed-suffix 32 dstate)))
338 ((= mod #b00)
339 (list full-reg))
340 ((= mod #b01)
341 (list full-reg (sb!disassem:read-signed-suffix 8 dstate)))
342 (t ; (= mod #b10)
343 (list full-reg (sb!disassem:read-signed-suffix 32 dstate)))))))
345 (defun read-address (value dstate)
346 (declare (ignore value)) ; always nil anyway
347 (sb!disassem:read-suffix (width-bits (inst-operand-size dstate)) dstate))
349 (defun width-bits (width)
350 (ecase width
351 (:byte 8)
352 (:word 16)
353 (:dword 32)
354 (:qword 64)))
356 ) ; EVAL-WHEN
358 ;;;; disassembler argument types
360 ;;; Used to capture the lower four bits of the REX prefix.
361 (sb!disassem:define-arg-type wrxb
362 :prefilter #'prefilter-wrxb)
364 (sb!disassem:define-arg-type width
365 :prefilter #'prefilter-width
366 :printer (lambda (value stream dstate)
367 (declare (ignore value))
368 (princ (schar (symbol-name (inst-operand-size dstate)) 0)
369 stream)))
371 ;;; Used to capture the effect of the #x66 operand size override prefix.
372 (sb!disassem:define-arg-type x66
373 :prefilter #'prefilter-x66)
375 (sb!disassem:define-arg-type displacement
376 :sign-extend t
377 :use-label #'offset-next
378 :printer (lambda (value stream dstate)
379 (sb!disassem:maybe-note-assembler-routine value nil dstate)
380 (print-label value stream dstate)))
382 (sb!disassem:define-arg-type accum
383 :printer (lambda (value stream dstate)
384 (declare (ignore value)
385 (type stream stream)
386 (type sb!disassem:disassem-state dstate))
387 (print-reg 0 stream dstate)))
389 (sb!disassem:define-arg-type reg
390 :prefilter #'prefilter-reg-r
391 :printer #'print-reg)
393 (sb!disassem:define-arg-type reg-b
394 :prefilter #'prefilter-reg-b
395 :printer #'print-reg)
397 (sb!disassem:define-arg-type reg-b-default-qword
398 :prefilter #'prefilter-reg-b
399 :printer #'print-reg-default-qword)
401 (sb!disassem:define-arg-type imm-addr
402 :prefilter #'read-address
403 :printer #'print-label)
405 ;;; Normally, immediate values for an operand size of :qword are of size
406 ;;; :dword and are sign-extended to 64 bits. For an exception, see the
407 ;;; argument type definition following this one.
408 (sb!disassem:define-arg-type signed-imm-data
409 :prefilter (lambda (value dstate)
410 (declare (ignore value)) ; always nil anyway
411 (let ((width (width-bits (inst-operand-size dstate))))
412 (when (= width 64)
413 (setf width 32))
414 (sb!disassem:read-signed-suffix width dstate))))
416 ;;; Used by the variant of the MOV instruction with opcode B8 which can
417 ;;; move immediates of all sizes (i.e. including :qword) into a
418 ;;; register.
419 (sb!disassem:define-arg-type signed-imm-data-upto-qword
420 :prefilter (lambda (value dstate)
421 (declare (ignore value)) ; always nil anyway
422 (sb!disassem:read-signed-suffix
423 (width-bits (inst-operand-size dstate))
424 dstate)))
426 ;;; Used by those instructions that have a default operand size of
427 ;;; :qword. Nevertheless the immediate is at most of size :dword.
428 ;;; The only instruction of this kind having a variant with an immediate
429 ;;; argument is PUSH.
430 (sb!disassem:define-arg-type signed-imm-data-default-qword
431 :prefilter (lambda (value dstate)
432 (declare (ignore value)) ; always nil anyway
433 (let ((width (width-bits
434 (inst-operand-size-default-qword dstate))))
435 (when (= width 64)
436 (setf width 32))
437 (sb!disassem:read-signed-suffix width dstate))))
439 (sb!disassem:define-arg-type signed-imm-byte
440 :prefilter (lambda (value dstate)
441 (declare (ignore value)) ; always nil anyway
442 (sb!disassem:read-signed-suffix 8 dstate)))
444 (sb!disassem:define-arg-type imm-byte
445 :prefilter (lambda (value dstate)
446 (declare (ignore value)) ; always nil anyway
447 (sb!disassem:read-suffix 8 dstate)))
449 ;;; needed for the ret imm16 instruction
450 (sb!disassem:define-arg-type imm-word-16
451 :prefilter (lambda (value dstate)
452 (declare (ignore value)) ; always nil anyway
453 (sb!disassem:read-suffix 16 dstate)))
455 (sb!disassem:define-arg-type reg/mem
456 :prefilter #'prefilter-reg/mem
457 :printer #'print-reg/mem)
458 (sb!disassem:define-arg-type sized-reg/mem
459 ;; Same as reg/mem, but prints an explicit size indicator for
460 ;; memory references.
461 :prefilter #'prefilter-reg/mem
462 :printer #'print-sized-reg/mem)
464 ;;; Arguments of type reg/mem with a fixed size.
465 (sb!disassem:define-arg-type sized-byte-reg/mem
466 :prefilter #'prefilter-reg/mem
467 :printer #'print-sized-byte-reg/mem)
468 (sb!disassem:define-arg-type sized-word-reg/mem
469 :prefilter #'prefilter-reg/mem
470 :printer #'print-sized-word-reg/mem)
471 (sb!disassem:define-arg-type sized-dword-reg/mem
472 :prefilter #'prefilter-reg/mem
473 :printer #'print-sized-dword-reg/mem)
475 ;;; Same as sized-reg/mem, but with a default operand size of :qword.
476 (sb!disassem:define-arg-type sized-reg/mem-default-qword
477 :prefilter #'prefilter-reg/mem
478 :printer #'print-sized-reg/mem-default-qword)
480 ;;; XMM registers
481 (sb!disassem:define-arg-type xmmreg
482 :prefilter #'prefilter-reg-r
483 :printer #'print-xmmreg)
485 (sb!disassem:define-arg-type xmmreg/mem
486 :prefilter #'prefilter-reg/mem
487 :printer #'print-xmmreg/mem)
489 (sb!disassem:define-arg-type sized-xmmreg/mem
490 :prefilter #'prefilter-reg/mem
491 :printer #'print-sized-xmmreg/mem)
494 (eval-when (:compile-toplevel :load-toplevel :execute)
495 (defparameter *conditions*
496 '((:o . 0)
497 (:no . 1)
498 (:b . 2) (:nae . 2) (:c . 2)
499 (:nb . 3) (:ae . 3) (:nc . 3)
500 (:eq . 4) (:e . 4) (:z . 4)
501 (:ne . 5) (:nz . 5)
502 (:be . 6) (:na . 6)
503 (:nbe . 7) (:a . 7)
504 (:s . 8)
505 (:ns . 9)
506 (:p . 10) (:pe . 10)
507 (:np . 11) (:po . 11)
508 (:l . 12) (:nge . 12)
509 (:nl . 13) (:ge . 13)
510 (:le . 14) (:ng . 14)
511 (:nle . 15) (:g . 15)))
512 (defparameter *condition-name-vec*
513 (let ((vec (make-array 16 :initial-element nil)))
514 (dolist (cond *conditions*)
515 (when (null (aref vec (cdr cond)))
516 (setf (aref vec (cdr cond)) (car cond))))
517 vec))
518 ) ; EVAL-WHEN
520 ;;; Set assembler parameters. (In CMU CL, this was done with
521 ;;; a call to a macro DEF-ASSEMBLER-PARAMS.)
522 (eval-when (:compile-toplevel :load-toplevel :execute)
523 (setf sb!assem:*assem-scheduler-p* nil))
525 (sb!disassem:define-arg-type condition-code
526 :printer *condition-name-vec*)
528 (defun conditional-opcode (condition)
529 (cdr (assoc condition *conditions* :test #'eq)))
531 ;;;; disassembler instruction formats
533 (eval-when (:compile-toplevel :execute)
534 (defun swap-if (direction field1 separator field2)
535 `(:if (,direction :constant 0)
536 (,field1 ,separator ,field2)
537 (,field2 ,separator ,field1))))
539 (sb!disassem:define-instruction-format (byte 8 :default-printer '(:name))
540 (op :field (byte 8 0))
541 ;; optional fields
542 (accum :type 'accum)
543 (imm))
545 (sb!disassem:define-instruction-format (two-bytes 16
546 :default-printer '(:name))
547 (op :fields (list (byte 8 0) (byte 8 8))))
549 ;;; A one-byte instruction with a #x66 prefix, used to indicate an
550 ;;; operand size of :word.
551 (sb!disassem:define-instruction-format (x66-byte 16
552 :default-printer '(:name))
553 (x66 :field (byte 8 0) :value #x66)
554 (op :field (byte 8 8)))
556 ;;; A one-byte instruction with a REX prefix, used to indicate an
557 ;;; operand size of :qword. REX.W must be 1, the other three bits are
558 ;;; ignored.
559 (sb!disassem:define-instruction-format (rex-byte 16
560 :default-printer '(:name))
561 (rex :field (byte 5 3) :value #b01001)
562 (op :field (byte 8 8)))
564 (sb!disassem:define-instruction-format (simple 8)
565 (op :field (byte 7 1))
566 (width :field (byte 1 0) :type 'width)
567 ;; optional fields
568 (accum :type 'accum)
569 (imm))
571 (sb!disassem:define-instruction-format (rex-simple 16)
572 (rex :field (byte 4 4) :value #b0100)
573 (wrxb :field (byte 4 0) :type 'wrxb)
574 (op :field (byte 7 9))
575 (width :field (byte 1 8) :type 'width)
576 ;; optional fields
577 (accum :type 'accum)
578 (imm))
580 ;;; Same as simple, but with direction bit
581 (sb!disassem:define-instruction-format (simple-dir 8 :include 'simple)
582 (op :field (byte 6 2))
583 (dir :field (byte 1 1)))
585 ;;; Same as simple, but with the immediate value occurring by default,
586 ;;; and with an appropiate printer.
587 (sb!disassem:define-instruction-format (accum-imm 8
588 :include 'simple
589 :default-printer '(:name
590 :tab accum ", " imm))
591 (imm :type 'signed-imm-data))
593 (sb!disassem:define-instruction-format (rex-accum-imm 16
594 :include 'rex-simple
595 :default-printer '(:name
596 :tab accum ", " imm))
597 (imm :type 'signed-imm-data))
599 (sb!disassem:define-instruction-format (reg-no-width 8
600 :default-printer '(:name :tab reg))
601 (op :field (byte 5 3))
602 (reg :field (byte 3 0) :type 'reg-b)
603 ;; optional fields
604 (accum :type 'accum)
605 (imm))
607 (sb!disassem:define-instruction-format (rex-reg-no-width 16
608 :default-printer '(:name :tab reg))
609 (rex :field (byte 4 4) :value #b0100)
610 (wrxb :field (byte 4 0) :type 'wrxb)
611 (op :field (byte 5 11))
612 (reg :field (byte 3 8) :type 'reg-b)
613 ;; optional fields
614 (accum :type 'accum)
615 (imm))
617 ;;; Same as reg-no-width, but with a default operand size of :qword.
618 (sb!disassem:define-instruction-format (reg-no-width-default-qword 8
619 :include 'reg-no-width
620 :default-printer '(:name :tab reg))
621 (reg :type 'reg-b-default-qword))
623 ;;; Same as rex-reg-no-width, but with a default operand size of :qword.
624 (sb!disassem:define-instruction-format (rex-reg-no-width-default-qword 16
625 :include 'rex-reg-no-width
626 :default-printer '(:name :tab reg))
627 (reg :type 'reg-b-default-qword))
629 ;;; Adds a width field to reg-no-width. Note that we can't use
630 ;;; :INCLUDE 'REG-NO-WIDTH here to save typing because that would put
631 ;;; the WIDTH field last, but the prefilter for WIDTH must run before
632 ;;; the one for IMM to be able to determine the correct size of IMM.
633 (sb!disassem:define-instruction-format (reg 8
634 :default-printer '(:name :tab reg))
635 (op :field (byte 4 4))
636 (width :field (byte 1 3) :type 'width)
637 (reg :field (byte 3 0) :type 'reg-b)
638 ;; optional fields
639 (accum :type 'accum)
640 (imm))
642 (sb!disassem:define-instruction-format (rex-reg 16
643 :default-printer '(:name :tab reg))
644 (rex :field (byte 4 4) :value #b0100)
645 (wrxb :field (byte 4 0) :type 'wrxb)
646 (width :field (byte 1 11) :type 'width)
647 (op :field (byte 4 12))
648 (reg :field (byte 3 8) :type 'reg-b)
649 ;; optional fields
650 (accum :type 'accum)
651 (imm))
653 (sb!disassem:define-instruction-format (two-bytes 16
654 :default-printer '(:name))
655 (op :fields (list (byte 8 0) (byte 8 8))))
657 (sb!disassem:define-instruction-format (reg-reg/mem 16
658 :default-printer
659 `(:name :tab reg ", " reg/mem))
660 (op :field (byte 7 1))
661 (width :field (byte 1 0) :type 'width)
662 (reg/mem :fields (list (byte 2 14) (byte 3 8))
663 :type 'reg/mem)
664 (reg :field (byte 3 11) :type 'reg)
665 ;; optional fields
666 (imm))
668 (sb!disassem:define-instruction-format (rex-reg-reg/mem 24
669 :default-printer
670 `(:name :tab reg ", " reg/mem))
671 (rex :field (byte 4 4) :value #b0100)
672 (wrxb :field (byte 4 0) :type 'wrxb)
673 (width :field (byte 1 8) :type 'width)
674 (op :field (byte 7 9))
675 (reg/mem :fields (list (byte 2 22) (byte 3 16))
676 :type 'reg/mem)
677 (reg :field (byte 3 19) :type 'reg)
678 ;; optional fields
679 (imm))
681 ;;; same as reg-reg/mem, but with direction bit
682 (sb!disassem:define-instruction-format (reg-reg/mem-dir 16
683 :include 'reg-reg/mem
684 :default-printer
685 `(:name
686 :tab
687 ,(swap-if 'dir 'reg/mem ", " 'reg)))
688 (op :field (byte 6 2))
689 (dir :field (byte 1 1)))
691 (sb!disassem:define-instruction-format (rex-reg-reg/mem-dir 24
692 :include 'rex-reg-reg/mem
693 :default-printer
694 `(:name
695 :tab
696 ,(swap-if 'dir 'reg/mem ", " 'reg)))
697 (op :field (byte 6 10))
698 (dir :field (byte 1 9)))
700 (sb!disassem:define-instruction-format (x66-reg-reg/mem-dir 24
701 :default-printer
702 `(:name
703 :tab
704 ,(swap-if 'dir 'reg/mem ", " 'reg)))
705 (x66 :field (byte 8 0) :type 'x66 :value #x66)
706 (op :field (byte 6 10))
707 (dir :field (byte 1 9))
708 (width :field (byte 1 8) :type 'width)
709 (reg/mem :fields (list (byte 2 22) (byte 3 16))
710 :type 'reg/mem)
711 (reg :field (byte 3 19) :type 'reg))
713 (sb!disassem:define-instruction-format (x66-rex-reg-reg/mem-dir 32
714 :default-printer
715 `(:name
716 :tab
717 ,(swap-if 'dir 'reg/mem ", " 'reg)))
718 (x66 :field (byte 8 0) :type 'x66 :value #x66)
719 (rex :field (byte 4 12) :value #b0100)
720 (wrxb :field (byte 4 8) :type 'wrxb)
721 (op :field (byte 6 18))
722 (dir :field (byte 1 17))
723 (width :field (byte 1 16) :type 'width)
724 (reg/mem :fields (list (byte 2 30) (byte 3 24))
725 :type 'reg/mem)
726 (reg :field (byte 3 27) :type 'reg))
728 ;;; Same as reg-reg/mem, but uses the reg field as a second op code.
729 (sb!disassem:define-instruction-format (reg/mem 16
730 :default-printer '(:name :tab reg/mem))
731 (op :fields (list (byte 7 1) (byte 3 11)))
732 (width :field (byte 1 0) :type 'width)
733 (reg/mem :fields (list (byte 2 14) (byte 3 8))
734 :type 'sized-reg/mem)
735 ;; optional fields
736 (imm))
738 (sb!disassem:define-instruction-format (rex-reg/mem 24
739 :default-printer '(:name :tab reg/mem))
740 (rex :field (byte 4 4) :value #b0100)
741 (wrxb :field (byte 4 0) :type 'wrxb)
742 (op :fields (list (byte 7 9) (byte 3 19)))
743 (width :field (byte 1 8) :type 'width)
744 (reg/mem :fields (list (byte 2 22) (byte 3 16))
745 :type 'sized-reg/mem)
746 ;; optional fields
747 (imm))
749 ;;; Same as reg/mem, but without a width field and with a default
750 ;;; operand size of :qword.
751 (sb!disassem:define-instruction-format (reg/mem-default-qword 16
752 :default-printer '(:name :tab reg/mem))
753 (op :fields (list (byte 8 0) (byte 3 11)))
754 (reg/mem :fields (list (byte 2 14) (byte 3 8))
755 :type 'sized-reg/mem-default-qword))
757 (sb!disassem:define-instruction-format (rex-reg/mem-default-qword 24
758 :default-printer '(:name :tab reg/mem))
759 (rex :field (byte 4 4) :value #b0100)
760 (wrxb :field (byte 4 0) :type 'wrxb)
761 (op :fields (list (byte 8 8) (byte 3 19)))
762 (reg/mem :fields (list (byte 2 22) (byte 3 16))
763 :type 'sized-reg/mem-default-qword))
765 ;;; Same as reg/mem, but with the immediate value occurring by default,
766 ;;; and with an appropiate printer.
767 (sb!disassem:define-instruction-format (reg/mem-imm 16
768 :include 'reg/mem
769 :default-printer
770 '(:name :tab reg/mem ", " imm))
771 (reg/mem :type 'sized-reg/mem)
772 (imm :type 'signed-imm-data))
774 (sb!disassem:define-instruction-format (rex-reg/mem-imm 24
775 :include 'rex-reg/mem
776 :default-printer
777 '(:name :tab reg/mem ", " imm))
778 (reg/mem :type 'sized-reg/mem)
779 (imm :type 'signed-imm-data))
781 ;;; Same as reg/mem, but with using the accumulator in the default printer
782 (sb!disassem:define-instruction-format
783 (accum-reg/mem 16
784 :include 'reg/mem :default-printer '(:name :tab accum ", " reg/mem))
785 (reg/mem :type 'reg/mem) ; don't need a size
786 (accum :type 'accum))
788 (sb!disassem:define-instruction-format (rex-accum-reg/mem 24
789 :include 'rex-reg/mem
790 :default-printer
791 '(:name :tab accum ", " reg/mem))
792 (reg/mem :type 'reg/mem) ; don't need a size
793 (accum :type 'accum))
795 ;;; Same as reg-reg/mem, but with a prefix of #b00001111
796 (sb!disassem:define-instruction-format (ext-reg-reg/mem 24
797 :default-printer
798 `(:name :tab reg ", " reg/mem))
799 (prefix :field (byte 8 0) :value #b00001111)
800 (op :field (byte 7 9))
801 (width :field (byte 1 8) :type 'width)
802 (reg/mem :fields (list (byte 2 22) (byte 3 16))
803 :type 'reg/mem)
804 (reg :field (byte 3 19) :type 'reg)
805 ;; optional fields
806 (imm))
808 (sb!disassem:define-instruction-format (ext-reg-reg/mem-no-width 24
809 :default-printer
810 `(:name :tab reg ", " reg/mem))
811 (prefix :field (byte 8 0) :value #b00001111)
812 (op :field (byte 8 8))
813 (reg/mem :fields (list (byte 2 22) (byte 3 16))
814 :type 'reg/mem)
815 (reg :field (byte 3 19) :type 'reg))
817 (sb!disassem:define-instruction-format (rex-ext-reg-reg/mem-no-width 32
818 :default-printer
819 `(:name :tab reg ", " reg/mem))
820 (rex :field (byte 4 4) :value #b0100)
821 (wrxb :field (byte 4 0) :type 'wrxb)
822 (prefix :field (byte 8 8) :value #b00001111)
823 (op :field (byte 8 16))
824 (reg/mem :fields (list (byte 2 30) (byte 3 24))
825 :type 'reg/mem)
826 (reg :field (byte 3 27) :type 'reg))
828 ;;; reg-no-width with #x0f prefix
829 (sb!disassem:define-instruction-format (ext-reg-no-width 16
830 :default-printer '(:name :tab reg))
831 (prefix :field (byte 8 0) :value #b00001111)
832 (op :field (byte 5 11))
833 (reg :field (byte 3 8) :type 'reg-b))
835 ;;; Same as reg/mem, but with a prefix of #b00001111
836 (sb!disassem:define-instruction-format (ext-reg/mem 24
837 :default-printer '(:name :tab reg/mem))
838 (prefix :field (byte 8 0) :value #b00001111)
839 (op :fields (list (byte 7 9) (byte 3 19)))
840 (width :field (byte 1 8) :type 'width)
841 (reg/mem :fields (list (byte 2 22) (byte 3 16))
842 :type 'sized-reg/mem)
843 ;; optional fields
844 (imm))
846 (sb!disassem:define-instruction-format (ext-reg/mem-imm 24
847 :include 'ext-reg/mem
848 :default-printer
849 '(:name :tab reg/mem ", " imm))
850 (imm :type 'signed-imm-data))
852 ;;;; XMM instructions
854 ;;; All XMM instructions use an extended opcode (#x0F as the first
855 ;;; opcode byte). Therefore in the following "EXT" in the name of the
856 ;;; instruction formats refers to the formats that have an additional
857 ;;; prefix (#x66, #xF2 or #xF3).
859 ;;; Instructions having an XMM register as the destination operand
860 ;;; and an XMM register or a memory location as the source operand.
861 ;;; The size of the operands is implicitly given by the instruction.
862 (sb!disassem:define-instruction-format (xmm-xmm/mem 24
863 :default-printer
864 '(:name :tab reg ", " reg/mem))
865 (x0f :field (byte 8 0) :value #x0f)
866 (op :field (byte 8 8))
867 (reg/mem :fields (list (byte 2 22) (byte 3 16))
868 :type 'xmmreg/mem)
869 (reg :field (byte 3 19) :type 'xmmreg))
871 (sb!disassem:define-instruction-format (rex-xmm-xmm/mem 32
872 :default-printer
873 '(:name :tab reg ", " reg/mem))
874 (x0f :field (byte 8 0) :value #x0f)
875 (rex :field (byte 4 12) :value #b0100)
876 (wrxb :field (byte 4 8) :type 'wrxb)
877 (op :field (byte 8 16))
878 (reg/mem :fields (list (byte 2 30) (byte 3 24))
879 :type 'xmmreg/mem)
880 (reg :field (byte 3 27) :type 'xmmreg))
882 (sb!disassem:define-instruction-format (ext-xmm-xmm/mem 32
883 :default-printer
884 '(:name :tab reg ", " reg/mem))
885 (prefix :field (byte 8 0))
886 (x0f :field (byte 8 8) :value #x0f)
887 (op :field (byte 8 16))
888 (reg/mem :fields (list (byte 2 30) (byte 3 24))
889 :type 'xmmreg/mem)
890 (reg :field (byte 3 27) :type 'xmmreg))
892 (sb!disassem:define-instruction-format (ext-rex-xmm-xmm/mem 40
893 :default-printer
894 '(:name :tab reg ", " reg/mem))
895 (prefix :field (byte 8 0))
896 (rex :field (byte 4 12) :value #b0100)
897 (wrxb :field (byte 4 8) :type 'wrxb)
898 (x0f :field (byte 8 16) :value #x0f)
899 (op :field (byte 8 24))
900 (reg/mem :fields (list (byte 2 38) (byte 3 32))
901 :type 'xmmreg/mem)
902 (reg :field (byte 3 35) :type 'xmmreg))
904 ;;; Same as xmm-xmm/mem etc., but with direction bit.
906 (sb!disassem:define-instruction-format (ext-xmm-xmm/mem-dir 32
907 :include 'ext-xmm-xmm/mem
908 :default-printer
909 `(:name
910 :tab
911 ,(swap-if 'dir 'reg ", " 'reg/mem)))
912 (op :field (byte 7 17))
913 (dir :field (byte 1 16)))
915 (sb!disassem:define-instruction-format (ext-rex-xmm-xmm/mem-dir 40
916 :include 'ext-rex-xmm-xmm/mem
917 :default-printer
918 `(:name
919 :tab
920 ,(swap-if 'dir 'reg ", " 'reg/mem)))
921 (op :field (byte 7 25))
922 (dir :field (byte 1 24)))
924 ;;; Instructions having an XMM register as one operand and a general-
925 ;;; -purpose register or a memory location as the other operand.
927 (sb!disassem:define-instruction-format (ext-xmm-reg/mem 32
928 :default-printer
929 '(:name :tab reg ", " reg/mem))
930 (prefix :field (byte 8 0))
931 (x0f :field (byte 8 8) :value #x0f)
932 (op :field (byte 8 16))
933 (reg/mem :fields (list (byte 2 30) (byte 3 24))
934 :type 'sized-reg/mem)
935 (reg :field (byte 3 27) :type 'xmmreg))
937 (sb!disassem:define-instruction-format (ext-rex-xmm-reg/mem 40
938 :default-printer
939 '(:name :tab reg ", " reg/mem))
940 (prefix :field (byte 8 0))
941 (rex :field (byte 4 12) :value #b0100)
942 (wrxb :field (byte 4 8) :type 'wrxb)
943 (x0f :field (byte 8 16) :value #x0f)
944 (op :field (byte 8 24))
945 (reg/mem :fields (list (byte 2 38) (byte 3 32))
946 :type 'sized-reg/mem)
947 (reg :field (byte 3 35) :type 'xmmreg))
949 ;;; Instructions having a general-purpose register as one operand and an
950 ;;; XMM register or a memory location as the other operand.
952 (sb!disassem:define-instruction-format (ext-reg-xmm/mem 32
953 :default-printer
954 '(:name :tab reg ", " reg/mem))
955 (prefix :field (byte 8 0))
956 (x0f :field (byte 8 8) :value #x0f)
957 (op :field (byte 8 16))
958 (reg/mem :fields (list (byte 2 30) (byte 3 24))
959 :type 'sized-xmmreg/mem)
960 (reg :field (byte 3 27) :type 'reg))
962 (sb!disassem:define-instruction-format (ext-rex-reg-xmm/mem 40
963 :default-printer
964 '(:name :tab reg ", " reg/mem))
965 (prefix :field (byte 8 0))
966 (rex :field (byte 4 12) :value #b0100)
967 (wrxb :field (byte 4 8) :type 'wrxb)
968 (x0f :field (byte 8 16) :value #x0f)
969 (op :field (byte 8 24))
970 (reg/mem :fields (list (byte 2 38) (byte 3 32))
971 :type 'sized-xmmreg/mem)
972 (reg :field (byte 3 35) :type 'reg))
974 (sb!disassem:define-instruction-format (string-op 8
975 :include 'simple
976 :default-printer '(:name width)))
978 (sb!disassem:define-instruction-format (rex-string-op 16
979 :include 'rex-simple
980 :default-printer '(:name width)))
982 (sb!disassem:define-instruction-format (short-cond-jump 16)
983 (op :field (byte 4 4))
984 (cc :field (byte 4 0) :type 'condition-code)
985 (label :field (byte 8 8) :type 'displacement))
987 (sb!disassem:define-instruction-format (short-jump 16
988 :default-printer '(:name :tab label))
989 (const :field (byte 4 4) :value #b1110)
990 (op :field (byte 4 0))
991 (label :field (byte 8 8) :type 'displacement))
993 (sb!disassem:define-instruction-format (near-cond-jump 16)
994 (op :fields (list (byte 8 0) (byte 4 12)) :value '(#b00001111 #b1000))
995 (cc :field (byte 4 8) :type 'condition-code)
996 ;; The disassembler currently doesn't let you have an instruction > 32 bits
997 ;; long, so we fake it by using a prefilter to read the offset.
998 (label :type 'displacement
999 :prefilter (lambda (value dstate)
1000 (declare (ignore value)) ; always nil anyway
1001 (sb!disassem:read-signed-suffix 32 dstate))))
1003 (sb!disassem:define-instruction-format (near-jump 8
1004 :default-printer '(:name :tab label))
1005 (op :field (byte 8 0))
1006 ;; The disassembler currently doesn't let you have an instruction > 32 bits
1007 ;; long, so we fake it by using a prefilter to read the address.
1008 (label :type 'displacement
1009 :prefilter (lambda (value dstate)
1010 (declare (ignore value)) ; always nil anyway
1011 (sb!disassem:read-signed-suffix 32 dstate))))
1014 (sb!disassem:define-instruction-format (cond-set 24
1015 :default-printer '('set cc :tab reg/mem))
1016 (prefix :field (byte 8 0) :value #b00001111)
1017 (op :field (byte 4 12) :value #b1001)
1018 (cc :field (byte 4 8) :type 'condition-code)
1019 (reg/mem :fields (list (byte 2 22) (byte 3 16))
1020 :type 'sized-byte-reg/mem)
1021 (reg :field (byte 3 19) :value #b000))
1023 (sb!disassem:define-instruction-format (cond-move 24
1024 :default-printer
1025 '('cmov cc :tab reg ", " reg/mem))
1026 (prefix :field (byte 8 0) :value #b00001111)
1027 (op :field (byte 4 12) :value #b0100)
1028 (cc :field (byte 4 8) :type 'condition-code)
1029 (reg/mem :fields (list (byte 2 22) (byte 3 16))
1030 :type 'reg/mem)
1031 (reg :field (byte 3 19) :type 'reg))
1033 (sb!disassem:define-instruction-format (rex-cond-move 32
1034 :default-printer
1035 '('cmov cc :tab reg ", " reg/mem))
1036 (rex :field (byte 4 4) :value #b0100)
1037 (wrxb :field (byte 4 0) :type 'wrxb)
1038 (prefix :field (byte 8 8) :value #b00001111)
1039 (op :field (byte 4 20) :value #b0100)
1040 (cc :field (byte 4 16) :type 'condition-code)
1041 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1042 :type 'reg/mem)
1043 (reg :field (byte 3 27) :type 'reg))
1045 (sb!disassem:define-instruction-format (enter-format 32
1046 :default-printer '(:name
1047 :tab disp
1048 (:unless (:constant 0)
1049 ", " level)))
1050 (op :field (byte 8 0))
1051 (disp :field (byte 16 8))
1052 (level :field (byte 8 24)))
1054 ;;; Single byte instruction with an immediate byte argument.
1055 (sb!disassem:define-instruction-format (byte-imm 16
1056 :default-printer '(:name :tab code))
1057 (op :field (byte 8 0))
1058 (code :field (byte 8 8)))
1060 ;;; Two byte instruction with an immediate byte argument.
1062 (sb!disassem:define-instruction-format (word-imm 24
1063 :default-printer '(:name :tab code))
1064 (op :field (byte 16 0))
1065 (code :field (byte 8 16)))
1068 ;;;; primitive emitters
1070 (define-bitfield-emitter emit-word 16
1071 (byte 16 0))
1073 (define-bitfield-emitter emit-dword 32
1074 (byte 32 0))
1076 ;;; Most uses of dwords are as displacements or as immediate values in
1077 ;;; 64-bit operations. In these cases they are sign-extended to 64 bits.
1078 ;;; EMIT-DWORD is unsuitable there because it accepts values of type
1079 ;;; (OR (SIGNED-BYTE 32) (UNSIGNED-BYTE 32)), so we provide a more
1080 ;;; restricted emitter here.
1081 (defun emit-signed-dword (segment value)
1082 (declare (type segment segment)
1083 (type (signed-byte 32) value))
1084 (declare (inline emit-dword))
1085 (emit-dword segment value))
1087 (define-bitfield-emitter emit-qword 64
1088 (byte 64 0))
1090 (define-bitfield-emitter emit-byte-with-reg 8
1091 (byte 5 3) (byte 3 0))
1093 (define-bitfield-emitter emit-mod-reg-r/m-byte 8
1094 (byte 2 6) (byte 3 3) (byte 3 0))
1096 (define-bitfield-emitter emit-sib-byte 8
1097 (byte 2 6) (byte 3 3) (byte 3 0))
1099 (define-bitfield-emitter emit-rex-byte 8
1100 (byte 4 4) (byte 1 3) (byte 1 2) (byte 1 1) (byte 1 0))
1104 ;;;; fixup emitters
1106 (defun emit-absolute-fixup (segment fixup &optional quad-p)
1107 (note-fixup segment (if quad-p :absolute64 :absolute) fixup)
1108 (let ((offset (fixup-offset fixup)))
1109 (if (label-p offset)
1110 (emit-back-patch segment
1111 (if quad-p 8 4)
1112 (lambda (segment posn)
1113 (declare (ignore posn))
1114 (let ((val (- (+ (component-header-length)
1115 (or (label-position offset)
1117 other-pointer-lowtag)))
1118 (if quad-p
1119 (emit-qword segment val)
1120 (emit-signed-dword segment val)))))
1121 (if quad-p
1122 (emit-qword segment (or offset 0))
1123 (emit-signed-dword segment (or offset 0))))))
1125 (defun emit-relative-fixup (segment fixup)
1126 (note-fixup segment :relative fixup)
1127 (emit-signed-dword segment (or (fixup-offset fixup) 0)))
1130 ;;;; the effective-address (ea) structure
1132 (defun reg-tn-encoding (tn)
1133 (declare (type tn tn))
1134 ;; ea only has space for three bits of register number: regs r8
1135 ;; and up are selected by a REX prefix byte which caller is responsible
1136 ;; for having emitted where necessary already
1137 (ecase (sb-name (sc-sb (tn-sc tn)))
1138 (registers
1139 (let ((offset (mod (tn-offset tn) 16)))
1140 (logior (ash (logand offset 1) 2)
1141 (ash offset -1))))
1142 (float-registers
1143 (mod (tn-offset tn) 8))))
1145 (defstruct (ea (:constructor make-ea (size &key base index scale disp))
1146 (:copier nil))
1147 ;; note that we can represent an EA with a QWORD size, but EMIT-EA
1148 ;; can't actually emit it on its own: caller also needs to emit REX
1149 ;; prefix
1150 (size nil :type (member :byte :word :dword :qword))
1151 (base nil :type (or tn null))
1152 (index nil :type (or tn null))
1153 (scale 1 :type (member 1 2 4 8))
1154 (disp 0 :type (or (unsigned-byte 32) (signed-byte 32) fixup)))
1155 (def!method print-object ((ea ea) stream)
1156 (cond ((or *print-escape* *print-readably*)
1157 (print-unreadable-object (ea stream :type t)
1158 (format stream
1159 "~S~@[ base=~S~]~@[ index=~S~]~@[ scale=~S~]~@[ disp=~S~]"
1160 (ea-size ea)
1161 (ea-base ea)
1162 (ea-index ea)
1163 (let ((scale (ea-scale ea)))
1164 (if (= scale 1) nil scale))
1165 (ea-disp ea))))
1167 (format stream "~A PTR [" (symbol-name (ea-size ea)))
1168 (when (ea-base ea)
1169 (write-string (sb!c::location-print-name (ea-base ea)) stream)
1170 (when (ea-index ea)
1171 (write-string "+" stream)))
1172 (when (ea-index ea)
1173 (write-string (sb!c::location-print-name (ea-index ea)) stream))
1174 (unless (= (ea-scale ea) 1)
1175 (format stream "*~A" (ea-scale ea)))
1176 (typecase (ea-disp ea)
1177 (null)
1178 (integer
1179 (format stream "~@D" (ea-disp ea)))
1181 (format stream "+~A" (ea-disp ea))))
1182 (write-char #\] stream))))
1184 (defun emit-constant-tn-rip (segment constant-tn reg)
1185 ;; AMD64 doesn't currently have a code object register to use as a
1186 ;; base register for constant access. Instead we use RIP-relative
1187 ;; addressing. The offset from the SIMPLE-FUN-HEADER to the instruction
1188 ;; is passed to the backpatch callback. In addition we need the offset
1189 ;; from the start of the function header to the slot in the CODE-HEADER
1190 ;; that stores the constant. Since we don't know where the code header
1191 ;; starts, instead count backwards from the function header.
1192 (let* ((2comp (component-info *component-being-compiled*))
1193 (constants (ir2-component-constants 2comp))
1194 (len (length constants))
1195 ;; Both CODE-HEADER and SIMPLE-FUN-HEADER are 16-byte aligned.
1196 ;; If there are an even amount of constants, there will be
1197 ;; an extra qword of padding before the function header, which
1198 ;; needs to be adjusted for. XXX: This will break if new slots
1199 ;; are added to the code header.
1200 (offset (* (- (+ len (if (evenp len)
1203 (tn-offset constant-tn))
1204 n-word-bytes)))
1205 ;; RIP-relative addressing
1206 (emit-mod-reg-r/m-byte segment #b00 reg #b101)
1207 (emit-back-patch segment
1209 (lambda (segment posn)
1210 ;; The addressing is relative to end of instruction,
1211 ;; i.e. the end of this dword. Hence the + 4.
1212 (emit-signed-dword segment
1213 (+ 4 (- (+ offset posn)))))))
1214 (values))
1216 (defun emit-label-rip (segment fixup reg)
1217 (let ((label (fixup-offset fixup)))
1218 ;; RIP-relative addressing
1219 (emit-mod-reg-r/m-byte segment #b00 reg #b101)
1220 (emit-back-patch segment
1222 (lambda (segment posn)
1223 (emit-signed-dword segment (- (label-position label)
1224 (+ posn 4))))))
1225 (values))
1227 (defun emit-ea (segment thing reg &optional allow-constants)
1228 (etypecase thing
1230 ;; this would be eleganter if we had a function that would create
1231 ;; an ea given a tn
1232 (ecase (sb-name (sc-sb (tn-sc thing)))
1233 ((registers float-registers)
1234 (emit-mod-reg-r/m-byte segment #b11 reg (reg-tn-encoding thing)))
1235 (stack
1236 ;; Convert stack tns into an index off RBP.
1237 (let ((disp (- (* (1+ (tn-offset thing)) n-word-bytes))))
1238 (cond ((<= -128 disp 127)
1239 (emit-mod-reg-r/m-byte segment #b01 reg #b101)
1240 (emit-byte segment disp))
1242 (emit-mod-reg-r/m-byte segment #b10 reg #b101)
1243 (emit-signed-dword segment disp)))))
1244 (constant
1245 (unless allow-constants
1246 ;; Why?
1247 (error
1248 "Constant TNs can only be directly used in MOV, PUSH, and CMP."))
1249 (emit-constant-tn-rip segment thing reg))))
1251 (let* ((base (ea-base thing))
1252 (index (ea-index thing))
1253 (scale (ea-scale thing))
1254 (disp (ea-disp thing))
1255 (mod (cond ((or (null base)
1256 (and (eql disp 0)
1257 (not (= (reg-tn-encoding base) #b101))))
1258 #b00)
1259 ((and (fixnump disp) (<= -128 disp 127))
1260 #b01)
1262 #b10)))
1263 (r/m (cond (index #b100)
1264 ((null base) #b101)
1265 (t (reg-tn-encoding base)))))
1266 (when (and (= mod 0) (= r/m #b101))
1267 ;; this is rip-relative in amd64, so we'll use a sib instead
1268 (setf r/m #b100 scale 1))
1269 (emit-mod-reg-r/m-byte segment mod reg r/m)
1270 (when (= r/m #b100)
1271 (let ((ss (1- (integer-length scale)))
1272 (index (if (null index)
1273 #b100
1274 (let ((index (reg-tn-encoding index)))
1275 (if (= index #b100)
1276 (error "can't index off of ESP")
1277 index))))
1278 (base (if (null base)
1279 #b101
1280 (reg-tn-encoding base))))
1281 (emit-sib-byte segment ss index base)))
1282 (cond ((= mod #b01)
1283 (emit-byte segment disp))
1284 ((or (= mod #b10) (null base))
1285 (if (fixup-p disp)
1286 (emit-absolute-fixup segment disp)
1287 (emit-signed-dword segment disp))))))
1288 (fixup
1289 (typecase (fixup-offset thing)
1290 (label
1291 (emit-label-rip segment thing reg))
1293 (emit-mod-reg-r/m-byte segment #b00 reg #b100)
1294 (emit-sib-byte segment 0 #b100 #b101)
1295 (emit-absolute-fixup segment thing))))))
1297 (defun byte-reg-p (thing)
1298 (and (tn-p thing)
1299 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1300 (member (sc-name (tn-sc thing)) *byte-sc-names*)
1303 (defun byte-ea-p (thing)
1304 (typecase thing
1305 (ea (eq (ea-size thing) :byte))
1307 (and (member (sc-name (tn-sc thing)) *byte-sc-names*) t))
1308 (t nil)))
1310 (defun word-reg-p (thing)
1311 (and (tn-p thing)
1312 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1313 (member (sc-name (tn-sc thing)) *word-sc-names*)
1316 (defun word-ea-p (thing)
1317 (typecase thing
1318 (ea (eq (ea-size thing) :word))
1319 (tn (and (member (sc-name (tn-sc thing)) *word-sc-names*) t))
1320 (t nil)))
1322 (defun dword-reg-p (thing)
1323 (and (tn-p thing)
1324 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1325 (member (sc-name (tn-sc thing)) *dword-sc-names*)
1328 (defun dword-ea-p (thing)
1329 (typecase thing
1330 (ea (eq (ea-size thing) :dword))
1332 (and (member (sc-name (tn-sc thing)) *dword-sc-names*) t))
1333 (t nil)))
1335 (defun qword-reg-p (thing)
1336 (and (tn-p thing)
1337 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1338 (member (sc-name (tn-sc thing)) *qword-sc-names*)
1341 (defun qword-ea-p (thing)
1342 (typecase thing
1343 (ea (eq (ea-size thing) :qword))
1345 (and (member (sc-name (tn-sc thing)) *qword-sc-names*) t))
1346 (t nil)))
1348 ;;; Return true if THING is a general-purpose register TN.
1349 (defun register-p (thing)
1350 (and (tn-p thing)
1351 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)))
1353 (defun accumulator-p (thing)
1354 (and (register-p thing)
1355 (= (tn-offset thing) 0)))
1357 ;;; Return true if THING is an XMM register TN.
1358 (defun xmm-register-p (thing)
1359 (and (tn-p thing)
1360 (eq (sb-name (sc-sb (tn-sc thing))) 'float-registers)))
1363 ;;;; utilities
1365 (def!constant +operand-size-prefix-byte+ #b01100110)
1367 (defun maybe-emit-operand-size-prefix (segment size)
1368 (unless (or (eq size :byte)
1369 (eq size :qword) ; REX prefix handles this
1370 (eq size +default-operand-size+))
1371 (emit-byte segment +operand-size-prefix-byte+)))
1373 ;;; A REX prefix must be emitted if at least one of the following
1374 ;;; conditions is true:
1375 ;; 1. The operand size is :QWORD and the default operand size of the
1376 ;; instruction is not :QWORD.
1377 ;;; 2. The instruction references an extended register.
1378 ;;; 3. The instruction references one of the byte registers SIL, DIL,
1379 ;;; SPL or BPL.
1381 ;;; Emit a REX prefix if necessary. OPERAND-SIZE is used to determine
1382 ;;; whether to set REX.W. Callers pass it explicitly as :DO-NOT-SET if
1383 ;;; this should not happen, for example because the instruction's
1384 ;;; default operand size is qword. R, X and B are NIL or TNs specifying
1385 ;;; registers the encodings of which are extended with the REX.R, REX.X
1386 ;;; and REX.B bit, respectively. To determine whether one of the byte
1387 ;;; registers is used that can only be accessed using a REX prefix, we
1388 ;;; need only to test R and B, because X is only used for the index
1389 ;;; register of an effective address and therefore never byte-sized.
1390 ;;; For R we can avoid to calculate the size of the TN because it is
1391 ;;; always OPERAND-SIZE. The size of B must be calculated here because
1392 ;;; B can be address-sized (if it is the base register of an effective
1393 ;;; address), of OPERAND-SIZE (if the instruction operates on two
1394 ;;; registers) or of some different size (in the instructions that
1395 ;;; combine arguments of different sizes: MOVZX, MOVSX, MOVSXD and
1396 ;;; several SSE instructions, e.g. CVTSD2SI). We don't distinguish
1397 ;;; between general-purpose and floating point registers for this cause
1398 ;;; because only general-purpose registers can be byte-sized at all.
1399 (defun maybe-emit-rex-prefix (segment operand-size r x b)
1400 (declare (type (member nil :byte :word :dword :qword :do-not-set)
1401 operand-size)
1402 (type (or null tn) r x b))
1403 (labels ((if-hi (r)
1404 (if (and r (> (tn-offset r)
1405 ;; offset of r8 is 16, offset of xmm8 is 8
1406 (if (eq (sb-name (sc-sb (tn-sc r)))
1407 'float-registers)
1409 15)))
1412 (reg-4-7-p (r)
1413 ;; Assuming R is a TN describing a general-purpose
1414 ;; register, return true if it references register
1415 ;; 4 upto 7.
1416 (<= 8 (tn-offset r) 15)))
1417 (let ((rex-w (if (eq operand-size :qword) 1 0))
1418 (rex-r (if-hi r))
1419 (rex-x (if-hi x))
1420 (rex-b (if-hi b)))
1421 (when (or (not (zerop (logior rex-w rex-r rex-x rex-b)))
1422 (and r
1423 (eq operand-size :byte)
1424 (reg-4-7-p r))
1425 (and b
1426 (eq (operand-size b) :byte)
1427 (reg-4-7-p b)))
1428 (emit-rex-byte segment #b0100 rex-w rex-r rex-x rex-b)))))
1430 ;;; Emit a REX prefix if necessary. The operand size is determined from
1431 ;;; THING or can be overwritten by OPERAND-SIZE. This and REG are always
1432 ;;; passed to MAYBE-EMIT-REX-PREFIX. Additionally, if THING is an EA we
1433 ;;; pass its index and base registers, if it is a register TN, we pass
1434 ;;; only itself.
1435 ;;; In contrast to EMIT-EA above, neither stack TNs nor fixups need to
1436 ;;; be treated specially here: If THING is a stack TN, neither it nor
1437 ;;; any of its components are passed to MAYBE-EMIT-REX-PREFIX which
1438 ;;; works correctly because stack references always use RBP as the base
1439 ;;; register and never use an index register so no extended registers
1440 ;;; need to be accessed. Fixups are assembled using an addressing mode
1441 ;;; of displacement-only or RIP-plus-displacement (see EMIT-EA), so may
1442 ;;; not reference an extended register. The displacement-only addressing
1443 ;;; mode requires that REX.X is 0, which is ensured here.
1444 (defun maybe-emit-rex-for-ea (segment thing reg &key operand-size)
1445 (declare (type (or ea tn fixup) thing)
1446 (type (or null tn) reg)
1447 (type (member nil :byte :word :dword :qword :do-not-set)
1448 operand-size))
1449 (let ((ea-p (ea-p thing)))
1450 (maybe-emit-rex-prefix segment
1451 (or operand-size (operand-size thing))
1453 (and ea-p (ea-index thing))
1454 (cond (ea-p (ea-base thing))
1455 ((and (tn-p thing)
1456 (member (sb-name (sc-sb (tn-sc thing)))
1457 '(float-registers registers)))
1458 thing)
1459 (t nil)))))
1461 (defun operand-size (thing)
1462 (typecase thing
1464 ;; FIXME: might as well be COND instead of having to use #. readmacro
1465 ;; to hack up the code
1466 (case (sc-name (tn-sc thing))
1467 (#.*qword-sc-names*
1468 :qword)
1469 (#.*dword-sc-names*
1470 :dword)
1471 (#.*word-sc-names*
1472 :word)
1473 (#.*byte-sc-names*
1474 :byte)
1475 ;; added by jrd: float-registers is a separate size (?)
1476 ;; The only place in the code where we are called with THING
1477 ;; being a float-register is in MAYBE-EMIT-REX-PREFIX when it
1478 ;; checks whether THING is a byte register. Thus our result in
1479 ;; these cases could as well be :dword and :qword. I leave it as
1480 ;; :float and :double which is more likely to trigger an aver
1481 ;; instead of silently doing the wrong thing in case this
1482 ;; situation should change. Lutz Euler, 2005-10-23.
1483 (#.*float-sc-names*
1484 :float)
1485 (#.*double-sc-names*
1486 :double)
1488 (error "can't tell the size of ~S ~S" thing (sc-name (tn-sc thing))))))
1490 (ea-size thing))
1491 (fixup
1492 ;; GNA. Guess who spelt "flavor" correctly first time round?
1493 ;; There's a strong argument in my mind to change all uses of
1494 ;; "flavor" to "kind": and similarly with some misguided uses of
1495 ;; "type" here and there. -- CSR, 2005-01-06.
1496 (case (fixup-flavor thing)
1497 ((:foreign-dataref) :qword)))
1499 nil)))
1501 (defun matching-operand-size (dst src)
1502 (let ((dst-size (operand-size dst))
1503 (src-size (operand-size src)))
1504 (if dst-size
1505 (if src-size
1506 (if (eq dst-size src-size)
1507 dst-size
1508 (error "size mismatch: ~S is a ~S and ~S is a ~S."
1509 dst dst-size src src-size))
1510 dst-size)
1511 (if src-size
1512 src-size
1513 (error "can't tell the size of either ~S or ~S" dst src)))))
1515 ;;; Except in a very few cases (MOV instructions A1, A3 and B8 - BF)
1516 ;;; we expect dword data bytes even when 64 bit work is being done.
1517 ;;; But A1 and A3 are currently unused and B8 - BF use EMIT-QWORD
1518 ;;; directly, so we emit all quad constants as dwords, additionally
1519 ;;; making sure that they survive the sign-extension to 64 bits
1520 ;;; unchanged.
1521 (defun emit-sized-immediate (segment size value)
1522 (ecase size
1523 (:byte
1524 (emit-byte segment value))
1525 (:word
1526 (emit-word segment value))
1527 (:dword
1528 (emit-dword segment value))
1529 (:qword
1530 (emit-signed-dword segment value))))
1532 ;;;; general data transfer
1534 ;;; This is the part of the MOV instruction emitter that does moving
1535 ;;; of an immediate value into a qword register. We go to some length
1536 ;;; to achieve the shortest possible encoding.
1537 (defun emit-immediate-move-to-qword-register (segment dst src)
1538 (declare (type integer src))
1539 (cond ((typep src '(unsigned-byte 32))
1540 ;; We use the B8 - BF encoding with an operand size of 32 bits
1541 ;; here and let the implicit zero-extension fill the upper half
1542 ;; of the 64-bit destination register. Instruction size: five
1543 ;; or six bytes. (A REX prefix will be emitted only if the
1544 ;; destination is an extended register.)
1545 (maybe-emit-rex-prefix segment :dword nil nil dst)
1546 (emit-byte-with-reg segment #b10111 (reg-tn-encoding dst))
1547 (emit-dword segment src))
1549 (maybe-emit-rex-prefix segment :qword nil nil dst)
1550 (cond ((typep src '(signed-byte 32))
1551 ;; Use the C7 encoding that takes a 32-bit immediate and
1552 ;; sign-extends it to 64 bits. Instruction size: seven
1553 ;; bytes.
1554 (emit-byte segment #b11000111)
1555 (emit-mod-reg-r/m-byte segment #b11 #b000
1556 (reg-tn-encoding dst))
1557 (emit-signed-dword segment src))
1558 ((<= (- (expt 2 64) (expt 2 31))
1560 (1- (expt 2 64)))
1561 ;; This triggers on positive integers of 64 bits length
1562 ;; with the most significant 33 bits being 1. We use the
1563 ;; same encoding as in the previous clause.
1564 (emit-byte segment #b11000111)
1565 (emit-mod-reg-r/m-byte segment #b11 #b000
1566 (reg-tn-encoding dst))
1567 (emit-signed-dword segment (- src (expt 2 64))))
1569 ;; We need a full 64-bit immediate. Instruction size:
1570 ;; ten bytes.
1571 (emit-byte-with-reg segment #b10111 (reg-tn-encoding dst))
1572 (emit-qword segment src))))))
1574 (define-instruction mov (segment dst src)
1575 ;; immediate to register
1576 (:printer reg ((op #b1011) (imm nil :type 'signed-imm-data))
1577 '(:name :tab reg ", " imm))
1578 (:printer rex-reg ((op #b1011) (imm nil :type 'signed-imm-data-upto-qword))
1579 '(:name :tab reg ", " imm))
1580 ;; absolute mem to/from accumulator
1581 (:printer simple-dir ((op #b101000) (imm nil :type 'imm-addr))
1582 `(:name :tab ,(swap-if 'dir 'accum ", " '("[" imm "]"))))
1583 ;; register to/from register/memory
1584 (:printer reg-reg/mem-dir ((op #b100010)))
1585 (:printer rex-reg-reg/mem-dir ((op #b100010)))
1586 (:printer x66-reg-reg/mem-dir ((op #b100010)))
1587 (:printer x66-rex-reg-reg/mem-dir ((op #b100010)))
1588 ;; immediate to register/memory
1589 (:printer reg/mem-imm ((op '(#b1100011 #b000))))
1590 (:printer rex-reg/mem-imm ((op '(#b1100011 #b000))))
1592 (:emitter
1593 (let ((size (matching-operand-size dst src)))
1594 (maybe-emit-operand-size-prefix segment size)
1595 (cond ((register-p dst)
1596 (cond ((integerp src)
1597 (cond ((eq size :qword)
1598 (emit-immediate-move-to-qword-register segment
1599 dst src))
1601 (maybe-emit-rex-prefix segment size nil nil dst)
1602 (emit-byte-with-reg segment
1603 (if (eq size :byte)
1604 #b10110
1605 #b10111)
1606 (reg-tn-encoding dst))
1607 (emit-sized-immediate segment size src))))
1609 (maybe-emit-rex-for-ea segment src dst)
1610 (emit-byte segment
1611 (if (eq size :byte)
1612 #b10001010
1613 #b10001011))
1614 (emit-ea segment src (reg-tn-encoding dst) t))))
1615 ((integerp src)
1616 ;; C7 only deals with 32 bit immediates even if the
1617 ;; destination is a 64-bit location. The value is
1618 ;; sign-extended in this case.
1619 (maybe-emit-rex-for-ea segment dst nil)
1620 (emit-byte segment (if (eq size :byte) #b11000110 #b11000111))
1621 (emit-ea segment dst #b000)
1622 (emit-sized-immediate segment size src))
1623 ((register-p src)
1624 (maybe-emit-rex-for-ea segment dst src)
1625 (emit-byte segment (if (eq size :byte) #b10001000 #b10001001))
1626 (emit-ea segment dst (reg-tn-encoding src)))
1627 ((fixup-p src)
1628 ;; Generally we can't MOV a fixupped value into an EA, since
1629 ;; MOV on non-registers can only take a 32-bit immediate arg.
1630 ;; Make an exception for :FOREIGN fixups (pretty much just
1631 ;; the runtime asm, since other foreign calls go through the
1632 ;; the linkage table) and for linkage table references, since
1633 ;; these should always end up in low memory.
1634 (aver (or (eq (fixup-flavor src) :foreign)
1635 (eq (fixup-flavor src) :foreign-dataref)
1636 (eq (ea-size dst) :dword)))
1637 (maybe-emit-rex-for-ea segment dst nil)
1638 (emit-byte segment #b11000111)
1639 (emit-ea segment dst #b000)
1640 (emit-absolute-fixup segment src))
1642 (error "bogus arguments to MOV: ~S ~S" dst src))))))
1644 (defun emit-move-with-extension (segment dst src signed-p)
1645 (aver (register-p dst))
1646 (let ((dst-size (operand-size dst))
1647 (src-size (operand-size src))
1648 (opcode (if signed-p #b10111110 #b10110110)))
1649 (ecase dst-size
1650 (:word
1651 (aver (eq src-size :byte))
1652 (maybe-emit-operand-size-prefix segment :word)
1653 ;; REX prefix is needed if SRC is SIL, DIL, SPL or BPL.
1654 (maybe-emit-rex-for-ea segment src dst :operand-size :word)
1655 (emit-byte segment #b00001111)
1656 (emit-byte segment opcode)
1657 (emit-ea segment src (reg-tn-encoding dst)))
1658 ((:dword :qword)
1659 (ecase src-size
1660 (:byte
1661 (maybe-emit-rex-for-ea segment src dst :operand-size dst-size)
1662 (emit-byte segment #b00001111)
1663 (emit-byte segment opcode)
1664 (emit-ea segment src (reg-tn-encoding dst)))
1665 (:word
1666 (maybe-emit-rex-for-ea segment src dst :operand-size dst-size)
1667 (emit-byte segment #b00001111)
1668 (emit-byte segment (logior opcode 1))
1669 (emit-ea segment src (reg-tn-encoding dst)))
1670 (:dword
1671 (aver (eq dst-size :qword))
1672 ;; dst is in reg, src is in modrm
1673 (let ((ea-p (ea-p src)))
1674 (maybe-emit-rex-prefix segment (if signed-p :qword :dword) dst
1675 (and ea-p (ea-index src))
1676 (cond (ea-p (ea-base src))
1677 ((tn-p src) src)
1678 (t nil)))
1679 (emit-byte segment #x63) ;movsxd
1680 ;;(emit-byte segment opcode)
1681 (emit-ea segment src (reg-tn-encoding dst)))))))))
1683 (define-instruction movsx (segment dst src)
1684 (:printer ext-reg-reg/mem-no-width
1685 ((op #b10111110) (reg/mem nil :type 'sized-byte-reg/mem)))
1686 (:printer rex-ext-reg-reg/mem-no-width
1687 ((op #b10111110) (reg/mem nil :type 'sized-byte-reg/mem)))
1688 (:printer ext-reg-reg/mem-no-width
1689 ((op #b10111111) (reg/mem nil :type 'sized-word-reg/mem)))
1690 (:printer rex-ext-reg-reg/mem-no-width
1691 ((op #b10111111) (reg/mem nil :type 'sized-word-reg/mem)))
1692 (:emitter (emit-move-with-extension segment dst src :signed)))
1694 (define-instruction movzx (segment dst src)
1695 (:printer ext-reg-reg/mem-no-width
1696 ((op #b10110110) (reg/mem nil :type 'sized-byte-reg/mem)))
1697 (:printer rex-ext-reg-reg/mem-no-width
1698 ((op #b10110110) (reg/mem nil :type 'sized-byte-reg/mem)))
1699 (:printer ext-reg-reg/mem-no-width
1700 ((op #b10110111) (reg/mem nil :type 'sized-word-reg/mem)))
1701 (:printer rex-ext-reg-reg/mem-no-width
1702 ((op #b10110111) (reg/mem nil :type 'sized-word-reg/mem)))
1703 (:emitter (emit-move-with-extension segment dst src nil)))
1705 ;;; The regular use of MOVSXD is with an operand size of :qword. This
1706 ;;; sign-extends the dword source into the qword destination register.
1707 ;;; If the operand size is :dword the instruction zero-extends the dword
1708 ;;; source into the qword destination register, i.e. it does the same as
1709 ;;; a dword MOV into a register.
1710 (define-instruction movsxd (segment dst src)
1711 (:printer reg-reg/mem ((op #b0110001) (width 1)
1712 (reg/mem nil :type 'sized-dword-reg/mem)))
1713 (:printer rex-reg-reg/mem ((op #b0110001) (width 1)
1714 (reg/mem nil :type 'sized-dword-reg/mem)))
1715 (:emitter (emit-move-with-extension segment dst src :signed)))
1717 ;;; this is not a real amd64 instruction, of course
1718 (define-instruction movzxd (segment dst src)
1719 ; (:printer reg-reg/mem ((op #x63) (reg nil :type 'reg)))
1720 (:emitter (emit-move-with-extension segment dst src nil)))
1722 (define-instruction push (segment src)
1723 ;; register
1724 (:printer reg-no-width-default-qword ((op #b01010)))
1725 (:printer rex-reg-no-width-default-qword ((op #b01010)))
1726 ;; register/memory
1727 (:printer reg/mem-default-qword ((op '(#b11111111 #b110))))
1728 (:printer rex-reg/mem-default-qword ((op '(#b11111111 #b110))))
1729 ;; immediate
1730 (:printer byte ((op #b01101010) (imm nil :type 'signed-imm-byte))
1731 '(:name :tab imm))
1732 (:printer byte ((op #b01101000)
1733 (imm nil :type 'signed-imm-data-default-qword))
1734 '(:name :tab imm))
1735 ;; ### segment registers?
1737 (:emitter
1738 (cond ((integerp src)
1739 (cond ((<= -128 src 127)
1740 (emit-byte segment #b01101010)
1741 (emit-byte segment src))
1743 ;; A REX-prefix is not needed because the operand size
1744 ;; defaults to 64 bits. The size of the immediate is 32
1745 ;; bits and it is sign-extended.
1746 (emit-byte segment #b01101000)
1747 (emit-signed-dword segment src))))
1749 (let ((size (operand-size src)))
1750 (aver (or (eq size :qword) (eq size :word)))
1751 (maybe-emit-operand-size-prefix segment size)
1752 (maybe-emit-rex-for-ea segment src nil :operand-size :do-not-set)
1753 (cond ((register-p src)
1754 (emit-byte-with-reg segment #b01010 (reg-tn-encoding src)))
1756 (emit-byte segment #b11111111)
1757 (emit-ea segment src #b110 t))))))))
1759 (define-instruction pop (segment dst)
1760 (:printer reg-no-width-default-qword ((op #b01011)))
1761 (:printer rex-reg-no-width-default-qword ((op #b01011)))
1762 (:printer reg/mem-default-qword ((op '(#b10001111 #b000))))
1763 (:printer rex-reg/mem-default-qword ((op '(#b10001111 #b000))))
1764 (:emitter
1765 (let ((size (operand-size dst)))
1766 (aver (or (eq size :qword) (eq size :word)))
1767 (maybe-emit-operand-size-prefix segment size)
1768 (maybe-emit-rex-for-ea segment dst nil :operand-size :do-not-set)
1769 (cond ((register-p dst)
1770 (emit-byte-with-reg segment #b01011 (reg-tn-encoding dst)))
1772 (emit-byte segment #b10001111)
1773 (emit-ea segment dst #b000))))))
1775 (define-instruction xchg (segment operand1 operand2)
1776 ;; Register with accumulator.
1777 (:printer reg-no-width ((op #b10010)) '(:name :tab accum ", " reg))
1778 ;; Register/Memory with Register.
1779 (:printer reg-reg/mem ((op #b1000011)))
1780 (:printer rex-reg-reg/mem ((op #b1000011)))
1781 (:emitter
1782 (let ((size (matching-operand-size operand1 operand2)))
1783 (maybe-emit-operand-size-prefix segment size)
1784 (labels ((xchg-acc-with-something (acc something)
1785 (if (and (not (eq size :byte)) (register-p something))
1786 (progn
1787 (maybe-emit-rex-for-ea segment acc something)
1788 (emit-byte-with-reg segment
1789 #b10010
1790 (reg-tn-encoding something)))
1791 (xchg-reg-with-something acc something)))
1792 (xchg-reg-with-something (reg something)
1793 (maybe-emit-rex-for-ea segment something reg)
1794 (emit-byte segment (if (eq size :byte) #b10000110 #b10000111))
1795 (emit-ea segment something (reg-tn-encoding reg))))
1796 (cond ((accumulator-p operand1)
1797 (xchg-acc-with-something operand1 operand2))
1798 ((accumulator-p operand2)
1799 (xchg-acc-with-something operand2 operand1))
1800 ((register-p operand1)
1801 (xchg-reg-with-something operand1 operand2))
1802 ((register-p operand2)
1803 (xchg-reg-with-something operand2 operand1))
1805 (error "bogus args to XCHG: ~S ~S" operand1 operand2)))))))
1807 (define-instruction lea (segment dst src)
1808 (:printer rex-reg-reg/mem ((op #b1000110)))
1809 (:printer reg-reg/mem ((op #b1000110) (width 1)))
1810 (:emitter
1811 (aver (or (dword-reg-p dst) (qword-reg-p dst)))
1812 (maybe-emit-rex-for-ea segment src dst
1813 :operand-size :qword)
1814 (emit-byte segment #b10001101)
1815 (emit-ea segment src (reg-tn-encoding dst))))
1817 (define-instruction cmpxchg (segment dst src &optional prefix)
1818 ;; Register/Memory with Register.
1819 (:printer ext-reg-reg/mem ((op #b1011000)) '(:name :tab reg/mem ", " reg))
1820 (:emitter
1821 (aver (register-p src))
1822 (emit-prefix segment prefix)
1823 (let ((size (matching-operand-size src dst)))
1824 (maybe-emit-operand-size-prefix segment size)
1825 (maybe-emit-rex-for-ea segment dst src)
1826 (emit-byte segment #b00001111)
1827 (emit-byte segment (if (eq size :byte) #b10110000 #b10110001))
1828 (emit-ea segment dst (reg-tn-encoding src)))))
1831 ;;;; flag control instructions
1833 ;;; CLC -- Clear Carry Flag.
1834 (define-instruction clc (segment)
1835 (:printer byte ((op #b11111000)))
1836 (:emitter
1837 (emit-byte segment #b11111000)))
1839 ;;; CLD -- Clear Direction Flag.
1840 (define-instruction cld (segment)
1841 (:printer byte ((op #b11111100)))
1842 (:emitter
1843 (emit-byte segment #b11111100)))
1845 ;;; CLI -- Clear Iterrupt Enable Flag.
1846 (define-instruction cli (segment)
1847 (:printer byte ((op #b11111010)))
1848 (:emitter
1849 (emit-byte segment #b11111010)))
1851 ;;; CMC -- Complement Carry Flag.
1852 (define-instruction cmc (segment)
1853 (:printer byte ((op #b11110101)))
1854 (:emitter
1855 (emit-byte segment #b11110101)))
1857 ;;; LAHF -- Load AH into flags.
1858 (define-instruction lahf (segment)
1859 (:printer byte ((op #b10011111)))
1860 (:emitter
1861 (emit-byte segment #b10011111)))
1863 ;;; POPF -- Pop flags.
1864 (define-instruction popf (segment)
1865 (:printer byte ((op #b10011101)))
1866 (:emitter
1867 (emit-byte segment #b10011101)))
1869 ;;; PUSHF -- push flags.
1870 (define-instruction pushf (segment)
1871 (:printer byte ((op #b10011100)))
1872 (:emitter
1873 (emit-byte segment #b10011100)))
1875 ;;; SAHF -- Store AH into flags.
1876 (define-instruction sahf (segment)
1877 (:printer byte ((op #b10011110)))
1878 (:emitter
1879 (emit-byte segment #b10011110)))
1881 ;;; STC -- Set Carry Flag.
1882 (define-instruction stc (segment)
1883 (:printer byte ((op #b11111001)))
1884 (:emitter
1885 (emit-byte segment #b11111001)))
1887 ;;; STD -- Set Direction Flag.
1888 (define-instruction std (segment)
1889 (:printer byte ((op #b11111101)))
1890 (:emitter
1891 (emit-byte segment #b11111101)))
1893 ;;; STI -- Set Interrupt Enable Flag.
1894 (define-instruction sti (segment)
1895 (:printer byte ((op #b11111011)))
1896 (:emitter
1897 (emit-byte segment #b11111011)))
1899 ;;;; arithmetic
1901 (defun emit-random-arith-inst (name segment dst src opcode
1902 &optional allow-constants)
1903 (let ((size (matching-operand-size dst src)))
1904 (maybe-emit-operand-size-prefix segment size)
1905 (cond
1906 ((integerp src)
1907 (cond ((and (not (eq size :byte)) (<= -128 src 127))
1908 (maybe-emit-rex-for-ea segment dst nil)
1909 (emit-byte segment #b10000011)
1910 (emit-ea segment dst opcode allow-constants)
1911 (emit-byte segment src))
1912 ((accumulator-p dst)
1913 (maybe-emit-rex-for-ea segment dst nil)
1914 (emit-byte segment
1915 (dpb opcode
1916 (byte 3 3)
1917 (if (eq size :byte)
1918 #b00000100
1919 #b00000101)))
1920 (emit-sized-immediate segment size src))
1922 (maybe-emit-rex-for-ea segment dst nil)
1923 (emit-byte segment (if (eq size :byte) #b10000000 #b10000001))
1924 (emit-ea segment dst opcode allow-constants)
1925 (emit-sized-immediate segment size src))))
1926 ((register-p src)
1927 (maybe-emit-rex-for-ea segment dst src)
1928 (emit-byte segment
1929 (dpb opcode
1930 (byte 3 3)
1931 (if (eq size :byte) #b00000000 #b00000001)))
1932 (emit-ea segment dst (reg-tn-encoding src) allow-constants))
1933 ((register-p dst)
1934 (maybe-emit-rex-for-ea segment src dst)
1935 (emit-byte segment
1936 (dpb opcode
1937 (byte 3 3)
1938 (if (eq size :byte) #b00000010 #b00000011)))
1939 (emit-ea segment src (reg-tn-encoding dst) allow-constants))
1941 (error "bogus operands to ~A" name)))))
1943 (eval-when (:compile-toplevel :execute)
1944 (defun arith-inst-printer-list (subop)
1945 `((accum-imm ((op ,(dpb subop (byte 3 2) #b0000010))))
1946 (rex-accum-imm ((op ,(dpb subop (byte 3 2) #b0000010))))
1947 (reg/mem-imm ((op (#b1000000 ,subop))))
1948 (rex-reg/mem-imm ((op (#b1000000 ,subop))))
1949 ;; The redundant encoding #x82 is invalid in 64-bit mode,
1950 ;; therefore we force WIDTH to 1.
1951 (reg/mem-imm ((op (#b1000001 ,subop)) (width 1)
1952 (imm nil :type signed-imm-byte)))
1953 (rex-reg/mem-imm ((op (#b1000001 ,subop)) (width 1)
1954 (imm nil :type signed-imm-byte)))
1955 (reg-reg/mem-dir ((op ,(dpb subop (byte 3 1) #b000000))))
1956 (rex-reg-reg/mem-dir ((op ,(dpb subop (byte 3 1) #b000000))))))
1959 (define-instruction add (segment dst src &optional prefix)
1960 (:printer-list (arith-inst-printer-list #b000))
1961 (:emitter
1962 (emit-prefix segment prefix)
1963 (emit-random-arith-inst "ADD" segment dst src #b000)))
1965 (define-instruction adc (segment dst src)
1966 (:printer-list (arith-inst-printer-list #b010))
1967 (:emitter (emit-random-arith-inst "ADC" segment dst src #b010)))
1969 (define-instruction sub (segment dst src)
1970 (:printer-list (arith-inst-printer-list #b101))
1971 (:emitter (emit-random-arith-inst "SUB" segment dst src #b101)))
1973 (define-instruction sbb (segment dst src)
1974 (:printer-list (arith-inst-printer-list #b011))
1975 (:emitter (emit-random-arith-inst "SBB" segment dst src #b011)))
1977 (define-instruction cmp (segment dst src)
1978 (:printer-list (arith-inst-printer-list #b111))
1979 (:emitter (emit-random-arith-inst "CMP" segment dst src #b111 t)))
1981 ;;; The one-byte encodings for INC and DEC are used as REX prefixes
1982 ;;; in 64-bit mode so we always use the two-byte form.
1983 (define-instruction inc (segment dst)
1984 (:printer reg/mem ((op '(#b1111111 #b000))))
1985 (:printer rex-reg/mem ((op '(#b1111111 #b000))))
1986 (:emitter
1987 (let ((size (operand-size dst)))
1988 (maybe-emit-operand-size-prefix segment size)
1989 (maybe-emit-rex-for-ea segment dst nil)
1990 (emit-byte segment (if (eq size :byte) #b11111110 #b11111111))
1991 (emit-ea segment dst #b000))))
1993 (define-instruction dec (segment dst)
1994 (:printer reg/mem ((op '(#b1111111 #b001))))
1995 (:printer rex-reg/mem ((op '(#b1111111 #b001))))
1996 (:emitter
1997 (let ((size (operand-size dst)))
1998 (maybe-emit-operand-size-prefix segment size)
1999 (maybe-emit-rex-for-ea segment dst nil)
2000 (emit-byte segment (if (eq size :byte) #b11111110 #b11111111))
2001 (emit-ea segment dst #b001))))
2003 (define-instruction neg (segment dst)
2004 (:printer reg/mem ((op '(#b1111011 #b011))))
2005 (:printer rex-reg/mem ((op '(#b1111011 #b011))))
2006 (:emitter
2007 (let ((size (operand-size dst)))
2008 (maybe-emit-operand-size-prefix segment size)
2009 (maybe-emit-rex-for-ea segment dst nil)
2010 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2011 (emit-ea segment dst #b011))))
2013 (define-instruction mul (segment dst src)
2014 (:printer accum-reg/mem ((op '(#b1111011 #b100))))
2015 (:printer rex-accum-reg/mem ((op '(#b1111011 #b100))))
2016 (:emitter
2017 (let ((size (matching-operand-size dst src)))
2018 (aver (accumulator-p dst))
2019 (maybe-emit-operand-size-prefix segment size)
2020 (maybe-emit-rex-for-ea segment src nil)
2021 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2022 (emit-ea segment src #b100))))
2024 (define-instruction imul (segment dst &optional src1 src2)
2025 (:printer accum-reg/mem ((op '(#b1111011 #b101))))
2026 (:printer rex-accum-reg/mem ((op '(#b1111011 #b101))))
2027 (:printer ext-reg-reg/mem-no-width ((op #b10101111)))
2028 (:printer rex-ext-reg-reg/mem-no-width ((op #b10101111)))
2029 (:printer reg-reg/mem ((op #b0110100) (width 1)
2030 (imm nil :type 'signed-imm-data))
2031 '(:name :tab reg ", " reg/mem ", " imm))
2032 (:printer rex-reg-reg/mem ((op #b0110100) (width 1)
2033 (imm nil :type 'signed-imm-data))
2034 '(:name :tab reg ", " reg/mem ", " imm))
2035 (:printer reg-reg/mem ((op #b0110101) (width 1)
2036 (imm nil :type 'signed-imm-byte))
2037 '(:name :tab reg ", " reg/mem ", " imm))
2038 (:printer rex-reg-reg/mem ((op #b0110101) (width 1)
2039 (imm nil :type 'signed-imm-byte))
2040 '(:name :tab reg ", " reg/mem ", " imm))
2041 (:emitter
2042 (flet ((r/m-with-immed-to-reg (reg r/m immed)
2043 (let* ((size (matching-operand-size reg r/m))
2044 (sx (and (not (eq size :byte)) (<= -128 immed 127))))
2045 (maybe-emit-operand-size-prefix segment size)
2046 (maybe-emit-rex-for-ea segment r/m reg)
2047 (emit-byte segment (if sx #b01101011 #b01101001))
2048 (emit-ea segment r/m (reg-tn-encoding reg))
2049 (if sx
2050 (emit-byte segment immed)
2051 (emit-sized-immediate segment size immed)))))
2052 (cond (src2
2053 (r/m-with-immed-to-reg dst src1 src2))
2054 (src1
2055 (if (integerp src1)
2056 (r/m-with-immed-to-reg dst dst src1)
2057 (let ((size (matching-operand-size dst src1)))
2058 (maybe-emit-operand-size-prefix segment size)
2059 (maybe-emit-rex-for-ea segment src1 dst)
2060 (emit-byte segment #b00001111)
2061 (emit-byte segment #b10101111)
2062 (emit-ea segment src1 (reg-tn-encoding dst)))))
2064 (let ((size (operand-size dst)))
2065 (maybe-emit-operand-size-prefix segment size)
2066 (maybe-emit-rex-for-ea segment dst nil)
2067 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2068 (emit-ea segment dst #b101)))))))
2070 (define-instruction div (segment dst src)
2071 (:printer accum-reg/mem ((op '(#b1111011 #b110))))
2072 (:printer rex-accum-reg/mem ((op '(#b1111011 #b110))))
2073 (:emitter
2074 (let ((size (matching-operand-size dst src)))
2075 (aver (accumulator-p dst))
2076 (maybe-emit-operand-size-prefix segment size)
2077 (maybe-emit-rex-for-ea segment src nil)
2078 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2079 (emit-ea segment src #b110))))
2081 (define-instruction idiv (segment dst src)
2082 (:printer accum-reg/mem ((op '(#b1111011 #b111))))
2083 (:printer rex-accum-reg/mem ((op '(#b1111011 #b111))))
2084 (:emitter
2085 (let ((size (matching-operand-size dst src)))
2086 (aver (accumulator-p dst))
2087 (maybe-emit-operand-size-prefix segment size)
2088 (maybe-emit-rex-for-ea segment src nil)
2089 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2090 (emit-ea segment src #b111))))
2092 (define-instruction bswap (segment dst)
2093 (:printer ext-reg-no-width ((op #b11001)))
2094 (:emitter
2095 (let ((size (operand-size dst)))
2096 (maybe-emit-rex-prefix segment size nil nil dst)
2097 (emit-byte segment #x0f)
2098 (emit-byte-with-reg segment #b11001 (reg-tn-encoding dst)))))
2100 ;;; CBW -- Convert Byte to Word. AX <- sign_xtnd(AL)
2101 (define-instruction cbw (segment)
2102 (:printer x66-byte ((op #b10011000)))
2103 (:emitter
2104 (maybe-emit-operand-size-prefix segment :word)
2105 (emit-byte segment #b10011000)))
2107 ;;; CWDE -- Convert Word To Double Word Extended. EAX <- sign_xtnd(AX)
2108 (define-instruction cwde (segment)
2109 (:printer byte ((op #b10011000)))
2110 (:emitter
2111 (maybe-emit-operand-size-prefix segment :dword)
2112 (emit-byte segment #b10011000)))
2114 ;;; CDQE -- Convert Double Word To Quad Word Extended. RAX <- sign_xtnd(EAX)
2115 (define-instruction cdqe (segment)
2116 (:printer rex-byte ((op #b10011000)))
2117 (:emitter
2118 (maybe-emit-rex-prefix segment :qword nil nil nil)
2119 (emit-byte segment #b10011000)))
2121 ;;; CWD -- Convert Word to Double Word. DX:AX <- sign_xtnd(AX)
2122 (define-instruction cwd (segment)
2123 (:printer x66-byte ((op #b10011001)))
2124 (:emitter
2125 (maybe-emit-operand-size-prefix segment :word)
2126 (emit-byte segment #b10011001)))
2128 ;;; CDQ -- Convert Double Word to Quad Word. EDX:EAX <- sign_xtnd(EAX)
2129 (define-instruction cdq (segment)
2130 (:printer byte ((op #b10011001)))
2131 (:emitter
2132 (maybe-emit-operand-size-prefix segment :dword)
2133 (emit-byte segment #b10011001)))
2135 ;;; CQO -- Convert Quad Word to Octaword. RDX:RAX <- sign_xtnd(RAX)
2136 (define-instruction cqo (segment)
2137 (:printer rex-byte ((op #b10011001)))
2138 (:emitter
2139 (maybe-emit-rex-prefix segment :qword nil nil nil)
2140 (emit-byte segment #b10011001)))
2142 (define-instruction xadd (segment dst src &optional prefix)
2143 ;; Register/Memory with Register.
2144 (:printer ext-reg-reg/mem ((op #b1100000)) '(:name :tab reg/mem ", " reg))
2145 (:emitter
2146 (aver (register-p src))
2147 (emit-prefix segment prefix)
2148 (let ((size (matching-operand-size src dst)))
2149 (maybe-emit-operand-size-prefix segment size)
2150 (maybe-emit-rex-for-ea segment dst src)
2151 (emit-byte segment #b00001111)
2152 (emit-byte segment (if (eq size :byte) #b11000000 #b11000001))
2153 (emit-ea segment dst (reg-tn-encoding src)))))
2156 ;;;; logic
2158 (defun emit-shift-inst (segment dst amount opcode)
2159 (let ((size (operand-size dst)))
2160 (maybe-emit-operand-size-prefix segment size)
2161 (multiple-value-bind (major-opcode immed)
2162 (case amount
2163 (:cl (values #b11010010 nil))
2164 (1 (values #b11010000 nil))
2165 (t (values #b11000000 t)))
2166 (maybe-emit-rex-for-ea segment dst nil)
2167 (emit-byte segment
2168 (if (eq size :byte) major-opcode (logior major-opcode 1)))
2169 (emit-ea segment dst opcode)
2170 (when immed
2171 (emit-byte segment amount)))))
2173 (eval-when (:compile-toplevel :execute)
2174 (defun shift-inst-printer-list (subop)
2175 `((reg/mem ((op (#b1101000 ,subop)))
2176 (:name :tab reg/mem ", 1"))
2177 (rex-reg/mem ((op (#b1101000 ,subop)))
2178 (:name :tab reg/mem ", 1"))
2179 (reg/mem ((op (#b1101001 ,subop)))
2180 (:name :tab reg/mem ", " 'cl))
2181 (rex-reg/mem ((op (#b1101001 ,subop)))
2182 (:name :tab reg/mem ", " 'cl))
2183 (reg/mem-imm ((op (#b1100000 ,subop))
2184 (imm nil :type imm-byte)))
2185 (rex-reg/mem-imm ((op (#b1100000 ,subop))
2186 (imm nil :type imm-byte))))))
2188 (define-instruction rol (segment dst amount)
2189 (:printer-list
2190 (shift-inst-printer-list #b000))
2191 (:emitter
2192 (emit-shift-inst segment dst amount #b000)))
2194 (define-instruction ror (segment dst amount)
2195 (:printer-list
2196 (shift-inst-printer-list #b001))
2197 (:emitter
2198 (emit-shift-inst segment dst amount #b001)))
2200 (define-instruction rcl (segment dst amount)
2201 (:printer-list
2202 (shift-inst-printer-list #b010))
2203 (:emitter
2204 (emit-shift-inst segment dst amount #b010)))
2206 (define-instruction rcr (segment dst amount)
2207 (:printer-list
2208 (shift-inst-printer-list #b011))
2209 (:emitter
2210 (emit-shift-inst segment dst amount #b011)))
2212 (define-instruction shl (segment dst amount)
2213 (:printer-list
2214 (shift-inst-printer-list #b100))
2215 (:emitter
2216 (emit-shift-inst segment dst amount #b100)))
2218 (define-instruction shr (segment dst amount)
2219 (:printer-list
2220 (shift-inst-printer-list #b101))
2221 (:emitter
2222 (emit-shift-inst segment dst amount #b101)))
2224 (define-instruction sar (segment dst amount)
2225 (:printer-list
2226 (shift-inst-printer-list #b111))
2227 (:emitter
2228 (emit-shift-inst segment dst amount #b111)))
2230 (defun emit-double-shift (segment opcode dst src amt)
2231 (let ((size (matching-operand-size dst src)))
2232 (when (eq size :byte)
2233 (error "Double shifts can only be used with words."))
2234 (maybe-emit-operand-size-prefix segment size)
2235 (maybe-emit-rex-for-ea segment dst src)
2236 (emit-byte segment #b00001111)
2237 (emit-byte segment (dpb opcode (byte 1 3)
2238 (if (eq amt :cl) #b10100101 #b10100100)))
2239 (emit-ea segment dst (reg-tn-encoding src))
2240 (unless (eq amt :cl)
2241 (emit-byte segment amt))))
2243 (eval-when (:compile-toplevel :execute)
2244 (defun double-shift-inst-printer-list (op)
2245 `(#+nil
2246 (ext-reg-reg/mem-imm ((op ,(logior op #b100))
2247 (imm nil :type signed-imm-byte)))
2248 (ext-reg-reg/mem ((op ,(logior op #b101)))
2249 (:name :tab reg/mem ", " 'cl)))))
2251 (define-instruction shld (segment dst src amt)
2252 (:declare (type (or (member :cl) (mod 32)) amt))
2253 (:printer-list (double-shift-inst-printer-list #b10100000))
2254 (:emitter
2255 (emit-double-shift segment #b0 dst src amt)))
2257 (define-instruction shrd (segment dst src amt)
2258 (:declare (type (or (member :cl) (mod 32)) amt))
2259 (:printer-list (double-shift-inst-printer-list #b10101000))
2260 (:emitter
2261 (emit-double-shift segment #b1 dst src amt)))
2263 (define-instruction and (segment dst src)
2264 (:printer-list
2265 (arith-inst-printer-list #b100))
2266 (:emitter
2267 (emit-random-arith-inst "AND" segment dst src #b100)))
2269 (define-instruction test (segment this that)
2270 (:printer accum-imm ((op #b1010100)))
2271 (:printer rex-accum-imm ((op #b1010100)))
2272 (:printer reg/mem-imm ((op '(#b1111011 #b000))))
2273 (:printer rex-reg/mem-imm ((op '(#b1111011 #b000))))
2274 (:printer reg-reg/mem ((op #b1000010)))
2275 (:printer rex-reg-reg/mem ((op #b1000010)))
2276 (:emitter
2277 (let ((size (matching-operand-size this that)))
2278 (maybe-emit-operand-size-prefix segment size)
2279 (flet ((test-immed-and-something (immed something)
2280 (cond ((accumulator-p something)
2281 (maybe-emit-rex-for-ea segment something nil)
2282 (emit-byte segment
2283 (if (eq size :byte) #b10101000 #b10101001))
2284 (emit-sized-immediate segment size immed))
2286 (maybe-emit-rex-for-ea segment something nil)
2287 (emit-byte segment
2288 (if (eq size :byte) #b11110110 #b11110111))
2289 (emit-ea segment something #b000)
2290 (emit-sized-immediate segment size immed))))
2291 (test-reg-and-something (reg something)
2292 (maybe-emit-rex-for-ea segment something reg)
2293 (emit-byte segment (if (eq size :byte) #b10000100 #b10000101))
2294 (emit-ea segment something (reg-tn-encoding reg))))
2295 (cond ((integerp that)
2296 (test-immed-and-something that this))
2297 ((integerp this)
2298 (test-immed-and-something this that))
2299 ((register-p this)
2300 (test-reg-and-something this that))
2301 ((register-p that)
2302 (test-reg-and-something that this))
2304 (error "bogus operands for TEST: ~S and ~S" this that)))))))
2306 (define-instruction or (segment dst src)
2307 (:printer-list
2308 (arith-inst-printer-list #b001))
2309 (:emitter
2310 (emit-random-arith-inst "OR" segment dst src #b001)))
2312 (define-instruction xor (segment dst src)
2313 (:printer-list
2314 (arith-inst-printer-list #b110))
2315 (:emitter
2316 (emit-random-arith-inst "XOR" segment dst src #b110)))
2318 (define-instruction not (segment dst)
2319 (:printer reg/mem ((op '(#b1111011 #b010))))
2320 (:printer rex-reg/mem ((op '(#b1111011 #b010))))
2321 (:emitter
2322 (let ((size (operand-size dst)))
2323 (maybe-emit-operand-size-prefix segment size)
2324 (maybe-emit-rex-for-ea segment dst nil)
2325 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2326 (emit-ea segment dst #b010))))
2328 ;;;; string manipulation
2330 (define-instruction cmps (segment size)
2331 (:printer string-op ((op #b1010011)))
2332 (:printer rex-string-op ((op #b1010011)))
2333 (:emitter
2334 (maybe-emit-operand-size-prefix segment size)
2335 (maybe-emit-rex-prefix segment size nil nil nil)
2336 (emit-byte segment (if (eq size :byte) #b10100110 #b10100111))))
2338 (define-instruction ins (segment acc)
2339 (:printer string-op ((op #b0110110)))
2340 (:printer rex-string-op ((op #b0110110)))
2341 (:emitter
2342 (let ((size (operand-size acc)))
2343 (aver (accumulator-p acc))
2344 (maybe-emit-operand-size-prefix segment size)
2345 (maybe-emit-rex-prefix segment size nil nil nil)
2346 (emit-byte segment (if (eq size :byte) #b01101100 #b01101101)))))
2348 (define-instruction lods (segment acc)
2349 (:printer string-op ((op #b1010110)))
2350 (:printer rex-string-op ((op #b1010110)))
2351 (:emitter
2352 (let ((size (operand-size acc)))
2353 (aver (accumulator-p acc))
2354 (maybe-emit-operand-size-prefix segment size)
2355 (maybe-emit-rex-prefix segment size nil nil nil)
2356 (emit-byte segment (if (eq size :byte) #b10101100 #b10101101)))))
2358 (define-instruction movs (segment size)
2359 (:printer string-op ((op #b1010010)))
2360 (:printer rex-string-op ((op #b1010010)))
2361 (:emitter
2362 (maybe-emit-operand-size-prefix segment size)
2363 (maybe-emit-rex-prefix segment size nil nil nil)
2364 (emit-byte segment (if (eq size :byte) #b10100100 #b10100101))))
2366 (define-instruction outs (segment acc)
2367 (:printer string-op ((op #b0110111)))
2368 (:printer rex-string-op ((op #b0110111)))
2369 (:emitter
2370 (let ((size (operand-size acc)))
2371 (aver (accumulator-p acc))
2372 (maybe-emit-operand-size-prefix segment size)
2373 (maybe-emit-rex-prefix segment size nil nil nil)
2374 (emit-byte segment (if (eq size :byte) #b01101110 #b01101111)))))
2376 (define-instruction scas (segment acc)
2377 (:printer string-op ((op #b1010111)))
2378 (:printer rex-string-op ((op #b1010111)))
2379 (:emitter
2380 (let ((size (operand-size acc)))
2381 (aver (accumulator-p acc))
2382 (maybe-emit-operand-size-prefix segment size)
2383 (maybe-emit-rex-prefix segment size nil nil nil)
2384 (emit-byte segment (if (eq size :byte) #b10101110 #b10101111)))))
2386 (define-instruction stos (segment acc)
2387 (:printer string-op ((op #b1010101)))
2388 (:printer rex-string-op ((op #b1010101)))
2389 (:emitter
2390 (let ((size (operand-size acc)))
2391 (aver (accumulator-p acc))
2392 (maybe-emit-operand-size-prefix segment size)
2393 (maybe-emit-rex-prefix segment size nil nil nil)
2394 (emit-byte segment (if (eq size :byte) #b10101010 #b10101011)))))
2396 (define-instruction xlat (segment)
2397 (:printer byte ((op #b11010111)))
2398 (:emitter
2399 (emit-byte segment #b11010111)))
2401 (define-instruction rep (segment)
2402 (:emitter
2403 (emit-byte segment #b11110010)))
2405 (define-instruction repe (segment)
2406 (:printer byte ((op #b11110011)))
2407 (:emitter
2408 (emit-byte segment #b11110011)))
2410 (define-instruction repne (segment)
2411 (:printer byte ((op #b11110010)))
2412 (:emitter
2413 (emit-byte segment #b11110010)))
2416 ;;;; bit manipulation
2418 (define-instruction bsf (segment dst src)
2419 (:printer ext-reg-reg/mem-no-width ((op #b10111100)))
2420 (:printer rex-ext-reg-reg/mem-no-width ((op #b10111100)))
2421 (:emitter
2422 (let ((size (matching-operand-size dst src)))
2423 (when (eq size :byte)
2424 (error "can't scan bytes: ~S" src))
2425 (maybe-emit-operand-size-prefix segment size)
2426 (maybe-emit-rex-for-ea segment src dst)
2427 (emit-byte segment #b00001111)
2428 (emit-byte segment #b10111100)
2429 (emit-ea segment src (reg-tn-encoding dst)))))
2431 (define-instruction bsr (segment dst src)
2432 (:printer ext-reg-reg/mem-no-width ((op #b10111101)))
2433 (:printer rex-ext-reg-reg/mem-no-width ((op #b10111101)))
2434 (:emitter
2435 (let ((size (matching-operand-size dst src)))
2436 (when (eq size :byte)
2437 (error "can't scan bytes: ~S" src))
2438 (maybe-emit-operand-size-prefix segment size)
2439 (maybe-emit-rex-for-ea segment src dst)
2440 (emit-byte segment #b00001111)
2441 (emit-byte segment #b10111101)
2442 (emit-ea segment src (reg-tn-encoding dst)))))
2444 (defun emit-bit-test-and-mumble (segment src index opcode)
2445 (let ((size (operand-size src)))
2446 (when (eq size :byte)
2447 (error "can't scan bytes: ~S" src))
2448 (maybe-emit-operand-size-prefix segment size)
2449 (cond ((integerp index)
2450 (maybe-emit-rex-for-ea segment src nil)
2451 (emit-byte segment #b00001111)
2452 (emit-byte segment #b10111010)
2453 (emit-ea segment src opcode)
2454 (emit-byte segment index))
2456 (maybe-emit-rex-for-ea segment src index)
2457 (emit-byte segment #b00001111)
2458 (emit-byte segment (dpb opcode (byte 3 3) #b10000011))
2459 (emit-ea segment src (reg-tn-encoding index))))))
2461 (eval-when (:compile-toplevel :execute)
2462 (defun bit-test-inst-printer-list (subop)
2463 `((ext-reg/mem-imm ((op (#b1011101 ,subop))
2464 (reg/mem nil :type reg/mem)
2465 (imm nil :type imm-byte)
2466 (width 0)))
2467 (ext-reg-reg/mem ((op ,(dpb subop (byte 3 2) #b1000001))
2468 (width 1))
2469 (:name :tab reg/mem ", " reg)))))
2471 (define-instruction bt (segment src index)
2472 (:printer-list (bit-test-inst-printer-list #b100))
2473 (:emitter
2474 (emit-bit-test-and-mumble segment src index #b100)))
2476 (define-instruction btc (segment src index)
2477 (:printer-list (bit-test-inst-printer-list #b111))
2478 (:emitter
2479 (emit-bit-test-and-mumble segment src index #b111)))
2481 (define-instruction btr (segment src index)
2482 (:printer-list (bit-test-inst-printer-list #b110))
2483 (:emitter
2484 (emit-bit-test-and-mumble segment src index #b110)))
2486 (define-instruction bts (segment src index)
2487 (:printer-list (bit-test-inst-printer-list #b101))
2488 (:emitter
2489 (emit-bit-test-and-mumble segment src index #b101)))
2492 ;;;; control transfer
2494 (define-instruction call (segment where)
2495 (:printer near-jump ((op #b11101000)))
2496 (:printer reg/mem-default-qword ((op '(#b11111111 #b010))))
2497 (:printer rex-reg/mem-default-qword ((op '(#b11111111 #b010))))
2498 (:emitter
2499 (typecase where
2500 (label
2501 (emit-byte segment #b11101000) ; 32 bit relative
2502 (emit-back-patch segment
2504 (lambda (segment posn)
2505 (emit-signed-dword segment
2506 (- (label-position where)
2507 (+ posn 4))))))
2508 (fixup
2509 ;; There is no CALL rel64...
2510 (error "Cannot CALL a fixup: ~S" where))
2512 (maybe-emit-rex-for-ea segment where nil :operand-size :do-not-set)
2513 (emit-byte segment #b11111111)
2514 (emit-ea segment where #b010)))))
2516 (defun emit-byte-displacement-backpatch (segment target)
2517 (emit-back-patch segment
2519 (lambda (segment posn)
2520 (let ((disp (- (label-position target) (1+ posn))))
2521 (aver (<= -128 disp 127))
2522 (emit-byte segment disp)))))
2524 (define-instruction jmp (segment cond &optional where)
2525 ;; conditional jumps
2526 (:printer short-cond-jump ((op #b0111)) '('j cc :tab label))
2527 (:printer near-cond-jump () '('j cc :tab label))
2528 ;; unconditional jumps
2529 (:printer short-jump ((op #b1011)))
2530 (:printer near-jump ((op #b11101001)))
2531 (:printer reg/mem-default-qword ((op '(#b11111111 #b100))))
2532 (:printer rex-reg/mem-default-qword ((op '(#b11111111 #b100))))
2533 (:emitter
2534 (cond (where
2535 (emit-chooser
2536 segment 6 2
2537 (lambda (segment posn delta-if-after)
2538 (let ((disp (- (label-position where posn delta-if-after)
2539 (+ posn 2))))
2540 (when (<= -128 disp 127)
2541 (emit-byte segment
2542 (dpb (conditional-opcode cond)
2543 (byte 4 0)
2544 #b01110000))
2545 (emit-byte-displacement-backpatch segment where)
2546 t)))
2547 (lambda (segment posn)
2548 (let ((disp (- (label-position where) (+ posn 6))))
2549 (emit-byte segment #b00001111)
2550 (emit-byte segment
2551 (dpb (conditional-opcode cond)
2552 (byte 4 0)
2553 #b10000000))
2554 (emit-signed-dword segment disp)))))
2555 ((label-p (setq where cond))
2556 (emit-chooser
2557 segment 5 0
2558 (lambda (segment posn delta-if-after)
2559 (let ((disp (- (label-position where posn delta-if-after)
2560 (+ posn 2))))
2561 (when (<= -128 disp 127)
2562 (emit-byte segment #b11101011)
2563 (emit-byte-displacement-backpatch segment where)
2564 t)))
2565 (lambda (segment posn)
2566 (let ((disp (- (label-position where) (+ posn 5))))
2567 (emit-byte segment #b11101001)
2568 (emit-signed-dword segment disp)))))
2569 ((fixup-p where)
2570 (emit-byte segment #b11101001)
2571 (emit-relative-fixup segment where))
2573 (unless (or (ea-p where) (tn-p where))
2574 (error "don't know what to do with ~A" where))
2575 ;; near jump defaults to 64 bit
2576 ;; w-bit in rex prefix is unnecessary
2577 (maybe-emit-rex-for-ea segment where nil :operand-size :do-not-set)
2578 (emit-byte segment #b11111111)
2579 (emit-ea segment where #b100)))))
2581 (define-instruction ret (segment &optional stack-delta)
2582 (:printer byte ((op #b11000011)))
2583 (:printer byte ((op #b11000010) (imm nil :type 'imm-word-16))
2584 '(:name :tab imm))
2585 (:emitter
2586 (cond (stack-delta
2587 (emit-byte segment #b11000010)
2588 (emit-word segment stack-delta))
2590 (emit-byte segment #b11000011)))))
2592 (define-instruction jrcxz (segment target)
2593 (:printer short-jump ((op #b0011)))
2594 (:emitter
2595 (emit-byte segment #b11100011)
2596 (emit-byte-displacement-backpatch segment target)))
2598 (define-instruction loop (segment target)
2599 (:printer short-jump ((op #b0010)))
2600 (:emitter
2601 (emit-byte segment #b11100010) ; pfw this was 11100011, or jecxz!!!!
2602 (emit-byte-displacement-backpatch segment target)))
2604 (define-instruction loopz (segment target)
2605 (:printer short-jump ((op #b0001)))
2606 (:emitter
2607 (emit-byte segment #b11100001)
2608 (emit-byte-displacement-backpatch segment target)))
2610 (define-instruction loopnz (segment target)
2611 (:printer short-jump ((op #b0000)))
2612 (:emitter
2613 (emit-byte segment #b11100000)
2614 (emit-byte-displacement-backpatch segment target)))
2616 ;;;; conditional move
2617 (define-instruction cmov (segment cond dst src)
2618 (:printer cond-move ())
2619 (:printer rex-cond-move ())
2620 (:emitter
2621 (aver (register-p dst))
2622 (let ((size (matching-operand-size dst src)))
2623 (aver (or (eq size :word) (eq size :dword) (eq size :qword)))
2624 (maybe-emit-operand-size-prefix segment size))
2625 (maybe-emit-rex-for-ea segment src dst)
2626 (emit-byte segment #b00001111)
2627 (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b01000000))
2628 (emit-ea segment src (reg-tn-encoding dst))))
2630 ;;;; conditional byte set
2632 (define-instruction set (segment dst cond)
2633 (:printer cond-set ())
2634 (:emitter
2635 (maybe-emit-rex-for-ea segment dst nil)
2636 (emit-byte segment #b00001111)
2637 (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b10010000))
2638 (emit-ea segment dst #b000)))
2640 ;;;; enter/leave
2642 (define-instruction enter (segment disp &optional (level 0))
2643 (:declare (type (unsigned-byte 16) disp)
2644 (type (unsigned-byte 8) level))
2645 (:printer enter-format ((op #b11001000)))
2646 (:emitter
2647 (emit-byte segment #b11001000)
2648 (emit-word segment disp)
2649 (emit-byte segment level)))
2651 (define-instruction leave (segment)
2652 (:printer byte ((op #b11001001)))
2653 (:emitter
2654 (emit-byte segment #b11001001)))
2656 ;;;; interrupt instructions
2658 (defun snarf-error-junk (sap offset &optional length-only)
2659 (let* ((length (sb!sys:sap-ref-8 sap offset))
2660 (vector (make-array length :element-type '(unsigned-byte 8))))
2661 (declare (type sb!sys:system-area-pointer sap)
2662 (type (unsigned-byte 8) length)
2663 (type (simple-array (unsigned-byte 8) (*)) vector))
2664 (cond (length-only
2665 (values 0 (1+ length) nil nil))
2667 (sb!kernel:copy-ub8-from-system-area sap (1+ offset)
2668 vector 0 length)
2669 (collect ((sc-offsets)
2670 (lengths))
2671 (lengths 1) ; the length byte
2672 (let* ((index 0)
2673 (error-number (sb!c:read-var-integer vector index)))
2674 (lengths index)
2675 (loop
2676 (when (>= index length)
2677 (return))
2678 (let ((old-index index))
2679 (sc-offsets (sb!c:read-var-integer vector index))
2680 (lengths (- index old-index))))
2681 (values error-number
2682 (1+ length)
2683 (sc-offsets)
2684 (lengths))))))))
2687 (defmacro break-cases (breaknum &body cases)
2688 (let ((bn-temp (gensym)))
2689 (collect ((clauses))
2690 (dolist (case cases)
2691 (clauses `((= ,bn-temp ,(car case)) ,@(cdr case))))
2692 `(let ((,bn-temp ,breaknum))
2693 (cond ,@(clauses))))))
2696 (defun break-control (chunk inst stream dstate)
2697 (declare (ignore inst))
2698 (flet ((nt (x) (if stream (sb!disassem:note x dstate))))
2699 ;; FIXME: Make sure that BYTE-IMM-CODE is defined. The genesis
2700 ;; map has it undefined; and it should be easier to look in the target
2701 ;; Lisp (with (DESCRIBE 'BYTE-IMM-CODE)) than to definitively deduce
2702 ;; from first principles whether it's defined in some way that genesis
2703 ;; can't grok.
2704 (case #!-darwin (byte-imm-code chunk dstate)
2705 #!+darwin (word-imm-code chunk dstate)
2706 (#.error-trap
2707 (nt "error trap")
2708 (sb!disassem:handle-break-args #'snarf-error-junk stream dstate))
2709 (#.cerror-trap
2710 (nt "cerror trap")
2711 (sb!disassem:handle-break-args #'snarf-error-junk stream dstate))
2712 (#.breakpoint-trap
2713 (nt "breakpoint trap"))
2714 (#.pending-interrupt-trap
2715 (nt "pending interrupt trap"))
2716 (#.halt-trap
2717 (nt "halt trap"))
2718 (#.fun-end-breakpoint-trap
2719 (nt "function end breakpoint trap"))
2720 (#.single-step-around-trap
2721 (nt "single-step trap (around)"))
2722 (#.single-step-before-trap
2723 (nt "single-step trap (before)")))))
2725 (define-instruction break (segment code)
2726 (:declare (type (unsigned-byte 8) code))
2727 #!-darwin (:printer byte-imm ((op #b11001100)) '(:name :tab code)
2728 :control #'break-control)
2729 #!+darwin (:printer word-imm ((op #b0000101100001111)) '(:name :tab code)
2730 :control #'break-control)
2731 (:emitter
2732 #!-darwin (emit-byte segment #b11001100)
2733 ;; On darwin, trap handling via SIGTRAP is unreliable, therefore we
2734 ;; throw a sigill with 0x0b0f instead and check for this in the
2735 ;; SIGILL handler and pass it on to the sigtrap handler if
2736 ;; appropriate
2737 #!+darwin (emit-word segment #b0000101100001111)
2738 (emit-byte segment code)))
2740 (define-instruction int (segment number)
2741 (:declare (type (unsigned-byte 8) number))
2742 (:printer byte-imm ((op #b11001101)))
2743 (:emitter
2744 (etypecase number
2745 ((member 3)
2746 (emit-byte segment #b11001100))
2747 ((unsigned-byte 8)
2748 (emit-byte segment #b11001101)
2749 (emit-byte segment number)))))
2751 (define-instruction iret (segment)
2752 (:printer byte ((op #b11001111)))
2753 (:emitter
2754 (emit-byte segment #b11001111)))
2756 ;;;; processor control
2758 (define-instruction hlt (segment)
2759 (:printer byte ((op #b11110100)))
2760 (:emitter
2761 (emit-byte segment #b11110100)))
2763 (define-instruction nop (segment)
2764 (:printer byte ((op #b10010000)))
2765 (:emitter
2766 (emit-byte segment #b10010000)))
2768 (define-instruction wait (segment)
2769 (:printer byte ((op #b10011011)))
2770 (:emitter
2771 (emit-byte segment #b10011011)))
2773 (defun emit-prefix (segment name)
2774 (declare (ignorable segment))
2775 (ecase name
2776 ((nil))
2777 (:lock
2778 #!+sb-thread
2779 (emit-byte segment #xf0))))
2781 ;;; FIXME: It would be better to make the disassembler understand the prefix as part
2782 ;;; of the instructions...
2783 (define-instruction lock (segment)
2784 (:printer byte ((op #b11110000)))
2785 (:emitter
2786 (bug "LOCK prefix used as a standalone instruction")))
2788 ;;;; miscellaneous hackery
2790 (define-instruction byte (segment byte)
2791 (:emitter
2792 (emit-byte segment byte)))
2794 (define-instruction word (segment word)
2795 (:emitter
2796 (emit-word segment word)))
2798 (define-instruction dword (segment dword)
2799 (:emitter
2800 (emit-dword segment dword)))
2802 (defun emit-header-data (segment type)
2803 (emit-back-patch segment
2804 n-word-bytes
2805 (lambda (segment posn)
2806 (emit-qword segment
2807 (logior type
2808 (ash (+ posn
2809 (component-header-length))
2810 (- n-widetag-bits
2811 word-shift)))))))
2813 (define-instruction simple-fun-header-word (segment)
2814 (:emitter
2815 (emit-header-data segment simple-fun-header-widetag)))
2817 (define-instruction lra-header-word (segment)
2818 (:emitter
2819 (emit-header-data segment return-pc-header-widetag)))
2821 ;;;; Instructions required to do floating point operations using SSE
2823 (defun emit-sse-inst (segment dst src prefix opcode &key operand-size)
2824 (when prefix
2825 (emit-byte segment prefix))
2826 (if operand-size
2827 (maybe-emit-rex-for-ea segment src dst :operand-size operand-size)
2828 (maybe-emit-rex-for-ea segment src dst))
2829 (emit-byte segment #x0f)
2830 (emit-byte segment opcode)
2831 (emit-ea segment src (reg-tn-encoding dst)))
2833 ;;; Emit an SSE instruction that has an XMM register as the destination
2834 ;;; operand and for which the size of the operands is implicitly given
2835 ;;; by the instruction.
2836 (defun emit-regular-sse-inst (segment dst src prefix opcode)
2837 (aver (xmm-register-p dst))
2838 (emit-sse-inst segment dst src prefix opcode
2839 :operand-size :do-not-set))
2841 ;;; Instructions having an XMM register as the destination operand
2842 ;;; and an XMM register or a memory location as the source operand.
2843 ;;; The operand size is implicitly given by the instruction.
2845 (macrolet ((define-regular-sse-inst (name prefix opcode)
2846 `(define-instruction ,name (segment dst src)
2847 ,@(if prefix
2848 `((:printer ext-xmm-xmm/mem
2849 ((prefix ,prefix) (op ,opcode)))
2850 (:printer ext-rex-xmm-xmm/mem
2851 ((prefix ,prefix) (op ,opcode))))
2852 `((:printer xmm-xmm/mem ((op ,opcode)))
2853 (:printer rex-xmm-xmm/mem ((op ,opcode)))))
2854 (:emitter
2855 (emit-regular-sse-inst segment dst src ,prefix ,opcode)))))
2856 ;; logical
2857 (define-regular-sse-inst andpd #x66 #x54)
2858 (define-regular-sse-inst andps nil #x54)
2859 (define-regular-sse-inst xorpd #x66 #x57)
2860 (define-regular-sse-inst xorps nil #x57)
2861 ;; comparison
2862 (define-regular-sse-inst comisd #x66 #x2f)
2863 (define-regular-sse-inst comiss nil #x2f)
2864 ;; arithmetic
2865 (define-regular-sse-inst addsd #xf2 #x58)
2866 (define-regular-sse-inst addss #xf3 #x58)
2867 (define-regular-sse-inst divsd #xf2 #x5e)
2868 (define-regular-sse-inst divss #xf3 #x5e)
2869 (define-regular-sse-inst mulsd #xf2 #x59)
2870 (define-regular-sse-inst mulss #xf3 #x59)
2871 (define-regular-sse-inst subsd #xf2 #x5c)
2872 (define-regular-sse-inst subss #xf3 #x5c)
2873 (define-regular-sse-inst sqrtsd #xf2 #x51)
2874 (define-regular-sse-inst sqrtss #xf3 #x51)
2875 ;; conversion
2876 (define-regular-sse-inst cvtsd2ss #xf2 #x5a)
2877 (define-regular-sse-inst cvtss2sd #xf3 #x5a)
2878 (define-regular-sse-inst cvtdq2pd #xf3 #xe6)
2879 (define-regular-sse-inst cvtdq2ps nil #x5b))
2881 ;;; MOVSD, MOVSS
2882 (macrolet ((define-movsd/ss-sse-inst (name prefix)
2883 `(define-instruction ,name (segment dst src)
2884 (:printer ext-xmm-xmm/mem-dir ((prefix ,prefix)
2885 (op #b0001000)))
2886 (:printer ext-rex-xmm-xmm/mem-dir ((prefix ,prefix)
2887 (op #b0001000)))
2888 (:emitter
2889 (cond ((xmm-register-p dst)
2890 (emit-sse-inst segment dst src ,prefix #x10
2891 :operand-size :do-not-set))
2893 (aver (xmm-register-p src))
2894 (emit-sse-inst segment src dst ,prefix #x11
2895 :operand-size :do-not-set)))))))
2896 (define-movsd/ss-sse-inst movsd #xf2)
2897 (define-movsd/ss-sse-inst movss #xf3))
2899 ;;; MOVQ
2900 (define-instruction movq (segment dst src)
2901 (:printer ext-xmm-xmm/mem ((prefix #xf3) (op #x7e)))
2902 (:printer ext-rex-xmm-xmm/mem ((prefix #xf3) (op #x7e)))
2903 (:printer ext-xmm-xmm/mem ((prefix #x66) (op #xd6))
2904 '(:name :tab reg/mem ", " reg))
2905 (:printer ext-rex-xmm-xmm/mem ((prefix #x66) (op #xd6))
2906 '(:name :tab reg/mem ", " reg))
2907 (:emitter
2908 (cond ((xmm-register-p dst)
2909 (emit-sse-inst segment dst src #xf3 #x7e
2910 :operand-size :do-not-set))
2912 (aver (xmm-register-p src))
2913 (emit-sse-inst segment src dst #x66 #xd6
2914 :operand-size :do-not-set)))))
2916 ;;; Instructions having an XMM register as the destination operand
2917 ;;; and a general-purpose register or a memory location as the source
2918 ;;; operand. The operand size is calculated from the source operand.
2920 ;;; MOVD - Move a 32- or 64-bit value from a general-purpose register or
2921 ;;; a memory location to the low order 32 or 64 bits of an XMM register
2922 ;;; with zero extension or vice versa.
2923 ;;; We do not support the MMX version of this instruction.
2924 (define-instruction movd (segment dst src)
2925 (:printer ext-xmm-reg/mem ((prefix #x66) (op #x6e)))
2926 (:printer ext-rex-xmm-reg/mem ((prefix #x66) (op #x6e)))
2927 (:printer ext-xmm-reg/mem ((prefix #x66) (op #x7e))
2928 '(:name :tab reg/mem ", " reg))
2929 (:printer ext-rex-xmm-reg/mem ((prefix #x66) (op #x7e))
2930 '(:name :tab reg/mem ", " reg))
2931 (:emitter
2932 (cond ((xmm-register-p dst)
2933 (emit-sse-inst segment dst src #x66 #x6e))
2935 (aver (xmm-register-p src))
2936 (emit-sse-inst segment src dst #x66 #x7e)))))
2938 (macrolet ((define-integer-source-sse-inst (name prefix opcode)
2939 `(define-instruction ,name (segment dst src)
2940 (:printer ext-xmm-reg/mem ((prefix ,prefix) (op ,opcode)))
2941 (:printer ext-rex-xmm-reg/mem ((prefix ,prefix) (op ,opcode)))
2942 (:emitter
2943 (aver (xmm-register-p dst))
2944 (let ((src-size (operand-size src)))
2945 (aver (or (eq src-size :qword) (eq src-size :dword))))
2946 (emit-sse-inst segment dst src ,prefix ,opcode)))))
2947 (define-integer-source-sse-inst cvtsi2sd #xf2 #x2a)
2948 (define-integer-source-sse-inst cvtsi2ss #xf3 #x2a))
2950 ;;; Instructions having a general-purpose register as the destination
2951 ;;; operand and an XMM register or a memory location as the source
2952 ;;; operand. The operand size is calculated from the destination
2953 ;;; operand.
2955 (macrolet ((define-gpr-destination-sse-inst (name prefix opcode)
2956 `(define-instruction ,name (segment dst src)
2957 (:printer ext-reg-xmm/mem ((prefix ,prefix) (op ,opcode)))
2958 (:printer ext-rex-reg-xmm/mem ((prefix ,prefix) (op ,opcode)))
2959 (:emitter
2960 (aver (register-p dst))
2961 (let ((dst-size (operand-size dst)))
2962 (aver (or (eq dst-size :qword) (eq dst-size :dword)))
2963 (emit-sse-inst segment dst src ,prefix ,opcode
2964 :operand-size dst-size))))))
2965 (define-gpr-destination-sse-inst cvtsd2si #xf2 #x2d)
2966 (define-gpr-destination-sse-inst cvtss2si #xf3 #x2d)
2967 (define-gpr-destination-sse-inst cvttsd2si #xf2 #x2c)
2968 (define-gpr-destination-sse-inst cvttss2si #xf3 #x2c))
2970 ;;; Other SSE instructions
2972 (define-instruction ldmxcsr (segment src)
2973 (:emitter
2974 (emit-byte segment #x0f)
2975 (emit-byte segment #xae)
2976 (emit-ea segment src 2)))
2978 (define-instruction stmxcsr (segment dst)
2979 (:emitter
2980 (emit-byte segment #x0f)
2981 (emit-byte segment #xae)
2982 (emit-ea segment dst 3)))
2984 ;;;; Miscellany
2986 (define-instruction cpuid (segment)
2987 (:printer two-bytes ((op '(#b00001111 #b10100010))))
2988 (:emitter
2989 (emit-byte segment #b00001111)
2990 (emit-byte segment #b10100010)))
2992 (define-instruction rdtsc (segment)
2993 (:printer two-bytes ((op '(#b00001111 #b00110001))))
2994 (:emitter
2995 (emit-byte segment #b00001111)
2996 (emit-byte segment #b00110001)))