1.0.19.29: new function: page_region_start()
[sbcl/pkhuong.git] / src / runtime / gencgc.c
blob1be0721ea36bc2dd292e11ce4d09cb57dc6ecaf3
1 /*
2 * GENerational Conservative Garbage Collector for SBCL
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <signal.h>
30 #include <errno.h>
31 #include <string.h>
32 #include "sbcl.h"
33 #include "runtime.h"
34 #include "os.h"
35 #include "interr.h"
36 #include "globals.h"
37 #include "interrupt.h"
38 #include "validate.h"
39 #include "lispregs.h"
40 #include "arch.h"
41 #include "gc.h"
42 #include "gc-internal.h"
43 #include "thread.h"
44 #include "alloc.h"
45 #include "genesis/vector.h"
46 #include "genesis/weak-pointer.h"
47 #include "genesis/fdefn.h"
48 #include "genesis/simple-fun.h"
49 #include "save.h"
50 #include "genesis/hash-table.h"
51 #include "genesis/instance.h"
52 #include "genesis/layout.h"
53 #include "gencgc.h"
54 #if defined(LUTEX_WIDETAG)
55 #include "pthread-lutex.h"
56 #endif
58 /* forward declarations */
59 page_index_t gc_find_freeish_pages(long *restart_page_ptr, long nbytes,
60 int unboxed);
64 * GC parameters
67 /* Generations 0-5 are normal collected generations, 6 is only used as
68 * scratch space by the collector, and should never get collected.
70 enum {
71 HIGHEST_NORMAL_GENERATION = 5,
72 PSEUDO_STATIC_GENERATION,
73 SCRATCH_GENERATION,
74 NUM_GENERATIONS
77 /* Should we use page protection to help avoid the scavenging of pages
78 * that don't have pointers to younger generations? */
79 boolean enable_page_protection = 1;
81 /* the minimum size (in bytes) for a large object*/
82 long large_object_size = 4 * PAGE_BYTES;
86 * debugging
89 /* the verbosity level. All non-error messages are disabled at level 0;
90 * and only a few rare messages are printed at level 1. */
91 #ifdef QSHOW
92 boolean gencgc_verbose = 1;
93 #else
94 boolean gencgc_verbose = 0;
95 #endif
97 /* FIXME: At some point enable the various error-checking things below
98 * and see what they say. */
100 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
101 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
102 * check. */
103 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
105 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
106 boolean pre_verify_gen_0 = 0;
108 /* Should we check for bad pointers after gc_free_heap is called
109 * from Lisp PURIFY? */
110 boolean verify_after_free_heap = 0;
112 /* Should we print a note when code objects are found in the dynamic space
113 * during a heap verify? */
114 boolean verify_dynamic_code_check = 0;
116 /* Should we check code objects for fixup errors after they are transported? */
117 boolean check_code_fixups = 0;
119 /* Should we check that newly allocated regions are zero filled? */
120 boolean gencgc_zero_check = 0;
122 /* Should we check that the free space is zero filled? */
123 boolean gencgc_enable_verify_zero_fill = 0;
125 /* Should we check that free pages are zero filled during gc_free_heap
126 * called after Lisp PURIFY? */
127 boolean gencgc_zero_check_during_free_heap = 0;
129 /* When loading a core, don't do a full scan of the memory for the
130 * memory region boundaries. (Set to true by coreparse.c if the core
131 * contained a pagetable entry).
133 boolean gencgc_partial_pickup = 0;
135 /* If defined, free pages are read-protected to ensure that nothing
136 * accesses them.
139 /* #define READ_PROTECT_FREE_PAGES */
143 * GC structures and variables
146 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
147 unsigned long bytes_allocated = 0;
148 unsigned long auto_gc_trigger = 0;
150 /* the source and destination generations. These are set before a GC starts
151 * scavenging. */
152 generation_index_t from_space;
153 generation_index_t new_space;
155 /* Set to 1 when in GC */
156 boolean gc_active_p = 0;
158 /* should the GC be conservative on stack. If false (only right before
159 * saving a core), don't scan the stack / mark pages dont_move. */
160 static boolean conservative_stack = 1;
162 /* An array of page structures is allocated on gc initialization.
163 * This helps quickly map between an address its page structure.
164 * page_table_pages is set from the size of the dynamic space. */
165 page_index_t page_table_pages;
166 struct page *page_table;
168 /* To map addresses to page structures the address of the first page
169 * is needed. */
170 static void *heap_base = NULL;
172 /* Calculate the start address for the given page number. */
173 inline void *
174 page_address(page_index_t page_num)
176 return (heap_base + (page_num * PAGE_BYTES));
179 /* Calculate the address where the allocation region associated with the page starts. */
180 inline void *
181 page_region_start(page_index_t page_index)
183 return page_address(page_index)+page_table[page_index].first_object_offset;
186 /* Find the page index within the page_table for the given
187 * address. Return -1 on failure. */
188 inline page_index_t
189 find_page_index(void *addr)
191 page_index_t index = addr-heap_base;
193 if (index >= 0) {
194 index = ((unsigned long)index)/PAGE_BYTES;
195 if (index < page_table_pages)
196 return (index);
199 return (-1);
202 /* a structure to hold the state of a generation */
203 struct generation {
205 /* the first page that gc_alloc() checks on its next call */
206 page_index_t alloc_start_page;
208 /* the first page that gc_alloc_unboxed() checks on its next call */
209 page_index_t alloc_unboxed_start_page;
211 /* the first page that gc_alloc_large (boxed) considers on its next
212 * call. (Although it always allocates after the boxed_region.) */
213 page_index_t alloc_large_start_page;
215 /* the first page that gc_alloc_large (unboxed) considers on its
216 * next call. (Although it always allocates after the
217 * current_unboxed_region.) */
218 page_index_t alloc_large_unboxed_start_page;
220 /* the bytes allocated to this generation */
221 long bytes_allocated;
223 /* the number of bytes at which to trigger a GC */
224 long gc_trigger;
226 /* to calculate a new level for gc_trigger */
227 long bytes_consed_between_gc;
229 /* the number of GCs since the last raise */
230 int num_gc;
232 /* the average age after which a GC will raise objects to the
233 * next generation */
234 int trigger_age;
236 /* the cumulative sum of the bytes allocated to this generation. It is
237 * cleared after a GC on this generations, and update before new
238 * objects are added from a GC of a younger generation. Dividing by
239 * the bytes_allocated will give the average age of the memory in
240 * this generation since its last GC. */
241 long cum_sum_bytes_allocated;
243 /* a minimum average memory age before a GC will occur helps
244 * prevent a GC when a large number of new live objects have been
245 * added, in which case a GC could be a waste of time */
246 double min_av_mem_age;
248 /* A linked list of lutex structures in this generation, used for
249 * implementing lutex finalization. */
250 #ifdef LUTEX_WIDETAG
251 struct lutex *lutexes;
252 #else
253 void *lutexes;
254 #endif
257 /* an array of generation structures. There needs to be one more
258 * generation structure than actual generations as the oldest
259 * generation is temporarily raised then lowered. */
260 struct generation generations[NUM_GENERATIONS];
262 /* the oldest generation that is will currently be GCed by default.
263 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
265 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
267 * Setting this to 0 effectively disables the generational nature of
268 * the GC. In some applications generational GC may not be useful
269 * because there are no long-lived objects.
271 * An intermediate value could be handy after moving long-lived data
272 * into an older generation so an unnecessary GC of this long-lived
273 * data can be avoided. */
274 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
276 /* The maximum free page in the heap is maintained and used to update
277 * ALLOCATION_POINTER which is used by the room function to limit its
278 * search of the heap. XX Gencgc obviously needs to be better
279 * integrated with the Lisp code. */
280 page_index_t last_free_page;
282 /* This lock is to prevent multiple threads from simultaneously
283 * allocating new regions which overlap each other. Note that the
284 * majority of GC is single-threaded, but alloc() may be called from
285 * >1 thread at a time and must be thread-safe. This lock must be
286 * seized before all accesses to generations[] or to parts of
287 * page_table[] that other threads may want to see */
289 #ifdef LISP_FEATURE_SB_THREAD
290 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
291 #endif
295 * miscellaneous heap functions
298 /* Count the number of pages which are write-protected within the
299 * given generation. */
300 static long
301 count_write_protect_generation_pages(generation_index_t generation)
303 page_index_t i;
304 long count = 0;
306 for (i = 0; i < last_free_page; i++)
307 if ((page_table[i].allocated != FREE_PAGE_FLAG)
308 && (page_table[i].gen == generation)
309 && (page_table[i].write_protected == 1))
310 count++;
311 return count;
314 /* Count the number of pages within the given generation. */
315 static long
316 count_generation_pages(generation_index_t generation)
318 page_index_t i;
319 long count = 0;
321 for (i = 0; i < last_free_page; i++)
322 if ((page_table[i].allocated != FREE_PAGE_FLAG)
323 && (page_table[i].gen == generation))
324 count++;
325 return count;
328 #ifdef QSHOW
329 static long
330 count_dont_move_pages(void)
332 page_index_t i;
333 long count = 0;
334 for (i = 0; i < last_free_page; i++) {
335 if ((page_table[i].allocated != FREE_PAGE_FLAG)
336 && (page_table[i].dont_move != 0)) {
337 ++count;
340 return count;
342 #endif /* QSHOW */
344 /* Work through the pages and add up the number of bytes used for the
345 * given generation. */
346 static long
347 count_generation_bytes_allocated (generation_index_t gen)
349 page_index_t i;
350 long result = 0;
351 for (i = 0; i < last_free_page; i++) {
352 if ((page_table[i].allocated != FREE_PAGE_FLAG)
353 && (page_table[i].gen == gen))
354 result += page_table[i].bytes_used;
356 return result;
359 /* Return the average age of the memory in a generation. */
360 static double
361 gen_av_mem_age(generation_index_t gen)
363 if (generations[gen].bytes_allocated == 0)
364 return 0.0;
366 return
367 ((double)generations[gen].cum_sum_bytes_allocated)
368 / ((double)generations[gen].bytes_allocated);
371 /* The verbose argument controls how much to print: 0 for normal
372 * level of detail; 1 for debugging. */
373 static void
374 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
376 generation_index_t i, gens;
378 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
379 #define FPU_STATE_SIZE 27
380 int fpu_state[FPU_STATE_SIZE];
381 #elif defined(LISP_FEATURE_PPC)
382 #define FPU_STATE_SIZE 32
383 long long fpu_state[FPU_STATE_SIZE];
384 #endif
386 /* This code uses the FP instructions which may be set up for Lisp
387 * so they need to be saved and reset for C. */
388 fpu_save(fpu_state);
390 /* highest generation to print */
391 if (verbose)
392 gens = SCRATCH_GENERATION;
393 else
394 gens = PSEUDO_STATIC_GENERATION;
396 /* Print the heap stats. */
397 fprintf(stderr,
398 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
400 for (i = 0; i < gens; i++) {
401 page_index_t j;
402 long boxed_cnt = 0;
403 long unboxed_cnt = 0;
404 long large_boxed_cnt = 0;
405 long large_unboxed_cnt = 0;
406 long pinned_cnt=0;
408 for (j = 0; j < last_free_page; j++)
409 if (page_table[j].gen == i) {
411 /* Count the number of boxed pages within the given
412 * generation. */
413 if (page_table[j].allocated & BOXED_PAGE_FLAG) {
414 if (page_table[j].large_object)
415 large_boxed_cnt++;
416 else
417 boxed_cnt++;
419 if(page_table[j].dont_move) pinned_cnt++;
420 /* Count the number of unboxed pages within the given
421 * generation. */
422 if (page_table[j].allocated & UNBOXED_PAGE_FLAG) {
423 if (page_table[j].large_object)
424 large_unboxed_cnt++;
425 else
426 unboxed_cnt++;
430 gc_assert(generations[i].bytes_allocated
431 == count_generation_bytes_allocated(i));
432 fprintf(stderr,
433 " %1d: %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %8ld %5ld %8ld %4ld %3d %7.4f\n",
435 generations[i].alloc_start_page,
436 generations[i].alloc_unboxed_start_page,
437 generations[i].alloc_large_start_page,
438 generations[i].alloc_large_unboxed_start_page,
439 boxed_cnt,
440 unboxed_cnt,
441 large_boxed_cnt,
442 large_unboxed_cnt,
443 pinned_cnt,
444 generations[i].bytes_allocated,
445 (count_generation_pages(i)*PAGE_BYTES - generations[i].bytes_allocated),
446 generations[i].gc_trigger,
447 count_write_protect_generation_pages(i),
448 generations[i].num_gc,
449 gen_av_mem_age(i));
451 fprintf(stderr," Total bytes allocated=%ld\n", bytes_allocated);
453 fpu_restore(fpu_state);
457 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
458 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
459 #endif
461 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
462 * if zeroing it ourselves, i.e. in practice give the memory back to the
463 * OS. Generally done after a large GC.
465 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
466 int i;
467 void *addr = (void *) page_address(start), *new_addr;
468 size_t length = PAGE_BYTES*(1+end-start);
470 if (start > end)
471 return;
473 os_invalidate(addr, length);
474 new_addr = os_validate(addr, length);
475 if (new_addr == NULL || new_addr != addr) {
476 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x", start, new_addr);
479 for (i = start; i <= end; i++) {
480 page_table[i].need_to_zero = 0;
484 /* Zero the pages from START to END (inclusive). Generally done just after
485 * a new region has been allocated.
487 static void
488 zero_pages(page_index_t start, page_index_t end) {
489 if (start > end)
490 return;
492 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
493 fast_bzero(page_address(start), PAGE_BYTES*(1+end-start));
494 #else
495 bzero(page_address(start), PAGE_BYTES*(1+end-start));
496 #endif
500 /* Zero the pages from START to END (inclusive), except for those
501 * pages that are known to already zeroed. Mark all pages in the
502 * ranges as non-zeroed.
504 static void
505 zero_dirty_pages(page_index_t start, page_index_t end) {
506 page_index_t i;
508 for (i = start; i <= end; i++) {
509 if (page_table[i].need_to_zero == 1) {
510 zero_pages(start, end);
511 break;
515 for (i = start; i <= end; i++) {
516 page_table[i].need_to_zero = 1;
522 * To support quick and inline allocation, regions of memory can be
523 * allocated and then allocated from with just a free pointer and a
524 * check against an end address.
526 * Since objects can be allocated to spaces with different properties
527 * e.g. boxed/unboxed, generation, ages; there may need to be many
528 * allocation regions.
530 * Each allocation region may start within a partly used page. Many
531 * features of memory use are noted on a page wise basis, e.g. the
532 * generation; so if a region starts within an existing allocated page
533 * it must be consistent with this page.
535 * During the scavenging of the newspace, objects will be transported
536 * into an allocation region, and pointers updated to point to this
537 * allocation region. It is possible that these pointers will be
538 * scavenged again before the allocation region is closed, e.g. due to
539 * trans_list which jumps all over the place to cleanup the list. It
540 * is important to be able to determine properties of all objects
541 * pointed to when scavenging, e.g to detect pointers to the oldspace.
542 * Thus it's important that the allocation regions have the correct
543 * properties set when allocated, and not just set when closed. The
544 * region allocation routines return regions with the specified
545 * properties, and grab all the pages, setting their properties
546 * appropriately, except that the amount used is not known.
548 * These regions are used to support quicker allocation using just a
549 * free pointer. The actual space used by the region is not reflected
550 * in the pages tables until it is closed. It can't be scavenged until
551 * closed.
553 * When finished with the region it should be closed, which will
554 * update the page tables for the actual space used returning unused
555 * space. Further it may be noted in the new regions which is
556 * necessary when scavenging the newspace.
558 * Large objects may be allocated directly without an allocation
559 * region, the page tables are updated immediately.
561 * Unboxed objects don't contain pointers to other objects and so
562 * don't need scavenging. Further they can't contain pointers to
563 * younger generations so WP is not needed. By allocating pages to
564 * unboxed objects the whole page never needs scavenging or
565 * write-protecting. */
567 /* We are only using two regions at present. Both are for the current
568 * newspace generation. */
569 struct alloc_region boxed_region;
570 struct alloc_region unboxed_region;
572 /* The generation currently being allocated to. */
573 static generation_index_t gc_alloc_generation;
575 /* Find a new region with room for at least the given number of bytes.
577 * It starts looking at the current generation's alloc_start_page. So
578 * may pick up from the previous region if there is enough space. This
579 * keeps the allocation contiguous when scavenging the newspace.
581 * The alloc_region should have been closed by a call to
582 * gc_alloc_update_page_tables(), and will thus be in an empty state.
584 * To assist the scavenging functions write-protected pages are not
585 * used. Free pages should not be write-protected.
587 * It is critical to the conservative GC that the start of regions be
588 * known. To help achieve this only small regions are allocated at a
589 * time.
591 * During scavenging, pointers may be found to within the current
592 * region and the page generation must be set so that pointers to the
593 * from space can be recognized. Therefore the generation of pages in
594 * the region are set to gc_alloc_generation. To prevent another
595 * allocation call using the same pages, all the pages in the region
596 * are allocated, although they will initially be empty.
598 static void
599 gc_alloc_new_region(long nbytes, int unboxed, struct alloc_region *alloc_region)
601 page_index_t first_page;
602 page_index_t last_page;
603 long bytes_found;
604 page_index_t i;
605 int ret;
608 FSHOW((stderr,
609 "/alloc_new_region for %d bytes from gen %d\n",
610 nbytes, gc_alloc_generation));
613 /* Check that the region is in a reset state. */
614 gc_assert((alloc_region->first_page == 0)
615 && (alloc_region->last_page == -1)
616 && (alloc_region->free_pointer == alloc_region->end_addr));
617 ret = thread_mutex_lock(&free_pages_lock);
618 gc_assert(ret == 0);
619 if (unboxed) {
620 first_page =
621 generations[gc_alloc_generation].alloc_unboxed_start_page;
622 } else {
623 first_page =
624 generations[gc_alloc_generation].alloc_start_page;
626 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
627 bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
628 + PAGE_BYTES*(last_page-first_page);
630 /* Set up the alloc_region. */
631 alloc_region->first_page = first_page;
632 alloc_region->last_page = last_page;
633 alloc_region->start_addr = page_table[first_page].bytes_used
634 + page_address(first_page);
635 alloc_region->free_pointer = alloc_region->start_addr;
636 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
638 /* Set up the pages. */
640 /* The first page may have already been in use. */
641 if (page_table[first_page].bytes_used == 0) {
642 if (unboxed)
643 page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
644 else
645 page_table[first_page].allocated = BOXED_PAGE_FLAG;
646 page_table[first_page].gen = gc_alloc_generation;
647 page_table[first_page].large_object = 0;
648 page_table[first_page].first_object_offset = 0;
651 if (unboxed)
652 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
653 else
654 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
655 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
657 gc_assert(page_table[first_page].gen == gc_alloc_generation);
658 gc_assert(page_table[first_page].large_object == 0);
660 for (i = first_page+1; i <= last_page; i++) {
661 if (unboxed)
662 page_table[i].allocated = UNBOXED_PAGE_FLAG;
663 else
664 page_table[i].allocated = BOXED_PAGE_FLAG;
665 page_table[i].gen = gc_alloc_generation;
666 page_table[i].large_object = 0;
667 /* This may not be necessary for unboxed regions (think it was
668 * broken before!) */
669 page_table[i].first_object_offset =
670 alloc_region->start_addr - page_address(i);
671 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
673 /* Bump up last_free_page. */
674 if (last_page+1 > last_free_page) {
675 last_free_page = last_page+1;
676 /* do we only want to call this on special occasions? like for boxed_region? */
677 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
679 ret = thread_mutex_unlock(&free_pages_lock);
680 gc_assert(ret == 0);
682 #ifdef READ_PROTECT_FREE_PAGES
683 os_protect(page_address(first_page),
684 PAGE_BYTES*(1+last_page-first_page),
685 OS_VM_PROT_ALL);
686 #endif
688 /* If the first page was only partial, don't check whether it's
689 * zeroed (it won't be) and don't zero it (since the parts that
690 * we're interested in are guaranteed to be zeroed).
692 if (page_table[first_page].bytes_used) {
693 first_page++;
696 zero_dirty_pages(first_page, last_page);
698 /* we can do this after releasing free_pages_lock */
699 if (gencgc_zero_check) {
700 long *p;
701 for (p = (long *)alloc_region->start_addr;
702 p < (long *)alloc_region->end_addr; p++) {
703 if (*p != 0) {
704 /* KLUDGE: It would be nice to use %lx and explicit casts
705 * (long) in code like this, so that it is less likely to
706 * break randomly when running on a machine with different
707 * word sizes. -- WHN 19991129 */
708 lose("The new region at %x is not zero (start=%p, end=%p).\n",
709 p, alloc_region->start_addr, alloc_region->end_addr);
715 /* If the record_new_objects flag is 2 then all new regions created
716 * are recorded.
718 * If it's 1 then then it is only recorded if the first page of the
719 * current region is <= new_areas_ignore_page. This helps avoid
720 * unnecessary recording when doing full scavenge pass.
722 * The new_object structure holds the page, byte offset, and size of
723 * new regions of objects. Each new area is placed in the array of
724 * these structures pointer to by new_areas. new_areas_index holds the
725 * offset into new_areas.
727 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
728 * later code must detect this and handle it, probably by doing a full
729 * scavenge of a generation. */
730 #define NUM_NEW_AREAS 512
731 static int record_new_objects = 0;
732 static page_index_t new_areas_ignore_page;
733 struct new_area {
734 page_index_t page;
735 long offset;
736 long size;
738 static struct new_area (*new_areas)[];
739 static long new_areas_index;
740 long max_new_areas;
742 /* Add a new area to new_areas. */
743 static void
744 add_new_area(page_index_t first_page, long offset, long size)
746 unsigned long new_area_start,c;
747 long i;
749 /* Ignore if full. */
750 if (new_areas_index >= NUM_NEW_AREAS)
751 return;
753 switch (record_new_objects) {
754 case 0:
755 return;
756 case 1:
757 if (first_page > new_areas_ignore_page)
758 return;
759 break;
760 case 2:
761 break;
762 default:
763 gc_abort();
766 new_area_start = PAGE_BYTES*first_page + offset;
768 /* Search backwards for a prior area that this follows from. If
769 found this will save adding a new area. */
770 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
771 unsigned long area_end =
772 PAGE_BYTES*((*new_areas)[i].page)
773 + (*new_areas)[i].offset
774 + (*new_areas)[i].size;
775 /*FSHOW((stderr,
776 "/add_new_area S1 %d %d %d %d\n",
777 i, c, new_area_start, area_end));*/
778 if (new_area_start == area_end) {
779 /*FSHOW((stderr,
780 "/adding to [%d] %d %d %d with %d %d %d:\n",
782 (*new_areas)[i].page,
783 (*new_areas)[i].offset,
784 (*new_areas)[i].size,
785 first_page,
786 offset,
787 size);*/
788 (*new_areas)[i].size += size;
789 return;
793 (*new_areas)[new_areas_index].page = first_page;
794 (*new_areas)[new_areas_index].offset = offset;
795 (*new_areas)[new_areas_index].size = size;
796 /*FSHOW((stderr,
797 "/new_area %d page %d offset %d size %d\n",
798 new_areas_index, first_page, offset, size));*/
799 new_areas_index++;
801 /* Note the max new_areas used. */
802 if (new_areas_index > max_new_areas)
803 max_new_areas = new_areas_index;
806 /* Update the tables for the alloc_region. The region may be added to
807 * the new_areas.
809 * When done the alloc_region is set up so that the next quick alloc
810 * will fail safely and thus a new region will be allocated. Further
811 * it is safe to try to re-update the page table of this reset
812 * alloc_region. */
813 void
814 gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
816 int more;
817 page_index_t first_page;
818 page_index_t next_page;
819 int bytes_used;
820 long orig_first_page_bytes_used;
821 long region_size;
822 long byte_cnt;
823 int ret;
826 first_page = alloc_region->first_page;
828 /* Catch an unused alloc_region. */
829 if ((first_page == 0) && (alloc_region->last_page == -1))
830 return;
832 next_page = first_page+1;
834 ret = thread_mutex_lock(&free_pages_lock);
835 gc_assert(ret == 0);
836 if (alloc_region->free_pointer != alloc_region->start_addr) {
837 /* some bytes were allocated in the region */
838 orig_first_page_bytes_used = page_table[first_page].bytes_used;
840 gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
842 /* All the pages used need to be updated */
844 /* Update the first page. */
846 /* If the page was free then set up the gen, and
847 * first_object_offset. */
848 if (page_table[first_page].bytes_used == 0)
849 gc_assert(page_table[first_page].first_object_offset == 0);
850 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
852 if (unboxed)
853 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
854 else
855 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
856 gc_assert(page_table[first_page].gen == gc_alloc_generation);
857 gc_assert(page_table[first_page].large_object == 0);
859 byte_cnt = 0;
861 /* Calculate the number of bytes used in this page. This is not
862 * always the number of new bytes, unless it was free. */
863 more = 0;
864 if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>PAGE_BYTES) {
865 bytes_used = PAGE_BYTES;
866 more = 1;
868 page_table[first_page].bytes_used = bytes_used;
869 byte_cnt += bytes_used;
872 /* All the rest of the pages should be free. We need to set their
873 * first_object_offset pointer to the start of the region, and set
874 * the bytes_used. */
875 while (more) {
876 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
877 if (unboxed)
878 gc_assert(page_table[next_page].allocated==UNBOXED_PAGE_FLAG);
879 else
880 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
881 gc_assert(page_table[next_page].bytes_used == 0);
882 gc_assert(page_table[next_page].gen == gc_alloc_generation);
883 gc_assert(page_table[next_page].large_object == 0);
885 gc_assert(page_table[next_page].first_object_offset ==
886 alloc_region->start_addr - page_address(next_page));
888 /* Calculate the number of bytes used in this page. */
889 more = 0;
890 if ((bytes_used = (alloc_region->free_pointer
891 - page_address(next_page)))>PAGE_BYTES) {
892 bytes_used = PAGE_BYTES;
893 more = 1;
895 page_table[next_page].bytes_used = bytes_used;
896 byte_cnt += bytes_used;
898 next_page++;
901 region_size = alloc_region->free_pointer - alloc_region->start_addr;
902 bytes_allocated += region_size;
903 generations[gc_alloc_generation].bytes_allocated += region_size;
905 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
907 /* Set the generations alloc restart page to the last page of
908 * the region. */
909 if (unboxed)
910 generations[gc_alloc_generation].alloc_unboxed_start_page =
911 next_page-1;
912 else
913 generations[gc_alloc_generation].alloc_start_page = next_page-1;
915 /* Add the region to the new_areas if requested. */
916 if (!unboxed)
917 add_new_area(first_page,orig_first_page_bytes_used, region_size);
920 FSHOW((stderr,
921 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
922 region_size,
923 gc_alloc_generation));
925 } else {
926 /* There are no bytes allocated. Unallocate the first_page if
927 * there are 0 bytes_used. */
928 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
929 if (page_table[first_page].bytes_used == 0)
930 page_table[first_page].allocated = FREE_PAGE_FLAG;
933 /* Unallocate any unused pages. */
934 while (next_page <= alloc_region->last_page) {
935 gc_assert(page_table[next_page].bytes_used == 0);
936 page_table[next_page].allocated = FREE_PAGE_FLAG;
937 next_page++;
939 ret = thread_mutex_unlock(&free_pages_lock);
940 gc_assert(ret == 0);
942 /* alloc_region is per-thread, we're ok to do this unlocked */
943 gc_set_region_empty(alloc_region);
946 static inline void *gc_quick_alloc(long nbytes);
948 /* Allocate a possibly large object. */
949 void *
950 gc_alloc_large(long nbytes, int unboxed, struct alloc_region *alloc_region)
952 page_index_t first_page;
953 page_index_t last_page;
954 int orig_first_page_bytes_used;
955 long byte_cnt;
956 int more;
957 long bytes_used;
958 page_index_t next_page;
959 int ret;
961 ret = thread_mutex_lock(&free_pages_lock);
962 gc_assert(ret == 0);
964 if (unboxed) {
965 first_page =
966 generations[gc_alloc_generation].alloc_large_unboxed_start_page;
967 } else {
968 first_page = generations[gc_alloc_generation].alloc_large_start_page;
970 if (first_page <= alloc_region->last_page) {
971 first_page = alloc_region->last_page+1;
974 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
976 gc_assert(first_page > alloc_region->last_page);
977 if (unboxed)
978 generations[gc_alloc_generation].alloc_large_unboxed_start_page =
979 last_page;
980 else
981 generations[gc_alloc_generation].alloc_large_start_page = last_page;
983 /* Set up the pages. */
984 orig_first_page_bytes_used = page_table[first_page].bytes_used;
986 /* If the first page was free then set up the gen, and
987 * first_object_offset. */
988 if (page_table[first_page].bytes_used == 0) {
989 if (unboxed)
990 page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
991 else
992 page_table[first_page].allocated = BOXED_PAGE_FLAG;
993 page_table[first_page].gen = gc_alloc_generation;
994 page_table[first_page].first_object_offset = 0;
995 page_table[first_page].large_object = 1;
998 if (unboxed)
999 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
1000 else
1001 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
1002 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1003 gc_assert(page_table[first_page].large_object == 1);
1005 byte_cnt = 0;
1007 /* Calc. the number of bytes used in this page. This is not
1008 * always the number of new bytes, unless it was free. */
1009 more = 0;
1010 if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
1011 bytes_used = PAGE_BYTES;
1012 more = 1;
1014 page_table[first_page].bytes_used = bytes_used;
1015 byte_cnt += bytes_used;
1017 next_page = first_page+1;
1019 /* All the rest of the pages should be free. We need to set their
1020 * first_object_offset pointer to the start of the region, and
1021 * set the bytes_used. */
1022 while (more) {
1023 gc_assert(page_table[next_page].allocated == FREE_PAGE_FLAG);
1024 gc_assert(page_table[next_page].bytes_used == 0);
1025 if (unboxed)
1026 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1027 else
1028 page_table[next_page].allocated = BOXED_PAGE_FLAG;
1029 page_table[next_page].gen = gc_alloc_generation;
1030 page_table[next_page].large_object = 1;
1032 page_table[next_page].first_object_offset =
1033 orig_first_page_bytes_used - PAGE_BYTES*(next_page-first_page);
1035 /* Calculate the number of bytes used in this page. */
1036 more = 0;
1037 if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > PAGE_BYTES) {
1038 bytes_used = PAGE_BYTES;
1039 more = 1;
1041 page_table[next_page].bytes_used = bytes_used;
1042 page_table[next_page].write_protected=0;
1043 page_table[next_page].dont_move=0;
1044 byte_cnt += bytes_used;
1045 next_page++;
1048 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
1050 bytes_allocated += nbytes;
1051 generations[gc_alloc_generation].bytes_allocated += nbytes;
1053 /* Add the region to the new_areas if requested. */
1054 if (!unboxed)
1055 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1057 /* Bump up last_free_page */
1058 if (last_page+1 > last_free_page) {
1059 last_free_page = last_page+1;
1060 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
1062 ret = thread_mutex_unlock(&free_pages_lock);
1063 gc_assert(ret == 0);
1065 #ifdef READ_PROTECT_FREE_PAGES
1066 os_protect(page_address(first_page),
1067 PAGE_BYTES*(1+last_page-first_page),
1068 OS_VM_PROT_ALL);
1069 #endif
1071 zero_dirty_pages(first_page, last_page);
1073 return page_address(first_page);
1076 static page_index_t gencgc_alloc_start_page = -1;
1078 void
1079 gc_heap_exhausted_error_or_lose (long available, long requested)
1081 /* Write basic information before doing anything else: if we don't
1082 * call to lisp this is a must, and even if we do there is always
1083 * the danger that we bounce back here before the error has been
1084 * handled, or indeed even printed.
1086 fprintf(stderr, "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
1087 gc_active_p ? "garbage collection" : "allocation", available, requested);
1088 if (gc_active_p || (available == 0)) {
1089 /* If we are in GC, or totally out of memory there is no way
1090 * to sanely transfer control to the lisp-side of things.
1092 struct thread *thread = arch_os_get_current_thread();
1093 print_generation_stats(1);
1094 fprintf(stderr, "GC control variables:\n");
1095 fprintf(stderr, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
1096 SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
1097 SymbolValue(GC_PENDING,thread)==NIL ? "false" : "true");
1098 #ifdef LISP_FEATURE_SB_THREAD
1099 fprintf(stderr, " *STOP-FOR-GC-PENDING* = %s\n",
1100 SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
1101 #endif
1102 lose("Heap exhausted, game over.");
1104 else {
1105 /* FIXME: assert free_pages_lock held */
1106 (void)thread_mutex_unlock(&free_pages_lock);
1107 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
1108 alloc_number(available), alloc_number(requested));
1109 lose("HEAP-EXHAUSTED-ERROR fell through");
1113 page_index_t
1114 gc_find_freeish_pages(page_index_t *restart_page_ptr, long nbytes, int unboxed)
1116 page_index_t first_page;
1117 page_index_t last_page;
1118 long region_size;
1119 page_index_t restart_page=*restart_page_ptr;
1120 long bytes_found;
1121 long num_pages;
1122 int large_p=(nbytes>=large_object_size);
1123 /* FIXME: assert(free_pages_lock is held); */
1125 /* Search for a contiguous free space of at least nbytes. If it's
1126 * a large object then align it on a page boundary by searching
1127 * for a free page. */
1129 if (gencgc_alloc_start_page != -1) {
1130 restart_page = gencgc_alloc_start_page;
1133 do {
1134 first_page = restart_page;
1135 if (large_p)
1136 while ((first_page < page_table_pages)
1137 && (page_table[first_page].allocated != FREE_PAGE_FLAG))
1138 first_page++;
1139 else
1140 while (first_page < page_table_pages) {
1141 if(page_table[first_page].allocated == FREE_PAGE_FLAG)
1142 break;
1143 if((page_table[first_page].allocated ==
1144 (unboxed ? UNBOXED_PAGE_FLAG : BOXED_PAGE_FLAG)) &&
1145 (page_table[first_page].large_object == 0) &&
1146 (page_table[first_page].gen == gc_alloc_generation) &&
1147 (page_table[first_page].bytes_used < (PAGE_BYTES-32)) &&
1148 (page_table[first_page].write_protected == 0) &&
1149 (page_table[first_page].dont_move == 0)) {
1150 break;
1152 first_page++;
1155 if (first_page >= page_table_pages)
1156 gc_heap_exhausted_error_or_lose(0, nbytes);
1158 gc_assert(page_table[first_page].write_protected == 0);
1160 last_page = first_page;
1161 bytes_found = PAGE_BYTES - page_table[first_page].bytes_used;
1162 num_pages = 1;
1163 while (((bytes_found < nbytes)
1164 || (!large_p && (num_pages < 2)))
1165 && (last_page < (page_table_pages-1))
1166 && (page_table[last_page+1].allocated == FREE_PAGE_FLAG)) {
1167 last_page++;
1168 num_pages++;
1169 bytes_found += PAGE_BYTES;
1170 gc_assert(page_table[last_page].write_protected == 0);
1173 region_size = (PAGE_BYTES - page_table[first_page].bytes_used)
1174 + PAGE_BYTES*(last_page-first_page);
1176 gc_assert(bytes_found == region_size);
1177 restart_page = last_page + 1;
1178 } while ((restart_page < page_table_pages) && (bytes_found < nbytes));
1180 /* Check for a failure */
1181 if ((restart_page >= page_table_pages) && (bytes_found < nbytes))
1182 gc_heap_exhausted_error_or_lose(bytes_found, nbytes);
1184 *restart_page_ptr=first_page;
1186 return last_page;
1189 /* Allocate bytes. All the rest of the special-purpose allocation
1190 * functions will eventually call this */
1192 void *
1193 gc_alloc_with_region(long nbytes,int unboxed_p, struct alloc_region *my_region,
1194 int quick_p)
1196 void *new_free_pointer;
1198 if (nbytes>=large_object_size)
1199 return gc_alloc_large(nbytes,unboxed_p,my_region);
1201 /* Check whether there is room in the current alloc region. */
1202 new_free_pointer = my_region->free_pointer + nbytes;
1204 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1205 my_region->free_pointer, new_free_pointer); */
1207 if (new_free_pointer <= my_region->end_addr) {
1208 /* If so then allocate from the current alloc region. */
1209 void *new_obj = my_region->free_pointer;
1210 my_region->free_pointer = new_free_pointer;
1212 /* Unless a `quick' alloc was requested, check whether the
1213 alloc region is almost empty. */
1214 if (!quick_p &&
1215 (my_region->end_addr - my_region->free_pointer) <= 32) {
1216 /* If so, finished with the current region. */
1217 gc_alloc_update_page_tables(unboxed_p, my_region);
1218 /* Set up a new region. */
1219 gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
1222 return((void *)new_obj);
1225 /* Else not enough free space in the current region: retry with a
1226 * new region. */
1228 gc_alloc_update_page_tables(unboxed_p, my_region);
1229 gc_alloc_new_region(nbytes, unboxed_p, my_region);
1230 return gc_alloc_with_region(nbytes,unboxed_p,my_region,0);
1233 /* these are only used during GC: all allocation from the mutator calls
1234 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1235 * region */
1237 void *
1238 gc_general_alloc(long nbytes,int unboxed_p,int quick_p)
1240 struct alloc_region *my_region =
1241 unboxed_p ? &unboxed_region : &boxed_region;
1242 return gc_alloc_with_region(nbytes,unboxed_p, my_region,quick_p);
1245 static inline void *
1246 gc_quick_alloc(long nbytes)
1248 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1251 static inline void *
1252 gc_quick_alloc_large(long nbytes)
1254 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1257 static inline void *
1258 gc_alloc_unboxed(long nbytes)
1260 return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
1263 static inline void *
1264 gc_quick_alloc_unboxed(long nbytes)
1266 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1269 static inline void *
1270 gc_quick_alloc_large_unboxed(long nbytes)
1272 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1276 * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
1279 extern long (*scavtab[256])(lispobj *where, lispobj object);
1280 extern lispobj (*transother[256])(lispobj object);
1281 extern long (*sizetab[256])(lispobj *where);
1283 /* Copy a large boxed object. If the object is in a large object
1284 * region then it is simply promoted, else it is copied. If it's large
1285 * enough then it's copied to a large object region.
1287 * Vectors may have shrunk. If the object is not copied the space
1288 * needs to be reclaimed, and the page_tables corrected. */
1289 lispobj
1290 copy_large_object(lispobj object, long nwords)
1292 int tag;
1293 lispobj *new;
1294 page_index_t first_page;
1296 gc_assert(is_lisp_pointer(object));
1297 gc_assert(from_space_p(object));
1298 gc_assert((nwords & 0x01) == 0);
1301 /* Check whether it's in a large object region. */
1302 first_page = find_page_index((void *)object);
1303 gc_assert(first_page >= 0);
1305 if (page_table[first_page].large_object) {
1307 /* Promote the object. */
1309 long remaining_bytes;
1310 page_index_t next_page;
1311 long bytes_freed;
1312 long old_bytes_used;
1314 /* Note: Any page write-protection must be removed, else a
1315 * later scavenge_newspace may incorrectly not scavenge these
1316 * pages. This would not be necessary if they are added to the
1317 * new areas, but let's do it for them all (they'll probably
1318 * be written anyway?). */
1320 gc_assert(page_table[first_page].first_object_offset == 0);
1322 next_page = first_page;
1323 remaining_bytes = nwords*N_WORD_BYTES;
1324 while (remaining_bytes > PAGE_BYTES) {
1325 gc_assert(page_table[next_page].gen == from_space);
1326 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
1327 gc_assert(page_table[next_page].large_object);
1328 gc_assert(page_table[next_page].first_object_offset==
1329 -PAGE_BYTES*(next_page-first_page));
1330 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1332 page_table[next_page].gen = new_space;
1334 /* Remove any write-protection. We should be able to rely
1335 * on the write-protect flag to avoid redundant calls. */
1336 if (page_table[next_page].write_protected) {
1337 os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
1338 page_table[next_page].write_protected = 0;
1340 remaining_bytes -= PAGE_BYTES;
1341 next_page++;
1344 /* Now only one page remains, but the object may have shrunk
1345 * so there may be more unused pages which will be freed. */
1347 /* The object may have shrunk but shouldn't have grown. */
1348 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1350 page_table[next_page].gen = new_space;
1351 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
1353 /* Adjust the bytes_used. */
1354 old_bytes_used = page_table[next_page].bytes_used;
1355 page_table[next_page].bytes_used = remaining_bytes;
1357 bytes_freed = old_bytes_used - remaining_bytes;
1359 /* Free any remaining pages; needs care. */
1360 next_page++;
1361 while ((old_bytes_used == PAGE_BYTES) &&
1362 (page_table[next_page].gen == from_space) &&
1363 (page_table[next_page].allocated == BOXED_PAGE_FLAG) &&
1364 page_table[next_page].large_object &&
1365 (page_table[next_page].first_object_offset ==
1366 -(next_page - first_page)*PAGE_BYTES)) {
1367 /* Checks out OK, free the page. Don't need to bother zeroing
1368 * pages as this should have been done before shrinking the
1369 * object. These pages shouldn't be write-protected as they
1370 * should be zero filled. */
1371 gc_assert(page_table[next_page].write_protected == 0);
1373 old_bytes_used = page_table[next_page].bytes_used;
1374 page_table[next_page].allocated = FREE_PAGE_FLAG;
1375 page_table[next_page].bytes_used = 0;
1376 bytes_freed += old_bytes_used;
1377 next_page++;
1380 generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords +
1381 bytes_freed;
1382 generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
1383 bytes_allocated -= bytes_freed;
1385 /* Add the region to the new_areas if requested. */
1386 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1388 return(object);
1389 } else {
1390 /* Get tag of object. */
1391 tag = lowtag_of(object);
1393 /* Allocate space. */
1394 new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
1396 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1398 /* Return Lisp pointer of new object. */
1399 return ((lispobj) new) | tag;
1403 /* to copy unboxed objects */
1404 lispobj
1405 copy_unboxed_object(lispobj object, long nwords)
1407 long tag;
1408 lispobj *new;
1410 gc_assert(is_lisp_pointer(object));
1411 gc_assert(from_space_p(object));
1412 gc_assert((nwords & 0x01) == 0);
1414 /* Get tag of object. */
1415 tag = lowtag_of(object);
1417 /* Allocate space. */
1418 new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
1420 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1422 /* Return Lisp pointer of new object. */
1423 return ((lispobj) new) | tag;
1426 /* to copy large unboxed objects
1428 * If the object is in a large object region then it is simply
1429 * promoted, else it is copied. If it's large enough then it's copied
1430 * to a large object region.
1432 * Bignums and vectors may have shrunk. If the object is not copied
1433 * the space needs to be reclaimed, and the page_tables corrected.
1435 * KLUDGE: There's a lot of cut-and-paste duplication between this
1436 * function and copy_large_object(..). -- WHN 20000619 */
1437 lispobj
1438 copy_large_unboxed_object(lispobj object, long nwords)
1440 int tag;
1441 lispobj *new;
1442 page_index_t first_page;
1444 gc_assert(is_lisp_pointer(object));
1445 gc_assert(from_space_p(object));
1446 gc_assert((nwords & 0x01) == 0);
1448 if ((nwords > 1024*1024) && gencgc_verbose)
1449 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*N_WORD_BYTES));
1451 /* Check whether it's a large object. */
1452 first_page = find_page_index((void *)object);
1453 gc_assert(first_page >= 0);
1455 if (page_table[first_page].large_object) {
1456 /* Promote the object. Note: Unboxed objects may have been
1457 * allocated to a BOXED region so it may be necessary to
1458 * change the region to UNBOXED. */
1459 long remaining_bytes;
1460 page_index_t next_page;
1461 long bytes_freed;
1462 long old_bytes_used;
1464 gc_assert(page_table[first_page].first_object_offset == 0);
1466 next_page = first_page;
1467 remaining_bytes = nwords*N_WORD_BYTES;
1468 while (remaining_bytes > PAGE_BYTES) {
1469 gc_assert(page_table[next_page].gen == from_space);
1470 gc_assert((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
1471 || (page_table[next_page].allocated == BOXED_PAGE_FLAG));
1472 gc_assert(page_table[next_page].large_object);
1473 gc_assert(page_table[next_page].first_object_offset==
1474 -PAGE_BYTES*(next_page-first_page));
1475 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1477 page_table[next_page].gen = new_space;
1478 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1479 remaining_bytes -= PAGE_BYTES;
1480 next_page++;
1483 /* Now only one page remains, but the object may have shrunk so
1484 * there may be more unused pages which will be freed. */
1486 /* Object may have shrunk but shouldn't have grown - check. */
1487 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1489 page_table[next_page].gen = new_space;
1490 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1492 /* Adjust the bytes_used. */
1493 old_bytes_used = page_table[next_page].bytes_used;
1494 page_table[next_page].bytes_used = remaining_bytes;
1496 bytes_freed = old_bytes_used - remaining_bytes;
1498 /* Free any remaining pages; needs care. */
1499 next_page++;
1500 while ((old_bytes_used == PAGE_BYTES) &&
1501 (page_table[next_page].gen == from_space) &&
1502 ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
1503 || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
1504 page_table[next_page].large_object &&
1505 (page_table[next_page].first_object_offset ==
1506 -(next_page - first_page)*PAGE_BYTES)) {
1507 /* Checks out OK, free the page. Don't need to both zeroing
1508 * pages as this should have been done before shrinking the
1509 * object. These pages shouldn't be write-protected, even if
1510 * boxed they should be zero filled. */
1511 gc_assert(page_table[next_page].write_protected == 0);
1513 old_bytes_used = page_table[next_page].bytes_used;
1514 page_table[next_page].allocated = FREE_PAGE_FLAG;
1515 page_table[next_page].bytes_used = 0;
1516 bytes_freed += old_bytes_used;
1517 next_page++;
1520 if ((bytes_freed > 0) && gencgc_verbose)
1521 FSHOW((stderr,
1522 "/copy_large_unboxed bytes_freed=%d\n",
1523 bytes_freed));
1525 generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES + bytes_freed;
1526 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1527 bytes_allocated -= bytes_freed;
1529 return(object);
1531 else {
1532 /* Get tag of object. */
1533 tag = lowtag_of(object);
1535 /* Allocate space. */
1536 new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
1538 /* Copy the object. */
1539 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1541 /* Return Lisp pointer of new object. */
1542 return ((lispobj) new) | tag;
1551 * code and code-related objects
1554 static lispobj trans_fun_header(lispobj object);
1555 static lispobj trans_boxed(lispobj object);
1558 /* Scan a x86 compiled code object, looking for possible fixups that
1559 * have been missed after a move.
1561 * Two types of fixups are needed:
1562 * 1. Absolute fixups to within the code object.
1563 * 2. Relative fixups to outside the code object.
1565 * Currently only absolute fixups to the constant vector, or to the
1566 * code area are checked. */
1567 void
1568 sniff_code_object(struct code *code, unsigned long displacement)
1570 #ifdef LISP_FEATURE_X86
1571 long nheader_words, ncode_words, nwords;
1572 void *p;
1573 void *constants_start_addr = NULL, *constants_end_addr;
1574 void *code_start_addr, *code_end_addr;
1575 int fixup_found = 0;
1577 if (!check_code_fixups)
1578 return;
1580 FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
1582 ncode_words = fixnum_value(code->code_size);
1583 nheader_words = HeaderValue(*(lispobj *)code);
1584 nwords = ncode_words + nheader_words;
1586 constants_start_addr = (void *)code + 5*N_WORD_BYTES;
1587 constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
1588 code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
1589 code_end_addr = (void *)code + nwords*N_WORD_BYTES;
1591 /* Work through the unboxed code. */
1592 for (p = code_start_addr; p < code_end_addr; p++) {
1593 void *data = *(void **)p;
1594 unsigned d1 = *((unsigned char *)p - 1);
1595 unsigned d2 = *((unsigned char *)p - 2);
1596 unsigned d3 = *((unsigned char *)p - 3);
1597 unsigned d4 = *((unsigned char *)p - 4);
1598 #ifdef QSHOW
1599 unsigned d5 = *((unsigned char *)p - 5);
1600 unsigned d6 = *((unsigned char *)p - 6);
1601 #endif
1603 /* Check for code references. */
1604 /* Check for a 32 bit word that looks like an absolute
1605 reference to within the code adea of the code object. */
1606 if ((data >= (code_start_addr-displacement))
1607 && (data < (code_end_addr-displacement))) {
1608 /* function header */
1609 if ((d4 == 0x5e)
1610 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
1611 /* Skip the function header */
1612 p += 6*4 - 4 - 1;
1613 continue;
1615 /* the case of PUSH imm32 */
1616 if (d1 == 0x68) {
1617 fixup_found = 1;
1618 FSHOW((stderr,
1619 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1620 p, d6, d5, d4, d3, d2, d1, data));
1621 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1623 /* the case of MOV [reg-8],imm32 */
1624 if ((d3 == 0xc7)
1625 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1626 || d2==0x45 || d2==0x46 || d2==0x47)
1627 && (d1 == 0xf8)) {
1628 fixup_found = 1;
1629 FSHOW((stderr,
1630 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1631 p, d6, d5, d4, d3, d2, d1, data));
1632 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1634 /* the case of LEA reg,[disp32] */
1635 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1636 fixup_found = 1;
1637 FSHOW((stderr,
1638 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1639 p, d6, d5, d4, d3, d2, d1, data));
1640 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1644 /* Check for constant references. */
1645 /* Check for a 32 bit word that looks like an absolute
1646 reference to within the constant vector. Constant references
1647 will be aligned. */
1648 if ((data >= (constants_start_addr-displacement))
1649 && (data < (constants_end_addr-displacement))
1650 && (((unsigned)data & 0x3) == 0)) {
1651 /* Mov eax,m32 */
1652 if (d1 == 0xa1) {
1653 fixup_found = 1;
1654 FSHOW((stderr,
1655 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1656 p, d6, d5, d4, d3, d2, d1, data));
1657 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1660 /* the case of MOV m32,EAX */
1661 if (d1 == 0xa3) {
1662 fixup_found = 1;
1663 FSHOW((stderr,
1664 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1665 p, d6, d5, d4, d3, d2, d1, data));
1666 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1669 /* the case of CMP m32,imm32 */
1670 if ((d1 == 0x3d) && (d2 == 0x81)) {
1671 fixup_found = 1;
1672 FSHOW((stderr,
1673 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1674 p, d6, d5, d4, d3, d2, d1, data));
1675 /* XX Check this */
1676 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1679 /* Check for a mod=00, r/m=101 byte. */
1680 if ((d1 & 0xc7) == 5) {
1681 /* Cmp m32,reg */
1682 if (d2 == 0x39) {
1683 fixup_found = 1;
1684 FSHOW((stderr,
1685 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1686 p, d6, d5, d4, d3, d2, d1, data));
1687 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1689 /* the case of CMP reg32,m32 */
1690 if (d2 == 0x3b) {
1691 fixup_found = 1;
1692 FSHOW((stderr,
1693 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1694 p, d6, d5, d4, d3, d2, d1, data));
1695 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1697 /* the case of MOV m32,reg32 */
1698 if (d2 == 0x89) {
1699 fixup_found = 1;
1700 FSHOW((stderr,
1701 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1702 p, d6, d5, d4, d3, d2, d1, data));
1703 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1705 /* the case of MOV reg32,m32 */
1706 if (d2 == 0x8b) {
1707 fixup_found = 1;
1708 FSHOW((stderr,
1709 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1710 p, d6, d5, d4, d3, d2, d1, data));
1711 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1713 /* the case of LEA reg32,m32 */
1714 if (d2 == 0x8d) {
1715 fixup_found = 1;
1716 FSHOW((stderr,
1717 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1718 p, d6, d5, d4, d3, d2, d1, data));
1719 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1725 /* If anything was found, print some information on the code
1726 * object. */
1727 if (fixup_found) {
1728 FSHOW((stderr,
1729 "/compiled code object at %x: header words = %d, code words = %d\n",
1730 code, nheader_words, ncode_words));
1731 FSHOW((stderr,
1732 "/const start = %x, end = %x\n",
1733 constants_start_addr, constants_end_addr));
1734 FSHOW((stderr,
1735 "/code start = %x, end = %x\n",
1736 code_start_addr, code_end_addr));
1738 #endif
1741 void
1742 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1744 /* x86-64 uses pc-relative addressing instead of this kludge */
1745 #ifndef LISP_FEATURE_X86_64
1746 long nheader_words, ncode_words, nwords;
1747 void *constants_start_addr, *constants_end_addr;
1748 void *code_start_addr, *code_end_addr;
1749 lispobj fixups = NIL;
1750 unsigned long displacement = (unsigned long)new_code - (unsigned long)old_code;
1751 struct vector *fixups_vector;
1753 ncode_words = fixnum_value(new_code->code_size);
1754 nheader_words = HeaderValue(*(lispobj *)new_code);
1755 nwords = ncode_words + nheader_words;
1756 /* FSHOW((stderr,
1757 "/compiled code object at %x: header words = %d, code words = %d\n",
1758 new_code, nheader_words, ncode_words)); */
1759 constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
1760 constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1761 code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1762 code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
1764 FSHOW((stderr,
1765 "/const start = %x, end = %x\n",
1766 constants_start_addr,constants_end_addr));
1767 FSHOW((stderr,
1768 "/code start = %x; end = %x\n",
1769 code_start_addr,code_end_addr));
1772 /* The first constant should be a pointer to the fixups for this
1773 code objects. Check. */
1774 fixups = new_code->constants[0];
1776 /* It will be 0 or the unbound-marker if there are no fixups (as
1777 * will be the case if the code object has been purified, for
1778 * example) and will be an other pointer if it is valid. */
1779 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1780 !is_lisp_pointer(fixups)) {
1781 /* Check for possible errors. */
1782 if (check_code_fixups)
1783 sniff_code_object(new_code, displacement);
1785 return;
1788 fixups_vector = (struct vector *)native_pointer(fixups);
1790 /* Could be pointing to a forwarding pointer. */
1791 /* FIXME is this always in from_space? if so, could replace this code with
1792 * forwarding_pointer_p/forwarding_pointer_value */
1793 if (is_lisp_pointer(fixups) &&
1794 (find_page_index((void*)fixups_vector) != -1) &&
1795 (fixups_vector->header == 0x01)) {
1796 /* If so, then follow it. */
1797 /*SHOW("following pointer to a forwarding pointer");*/
1798 fixups_vector = (struct vector *)native_pointer((lispobj)fixups_vector->length);
1801 /*SHOW("got fixups");*/
1803 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1804 /* Got the fixups for the code block. Now work through the vector,
1805 and apply a fixup at each address. */
1806 long length = fixnum_value(fixups_vector->length);
1807 long i;
1808 for (i = 0; i < length; i++) {
1809 unsigned long offset = fixups_vector->data[i];
1810 /* Now check the current value of offset. */
1811 unsigned long old_value =
1812 *(unsigned long *)((unsigned long)code_start_addr + offset);
1814 /* If it's within the old_code object then it must be an
1815 * absolute fixup (relative ones are not saved) */
1816 if ((old_value >= (unsigned long)old_code)
1817 && (old_value < ((unsigned long)old_code + nwords*N_WORD_BYTES)))
1818 /* So add the dispacement. */
1819 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1820 old_value + displacement;
1821 else
1822 /* It is outside the old code object so it must be a
1823 * relative fixup (absolute fixups are not saved). So
1824 * subtract the displacement. */
1825 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1826 old_value - displacement;
1828 } else {
1829 /* This used to just print a note to stderr, but a bogus fixup seems to
1830 * indicate real heap corruption, so a hard hailure is in order. */
1831 lose("fixup vector %p has a bad widetag: %d\n", fixups_vector, widetag_of(fixups_vector->header));
1834 /* Check for possible errors. */
1835 if (check_code_fixups) {
1836 sniff_code_object(new_code,displacement);
1838 #endif
1842 static lispobj
1843 trans_boxed_large(lispobj object)
1845 lispobj header;
1846 unsigned long length;
1848 gc_assert(is_lisp_pointer(object));
1850 header = *((lispobj *) native_pointer(object));
1851 length = HeaderValue(header) + 1;
1852 length = CEILING(length, 2);
1854 return copy_large_object(object, length);
1857 /* Doesn't seem to be used, delete it after the grace period. */
1858 #if 0
1859 static lispobj
1860 trans_unboxed_large(lispobj object)
1862 lispobj header;
1863 unsigned long length;
1865 gc_assert(is_lisp_pointer(object));
1867 header = *((lispobj *) native_pointer(object));
1868 length = HeaderValue(header) + 1;
1869 length = CEILING(length, 2);
1871 return copy_large_unboxed_object(object, length);
1873 #endif
1877 * Lutexes. Using the normal finalization machinery for finalizing
1878 * lutexes is tricky, since the finalization depends on working lutexes.
1879 * So we track the lutexes in the GC and finalize them manually.
1882 #if defined(LUTEX_WIDETAG)
1885 * Start tracking LUTEX in the GC, by adding it to the linked list of
1886 * lutexes in the nursery generation. The caller is responsible for
1887 * locking, and GCs must be inhibited until the registration is
1888 * complete.
1890 void
1891 gencgc_register_lutex (struct lutex *lutex) {
1892 int index = find_page_index(lutex);
1893 generation_index_t gen;
1894 struct lutex *head;
1896 /* This lutex is in static space, so we don't need to worry about
1897 * finalizing it.
1899 if (index == -1)
1900 return;
1902 gen = page_table[index].gen;
1904 gc_assert(gen >= 0);
1905 gc_assert(gen < NUM_GENERATIONS);
1907 head = generations[gen].lutexes;
1909 lutex->gen = gen;
1910 lutex->next = head;
1911 lutex->prev = NULL;
1912 if (head)
1913 head->prev = lutex;
1914 generations[gen].lutexes = lutex;
1918 * Stop tracking LUTEX in the GC by removing it from the appropriate
1919 * linked lists. This will only be called during GC, so no locking is
1920 * needed.
1922 void
1923 gencgc_unregister_lutex (struct lutex *lutex) {
1924 if (lutex->prev) {
1925 lutex->prev->next = lutex->next;
1926 } else {
1927 generations[lutex->gen].lutexes = lutex->next;
1930 if (lutex->next) {
1931 lutex->next->prev = lutex->prev;
1934 lutex->next = NULL;
1935 lutex->prev = NULL;
1936 lutex->gen = -1;
1940 * Mark all lutexes in generation GEN as not live.
1942 static void
1943 unmark_lutexes (generation_index_t gen) {
1944 struct lutex *lutex = generations[gen].lutexes;
1946 while (lutex) {
1947 lutex->live = 0;
1948 lutex = lutex->next;
1953 * Finalize all lutexes in generation GEN that have not been marked live.
1955 static void
1956 reap_lutexes (generation_index_t gen) {
1957 struct lutex *lutex = generations[gen].lutexes;
1959 while (lutex) {
1960 struct lutex *next = lutex->next;
1961 if (!lutex->live) {
1962 lutex_destroy((tagged_lutex_t) lutex);
1963 gencgc_unregister_lutex(lutex);
1965 lutex = next;
1970 * Mark LUTEX as live.
1972 static void
1973 mark_lutex (lispobj tagged_lutex) {
1974 struct lutex *lutex = (struct lutex*) native_pointer(tagged_lutex);
1976 lutex->live = 1;
1980 * Move all lutexes in generation FROM to generation TO.
1982 static void
1983 move_lutexes (generation_index_t from, generation_index_t to) {
1984 struct lutex *tail = generations[from].lutexes;
1986 /* Nothing to move */
1987 if (!tail)
1988 return;
1990 /* Change the generation of the lutexes in FROM. */
1991 while (tail->next) {
1992 tail->gen = to;
1993 tail = tail->next;
1995 tail->gen = to;
1997 /* Link the last lutex in the FROM list to the start of the TO list */
1998 tail->next = generations[to].lutexes;
2000 /* And vice versa */
2001 if (generations[to].lutexes) {
2002 generations[to].lutexes->prev = tail;
2005 /* And update the generations structures to match this */
2006 generations[to].lutexes = generations[from].lutexes;
2007 generations[from].lutexes = NULL;
2010 static long
2011 scav_lutex(lispobj *where, lispobj object)
2013 mark_lutex((lispobj) where);
2015 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2018 static lispobj
2019 trans_lutex(lispobj object)
2021 struct lutex *lutex = (struct lutex *) native_pointer(object);
2022 lispobj copied;
2023 size_t words = CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2024 gc_assert(is_lisp_pointer(object));
2025 copied = copy_object(object, words);
2027 /* Update the links, since the lutex moved in memory. */
2028 if (lutex->next) {
2029 lutex->next->prev = (struct lutex *) native_pointer(copied);
2032 if (lutex->prev) {
2033 lutex->prev->next = (struct lutex *) native_pointer(copied);
2034 } else {
2035 generations[lutex->gen].lutexes =
2036 (struct lutex *) native_pointer(copied);
2039 return copied;
2042 static long
2043 size_lutex(lispobj *where)
2045 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2047 #endif /* LUTEX_WIDETAG */
2051 * weak pointers
2054 /* XX This is a hack adapted from cgc.c. These don't work too
2055 * efficiently with the gencgc as a list of the weak pointers is
2056 * maintained within the objects which causes writes to the pages. A
2057 * limited attempt is made to avoid unnecessary writes, but this needs
2058 * a re-think. */
2059 #define WEAK_POINTER_NWORDS \
2060 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2062 static long
2063 scav_weak_pointer(lispobj *where, lispobj object)
2065 /* Since we overwrite the 'next' field, we have to make
2066 * sure not to do so for pointers already in the list.
2067 * Instead of searching the list of weak_pointers each
2068 * time, we ensure that next is always NULL when the weak
2069 * pointer isn't in the list, and not NULL otherwise.
2070 * Since we can't use NULL to denote end of list, we
2071 * use a pointer back to the same weak_pointer.
2073 struct weak_pointer * wp = (struct weak_pointer*)where;
2075 if (NULL == wp->next) {
2076 wp->next = weak_pointers;
2077 weak_pointers = wp;
2078 if (NULL == wp->next)
2079 wp->next = wp;
2082 /* Do not let GC scavenge the value slot of the weak pointer.
2083 * (That is why it is a weak pointer.) */
2085 return WEAK_POINTER_NWORDS;
2089 lispobj *
2090 search_read_only_space(void *pointer)
2092 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
2093 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2094 if ((pointer < (void *)start) || (pointer >= (void *)end))
2095 return NULL;
2096 return (gc_search_space(start,
2097 (((lispobj *)pointer)+2)-start,
2098 (lispobj *) pointer));
2101 lispobj *
2102 search_static_space(void *pointer)
2104 lispobj *start = (lispobj *)STATIC_SPACE_START;
2105 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2106 if ((pointer < (void *)start) || (pointer >= (void *)end))
2107 return NULL;
2108 return (gc_search_space(start,
2109 (((lispobj *)pointer)+2)-start,
2110 (lispobj *) pointer));
2113 /* a faster version for searching the dynamic space. This will work even
2114 * if the object is in a current allocation region. */
2115 lispobj *
2116 search_dynamic_space(void *pointer)
2118 page_index_t page_index = find_page_index(pointer);
2119 lispobj *start;
2121 /* The address may be invalid, so do some checks. */
2122 if ((page_index == -1) ||
2123 (page_table[page_index].allocated == FREE_PAGE_FLAG))
2124 return NULL;
2125 start = (lispobj *)page_region_start(page_index);
2126 return (gc_search_space(start,
2127 (((lispobj *)pointer)+2)-start,
2128 (lispobj *)pointer));
2131 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2133 /* Helper for valid_lisp_pointer_p and
2134 * possibly_valid_dynamic_space_pointer.
2136 * pointer is the pointer to validate, and start_addr is the address
2137 * of the enclosing object.
2139 static int
2140 looks_like_valid_lisp_pointer_p(lispobj *pointer, lispobj *start_addr)
2142 /* We need to allow raw pointers into Code objects for return
2143 * addresses. This will also pick up pointers to functions in code
2144 * objects. */
2145 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG)
2146 /* XXX could do some further checks here */
2147 return 1;
2149 if (!is_lisp_pointer((lispobj)pointer)) {
2150 return 0;
2153 /* Check that the object pointed to is consistent with the pointer
2154 * low tag. */
2155 switch (lowtag_of((lispobj)pointer)) {
2156 case FUN_POINTER_LOWTAG:
2157 /* Start_addr should be the enclosing code object, or a closure
2158 * header. */
2159 switch (widetag_of(*start_addr)) {
2160 case CODE_HEADER_WIDETAG:
2161 /* This case is probably caught above. */
2162 break;
2163 case CLOSURE_HEADER_WIDETAG:
2164 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2165 if ((unsigned long)pointer !=
2166 ((unsigned long)start_addr+FUN_POINTER_LOWTAG)) {
2167 if (gencgc_verbose)
2168 FSHOW((stderr,
2169 "/Wf2: %x %x %x\n",
2170 pointer, start_addr, *start_addr));
2171 return 0;
2173 break;
2174 default:
2175 if (gencgc_verbose)
2176 FSHOW((stderr,
2177 "/Wf3: %x %x %x\n",
2178 pointer, start_addr, *start_addr));
2179 return 0;
2181 break;
2182 case LIST_POINTER_LOWTAG:
2183 if ((unsigned long)pointer !=
2184 ((unsigned long)start_addr+LIST_POINTER_LOWTAG)) {
2185 if (gencgc_verbose)
2186 FSHOW((stderr,
2187 "/Wl1: %x %x %x\n",
2188 pointer, start_addr, *start_addr));
2189 return 0;
2191 /* Is it plausible cons? */
2192 if ((is_lisp_pointer(start_addr[0]) || is_lisp_immediate(start_addr[0])) &&
2193 (is_lisp_pointer(start_addr[1]) || is_lisp_immediate(start_addr[1])))
2194 break;
2195 else {
2196 if (gencgc_verbose)
2197 FSHOW((stderr,
2198 "/Wl2: %x %x %x\n",
2199 pointer, start_addr, *start_addr));
2200 return 0;
2202 case INSTANCE_POINTER_LOWTAG:
2203 if ((unsigned long)pointer !=
2204 ((unsigned long)start_addr+INSTANCE_POINTER_LOWTAG)) {
2205 if (gencgc_verbose)
2206 FSHOW((stderr,
2207 "/Wi1: %x %x %x\n",
2208 pointer, start_addr, *start_addr));
2209 return 0;
2211 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2212 if (gencgc_verbose)
2213 FSHOW((stderr,
2214 "/Wi2: %x %x %x\n",
2215 pointer, start_addr, *start_addr));
2216 return 0;
2218 break;
2219 case OTHER_POINTER_LOWTAG:
2220 if ((unsigned long)pointer !=
2221 ((unsigned long)start_addr+OTHER_POINTER_LOWTAG)) {
2222 if (gencgc_verbose)
2223 FSHOW((stderr,
2224 "/Wo1: %x %x %x\n",
2225 pointer, start_addr, *start_addr));
2226 return 0;
2228 /* Is it plausible? Not a cons. XXX should check the headers. */
2229 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2230 if (gencgc_verbose)
2231 FSHOW((stderr,
2232 "/Wo2: %x %x %x\n",
2233 pointer, start_addr, *start_addr));
2234 return 0;
2236 switch (widetag_of(start_addr[0])) {
2237 case UNBOUND_MARKER_WIDETAG:
2238 case NO_TLS_VALUE_MARKER_WIDETAG:
2239 case CHARACTER_WIDETAG:
2240 #if N_WORD_BITS == 64
2241 case SINGLE_FLOAT_WIDETAG:
2242 #endif
2243 if (gencgc_verbose)
2244 FSHOW((stderr,
2245 "*Wo3: %x %x %x\n",
2246 pointer, start_addr, *start_addr));
2247 return 0;
2249 /* only pointed to by function pointers? */
2250 case CLOSURE_HEADER_WIDETAG:
2251 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2252 if (gencgc_verbose)
2253 FSHOW((stderr,
2254 "*Wo4: %x %x %x\n",
2255 pointer, start_addr, *start_addr));
2256 return 0;
2258 case INSTANCE_HEADER_WIDETAG:
2259 if (gencgc_verbose)
2260 FSHOW((stderr,
2261 "*Wo5: %x %x %x\n",
2262 pointer, start_addr, *start_addr));
2263 return 0;
2265 /* the valid other immediate pointer objects */
2266 case SIMPLE_VECTOR_WIDETAG:
2267 case RATIO_WIDETAG:
2268 case COMPLEX_WIDETAG:
2269 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2270 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2271 #endif
2272 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2273 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2274 #endif
2275 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2276 case COMPLEX_LONG_FLOAT_WIDETAG:
2277 #endif
2278 case SIMPLE_ARRAY_WIDETAG:
2279 case COMPLEX_BASE_STRING_WIDETAG:
2280 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
2281 case COMPLEX_CHARACTER_STRING_WIDETAG:
2282 #endif
2283 case COMPLEX_VECTOR_NIL_WIDETAG:
2284 case COMPLEX_BIT_VECTOR_WIDETAG:
2285 case COMPLEX_VECTOR_WIDETAG:
2286 case COMPLEX_ARRAY_WIDETAG:
2287 case VALUE_CELL_HEADER_WIDETAG:
2288 case SYMBOL_HEADER_WIDETAG:
2289 case FDEFN_WIDETAG:
2290 case CODE_HEADER_WIDETAG:
2291 case BIGNUM_WIDETAG:
2292 #if N_WORD_BITS != 64
2293 case SINGLE_FLOAT_WIDETAG:
2294 #endif
2295 case DOUBLE_FLOAT_WIDETAG:
2296 #ifdef LONG_FLOAT_WIDETAG
2297 case LONG_FLOAT_WIDETAG:
2298 #endif
2299 case SIMPLE_BASE_STRING_WIDETAG:
2300 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2301 case SIMPLE_CHARACTER_STRING_WIDETAG:
2302 #endif
2303 case SIMPLE_BIT_VECTOR_WIDETAG:
2304 case SIMPLE_ARRAY_NIL_WIDETAG:
2305 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2306 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2307 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2308 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2309 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2310 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2311 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2312 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2313 #endif
2314 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2315 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2316 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2317 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2318 #endif
2319 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2320 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2321 #endif
2322 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2323 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2324 #endif
2325 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2326 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2327 #endif
2328 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2329 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2330 #endif
2331 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2332 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2333 #endif
2334 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2335 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2336 #endif
2337 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2338 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2339 #endif
2340 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2341 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2342 #endif
2343 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2344 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2345 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2346 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2347 #endif
2348 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2349 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2350 #endif
2351 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2352 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2353 #endif
2354 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2355 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2356 #endif
2357 case SAP_WIDETAG:
2358 case WEAK_POINTER_WIDETAG:
2359 #ifdef LUTEX_WIDETAG
2360 case LUTEX_WIDETAG:
2361 #endif
2362 break;
2364 default:
2365 if (gencgc_verbose)
2366 FSHOW((stderr,
2367 "/Wo6: %x %x %x\n",
2368 pointer, start_addr, *start_addr));
2369 return 0;
2371 break;
2372 default:
2373 if (gencgc_verbose)
2374 FSHOW((stderr,
2375 "*W?: %x %x %x\n",
2376 pointer, start_addr, *start_addr));
2377 return 0;
2380 /* looks good */
2381 return 1;
2384 /* Used by the debugger to validate possibly bogus pointers before
2385 * calling MAKE-LISP-OBJ on them.
2387 * FIXME: We would like to make this perfect, because if the debugger
2388 * constructs a reference to a bugs lisp object, and it ends up in a
2389 * location scavenged by the GC all hell breaks loose.
2391 * Whereas possibly_valid_dynamic_space_pointer has to be conservative
2392 * and return true for all valid pointers, this could actually be eager
2393 * and lie about a few pointers without bad results... but that should
2394 * be reflected in the name.
2397 valid_lisp_pointer_p(lispobj *pointer)
2399 lispobj *start;
2400 if (((start=search_dynamic_space(pointer))!=NULL) ||
2401 ((start=search_static_space(pointer))!=NULL) ||
2402 ((start=search_read_only_space(pointer))!=NULL))
2403 return looks_like_valid_lisp_pointer_p(pointer, start);
2404 else
2405 return 0;
2408 /* Is there any possibility that pointer is a valid Lisp object
2409 * reference, and/or something else (e.g. subroutine call return
2410 * address) which should prevent us from moving the referred-to thing?
2411 * This is called from preserve_pointers() */
2412 static int
2413 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2415 lispobj *start_addr;
2417 /* Find the object start address. */
2418 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2419 return 0;
2422 return looks_like_valid_lisp_pointer_p(pointer, start_addr);
2425 /* Adjust large bignum and vector objects. This will adjust the
2426 * allocated region if the size has shrunk, and move unboxed objects
2427 * into unboxed pages. The pages are not promoted here, and the
2428 * promoted region is not added to the new_regions; this is really
2429 * only designed to be called from preserve_pointer(). Shouldn't fail
2430 * if this is missed, just may delay the moving of objects to unboxed
2431 * pages, and the freeing of pages. */
2432 static void
2433 maybe_adjust_large_object(lispobj *where)
2435 page_index_t first_page;
2436 page_index_t next_page;
2437 long nwords;
2439 long remaining_bytes;
2440 long bytes_freed;
2441 long old_bytes_used;
2443 int boxed;
2445 /* Check whether it's a vector or bignum object. */
2446 switch (widetag_of(where[0])) {
2447 case SIMPLE_VECTOR_WIDETAG:
2448 boxed = BOXED_PAGE_FLAG;
2449 break;
2450 case BIGNUM_WIDETAG:
2451 case SIMPLE_BASE_STRING_WIDETAG:
2452 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2453 case SIMPLE_CHARACTER_STRING_WIDETAG:
2454 #endif
2455 case SIMPLE_BIT_VECTOR_WIDETAG:
2456 case SIMPLE_ARRAY_NIL_WIDETAG:
2457 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2458 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2459 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2460 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2461 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2462 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2463 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2464 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2465 #endif
2466 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2467 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2468 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2469 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2470 #endif
2471 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2472 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2473 #endif
2474 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2475 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2476 #endif
2477 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2478 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2479 #endif
2480 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2481 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2482 #endif
2483 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2484 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2485 #endif
2486 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2487 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2488 #endif
2489 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2490 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2491 #endif
2492 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2493 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2494 #endif
2495 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2496 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2497 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2498 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2499 #endif
2500 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2501 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2502 #endif
2503 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2504 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2505 #endif
2506 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2507 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2508 #endif
2509 boxed = UNBOXED_PAGE_FLAG;
2510 break;
2511 default:
2512 return;
2515 /* Find its current size. */
2516 nwords = (sizetab[widetag_of(where[0])])(where);
2518 first_page = find_page_index((void *)where);
2519 gc_assert(first_page >= 0);
2521 /* Note: Any page write-protection must be removed, else a later
2522 * scavenge_newspace may incorrectly not scavenge these pages.
2523 * This would not be necessary if they are added to the new areas,
2524 * but lets do it for them all (they'll probably be written
2525 * anyway?). */
2527 gc_assert(page_table[first_page].first_object_offset == 0);
2529 next_page = first_page;
2530 remaining_bytes = nwords*N_WORD_BYTES;
2531 while (remaining_bytes > PAGE_BYTES) {
2532 gc_assert(page_table[next_page].gen == from_space);
2533 gc_assert((page_table[next_page].allocated == BOXED_PAGE_FLAG)
2534 || (page_table[next_page].allocated == UNBOXED_PAGE_FLAG));
2535 gc_assert(page_table[next_page].large_object);
2536 gc_assert(page_table[next_page].first_object_offset ==
2537 -PAGE_BYTES*(next_page-first_page));
2538 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
2540 page_table[next_page].allocated = boxed;
2542 /* Shouldn't be write-protected at this stage. Essential that the
2543 * pages aren't. */
2544 gc_assert(!page_table[next_page].write_protected);
2545 remaining_bytes -= PAGE_BYTES;
2546 next_page++;
2549 /* Now only one page remains, but the object may have shrunk so
2550 * there may be more unused pages which will be freed. */
2552 /* Object may have shrunk but shouldn't have grown - check. */
2553 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2555 page_table[next_page].allocated = boxed;
2556 gc_assert(page_table[next_page].allocated ==
2557 page_table[first_page].allocated);
2559 /* Adjust the bytes_used. */
2560 old_bytes_used = page_table[next_page].bytes_used;
2561 page_table[next_page].bytes_used = remaining_bytes;
2563 bytes_freed = old_bytes_used - remaining_bytes;
2565 /* Free any remaining pages; needs care. */
2566 next_page++;
2567 while ((old_bytes_used == PAGE_BYTES) &&
2568 (page_table[next_page].gen == from_space) &&
2569 ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
2570 || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
2571 page_table[next_page].large_object &&
2572 (page_table[next_page].first_object_offset ==
2573 -(next_page - first_page)*PAGE_BYTES)) {
2574 /* It checks out OK, free the page. We don't need to both zeroing
2575 * pages as this should have been done before shrinking the
2576 * object. These pages shouldn't be write protected as they
2577 * should be zero filled. */
2578 gc_assert(page_table[next_page].write_protected == 0);
2580 old_bytes_used = page_table[next_page].bytes_used;
2581 page_table[next_page].allocated = FREE_PAGE_FLAG;
2582 page_table[next_page].bytes_used = 0;
2583 bytes_freed += old_bytes_used;
2584 next_page++;
2587 if ((bytes_freed > 0) && gencgc_verbose) {
2588 FSHOW((stderr,
2589 "/maybe_adjust_large_object() freed %d\n",
2590 bytes_freed));
2593 generations[from_space].bytes_allocated -= bytes_freed;
2594 bytes_allocated -= bytes_freed;
2596 return;
2599 /* Take a possible pointer to a Lisp object and mark its page in the
2600 * page_table so that it will not be relocated during a GC.
2602 * This involves locating the page it points to, then backing up to
2603 * the start of its region, then marking all pages dont_move from there
2604 * up to the first page that's not full or has a different generation
2606 * It is assumed that all the page static flags have been cleared at
2607 * the start of a GC.
2609 * It is also assumed that the current gc_alloc() region has been
2610 * flushed and the tables updated. */
2612 static void
2613 preserve_pointer(void *addr)
2615 page_index_t addr_page_index = find_page_index(addr);
2616 page_index_t first_page;
2617 page_index_t i;
2618 unsigned int region_allocation;
2620 /* quick check 1: Address is quite likely to have been invalid. */
2621 if ((addr_page_index == -1)
2622 || (page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
2623 || (page_table[addr_page_index].bytes_used == 0)
2624 || (page_table[addr_page_index].gen != from_space)
2625 /* Skip if already marked dont_move. */
2626 || (page_table[addr_page_index].dont_move != 0))
2627 return;
2628 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2629 /* (Now that we know that addr_page_index is in range, it's
2630 * safe to index into page_table[] with it.) */
2631 region_allocation = page_table[addr_page_index].allocated;
2633 /* quick check 2: Check the offset within the page.
2636 if (((unsigned long)addr & (PAGE_BYTES - 1)) > page_table[addr_page_index].bytes_used)
2637 return;
2639 /* Filter out anything which can't be a pointer to a Lisp object
2640 * (or, as a special case which also requires dont_move, a return
2641 * address referring to something in a CodeObject). This is
2642 * expensive but important, since it vastly reduces the
2643 * probability that random garbage will be bogusly interpreted as
2644 * a pointer which prevents a page from moving. */
2645 if (!(possibly_valid_dynamic_space_pointer(addr)))
2646 return;
2648 /* Find the beginning of the region. Note that there may be
2649 * objects in the region preceding the one that we were passed a
2650 * pointer to: if this is the case, we will write-protect all the
2651 * previous objects' pages too. */
2653 #if 0
2654 /* I think this'd work just as well, but without the assertions.
2655 * -dan 2004.01.01 */
2656 first_page = find_page_index(page_region_start(addr_page_index))
2657 #else
2658 first_page = addr_page_index;
2659 while (page_table[first_page].first_object_offset != 0) {
2660 --first_page;
2661 /* Do some checks. */
2662 gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
2663 gc_assert(page_table[first_page].gen == from_space);
2664 gc_assert(page_table[first_page].allocated == region_allocation);
2666 #endif
2668 /* Adjust any large objects before promotion as they won't be
2669 * copied after promotion. */
2670 if (page_table[first_page].large_object) {
2671 maybe_adjust_large_object(page_address(first_page));
2672 /* If a large object has shrunk then addr may now point to a
2673 * free area in which case it's ignored here. Note it gets
2674 * through the valid pointer test above because the tail looks
2675 * like conses. */
2676 if ((page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
2677 || (page_table[addr_page_index].bytes_used == 0)
2678 /* Check the offset within the page. */
2679 || (((unsigned long)addr & (PAGE_BYTES - 1))
2680 > page_table[addr_page_index].bytes_used)) {
2681 FSHOW((stderr,
2682 "weird? ignore ptr 0x%x to freed area of large object\n",
2683 addr));
2684 return;
2686 /* It may have moved to unboxed pages. */
2687 region_allocation = page_table[first_page].allocated;
2690 /* Now work forward until the end of this contiguous area is found,
2691 * marking all pages as dont_move. */
2692 for (i = first_page; ;i++) {
2693 gc_assert(page_table[i].allocated == region_allocation);
2695 /* Mark the page static. */
2696 page_table[i].dont_move = 1;
2698 /* Move the page to the new_space. XX I'd rather not do this
2699 * but the GC logic is not quite able to copy with the static
2700 * pages remaining in the from space. This also requires the
2701 * generation bytes_allocated counters be updated. */
2702 page_table[i].gen = new_space;
2703 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2704 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2706 /* It is essential that the pages are not write protected as
2707 * they may have pointers into the old-space which need
2708 * scavenging. They shouldn't be write protected at this
2709 * stage. */
2710 gc_assert(!page_table[i].write_protected);
2712 /* Check whether this is the last page in this contiguous block.. */
2713 if ((page_table[i].bytes_used < PAGE_BYTES)
2714 /* ..or it is PAGE_BYTES and is the last in the block */
2715 || (page_table[i+1].allocated == FREE_PAGE_FLAG)
2716 || (page_table[i+1].bytes_used == 0) /* next page free */
2717 || (page_table[i+1].gen != from_space) /* diff. gen */
2718 || (page_table[i+1].first_object_offset == 0))
2719 break;
2722 /* Check that the page is now static. */
2723 gc_assert(page_table[addr_page_index].dont_move != 0);
2726 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2729 /* If the given page is not write-protected, then scan it for pointers
2730 * to younger generations or the top temp. generation, if no
2731 * suspicious pointers are found then the page is write-protected.
2733 * Care is taken to check for pointers to the current gc_alloc()
2734 * region if it is a younger generation or the temp. generation. This
2735 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2736 * the gc_alloc_generation does not need to be checked as this is only
2737 * called from scavenge_generation() when the gc_alloc generation is
2738 * younger, so it just checks if there is a pointer to the current
2739 * region.
2741 * We return 1 if the page was write-protected, else 0. */
2742 static int
2743 update_page_write_prot(page_index_t page)
2745 generation_index_t gen = page_table[page].gen;
2746 long j;
2747 int wp_it = 1;
2748 void **page_addr = (void **)page_address(page);
2749 long num_words = page_table[page].bytes_used / N_WORD_BYTES;
2751 /* Shouldn't be a free page. */
2752 gc_assert(page_table[page].allocated != FREE_PAGE_FLAG);
2753 gc_assert(page_table[page].bytes_used != 0);
2755 /* Skip if it's already write-protected, pinned, or unboxed */
2756 if (page_table[page].write_protected
2757 /* FIXME: What's the reason for not write-protecting pinned pages? */
2758 || page_table[page].dont_move
2759 || (page_table[page].allocated & UNBOXED_PAGE_FLAG))
2760 return (0);
2762 /* Scan the page for pointers to younger generations or the
2763 * top temp. generation. */
2765 for (j = 0; j < num_words; j++) {
2766 void *ptr = *(page_addr+j);
2767 page_index_t index = find_page_index(ptr);
2769 /* Check that it's in the dynamic space */
2770 if (index != -1)
2771 if (/* Does it point to a younger or the temp. generation? */
2772 ((page_table[index].allocated != FREE_PAGE_FLAG)
2773 && (page_table[index].bytes_used != 0)
2774 && ((page_table[index].gen < gen)
2775 || (page_table[index].gen == SCRATCH_GENERATION)))
2777 /* Or does it point within a current gc_alloc() region? */
2778 || ((boxed_region.start_addr <= ptr)
2779 && (ptr <= boxed_region.free_pointer))
2780 || ((unboxed_region.start_addr <= ptr)
2781 && (ptr <= unboxed_region.free_pointer))) {
2782 wp_it = 0;
2783 break;
2787 if (wp_it == 1) {
2788 /* Write-protect the page. */
2789 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2791 os_protect((void *)page_addr,
2792 PAGE_BYTES,
2793 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2795 /* Note the page as protected in the page tables. */
2796 page_table[page].write_protected = 1;
2799 return (wp_it);
2802 /* Scavenge all generations from FROM to TO, inclusive, except for
2803 * new_space which needs special handling, as new objects may be
2804 * added which are not checked here - use scavenge_newspace generation.
2806 * Write-protected pages should not have any pointers to the
2807 * from_space so do need scavenging; thus write-protected pages are
2808 * not always scavenged. There is some code to check that these pages
2809 * are not written; but to check fully the write-protected pages need
2810 * to be scavenged by disabling the code to skip them.
2812 * Under the current scheme when a generation is GCed the younger
2813 * generations will be empty. So, when a generation is being GCed it
2814 * is only necessary to scavenge the older generations for pointers
2815 * not the younger. So a page that does not have pointers to younger
2816 * generations does not need to be scavenged.
2818 * The write-protection can be used to note pages that don't have
2819 * pointers to younger pages. But pages can be written without having
2820 * pointers to younger generations. After the pages are scavenged here
2821 * they can be scanned for pointers to younger generations and if
2822 * there are none the page can be write-protected.
2824 * One complication is when the newspace is the top temp. generation.
2826 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2827 * that none were written, which they shouldn't be as they should have
2828 * no pointers to younger generations. This breaks down for weak
2829 * pointers as the objects contain a link to the next and are written
2830 * if a weak pointer is scavenged. Still it's a useful check. */
2831 static void
2832 scavenge_generations(generation_index_t from, generation_index_t to)
2834 page_index_t i;
2835 int num_wp = 0;
2837 #define SC_GEN_CK 0
2838 #if SC_GEN_CK
2839 /* Clear the write_protected_cleared flags on all pages. */
2840 for (i = 0; i < page_table_pages; i++)
2841 page_table[i].write_protected_cleared = 0;
2842 #endif
2844 for (i = 0; i < last_free_page; i++) {
2845 generation_index_t generation = page_table[i].gen;
2846 if ((page_table[i].allocated & BOXED_PAGE_FLAG)
2847 && (page_table[i].bytes_used != 0)
2848 && (generation != new_space)
2849 && (generation >= from)
2850 && (generation <= to)) {
2851 page_index_t last_page,j;
2852 int write_protected=1;
2854 /* This should be the start of a region */
2855 gc_assert(page_table[i].first_object_offset == 0);
2857 /* Now work forward until the end of the region */
2858 for (last_page = i; ; last_page++) {
2859 write_protected =
2860 write_protected && page_table[last_page].write_protected;
2861 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2862 /* Or it is PAGE_BYTES and is the last in the block */
2863 || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
2864 || (page_table[last_page+1].bytes_used == 0)
2865 || (page_table[last_page+1].gen != generation)
2866 || (page_table[last_page+1].first_object_offset == 0))
2867 break;
2869 if (!write_protected) {
2870 scavenge(page_address(i),
2871 (page_table[last_page].bytes_used +
2872 (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
2874 /* Now scan the pages and write protect those that
2875 * don't have pointers to younger generations. */
2876 if (enable_page_protection) {
2877 for (j = i; j <= last_page; j++) {
2878 num_wp += update_page_write_prot(j);
2881 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2882 FSHOW((stderr,
2883 "/write protected %d pages within generation %d\n",
2884 num_wp, generation));
2887 i = last_page;
2891 #if SC_GEN_CK
2892 /* Check that none of the write_protected pages in this generation
2893 * have been written to. */
2894 for (i = 0; i < page_table_pages; i++) {
2895 if ((page_table[i].allocation != FREE_PAGE_FLAG)
2896 && (page_table[i].bytes_used != 0)
2897 && (page_table[i].gen == generation)
2898 && (page_table[i].write_protected_cleared != 0)) {
2899 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2900 FSHOW((stderr,
2901 "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
2902 page_table[i].bytes_used,
2903 page_table[i].first_object_offset,
2904 page_table[i].dont_move));
2905 lose("write to protected page %d in scavenge_generation()\n", i);
2908 #endif
2912 /* Scavenge a newspace generation. As it is scavenged new objects may
2913 * be allocated to it; these will also need to be scavenged. This
2914 * repeats until there are no more objects unscavenged in the
2915 * newspace generation.
2917 * To help improve the efficiency, areas written are recorded by
2918 * gc_alloc() and only these scavenged. Sometimes a little more will be
2919 * scavenged, but this causes no harm. An easy check is done that the
2920 * scavenged bytes equals the number allocated in the previous
2921 * scavenge.
2923 * Write-protected pages are not scanned except if they are marked
2924 * dont_move in which case they may have been promoted and still have
2925 * pointers to the from space.
2927 * Write-protected pages could potentially be written by alloc however
2928 * to avoid having to handle re-scavenging of write-protected pages
2929 * gc_alloc() does not write to write-protected pages.
2931 * New areas of objects allocated are recorded alternatively in the two
2932 * new_areas arrays below. */
2933 static struct new_area new_areas_1[NUM_NEW_AREAS];
2934 static struct new_area new_areas_2[NUM_NEW_AREAS];
2936 /* Do one full scan of the new space generation. This is not enough to
2937 * complete the job as new objects may be added to the generation in
2938 * the process which are not scavenged. */
2939 static void
2940 scavenge_newspace_generation_one_scan(generation_index_t generation)
2942 page_index_t i;
2944 FSHOW((stderr,
2945 "/starting one full scan of newspace generation %d\n",
2946 generation));
2947 for (i = 0; i < last_free_page; i++) {
2948 /* Note that this skips over open regions when it encounters them. */
2949 if ((page_table[i].allocated & BOXED_PAGE_FLAG)
2950 && (page_table[i].bytes_used != 0)
2951 && (page_table[i].gen == generation)
2952 && ((page_table[i].write_protected == 0)
2953 /* (This may be redundant as write_protected is now
2954 * cleared before promotion.) */
2955 || (page_table[i].dont_move == 1))) {
2956 page_index_t last_page;
2957 int all_wp=1;
2959 /* The scavenge will start at the first_object_offset of page i.
2961 * We need to find the full extent of this contiguous
2962 * block in case objects span pages.
2964 * Now work forward until the end of this contiguous area
2965 * is found. A small area is preferred as there is a
2966 * better chance of its pages being write-protected. */
2967 for (last_page = i; ;last_page++) {
2968 /* If all pages are write-protected and movable,
2969 * then no need to scavenge */
2970 all_wp=all_wp && page_table[last_page].write_protected &&
2971 !page_table[last_page].dont_move;
2973 /* Check whether this is the last page in this
2974 * contiguous block */
2975 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2976 /* Or it is PAGE_BYTES and is the last in the block */
2977 || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
2978 || (page_table[last_page+1].bytes_used == 0)
2979 || (page_table[last_page+1].gen != generation)
2980 || (page_table[last_page+1].first_object_offset == 0))
2981 break;
2984 /* Do a limited check for write-protected pages. */
2985 if (!all_wp) {
2986 long size;
2988 size = (page_table[last_page].bytes_used
2989 + (last_page-i)*PAGE_BYTES
2990 - page_table[i].first_object_offset)/N_WORD_BYTES;
2991 new_areas_ignore_page = last_page;
2993 scavenge(page_region_start(i), size);
2996 i = last_page;
2999 FSHOW((stderr,
3000 "/done with one full scan of newspace generation %d\n",
3001 generation));
3004 /* Do a complete scavenge of the newspace generation. */
3005 static void
3006 scavenge_newspace_generation(generation_index_t generation)
3008 long i;
3010 /* the new_areas array currently being written to by gc_alloc() */
3011 struct new_area (*current_new_areas)[] = &new_areas_1;
3012 long current_new_areas_index;
3014 /* the new_areas created by the previous scavenge cycle */
3015 struct new_area (*previous_new_areas)[] = NULL;
3016 long previous_new_areas_index;
3018 /* Flush the current regions updating the tables. */
3019 gc_alloc_update_all_page_tables();
3021 /* Turn on the recording of new areas by gc_alloc(). */
3022 new_areas = current_new_areas;
3023 new_areas_index = 0;
3025 /* Don't need to record new areas that get scavenged anyway during
3026 * scavenge_newspace_generation_one_scan. */
3027 record_new_objects = 1;
3029 /* Start with a full scavenge. */
3030 scavenge_newspace_generation_one_scan(generation);
3032 /* Record all new areas now. */
3033 record_new_objects = 2;
3035 /* Give a chance to weak hash tables to make other objects live.
3036 * FIXME: The algorithm implemented here for weak hash table gcing
3037 * is O(W^2+N) as Bruno Haible warns in
3038 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
3039 * see "Implementation 2". */
3040 scav_weak_hash_tables();
3042 /* Flush the current regions updating the tables. */
3043 gc_alloc_update_all_page_tables();
3045 /* Grab new_areas_index. */
3046 current_new_areas_index = new_areas_index;
3048 /*FSHOW((stderr,
3049 "The first scan is finished; current_new_areas_index=%d.\n",
3050 current_new_areas_index));*/
3052 while (current_new_areas_index > 0) {
3053 /* Move the current to the previous new areas */
3054 previous_new_areas = current_new_areas;
3055 previous_new_areas_index = current_new_areas_index;
3057 /* Scavenge all the areas in previous new areas. Any new areas
3058 * allocated are saved in current_new_areas. */
3060 /* Allocate an array for current_new_areas; alternating between
3061 * new_areas_1 and 2 */
3062 if (previous_new_areas == &new_areas_1)
3063 current_new_areas = &new_areas_2;
3064 else
3065 current_new_areas = &new_areas_1;
3067 /* Set up for gc_alloc(). */
3068 new_areas = current_new_areas;
3069 new_areas_index = 0;
3071 /* Check whether previous_new_areas had overflowed. */
3072 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3074 /* New areas of objects allocated have been lost so need to do a
3075 * full scan to be sure! If this becomes a problem try
3076 * increasing NUM_NEW_AREAS. */
3077 if (gencgc_verbose)
3078 SHOW("new_areas overflow, doing full scavenge");
3080 /* Don't need to record new areas that get scavenged
3081 * anyway during scavenge_newspace_generation_one_scan. */
3082 record_new_objects = 1;
3084 scavenge_newspace_generation_one_scan(generation);
3086 /* Record all new areas now. */
3087 record_new_objects = 2;
3089 scav_weak_hash_tables();
3091 /* Flush the current regions updating the tables. */
3092 gc_alloc_update_all_page_tables();
3094 } else {
3096 /* Work through previous_new_areas. */
3097 for (i = 0; i < previous_new_areas_index; i++) {
3098 long page = (*previous_new_areas)[i].page;
3099 long offset = (*previous_new_areas)[i].offset;
3100 long size = (*previous_new_areas)[i].size / N_WORD_BYTES;
3101 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
3102 scavenge(page_address(page)+offset, size);
3105 scav_weak_hash_tables();
3107 /* Flush the current regions updating the tables. */
3108 gc_alloc_update_all_page_tables();
3111 current_new_areas_index = new_areas_index;
3113 /*FSHOW((stderr,
3114 "The re-scan has finished; current_new_areas_index=%d.\n",
3115 current_new_areas_index));*/
3118 /* Turn off recording of areas allocated by gc_alloc(). */
3119 record_new_objects = 0;
3121 #if SC_NS_GEN_CK
3122 /* Check that none of the write_protected pages in this generation
3123 * have been written to. */
3124 for (i = 0; i < page_table_pages; i++) {
3125 if ((page_table[i].allocation != FREE_PAGE_FLAG)
3126 && (page_table[i].bytes_used != 0)
3127 && (page_table[i].gen == generation)
3128 && (page_table[i].write_protected_cleared != 0)
3129 && (page_table[i].dont_move == 0)) {
3130 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
3131 i, generation, page_table[i].dont_move);
3134 #endif
3137 /* Un-write-protect all the pages in from_space. This is done at the
3138 * start of a GC else there may be many page faults while scavenging
3139 * the newspace (I've seen drive the system time to 99%). These pages
3140 * would need to be unprotected anyway before unmapping in
3141 * free_oldspace; not sure what effect this has on paging.. */
3142 static void
3143 unprotect_oldspace(void)
3145 page_index_t i;
3147 for (i = 0; i < last_free_page; i++) {
3148 if ((page_table[i].allocated != FREE_PAGE_FLAG)
3149 && (page_table[i].bytes_used != 0)
3150 && (page_table[i].gen == from_space)) {
3151 void *page_start;
3153 page_start = (void *)page_address(i);
3155 /* Remove any write-protection. We should be able to rely
3156 * on the write-protect flag to avoid redundant calls. */
3157 if (page_table[i].write_protected) {
3158 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3159 page_table[i].write_protected = 0;
3165 /* Work through all the pages and free any in from_space. This
3166 * assumes that all objects have been copied or promoted to an older
3167 * generation. Bytes_allocated and the generation bytes_allocated
3168 * counter are updated. The number of bytes freed is returned. */
3169 static long
3170 free_oldspace(void)
3172 long bytes_freed = 0;
3173 page_index_t first_page, last_page;
3175 first_page = 0;
3177 do {
3178 /* Find a first page for the next region of pages. */
3179 while ((first_page < last_free_page)
3180 && ((page_table[first_page].allocated == FREE_PAGE_FLAG)
3181 || (page_table[first_page].bytes_used == 0)
3182 || (page_table[first_page].gen != from_space)))
3183 first_page++;
3185 if (first_page >= last_free_page)
3186 break;
3188 /* Find the last page of this region. */
3189 last_page = first_page;
3191 do {
3192 /* Free the page. */
3193 bytes_freed += page_table[last_page].bytes_used;
3194 generations[page_table[last_page].gen].bytes_allocated -=
3195 page_table[last_page].bytes_used;
3196 page_table[last_page].allocated = FREE_PAGE_FLAG;
3197 page_table[last_page].bytes_used = 0;
3199 /* Remove any write-protection. We should be able to rely
3200 * on the write-protect flag to avoid redundant calls. */
3202 void *page_start = (void *)page_address(last_page);
3204 if (page_table[last_page].write_protected) {
3205 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3206 page_table[last_page].write_protected = 0;
3209 last_page++;
3211 while ((last_page < last_free_page)
3212 && (page_table[last_page].allocated != FREE_PAGE_FLAG)
3213 && (page_table[last_page].bytes_used != 0)
3214 && (page_table[last_page].gen == from_space));
3216 #ifdef READ_PROTECT_FREE_PAGES
3217 os_protect(page_address(first_page),
3218 PAGE_BYTES*(last_page-first_page),
3219 OS_VM_PROT_NONE);
3220 #endif
3221 first_page = last_page;
3222 } while (first_page < last_free_page);
3224 bytes_allocated -= bytes_freed;
3225 return bytes_freed;
3228 #if 0
3229 /* Print some information about a pointer at the given address. */
3230 static void
3231 print_ptr(lispobj *addr)
3233 /* If addr is in the dynamic space then out the page information. */
3234 page_index_t pi1 = find_page_index((void*)addr);
3236 if (pi1 != -1)
3237 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %d dont_move %d\n",
3238 (unsigned long) addr,
3239 pi1,
3240 page_table[pi1].allocated,
3241 page_table[pi1].gen,
3242 page_table[pi1].bytes_used,
3243 page_table[pi1].first_object_offset,
3244 page_table[pi1].dont_move);
3245 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3246 *(addr-4),
3247 *(addr-3),
3248 *(addr-2),
3249 *(addr-1),
3250 *(addr-0),
3251 *(addr+1),
3252 *(addr+2),
3253 *(addr+3),
3254 *(addr+4));
3256 #endif
3258 static void
3259 verify_space(lispobj *start, size_t words)
3261 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3262 int is_in_readonly_space =
3263 (READ_ONLY_SPACE_START <= (unsigned long)start &&
3264 (unsigned long)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3266 while (words > 0) {
3267 size_t count = 1;
3268 lispobj thing = *(lispobj*)start;
3270 if (is_lisp_pointer(thing)) {
3271 page_index_t page_index = find_page_index((void*)thing);
3272 long to_readonly_space =
3273 (READ_ONLY_SPACE_START <= thing &&
3274 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3275 long to_static_space =
3276 (STATIC_SPACE_START <= thing &&
3277 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3279 /* Does it point to the dynamic space? */
3280 if (page_index != -1) {
3281 /* If it's within the dynamic space it should point to a used
3282 * page. XX Could check the offset too. */
3283 if ((page_table[page_index].allocated != FREE_PAGE_FLAG)
3284 && (page_table[page_index].bytes_used == 0))
3285 lose ("Ptr %x @ %x sees free page.\n", thing, start);
3286 /* Check that it doesn't point to a forwarding pointer! */
3287 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3288 lose("Ptr %x @ %x sees forwarding ptr.\n", thing, start);
3290 /* Check that its not in the RO space as it would then be a
3291 * pointer from the RO to the dynamic space. */
3292 if (is_in_readonly_space) {
3293 lose("ptr to dynamic space %x from RO space %x\n",
3294 thing, start);
3296 /* Does it point to a plausible object? This check slows
3297 * it down a lot (so it's commented out).
3299 * "a lot" is serious: it ate 50 minutes cpu time on
3300 * my duron 950 before I came back from lunch and
3301 * killed it.
3303 * FIXME: Add a variable to enable this
3304 * dynamically. */
3306 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3307 lose("ptr %x to invalid object %x\n", thing, start);
3310 } else {
3311 /* Verify that it points to another valid space. */
3312 if (!to_readonly_space && !to_static_space) {
3313 lose("Ptr %x @ %x sees junk.\n", thing, start);
3316 } else {
3317 if (!(fixnump(thing))) {
3318 /* skip fixnums */
3319 switch(widetag_of(*start)) {
3321 /* boxed objects */
3322 case SIMPLE_VECTOR_WIDETAG:
3323 case RATIO_WIDETAG:
3324 case COMPLEX_WIDETAG:
3325 case SIMPLE_ARRAY_WIDETAG:
3326 case COMPLEX_BASE_STRING_WIDETAG:
3327 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3328 case COMPLEX_CHARACTER_STRING_WIDETAG:
3329 #endif
3330 case COMPLEX_VECTOR_NIL_WIDETAG:
3331 case COMPLEX_BIT_VECTOR_WIDETAG:
3332 case COMPLEX_VECTOR_WIDETAG:
3333 case COMPLEX_ARRAY_WIDETAG:
3334 case CLOSURE_HEADER_WIDETAG:
3335 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3336 case VALUE_CELL_HEADER_WIDETAG:
3337 case SYMBOL_HEADER_WIDETAG:
3338 case CHARACTER_WIDETAG:
3339 #if N_WORD_BITS == 64
3340 case SINGLE_FLOAT_WIDETAG:
3341 #endif
3342 case UNBOUND_MARKER_WIDETAG:
3343 case FDEFN_WIDETAG:
3344 count = 1;
3345 break;
3347 case INSTANCE_HEADER_WIDETAG:
3349 lispobj nuntagged;
3350 long ntotal = HeaderValue(thing);
3351 lispobj layout = ((struct instance *)start)->slots[0];
3352 if (!layout) {
3353 count = 1;
3354 break;
3356 nuntagged = ((struct layout *)native_pointer(layout))->n_untagged_slots;
3357 verify_space(start + 1, ntotal - fixnum_value(nuntagged));
3358 count = ntotal + 1;
3359 break;
3361 case CODE_HEADER_WIDETAG:
3363 lispobj object = *start;
3364 struct code *code;
3365 long nheader_words, ncode_words, nwords;
3366 lispobj fheaderl;
3367 struct simple_fun *fheaderp;
3369 code = (struct code *) start;
3371 /* Check that it's not in the dynamic space.
3372 * FIXME: Isn't is supposed to be OK for code
3373 * objects to be in the dynamic space these days? */
3374 if (is_in_dynamic_space
3375 /* It's ok if it's byte compiled code. The trace
3376 * table offset will be a fixnum if it's x86
3377 * compiled code - check.
3379 * FIXME: #^#@@! lack of abstraction here..
3380 * This line can probably go away now that
3381 * there's no byte compiler, but I've got
3382 * too much to worry about right now to try
3383 * to make sure. -- WHN 2001-10-06 */
3384 && fixnump(code->trace_table_offset)
3385 /* Only when enabled */
3386 && verify_dynamic_code_check) {
3387 FSHOW((stderr,
3388 "/code object at %x in the dynamic space\n",
3389 start));
3392 ncode_words = fixnum_value(code->code_size);
3393 nheader_words = HeaderValue(object);
3394 nwords = ncode_words + nheader_words;
3395 nwords = CEILING(nwords, 2);
3396 /* Scavenge the boxed section of the code data block */
3397 verify_space(start + 1, nheader_words - 1);
3399 /* Scavenge the boxed section of each function
3400 * object in the code data block. */
3401 fheaderl = code->entry_points;
3402 while (fheaderl != NIL) {
3403 fheaderp =
3404 (struct simple_fun *) native_pointer(fheaderl);
3405 gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
3406 verify_space(&fheaderp->name, 1);
3407 verify_space(&fheaderp->arglist, 1);
3408 verify_space(&fheaderp->type, 1);
3409 fheaderl = fheaderp->next;
3411 count = nwords;
3412 break;
3415 /* unboxed objects */
3416 case BIGNUM_WIDETAG:
3417 #if N_WORD_BITS != 64
3418 case SINGLE_FLOAT_WIDETAG:
3419 #endif
3420 case DOUBLE_FLOAT_WIDETAG:
3421 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3422 case LONG_FLOAT_WIDETAG:
3423 #endif
3424 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3425 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3426 #endif
3427 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3428 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3429 #endif
3430 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3431 case COMPLEX_LONG_FLOAT_WIDETAG:
3432 #endif
3433 case SIMPLE_BASE_STRING_WIDETAG:
3434 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3435 case SIMPLE_CHARACTER_STRING_WIDETAG:
3436 #endif
3437 case SIMPLE_BIT_VECTOR_WIDETAG:
3438 case SIMPLE_ARRAY_NIL_WIDETAG:
3439 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3440 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3441 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3442 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3443 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3444 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3445 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
3446 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
3447 #endif
3448 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3449 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3450 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
3451 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
3452 #endif
3453 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3454 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3455 #endif
3456 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3457 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3458 #endif
3459 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3460 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3461 #endif
3462 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3463 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3464 #endif
3465 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3466 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3467 #endif
3468 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3469 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3470 #endif
3471 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
3472 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
3473 #endif
3474 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3475 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3476 #endif
3477 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3478 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3479 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3480 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3481 #endif
3482 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3483 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3484 #endif
3485 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3486 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3487 #endif
3488 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3489 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3490 #endif
3491 case SAP_WIDETAG:
3492 case WEAK_POINTER_WIDETAG:
3493 #ifdef LUTEX_WIDETAG
3494 case LUTEX_WIDETAG:
3495 #endif
3496 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3497 case NO_TLS_VALUE_MARKER_WIDETAG:
3498 #endif
3499 count = (sizetab[widetag_of(*start)])(start);
3500 break;
3502 default:
3503 lose("Unhandled widetag 0x%x at 0x%x\n", widetag_of(*start), start);
3507 start += count;
3508 words -= count;
3512 static void
3513 verify_gc(void)
3515 /* FIXME: It would be nice to make names consistent so that
3516 * foo_size meant size *in* *bytes* instead of size in some
3517 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3518 * Some counts of lispobjs are called foo_count; it might be good
3519 * to grep for all foo_size and rename the appropriate ones to
3520 * foo_count. */
3521 long read_only_space_size =
3522 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3523 - (lispobj*)READ_ONLY_SPACE_START;
3524 long static_space_size =
3525 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3526 - (lispobj*)STATIC_SPACE_START;
3527 struct thread *th;
3528 for_each_thread(th) {
3529 long binding_stack_size =
3530 (lispobj*)get_binding_stack_pointer(th)
3531 - (lispobj*)th->binding_stack_start;
3532 verify_space(th->binding_stack_start, binding_stack_size);
3534 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3535 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3538 static void
3539 verify_generation(generation_index_t generation)
3541 page_index_t i;
3543 for (i = 0; i < last_free_page; i++) {
3544 if ((page_table[i].allocated != FREE_PAGE_FLAG)
3545 && (page_table[i].bytes_used != 0)
3546 && (page_table[i].gen == generation)) {
3547 page_index_t last_page;
3548 int region_allocation = page_table[i].allocated;
3550 /* This should be the start of a contiguous block */
3551 gc_assert(page_table[i].first_object_offset == 0);
3553 /* Need to find the full extent of this contiguous block in case
3554 objects span pages. */
3556 /* Now work forward until the end of this contiguous area is
3557 found. */
3558 for (last_page = i; ;last_page++)
3559 /* Check whether this is the last page in this contiguous
3560 * block. */
3561 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3562 /* Or it is PAGE_BYTES and is the last in the block */
3563 || (page_table[last_page+1].allocated != region_allocation)
3564 || (page_table[last_page+1].bytes_used == 0)
3565 || (page_table[last_page+1].gen != generation)
3566 || (page_table[last_page+1].first_object_offset == 0))
3567 break;
3569 verify_space(page_address(i), (page_table[last_page].bytes_used
3570 + (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
3571 i = last_page;
3576 /* Check that all the free space is zero filled. */
3577 static void
3578 verify_zero_fill(void)
3580 page_index_t page;
3582 for (page = 0; page < last_free_page; page++) {
3583 if (page_table[page].allocated == FREE_PAGE_FLAG) {
3584 /* The whole page should be zero filled. */
3585 long *start_addr = (long *)page_address(page);
3586 long size = 1024;
3587 long i;
3588 for (i = 0; i < size; i++) {
3589 if (start_addr[i] != 0) {
3590 lose("free page not zero at %x\n", start_addr + i);
3593 } else {
3594 long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
3595 if (free_bytes > 0) {
3596 long *start_addr = (long *)((unsigned long)page_address(page)
3597 + page_table[page].bytes_used);
3598 long size = free_bytes / N_WORD_BYTES;
3599 long i;
3600 for (i = 0; i < size; i++) {
3601 if (start_addr[i] != 0) {
3602 lose("free region not zero at %x\n", start_addr + i);
3610 /* External entry point for verify_zero_fill */
3611 void
3612 gencgc_verify_zero_fill(void)
3614 /* Flush the alloc regions updating the tables. */
3615 gc_alloc_update_all_page_tables();
3616 SHOW("verifying zero fill");
3617 verify_zero_fill();
3620 static void
3621 verify_dynamic_space(void)
3623 generation_index_t i;
3625 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3626 verify_generation(i);
3628 if (gencgc_enable_verify_zero_fill)
3629 verify_zero_fill();
3632 /* Write-protect all the dynamic boxed pages in the given generation. */
3633 static void
3634 write_protect_generation_pages(generation_index_t generation)
3636 page_index_t start;
3638 gc_assert(generation < SCRATCH_GENERATION);
3640 for (start = 0; start < last_free_page; start++) {
3641 if ((page_table[start].allocated == BOXED_PAGE_FLAG)
3642 && (page_table[start].bytes_used != 0)
3643 && !page_table[start].dont_move
3644 && (page_table[start].gen == generation)) {
3645 void *page_start;
3646 page_index_t last;
3648 /* Note the page as protected in the page tables. */
3649 page_table[start].write_protected = 1;
3651 for (last = start + 1; last < last_free_page; last++) {
3652 if ((page_table[last].allocated != BOXED_PAGE_FLAG)
3653 || (page_table[last].bytes_used == 0)
3654 || page_table[last].dont_move
3655 || (page_table[last].gen != generation))
3656 break;
3657 page_table[last].write_protected = 1;
3660 page_start = (void *)page_address(start);
3662 os_protect(page_start,
3663 PAGE_BYTES * (last - start),
3664 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3666 start = last;
3670 if (gencgc_verbose > 1) {
3671 FSHOW((stderr,
3672 "/write protected %d of %d pages in generation %d\n",
3673 count_write_protect_generation_pages(generation),
3674 count_generation_pages(generation),
3675 generation));
3679 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3681 static void
3682 scavenge_control_stack()
3684 unsigned long control_stack_size;
3686 /* This is going to be a big problem when we try to port threads
3687 * to PPC... CLH */
3688 struct thread *th = arch_os_get_current_thread();
3689 lispobj *control_stack =
3690 (lispobj *)(th->control_stack_start);
3692 control_stack_size = current_control_stack_pointer - control_stack;
3693 scavenge(control_stack, control_stack_size);
3696 /* Scavenging Interrupt Contexts */
3698 static int boxed_registers[] = BOXED_REGISTERS;
3700 static void
3701 scavenge_interrupt_context(os_context_t * context)
3703 int i;
3705 #ifdef reg_LIP
3706 unsigned long lip;
3707 unsigned long lip_offset;
3708 int lip_register_pair;
3709 #endif
3710 unsigned long pc_code_offset;
3712 #ifdef ARCH_HAS_LINK_REGISTER
3713 unsigned long lr_code_offset;
3714 #endif
3715 #ifdef ARCH_HAS_NPC_REGISTER
3716 unsigned long npc_code_offset;
3717 #endif
3719 #ifdef reg_LIP
3720 /* Find the LIP's register pair and calculate it's offset */
3721 /* before we scavenge the context. */
3724 * I (RLT) think this is trying to find the boxed register that is
3725 * closest to the LIP address, without going past it. Usually, it's
3726 * reg_CODE or reg_LRA. But sometimes, nothing can be found.
3728 lip = *os_context_register_addr(context, reg_LIP);
3729 lip_offset = 0x7FFFFFFF;
3730 lip_register_pair = -1;
3731 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3732 unsigned long reg;
3733 long offset;
3734 int index;
3736 index = boxed_registers[i];
3737 reg = *os_context_register_addr(context, index);
3738 if ((reg & ~((1L<<N_LOWTAG_BITS)-1)) <= lip) {
3739 offset = lip - reg;
3740 if (offset < lip_offset) {
3741 lip_offset = offset;
3742 lip_register_pair = index;
3746 #endif /* reg_LIP */
3748 /* Compute the PC's offset from the start of the CODE */
3749 /* register. */
3750 pc_code_offset = *os_context_pc_addr(context) - *os_context_register_addr(context, reg_CODE);
3751 #ifdef ARCH_HAS_NPC_REGISTER
3752 npc_code_offset = *os_context_npc_addr(context) - *os_context_register_addr(context, reg_CODE);
3753 #endif /* ARCH_HAS_NPC_REGISTER */
3755 #ifdef ARCH_HAS_LINK_REGISTER
3756 lr_code_offset =
3757 *os_context_lr_addr(context) -
3758 *os_context_register_addr(context, reg_CODE);
3759 #endif
3761 /* Scanvenge all boxed registers in the context. */
3762 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3763 int index;
3764 lispobj foo;
3766 index = boxed_registers[i];
3767 foo = *os_context_register_addr(context, index);
3768 scavenge(&foo, 1);
3769 *os_context_register_addr(context, index) = foo;
3771 scavenge((lispobj*) &(*os_context_register_addr(context, index)), 1);
3774 #ifdef reg_LIP
3775 /* Fix the LIP */
3778 * But what happens if lip_register_pair is -1? *os_context_register_addr on Solaris
3779 * (see solaris_register_address in solaris-os.c) will return
3780 * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
3781 * that what we really want? My guess is that that is not what we
3782 * want, so if lip_register_pair is -1, we don't touch reg_LIP at
3783 * all. But maybe it doesn't really matter if LIP is trashed?
3785 if (lip_register_pair >= 0) {
3786 *os_context_register_addr(context, reg_LIP) =
3787 *os_context_register_addr(context, lip_register_pair) + lip_offset;
3789 #endif /* reg_LIP */
3791 /* Fix the PC if it was in from space */
3792 if (from_space_p(*os_context_pc_addr(context)))
3793 *os_context_pc_addr(context) = *os_context_register_addr(context, reg_CODE) + pc_code_offset;
3795 #ifdef ARCH_HAS_LINK_REGISTER
3796 /* Fix the LR ditto; important if we're being called from
3797 * an assembly routine that expects to return using blr, otherwise
3798 * harmless */
3799 if (from_space_p(*os_context_lr_addr(context)))
3800 *os_context_lr_addr(context) =
3801 *os_context_register_addr(context, reg_CODE) + lr_code_offset;
3802 #endif
3804 #ifdef ARCH_HAS_NPC_REGISTER
3805 if (from_space_p(*os_context_npc_addr(context)))
3806 *os_context_npc_addr(context) = *os_context_register_addr(context, reg_CODE) + npc_code_offset;
3807 #endif /* ARCH_HAS_NPC_REGISTER */
3810 void
3811 scavenge_interrupt_contexts(void)
3813 int i, index;
3814 os_context_t *context;
3816 struct thread *th=arch_os_get_current_thread();
3818 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,0));
3820 #if defined(DEBUG_PRINT_CONTEXT_INDEX)
3821 printf("Number of active contexts: %d\n", index);
3822 #endif
3824 for (i = 0; i < index; i++) {
3825 context = th->interrupt_contexts[i];
3826 scavenge_interrupt_context(context);
3830 #endif
3832 #if defined(LISP_FEATURE_SB_THREAD)
3833 static void
3834 preserve_context_registers (os_context_t *c)
3836 void **ptr;
3837 /* On Darwin the signal context isn't a contiguous block of memory,
3838 * so just preserve_pointering its contents won't be sufficient.
3840 #if defined(LISP_FEATURE_DARWIN)
3841 #if defined LISP_FEATURE_X86
3842 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3843 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3844 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3845 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3846 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3847 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3848 preserve_pointer((void*)*os_context_pc_addr(c));
3849 #elif defined LISP_FEATURE_X86_64
3850 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3851 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3852 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3853 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3854 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3855 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3856 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3857 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3858 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3859 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3860 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3861 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3862 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3863 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3864 preserve_pointer((void*)*os_context_pc_addr(c));
3865 #else
3866 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3867 #endif
3868 #endif
3869 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3870 preserve_pointer(*ptr);
3873 #endif
3875 /* Garbage collect a generation. If raise is 0 then the remains of the
3876 * generation are not raised to the next generation. */
3877 static void
3878 garbage_collect_generation(generation_index_t generation, int raise)
3880 unsigned long bytes_freed;
3881 page_index_t i;
3882 unsigned long static_space_size;
3883 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3884 struct thread *th;
3885 #endif
3886 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
3888 /* The oldest generation can't be raised. */
3889 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
3891 /* Check if weak hash tables were processed in the previous GC. */
3892 gc_assert(weak_hash_tables == NULL);
3894 /* Initialize the weak pointer list. */
3895 weak_pointers = NULL;
3897 #ifdef LUTEX_WIDETAG
3898 unmark_lutexes(generation);
3899 #endif
3901 /* When a generation is not being raised it is transported to a
3902 * temporary generation (NUM_GENERATIONS), and lowered when
3903 * done. Set up this new generation. There should be no pages
3904 * allocated to it yet. */
3905 if (!raise) {
3906 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3909 /* Set the global src and dest. generations */
3910 from_space = generation;
3911 if (raise)
3912 new_space = generation+1;
3913 else
3914 new_space = SCRATCH_GENERATION;
3916 /* Change to a new space for allocation, resetting the alloc_start_page */
3917 gc_alloc_generation = new_space;
3918 generations[new_space].alloc_start_page = 0;
3919 generations[new_space].alloc_unboxed_start_page = 0;
3920 generations[new_space].alloc_large_start_page = 0;
3921 generations[new_space].alloc_large_unboxed_start_page = 0;
3923 /* Before any pointers are preserved, the dont_move flags on the
3924 * pages need to be cleared. */
3925 for (i = 0; i < last_free_page; i++)
3926 if(page_table[i].gen==from_space)
3927 page_table[i].dont_move = 0;
3929 /* Un-write-protect the old-space pages. This is essential for the
3930 * promoted pages as they may contain pointers into the old-space
3931 * which need to be scavenged. It also helps avoid unnecessary page
3932 * faults as forwarding pointers are written into them. They need to
3933 * be un-protected anyway before unmapping later. */
3934 unprotect_oldspace();
3936 /* Scavenge the stacks' conservative roots. */
3938 /* there are potentially two stacks for each thread: the main
3939 * stack, which may contain Lisp pointers, and the alternate stack.
3940 * We don't ever run Lisp code on the altstack, but it may
3941 * host a sigcontext with lisp objects in it */
3943 /* what we need to do: (1) find the stack pointer for the main
3944 * stack; scavenge it (2) find the interrupt context on the
3945 * alternate stack that might contain lisp values, and scavenge
3946 * that */
3948 /* we assume that none of the preceding applies to the thread that
3949 * initiates GC. If you ever call GC from inside an altstack
3950 * handler, you will lose. */
3952 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3953 /* And if we're saving a core, there's no point in being conservative. */
3954 if (conservative_stack) {
3955 for_each_thread(th) {
3956 void **ptr;
3957 void **esp=(void **)-1;
3958 #ifdef LISP_FEATURE_SB_THREAD
3959 long i,free;
3960 if(th==arch_os_get_current_thread()) {
3961 /* Somebody is going to burn in hell for this, but casting
3962 * it in two steps shuts gcc up about strict aliasing. */
3963 esp = (void **)((void *)&raise);
3964 } else {
3965 void **esp1;
3966 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3967 for(i=free-1;i>=0;i--) {
3968 os_context_t *c=th->interrupt_contexts[i];
3969 esp1 = (void **) *os_context_register_addr(c,reg_SP);
3970 if (esp1>=(void **)th->control_stack_start &&
3971 esp1<(void **)th->control_stack_end) {
3972 if(esp1<esp) esp=esp1;
3973 preserve_context_registers(c);
3977 #else
3978 esp = (void **)((void *)&raise);
3979 #endif
3980 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
3981 preserve_pointer(*ptr);
3985 #endif
3987 #ifdef QSHOW
3988 if (gencgc_verbose > 1) {
3989 long num_dont_move_pages = count_dont_move_pages();
3990 fprintf(stderr,
3991 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
3992 num_dont_move_pages,
3993 num_dont_move_pages * PAGE_BYTES);
3995 #endif
3997 /* Scavenge all the rest of the roots. */
3999 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
4001 * If not x86, we need to scavenge the interrupt context(s) and the
4002 * control stack.
4004 scavenge_interrupt_contexts();
4005 scavenge_control_stack();
4006 #endif
4008 /* Scavenge the Lisp functions of the interrupt handlers, taking
4009 * care to avoid SIG_DFL and SIG_IGN. */
4010 for (i = 0; i < NSIG; i++) {
4011 union interrupt_handler handler = interrupt_handlers[i];
4012 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
4013 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
4014 scavenge((lispobj *)(interrupt_handlers + i), 1);
4017 /* Scavenge the binding stacks. */
4019 struct thread *th;
4020 for_each_thread(th) {
4021 long len= (lispobj *)get_binding_stack_pointer(th) -
4022 th->binding_stack_start;
4023 scavenge((lispobj *) th->binding_stack_start,len);
4024 #ifdef LISP_FEATURE_SB_THREAD
4025 /* do the tls as well */
4026 len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
4027 (sizeof (struct thread))/(sizeof (lispobj));
4028 scavenge((lispobj *) (th+1),len);
4029 #endif
4033 /* The original CMU CL code had scavenge-read-only-space code
4034 * controlled by the Lisp-level variable
4035 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
4036 * wasn't documented under what circumstances it was useful or
4037 * safe to turn it on, so it's been turned off in SBCL. If you
4038 * want/need this functionality, and can test and document it,
4039 * please submit a patch. */
4040 #if 0
4041 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
4042 unsigned long read_only_space_size =
4043 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
4044 (lispobj*)READ_ONLY_SPACE_START;
4045 FSHOW((stderr,
4046 "/scavenge read only space: %d bytes\n",
4047 read_only_space_size * sizeof(lispobj)));
4048 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
4050 #endif
4052 /* Scavenge static space. */
4053 static_space_size =
4054 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
4055 (lispobj *)STATIC_SPACE_START;
4056 if (gencgc_verbose > 1) {
4057 FSHOW((stderr,
4058 "/scavenge static space: %d bytes\n",
4059 static_space_size * sizeof(lispobj)));
4061 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
4063 /* All generations but the generation being GCed need to be
4064 * scavenged. The new_space generation needs special handling as
4065 * objects may be moved in - it is handled separately below. */
4066 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
4068 /* Finally scavenge the new_space generation. Keep going until no
4069 * more objects are moved into the new generation */
4070 scavenge_newspace_generation(new_space);
4072 /* FIXME: I tried reenabling this check when debugging unrelated
4073 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
4074 * Since the current GC code seems to work well, I'm guessing that
4075 * this debugging code is just stale, but I haven't tried to
4076 * figure it out. It should be figured out and then either made to
4077 * work or just deleted. */
4078 #define RESCAN_CHECK 0
4079 #if RESCAN_CHECK
4080 /* As a check re-scavenge the newspace once; no new objects should
4081 * be found. */
4083 long old_bytes_allocated = bytes_allocated;
4084 long bytes_allocated;
4086 /* Start with a full scavenge. */
4087 scavenge_newspace_generation_one_scan(new_space);
4089 /* Flush the current regions, updating the tables. */
4090 gc_alloc_update_all_page_tables();
4092 bytes_allocated = bytes_allocated - old_bytes_allocated;
4094 if (bytes_allocated != 0) {
4095 lose("Rescan of new_space allocated %d more bytes.\n",
4096 bytes_allocated);
4099 #endif
4101 scan_weak_hash_tables();
4102 scan_weak_pointers();
4104 /* Flush the current regions, updating the tables. */
4105 gc_alloc_update_all_page_tables();
4107 /* Free the pages in oldspace, but not those marked dont_move. */
4108 bytes_freed = free_oldspace();
4110 /* If the GC is not raising the age then lower the generation back
4111 * to its normal generation number */
4112 if (!raise) {
4113 for (i = 0; i < last_free_page; i++)
4114 if ((page_table[i].bytes_used != 0)
4115 && (page_table[i].gen == SCRATCH_GENERATION))
4116 page_table[i].gen = generation;
4117 gc_assert(generations[generation].bytes_allocated == 0);
4118 generations[generation].bytes_allocated =
4119 generations[SCRATCH_GENERATION].bytes_allocated;
4120 generations[SCRATCH_GENERATION].bytes_allocated = 0;
4123 /* Reset the alloc_start_page for generation. */
4124 generations[generation].alloc_start_page = 0;
4125 generations[generation].alloc_unboxed_start_page = 0;
4126 generations[generation].alloc_large_start_page = 0;
4127 generations[generation].alloc_large_unboxed_start_page = 0;
4129 if (generation >= verify_gens) {
4130 if (gencgc_verbose)
4131 SHOW("verifying");
4132 verify_gc();
4133 verify_dynamic_space();
4136 /* Set the new gc trigger for the GCed generation. */
4137 generations[generation].gc_trigger =
4138 generations[generation].bytes_allocated
4139 + generations[generation].bytes_consed_between_gc;
4141 if (raise)
4142 generations[generation].num_gc = 0;
4143 else
4144 ++generations[generation].num_gc;
4146 #ifdef LUTEX_WIDETAG
4147 reap_lutexes(generation);
4148 if (raise)
4149 move_lutexes(generation, generation+1);
4150 #endif
4153 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
4154 long
4155 update_dynamic_space_free_pointer(void)
4157 page_index_t last_page = -1, i;
4159 for (i = 0; i < last_free_page; i++)
4160 if ((page_table[i].allocated != FREE_PAGE_FLAG)
4161 && (page_table[i].bytes_used != 0))
4162 last_page = i;
4164 last_free_page = last_page+1;
4166 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
4167 return 0; /* dummy value: return something ... */
4170 static void
4171 remap_free_pages (page_index_t from, page_index_t to)
4173 page_index_t first_page, last_page;
4175 for (first_page = from; first_page <= to; first_page++) {
4176 if (page_table[first_page].allocated != FREE_PAGE_FLAG ||
4177 page_table[first_page].need_to_zero == 0) {
4178 continue;
4181 last_page = first_page + 1;
4182 while (page_table[last_page].allocated == FREE_PAGE_FLAG &&
4183 last_page < to &&
4184 page_table[last_page].need_to_zero == 1) {
4185 last_page++;
4188 /* There's a mysterious Solaris/x86 problem with using mmap
4189 * tricks for memory zeroing. See sbcl-devel thread
4190 * "Re: patch: standalone executable redux".
4192 #if defined(LISP_FEATURE_SUNOS)
4193 zero_pages(first_page, last_page-1);
4194 #else
4195 zero_pages_with_mmap(first_page, last_page-1);
4196 #endif
4198 first_page = last_page;
4202 generation_index_t small_generation_limit = 1;
4204 /* GC all generations newer than last_gen, raising the objects in each
4205 * to the next older generation - we finish when all generations below
4206 * last_gen are empty. Then if last_gen is due for a GC, or if
4207 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
4208 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
4210 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4211 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4212 void
4213 collect_garbage(generation_index_t last_gen)
4215 generation_index_t gen = 0, i;
4216 int raise;
4217 int gen_to_wp;
4218 /* The largest value of last_free_page seen since the time
4219 * remap_free_pages was called. */
4220 static page_index_t high_water_mark = 0;
4222 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
4224 gc_active_p = 1;
4226 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
4227 FSHOW((stderr,
4228 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4229 last_gen));
4230 last_gen = 0;
4233 /* Flush the alloc regions updating the tables. */
4234 gc_alloc_update_all_page_tables();
4236 /* Verify the new objects created by Lisp code. */
4237 if (pre_verify_gen_0) {
4238 FSHOW((stderr, "pre-checking generation 0\n"));
4239 verify_generation(0);
4242 if (gencgc_verbose > 1)
4243 print_generation_stats(0);
4245 do {
4246 /* Collect the generation. */
4248 if (gen >= gencgc_oldest_gen_to_gc) {
4249 /* Never raise the oldest generation. */
4250 raise = 0;
4251 } else {
4252 raise =
4253 (gen < last_gen)
4254 || (generations[gen].num_gc >= generations[gen].trigger_age);
4257 if (gencgc_verbose > 1) {
4258 FSHOW((stderr,
4259 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4260 gen,
4261 raise,
4262 generations[gen].bytes_allocated,
4263 generations[gen].gc_trigger,
4264 generations[gen].num_gc));
4267 /* If an older generation is being filled, then update its
4268 * memory age. */
4269 if (raise == 1) {
4270 generations[gen+1].cum_sum_bytes_allocated +=
4271 generations[gen+1].bytes_allocated;
4274 garbage_collect_generation(gen, raise);
4276 /* Reset the memory age cum_sum. */
4277 generations[gen].cum_sum_bytes_allocated = 0;
4279 if (gencgc_verbose > 1) {
4280 FSHOW((stderr, "GC of generation %d finished:\n", gen));
4281 print_generation_stats(0);
4284 gen++;
4285 } while ((gen <= gencgc_oldest_gen_to_gc)
4286 && ((gen < last_gen)
4287 || ((gen <= gencgc_oldest_gen_to_gc)
4288 && raise
4289 && (generations[gen].bytes_allocated
4290 > generations[gen].gc_trigger)
4291 && (gen_av_mem_age(gen)
4292 > generations[gen].min_av_mem_age))));
4294 /* Now if gen-1 was raised all generations before gen are empty.
4295 * If it wasn't raised then all generations before gen-1 are empty.
4297 * Now objects within this gen's pages cannot point to younger
4298 * generations unless they are written to. This can be exploited
4299 * by write-protecting the pages of gen; then when younger
4300 * generations are GCed only the pages which have been written
4301 * need scanning. */
4302 if (raise)
4303 gen_to_wp = gen;
4304 else
4305 gen_to_wp = gen - 1;
4307 /* There's not much point in WPing pages in generation 0 as it is
4308 * never scavenged (except promoted pages). */
4309 if ((gen_to_wp > 0) && enable_page_protection) {
4310 /* Check that they are all empty. */
4311 for (i = 0; i < gen_to_wp; i++) {
4312 if (generations[i].bytes_allocated)
4313 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4314 gen_to_wp, i);
4316 write_protect_generation_pages(gen_to_wp);
4319 /* Set gc_alloc() back to generation 0. The current regions should
4320 * be flushed after the above GCs. */
4321 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4322 gc_alloc_generation = 0;
4324 /* Save the high-water mark before updating last_free_page */
4325 if (last_free_page > high_water_mark)
4326 high_water_mark = last_free_page;
4328 update_dynamic_space_free_pointer();
4330 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4331 if(gencgc_verbose)
4332 fprintf(stderr,"Next gc when %ld bytes have been consed\n",
4333 auto_gc_trigger);
4335 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4336 * back to the OS.
4338 if (gen > small_generation_limit) {
4339 if (last_free_page > high_water_mark)
4340 high_water_mark = last_free_page;
4341 remap_free_pages(0, high_water_mark);
4342 high_water_mark = 0;
4345 gc_active_p = 0;
4347 SHOW("returning from collect_garbage");
4350 /* This is called by Lisp PURIFY when it is finished. All live objects
4351 * will have been moved to the RO and Static heaps. The dynamic space
4352 * will need a full re-initialization. We don't bother having Lisp
4353 * PURIFY flush the current gc_alloc() region, as the page_tables are
4354 * re-initialized, and every page is zeroed to be sure. */
4355 void
4356 gc_free_heap(void)
4358 page_index_t page;
4360 if (gencgc_verbose > 1)
4361 SHOW("entering gc_free_heap");
4363 for (page = 0; page < page_table_pages; page++) {
4364 /* Skip free pages which should already be zero filled. */
4365 if (page_table[page].allocated != FREE_PAGE_FLAG) {
4366 void *page_start, *addr;
4368 /* Mark the page free. The other slots are assumed invalid
4369 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4370 * should not be write-protected -- except that the
4371 * generation is used for the current region but it sets
4372 * that up. */
4373 page_table[page].allocated = FREE_PAGE_FLAG;
4374 page_table[page].bytes_used = 0;
4376 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure about this change. */
4377 /* Zero the page. */
4378 page_start = (void *)page_address(page);
4380 /* First, remove any write-protection. */
4381 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
4382 page_table[page].write_protected = 0;
4384 os_invalidate(page_start,PAGE_BYTES);
4385 addr = os_validate(page_start,PAGE_BYTES);
4386 if (addr == NULL || addr != page_start) {
4387 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x\n",
4388 page_start,
4389 addr);
4391 #else
4392 page_table[page].write_protected = 0;
4393 #endif
4394 } else if (gencgc_zero_check_during_free_heap) {
4395 /* Double-check that the page is zero filled. */
4396 long *page_start;
4397 page_index_t i;
4398 gc_assert(page_table[page].allocated == FREE_PAGE_FLAG);
4399 gc_assert(page_table[page].bytes_used == 0);
4400 page_start = (long *)page_address(page);
4401 for (i=0; i<1024; i++) {
4402 if (page_start[i] != 0) {
4403 lose("free region not zero at %x\n", page_start + i);
4409 bytes_allocated = 0;
4411 /* Initialize the generations. */
4412 for (page = 0; page < NUM_GENERATIONS; page++) {
4413 generations[page].alloc_start_page = 0;
4414 generations[page].alloc_unboxed_start_page = 0;
4415 generations[page].alloc_large_start_page = 0;
4416 generations[page].alloc_large_unboxed_start_page = 0;
4417 generations[page].bytes_allocated = 0;
4418 generations[page].gc_trigger = 2000000;
4419 generations[page].num_gc = 0;
4420 generations[page].cum_sum_bytes_allocated = 0;
4421 generations[page].lutexes = NULL;
4424 if (gencgc_verbose > 1)
4425 print_generation_stats(0);
4427 /* Initialize gc_alloc(). */
4428 gc_alloc_generation = 0;
4430 gc_set_region_empty(&boxed_region);
4431 gc_set_region_empty(&unboxed_region);
4433 last_free_page = 0;
4434 set_alloc_pointer((lispobj)((char *)heap_base));
4436 if (verify_after_free_heap) {
4437 /* Check whether purify has left any bad pointers. */
4438 FSHOW((stderr, "checking after free_heap\n"));
4439 verify_gc();
4443 void
4444 gc_init(void)
4446 page_index_t i;
4448 /* Compute the number of pages needed for the dynamic space.
4449 * Dynamic space size should be aligned on page size. */
4450 page_table_pages = dynamic_space_size/PAGE_BYTES;
4451 gc_assert(dynamic_space_size == (size_t) page_table_pages*PAGE_BYTES);
4453 page_table = calloc(page_table_pages, sizeof(struct page));
4454 gc_assert(page_table);
4456 gc_init_tables();
4457 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4458 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4460 #ifdef LUTEX_WIDETAG
4461 scavtab[LUTEX_WIDETAG] = scav_lutex;
4462 transother[LUTEX_WIDETAG] = trans_lutex;
4463 sizetab[LUTEX_WIDETAG] = size_lutex;
4464 #endif
4466 heap_base = (void*)DYNAMIC_SPACE_START;
4468 /* Initialize each page structure. */
4469 for (i = 0; i < page_table_pages; i++) {
4470 /* Initialize all pages as free. */
4471 page_table[i].allocated = FREE_PAGE_FLAG;
4472 page_table[i].bytes_used = 0;
4474 /* Pages are not write-protected at startup. */
4475 page_table[i].write_protected = 0;
4478 bytes_allocated = 0;
4480 /* Initialize the generations.
4482 * FIXME: very similar to code in gc_free_heap(), should be shared */
4483 for (i = 0; i < NUM_GENERATIONS; i++) {
4484 generations[i].alloc_start_page = 0;
4485 generations[i].alloc_unboxed_start_page = 0;
4486 generations[i].alloc_large_start_page = 0;
4487 generations[i].alloc_large_unboxed_start_page = 0;
4488 generations[i].bytes_allocated = 0;
4489 generations[i].gc_trigger = 2000000;
4490 generations[i].num_gc = 0;
4491 generations[i].cum_sum_bytes_allocated = 0;
4492 /* the tune-able parameters */
4493 generations[i].bytes_consed_between_gc = 2000000;
4494 generations[i].trigger_age = 1;
4495 generations[i].min_av_mem_age = 0.75;
4496 generations[i].lutexes = NULL;
4499 /* Initialize gc_alloc. */
4500 gc_alloc_generation = 0;
4501 gc_set_region_empty(&boxed_region);
4502 gc_set_region_empty(&unboxed_region);
4504 last_free_page = 0;
4507 /* Pick up the dynamic space from after a core load.
4509 * The ALLOCATION_POINTER points to the end of the dynamic space.
4512 static void
4513 gencgc_pickup_dynamic(void)
4515 page_index_t page = 0;
4516 long alloc_ptr = get_alloc_pointer();
4517 lispobj *prev=(lispobj *)page_address(page);
4518 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4520 do {
4521 lispobj *first,*ptr= (lispobj *)page_address(page);
4522 page_table[page].allocated = BOXED_PAGE_FLAG;
4523 page_table[page].gen = gen;
4524 page_table[page].bytes_used = PAGE_BYTES;
4525 page_table[page].large_object = 0;
4526 page_table[page].write_protected = 0;
4527 page_table[page].write_protected_cleared = 0;
4528 page_table[page].dont_move = 0;
4529 page_table[page].need_to_zero = 1;
4531 if (!gencgc_partial_pickup) {
4532 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4533 if(ptr == first) prev=ptr;
4534 page_table[page].first_object_offset =
4535 (void *)prev - page_address(page);
4537 page++;
4538 } while ((long)page_address(page) < alloc_ptr);
4540 #ifdef LUTEX_WIDETAG
4541 /* Lutexes have been registered in generation 0 by coreparse, and
4542 * need to be moved to the right one manually.
4544 move_lutexes(0, PSEUDO_STATIC_GENERATION);
4545 #endif
4547 last_free_page = page;
4549 generations[gen].bytes_allocated = PAGE_BYTES*page;
4550 bytes_allocated = PAGE_BYTES*page;
4552 gc_alloc_update_all_page_tables();
4553 write_protect_generation_pages(gen);
4556 void
4557 gc_initialize_pointers(void)
4559 gencgc_pickup_dynamic();
4565 /* alloc(..) is the external interface for memory allocation. It
4566 * allocates to generation 0. It is not called from within the garbage
4567 * collector as it is only external uses that need the check for heap
4568 * size (GC trigger) and to disable the interrupts (interrupts are
4569 * always disabled during a GC).
4571 * The vops that call alloc(..) assume that the returned space is zero-filled.
4572 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4574 * The check for a GC trigger is only performed when the current
4575 * region is full, so in most cases it's not needed. */
4577 lispobj *
4578 alloc(long nbytes)
4580 struct thread *thread=arch_os_get_current_thread();
4581 struct alloc_region *region=
4582 #ifdef LISP_FEATURE_SB_THREAD
4583 thread ? &(thread->alloc_region) : &boxed_region;
4584 #else
4585 &boxed_region;
4586 #endif
4587 #ifndef LISP_FEATURE_WIN32
4588 lispobj alloc_signal;
4589 #endif
4590 void *new_obj;
4591 void *new_free_pointer;
4593 gc_assert(nbytes>0);
4595 /* Check for alignment allocation problems. */
4596 gc_assert((((unsigned long)region->free_pointer & LOWTAG_MASK) == 0)
4597 && ((nbytes & LOWTAG_MASK) == 0));
4599 #if 0
4600 if(all_threads)
4601 /* there are a few places in the C code that allocate data in the
4602 * heap before Lisp starts. This is before interrupts are enabled,
4603 * so we don't need to check for pseudo-atomic */
4604 #ifdef LISP_FEATURE_SB_THREAD
4605 if(!get_psuedo_atomic_atomic(th)) {
4606 register u32 fs;
4607 fprintf(stderr, "fatal error in thread 0x%x, tid=%ld\n",
4608 th,th->os_thread);
4609 __asm__("movl %fs,%0" : "=r" (fs) : );
4610 fprintf(stderr, "fs is %x, th->tls_cookie=%x \n",
4611 debug_get_fs(),th->tls_cookie);
4612 lose("If you see this message before 2004.01.31, mail details to sbcl-devel\n");
4614 #else
4615 gc_assert(get_pseudo_atomic_atomic(th));
4616 #endif
4617 #endif
4619 /* maybe we can do this quickly ... */
4620 new_free_pointer = region->free_pointer + nbytes;
4621 if (new_free_pointer <= region->end_addr) {
4622 new_obj = (void*)(region->free_pointer);
4623 region->free_pointer = new_free_pointer;
4624 return(new_obj); /* yup */
4627 /* we have to go the long way around, it seems. Check whether
4628 * we should GC in the near future
4630 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4631 gc_assert(get_pseudo_atomic_atomic(thread));
4632 /* Don't flood the system with interrupts if the need to gc is
4633 * already noted. This can happen for example when SUB-GC
4634 * allocates or after a gc triggered in a WITHOUT-GCING. */
4635 if (SymbolValue(GC_PENDING,thread) == NIL) {
4636 /* set things up so that GC happens when we finish the PA
4637 * section */
4638 SetSymbolValue(GC_PENDING,T,thread);
4639 if (SymbolValue(GC_INHIBIT,thread) == NIL)
4640 set_pseudo_atomic_interrupted(thread);
4643 new_obj = gc_alloc_with_region(nbytes,0,region,0);
4645 #ifndef LISP_FEATURE_WIN32
4646 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4647 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4648 if ((signed long) alloc_signal <= 0) {
4649 SetSymbolValue(ALLOC_SIGNAL, T, thread);
4650 #ifdef LISP_FEATURE_SB_THREAD
4651 kill_thread_safely(thread->os_thread, SIGPROF);
4652 #else
4653 raise(SIGPROF);
4654 #endif
4655 } else {
4656 SetSymbolValue(ALLOC_SIGNAL,
4657 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4658 thread);
4661 #endif
4663 return (new_obj);
4667 * shared support for the OS-dependent signal handlers which
4668 * catch GENCGC-related write-protect violations
4671 void unhandled_sigmemoryfault(void* addr);
4673 /* Depending on which OS we're running under, different signals might
4674 * be raised for a violation of write protection in the heap. This
4675 * function factors out the common generational GC magic which needs
4676 * to invoked in this case, and should be called from whatever signal
4677 * handler is appropriate for the OS we're running under.
4679 * Return true if this signal is a normal generational GC thing that
4680 * we were able to handle, or false if it was abnormal and control
4681 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4684 gencgc_handle_wp_violation(void* fault_addr)
4686 page_index_t page_index = find_page_index(fault_addr);
4688 #ifdef QSHOW_SIGNALS
4689 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4690 fault_addr, page_index));
4691 #endif
4693 /* Check whether the fault is within the dynamic space. */
4694 if (page_index == (-1)) {
4696 /* It can be helpful to be able to put a breakpoint on this
4697 * case to help diagnose low-level problems. */
4698 unhandled_sigmemoryfault(fault_addr);
4700 /* not within the dynamic space -- not our responsibility */
4701 return 0;
4703 } else {
4704 if (page_table[page_index].write_protected) {
4705 /* Unprotect the page. */
4706 os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
4707 page_table[page_index].write_protected_cleared = 1;
4708 page_table[page_index].write_protected = 0;
4709 } else {
4710 /* The only acceptable reason for this signal on a heap
4711 * access is that GENCGC write-protected the page.
4712 * However, if two CPUs hit a wp page near-simultaneously,
4713 * we had better not have the second one lose here if it
4714 * does this test after the first one has already set wp=0
4716 if(page_table[page_index].write_protected_cleared != 1)
4717 lose("fault in heap page %d not marked as write-protected\nboxed_region.first_page: %d, boxed_region.last_page %d\n",
4718 page_index, boxed_region.first_page, boxed_region.last_page);
4720 /* Don't worry, we can handle it. */
4721 return 1;
4724 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4725 * it's not just a case of the program hitting the write barrier, and
4726 * are about to let Lisp deal with it. It's basically just a
4727 * convenient place to set a gdb breakpoint. */
4728 void
4729 unhandled_sigmemoryfault(void *addr)
4732 void gc_alloc_update_all_page_tables(void)
4734 /* Flush the alloc regions updating the tables. */
4735 struct thread *th;
4736 for_each_thread(th)
4737 gc_alloc_update_page_tables(0, &th->alloc_region);
4738 gc_alloc_update_page_tables(1, &unboxed_region);
4739 gc_alloc_update_page_tables(0, &boxed_region);
4742 void
4743 gc_set_region_empty(struct alloc_region *region)
4745 region->first_page = 0;
4746 region->last_page = -1;
4747 region->start_addr = page_address(0);
4748 region->free_pointer = page_address(0);
4749 region->end_addr = page_address(0);
4752 static void
4753 zero_all_free_pages()
4755 page_index_t i;
4757 for (i = 0; i < last_free_page; i++) {
4758 if (page_table[i].allocated == FREE_PAGE_FLAG) {
4759 #ifdef READ_PROTECT_FREE_PAGES
4760 os_protect(page_address(i),
4761 PAGE_BYTES,
4762 OS_VM_PROT_ALL);
4763 #endif
4764 zero_pages(i, i);
4769 /* Things to do before doing a final GC before saving a core (without
4770 * purify).
4772 * + Pages in large_object pages aren't moved by the GC, so we need to
4773 * unset that flag from all pages.
4774 * + The pseudo-static generation isn't normally collected, but it seems
4775 * reasonable to collect it at least when saving a core. So move the
4776 * pages to a normal generation.
4778 static void
4779 prepare_for_final_gc ()
4781 page_index_t i;
4782 for (i = 0; i < last_free_page; i++) {
4783 page_table[i].large_object = 0;
4784 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4785 int used = page_table[i].bytes_used;
4786 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4787 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4788 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4794 /* Do a non-conservative GC, and then save a core with the initial
4795 * function being set to the value of the static symbol
4796 * SB!VM:RESTART-LISP-FUNCTION */
4797 void
4798 gc_and_save(char *filename, int prepend_runtime)
4800 FILE *file;
4801 void *runtime_bytes = NULL;
4802 size_t runtime_size;
4804 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4805 &runtime_size);
4806 if (file == NULL)
4807 return;
4809 conservative_stack = 0;
4811 /* The filename might come from Lisp, and be moved by the now
4812 * non-conservative GC. */
4813 filename = strdup(filename);
4815 /* Collect twice: once into relatively high memory, and then back
4816 * into low memory. This compacts the retained data into the lower
4817 * pages, minimizing the size of the core file.
4819 prepare_for_final_gc();
4820 gencgc_alloc_start_page = last_free_page;
4821 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4823 prepare_for_final_gc();
4824 gencgc_alloc_start_page = -1;
4825 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4827 if (prepend_runtime)
4828 save_runtime_to_filehandle(file, runtime_bytes, runtime_size);
4830 /* The dumper doesn't know that pages need to be zeroed before use. */
4831 zero_all_free_pages();
4832 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4833 prepend_runtime);
4834 /* Oops. Save still managed to fail. Since we've mangled the stack
4835 * beyond hope, there's not much we can do.
4836 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4837 * going to be rather unsatisfactory too... */
4838 lose("Attempt to save core after non-conservative GC failed.\n");