0.7.13.5
[sbcl/lichteblau.git] / src / runtime / gencgc.c
blob2af538d15b3d0ce3bbbc7e999313d1a1c0b91b1e
1 /*
2 * GENerational Conservative Garbage Collector for SBCL x86
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdio.h>
28 #include <signal.h>
29 #include <sys/ptrace.h>
30 #include <linux/user.h>
31 #include <errno.h>
32 #include "runtime.h"
33 #include "sbcl.h"
34 #include "os.h"
35 #include "interr.h"
36 #include "globals.h"
37 #include "interrupt.h"
38 #include "validate.h"
39 #include "lispregs.h"
40 #include "arch.h"
41 #include "gc.h"
42 #include "gc-internal.h"
43 #include "genesis/vector.h"
44 #include "genesis/weak-pointer.h"
45 #include "genesis/simple-fun.h"
46 #include "genesis/static-symbols.h"
47 #include "genesis/symbol.h"
48 /* assembly language stub that executes trap_PendingInterrupt */
49 void do_pending_interrupt(void);
53 * GC parameters
56 /* the number of actual generations. (The number of 'struct
57 * generation' objects is one more than this, because one object
58 * serves as scratch when GC'ing.) */
59 #define NUM_GENERATIONS 6
61 /* Should we use page protection to help avoid the scavenging of pages
62 * that don't have pointers to younger generations? */
63 boolean enable_page_protection = 1;
65 /* Should we unmap a page and re-mmap it to have it zero filled? */
66 #if defined(__FreeBSD__) || defined(__OpenBSD__)
67 /* comment from cmucl-2.4.8: This can waste a lot of swap on FreeBSD
68 * so don't unmap there.
70 * The CMU CL comment didn't specify a version, but was probably an
71 * old version of FreeBSD (pre-4.0), so this might no longer be true.
72 * OTOH, if it is true, this behavior might exist on OpenBSD too, so
73 * for now we don't unmap there either. -- WHN 2001-04-07 */
74 boolean gencgc_unmap_zero = 0;
75 #else
76 boolean gencgc_unmap_zero = 1;
77 #endif
79 /* the minimum size (in bytes) for a large object*/
80 unsigned large_object_size = 4 * 4096;
83 * debugging
88 /* the verbosity level. All non-error messages are disabled at level 0;
89 * and only a few rare messages are printed at level 1. */
90 unsigned gencgc_verbose = (QSHOW ? 1 : 0);
92 /* FIXME: At some point enable the various error-checking things below
93 * and see what they say. */
95 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
96 * Set verify_gens to NUM_GENERATIONS to disable this kind of check. */
97 int verify_gens = NUM_GENERATIONS;
99 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
100 boolean pre_verify_gen_0 = 0;
102 /* Should we check for bad pointers after gc_free_heap is called
103 * from Lisp PURIFY? */
104 boolean verify_after_free_heap = 0;
106 /* Should we print a note when code objects are found in the dynamic space
107 * during a heap verify? */
108 boolean verify_dynamic_code_check = 0;
110 /* Should we check code objects for fixup errors after they are transported? */
111 boolean check_code_fixups = 0;
113 /* Should we check that newly allocated regions are zero filled? */
114 boolean gencgc_zero_check = 0;
116 /* Should we check that the free space is zero filled? */
117 boolean gencgc_enable_verify_zero_fill = 0;
119 /* Should we check that free pages are zero filled during gc_free_heap
120 * called after Lisp PURIFY? */
121 boolean gencgc_zero_check_during_free_heap = 0;
124 * GC structures and variables
127 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
128 unsigned long bytes_allocated = 0;
129 static unsigned long auto_gc_trigger = 0;
131 /* the source and destination generations. These are set before a GC starts
132 * scavenging. */
133 int from_space;
134 int new_space;
137 /* FIXME: It would be nice to use this symbolic constant instead of
138 * bare 4096 almost everywhere. We could also use an assertion that
139 * it's equal to getpagesize(). */
141 #define PAGE_BYTES 4096
143 /* An array of page structures is statically allocated.
144 * This helps quickly map between an address its page structure.
145 * NUM_PAGES is set from the size of the dynamic space. */
146 struct page page_table[NUM_PAGES];
148 /* To map addresses to page structures the address of the first page
149 * is needed. */
150 static void *heap_base = NULL;
153 /* Calculate the start address for the given page number. */
154 inline void *
155 page_address(int page_num)
157 return (heap_base + (page_num * 4096));
160 /* Find the page index within the page_table for the given
161 * address. Return -1 on failure. */
162 inline int
163 find_page_index(void *addr)
165 int index = addr-heap_base;
167 if (index >= 0) {
168 index = ((unsigned int)index)/4096;
169 if (index < NUM_PAGES)
170 return (index);
173 return (-1);
176 /* a structure to hold the state of a generation */
177 struct generation {
179 /* the first page that gc_alloc() checks on its next call */
180 int alloc_start_page;
182 /* the first page that gc_alloc_unboxed() checks on its next call */
183 int alloc_unboxed_start_page;
185 /* the first page that gc_alloc_large (boxed) considers on its next
186 * call. (Although it always allocates after the boxed_region.) */
187 int alloc_large_start_page;
189 /* the first page that gc_alloc_large (unboxed) considers on its
190 * next call. (Although it always allocates after the
191 * current_unboxed_region.) */
192 int alloc_large_unboxed_start_page;
194 /* the bytes allocated to this generation */
195 int bytes_allocated;
197 /* the number of bytes at which to trigger a GC */
198 int gc_trigger;
200 /* to calculate a new level for gc_trigger */
201 int bytes_consed_between_gc;
203 /* the number of GCs since the last raise */
204 int num_gc;
206 /* the average age after which a GC will raise objects to the
207 * next generation */
208 int trigger_age;
210 /* the cumulative sum of the bytes allocated to this generation. It is
211 * cleared after a GC on this generations, and update before new
212 * objects are added from a GC of a younger generation. Dividing by
213 * the bytes_allocated will give the average age of the memory in
214 * this generation since its last GC. */
215 int cum_sum_bytes_allocated;
217 /* a minimum average memory age before a GC will occur helps
218 * prevent a GC when a large number of new live objects have been
219 * added, in which case a GC could be a waste of time */
220 double min_av_mem_age;
222 /* the number of actual generations. (The number of 'struct
223 * generation' objects is one more than this, because one object
224 * serves as scratch when GC'ing.) */
225 #define NUM_GENERATIONS 6
227 /* an array of generation structures. There needs to be one more
228 * generation structure than actual generations as the oldest
229 * generation is temporarily raised then lowered. */
230 struct generation generations[NUM_GENERATIONS+1];
232 /* the oldest generation that is will currently be GCed by default.
233 * Valid values are: 0, 1, ... (NUM_GENERATIONS-1)
235 * The default of (NUM_GENERATIONS-1) enables GC on all generations.
237 * Setting this to 0 effectively disables the generational nature of
238 * the GC. In some applications generational GC may not be useful
239 * because there are no long-lived objects.
241 * An intermediate value could be handy after moving long-lived data
242 * into an older generation so an unnecessary GC of this long-lived
243 * data can be avoided. */
244 unsigned int gencgc_oldest_gen_to_gc = NUM_GENERATIONS-1;
246 /* The maximum free page in the heap is maintained and used to update
247 * ALLOCATION_POINTER which is used by the room function to limit its
248 * search of the heap. XX Gencgc obviously needs to be better
249 * integrated with the Lisp code. */
250 static int last_free_page;
253 * miscellaneous heap functions
256 /* Count the number of pages which are write-protected within the
257 * given generation. */
258 static int
259 count_write_protect_generation_pages(int generation)
261 int i;
262 int count = 0;
264 for (i = 0; i < last_free_page; i++)
265 if ((page_table[i].allocated != FREE_PAGE)
266 && (page_table[i].gen == generation)
267 && (page_table[i].write_protected == 1))
268 count++;
269 return count;
272 /* Count the number of pages within the given generation. */
273 static int
274 count_generation_pages(int generation)
276 int i;
277 int count = 0;
279 for (i = 0; i < last_free_page; i++)
280 if ((page_table[i].allocated != 0)
281 && (page_table[i].gen == generation))
282 count++;
283 return count;
286 /* Count the number of dont_move pages. */
287 static int
288 count_dont_move_pages(void)
290 int i;
291 int count = 0;
292 for (i = 0; i < last_free_page; i++) {
293 if ((page_table[i].allocated != 0) && (page_table[i].dont_move != 0)) {
294 ++count;
297 return count;
300 /* Work through the pages and add up the number of bytes used for the
301 * given generation. */
302 static int
303 count_generation_bytes_allocated (int gen)
305 int i;
306 int result = 0;
307 for (i = 0; i < last_free_page; i++) {
308 if ((page_table[i].allocated != 0) && (page_table[i].gen == gen))
309 result += page_table[i].bytes_used;
311 return result;
314 /* Return the average age of the memory in a generation. */
315 static double
316 gen_av_mem_age(int gen)
318 if (generations[gen].bytes_allocated == 0)
319 return 0.0;
321 return
322 ((double)generations[gen].cum_sum_bytes_allocated)
323 / ((double)generations[gen].bytes_allocated);
326 /* The verbose argument controls how much to print: 0 for normal
327 * level of detail; 1 for debugging. */
328 static void
329 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
331 int i, gens;
332 int fpu_state[27];
334 /* This code uses the FP instructions which may be set up for Lisp
335 * so they need to be saved and reset for C. */
336 fpu_save(fpu_state);
338 /* number of generations to print */
339 if (verbose)
340 gens = NUM_GENERATIONS+1;
341 else
342 gens = NUM_GENERATIONS;
344 /* Print the heap stats. */
345 fprintf(stderr,
346 " Generation Boxed Unboxed LB LUB Alloc Waste Trig WP GCs Mem-age\n");
348 for (i = 0; i < gens; i++) {
349 int j;
350 int boxed_cnt = 0;
351 int unboxed_cnt = 0;
352 int large_boxed_cnt = 0;
353 int large_unboxed_cnt = 0;
355 for (j = 0; j < last_free_page; j++)
356 if (page_table[j].gen == i) {
358 /* Count the number of boxed pages within the given
359 * generation. */
360 if (page_table[j].allocated & BOXED_PAGE) {
361 if (page_table[j].large_object)
362 large_boxed_cnt++;
363 else
364 boxed_cnt++;
367 /* Count the number of unboxed pages within the given
368 * generation. */
369 if (page_table[j].allocated & UNBOXED_PAGE) {
370 if (page_table[j].large_object)
371 large_unboxed_cnt++;
372 else
373 unboxed_cnt++;
377 gc_assert(generations[i].bytes_allocated
378 == count_generation_bytes_allocated(i));
379 fprintf(stderr,
380 " %8d: %5d %5d %5d %5d %8d %5d %8d %4d %3d %7.4f\n",
382 boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
383 generations[i].bytes_allocated,
384 (count_generation_pages(i)*4096
385 - generations[i].bytes_allocated),
386 generations[i].gc_trigger,
387 count_write_protect_generation_pages(i),
388 generations[i].num_gc,
389 gen_av_mem_age(i));
391 fprintf(stderr," Total bytes allocated=%ld\n", bytes_allocated);
393 fpu_restore(fpu_state);
397 * allocation routines
401 * To support quick and inline allocation, regions of memory can be
402 * allocated and then allocated from with just a free pointer and a
403 * check against an end address.
405 * Since objects can be allocated to spaces with different properties
406 * e.g. boxed/unboxed, generation, ages; there may need to be many
407 * allocation regions.
409 * Each allocation region may be start within a partly used page. Many
410 * features of memory use are noted on a page wise basis, e.g. the
411 * generation; so if a region starts within an existing allocated page
412 * it must be consistent with this page.
414 * During the scavenging of the newspace, objects will be transported
415 * into an allocation region, and pointers updated to point to this
416 * allocation region. It is possible that these pointers will be
417 * scavenged again before the allocation region is closed, e.g. due to
418 * trans_list which jumps all over the place to cleanup the list. It
419 * is important to be able to determine properties of all objects
420 * pointed to when scavenging, e.g to detect pointers to the oldspace.
421 * Thus it's important that the allocation regions have the correct
422 * properties set when allocated, and not just set when closed. The
423 * region allocation routines return regions with the specified
424 * properties, and grab all the pages, setting their properties
425 * appropriately, except that the amount used is not known.
427 * These regions are used to support quicker allocation using just a
428 * free pointer. The actual space used by the region is not reflected
429 * in the pages tables until it is closed. It can't be scavenged until
430 * closed.
432 * When finished with the region it should be closed, which will
433 * update the page tables for the actual space used returning unused
434 * space. Further it may be noted in the new regions which is
435 * necessary when scavenging the newspace.
437 * Large objects may be allocated directly without an allocation
438 * region, the page tables are updated immediately.
440 * Unboxed objects don't contain pointers to other objects and so
441 * don't need scavenging. Further they can't contain pointers to
442 * younger generations so WP is not needed. By allocating pages to
443 * unboxed objects the whole page never needs scavenging or
444 * write-protecting. */
446 /* We are only using two regions at present. Both are for the current
447 * newspace generation. */
448 struct alloc_region boxed_region;
449 struct alloc_region unboxed_region;
451 /* The generation currently being allocated to. */
452 static int gc_alloc_generation;
454 /* Find a new region with room for at least the given number of bytes.
456 * It starts looking at the current generation's alloc_start_page. So
457 * may pick up from the previous region if there is enough space. This
458 * keeps the allocation contiguous when scavenging the newspace.
460 * The alloc_region should have been closed by a call to
461 * gc_alloc_update_page_tables(), and will thus be in an empty state.
463 * To assist the scavenging functions write-protected pages are not
464 * used. Free pages should not be write-protected.
466 * It is critical to the conservative GC that the start of regions be
467 * known. To help achieve this only small regions are allocated at a
468 * time.
470 * During scavenging, pointers may be found to within the current
471 * region and the page generation must be set so that pointers to the
472 * from space can be recognized. Therefore the generation of pages in
473 * the region are set to gc_alloc_generation. To prevent another
474 * allocation call using the same pages, all the pages in the region
475 * are allocated, although they will initially be empty.
477 static void
478 gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
480 int first_page;
481 int last_page;
482 int bytes_found;
483 int i;
486 FSHOW((stderr,
487 "/alloc_new_region for %d bytes from gen %d\n",
488 nbytes, gc_alloc_generation));
491 /* Check that the region is in a reset state. */
492 gc_assert((alloc_region->first_page == 0)
493 && (alloc_region->last_page == -1)
494 && (alloc_region->free_pointer == alloc_region->end_addr));
496 if (unboxed) {
497 first_page =
498 generations[gc_alloc_generation].alloc_unboxed_start_page;
499 } else {
500 first_page =
501 generations[gc_alloc_generation].alloc_start_page;
503 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed,alloc_region);
504 bytes_found=(4096 - page_table[first_page].bytes_used)
505 + 4096*(last_page-first_page);
507 /* Set up the alloc_region. */
508 alloc_region->first_page = first_page;
509 alloc_region->last_page = last_page;
510 alloc_region->start_addr = page_table[first_page].bytes_used
511 + page_address(first_page);
512 alloc_region->free_pointer = alloc_region->start_addr;
513 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
515 if (gencgc_zero_check) {
516 int *p;
517 for (p = (int *)alloc_region->start_addr;
518 p < (int *)alloc_region->end_addr; p++) {
519 if (*p != 0) {
520 /* KLUDGE: It would be nice to use %lx and explicit casts
521 * (long) in code like this, so that it is less likely to
522 * break randomly when running on a machine with different
523 * word sizes. -- WHN 19991129 */
524 lose("The new region at %x is not zero.", p);
529 /* Set up the pages. */
531 /* The first page may have already been in use. */
532 if (page_table[first_page].bytes_used == 0) {
533 if (unboxed)
534 page_table[first_page].allocated = UNBOXED_PAGE;
535 else
536 page_table[first_page].allocated = BOXED_PAGE;
537 page_table[first_page].gen = gc_alloc_generation;
538 page_table[first_page].large_object = 0;
539 page_table[first_page].first_object_offset = 0;
542 if (unboxed)
543 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
544 else
545 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
546 page_table[first_page].allocated |= OPEN_REGION_PAGE;
548 gc_assert(page_table[first_page].gen == gc_alloc_generation);
549 gc_assert(page_table[first_page].large_object == 0);
551 for (i = first_page+1; i <= last_page; i++) {
552 if (unboxed)
553 page_table[i].allocated = UNBOXED_PAGE;
554 else
555 page_table[i].allocated = BOXED_PAGE;
556 page_table[i].gen = gc_alloc_generation;
557 page_table[i].large_object = 0;
558 /* This may not be necessary for unboxed regions (think it was
559 * broken before!) */
560 page_table[i].first_object_offset =
561 alloc_region->start_addr - page_address(i);
562 page_table[i].allocated |= OPEN_REGION_PAGE ;
565 /* Bump up last_free_page. */
566 if (last_page+1 > last_free_page) {
567 last_free_page = last_page+1;
568 SetSymbolValue(ALLOCATION_POINTER,
569 (lispobj)(((char *)heap_base) + last_free_page*4096));
573 /* If the record_new_objects flag is 2 then all new regions created
574 * are recorded.
576 * If it's 1 then then it is only recorded if the first page of the
577 * current region is <= new_areas_ignore_page. This helps avoid
578 * unnecessary recording when doing full scavenge pass.
580 * The new_object structure holds the page, byte offset, and size of
581 * new regions of objects. Each new area is placed in the array of
582 * these structures pointer to by new_areas. new_areas_index holds the
583 * offset into new_areas.
585 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
586 * later code must detect this and handle it, probably by doing a full
587 * scavenge of a generation. */
588 #define NUM_NEW_AREAS 512
589 static int record_new_objects = 0;
590 static int new_areas_ignore_page;
591 struct new_area {
592 int page;
593 int offset;
594 int size;
596 static struct new_area (*new_areas)[];
597 static int new_areas_index;
598 int max_new_areas;
600 /* Add a new area to new_areas. */
601 static void
602 add_new_area(int first_page, int offset, int size)
604 unsigned new_area_start,c;
605 int i;
607 /* Ignore if full. */
608 if (new_areas_index >= NUM_NEW_AREAS)
609 return;
611 switch (record_new_objects) {
612 case 0:
613 return;
614 case 1:
615 if (first_page > new_areas_ignore_page)
616 return;
617 break;
618 case 2:
619 break;
620 default:
621 gc_abort();
624 new_area_start = 4096*first_page + offset;
626 /* Search backwards for a prior area that this follows from. If
627 found this will save adding a new area. */
628 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
629 unsigned area_end =
630 4096*((*new_areas)[i].page)
631 + (*new_areas)[i].offset
632 + (*new_areas)[i].size;
633 /*FSHOW((stderr,
634 "/add_new_area S1 %d %d %d %d\n",
635 i, c, new_area_start, area_end));*/
636 if (new_area_start == area_end) {
637 /*FSHOW((stderr,
638 "/adding to [%d] %d %d %d with %d %d %d:\n",
640 (*new_areas)[i].page,
641 (*new_areas)[i].offset,
642 (*new_areas)[i].size,
643 first_page,
644 offset,
645 size);*/
646 (*new_areas)[i].size += size;
647 return;
651 (*new_areas)[new_areas_index].page = first_page;
652 (*new_areas)[new_areas_index].offset = offset;
653 (*new_areas)[new_areas_index].size = size;
654 /*FSHOW((stderr,
655 "/new_area %d page %d offset %d size %d\n",
656 new_areas_index, first_page, offset, size));*/
657 new_areas_index++;
659 /* Note the max new_areas used. */
660 if (new_areas_index > max_new_areas)
661 max_new_areas = new_areas_index;
664 /* Update the tables for the alloc_region. The region maybe added to
665 * the new_areas.
667 * When done the alloc_region is set up so that the next quick alloc
668 * will fail safely and thus a new region will be allocated. Further
669 * it is safe to try to re-update the page table of this reset
670 * alloc_region. */
671 void
672 gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
674 int more;
675 int first_page;
676 int next_page;
677 int bytes_used;
678 int orig_first_page_bytes_used;
679 int region_size;
680 int byte_cnt;
683 FSHOW((stderr,
684 "/gc_alloc_update_page_tables() to gen %d:\n",
685 gc_alloc_generation));
688 first_page = alloc_region->first_page;
690 /* Catch an unused alloc_region. */
691 if ((first_page == 0) && (alloc_region->last_page == -1))
692 return;
694 next_page = first_page+1;
696 /* Skip if no bytes were allocated. */
697 if (alloc_region->free_pointer != alloc_region->start_addr) {
698 orig_first_page_bytes_used = page_table[first_page].bytes_used;
700 gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
702 /* All the pages used need to be updated */
704 /* Update the first page. */
706 /* If the page was free then set up the gen, and
707 * first_object_offset. */
708 if (page_table[first_page].bytes_used == 0)
709 gc_assert(page_table[first_page].first_object_offset == 0);
710 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE);
712 if (unboxed)
713 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
714 else
715 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
716 gc_assert(page_table[first_page].gen == gc_alloc_generation);
717 gc_assert(page_table[first_page].large_object == 0);
719 byte_cnt = 0;
721 /* Calculate the number of bytes used in this page. This is not
722 * always the number of new bytes, unless it was free. */
723 more = 0;
724 if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>4096) {
725 bytes_used = 4096;
726 more = 1;
728 page_table[first_page].bytes_used = bytes_used;
729 byte_cnt += bytes_used;
732 /* All the rest of the pages should be free. We need to set their
733 * first_object_offset pointer to the start of the region, and set
734 * the bytes_used. */
735 while (more) {
736 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE);
737 if (unboxed)
738 gc_assert(page_table[next_page].allocated == UNBOXED_PAGE);
739 else
740 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
741 gc_assert(page_table[next_page].bytes_used == 0);
742 gc_assert(page_table[next_page].gen == gc_alloc_generation);
743 gc_assert(page_table[next_page].large_object == 0);
745 gc_assert(page_table[next_page].first_object_offset ==
746 alloc_region->start_addr - page_address(next_page));
748 /* Calculate the number of bytes used in this page. */
749 more = 0;
750 if ((bytes_used = (alloc_region->free_pointer
751 - page_address(next_page)))>4096) {
752 bytes_used = 4096;
753 more = 1;
755 page_table[next_page].bytes_used = bytes_used;
756 byte_cnt += bytes_used;
758 next_page++;
761 region_size = alloc_region->free_pointer - alloc_region->start_addr;
762 bytes_allocated += region_size;
763 generations[gc_alloc_generation].bytes_allocated += region_size;
765 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
767 /* Set the generations alloc restart page to the last page of
768 * the region. */
769 if (unboxed)
770 generations[gc_alloc_generation].alloc_unboxed_start_page =
771 next_page-1;
772 else
773 generations[gc_alloc_generation].alloc_start_page = next_page-1;
775 /* Add the region to the new_areas if requested. */
776 if (!unboxed)
777 add_new_area(first_page,orig_first_page_bytes_used, region_size);
780 FSHOW((stderr,
781 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
782 region_size,
783 gc_alloc_generation));
785 } else {
786 /* There are no bytes allocated. Unallocate the first_page if
787 * there are 0 bytes_used. */
788 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE);
789 if (page_table[first_page].bytes_used == 0)
790 page_table[first_page].allocated = FREE_PAGE;
793 /* Unallocate any unused pages. */
794 while (next_page <= alloc_region->last_page) {
795 gc_assert(page_table[next_page].bytes_used == 0);
796 page_table[next_page].allocated = FREE_PAGE;
797 next_page++;
800 gc_set_region_empty(alloc_region);
803 static inline void *gc_quick_alloc(int nbytes);
805 /* Allocate a possibly large object. */
806 void *
807 gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
809 int first_page;
810 int last_page;
811 int orig_first_page_bytes_used;
812 int byte_cnt;
813 int more;
814 int bytes_used;
815 int next_page;
816 int large = (nbytes >= large_object_size);
819 if (nbytes > 200000)
820 FSHOW((stderr, "/alloc_large %d\n", nbytes));
824 FSHOW((stderr,
825 "/gc_alloc_large() for %d bytes from gen %d\n",
826 nbytes, gc_alloc_generation));
829 /* If the object is small, and there is room in the current region
830 then allocate it in the current region. */
831 if (!large
832 && ((alloc_region->end_addr-alloc_region->free_pointer) >= nbytes))
833 return gc_quick_alloc(nbytes);
835 /* To allow the allocation of small objects without the danger of
836 using a page in the current boxed region, the search starts after
837 the current boxed free region. XX could probably keep a page
838 index ahead of the current region and bumped up here to save a
839 lot of re-scanning. */
841 if (unboxed) {
842 first_page =
843 generations[gc_alloc_generation].alloc_large_unboxed_start_page;
844 } else {
845 first_page = generations[gc_alloc_generation].alloc_large_start_page;
847 if (first_page <= alloc_region->last_page) {
848 first_page = alloc_region->last_page+1;
851 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed,0);
853 gc_assert(first_page > alloc_region->last_page);
854 if (unboxed)
855 generations[gc_alloc_generation].alloc_large_unboxed_start_page =
856 last_page;
857 else
858 generations[gc_alloc_generation].alloc_large_start_page = last_page;
860 /* Set up the pages. */
861 orig_first_page_bytes_used = page_table[first_page].bytes_used;
863 /* If the first page was free then set up the gen, and
864 * first_object_offset. */
865 if (page_table[first_page].bytes_used == 0) {
866 if (unboxed)
867 page_table[first_page].allocated = UNBOXED_PAGE;
868 else
869 page_table[first_page].allocated = BOXED_PAGE;
870 page_table[first_page].gen = gc_alloc_generation;
871 page_table[first_page].first_object_offset = 0;
872 page_table[first_page].large_object = large;
875 if (unboxed)
876 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
877 else
878 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
879 gc_assert(page_table[first_page].gen == gc_alloc_generation);
880 gc_assert(page_table[first_page].large_object == large);
882 byte_cnt = 0;
884 /* Calc. the number of bytes used in this page. This is not
885 * always the number of new bytes, unless it was free. */
886 more = 0;
887 if ((bytes_used = nbytes+orig_first_page_bytes_used) > 4096) {
888 bytes_used = 4096;
889 more = 1;
891 page_table[first_page].bytes_used = bytes_used;
892 byte_cnt += bytes_used;
894 next_page = first_page+1;
896 /* All the rest of the pages should be free. We need to set their
897 * first_object_offset pointer to the start of the region, and
898 * set the bytes_used. */
899 while (more) {
900 gc_assert(page_table[next_page].allocated == FREE_PAGE);
901 gc_assert(page_table[next_page].bytes_used == 0);
902 if (unboxed)
903 page_table[next_page].allocated = UNBOXED_PAGE;
904 else
905 page_table[next_page].allocated = BOXED_PAGE;
906 page_table[next_page].gen = gc_alloc_generation;
907 page_table[next_page].large_object = large;
909 page_table[next_page].first_object_offset =
910 orig_first_page_bytes_used - 4096*(next_page-first_page);
912 /* Calculate the number of bytes used in this page. */
913 more = 0;
914 if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > 4096) {
915 bytes_used = 4096;
916 more = 1;
918 page_table[next_page].bytes_used = bytes_used;
919 byte_cnt += bytes_used;
921 next_page++;
924 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
926 bytes_allocated += nbytes;
927 generations[gc_alloc_generation].bytes_allocated += nbytes;
929 /* Add the region to the new_areas if requested. */
930 if (!unboxed)
931 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
933 /* Bump up last_free_page */
934 if (last_page+1 > last_free_page) {
935 last_free_page = last_page+1;
936 SetSymbolValue(ALLOCATION_POINTER,
937 (lispobj)(((char *)heap_base) + last_free_page*4096));
940 return((void *)(page_address(first_page)+orig_first_page_bytes_used));
944 gc_find_freeish_pages(int *restart_page_ptr, int nbytes, int unboxed, struct alloc_region *alloc_region)
946 /* if alloc_region is 0, we assume this is for a potentially large
947 object */
948 int first_page;
949 int last_page;
950 int region_size;
951 int restart_page=*restart_page_ptr;
952 int bytes_found;
953 int num_pages;
954 int large = !alloc_region && (nbytes >= large_object_size);
956 /* Search for a contiguous free space of at least nbytes. If it's a
957 large object then align it on a page boundary by searching for a
958 free page. */
960 /* To allow the allocation of small objects without the danger of
961 using a page in the current boxed region, the search starts after
962 the current boxed free region. XX could probably keep a page
963 index ahead of the current region and bumped up here to save a
964 lot of re-scanning. */
966 do {
967 first_page = restart_page;
968 if (large)
969 while ((first_page < NUM_PAGES)
970 && (page_table[first_page].allocated != FREE_PAGE))
971 first_page++;
972 else
973 while (first_page < NUM_PAGES) {
974 if(page_table[first_page].allocated == FREE_PAGE)
975 break;
976 /* I don't know why we need the gen=0 test, but it
977 * breaks randomly if that's omitted -dan 2003.02.26
979 if((page_table[first_page].allocated ==
980 (unboxed ? UNBOXED_PAGE : BOXED_PAGE)) &&
981 (page_table[first_page].large_object == 0) &&
982 (gc_alloc_genration == 0) &&
983 (page_table[first_page].gen == gc_alloc_generation) &&
984 (page_table[first_page].bytes_used < (4096-32)) &&
985 (page_table[first_page].write_protected == 0) &&
986 (page_table[first_page].dont_move == 0))
987 break;
988 first_page++;
991 if (first_page >= NUM_PAGES) {
992 fprintf(stderr,
993 "Argh! gc_find_free_space failed (first_page), nbytes=%d.\n",
994 nbytes);
995 print_generation_stats(1);
996 lose(NULL);
999 gc_assert(page_table[first_page].write_protected == 0);
1001 last_page = first_page;
1002 bytes_found = 4096 - page_table[first_page].bytes_used;
1003 num_pages = 1;
1004 while (((bytes_found < nbytes)
1005 || (alloc_region && (num_pages < 2)))
1006 && (last_page < (NUM_PAGES-1))
1007 && (page_table[last_page+1].allocated == FREE_PAGE)) {
1008 last_page++;
1009 num_pages++;
1010 bytes_found += 4096;
1011 gc_assert(page_table[last_page].write_protected == 0);
1014 region_size = (4096 - page_table[first_page].bytes_used)
1015 + 4096*(last_page-first_page);
1017 gc_assert(bytes_found == region_size);
1018 restart_page = last_page + 1;
1019 } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
1021 /* Check for a failure */
1022 if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
1023 fprintf(stderr,
1024 "Argh! gc_find_freeish_pages failed (restart_page), nbytes=%d.\n",
1025 nbytes);
1026 print_generation_stats(1);
1027 lose(NULL);
1029 *restart_page_ptr=first_page;
1030 return last_page;
1033 /* Allocate bytes. All the rest of the special-purpose allocation
1034 * functions will eventually call this (instead of just duplicating
1035 * parts of its code) */
1037 void *
1038 gc_alloc_with_region(int nbytes,int unboxed_p, struct alloc_region *my_region,
1039 int quick_p)
1041 void *new_free_pointer;
1043 /* FSHOW((stderr, "/gc_alloc %d\n", nbytes)); */
1045 /* Check whether there is room in the current alloc region. */
1046 new_free_pointer = my_region->free_pointer + nbytes;
1048 if (new_free_pointer <= my_region->end_addr) {
1049 /* If so then allocate from the current alloc region. */
1050 void *new_obj = my_region->free_pointer;
1051 my_region->free_pointer = new_free_pointer;
1053 /* Unless a `quick' alloc was requested, check whether the
1054 alloc region is almost empty. */
1055 if (!quick_p &&
1056 (my_region->end_addr - my_region->free_pointer) <= 32) {
1057 /* If so, finished with the current region. */
1058 gc_alloc_update_page_tables(unboxed_p, my_region);
1059 /* Set up a new region. */
1060 gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
1063 return((void *)new_obj);
1066 /* Else not enough free space in the current region. */
1068 /* If there some room left in the current region, enough to be worth
1069 * saving, then allocate a large object. */
1070 /* FIXME: "32" should be a named parameter. */
1071 if ((my_region->end_addr-my_region->free_pointer) > 32)
1072 return gc_alloc_large(nbytes, unboxed_p, my_region);
1074 /* Else find a new region. */
1076 /* Finished with the current region. */
1077 gc_alloc_update_page_tables(unboxed_p, my_region);
1079 /* Set up a new region. */
1080 gc_alloc_new_region(nbytes, unboxed_p, my_region);
1082 /* Should now be enough room. */
1084 /* Check whether there is room in the current region. */
1085 new_free_pointer = my_region->free_pointer + nbytes;
1087 if (new_free_pointer <= my_region->end_addr) {
1088 /* If so then allocate from the current region. */
1089 void *new_obj = my_region->free_pointer;
1090 my_region->free_pointer = new_free_pointer;
1091 /* Check whether the current region is almost empty. */
1092 if ((my_region->end_addr - my_region->free_pointer) <= 32) {
1093 /* If so find, finished with the current region. */
1094 gc_alloc_update_page_tables(unboxed_p, my_region);
1096 /* Set up a new region. */
1097 gc_alloc_new_region(32, unboxed_p, my_region);
1100 return((void *)new_obj);
1103 /* shouldn't happen */
1104 gc_assert(0);
1105 return((void *) NIL); /* dummy value: return something ... */
1108 void *
1109 gc_general_alloc(int nbytes,int unboxed_p,int quick_p)
1111 struct alloc_region *my_region =
1112 unboxed_p ? &unboxed_region : &boxed_region;
1113 return gc_alloc_with_region(nbytes,unboxed_p, my_region,quick_p);
1118 static void *
1119 gc_alloc(int nbytes,int unboxed_p)
1121 /* this is the only function that the external interface to
1122 * allocation presently knows how to call: Lisp code will never
1123 * allocate large objects, or to unboxed space, or `quick'ly.
1124 * Any of that stuff will only ever happen inside of GC */
1125 return gc_general_alloc(nbytes,unboxed_p,0);
1128 /* Allocate space from the boxed_region. If there is not enough free
1129 * space then call gc_alloc to do the job. A pointer to the start of
1130 * the object is returned. */
1131 static inline void *
1132 gc_quick_alloc(int nbytes)
1134 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1137 /* Allocate space for the possibly large boxed object. If it is a
1138 * large object then do a large alloc else use gc_quick_alloc. Note
1139 * that gc_quick_alloc will eventually fall through to
1140 * gc_general_alloc which may allocate the object in a large way
1141 * anyway, but based on decisions about the free space in the current
1142 * region, not the object size itself */
1144 static inline void *
1145 gc_quick_alloc_large(int nbytes)
1147 if (nbytes >= large_object_size)
1148 return gc_alloc_large(nbytes, ALLOC_BOXED, &boxed_region);
1149 else
1150 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1153 static inline void *
1154 gc_alloc_unboxed(int nbytes)
1156 return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
1159 static inline void *
1160 gc_quick_alloc_unboxed(int nbytes)
1162 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1165 /* Allocate space for the object. If it is a large object then do a
1166 * large alloc else allocate from the current region. If there is not
1167 * enough free space then call general gc_alloc_unboxed() to do the job.
1169 * A pointer to the start of the object is returned. */
1170 static inline void *
1171 gc_quick_alloc_large_unboxed(int nbytes)
1173 if (nbytes >= large_object_size)
1174 return gc_alloc_large(nbytes,ALLOC_UNBOXED,&unboxed_region);
1175 else
1176 return gc_quick_alloc_unboxed(nbytes);
1180 * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
1183 extern int (*scavtab[256])(lispobj *where, lispobj object);
1184 extern lispobj (*transother[256])(lispobj object);
1185 extern int (*sizetab[256])(lispobj *where);
1187 /* Copy a large boxed object. If the object is in a large object
1188 * region then it is simply promoted, else it is copied. If it's large
1189 * enough then it's copied to a large object region.
1191 * Vectors may have shrunk. If the object is not copied the space
1192 * needs to be reclaimed, and the page_tables corrected. */
1193 lispobj
1194 copy_large_object(lispobj object, int nwords)
1196 int tag;
1197 lispobj *new;
1198 lispobj *source, *dest;
1199 int first_page;
1201 gc_assert(is_lisp_pointer(object));
1202 gc_assert(from_space_p(object));
1203 gc_assert((nwords & 0x01) == 0);
1206 /* Check whether it's a large object. */
1207 first_page = find_page_index((void *)object);
1208 gc_assert(first_page >= 0);
1210 if (page_table[first_page].large_object) {
1212 /* Promote the object. */
1214 int remaining_bytes;
1215 int next_page;
1216 int bytes_freed;
1217 int old_bytes_used;
1219 /* Note: Any page write-protection must be removed, else a
1220 * later scavenge_newspace may incorrectly not scavenge these
1221 * pages. This would not be necessary if they are added to the
1222 * new areas, but let's do it for them all (they'll probably
1223 * be written anyway?). */
1225 gc_assert(page_table[first_page].first_object_offset == 0);
1227 next_page = first_page;
1228 remaining_bytes = nwords*4;
1229 while (remaining_bytes > 4096) {
1230 gc_assert(page_table[next_page].gen == from_space);
1231 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
1232 gc_assert(page_table[next_page].large_object);
1233 gc_assert(page_table[next_page].first_object_offset==
1234 -4096*(next_page-first_page));
1235 gc_assert(page_table[next_page].bytes_used == 4096);
1237 page_table[next_page].gen = new_space;
1239 /* Remove any write-protection. We should be able to rely
1240 * on the write-protect flag to avoid redundant calls. */
1241 if (page_table[next_page].write_protected) {
1242 os_protect(page_address(next_page), 4096, OS_VM_PROT_ALL);
1243 page_table[next_page].write_protected = 0;
1245 remaining_bytes -= 4096;
1246 next_page++;
1249 /* Now only one page remains, but the object may have shrunk
1250 * so there may be more unused pages which will be freed. */
1252 /* The object may have shrunk but shouldn't have grown. */
1253 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1255 page_table[next_page].gen = new_space;
1256 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
1258 /* Adjust the bytes_used. */
1259 old_bytes_used = page_table[next_page].bytes_used;
1260 page_table[next_page].bytes_used = remaining_bytes;
1262 bytes_freed = old_bytes_used - remaining_bytes;
1264 /* Free any remaining pages; needs care. */
1265 next_page++;
1266 while ((old_bytes_used == 4096) &&
1267 (page_table[next_page].gen == from_space) &&
1268 (page_table[next_page].allocated == BOXED_PAGE) &&
1269 page_table[next_page].large_object &&
1270 (page_table[next_page].first_object_offset ==
1271 -(next_page - first_page)*4096)) {
1272 /* Checks out OK, free the page. Don't need to bother zeroing
1273 * pages as this should have been done before shrinking the
1274 * object. These pages shouldn't be write-protected as they
1275 * should be zero filled. */
1276 gc_assert(page_table[next_page].write_protected == 0);
1278 old_bytes_used = page_table[next_page].bytes_used;
1279 page_table[next_page].allocated = FREE_PAGE;
1280 page_table[next_page].bytes_used = 0;
1281 bytes_freed += old_bytes_used;
1282 next_page++;
1285 generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
1286 generations[new_space].bytes_allocated += 4*nwords;
1287 bytes_allocated -= bytes_freed;
1289 /* Add the region to the new_areas if requested. */
1290 add_new_area(first_page,0,nwords*4);
1292 return(object);
1293 } else {
1294 /* Get tag of object. */
1295 tag = lowtag_of(object);
1297 /* Allocate space. */
1298 new = gc_quick_alloc_large(nwords*4);
1300 dest = new;
1301 source = (lispobj *) native_pointer(object);
1303 /* Copy the object. */
1304 while (nwords > 0) {
1305 dest[0] = source[0];
1306 dest[1] = source[1];
1307 dest += 2;
1308 source += 2;
1309 nwords -= 2;
1312 /* Return Lisp pointer of new object. */
1313 return ((lispobj) new) | tag;
1317 /* to copy unboxed objects */
1318 lispobj
1319 copy_unboxed_object(lispobj object, int nwords)
1321 int tag;
1322 lispobj *new;
1323 lispobj *source, *dest;
1325 gc_assert(is_lisp_pointer(object));
1326 gc_assert(from_space_p(object));
1327 gc_assert((nwords & 0x01) == 0);
1329 /* Get tag of object. */
1330 tag = lowtag_of(object);
1332 /* Allocate space. */
1333 new = gc_quick_alloc_unboxed(nwords*4);
1335 dest = new;
1336 source = (lispobj *) native_pointer(object);
1338 /* Copy the object. */
1339 while (nwords > 0) {
1340 dest[0] = source[0];
1341 dest[1] = source[1];
1342 dest += 2;
1343 source += 2;
1344 nwords -= 2;
1347 /* Return Lisp pointer of new object. */
1348 return ((lispobj) new) | tag;
1351 /* to copy large unboxed objects
1353 * If the object is in a large object region then it is simply
1354 * promoted, else it is copied. If it's large enough then it's copied
1355 * to a large object region.
1357 * Bignums and vectors may have shrunk. If the object is not copied
1358 * the space needs to be reclaimed, and the page_tables corrected.
1360 * KLUDGE: There's a lot of cut-and-paste duplication between this
1361 * function and copy_large_object(..). -- WHN 20000619 */
1362 lispobj
1363 copy_large_unboxed_object(lispobj object, int nwords)
1365 int tag;
1366 lispobj *new;
1367 lispobj *source, *dest;
1368 int first_page;
1370 gc_assert(is_lisp_pointer(object));
1371 gc_assert(from_space_p(object));
1372 gc_assert((nwords & 0x01) == 0);
1374 if ((nwords > 1024*1024) && gencgc_verbose)
1375 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*4));
1377 /* Check whether it's a large object. */
1378 first_page = find_page_index((void *)object);
1379 gc_assert(first_page >= 0);
1381 if (page_table[first_page].large_object) {
1382 /* Promote the object. Note: Unboxed objects may have been
1383 * allocated to a BOXED region so it may be necessary to
1384 * change the region to UNBOXED. */
1385 int remaining_bytes;
1386 int next_page;
1387 int bytes_freed;
1388 int old_bytes_used;
1390 gc_assert(page_table[first_page].first_object_offset == 0);
1392 next_page = first_page;
1393 remaining_bytes = nwords*4;
1394 while (remaining_bytes > 4096) {
1395 gc_assert(page_table[next_page].gen == from_space);
1396 gc_assert((page_table[next_page].allocated == UNBOXED_PAGE)
1397 || (page_table[next_page].allocated == BOXED_PAGE));
1398 gc_assert(page_table[next_page].large_object);
1399 gc_assert(page_table[next_page].first_object_offset==
1400 -4096*(next_page-first_page));
1401 gc_assert(page_table[next_page].bytes_used == 4096);
1403 page_table[next_page].gen = new_space;
1404 page_table[next_page].allocated = UNBOXED_PAGE;
1405 remaining_bytes -= 4096;
1406 next_page++;
1409 /* Now only one page remains, but the object may have shrunk so
1410 * there may be more unused pages which will be freed. */
1412 /* Object may have shrunk but shouldn't have grown - check. */
1413 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1415 page_table[next_page].gen = new_space;
1416 page_table[next_page].allocated = UNBOXED_PAGE;
1418 /* Adjust the bytes_used. */
1419 old_bytes_used = page_table[next_page].bytes_used;
1420 page_table[next_page].bytes_used = remaining_bytes;
1422 bytes_freed = old_bytes_used - remaining_bytes;
1424 /* Free any remaining pages; needs care. */
1425 next_page++;
1426 while ((old_bytes_used == 4096) &&
1427 (page_table[next_page].gen == from_space) &&
1428 ((page_table[next_page].allocated == UNBOXED_PAGE)
1429 || (page_table[next_page].allocated == BOXED_PAGE)) &&
1430 page_table[next_page].large_object &&
1431 (page_table[next_page].first_object_offset ==
1432 -(next_page - first_page)*4096)) {
1433 /* Checks out OK, free the page. Don't need to both zeroing
1434 * pages as this should have been done before shrinking the
1435 * object. These pages shouldn't be write-protected, even if
1436 * boxed they should be zero filled. */
1437 gc_assert(page_table[next_page].write_protected == 0);
1439 old_bytes_used = page_table[next_page].bytes_used;
1440 page_table[next_page].allocated = FREE_PAGE;
1441 page_table[next_page].bytes_used = 0;
1442 bytes_freed += old_bytes_used;
1443 next_page++;
1446 if ((bytes_freed > 0) && gencgc_verbose)
1447 FSHOW((stderr,
1448 "/copy_large_unboxed bytes_freed=%d\n",
1449 bytes_freed));
1451 generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
1452 generations[new_space].bytes_allocated += 4*nwords;
1453 bytes_allocated -= bytes_freed;
1455 return(object);
1457 else {
1458 /* Get tag of object. */
1459 tag = lowtag_of(object);
1461 /* Allocate space. */
1462 new = gc_quick_alloc_large_unboxed(nwords*4);
1464 dest = new;
1465 source = (lispobj *) native_pointer(object);
1467 /* Copy the object. */
1468 while (nwords > 0) {
1469 dest[0] = source[0];
1470 dest[1] = source[1];
1471 dest += 2;
1472 source += 2;
1473 nwords -= 2;
1476 /* Return Lisp pointer of new object. */
1477 return ((lispobj) new) | tag;
1486 * code and code-related objects
1489 static lispobj trans_fun_header(lispobj object);
1490 static lispobj trans_boxed(lispobj object);
1493 /* Scan a x86 compiled code object, looking for possible fixups that
1494 * have been missed after a move.
1496 * Two types of fixups are needed:
1497 * 1. Absolute fixups to within the code object.
1498 * 2. Relative fixups to outside the code object.
1500 * Currently only absolute fixups to the constant vector, or to the
1501 * code area are checked. */
1502 void
1503 sniff_code_object(struct code *code, unsigned displacement)
1505 int nheader_words, ncode_words, nwords;
1506 void *p;
1507 void *constants_start_addr, *constants_end_addr;
1508 void *code_start_addr, *code_end_addr;
1509 int fixup_found = 0;
1511 if (!check_code_fixups)
1512 return;
1514 ncode_words = fixnum_value(code->code_size);
1515 nheader_words = HeaderValue(*(lispobj *)code);
1516 nwords = ncode_words + nheader_words;
1518 constants_start_addr = (void *)code + 5*4;
1519 constants_end_addr = (void *)code + nheader_words*4;
1520 code_start_addr = (void *)code + nheader_words*4;
1521 code_end_addr = (void *)code + nwords*4;
1523 /* Work through the unboxed code. */
1524 for (p = code_start_addr; p < code_end_addr; p++) {
1525 void *data = *(void **)p;
1526 unsigned d1 = *((unsigned char *)p - 1);
1527 unsigned d2 = *((unsigned char *)p - 2);
1528 unsigned d3 = *((unsigned char *)p - 3);
1529 unsigned d4 = *((unsigned char *)p - 4);
1530 #if QSHOW
1531 unsigned d5 = *((unsigned char *)p - 5);
1532 unsigned d6 = *((unsigned char *)p - 6);
1533 #endif
1535 /* Check for code references. */
1536 /* Check for a 32 bit word that looks like an absolute
1537 reference to within the code adea of the code object. */
1538 if ((data >= (code_start_addr-displacement))
1539 && (data < (code_end_addr-displacement))) {
1540 /* function header */
1541 if ((d4 == 0x5e)
1542 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
1543 /* Skip the function header */
1544 p += 6*4 - 4 - 1;
1545 continue;
1547 /* the case of PUSH imm32 */
1548 if (d1 == 0x68) {
1549 fixup_found = 1;
1550 FSHOW((stderr,
1551 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1552 p, d6, d5, d4, d3, d2, d1, data));
1553 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1555 /* the case of MOV [reg-8],imm32 */
1556 if ((d3 == 0xc7)
1557 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1558 || d2==0x45 || d2==0x46 || d2==0x47)
1559 && (d1 == 0xf8)) {
1560 fixup_found = 1;
1561 FSHOW((stderr,
1562 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1563 p, d6, d5, d4, d3, d2, d1, data));
1564 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1566 /* the case of LEA reg,[disp32] */
1567 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1568 fixup_found = 1;
1569 FSHOW((stderr,
1570 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1571 p, d6, d5, d4, d3, d2, d1, data));
1572 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1576 /* Check for constant references. */
1577 /* Check for a 32 bit word that looks like an absolute
1578 reference to within the constant vector. Constant references
1579 will be aligned. */
1580 if ((data >= (constants_start_addr-displacement))
1581 && (data < (constants_end_addr-displacement))
1582 && (((unsigned)data & 0x3) == 0)) {
1583 /* Mov eax,m32 */
1584 if (d1 == 0xa1) {
1585 fixup_found = 1;
1586 FSHOW((stderr,
1587 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1588 p, d6, d5, d4, d3, d2, d1, data));
1589 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1592 /* the case of MOV m32,EAX */
1593 if (d1 == 0xa3) {
1594 fixup_found = 1;
1595 FSHOW((stderr,
1596 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1597 p, d6, d5, d4, d3, d2, d1, data));
1598 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1601 /* the case of CMP m32,imm32 */
1602 if ((d1 == 0x3d) && (d2 == 0x81)) {
1603 fixup_found = 1;
1604 FSHOW((stderr,
1605 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1606 p, d6, d5, d4, d3, d2, d1, data));
1607 /* XX Check this */
1608 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1611 /* Check for a mod=00, r/m=101 byte. */
1612 if ((d1 & 0xc7) == 5) {
1613 /* Cmp m32,reg */
1614 if (d2 == 0x39) {
1615 fixup_found = 1;
1616 FSHOW((stderr,
1617 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1618 p, d6, d5, d4, d3, d2, d1, data));
1619 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1621 /* the case of CMP reg32,m32 */
1622 if (d2 == 0x3b) {
1623 fixup_found = 1;
1624 FSHOW((stderr,
1625 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1626 p, d6, d5, d4, d3, d2, d1, data));
1627 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1629 /* the case of MOV m32,reg32 */
1630 if (d2 == 0x89) {
1631 fixup_found = 1;
1632 FSHOW((stderr,
1633 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1634 p, d6, d5, d4, d3, d2, d1, data));
1635 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1637 /* the case of MOV reg32,m32 */
1638 if (d2 == 0x8b) {
1639 fixup_found = 1;
1640 FSHOW((stderr,
1641 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1642 p, d6, d5, d4, d3, d2, d1, data));
1643 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1645 /* the case of LEA reg32,m32 */
1646 if (d2 == 0x8d) {
1647 fixup_found = 1;
1648 FSHOW((stderr,
1649 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1650 p, d6, d5, d4, d3, d2, d1, data));
1651 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1657 /* If anything was found, print some information on the code
1658 * object. */
1659 if (fixup_found) {
1660 FSHOW((stderr,
1661 "/compiled code object at %x: header words = %d, code words = %d\n",
1662 code, nheader_words, ncode_words));
1663 FSHOW((stderr,
1664 "/const start = %x, end = %x\n",
1665 constants_start_addr, constants_end_addr));
1666 FSHOW((stderr,
1667 "/code start = %x, end = %x\n",
1668 code_start_addr, code_end_addr));
1672 void
1673 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1675 int nheader_words, ncode_words, nwords;
1676 void *constants_start_addr, *constants_end_addr;
1677 void *code_start_addr, *code_end_addr;
1678 lispobj fixups = NIL;
1679 unsigned displacement = (unsigned)new_code - (unsigned)old_code;
1680 struct vector *fixups_vector;
1682 ncode_words = fixnum_value(new_code->code_size);
1683 nheader_words = HeaderValue(*(lispobj *)new_code);
1684 nwords = ncode_words + nheader_words;
1685 /* FSHOW((stderr,
1686 "/compiled code object at %x: header words = %d, code words = %d\n",
1687 new_code, nheader_words, ncode_words)); */
1688 constants_start_addr = (void *)new_code + 5*4;
1689 constants_end_addr = (void *)new_code + nheader_words*4;
1690 code_start_addr = (void *)new_code + nheader_words*4;
1691 code_end_addr = (void *)new_code + nwords*4;
1693 FSHOW((stderr,
1694 "/const start = %x, end = %x\n",
1695 constants_start_addr,constants_end_addr));
1696 FSHOW((stderr,
1697 "/code start = %x; end = %x\n",
1698 code_start_addr,code_end_addr));
1701 /* The first constant should be a pointer to the fixups for this
1702 code objects. Check. */
1703 fixups = new_code->constants[0];
1705 /* It will be 0 or the unbound-marker if there are no fixups, and
1706 * will be an other pointer if it is valid. */
1707 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1708 !is_lisp_pointer(fixups)) {
1709 /* Check for possible errors. */
1710 if (check_code_fixups)
1711 sniff_code_object(new_code, displacement);
1713 /*fprintf(stderr,"Fixups for code object not found!?\n");
1714 fprintf(stderr,"*** Compiled code object at %x: header_words=%d code_words=%d .\n",
1715 new_code, nheader_words, ncode_words);
1716 fprintf(stderr,"*** Const. start = %x; end= %x; Code start = %x; end = %x\n",
1717 constants_start_addr,constants_end_addr,
1718 code_start_addr,code_end_addr);*/
1719 return;
1722 fixups_vector = (struct vector *)native_pointer(fixups);
1724 /* Could be pointing to a forwarding pointer. */
1725 if (is_lisp_pointer(fixups) &&
1726 (find_page_index((void*)fixups_vector) != -1) &&
1727 (fixups_vector->header == 0x01)) {
1728 /* If so, then follow it. */
1729 /*SHOW("following pointer to a forwarding pointer");*/
1730 fixups_vector = (struct vector *)native_pointer((lispobj)fixups_vector->length);
1733 /*SHOW("got fixups");*/
1735 if (widetag_of(fixups_vector->header) ==
1736 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG) {
1737 /* Got the fixups for the code block. Now work through the vector,
1738 and apply a fixup at each address. */
1739 int length = fixnum_value(fixups_vector->length);
1740 int i;
1741 for (i = 0; i < length; i++) {
1742 unsigned offset = fixups_vector->data[i];
1743 /* Now check the current value of offset. */
1744 unsigned old_value =
1745 *(unsigned *)((unsigned)code_start_addr + offset);
1747 /* If it's within the old_code object then it must be an
1748 * absolute fixup (relative ones are not saved) */
1749 if ((old_value >= (unsigned)old_code)
1750 && (old_value < ((unsigned)old_code + nwords*4)))
1751 /* So add the dispacement. */
1752 *(unsigned *)((unsigned)code_start_addr + offset) =
1753 old_value + displacement;
1754 else
1755 /* It is outside the old code object so it must be a
1756 * relative fixup (absolute fixups are not saved). So
1757 * subtract the displacement. */
1758 *(unsigned *)((unsigned)code_start_addr + offset) =
1759 old_value - displacement;
1763 /* Check for possible errors. */
1764 if (check_code_fixups) {
1765 sniff_code_object(new_code,displacement);
1770 static lispobj
1771 trans_boxed_large(lispobj object)
1773 lispobj header;
1774 unsigned long length;
1776 gc_assert(is_lisp_pointer(object));
1778 header = *((lispobj *) native_pointer(object));
1779 length = HeaderValue(header) + 1;
1780 length = CEILING(length, 2);
1782 return copy_large_object(object, length);
1786 static lispobj
1787 trans_unboxed_large(lispobj object)
1789 lispobj header;
1790 unsigned long length;
1793 gc_assert(is_lisp_pointer(object));
1795 header = *((lispobj *) native_pointer(object));
1796 length = HeaderValue(header) + 1;
1797 length = CEILING(length, 2);
1799 return copy_large_unboxed_object(object, length);
1804 * vector-like objects
1808 /* FIXME: What does this mean? */
1809 int gencgc_hash = 1;
1811 static int
1812 scav_vector(lispobj *where, lispobj object)
1814 unsigned int kv_length;
1815 lispobj *kv_vector;
1816 unsigned int length = 0; /* (0 = dummy to stop GCC warning) */
1817 lispobj *hash_table;
1818 lispobj empty_symbol;
1819 unsigned int *index_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1820 unsigned int *next_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1821 unsigned int *hash_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1822 lispobj weak_p_obj;
1823 unsigned next_vector_length = 0;
1825 /* FIXME: A comment explaining this would be nice. It looks as
1826 * though SB-VM:VECTOR-VALID-HASHING-SUBTYPE is set for EQ-based
1827 * hash tables in the Lisp HASH-TABLE code, and nowhere else. */
1828 if (HeaderValue(object) != subtype_VectorValidHashing)
1829 return 1;
1831 if (!gencgc_hash) {
1832 /* This is set for backward compatibility. FIXME: Do we need
1833 * this any more? */
1834 *where =
1835 (subtype_VectorMustRehash<<N_WIDETAG_BITS) | SIMPLE_VECTOR_WIDETAG;
1836 return 1;
1839 kv_length = fixnum_value(where[1]);
1840 kv_vector = where + 2; /* Skip the header and length. */
1841 /*FSHOW((stderr,"/kv_length = %d\n", kv_length));*/
1843 /* Scavenge element 0, which may be a hash-table structure. */
1844 scavenge(where+2, 1);
1845 if (!is_lisp_pointer(where[2])) {
1846 lose("no pointer at %x in hash table", where[2]);
1848 hash_table = (lispobj *)native_pointer(where[2]);
1849 /*FSHOW((stderr,"/hash_table = %x\n", hash_table));*/
1850 if (widetag_of(hash_table[0]) != INSTANCE_HEADER_WIDETAG) {
1851 lose("hash table not instance (%x at %x)", hash_table[0], hash_table);
1854 /* Scavenge element 1, which should be some internal symbol that
1855 * the hash table code reserves for marking empty slots. */
1856 scavenge(where+3, 1);
1857 if (!is_lisp_pointer(where[3])) {
1858 lose("not empty-hash-table-slot symbol pointer: %x", where[3]);
1860 empty_symbol = where[3];
1861 /* fprintf(stderr,"* empty_symbol = %x\n", empty_symbol);*/
1862 if (widetag_of(*(lispobj *)native_pointer(empty_symbol)) !=
1863 SYMBOL_HEADER_WIDETAG) {
1864 lose("not a symbol where empty-hash-table-slot symbol expected: %x",
1865 *(lispobj *)native_pointer(empty_symbol));
1868 /* Scavenge hash table, which will fix the positions of the other
1869 * needed objects. */
1870 scavenge(hash_table, 16);
1872 /* Cross-check the kv_vector. */
1873 if (where != (lispobj *)native_pointer(hash_table[9])) {
1874 lose("hash_table table!=this table %x", hash_table[9]);
1877 /* WEAK-P */
1878 weak_p_obj = hash_table[10];
1880 /* index vector */
1882 lispobj index_vector_obj = hash_table[13];
1884 if (is_lisp_pointer(index_vector_obj) &&
1885 (widetag_of(*(lispobj *)native_pointer(index_vector_obj)) ==
1886 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1887 index_vector = ((unsigned int *)native_pointer(index_vector_obj)) + 2;
1888 /*FSHOW((stderr, "/index_vector = %x\n",index_vector));*/
1889 length = fixnum_value(((unsigned int *)native_pointer(index_vector_obj))[1]);
1890 /*FSHOW((stderr, "/length = %d\n", length));*/
1891 } else {
1892 lose("invalid index_vector %x", index_vector_obj);
1896 /* next vector */
1898 lispobj next_vector_obj = hash_table[14];
1900 if (is_lisp_pointer(next_vector_obj) &&
1901 (widetag_of(*(lispobj *)native_pointer(next_vector_obj)) ==
1902 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1903 next_vector = ((unsigned int *)native_pointer(next_vector_obj)) + 2;
1904 /*FSHOW((stderr, "/next_vector = %x\n", next_vector));*/
1905 next_vector_length = fixnum_value(((unsigned int *)native_pointer(next_vector_obj))[1]);
1906 /*FSHOW((stderr, "/next_vector_length = %d\n", next_vector_length));*/
1907 } else {
1908 lose("invalid next_vector %x", next_vector_obj);
1912 /* maybe hash vector */
1914 /* FIXME: This bare "15" offset should become a symbolic
1915 * expression of some sort. And all the other bare offsets
1916 * too. And the bare "16" in scavenge(hash_table, 16). And
1917 * probably other stuff too. Ugh.. */
1918 lispobj hash_vector_obj = hash_table[15];
1920 if (is_lisp_pointer(hash_vector_obj) &&
1921 (widetag_of(*(lispobj *)native_pointer(hash_vector_obj))
1922 == SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1923 hash_vector = ((unsigned int *)native_pointer(hash_vector_obj)) + 2;
1924 /*FSHOW((stderr, "/hash_vector = %x\n", hash_vector));*/
1925 gc_assert(fixnum_value(((unsigned int *)native_pointer(hash_vector_obj))[1])
1926 == next_vector_length);
1927 } else {
1928 hash_vector = NULL;
1929 /*FSHOW((stderr, "/no hash_vector: %x\n", hash_vector_obj));*/
1933 /* These lengths could be different as the index_vector can be a
1934 * different length from the others, a larger index_vector could help
1935 * reduce collisions. */
1936 gc_assert(next_vector_length*2 == kv_length);
1938 /* now all set up.. */
1940 /* Work through the KV vector. */
1942 int i;
1943 for (i = 1; i < next_vector_length; i++) {
1944 lispobj old_key = kv_vector[2*i];
1945 unsigned int old_index = (old_key & 0x1fffffff)%length;
1947 /* Scavenge the key and value. */
1948 scavenge(&kv_vector[2*i],2);
1950 /* Check whether the key has moved and is EQ based. */
1952 lispobj new_key = kv_vector[2*i];
1953 unsigned int new_index = (new_key & 0x1fffffff)%length;
1955 if ((old_index != new_index) &&
1956 ((!hash_vector) || (hash_vector[i] == 0x80000000)) &&
1957 ((new_key != empty_symbol) ||
1958 (kv_vector[2*i] != empty_symbol))) {
1960 /*FSHOW((stderr,
1961 "* EQ key %d moved from %x to %x; index %d to %d\n",
1962 i, old_key, new_key, old_index, new_index));*/
1964 if (index_vector[old_index] != 0) {
1965 /*FSHOW((stderr, "/P1 %d\n", index_vector[old_index]));*/
1967 /* Unlink the key from the old_index chain. */
1968 if (index_vector[old_index] == i) {
1969 /*FSHOW((stderr, "/P2a %d\n", next_vector[i]));*/
1970 index_vector[old_index] = next_vector[i];
1971 /* Link it into the needing rehash chain. */
1972 next_vector[i] = fixnum_value(hash_table[11]);
1973 hash_table[11] = make_fixnum(i);
1974 /*SHOW("P2");*/
1975 } else {
1976 unsigned prior = index_vector[old_index];
1977 unsigned next = next_vector[prior];
1979 /*FSHOW((stderr, "/P3a %d %d\n", prior, next));*/
1981 while (next != 0) {
1982 /*FSHOW((stderr, "/P3b %d %d\n", prior, next));*/
1983 if (next == i) {
1984 /* Unlink it. */
1985 next_vector[prior] = next_vector[next];
1986 /* Link it into the needing rehash
1987 * chain. */
1988 next_vector[next] =
1989 fixnum_value(hash_table[11]);
1990 hash_table[11] = make_fixnum(next);
1991 /*SHOW("/P3");*/
1992 break;
1994 prior = next;
1995 next = next_vector[next];
2003 return (CEILING(kv_length + 2, 2));
2009 * weak pointers
2012 /* XX This is a hack adapted from cgc.c. These don't work too
2013 * efficiently with the gencgc as a list of the weak pointers is
2014 * maintained within the objects which causes writes to the pages. A
2015 * limited attempt is made to avoid unnecessary writes, but this needs
2016 * a re-think. */
2017 #define WEAK_POINTER_NWORDS \
2018 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2020 static int
2021 scav_weak_pointer(lispobj *where, lispobj object)
2023 struct weak_pointer *wp = weak_pointers;
2024 /* Push the weak pointer onto the list of weak pointers.
2025 * Do I have to watch for duplicates? Originally this was
2026 * part of trans_weak_pointer but that didn't work in the
2027 * case where the WP was in a promoted region.
2030 /* Check whether it's already in the list. */
2031 while (wp != NULL) {
2032 if (wp == (struct weak_pointer*)where) {
2033 break;
2035 wp = wp->next;
2037 if (wp == NULL) {
2038 /* Add it to the start of the list. */
2039 wp = (struct weak_pointer*)where;
2040 if (wp->next != weak_pointers) {
2041 wp->next = weak_pointers;
2042 } else {
2043 /*SHOW("avoided write to weak pointer");*/
2045 weak_pointers = wp;
2048 /* Do not let GC scavenge the value slot of the weak pointer.
2049 * (That is why it is a weak pointer.) */
2051 return WEAK_POINTER_NWORDS;
2055 /* Scan an area looking for an object which encloses the given pointer.
2056 * Return the object start on success or NULL on failure. */
2057 static lispobj *
2058 search_space(lispobj *start, size_t words, lispobj *pointer)
2060 while (words > 0) {
2061 size_t count = 1;
2062 lispobj thing = *start;
2064 /* If thing is an immediate then this is a cons. */
2065 if (is_lisp_pointer(thing)
2066 || ((thing & 3) == 0) /* fixnum */
2067 || (widetag_of(thing) == BASE_CHAR_WIDETAG)
2068 || (widetag_of(thing) == UNBOUND_MARKER_WIDETAG))
2069 count = 2;
2070 else
2071 count = (sizetab[widetag_of(thing)])(start);
2073 /* Check whether the pointer is within this object. */
2074 if ((pointer >= start) && (pointer < (start+count))) {
2075 /* found it! */
2076 /*FSHOW((stderr,"/found %x in %x %x\n", pointer, start, thing));*/
2077 return(start);
2080 /* Round up the count. */
2081 count = CEILING(count,2);
2083 start += count;
2084 words -= count;
2086 return (NULL);
2089 static lispobj*
2090 search_read_only_space(lispobj *pointer)
2092 lispobj* start = (lispobj*)READ_ONLY_SPACE_START;
2093 lispobj* end = (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER);
2094 if ((pointer < start) || (pointer >= end))
2095 return NULL;
2096 return (search_space(start, (pointer+2)-start, pointer));
2099 static lispobj *
2100 search_static_space(lispobj *pointer)
2102 lispobj* start = (lispobj*)STATIC_SPACE_START;
2103 lispobj* end = (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER);
2104 if ((pointer < start) || (pointer >= end))
2105 return NULL;
2106 return (search_space(start, (pointer+2)-start, pointer));
2109 /* a faster version for searching the dynamic space. This will work even
2110 * if the object is in a current allocation region. */
2111 lispobj *
2112 search_dynamic_space(lispobj *pointer)
2114 int page_index = find_page_index(pointer);
2115 lispobj *start;
2117 /* The address may be invalid, so do some checks. */
2118 if ((page_index == -1) || (page_table[page_index].allocated == FREE_PAGE))
2119 return NULL;
2120 start = (lispobj *)((void *)page_address(page_index)
2121 + page_table[page_index].first_object_offset);
2122 return (search_space(start, (pointer+2)-start, pointer));
2125 /* Is there any possibility that pointer is a valid Lisp object
2126 * reference, and/or something else (e.g. subroutine call return
2127 * address) which should prevent us from moving the referred-to thing? */
2128 static int
2129 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2131 lispobj *start_addr;
2133 /* Find the object start address. */
2134 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2135 return 0;
2138 /* We need to allow raw pointers into Code objects for return
2139 * addresses. This will also pick up pointers to functions in code
2140 * objects. */
2141 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
2142 /* XXX could do some further checks here */
2143 return 1;
2146 /* If it's not a return address then it needs to be a valid Lisp
2147 * pointer. */
2148 if (!is_lisp_pointer((lispobj)pointer)) {
2149 return 0;
2152 /* Check that the object pointed to is consistent with the pointer
2153 * low tag.
2155 * FIXME: It's not safe to rely on the result from this check
2156 * before an object is initialized. Thus, if we were interrupted
2157 * just as an object had been allocated but not initialized, the
2158 * GC relying on this result could bogusly reclaim the memory.
2159 * However, we can't really afford to do without this check. So
2160 * we should make it safe somehow.
2161 * (1) Perhaps just review the code to make sure
2162 * that WITHOUT-GCING or WITHOUT-INTERRUPTS or some such
2163 * thing is wrapped around critical sections where allocated
2164 * memory type bits haven't been set.
2165 * (2) Perhaps find some other hack to protect against this, e.g.
2166 * recording the result of the last call to allocate-lisp-memory,
2167 * and returning true from this function when *pointer is
2168 * a reference to that result. */
2169 switch (lowtag_of((lispobj)pointer)) {
2170 case FUN_POINTER_LOWTAG:
2171 /* Start_addr should be the enclosing code object, or a closure
2172 * header. */
2173 switch (widetag_of(*start_addr)) {
2174 case CODE_HEADER_WIDETAG:
2175 /* This case is probably caught above. */
2176 break;
2177 case CLOSURE_HEADER_WIDETAG:
2178 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2179 if ((unsigned)pointer !=
2180 ((unsigned)start_addr+FUN_POINTER_LOWTAG)) {
2181 if (gencgc_verbose)
2182 FSHOW((stderr,
2183 "/Wf2: %x %x %x\n",
2184 pointer, start_addr, *start_addr));
2185 return 0;
2187 break;
2188 default:
2189 if (gencgc_verbose)
2190 FSHOW((stderr,
2191 "/Wf3: %x %x %x\n",
2192 pointer, start_addr, *start_addr));
2193 return 0;
2195 break;
2196 case LIST_POINTER_LOWTAG:
2197 if ((unsigned)pointer !=
2198 ((unsigned)start_addr+LIST_POINTER_LOWTAG)) {
2199 if (gencgc_verbose)
2200 FSHOW((stderr,
2201 "/Wl1: %x %x %x\n",
2202 pointer, start_addr, *start_addr));
2203 return 0;
2205 /* Is it plausible cons? */
2206 if ((is_lisp_pointer(start_addr[0])
2207 || ((start_addr[0] & 3) == 0) /* fixnum */
2208 || (widetag_of(start_addr[0]) == BASE_CHAR_WIDETAG)
2209 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
2210 && (is_lisp_pointer(start_addr[1])
2211 || ((start_addr[1] & 3) == 0) /* fixnum */
2212 || (widetag_of(start_addr[1]) == BASE_CHAR_WIDETAG)
2213 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG)))
2214 break;
2215 else {
2216 if (gencgc_verbose)
2217 FSHOW((stderr,
2218 "/Wl2: %x %x %x\n",
2219 pointer, start_addr, *start_addr));
2220 return 0;
2222 case INSTANCE_POINTER_LOWTAG:
2223 if ((unsigned)pointer !=
2224 ((unsigned)start_addr+INSTANCE_POINTER_LOWTAG)) {
2225 if (gencgc_verbose)
2226 FSHOW((stderr,
2227 "/Wi1: %x %x %x\n",
2228 pointer, start_addr, *start_addr));
2229 return 0;
2231 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2232 if (gencgc_verbose)
2233 FSHOW((stderr,
2234 "/Wi2: %x %x %x\n",
2235 pointer, start_addr, *start_addr));
2236 return 0;
2238 break;
2239 case OTHER_POINTER_LOWTAG:
2240 if ((unsigned)pointer !=
2241 ((int)start_addr+OTHER_POINTER_LOWTAG)) {
2242 if (gencgc_verbose)
2243 FSHOW((stderr,
2244 "/Wo1: %x %x %x\n",
2245 pointer, start_addr, *start_addr));
2246 return 0;
2248 /* Is it plausible? Not a cons. XXX should check the headers. */
2249 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2250 if (gencgc_verbose)
2251 FSHOW((stderr,
2252 "/Wo2: %x %x %x\n",
2253 pointer, start_addr, *start_addr));
2254 return 0;
2256 switch (widetag_of(start_addr[0])) {
2257 case UNBOUND_MARKER_WIDETAG:
2258 case BASE_CHAR_WIDETAG:
2259 if (gencgc_verbose)
2260 FSHOW((stderr,
2261 "*Wo3: %x %x %x\n",
2262 pointer, start_addr, *start_addr));
2263 return 0;
2265 /* only pointed to by function pointers? */
2266 case CLOSURE_HEADER_WIDETAG:
2267 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2268 if (gencgc_verbose)
2269 FSHOW((stderr,
2270 "*Wo4: %x %x %x\n",
2271 pointer, start_addr, *start_addr));
2272 return 0;
2274 case INSTANCE_HEADER_WIDETAG:
2275 if (gencgc_verbose)
2276 FSHOW((stderr,
2277 "*Wo5: %x %x %x\n",
2278 pointer, start_addr, *start_addr));
2279 return 0;
2281 /* the valid other immediate pointer objects */
2282 case SIMPLE_VECTOR_WIDETAG:
2283 case RATIO_WIDETAG:
2284 case COMPLEX_WIDETAG:
2285 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2286 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2287 #endif
2288 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2289 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2290 #endif
2291 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2292 case COMPLEX_LONG_FLOAT_WIDETAG:
2293 #endif
2294 case SIMPLE_ARRAY_WIDETAG:
2295 case COMPLEX_STRING_WIDETAG:
2296 case COMPLEX_BIT_VECTOR_WIDETAG:
2297 case COMPLEX_VECTOR_WIDETAG:
2298 case COMPLEX_ARRAY_WIDETAG:
2299 case VALUE_CELL_HEADER_WIDETAG:
2300 case SYMBOL_HEADER_WIDETAG:
2301 case FDEFN_WIDETAG:
2302 case CODE_HEADER_WIDETAG:
2303 case BIGNUM_WIDETAG:
2304 case SINGLE_FLOAT_WIDETAG:
2305 case DOUBLE_FLOAT_WIDETAG:
2306 #ifdef LONG_FLOAT_WIDETAG
2307 case LONG_FLOAT_WIDETAG:
2308 #endif
2309 case SIMPLE_STRING_WIDETAG:
2310 case SIMPLE_BIT_VECTOR_WIDETAG:
2311 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2312 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2313 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2314 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2315 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2316 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2317 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2318 #endif
2319 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2320 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2321 #endif
2322 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2323 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2324 #endif
2325 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2326 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2327 #endif
2328 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2329 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2330 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2331 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2332 #endif
2333 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2334 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2335 #endif
2336 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2337 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2338 #endif
2339 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2340 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2341 #endif
2342 case SAP_WIDETAG:
2343 case WEAK_POINTER_WIDETAG:
2344 break;
2346 default:
2347 if (gencgc_verbose)
2348 FSHOW((stderr,
2349 "/Wo6: %x %x %x\n",
2350 pointer, start_addr, *start_addr));
2351 return 0;
2353 break;
2354 default:
2355 if (gencgc_verbose)
2356 FSHOW((stderr,
2357 "*W?: %x %x %x\n",
2358 pointer, start_addr, *start_addr));
2359 return 0;
2362 /* looks good */
2363 return 1;
2366 /* Adjust large bignum and vector objects. This will adjust the
2367 * allocated region if the size has shrunk, and move unboxed objects
2368 * into unboxed pages. The pages are not promoted here, and the
2369 * promoted region is not added to the new_regions; this is really
2370 * only designed to be called from preserve_pointer(). Shouldn't fail
2371 * if this is missed, just may delay the moving of objects to unboxed
2372 * pages, and the freeing of pages. */
2373 static void
2374 maybe_adjust_large_object(lispobj *where)
2376 int first_page;
2377 int nwords;
2379 int remaining_bytes;
2380 int next_page;
2381 int bytes_freed;
2382 int old_bytes_used;
2384 int boxed;
2386 /* Check whether it's a vector or bignum object. */
2387 switch (widetag_of(where[0])) {
2388 case SIMPLE_VECTOR_WIDETAG:
2389 boxed = BOXED_PAGE;
2390 break;
2391 case BIGNUM_WIDETAG:
2392 case SIMPLE_STRING_WIDETAG:
2393 case SIMPLE_BIT_VECTOR_WIDETAG:
2394 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2395 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2396 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2397 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2398 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2399 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2400 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2401 #endif
2402 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2403 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2404 #endif
2405 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2406 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2407 #endif
2408 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2409 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2410 #endif
2411 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2412 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2413 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2414 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2415 #endif
2416 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2417 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2418 #endif
2419 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2420 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2421 #endif
2422 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2423 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2424 #endif
2425 boxed = UNBOXED_PAGE;
2426 break;
2427 default:
2428 return;
2431 /* Find its current size. */
2432 nwords = (sizetab[widetag_of(where[0])])(where);
2434 first_page = find_page_index((void *)where);
2435 gc_assert(first_page >= 0);
2437 /* Note: Any page write-protection must be removed, else a later
2438 * scavenge_newspace may incorrectly not scavenge these pages.
2439 * This would not be necessary if they are added to the new areas,
2440 * but lets do it for them all (they'll probably be written
2441 * anyway?). */
2443 gc_assert(page_table[first_page].first_object_offset == 0);
2445 next_page = first_page;
2446 remaining_bytes = nwords*4;
2447 while (remaining_bytes > 4096) {
2448 gc_assert(page_table[next_page].gen == from_space);
2449 gc_assert((page_table[next_page].allocated == BOXED_PAGE)
2450 || (page_table[next_page].allocated == UNBOXED_PAGE));
2451 gc_assert(page_table[next_page].large_object);
2452 gc_assert(page_table[next_page].first_object_offset ==
2453 -4096*(next_page-first_page));
2454 gc_assert(page_table[next_page].bytes_used == 4096);
2456 page_table[next_page].allocated = boxed;
2458 /* Shouldn't be write-protected at this stage. Essential that the
2459 * pages aren't. */
2460 gc_assert(!page_table[next_page].write_protected);
2461 remaining_bytes -= 4096;
2462 next_page++;
2465 /* Now only one page remains, but the object may have shrunk so
2466 * there may be more unused pages which will be freed. */
2468 /* Object may have shrunk but shouldn't have grown - check. */
2469 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2471 page_table[next_page].allocated = boxed;
2472 gc_assert(page_table[next_page].allocated ==
2473 page_table[first_page].allocated);
2475 /* Adjust the bytes_used. */
2476 old_bytes_used = page_table[next_page].bytes_used;
2477 page_table[next_page].bytes_used = remaining_bytes;
2479 bytes_freed = old_bytes_used - remaining_bytes;
2481 /* Free any remaining pages; needs care. */
2482 next_page++;
2483 while ((old_bytes_used == 4096) &&
2484 (page_table[next_page].gen == from_space) &&
2485 ((page_table[next_page].allocated == UNBOXED_PAGE)
2486 || (page_table[next_page].allocated == BOXED_PAGE)) &&
2487 page_table[next_page].large_object &&
2488 (page_table[next_page].first_object_offset ==
2489 -(next_page - first_page)*4096)) {
2490 /* It checks out OK, free the page. We don't need to both zeroing
2491 * pages as this should have been done before shrinking the
2492 * object. These pages shouldn't be write protected as they
2493 * should be zero filled. */
2494 gc_assert(page_table[next_page].write_protected == 0);
2496 old_bytes_used = page_table[next_page].bytes_used;
2497 page_table[next_page].allocated = FREE_PAGE;
2498 page_table[next_page].bytes_used = 0;
2499 bytes_freed += old_bytes_used;
2500 next_page++;
2503 if ((bytes_freed > 0) && gencgc_verbose) {
2504 FSHOW((stderr,
2505 "/maybe_adjust_large_object() freed %d\n",
2506 bytes_freed));
2509 generations[from_space].bytes_allocated -= bytes_freed;
2510 bytes_allocated -= bytes_freed;
2512 return;
2515 /* Take a possible pointer to a Lisp object and mark its page in the
2516 * page_table so that it will not be relocated during a GC.
2518 * This involves locating the page it points to, then backing up to
2519 * the first page that has its first object start at offset 0, and
2520 * then marking all pages dont_move from the first until a page that
2521 * ends by being full, or having free gen.
2523 * This ensures that objects spanning pages are not broken.
2525 * It is assumed that all the page static flags have been cleared at
2526 * the start of a GC.
2528 * It is also assumed that the current gc_alloc() region has been
2529 * flushed and the tables updated. */
2530 static void
2531 preserve_pointer(void *addr)
2533 int addr_page_index = find_page_index(addr);
2534 int first_page;
2535 int i;
2536 unsigned region_allocation;
2538 /* quick check 1: Address is quite likely to have been invalid. */
2539 if ((addr_page_index == -1)
2540 || (page_table[addr_page_index].allocated == FREE_PAGE)
2541 || (page_table[addr_page_index].bytes_used == 0)
2542 || (page_table[addr_page_index].gen != from_space)
2543 /* Skip if already marked dont_move. */
2544 || (page_table[addr_page_index].dont_move != 0))
2545 return;
2546 gc_assert(!(page_table[addr_page_index].allocated & OPEN_REGION_PAGE));
2547 /* (Now that we know that addr_page_index is in range, it's
2548 * safe to index into page_table[] with it.) */
2549 region_allocation = page_table[addr_page_index].allocated;
2551 /* quick check 2: Check the offset within the page.
2553 * FIXME: The mask should have a symbolic name, and ideally should
2554 * be derived from page size instead of hardwired to 0xfff.
2555 * (Also fix other uses of 0xfff, elsewhere.) */
2556 if (((unsigned)addr & 0xfff) > page_table[addr_page_index].bytes_used)
2557 return;
2559 /* Filter out anything which can't be a pointer to a Lisp object
2560 * (or, as a special case which also requires dont_move, a return
2561 * address referring to something in a CodeObject). This is
2562 * expensive but important, since it vastly reduces the
2563 * probability that random garbage will be bogusly interpreter as
2564 * a pointer which prevents a page from moving. */
2565 if (!(possibly_valid_dynamic_space_pointer(addr)))
2566 return;
2567 first_page = addr_page_index;
2569 /* Work backwards to find a page with a first_object_offset of 0.
2570 * The pages should be contiguous with all bytes used in the same
2571 * gen. Assumes the first_object_offset is negative or zero. */
2573 /* this is probably needlessly conservative. The first object in
2574 * the page may not even be the one we were passed a pointer to:
2575 * if this is the case, we will write-protect all the previous
2576 * object's pages too.
2579 while (page_table[first_page].first_object_offset != 0) {
2580 --first_page;
2581 /* Do some checks. */
2582 gc_assert(page_table[first_page].bytes_used == 4096);
2583 gc_assert(page_table[first_page].gen == from_space);
2584 gc_assert(page_table[first_page].allocated == region_allocation);
2587 /* Adjust any large objects before promotion as they won't be
2588 * copied after promotion. */
2589 if (page_table[first_page].large_object) {
2590 maybe_adjust_large_object(page_address(first_page));
2591 /* If a large object has shrunk then addr may now point to a
2592 * free area in which case it's ignored here. Note it gets
2593 * through the valid pointer test above because the tail looks
2594 * like conses. */
2595 if ((page_table[addr_page_index].allocated == FREE_PAGE)
2596 || (page_table[addr_page_index].bytes_used == 0)
2597 /* Check the offset within the page. */
2598 || (((unsigned)addr & 0xfff)
2599 > page_table[addr_page_index].bytes_used)) {
2600 FSHOW((stderr,
2601 "weird? ignore ptr 0x%x to freed area of large object\n",
2602 addr));
2603 return;
2605 /* It may have moved to unboxed pages. */
2606 region_allocation = page_table[first_page].allocated;
2609 /* Now work forward until the end of this contiguous area is found,
2610 * marking all pages as dont_move. */
2611 for (i = first_page; ;i++) {
2612 gc_assert(page_table[i].allocated == region_allocation);
2614 /* Mark the page static. */
2615 page_table[i].dont_move = 1;
2617 /* Move the page to the new_space. XX I'd rather not do this
2618 * but the GC logic is not quite able to copy with the static
2619 * pages remaining in the from space. This also requires the
2620 * generation bytes_allocated counters be updated. */
2621 page_table[i].gen = new_space;
2622 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2623 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2625 /* It is essential that the pages are not write protected as
2626 * they may have pointers into the old-space which need
2627 * scavenging. They shouldn't be write protected at this
2628 * stage. */
2629 gc_assert(!page_table[i].write_protected);
2631 /* Check whether this is the last page in this contiguous block.. */
2632 if ((page_table[i].bytes_used < 4096)
2633 /* ..or it is 4096 and is the last in the block */
2634 || (page_table[i+1].allocated == FREE_PAGE)
2635 || (page_table[i+1].bytes_used == 0) /* next page free */
2636 || (page_table[i+1].gen != from_space) /* diff. gen */
2637 || (page_table[i+1].first_object_offset == 0))
2638 break;
2641 /* Check that the page is now static. */
2642 gc_assert(page_table[addr_page_index].dont_move != 0);
2645 /* If the given page is not write-protected, then scan it for pointers
2646 * to younger generations or the top temp. generation, if no
2647 * suspicious pointers are found then the page is write-protected.
2649 * Care is taken to check for pointers to the current gc_alloc()
2650 * region if it is a younger generation or the temp. generation. This
2651 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2652 * the gc_alloc_generation does not need to be checked as this is only
2653 * called from scavenge_generation() when the gc_alloc generation is
2654 * younger, so it just checks if there is a pointer to the current
2655 * region.
2657 * We return 1 if the page was write-protected, else 0. */
2658 static int
2659 update_page_write_prot(int page)
2661 int gen = page_table[page].gen;
2662 int j;
2663 int wp_it = 1;
2664 void **page_addr = (void **)page_address(page);
2665 int num_words = page_table[page].bytes_used / 4;
2667 /* Shouldn't be a free page. */
2668 gc_assert(page_table[page].allocated != FREE_PAGE);
2669 gc_assert(page_table[page].bytes_used != 0);
2671 /* Skip if it's already write-protected or an unboxed page. */
2672 if (page_table[page].write_protected
2673 || (page_table[page].allocated & UNBOXED_PAGE))
2674 return (0);
2676 /* Scan the page for pointers to younger generations or the
2677 * top temp. generation. */
2679 for (j = 0; j < num_words; j++) {
2680 void *ptr = *(page_addr+j);
2681 int index = find_page_index(ptr);
2683 /* Check that it's in the dynamic space */
2684 if (index != -1)
2685 if (/* Does it point to a younger or the temp. generation? */
2686 ((page_table[index].allocated != FREE_PAGE)
2687 && (page_table[index].bytes_used != 0)
2688 && ((page_table[index].gen < gen)
2689 || (page_table[index].gen == NUM_GENERATIONS)))
2691 /* Or does it point within a current gc_alloc() region? */
2692 || ((boxed_region.start_addr <= ptr)
2693 && (ptr <= boxed_region.free_pointer))
2694 || ((unboxed_region.start_addr <= ptr)
2695 && (ptr <= unboxed_region.free_pointer))) {
2696 wp_it = 0;
2697 break;
2701 if (wp_it == 1) {
2702 /* Write-protect the page. */
2703 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2705 os_protect((void *)page_addr,
2706 4096,
2707 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2709 /* Note the page as protected in the page tables. */
2710 page_table[page].write_protected = 1;
2713 return (wp_it);
2716 /* Scavenge a generation.
2718 * This will not resolve all pointers when generation is the new
2719 * space, as new objects may be added which are not check here - use
2720 * scavenge_newspace generation.
2722 * Write-protected pages should not have any pointers to the
2723 * from_space so do need scavenging; thus write-protected pages are
2724 * not always scavenged. There is some code to check that these pages
2725 * are not written; but to check fully the write-protected pages need
2726 * to be scavenged by disabling the code to skip them.
2728 * Under the current scheme when a generation is GCed the younger
2729 * generations will be empty. So, when a generation is being GCed it
2730 * is only necessary to scavenge the older generations for pointers
2731 * not the younger. So a page that does not have pointers to younger
2732 * generations does not need to be scavenged.
2734 * The write-protection can be used to note pages that don't have
2735 * pointers to younger pages. But pages can be written without having
2736 * pointers to younger generations. After the pages are scavenged here
2737 * they can be scanned for pointers to younger generations and if
2738 * there are none the page can be write-protected.
2740 * One complication is when the newspace is the top temp. generation.
2742 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2743 * that none were written, which they shouldn't be as they should have
2744 * no pointers to younger generations. This breaks down for weak
2745 * pointers as the objects contain a link to the next and are written
2746 * if a weak pointer is scavenged. Still it's a useful check. */
2747 static void
2748 scavenge_generation(int generation)
2750 int i;
2751 int num_wp = 0;
2753 #define SC_GEN_CK 0
2754 #if SC_GEN_CK
2755 /* Clear the write_protected_cleared flags on all pages. */
2756 for (i = 0; i < NUM_PAGES; i++)
2757 page_table[i].write_protected_cleared = 0;
2758 #endif
2760 for (i = 0; i < last_free_page; i++) {
2761 if ((page_table[i].allocated & BOXED_PAGE)
2762 && (page_table[i].bytes_used != 0)
2763 && (page_table[i].gen == generation)) {
2764 int last_page;
2766 /* This should be the start of a contiguous block. */
2767 gc_assert(page_table[i].first_object_offset == 0);
2769 /* We need to find the full extent of this contiguous
2770 * block in case objects span pages. */
2772 /* Now work forward until the end of this contiguous area
2773 * is found. A small area is preferred as there is a
2774 * better chance of its pages being write-protected. */
2775 for (last_page = i; ; last_page++)
2776 /* Check whether this is the last page in this contiguous
2777 * block. */
2778 if ((page_table[last_page].bytes_used < 4096)
2779 /* Or it is 4096 and is the last in the block */
2780 || (!(page_table[last_page+1].allocated & BOXED_PAGE))
2781 || (page_table[last_page+1].bytes_used == 0)
2782 || (page_table[last_page+1].gen != generation)
2783 || (page_table[last_page+1].first_object_offset == 0))
2784 break;
2786 /* Do a limited check for write_protected pages. If all pages
2787 * are write_protected then there is no need to scavenge. */
2789 int j, all_wp = 1;
2790 for (j = i; j <= last_page; j++)
2791 if (page_table[j].write_protected == 0) {
2792 all_wp = 0;
2793 break;
2795 #if !SC_GEN_CK
2796 if (all_wp == 0)
2797 #endif
2799 scavenge(page_address(i), (page_table[last_page].bytes_used
2800 + (last_page-i)*4096)/4);
2802 /* Now scan the pages and write protect those
2803 * that don't have pointers to younger
2804 * generations. */
2805 if (enable_page_protection) {
2806 for (j = i; j <= last_page; j++) {
2807 num_wp += update_page_write_prot(j);
2812 i = last_page;
2816 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2817 FSHOW((stderr,
2818 "/write protected %d pages within generation %d\n",
2819 num_wp, generation));
2822 #if SC_GEN_CK
2823 /* Check that none of the write_protected pages in this generation
2824 * have been written to. */
2825 for (i = 0; i < NUM_PAGES; i++) {
2826 if ((page_table[i].allocation ! =FREE_PAGE)
2827 && (page_table[i].bytes_used != 0)
2828 && (page_table[i].gen == generation)
2829 && (page_table[i].write_protected_cleared != 0)) {
2830 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2831 FSHOW((stderr,
2832 "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
2833 page_table[i].bytes_used,
2834 page_table[i].first_object_offset,
2835 page_table[i].dont_move));
2836 lose("write to protected page %d in scavenge_generation()", i);
2839 #endif
2843 /* Scavenge a newspace generation. As it is scavenged new objects may
2844 * be allocated to it; these will also need to be scavenged. This
2845 * repeats until there are no more objects unscavenged in the
2846 * newspace generation.
2848 * To help improve the efficiency, areas written are recorded by
2849 * gc_alloc() and only these scavenged. Sometimes a little more will be
2850 * scavenged, but this causes no harm. An easy check is done that the
2851 * scavenged bytes equals the number allocated in the previous
2852 * scavenge.
2854 * Write-protected pages are not scanned except if they are marked
2855 * dont_move in which case they may have been promoted and still have
2856 * pointers to the from space.
2858 * Write-protected pages could potentially be written by alloc however
2859 * to avoid having to handle re-scavenging of write-protected pages
2860 * gc_alloc() does not write to write-protected pages.
2862 * New areas of objects allocated are recorded alternatively in the two
2863 * new_areas arrays below. */
2864 static struct new_area new_areas_1[NUM_NEW_AREAS];
2865 static struct new_area new_areas_2[NUM_NEW_AREAS];
2867 /* Do one full scan of the new space generation. This is not enough to
2868 * complete the job as new objects may be added to the generation in
2869 * the process which are not scavenged. */
2870 static void
2871 scavenge_newspace_generation_one_scan(int generation)
2873 int i;
2875 FSHOW((stderr,
2876 "/starting one full scan of newspace generation %d\n",
2877 generation));
2878 for (i = 0; i < last_free_page; i++) {
2879 /* note that this skips over open regions when it encounters them */
2880 if ((page_table[i].allocated == BOXED_PAGE)
2881 && (page_table[i].bytes_used != 0)
2882 && (page_table[i].gen == generation)
2883 && ((page_table[i].write_protected == 0)
2884 /* (This may be redundant as write_protected is now
2885 * cleared before promotion.) */
2886 || (page_table[i].dont_move == 1))) {
2887 int last_page;
2889 /* The scavenge will start at the first_object_offset of page i.
2891 * We need to find the full extent of this contiguous
2892 * block in case objects span pages.
2894 * Now work forward until the end of this contiguous area
2895 * is found. A small area is preferred as there is a
2896 * better chance of its pages being write-protected. */
2897 for (last_page = i; ;last_page++) {
2898 /* Check whether this is the last page in this
2899 * contiguous block */
2900 if ((page_table[last_page].bytes_used < 4096)
2901 /* Or it is 4096 and is the last in the block */
2902 || (!(page_table[last_page+1].allocated & BOXED_PAGE))
2903 || (page_table[last_page+1].bytes_used == 0)
2904 || (page_table[last_page+1].gen != generation)
2905 || (page_table[last_page+1].first_object_offset == 0))
2906 break;
2909 /* Do a limited check for write-protected pages. If all
2910 * pages are write-protected then no need to scavenge,
2911 * except if the pages are marked dont_move. */
2913 int j, all_wp = 1;
2914 for (j = i; j <= last_page; j++)
2915 if ((page_table[j].write_protected == 0)
2916 || (page_table[j].dont_move != 0)) {
2917 all_wp = 0;
2918 break;
2921 if (!all_wp) {
2922 int size;
2924 /* Calculate the size. */
2925 if (last_page == i)
2926 size = (page_table[last_page].bytes_used
2927 - page_table[i].first_object_offset)/4;
2928 else
2929 size = (page_table[last_page].bytes_used
2930 + (last_page-i)*4096
2931 - page_table[i].first_object_offset)/4;
2934 new_areas_ignore_page = last_page;
2936 scavenge(page_address(i) +
2937 page_table[i].first_object_offset,
2938 size);
2944 i = last_page;
2947 FSHOW((stderr,
2948 "/done with one full scan of newspace generation %d\n",
2949 generation));
2952 /* Do a complete scavenge of the newspace generation. */
2953 static void
2954 scavenge_newspace_generation(int generation)
2956 int i;
2958 /* the new_areas array currently being written to by gc_alloc() */
2959 struct new_area (*current_new_areas)[] = &new_areas_1;
2960 int current_new_areas_index;
2962 /* the new_areas created but the previous scavenge cycle */
2963 struct new_area (*previous_new_areas)[] = NULL;
2964 int previous_new_areas_index;
2966 /* Flush the current regions updating the tables. */
2967 gc_alloc_update_all_page_tables();
2969 /* Turn on the recording of new areas by gc_alloc(). */
2970 new_areas = current_new_areas;
2971 new_areas_index = 0;
2973 /* Don't need to record new areas that get scavenged anyway during
2974 * scavenge_newspace_generation_one_scan. */
2975 record_new_objects = 1;
2977 /* Start with a full scavenge. */
2978 scavenge_newspace_generation_one_scan(generation);
2980 /* Record all new areas now. */
2981 record_new_objects = 2;
2983 /* Flush the current regions updating the tables. */
2984 gc_alloc_update_all_page_tables();
2986 /* Grab new_areas_index. */
2987 current_new_areas_index = new_areas_index;
2989 /*FSHOW((stderr,
2990 "The first scan is finished; current_new_areas_index=%d.\n",
2991 current_new_areas_index));*/
2993 while (current_new_areas_index > 0) {
2994 /* Move the current to the previous new areas */
2995 previous_new_areas = current_new_areas;
2996 previous_new_areas_index = current_new_areas_index;
2998 /* Scavenge all the areas in previous new areas. Any new areas
2999 * allocated are saved in current_new_areas. */
3001 /* Allocate an array for current_new_areas; alternating between
3002 * new_areas_1 and 2 */
3003 if (previous_new_areas == &new_areas_1)
3004 current_new_areas = &new_areas_2;
3005 else
3006 current_new_areas = &new_areas_1;
3008 /* Set up for gc_alloc(). */
3009 new_areas = current_new_areas;
3010 new_areas_index = 0;
3012 /* Check whether previous_new_areas had overflowed. */
3013 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3015 /* New areas of objects allocated have been lost so need to do a
3016 * full scan to be sure! If this becomes a problem try
3017 * increasing NUM_NEW_AREAS. */
3018 if (gencgc_verbose)
3019 SHOW("new_areas overflow, doing full scavenge");
3021 /* Don't need to record new areas that get scavenge anyway
3022 * during scavenge_newspace_generation_one_scan. */
3023 record_new_objects = 1;
3025 scavenge_newspace_generation_one_scan(generation);
3027 /* Record all new areas now. */
3028 record_new_objects = 2;
3030 /* Flush the current regions updating the tables. */
3031 gc_alloc_update_all_page_tables();
3033 } else {
3035 /* Work through previous_new_areas. */
3036 for (i = 0; i < previous_new_areas_index; i++) {
3037 /* FIXME: All these bare *4 and /4 should be something
3038 * like BYTES_PER_WORD or WBYTES. */
3039 int page = (*previous_new_areas)[i].page;
3040 int offset = (*previous_new_areas)[i].offset;
3041 int size = (*previous_new_areas)[i].size / 4;
3042 gc_assert((*previous_new_areas)[i].size % 4 == 0);
3043 scavenge(page_address(page)+offset, size);
3046 /* Flush the current regions updating the tables. */
3047 gc_alloc_update_all_page_tables();
3050 current_new_areas_index = new_areas_index;
3052 /*FSHOW((stderr,
3053 "The re-scan has finished; current_new_areas_index=%d.\n",
3054 current_new_areas_index));*/
3057 /* Turn off recording of areas allocated by gc_alloc(). */
3058 record_new_objects = 0;
3060 #if SC_NS_GEN_CK
3061 /* Check that none of the write_protected pages in this generation
3062 * have been written to. */
3063 for (i = 0; i < NUM_PAGES; i++) {
3064 if ((page_table[i].allocation != FREE_PAGE)
3065 && (page_table[i].bytes_used != 0)
3066 && (page_table[i].gen == generation)
3067 && (page_table[i].write_protected_cleared != 0)
3068 && (page_table[i].dont_move == 0)) {
3069 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d",
3070 i, generation, page_table[i].dont_move);
3073 #endif
3076 /* Un-write-protect all the pages in from_space. This is done at the
3077 * start of a GC else there may be many page faults while scavenging
3078 * the newspace (I've seen drive the system time to 99%). These pages
3079 * would need to be unprotected anyway before unmapping in
3080 * free_oldspace; not sure what effect this has on paging.. */
3081 static void
3082 unprotect_oldspace(void)
3084 int i;
3086 for (i = 0; i < last_free_page; i++) {
3087 if ((page_table[i].allocated != FREE_PAGE)
3088 && (page_table[i].bytes_used != 0)
3089 && (page_table[i].gen == from_space)) {
3090 void *page_start;
3092 page_start = (void *)page_address(i);
3094 /* Remove any write-protection. We should be able to rely
3095 * on the write-protect flag to avoid redundant calls. */
3096 if (page_table[i].write_protected) {
3097 os_protect(page_start, 4096, OS_VM_PROT_ALL);
3098 page_table[i].write_protected = 0;
3104 /* Work through all the pages and free any in from_space. This
3105 * assumes that all objects have been copied or promoted to an older
3106 * generation. Bytes_allocated and the generation bytes_allocated
3107 * counter are updated. The number of bytes freed is returned. */
3108 extern void i586_bzero(void *addr, int nbytes);
3109 static int
3110 free_oldspace(void)
3112 int bytes_freed = 0;
3113 int first_page, last_page;
3115 first_page = 0;
3117 do {
3118 /* Find a first page for the next region of pages. */
3119 while ((first_page < last_free_page)
3120 && ((page_table[first_page].allocated == FREE_PAGE)
3121 || (page_table[first_page].bytes_used == 0)
3122 || (page_table[first_page].gen != from_space)))
3123 first_page++;
3125 if (first_page >= last_free_page)
3126 break;
3128 /* Find the last page of this region. */
3129 last_page = first_page;
3131 do {
3132 /* Free the page. */
3133 bytes_freed += page_table[last_page].bytes_used;
3134 generations[page_table[last_page].gen].bytes_allocated -=
3135 page_table[last_page].bytes_used;
3136 page_table[last_page].allocated = FREE_PAGE;
3137 page_table[last_page].bytes_used = 0;
3139 /* Remove any write-protection. We should be able to rely
3140 * on the write-protect flag to avoid redundant calls. */
3142 void *page_start = (void *)page_address(last_page);
3144 if (page_table[last_page].write_protected) {
3145 os_protect(page_start, 4096, OS_VM_PROT_ALL);
3146 page_table[last_page].write_protected = 0;
3149 last_page++;
3151 while ((last_page < last_free_page)
3152 && (page_table[last_page].allocated != FREE_PAGE)
3153 && (page_table[last_page].bytes_used != 0)
3154 && (page_table[last_page].gen == from_space));
3156 /* Zero pages from first_page to (last_page-1).
3158 * FIXME: Why not use os_zero(..) function instead of
3159 * hand-coding this again? (Check other gencgc_unmap_zero
3160 * stuff too. */
3161 if (gencgc_unmap_zero) {
3162 void *page_start, *addr;
3164 page_start = (void *)page_address(first_page);
3166 os_invalidate(page_start, 4096*(last_page-first_page));
3167 addr = os_validate(page_start, 4096*(last_page-first_page));
3168 if (addr == NULL || addr != page_start) {
3169 /* Is this an error condition? I couldn't really tell from
3170 * the old CMU CL code, which fprintf'ed a message with
3171 * an exclamation point at the end. But I've never seen the
3172 * message, so it must at least be unusual..
3174 * (The same condition is also tested for in gc_free_heap.)
3176 * -- WHN 19991129 */
3177 lose("i586_bzero: page moved, 0x%08x ==> 0x%08x",
3178 page_start,
3179 addr);
3181 } else {
3182 int *page_start;
3184 page_start = (int *)page_address(first_page);
3185 i586_bzero(page_start, 4096*(last_page-first_page));
3188 first_page = last_page;
3190 } while (first_page < last_free_page);
3192 bytes_allocated -= bytes_freed;
3193 return bytes_freed;
3196 #if 0
3197 /* Print some information about a pointer at the given address. */
3198 static void
3199 print_ptr(lispobj *addr)
3201 /* If addr is in the dynamic space then out the page information. */
3202 int pi1 = find_page_index((void*)addr);
3204 if (pi1 != -1)
3205 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %d dont_move %d\n",
3206 (unsigned int) addr,
3207 pi1,
3208 page_table[pi1].allocated,
3209 page_table[pi1].gen,
3210 page_table[pi1].bytes_used,
3211 page_table[pi1].first_object_offset,
3212 page_table[pi1].dont_move);
3213 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3214 *(addr-4),
3215 *(addr-3),
3216 *(addr-2),
3217 *(addr-1),
3218 *(addr-0),
3219 *(addr+1),
3220 *(addr+2),
3221 *(addr+3),
3222 *(addr+4));
3224 #endif
3226 extern int undefined_tramp;
3228 static void
3229 verify_space(lispobj *start, size_t words)
3231 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3232 int is_in_readonly_space =
3233 (READ_ONLY_SPACE_START <= (unsigned)start &&
3234 (unsigned)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER));
3236 while (words > 0) {
3237 size_t count = 1;
3238 lispobj thing = *(lispobj*)start;
3240 if (is_lisp_pointer(thing)) {
3241 int page_index = find_page_index((void*)thing);
3242 int to_readonly_space =
3243 (READ_ONLY_SPACE_START <= thing &&
3244 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER));
3245 int to_static_space =
3246 (STATIC_SPACE_START <= thing &&
3247 thing < SymbolValue(STATIC_SPACE_FREE_POINTER));
3249 /* Does it point to the dynamic space? */
3250 if (page_index != -1) {
3251 /* If it's within the dynamic space it should point to a used
3252 * page. XX Could check the offset too. */
3253 if ((page_table[page_index].allocated != FREE_PAGE)
3254 && (page_table[page_index].bytes_used == 0))
3255 lose ("Ptr %x @ %x sees free page.", thing, start);
3256 /* Check that it doesn't point to a forwarding pointer! */
3257 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3258 lose("Ptr %x @ %x sees forwarding ptr.", thing, start);
3260 /* Check that its not in the RO space as it would then be a
3261 * pointer from the RO to the dynamic space. */
3262 if (is_in_readonly_space) {
3263 lose("ptr to dynamic space %x from RO space %x",
3264 thing, start);
3266 /* Does it point to a plausible object? This check slows
3267 * it down a lot (so it's commented out).
3269 * "a lot" is serious: it ate 50 minutes cpu time on
3270 * my duron 950 before I came back from lunch and
3271 * killed it.
3273 * FIXME: Add a variable to enable this
3274 * dynamically. */
3276 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3277 lose("ptr %x to invalid object %x", thing, start);
3280 } else {
3281 /* Verify that it points to another valid space. */
3282 if (!to_readonly_space && !to_static_space
3283 && (thing != (unsigned)&undefined_tramp)) {
3284 lose("Ptr %x @ %x sees junk.", thing, start);
3287 } else {
3288 if (thing & 0x3) { /* Skip fixnums. FIXME: There should be an
3289 * is_fixnum for this. */
3291 switch(widetag_of(*start)) {
3293 /* boxed objects */
3294 case SIMPLE_VECTOR_WIDETAG:
3295 case RATIO_WIDETAG:
3296 case COMPLEX_WIDETAG:
3297 case SIMPLE_ARRAY_WIDETAG:
3298 case COMPLEX_STRING_WIDETAG:
3299 case COMPLEX_BIT_VECTOR_WIDETAG:
3300 case COMPLEX_VECTOR_WIDETAG:
3301 case COMPLEX_ARRAY_WIDETAG:
3302 case CLOSURE_HEADER_WIDETAG:
3303 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3304 case VALUE_CELL_HEADER_WIDETAG:
3305 case SYMBOL_HEADER_WIDETAG:
3306 case BASE_CHAR_WIDETAG:
3307 case UNBOUND_MARKER_WIDETAG:
3308 case INSTANCE_HEADER_WIDETAG:
3309 case FDEFN_WIDETAG:
3310 count = 1;
3311 break;
3313 case CODE_HEADER_WIDETAG:
3315 lispobj object = *start;
3316 struct code *code;
3317 int nheader_words, ncode_words, nwords;
3318 lispobj fheaderl;
3319 struct simple_fun *fheaderp;
3321 code = (struct code *) start;
3323 /* Check that it's not in the dynamic space.
3324 * FIXME: Isn't is supposed to be OK for code
3325 * objects to be in the dynamic space these days? */
3326 if (is_in_dynamic_space
3327 /* It's ok if it's byte compiled code. The trace
3328 * table offset will be a fixnum if it's x86
3329 * compiled code - check.
3331 * FIXME: #^#@@! lack of abstraction here..
3332 * This line can probably go away now that
3333 * there's no byte compiler, but I've got
3334 * too much to worry about right now to try
3335 * to make sure. -- WHN 2001-10-06 */
3336 && !(code->trace_table_offset & 0x3)
3337 /* Only when enabled */
3338 && verify_dynamic_code_check) {
3339 FSHOW((stderr,
3340 "/code object at %x in the dynamic space\n",
3341 start));
3344 ncode_words = fixnum_value(code->code_size);
3345 nheader_words = HeaderValue(object);
3346 nwords = ncode_words + nheader_words;
3347 nwords = CEILING(nwords, 2);
3348 /* Scavenge the boxed section of the code data block */
3349 verify_space(start + 1, nheader_words - 1);
3351 /* Scavenge the boxed section of each function
3352 * object in the code data block. */
3353 fheaderl = code->entry_points;
3354 while (fheaderl != NIL) {
3355 fheaderp =
3356 (struct simple_fun *) native_pointer(fheaderl);
3357 gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
3358 verify_space(&fheaderp->name, 1);
3359 verify_space(&fheaderp->arglist, 1);
3360 verify_space(&fheaderp->type, 1);
3361 fheaderl = fheaderp->next;
3363 count = nwords;
3364 break;
3367 /* unboxed objects */
3368 case BIGNUM_WIDETAG:
3369 case SINGLE_FLOAT_WIDETAG:
3370 case DOUBLE_FLOAT_WIDETAG:
3371 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3372 case LONG_FLOAT_WIDETAG:
3373 #endif
3374 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3375 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3376 #endif
3377 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3378 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3379 #endif
3380 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3381 case COMPLEX_LONG_FLOAT_WIDETAG:
3382 #endif
3383 case SIMPLE_STRING_WIDETAG:
3384 case SIMPLE_BIT_VECTOR_WIDETAG:
3385 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3386 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3387 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3388 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3389 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3390 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3391 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3392 #endif
3393 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3394 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3395 #endif
3396 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3397 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3398 #endif
3399 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3400 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3401 #endif
3402 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3403 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3404 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3405 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3406 #endif
3407 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3408 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3409 #endif
3410 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3411 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3412 #endif
3413 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3414 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3415 #endif
3416 case SAP_WIDETAG:
3417 case WEAK_POINTER_WIDETAG:
3418 count = (sizetab[widetag_of(*start)])(start);
3419 break;
3421 default:
3422 gc_abort();
3426 start += count;
3427 words -= count;
3431 static void
3432 verify_gc(void)
3434 /* FIXME: It would be nice to make names consistent so that
3435 * foo_size meant size *in* *bytes* instead of size in some
3436 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3437 * Some counts of lispobjs are called foo_count; it might be good
3438 * to grep for all foo_size and rename the appropriate ones to
3439 * foo_count. */
3440 int read_only_space_size =
3441 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER)
3442 - (lispobj*)READ_ONLY_SPACE_START;
3443 int static_space_size =
3444 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER)
3445 - (lispobj*)STATIC_SPACE_START;
3446 int binding_stack_size =
3447 (lispobj*)SymbolValue(BINDING_STACK_POINTER)
3448 - (lispobj*)BINDING_STACK_START;
3450 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3451 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3452 verify_space((lispobj*)BINDING_STACK_START , binding_stack_size);
3455 static void
3456 verify_generation(int generation)
3458 int i;
3460 for (i = 0; i < last_free_page; i++) {
3461 if ((page_table[i].allocated != FREE_PAGE)
3462 && (page_table[i].bytes_used != 0)
3463 && (page_table[i].gen == generation)) {
3464 int last_page;
3465 int region_allocation = page_table[i].allocated;
3467 /* This should be the start of a contiguous block */
3468 gc_assert(page_table[i].first_object_offset == 0);
3470 /* Need to find the full extent of this contiguous block in case
3471 objects span pages. */
3473 /* Now work forward until the end of this contiguous area is
3474 found. */
3475 for (last_page = i; ;last_page++)
3476 /* Check whether this is the last page in this contiguous
3477 * block. */
3478 if ((page_table[last_page].bytes_used < 4096)
3479 /* Or it is 4096 and is the last in the block */
3480 || (page_table[last_page+1].allocated != region_allocation)
3481 || (page_table[last_page+1].bytes_used == 0)
3482 || (page_table[last_page+1].gen != generation)
3483 || (page_table[last_page+1].first_object_offset == 0))
3484 break;
3486 verify_space(page_address(i), (page_table[last_page].bytes_used
3487 + (last_page-i)*4096)/4);
3488 i = last_page;
3493 /* Check that all the free space is zero filled. */
3494 static void
3495 verify_zero_fill(void)
3497 int page;
3499 for (page = 0; page < last_free_page; page++) {
3500 if (page_table[page].allocated == FREE_PAGE) {
3501 /* The whole page should be zero filled. */
3502 int *start_addr = (int *)page_address(page);
3503 int size = 1024;
3504 int i;
3505 for (i = 0; i < size; i++) {
3506 if (start_addr[i] != 0) {
3507 lose("free page not zero at %x", start_addr + i);
3510 } else {
3511 int free_bytes = 4096 - page_table[page].bytes_used;
3512 if (free_bytes > 0) {
3513 int *start_addr = (int *)((unsigned)page_address(page)
3514 + page_table[page].bytes_used);
3515 int size = free_bytes / 4;
3516 int i;
3517 for (i = 0; i < size; i++) {
3518 if (start_addr[i] != 0) {
3519 lose("free region not zero at %x", start_addr + i);
3527 /* External entry point for verify_zero_fill */
3528 void
3529 gencgc_verify_zero_fill(void)
3531 /* Flush the alloc regions updating the tables. */
3532 gc_alloc_update_all_page_tables();
3533 SHOW("verifying zero fill");
3534 verify_zero_fill();
3537 static void
3538 verify_dynamic_space(void)
3540 int i;
3542 for (i = 0; i < NUM_GENERATIONS; i++)
3543 verify_generation(i);
3545 if (gencgc_enable_verify_zero_fill)
3546 verify_zero_fill();
3549 /* Write-protect all the dynamic boxed pages in the given generation. */
3550 static void
3551 write_protect_generation_pages(int generation)
3553 int i;
3555 gc_assert(generation < NUM_GENERATIONS);
3557 for (i = 0; i < last_free_page; i++)
3558 if ((page_table[i].allocated == BOXED_PAGE)
3559 && (page_table[i].bytes_used != 0)
3560 && (page_table[i].gen == generation)) {
3561 void *page_start;
3563 page_start = (void *)page_address(i);
3565 os_protect(page_start,
3566 4096,
3567 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3569 /* Note the page as protected in the page tables. */
3570 page_table[i].write_protected = 1;
3573 if (gencgc_verbose > 1) {
3574 FSHOW((stderr,
3575 "/write protected %d of %d pages in generation %d\n",
3576 count_write_protect_generation_pages(generation),
3577 count_generation_pages(generation),
3578 generation));
3582 /* Garbage collect a generation. If raise is 0 then the remains of the
3583 * generation are not raised to the next generation. */
3584 static void
3585 garbage_collect_generation(int generation, int raise)
3587 unsigned long bytes_freed;
3588 unsigned long i;
3589 unsigned long static_space_size;
3591 gc_assert(generation <= (NUM_GENERATIONS-1));
3593 /* The oldest generation can't be raised. */
3594 gc_assert((generation != (NUM_GENERATIONS-1)) || (raise == 0));
3596 /* Initialize the weak pointer list. */
3597 weak_pointers = NULL;
3599 /* When a generation is not being raised it is transported to a
3600 * temporary generation (NUM_GENERATIONS), and lowered when
3601 * done. Set up this new generation. There should be no pages
3602 * allocated to it yet. */
3603 if (!raise)
3604 gc_assert(generations[NUM_GENERATIONS].bytes_allocated == 0);
3606 /* Set the global src and dest. generations */
3607 from_space = generation;
3608 if (raise)
3609 new_space = generation+1;
3610 else
3611 new_space = NUM_GENERATIONS;
3613 /* Change to a new space for allocation, resetting the alloc_start_page */
3614 gc_alloc_generation = new_space;
3615 generations[new_space].alloc_start_page = 0;
3616 generations[new_space].alloc_unboxed_start_page = 0;
3617 generations[new_space].alloc_large_start_page = 0;
3618 generations[new_space].alloc_large_unboxed_start_page = 0;
3620 /* Before any pointers are preserved, the dont_move flags on the
3621 * pages need to be cleared. */
3622 for (i = 0; i < last_free_page; i++)
3623 page_table[i].dont_move = 0;
3625 /* Un-write-protect the old-space pages. This is essential for the
3626 * promoted pages as they may contain pointers into the old-space
3627 * which need to be scavenged. It also helps avoid unnecessary page
3628 * faults as forwarding pointers are written into them. They need to
3629 * be un-protected anyway before unmapping later. */
3630 unprotect_oldspace();
3632 /* Scavenge the stack's conservative roots. */
3634 void **ptr;
3635 for (ptr = (void **)CONTROL_STACK_END - 1;
3636 ptr > (void **)&raise;
3637 ptr--) {
3638 preserve_pointer(*ptr);
3642 #if QSHOW
3643 if (gencgc_verbose > 1) {
3644 int num_dont_move_pages = count_dont_move_pages();
3645 fprintf(stderr,
3646 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
3647 num_dont_move_pages,
3648 /* FIXME: 4096 should be symbolic constant here and
3649 * prob'ly elsewhere too. */
3650 num_dont_move_pages * 4096);
3652 #endif
3654 /* Scavenge all the rest of the roots. */
3656 /* Scavenge the Lisp functions of the interrupt handlers, taking
3657 * care to avoid SIG_DFL and SIG_IGN. */
3658 for (i = 0; i < NSIG; i++) {
3659 union interrupt_handler handler = interrupt_handlers[i];
3660 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
3661 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
3662 scavenge((lispobj *)(interrupt_handlers + i), 1);
3666 /* Scavenge the binding stack. */
3667 scavenge((lispobj *) BINDING_STACK_START,
3668 (lispobj *)SymbolValue(BINDING_STACK_POINTER) -
3669 (lispobj *)BINDING_STACK_START);
3671 /* The original CMU CL code had scavenge-read-only-space code
3672 * controlled by the Lisp-level variable
3673 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
3674 * wasn't documented under what circumstances it was useful or
3675 * safe to turn it on, so it's been turned off in SBCL. If you
3676 * want/need this functionality, and can test and document it,
3677 * please submit a patch. */
3678 #if 0
3679 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
3680 unsigned long read_only_space_size =
3681 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
3682 (lispobj*)READ_ONLY_SPACE_START;
3683 FSHOW((stderr,
3684 "/scavenge read only space: %d bytes\n",
3685 read_only_space_size * sizeof(lispobj)));
3686 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
3688 #endif
3690 /* Scavenge static space. */
3691 static_space_size =
3692 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER) -
3693 (lispobj *)STATIC_SPACE_START;
3694 if (gencgc_verbose > 1) {
3695 FSHOW((stderr,
3696 "/scavenge static space: %d bytes\n",
3697 static_space_size * sizeof(lispobj)));
3699 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
3701 /* All generations but the generation being GCed need to be
3702 * scavenged. The new_space generation needs special handling as
3703 * objects may be moved in - it is handled separately below. */
3704 for (i = 0; i < NUM_GENERATIONS; i++) {
3705 if ((i != generation) && (i != new_space)) {
3706 scavenge_generation(i);
3710 /* Finally scavenge the new_space generation. Keep going until no
3711 * more objects are moved into the new generation */
3712 scavenge_newspace_generation(new_space);
3714 /* FIXME: I tried reenabling this check when debugging unrelated
3715 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
3716 * Since the current GC code seems to work well, I'm guessing that
3717 * this debugging code is just stale, but I haven't tried to
3718 * figure it out. It should be figured out and then either made to
3719 * work or just deleted. */
3720 #define RESCAN_CHECK 0
3721 #if RESCAN_CHECK
3722 /* As a check re-scavenge the newspace once; no new objects should
3723 * be found. */
3725 int old_bytes_allocated = bytes_allocated;
3726 int bytes_allocated;
3728 /* Start with a full scavenge. */
3729 scavenge_newspace_generation_one_scan(new_space);
3731 /* Flush the current regions, updating the tables. */
3732 gc_alloc_update_all_page_tables();
3734 bytes_allocated = bytes_allocated - old_bytes_allocated;
3736 if (bytes_allocated != 0) {
3737 lose("Rescan of new_space allocated %d more bytes.",
3738 bytes_allocated);
3741 #endif
3743 scan_weak_pointers();
3745 /* Flush the current regions, updating the tables. */
3746 gc_alloc_update_all_page_tables();
3748 /* Free the pages in oldspace, but not those marked dont_move. */
3749 bytes_freed = free_oldspace();
3751 /* If the GC is not raising the age then lower the generation back
3752 * to its normal generation number */
3753 if (!raise) {
3754 for (i = 0; i < last_free_page; i++)
3755 if ((page_table[i].bytes_used != 0)
3756 && (page_table[i].gen == NUM_GENERATIONS))
3757 page_table[i].gen = generation;
3758 gc_assert(generations[generation].bytes_allocated == 0);
3759 generations[generation].bytes_allocated =
3760 generations[NUM_GENERATIONS].bytes_allocated;
3761 generations[NUM_GENERATIONS].bytes_allocated = 0;
3764 /* Reset the alloc_start_page for generation. */
3765 generations[generation].alloc_start_page = 0;
3766 generations[generation].alloc_unboxed_start_page = 0;
3767 generations[generation].alloc_large_start_page = 0;
3768 generations[generation].alloc_large_unboxed_start_page = 0;
3770 if (generation >= verify_gens) {
3771 if (gencgc_verbose)
3772 SHOW("verifying");
3773 verify_gc();
3774 verify_dynamic_space();
3777 /* Set the new gc trigger for the GCed generation. */
3778 generations[generation].gc_trigger =
3779 generations[generation].bytes_allocated
3780 + generations[generation].bytes_consed_between_gc;
3782 if (raise)
3783 generations[generation].num_gc = 0;
3784 else
3785 ++generations[generation].num_gc;
3788 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
3790 update_x86_dynamic_space_free_pointer(void)
3792 int last_page = -1;
3793 int i;
3795 for (i = 0; i < NUM_PAGES; i++)
3796 if ((page_table[i].allocated != FREE_PAGE)
3797 && (page_table[i].bytes_used != 0))
3798 last_page = i;
3800 last_free_page = last_page+1;
3802 SetSymbolValue(ALLOCATION_POINTER,
3803 (lispobj)(((char *)heap_base) + last_free_page*4096));
3804 return 0; /* dummy value: return something ... */
3807 /* GC all generations newer than last_gen, raising the objects in each
3808 * to the next older generation - we finish when all generations below
3809 * last_gen are empty. Then if last_gen is due for a GC, or if
3810 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
3811 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
3813 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
3814 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
3816 void
3817 collect_garbage(unsigned last_gen)
3819 int gen = 0;
3820 int raise;
3821 int gen_to_wp;
3822 int i;
3824 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
3826 if (last_gen > NUM_GENERATIONS) {
3827 FSHOW((stderr,
3828 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
3829 last_gen));
3830 last_gen = 0;
3833 /* Flush the alloc regions updating the tables. */
3834 gc_alloc_update_all_page_tables();
3836 /* Verify the new objects created by Lisp code. */
3837 if (pre_verify_gen_0) {
3838 FSHOW((stderr, "pre-checking generation 0\n"));
3839 verify_generation(0);
3842 if (gencgc_verbose > 1)
3843 print_generation_stats(0);
3845 do {
3846 /* Collect the generation. */
3848 if (gen >= gencgc_oldest_gen_to_gc) {
3849 /* Never raise the oldest generation. */
3850 raise = 0;
3851 } else {
3852 raise =
3853 (gen < last_gen)
3854 || (generations[gen].num_gc >= generations[gen].trigger_age);
3857 if (gencgc_verbose > 1) {
3858 FSHOW((stderr,
3859 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
3860 gen,
3861 raise,
3862 generations[gen].bytes_allocated,
3863 generations[gen].gc_trigger,
3864 generations[gen].num_gc));
3867 /* If an older generation is being filled, then update its
3868 * memory age. */
3869 if (raise == 1) {
3870 generations[gen+1].cum_sum_bytes_allocated +=
3871 generations[gen+1].bytes_allocated;
3874 garbage_collect_generation(gen, raise);
3876 /* Reset the memory age cum_sum. */
3877 generations[gen].cum_sum_bytes_allocated = 0;
3879 if (gencgc_verbose > 1) {
3880 FSHOW((stderr, "GC of generation %d finished:\n", gen));
3881 print_generation_stats(0);
3884 gen++;
3885 } while ((gen <= gencgc_oldest_gen_to_gc)
3886 && ((gen < last_gen)
3887 || ((gen <= gencgc_oldest_gen_to_gc)
3888 && raise
3889 && (generations[gen].bytes_allocated
3890 > generations[gen].gc_trigger)
3891 && (gen_av_mem_age(gen)
3892 > generations[gen].min_av_mem_age))));
3894 /* Now if gen-1 was raised all generations before gen are empty.
3895 * If it wasn't raised then all generations before gen-1 are empty.
3897 * Now objects within this gen's pages cannot point to younger
3898 * generations unless they are written to. This can be exploited
3899 * by write-protecting the pages of gen; then when younger
3900 * generations are GCed only the pages which have been written
3901 * need scanning. */
3902 if (raise)
3903 gen_to_wp = gen;
3904 else
3905 gen_to_wp = gen - 1;
3907 /* There's not much point in WPing pages in generation 0 as it is
3908 * never scavenged (except promoted pages). */
3909 if ((gen_to_wp > 0) && enable_page_protection) {
3910 /* Check that they are all empty. */
3911 for (i = 0; i < gen_to_wp; i++) {
3912 if (generations[i].bytes_allocated)
3913 lose("trying to write-protect gen. %d when gen. %d nonempty",
3914 gen_to_wp, i);
3916 write_protect_generation_pages(gen_to_wp);
3919 /* Set gc_alloc() back to generation 0. The current regions should
3920 * be flushed after the above GCs. */
3921 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
3922 gc_alloc_generation = 0;
3924 update_x86_dynamic_space_free_pointer();
3926 SHOW("returning from collect_garbage");
3929 /* This is called by Lisp PURIFY when it is finished. All live objects
3930 * will have been moved to the RO and Static heaps. The dynamic space
3931 * will need a full re-initialization. We don't bother having Lisp
3932 * PURIFY flush the current gc_alloc() region, as the page_tables are
3933 * re-initialized, and every page is zeroed to be sure. */
3934 void
3935 gc_free_heap(void)
3937 int page;
3939 if (gencgc_verbose > 1)
3940 SHOW("entering gc_free_heap");
3942 for (page = 0; page < NUM_PAGES; page++) {
3943 /* Skip free pages which should already be zero filled. */
3944 if (page_table[page].allocated != FREE_PAGE) {
3945 void *page_start, *addr;
3947 /* Mark the page free. The other slots are assumed invalid
3948 * when it is a FREE_PAGE and bytes_used is 0 and it
3949 * should not be write-protected -- except that the
3950 * generation is used for the current region but it sets
3951 * that up. */
3952 page_table[page].allocated = FREE_PAGE;
3953 page_table[page].bytes_used = 0;
3955 /* Zero the page. */
3956 page_start = (void *)page_address(page);
3958 /* First, remove any write-protection. */
3959 os_protect(page_start, 4096, OS_VM_PROT_ALL);
3960 page_table[page].write_protected = 0;
3962 os_invalidate(page_start,4096);
3963 addr = os_validate(page_start,4096);
3964 if (addr == NULL || addr != page_start) {
3965 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x",
3966 page_start,
3967 addr);
3969 } else if (gencgc_zero_check_during_free_heap) {
3970 /* Double-check that the page is zero filled. */
3971 int *page_start, i;
3972 gc_assert(page_table[page].allocated == FREE_PAGE);
3973 gc_assert(page_table[page].bytes_used == 0);
3974 page_start = (int *)page_address(page);
3975 for (i=0; i<1024; i++) {
3976 if (page_start[i] != 0) {
3977 lose("free region not zero at %x", page_start + i);
3983 bytes_allocated = 0;
3985 /* Initialize the generations. */
3986 for (page = 0; page < NUM_GENERATIONS; page++) {
3987 generations[page].alloc_start_page = 0;
3988 generations[page].alloc_unboxed_start_page = 0;
3989 generations[page].alloc_large_start_page = 0;
3990 generations[page].alloc_large_unboxed_start_page = 0;
3991 generations[page].bytes_allocated = 0;
3992 generations[page].gc_trigger = 2000000;
3993 generations[page].num_gc = 0;
3994 generations[page].cum_sum_bytes_allocated = 0;
3997 if (gencgc_verbose > 1)
3998 print_generation_stats(0);
4000 /* Initialize gc_alloc(). */
4001 gc_alloc_generation = 0;
4003 gc_set_region_empty(&boxed_region);
4004 gc_set_region_empty(&unboxed_region);
4006 last_free_page = 0;
4007 SetSymbolValue(ALLOCATION_POINTER, (lispobj)((char *)heap_base));
4009 if (verify_after_free_heap) {
4010 /* Check whether purify has left any bad pointers. */
4011 if (gencgc_verbose)
4012 SHOW("checking after free_heap\n");
4013 verify_gc();
4017 void
4018 gc_init(void)
4020 int i;
4022 gc_init_tables();
4023 scavtab[SIMPLE_VECTOR_WIDETAG] = scav_vector;
4024 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4025 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4027 heap_base = (void*)DYNAMIC_SPACE_START;
4029 /* Initialize each page structure. */
4030 for (i = 0; i < NUM_PAGES; i++) {
4031 /* Initialize all pages as free. */
4032 page_table[i].allocated = FREE_PAGE;
4033 page_table[i].bytes_used = 0;
4035 /* Pages are not write-protected at startup. */
4036 page_table[i].write_protected = 0;
4039 bytes_allocated = 0;
4041 /* Initialize the generations.
4043 * FIXME: very similar to code in gc_free_heap(), should be shared */
4044 for (i = 0; i < NUM_GENERATIONS; i++) {
4045 generations[i].alloc_start_page = 0;
4046 generations[i].alloc_unboxed_start_page = 0;
4047 generations[i].alloc_large_start_page = 0;
4048 generations[i].alloc_large_unboxed_start_page = 0;
4049 generations[i].bytes_allocated = 0;
4050 generations[i].gc_trigger = 2000000;
4051 generations[i].num_gc = 0;
4052 generations[i].cum_sum_bytes_allocated = 0;
4053 /* the tune-able parameters */
4054 generations[i].bytes_consed_between_gc = 2000000;
4055 generations[i].trigger_age = 1;
4056 generations[i].min_av_mem_age = 0.75;
4059 /* Initialize gc_alloc. */
4060 gc_alloc_generation = 0;
4061 gc_set_region_empty(&boxed_region);
4062 gc_set_region_empty(&unboxed_region);
4064 last_free_page = 0;
4068 /* Pick up the dynamic space from after a core load.
4070 * The ALLOCATION_POINTER points to the end of the dynamic space.
4072 * XX A scan is needed to identify the closest first objects for pages. */
4073 static void
4074 gencgc_pickup_dynamic(void)
4076 int page = 0;
4077 int addr = DYNAMIC_SPACE_START;
4078 int alloc_ptr = SymbolValue(ALLOCATION_POINTER);
4080 /* Initialize the first region. */
4081 do {
4082 page_table[page].allocated = BOXED_PAGE;
4083 page_table[page].gen = 0;
4084 page_table[page].bytes_used = 4096;
4085 page_table[page].large_object = 0;
4086 page_table[page].first_object_offset =
4087 (void *)DYNAMIC_SPACE_START - page_address(page);
4088 addr += 4096;
4089 page++;
4090 } while (addr < alloc_ptr);
4092 generations[0].bytes_allocated = 4096*page;
4093 bytes_allocated = 4096*page;
4097 void
4098 gc_initialize_pointers(void)
4100 gencgc_pickup_dynamic();
4106 extern boolean maybe_gc_pending ;
4107 /* alloc(..) is the external interface for memory allocation. It
4108 * allocates to generation 0. It is not called from within the garbage
4109 * collector as it is only external uses that need the check for heap
4110 * size (GC trigger) and to disable the interrupts (interrupts are
4111 * always disabled during a GC).
4113 * The vops that call alloc(..) assume that the returned space is zero-filled.
4114 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4116 * The check for a GC trigger is only performed when the current
4117 * region is full, so in most cases it's not needed. */
4119 char *
4120 alloc(int nbytes)
4122 struct alloc_region *region= &boxed_region;
4123 void *new_obj;
4124 void *new_free_pointer;
4126 /* Check for alignment allocation problems. */
4127 gc_assert((((unsigned)region->free_pointer & 0x7) == 0)
4128 && ((nbytes & 0x7) == 0));
4129 /* At this point we should either be in pseudo-atomic, or early
4130 * enough in cold initn that interrupts are not yet enabled anyway.
4131 * It would be nice to assert same.
4133 gc_assert(SymbolValue(PSEUDO_ATOMIC_ATOMIC));
4135 /* maybe we can do this quickly ... */
4136 new_free_pointer = region->free_pointer + nbytes;
4137 if (new_free_pointer <= region->end_addr) {
4138 new_obj = (void*)(region->free_pointer);
4139 region->free_pointer = new_free_pointer;
4140 return(new_obj); /* yup */
4143 /* we have to go the long way around, it seems. Check whether
4144 * we should GC in the near future
4146 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4147 auto_gc_trigger *= 2;
4148 /* set things up so that GC happens when we finish the PA
4149 * section. */
4150 maybe_gc_pending=1;
4151 SetSymbolValue(PSEUDO_ATOMIC_INTERRUPTED, make_fixnum(1));
4153 new_obj = gc_alloc_with_region(nbytes,0,region,0);
4154 return (new_obj);
4159 * noise to manipulate the gc trigger stuff
4162 void
4163 set_auto_gc_trigger(os_vm_size_t dynamic_usage)
4165 auto_gc_trigger += dynamic_usage;
4168 void
4169 clear_auto_gc_trigger(void)
4171 auto_gc_trigger = 0;
4174 /* Find the code object for the given pc, or return NULL on failure.
4176 * FIXME: PC shouldn't be lispobj*, should it? Maybe void*? */
4177 lispobj *
4178 component_ptr_from_pc(lispobj *pc)
4180 lispobj *object = NULL;
4182 if ( (object = search_read_only_space(pc)) )
4184 else if ( (object = search_static_space(pc)) )
4186 else
4187 object = search_dynamic_space(pc);
4189 if (object) /* if we found something */
4190 if (widetag_of(*object) == CODE_HEADER_WIDETAG) /* if it's a code object */
4191 return(object);
4193 return (NULL);
4197 * shared support for the OS-dependent signal handlers which
4198 * catch GENCGC-related write-protect violations
4201 void unhandled_sigmemoryfault(void);
4203 /* Depending on which OS we're running under, different signals might
4204 * be raised for a violation of write protection in the heap. This
4205 * function factors out the common generational GC magic which needs
4206 * to invoked in this case, and should be called from whatever signal
4207 * handler is appropriate for the OS we're running under.
4209 * Return true if this signal is a normal generational GC thing that
4210 * we were able to handle, or false if it was abnormal and control
4211 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4214 gencgc_handle_wp_violation(void* fault_addr)
4216 int page_index = find_page_index(fault_addr);
4218 #if defined QSHOW_SIGNALS
4219 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4220 fault_addr, page_index));
4221 #endif
4223 /* Check whether the fault is within the dynamic space. */
4224 if (page_index == (-1)) {
4226 /* It can be helpful to be able to put a breakpoint on this
4227 * case to help diagnose low-level problems. */
4228 unhandled_sigmemoryfault();
4230 /* not within the dynamic space -- not our responsibility */
4231 return 0;
4233 } else {
4235 /* The only acceptable reason for an signal like this from the
4236 * heap is that the generational GC write-protected the page. */
4237 if (page_table[page_index].write_protected != 1) {
4238 lose("access failure in heap page not marked as write-protected");
4241 /* Unprotect the page. */
4242 os_protect(page_address(page_index), 4096, OS_VM_PROT_ALL);
4243 page_table[page_index].write_protected = 0;
4244 page_table[page_index].write_protected_cleared = 1;
4246 /* Don't worry, we can handle it. */
4247 return 1;
4251 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4252 * it's not just a case of the program hitting the write barrier, and
4253 * are about to let Lisp deal with it. It's basically just a
4254 * convenient place to set a gdb breakpoint. */
4255 void
4256 unhandled_sigmemoryfault()
4259 gc_alloc_update_all_page_tables(void)
4261 /* Flush the alloc regions updating the tables. */
4262 gc_alloc_update_page_tables(1, &unboxed_region);
4263 gc_alloc_update_page_tables(0, &boxed_region);
4265 void
4266 gc_set_region_empty(struct alloc_region *region)
4268 region->first_page = 0;
4269 region->last_page = -1;
4270 region->start_addr = page_address(0);
4271 region->free_pointer = page_address(0);
4272 region->end_addr = page_address(0);