Make more (SATISFIES p) types not entirely opaque to type-intersection.
[sbcl.git] / src / code / early-type.lisp
blobec375f6d8ca62c94a19a1568b8cce62b6766b6ce
1 ;;;; This software is part of the SBCL system. See the README file for
2 ;;;; more information.
3 ;;;;
4 ;;;; This software is derived from the CMU CL system, which was
5 ;;;; written at Carnegie Mellon University and released into the
6 ;;;; public domain. The software is in the public domain and is
7 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
8 ;;;; files for more information.
10 (in-package "SB!KERNEL")
12 (!begin-collecting-cold-init-forms)
14 ;;; the description of a &KEY argument
15 (defstruct (key-info #-sb-xc-host (:pure t)
16 (:copier nil))
17 ;; the key (not necessarily a keyword in ANSI Common Lisp)
18 (name (missing-arg) :type symbol :read-only t)
19 ;; the type of the argument value
20 (type (missing-arg) :type ctype :read-only t))
22 ;;;; representations of types
24 ;;; A HAIRY-TYPE represents anything too weird to be described
25 ;;; reasonably or to be useful, such as NOT, SATISFIES, unknown types,
26 ;;; and unreasonably complicated types involving AND. We just remember
27 ;;; the original type spec.
28 ;;; A possible improvement would be for HAIRY-TYPE to have a subtype
29 ;;; named SATISFIES-TYPE for the hairy types which are specifically
30 ;;; of the form (SATISFIES pred) so that we don't have to examine
31 ;;; the sexpr repeatedly to decide whether it takes that form.
32 ;;; And as a further improvement, we might want a table that maps
33 ;;; predicates to their exactly recognized type when possible.
34 ;;; We have such a table in fact - *BACKEND-PREDICATE-TYPES*
35 ;;; as a starting point. But something like PLUSP isn't in there.
36 ;;; On the other hand, either of these points may not be sources of
37 ;;; inefficiency, and the latter if implemented might have undesirable
38 ;;; user-visible ramifications, though it seems unlikely.
39 (defstruct (hairy-type (:include ctype
40 (class-info (type-class-or-lose 'hairy)))
41 (:constructor %make-hairy-type (specifier))
42 (:copier nil)
43 #!+cmu (:pure nil))
44 ;; the Common Lisp type-specifier of the type we represent
45 (specifier nil :type t :read-only t))
47 ;; ENUMERABLE-P is T because a hairy type could be equivalent to a MEMBER type.
48 ;; e.g. any SATISFIES with a predicate returning T over a finite domain.
49 ;; But in practice there's nothing that can be done with this information,
50 ;; because we don't call random predicates when performing operations on types
51 ;; as objects, only when checking for inclusion of something in the type.
52 (!define-type-class hairy :enumerable t :might-contain-other-types t)
54 ;;; An UNKNOWN-TYPE is a type not known to the type system (not yet
55 ;;; defined). We make this distinction since we don't want to complain
56 ;;; about types that are hairy but defined.
57 (defstruct (unknown-type (:include hairy-type)
58 (:copier nil)))
60 (defun maybe-reparse-specifier (type)
61 (when (unknown-type-p type)
62 (let* ((spec (unknown-type-specifier type))
63 (name (if (consp spec)
64 (car spec)
65 spec)))
66 (when (info :type :kind name)
67 (let ((new-type (specifier-type spec)))
68 (unless (unknown-type-p new-type)
69 new-type))))))
71 ;;; Evil macro.
72 (defmacro maybe-reparse-specifier! (type)
73 (assert (symbolp type))
74 (with-unique-names (new-type)
75 `(let ((,new-type (maybe-reparse-specifier ,type)))
76 (when ,new-type
77 (setf ,type ,new-type)
78 t))))
80 (defstruct (negation-type (:include ctype
81 (class-info (type-class-or-lose 'negation)))
82 (:copier nil)
83 #!+cmu (:pure nil))
84 (type (missing-arg) :type ctype :read-only t))
86 ;; Former comment was:
87 ;; FIXME: is this right? It's what they had before, anyway
88 ;; But I think the reason it's right is that "enumerable :t" is equivalent
89 ;; to "maybe" which is actually the conservative assumption, same as HAIRY.
90 (!define-type-class negation :enumerable t :might-contain-other-types t)
92 ;;; ARGS-TYPE objects are used both to represent VALUES types and
93 ;;; to represent FUNCTION types.
94 (defstruct (args-type (:include ctype)
95 (:constructor nil)
96 (:copier nil))
97 ;; Lists of the type for each required and optional argument.
98 (required nil :type list :read-only t)
99 (optional nil :type list :read-only t)
100 ;; The type for the rest arg. NIL if there is no &REST arg.
101 (rest nil :type (or ctype null) :read-only t)
102 ;; true if &KEY arguments are specified
103 (keyp nil :type boolean :read-only t)
104 ;; list of KEY-INFO structures describing the &KEY arguments
105 (keywords nil :type list :read-only t)
106 ;; true if other &KEY arguments are allowed
107 (allowp nil :type boolean :read-only t))
109 (defun canonicalize-args-type-args (required optional rest &optional keyp)
110 (when (eq rest *empty-type*)
111 ;; or vice-versa?
112 (setq rest nil))
113 (loop with last-not-rest = nil
114 for i from 0
115 for opt in optional
116 do (cond ((eq opt *empty-type*)
117 (return (values required (subseq optional i) rest)))
118 ((and (not keyp) (neq opt rest))
119 (setq last-not-rest i)))
120 finally (return (values required
121 (cond (keyp
122 optional)
123 (last-not-rest
124 (subseq optional 0 (1+ last-not-rest))))
125 rest))))
127 (defun parse-args-types (lambda-listy-thing context)
128 (multiple-value-bind (llks required optional rest keys)
129 (parse-lambda-list
130 lambda-listy-thing
131 :context context
132 :accept (ecase context
133 (:values-type (lambda-list-keyword-mask '(&optional &rest)))
134 (:function-type (lambda-list-keyword-mask
135 '(&optional &rest &key &allow-other-keys))))
136 :silent t)
137 (let ((required (mapcar #'single-value-specifier-type required))
138 (optional (mapcar #'single-value-specifier-type optional))
139 (rest (when rest (single-value-specifier-type (car rest))))
140 (keywords
141 (collect ((key-info))
142 (dolist (key keys)
143 (unless (proper-list-of-length-p key 2)
144 (error "Keyword type description is not a two-list: ~S." key))
145 (let ((kwd (first key)))
146 (when (find kwd (key-info) :key #'key-info-name)
147 (error "~@<repeated keyword ~S in lambda list: ~2I~_~S~:>"
148 kwd lambda-listy-thing))
149 (key-info
150 (make-key-info
151 :name kwd
152 :type (single-value-specifier-type (second key))))))
153 (key-info))))
154 (multiple-value-bind (required optional rest)
155 (canonicalize-args-type-args required optional rest
156 (ll-kwds-keyp llks))
157 (values llks required optional rest keywords)))))
159 (defstruct (values-type
160 (:include args-type
161 (class-info (type-class-or-lose 'values)))
162 (:constructor %make-values-type)
163 (:predicate %values-type-p)
164 (:copier nil)))
166 (declaim (inline values-type-p))
167 (defun values-type-p (x)
168 (or (eq x *wild-type*)
169 (%values-type-p x)))
171 (defun-cached (make-values-type-cached
172 :hash-bits 8
173 :hash-function
174 (lambda (req opt rest allowp)
175 (logxor (type-list-cache-hash req)
176 (type-list-cache-hash opt)
177 (if rest
178 (type-hash-value rest)
180 ;; Results (logand #xFF (sxhash t/nil))
181 ;; hardcoded to avoid relying on the xc host.
182 ;; [but (logand (sxhash nil) #xff) => 2
183 ;; for me, so the code and comment disagree,
184 ;; but not in a way that matters.]
185 (if allowp
187 11))))
188 ((required equal-but-no-car-recursion)
189 (optional equal-but-no-car-recursion)
190 (rest eq)
191 (allowp eq))
192 (%make-values-type :required required
193 :optional optional
194 :rest rest
195 :allowp allowp))
197 (defun make-values-type (&key required optional rest allowp)
198 (multiple-value-bind (required optional rest)
199 (canonicalize-args-type-args required optional rest)
200 (cond ((and (null required)
201 (null optional)
202 (eq rest *universal-type*))
203 *wild-type*)
204 ((memq *empty-type* required)
205 *empty-type*)
206 (t (make-values-type-cached required optional
207 rest allowp)))))
209 (!define-type-class values :enumerable nil
210 :might-contain-other-types nil)
212 ;;; (SPECIFIER-TYPE 'FUNCTION) and its subtypes
213 (defstruct (fun-type (:include args-type
214 (class-info (type-class-or-lose 'function)))
215 (:constructor
216 %make-fun-type (required optional rest
217 keyp keywords allowp wild-args returns)))
218 ;; true if the arguments are unrestrictive, i.e. *
219 (wild-args nil :type boolean :read-only t)
220 ;; type describing the return values. This is a values type
221 ;; when multiple values were specified for the return.
222 (returns (missing-arg) :type ctype :read-only t))
224 ;; Without this canonicalization step, I found >350 different
225 ;; (FUNCTION (T) *) representations in a sample build.
226 (declaim (type (simple-vector 4) *interned-fun-type-instances*))
227 (defglobal *interned-fun-types* (make-array 4))
228 (defun !intern-important-fun-type-instances ()
229 (setq *interned-fun-types* (make-array 4))
230 (let (required)
231 (dotimes (i 4)
232 (when (plusp i)
233 (push *universal-type* required))
234 (setf (svref *interned-fun-types* i)
235 (mark-ctype-interned
236 (%make-fun-type required nil nil nil nil nil nil *wild-type*))))))
238 (defun make-fun-type (&key required optional rest
239 keyp keywords allowp
240 wild-args returns)
241 (let ((rest (if (eq rest *empty-type*) nil rest))
242 (n (length required)))
243 (if (and (<= n 3)
244 (not optional) (not rest) (not keyp)
245 (not keywords) (not allowp) (not wild-args)
246 (eq returns *wild-type*)
247 (every (lambda (x) (eq x *universal-type*)) required))
248 (svref *interned-fun-types* n)
249 (%make-fun-type required optional rest keyp keywords
250 allowp wild-args returns))))
252 ;;; The CONSTANT-TYPE structure represents a use of the CONSTANT-ARG
253 ;;; "type specifier", which is only meaningful in function argument
254 ;;; type specifiers used within the compiler. (It represents something
255 ;;; that the compiler knows to be a constant.)
256 (defstruct (constant-type
257 (:include ctype
258 (class-info (type-class-or-lose 'constant)))
259 (:copier nil))
260 ;; The type which the argument must be a constant instance of for this type
261 ;; specifier to win.
262 (type (missing-arg) :type ctype :read-only t))
264 ;;; The NAMED-TYPE is used to represent *, T and NIL, the standard
265 ;;; special cases, as well as other special cases needed to
266 ;;; interpolate between regions of the type hierarchy, such as
267 ;;; INSTANCE (which corresponds to all those classes with slots which
268 ;;; are not funcallable), FUNCALLABLE-INSTANCE (those classes with
269 ;;; slots which are funcallable) and EXTENDED-SEQUUENCE (non-LIST
270 ;;; non-VECTOR classes which are also sequences). These special cases
271 ;;; are the ones that aren't really discussed by Baker in his
272 ;;; "Decision Procedure for SUBTYPEP" paper.
273 (defstruct (named-type (:include ctype
274 (class-info (type-class-or-lose 'named)))
275 (:copier nil))
276 (name nil :type symbol :read-only t))
278 ;;; a list of all the float "formats" (i.e. internal representations;
279 ;;; nothing to do with #'FORMAT), in order of decreasing precision
280 (eval-when (:compile-toplevel :load-toplevel :execute)
281 (defparameter *float-formats*
282 '(long-float double-float single-float short-float)))
284 ;;; The type of a float format.
285 (deftype float-format () `(member ,@*float-formats*))
287 ;;; A NUMERIC-TYPE represents any numeric type, including things
288 ;;; such as FIXNUM.
289 (defstruct (numeric-type (:include ctype
290 (class-info (type-class-or-lose 'number)))
291 (:constructor %make-numeric-type)
292 (:copier nil))
293 ;; Formerly defined in every CTYPE, but now just in the ones
294 ;; for which enumerability is variable.
295 (enumerable nil :read-only t)
296 ;; the kind of numeric type we have, or NIL if not specified (just
297 ;; NUMBER or COMPLEX)
299 ;; KLUDGE: A slot named CLASS for a non-CLASS value is bad.
300 ;; Especially when a CLASS value *is* stored in another slot (called
301 ;; CLASS-INFO:-). Perhaps this should be called CLASS-NAME? Also
302 ;; weird that comment above says "Numeric-Type is used to represent
303 ;; all numeric types" but this slot doesn't allow COMPLEX as an
304 ;; option.. how does this fall into "not specified" NIL case above?
305 ;; Perhaps someday we can switch to CLOS and make NUMERIC-TYPE
306 ;; be an abstract base class and INTEGER-TYPE, RATIONAL-TYPE, and
307 ;; whatnot be concrete subclasses..
308 (class nil :type (member integer rational float nil) :read-only t)
309 ;; "format" for a float type (i.e. type specifier for a CPU
310 ;; representation of floating point, e.g. 'SINGLE-FLOAT -- nothing
311 ;; to do with #'FORMAT), or NIL if not specified or not a float.
312 ;; Formats which don't exist in a given implementation don't appear
313 ;; here.
314 (format nil :type (or float-format null) :read-only t)
315 ;; Is this a complex numeric type? Null if unknown (only in NUMBER).
317 ;; FIXME: I'm bewildered by FOO-P names for things not intended to
318 ;; interpreted as truth values. Perhaps rename this COMPLEXNESS?
319 (complexp :real :type (member :real :complex nil) :read-only t)
320 ;; The upper and lower bounds on the value, or NIL if there is no
321 ;; bound. If a list of a number, the bound is exclusive. Integer
322 ;; types never have exclusive bounds, i.e. they may have them on
323 ;; input, but they're canonicalized to inclusive bounds before we
324 ;; store them here.
325 (low nil :type (or number cons null) :read-only t)
326 (high nil :type (or number cons null) :read-only t))
328 ;; For some numeric subtypes, uniqueness of the object representation
329 ;; is enforced. These encompass all array specializations and more.
330 (defglobal *unsigned-byte-type* -1)
331 (defglobal *integer-type* -1)
332 (defglobal *unsigned-byte-n-types* -1)
333 (defglobal *signed-byte-n-types* -1)
334 (defglobal *real-ffloat-type* -1)
335 (defglobal *real-dfloat-type* -1)
336 (defglobal *complex-ffloat-type* -1)
337 (defglobal *complex-dfloat-type* -1)
338 #-sb-xc-host
339 (declaim (type (simple-vector #.(1+ sb!vm:n-word-bits)) *unsigned-byte-n-types*)
340 (type (simple-vector #.sb!vm:n-word-bits) *signed-byte-n-types*))
342 ;; Called after NUMBER-TYPE type-class has been made.
343 (defun !intern-important-numeric-type-instances ()
344 (flet ((float-type (format complexp)
345 (mark-ctype-interned
346 (%make-numeric-type :class 'float :complexp complexp
347 :format format :enumerable nil)))
348 (int-type (enumerable low high)
349 (mark-ctype-interned
350 (%make-numeric-type :class 'integer :complexp :real
351 :enumerable enumerable
352 :low low :high high))))
353 (setq *real-ffloat-type* (float-type 'single-float :real)
354 *real-dfloat-type* (float-type 'double-float :real)
355 *complex-ffloat-type* (float-type 'single-float :complex)
356 *complex-dfloat-type* (float-type 'double-float :complex)
357 *unsigned-byte-type* (int-type nil 0 nil)
358 *integer-type* (int-type nil nil nil)
359 *unsigned-byte-n-types* (make-array (1+ sb!vm:n-word-bits))
360 *signed-byte-n-types* (make-array sb!vm:n-word-bits))
361 (dotimes (j (1+ sb!vm:n-word-bits))
362 (setf (svref *unsigned-byte-n-types* j) (int-type t 0 (1- (ash 1 j)))))
363 (dotimes (j sb!vm:n-word-bits)
364 (setf (svref *signed-byte-n-types* j)
365 (let ((high (1- (ash 1 j)))) (int-type t (- (1+ high)) high))))))
367 ;;; Impose canonicalization rules for NUMERIC-TYPE. Note that in some
368 ;;; cases, despite the name, we return *EMPTY-TYPE* instead of a
369 ;;; NUMERIC-TYPE.
370 ;;; FIXME: The ENUMERABLE flag is unexpectedly NIL for types that
371 ;;; come from parsing MEMBER. But bounded integer ranges,
372 ;;; however large, are enumerable:
373 ;;; (TYPE-ENUMERABLE (SPECIFIER-TYPE '(SIGNED-BYTE 99))) => T
374 ;;; (TYPE-ENUMERABLE (SPECIFIER-TYPE '(COMPLEX (SIGNED-BYTE 99)))) => T
375 ;;; but, in contrast,
376 ;;; (TYPE-ENUMERABLE (SPECIFIER-TYPE '(EQL 5))) => NIL.
377 ;;; I can't figure out whether this is supposed to matter.
378 ;;; Moreover, it seems like this function should be responsible
379 ;;; for figuring out the right value so that callers don't have to.
380 (defun make-numeric-type (&key class format (complexp :real) low high
381 enumerable)
382 ;; if interval is empty
383 (if (and low
384 high
385 (if (or (consp low) (consp high)) ; if either bound is exclusive
386 (>= (type-bound-number low) (type-bound-number high))
387 (> low high)))
388 *empty-type*
389 (multiple-value-bind (low high)
390 (case class
391 (integer
392 ;; INTEGER types always have their LOW and HIGH bounds
393 ;; represented as inclusive, not exclusive values.
394 (values (if (consp low) (1+ (type-bound-number low)) low)
395 (if (consp high) (1- (type-bound-number high)) high)))
397 ;; no canonicalization necessary
398 (values low high)))
399 (when (and (eq class 'rational)
400 (integerp low)
401 (integerp high)
402 (= low high))
403 (setf class 'integer))
405 ;; Either lookup the canonical interned object for
406 ;; a point in the type lattice, or construct a new one.
407 (or (cond ((eq class 'float)
408 (when (and (null low) (null high))
409 (case format
410 (single-float
411 (case complexp
412 (:real *real-ffloat-type*)
413 (:complex *complex-ffloat-type*)))
414 (double-float
415 (case complexp
416 (:real *real-dfloat-type*)
417 (:complex *complex-dfloat-type*))))))
418 ((and (eq class 'integer) (eq complexp :real))
419 (flet ((n-bits () (integer-length (truly-the word high))))
420 (declare (inline n-bits))
421 (cond ((null high)
422 (cond ((eql low 0) *unsigned-byte-type*)
423 ((not low) *integer-type*)))
424 ((or (= high most-positive-word)
425 (and (typep high 'word)
426 ;; is (1+ high) a power-of-2 ?
427 (zerop (logand (1+ high) high))))
428 (cond ((eql low 0)
429 (svref *unsigned-byte-n-types* (n-bits)))
430 ((and (< high most-positive-word)
431 (eql low (lognot high)))
432 (svref *signed-byte-n-types* (n-bits)))))))))
433 (let ((result
434 (%make-numeric-type :class class
435 :format format
436 :complexp complexp
437 :low low
438 :high high
439 :enumerable enumerable)))
440 (setf (type-hash-value result)
441 (logior (type-hash-value result)
442 +type-admits-type=-optimization+))
443 result)))))
445 (defun modified-numeric-type (base
446 &key
447 (class (numeric-type-class base))
448 (format (numeric-type-format base))
449 (complexp (numeric-type-complexp base))
450 (low (numeric-type-low base))
451 (high (numeric-type-high base))
452 (enumerable (type-enumerable base)))
453 (make-numeric-type :class class
454 :format format
455 :complexp complexp
456 :low low
457 :high high
458 :enumerable enumerable))
460 (defstruct (character-set-type
461 (:include ctype
462 (class-info (type-class-or-lose 'character-set)))
463 (:constructor %make-character-set-type (pairs))
464 (:copier nil))
465 (pairs (missing-arg) :type list :read-only t))
467 ;; Interned character-set types.
468 (defglobal *character-type* -1)
469 #!+sb-unicode
470 (progn (defglobal *base-char-type* -1)
471 (defglobal *extended-char-type* -1))
472 #+sb-xc (declaim (type ctype *character-type*
473 #!+sb-unicode *base-char-type*
474 #!+sb-unicode *extended-char-type*))
476 (defun !intern-important-character-set-type-instances ()
477 (flet ((range (low high)
478 (mark-ctype-interned
479 (%make-character-set-type (list (cons low high))))))
480 (setq *character-type* (range 0 (1- sb!xc:char-code-limit)))
481 #!+sb-unicode
482 (setq *base-char-type* (range 0 127)
483 *extended-char-type* (range 128 (1- sb!xc:char-code-limit)))))
485 (defun make-character-set-type (&key pairs)
486 ; (aver (equal (mapcar #'car pairs)
487 ; (sort (mapcar #'car pairs) #'<)))
488 ;; aver that the cars of the list elements are sorted into increasing order
489 (aver (or (null pairs)
490 (do ((p pairs (cdr p)))
491 ((null (cdr p)) t)
492 (when (> (caar p) (caadr p)) (return nil)))))
493 (let ((pairs (let (result)
494 (do ((pairs pairs (cdr pairs)))
495 ((null pairs) (nreverse result))
496 (destructuring-bind (low . high) (car pairs)
497 (loop for (low1 . high1) in (cdr pairs)
498 if (<= low1 (1+ high))
499 do (progn (setf high (max high high1))
500 (setf pairs (cdr pairs)))
501 else do (return nil))
502 (cond
503 ((>= low sb!xc:char-code-limit))
504 ((< high 0))
505 (t (push (cons (max 0 low)
506 (min high (1- sb!xc:char-code-limit)))
507 result))))))))
508 (if (null pairs)
509 *empty-type*
510 (or (and (singleton-p pairs)
511 (let* ((pair (car pairs))
512 (low (car pair)))
513 (case (cdr pair) ; high
514 (#.(1- sb!xc:char-code-limit)
515 (case low
516 (0 *character-type*)
517 #!+sb-unicode (128 *extended-char-type*)))
518 #!+sb-unicode
519 (127 (if (eql low 0) *base-char-type*)))))
520 (%make-character-set-type pairs)))))
522 ;;; An ARRAY-TYPE is used to represent any array type, including
523 ;;; things such as SIMPLE-BASE-STRING.
524 (defstruct (array-type (:include ctype
525 (class-info (type-class-or-lose 'array)))
526 (:constructor %make-array-type
527 (dimensions complexp element-type
528 specialized-element-type))
529 (:copier nil))
530 ;; the dimensions of the array, or * if unspecified. If a dimension
531 ;; is unspecified, it is *.
532 (dimensions '* :type (or list (member *)) :read-only t)
533 ;; Is this not a simple array type? (:MAYBE means that we don't know.)
534 (complexp :maybe :type (member t nil :maybe) :read-only t)
535 ;; the element type as originally specified
536 (element-type (missing-arg) :type ctype :read-only t)
537 ;; the element type as it is specialized in this implementation
538 (specialized-element-type *wild-type* :type ctype :read-only t))
540 ;; For all ctypes which are the element types of specialized arrays,
541 ;; 3 ctype objects are stored for the rank-1 arrays of that specialization,
542 ;; one for each of simple, maybe simple, and not simple.
543 ;; It would also be reasonable to intern (ARRAY <type> *).
544 (defglobal *rank-1-array-ctypes* -1)
545 (defconstant +canon-array-ctype-hash-divisor+ 37) ; arbitrary-ish
546 (defun !intern-important-array-type-instances ()
547 ;; Having made the canonical numeric and character ctypes
548 ;; representing the points in the type lattice for which there
549 ;; are array specializations, we can make the canonical array types.
550 (let* ((element-types
551 (list*
552 *universal-type* *wild-type* *empty-type*
553 *character-type*
554 #!+sb-unicode *base-char-type* #!+sb-unicode *extended-char-type*
555 *real-ffloat-type* *complex-ffloat-type*
556 *real-dfloat-type* *complex-dfloat-type*
557 (delete
559 ;; Possibly could use the SAETP-IMPORTANCE as sort criterion
560 ;; so that collisions in a bucket place the more important
561 ;; array type first.
562 (mapcar
563 (lambda (x)
564 (cond ((typep x '(cons (eql unsigned-byte)))
565 (aref *unsigned-byte-n-types* (cadr x)))
566 ((eq x 'bit)
567 (aref *unsigned-byte-n-types* 1))
568 ((typep x '(cons (eql signed-byte)))
569 ;; 1- because there is no such thing as (signed-byte 0)
570 (aref *signed-byte-n-types* (1- (cadr x))))
571 ;; FIXNUM is its own thing, why? See comment in vm-array
572 ;; saying to "See the comment in PRIMITIVE-TYPE-AUX"
573 ((eq x 'fixnum) ; One good kludge deserves another.
574 (aref *signed-byte-n-types* (1- sb!vm:n-fixnum-bits)))))
575 '#.*specialized-array-element-types*))))
576 (n (length element-types))
577 (data-vector (make-array (* 3 n)))
578 (index 0)
579 (hashtable (make-array +canon-array-ctype-hash-divisor+
580 :initial-element nil)))
581 ;; This is a compact binned table. A full-blown hashtable is unneeded.
582 #-sb-xc (aver (< (/ n (length hashtable)) 80/100)) ; assert reasonable load
583 (flet ((make-it (complexp type)
584 (mark-ctype-interned (%make-array-type '(*) complexp type type))))
585 (dolist (element-type element-types)
586 (let ((bin (mod (type-hash-value element-type)
587 +canon-array-ctype-hash-divisor+)))
588 (setf (aref hashtable bin)
589 (nconc (aref hashtable bin) (list (cons element-type index))))
590 (setf (aref data-vector (+ index 0)) (make-it nil element-type)
591 (aref data-vector (+ index 1)) (make-it :maybe element-type)
592 (aref data-vector (+ index 2)) (make-it t element-type))
593 (incf index 3))))
594 (setq *rank-1-array-ctypes* (cons data-vector hashtable))))
596 (declaim (ftype (sfunction (t &key (:complexp t)
597 (:element-type t)
598 (:specialized-element-type t))
599 ctype) make-array-type))
600 (defun make-array-type (dimensions &key (complexp :maybe) element-type
601 (specialized-element-type *wild-type*))
602 (or (and (eq element-type specialized-element-type)
603 (singleton-p dimensions)
604 (eq (first dimensions) '*)
605 (let ((table *rank-1-array-ctypes*))
606 (dolist (cell (svref (cdr table)
607 (mod (type-hash-value element-type)
608 +canon-array-ctype-hash-divisor+)))
609 (when (eq (car cell) element-type)
610 (return (truly-the ctype
611 (svref (car table)
612 (+ (cdr cell)
613 (ecase complexp
614 ((nil) 0) ((:maybe) 1) ((t) 2))))))))))
615 (%make-array-type dimensions
616 complexp element-type specialized-element-type)))
618 ;;; A MEMBER-TYPE represent a use of the MEMBER type specifier. We
619 ;;; bother with this at this level because MEMBER types are fairly
620 ;;; important and union and intersection are well defined.
621 (defstruct (member-type (:include ctype
622 (class-info (type-class-or-lose 'member)))
623 (:copier nil)
624 (:constructor %make-member-type (xset fp-zeroes))
625 #-sb-xc-host (:pure nil))
626 (xset (missing-arg) :type xset :read-only t)
627 (fp-zeroes (missing-arg) :type list :read-only t))
629 (defglobal *null-type* -1) ; = (MEMBER NIL)
630 (defglobal *eql-t-type* -1) ; = (MEMBER T)
631 (defglobal *boolean-type* -1) ; = (MEMBER T NIL)
632 #+sb-xc (declaim (type ctype *null-type*))
634 (defun !intern-important-member-type-instances ()
635 (flet ((make-it (list)
636 (mark-ctype-interned
637 (%make-member-type (xset-from-list list) nil))))
638 (setf *null-type* (make-it '(nil))
639 *eql-t-type* (make-it '(t))
640 *boolean-type* (make-it '(t nil)))))
642 (declaim (ftype (sfunction (&key (:xset t) (:fp-zeroes t) (:members t)) ctype)
643 make-member-type))
644 (defun make-member-type (&key xset fp-zeroes members)
645 (unless xset
646 (aver (not fp-zeroes))
647 (setf xset (alloc-xset))
648 (dolist (elt members)
649 (if (fp-zero-p elt)
650 (pushnew elt fp-zeroes)
651 (add-to-xset elt xset))))
652 ;; if we have a pair of zeros (e.g. 0.0d0 and -0.0d0), then we can
653 ;; canonicalize to (DOUBLE-FLOAT 0.0d0 0.0d0), because numeric
654 ;; ranges are compared by arithmetic operators (while MEMBERship is
655 ;; compared by EQL). -- CSR, 2003-04-23
656 (let ((presence 0)
657 (unpaired nil)
658 (float-types nil))
659 (when fp-zeroes ; avoid doing two passes of nothing
660 (dotimes (pass 2)
661 (dolist (z fp-zeroes)
662 (let ((sign (if (minusp (nth-value 2 (integer-decode-float z))) 1 0))
663 (pair-idx
664 (etypecase z
665 (single-float 0)
666 (double-float 2
667 #!+long-float (long-float 4)))))
668 (if (= pass 0)
669 (setf (ldb (byte 1 (+ pair-idx sign)) presence) 1)
670 (if (= (ldb (byte 2 pair-idx) presence) #b11)
671 (when (= sign 0)
672 (push (ctype-of z) float-types))
673 (push z unpaired)))))))
674 (let ((member-type
675 (block nil
676 (unless unpaired
677 (when (singleton-p (xset-data xset))
678 (case (first (xset-data xset))
679 ((nil) (return *null-type*))
680 ((t) (return *eql-t-type*))))
681 ;; Semantically this is fine - XSETs
682 ;; are not order-preserving except by accident
683 ;; (when not represented as a hash-table).
684 (when (or (equal (xset-data xset) '(t nil))
685 (equal (xset-data xset) '(nil t)))
686 (return *boolean-type*)))
687 (when (or unpaired (not (xset-empty-p xset)))
688 (let ((result (%make-member-type xset unpaired)))
689 (setf (type-hash-value result)
690 (logior (type-hash-value result)
691 +type-admits-type=-optimization+))
692 result)))))
693 ;; The actual member-type contains the XSET (with no FP zeroes),
694 ;; and a list of unpaired zeroes.
695 (if float-types
696 (make-union-type t (if member-type
697 (cons member-type float-types)
698 float-types))
699 (or member-type *empty-type*)))))
701 (defun member-type-size (type)
702 (+ (length (member-type-fp-zeroes type))
703 (xset-count (member-type-xset type))))
705 (defun member-type-member-p (x type)
706 (if (fp-zero-p x)
707 (and (member x (member-type-fp-zeroes type)) t)
708 (xset-member-p x (member-type-xset type))))
710 (defun mapcar-member-type-members (function type)
711 (declare (function function))
712 (collect ((results))
713 (map-xset (lambda (x)
714 (results (funcall function x)))
715 (member-type-xset type))
716 (dolist (zero (member-type-fp-zeroes type))
717 (results (funcall function zero)))
718 (results)))
720 (defun mapc-member-type-members (function type)
721 (declare (function function))
722 (map-xset function (member-type-xset type))
723 (dolist (zero (member-type-fp-zeroes type))
724 (funcall function zero)))
726 (defun member-type-members (type)
727 (append (member-type-fp-zeroes type)
728 (xset-members (member-type-xset type))))
730 ;;; A COMPOUND-TYPE is a type defined out of a set of types, the
731 ;;; common parent of UNION-TYPE and INTERSECTION-TYPE.
732 (defstruct (compound-type (:include ctype)
733 (:constructor nil)
734 (:copier nil))
735 ;; Formerly defined in every CTYPE, but now just in the ones
736 ;; for which enumerability is variable.
737 (enumerable nil :read-only t)
738 (types nil :type list :read-only t))
740 ;;; A UNION-TYPE represents a use of the OR type specifier which we
741 ;;; couldn't canonicalize to something simpler. Canonical form:
742 ;;; 1. All possible pairwise simplifications (using the UNION2 type
743 ;;; methods) have been performed. Thus e.g. there is never more
744 ;;; than one MEMBER-TYPE component. FIXME: As of sbcl-0.6.11.13,
745 ;;; this hadn't been fully implemented yet.
746 ;;; 2. There are never any UNION-TYPE components.
748 ;;; TODO: As STRING is an especially important union type,
749 ;;; it could be interned by canonicalizing its subparts into
750 ;;; ARRAY of {CHARACTER,BASE-CHAR,NIL} in that exact order always.
751 ;;; It will therefore admit quick TYPE=, but not quick failure, since
752 ;;; (type= (specifier-type '(or (simple-array (member #\a) (*))
753 ;;; (simple-array character (*))
754 ;;; (simple-array nil (*))))
755 ;;; (specifier-type 'simple-string)) => T and T
756 ;;; even though (MEMBER #\A) is not TYPE= to BASE-CHAR.
758 (defstruct (union-type (:include compound-type
759 (class-info (type-class-or-lose 'union)))
760 (:constructor make-union-type (enumerable types))
761 (:copier nil)))
763 ;;; An INTERSECTION-TYPE represents a use of the AND type specifier
764 ;;; which we couldn't canonicalize to something simpler. Canonical form:
765 ;;; 1. All possible pairwise simplifications (using the INTERSECTION2
766 ;;; type methods) have been performed. Thus e.g. there is never more
767 ;;; than one MEMBER-TYPE component.
768 ;;; 2. There are never any INTERSECTION-TYPE components: we've
769 ;;; flattened everything into a single INTERSECTION-TYPE object.
770 ;;; 3. There are never any UNION-TYPE components. Either we should
771 ;;; use the distributive rule to rearrange things so that
772 ;;; unions contain intersections and not vice versa, or we
773 ;;; should just punt to using a HAIRY-TYPE.
774 (defstruct (intersection-type (:include compound-type
775 (class-info (type-class-or-lose
776 'intersection)))
777 (:constructor %make-intersection-type
778 (enumerable types))
779 (:copier nil)))
781 ;;; Return TYPE converted to canonical form for a situation where the
782 ;;; "type" '* (which SBCL still represents as a type even though ANSI
783 ;;; CL defines it as a related but different kind of placeholder) is
784 ;;; equivalent to type T.
785 (defun type-*-to-t (type)
786 (if (type= type *wild-type*)
787 *universal-type*
788 type))
790 ;;; A CONS-TYPE is used to represent a CONS type.
791 (defstruct (cons-type (:include ctype (class-info (type-class-or-lose 'cons)))
792 (:constructor
793 %make-cons-type (car-type
794 cdr-type))
795 (:copier nil))
796 ;; the CAR and CDR element types (to support ANSI (CONS FOO BAR) types)
797 (car-type (missing-arg) :type ctype :read-only t)
798 (cdr-type (missing-arg) :type ctype :read-only t))
800 ;; The function caches work significantly better when there
801 ;; is a unique object that stands for the specifier (CONS T T).
802 (defglobal *cons-t-t-type* -1)
803 #+sb-xc (declaim (type ctype *cons-t-t-type*))
805 (defun !intern-important-cons-type-instances ()
806 (setf *cons-t-t-type*
807 (mark-ctype-interned
808 (%make-cons-type *universal-type* *universal-type*))))
810 #+sb-xc-host
811 (declaim (ftype (sfunction (ctype ctype) (values t t)) type=))
812 (defun make-cons-type (car-type cdr-type)
813 (aver (not (or (eq car-type *wild-type*)
814 (eq cdr-type *wild-type*))))
815 (cond ((or (eq car-type *empty-type*)
816 (eq cdr-type *empty-type*))
817 *empty-type*)
818 ;; It's not a requirement that (CONS T T) be interned,
819 ;; but it improves the hit rate in the function caches.
820 ((and (type= car-type *universal-type*)
821 (type= cdr-type *universal-type*))
822 *cons-t-t-type*)
824 (%make-cons-type car-type cdr-type))))
826 ;;; A SIMD-PACK-TYPE is used to represent a SIMD-PACK type.
827 #!+sb-simd-pack
828 (defstruct (simd-pack-type
829 (:include ctype (class-info (type-class-or-lose 'simd-pack)))
830 (:constructor %make-simd-pack-type (element-type))
831 (:copier nil))
832 (element-type (missing-arg)
833 :type (cons #||(member #.*simd-pack-element-types*) ||#)
834 :read-only t))
836 #!+sb-simd-pack
837 (defun make-simd-pack-type (element-type)
838 (aver (neq element-type *wild-type*))
839 (if (eq element-type *empty-type*)
840 *empty-type*
841 (%make-simd-pack-type
842 (dolist (pack-type *simd-pack-element-types*
843 (error "~S element type must be a subtype of ~
844 ~{~S~#[~;, or ~:;, ~]~}."
845 'simd-pack *simd-pack-element-types*))
846 (when (csubtypep element-type (specifier-type pack-type))
847 (return (list pack-type)))))))
850 ;;;; type utilities
852 ;;; Return the type structure corresponding to a type specifier. We
853 ;;; pick off structure types as a special case.
855 ;;; Note: VALUES-SPECIFIER-TYPE-CACHE-CLEAR must be called whenever a
856 ;;; type is defined (or redefined).
857 ;;; This cache is sized extremely generously, which has payoff
858 ;;; elsewhere: it improves the TYPE= and CSUBTYPEP functions,
859 ;;; since EQ types are an immediate win.
861 ;;; KLUDGE: why isn't this a MACROLET? "lexical environment too
862 ;;; hairy"
863 (defmacro !values-specifier-type-body (arg)
864 `(let* ((u (uncross ,arg))
865 (cachep t)
866 (result (or (info :type :builtin u)
867 (let ((spec (typexpand u)))
868 (when (and (symbolp u) (deprecated-thing-p 'type u))
869 (setf cachep nil)
870 (signal 'parse-deprecated-type :specifier u))
871 (cond
872 ((and (not (eq spec u))
873 (info :type :builtin spec)))
874 ((and (consp spec) (symbolp (car spec))
875 (info :type :builtin (car spec))
876 (let ((expander (info :type :expander (car spec))))
877 (and expander (values-specifier-type (funcall expander spec))))))
878 ((eq (info :type :kind spec) :instance)
879 (find-classoid spec))
880 ((typep spec 'classoid)
881 (if (typep spec 'built-in-classoid)
882 (or (built-in-classoid-translation spec) spec)
883 spec))
885 (when (and (atom spec)
886 (member spec '(and or not member eql satisfies values)))
887 (error "The symbol ~S is not valid as a type specifier." spec))
888 (let ((fun-or-ctype
889 (info :type :translator (if (consp spec) (car spec) spec))))
890 (cond ((functionp fun-or-ctype)
891 (funcall fun-or-ctype (ensure-list spec)))
892 (fun-or-ctype)
893 ((or (and (consp spec) (symbolp (car spec))
894 (not (info :type :builtin (car spec))))
895 (and (symbolp spec) (not (info :type :builtin spec))))
896 (when (and *type-system-initialized*
897 (not (eq (info :type :kind spec)
898 :forthcoming-defclass-type)))
899 (signal 'parse-unknown-type :specifier spec))
900 (setf cachep nil)
901 (make-unknown-type :specifier spec))
903 (error "bad thing to be a type specifier: ~S"
904 spec))))))))))
905 (if cachep
906 result
907 ;; (The RETURN-FROM here inhibits caching; this does not only
908 ;; make sense from a compiler diagnostics point of view but
909 ;; is also indispensable for proper workingness of
910 ;; VALID-TYPE-SPECIFIER-P.)
911 (return-from values-specifier-type
912 result))))
913 #+sb-xc-host
914 (let ((table (make-hash-table :test 'equal)))
915 (defun values-specifier-type (specifier)
916 (multiple-value-bind (type yesp) (gethash specifier table)
917 (if yesp
918 type
919 (setf (gethash specifier table)
920 (!values-specifier-type-body specifier)))))
921 (defun values-specifier-type-cache-clear ()
922 (clrhash table)))
923 #-sb-xc-host
924 (defun-cached (values-specifier-type
925 :hash-function #'sxhash :hash-bits 10)
926 ((orig equal-but-no-car-recursion))
927 (!values-specifier-type-body orig))
929 ;;; This is like VALUES-SPECIFIER-TYPE, except that we guarantee to
930 ;;; never return a VALUES type.
931 (defun specifier-type (type-specifier)
932 (let ((ctype (values-specifier-type type-specifier)))
933 (when (or (values-type-p ctype)
934 ;; bootstrap magic :-(
935 (and (named-type-p ctype)
936 (eq (named-type-name ctype) '*)))
937 (error "VALUES type illegal in this context:~% ~S" type-specifier))
938 ctype))
940 (defun single-value-specifier-type (x)
941 (if (eq x '*)
942 *universal-type*
943 (specifier-type x)))
945 (defun typexpand-1 (type-specifier &optional env)
946 #!+sb-doc
947 "Takes and expands a type specifier once like MACROEXPAND-1.
948 Returns two values: the expansion, and a boolean that is true when
949 expansion happened."
950 (declare (type type-specifier type-specifier))
951 (declare (ignore env))
952 (let* ((spec type-specifier)
953 (atom (if (listp spec) (car spec) spec))
954 (expander (and (symbolp atom) (info :type :expander atom))))
955 ;; We do not expand builtins even though it'd be
956 ;; possible to do so sometimes (e.g. STRING) for two
957 ;; reasons:
959 ;; a) From a user's point of view, CL types are opaque.
961 ;; b) so (EQUAL (TYPEXPAND 'STRING) (TYPEXPAND-ALL 'STRING))
962 (if (and expander (not (info :type :builtin atom)))
963 (values (funcall expander (if (symbolp spec) (list spec) spec)) t)
964 (values type-specifier nil))))
966 (defun typexpand (type-specifier &optional env)
967 #!+sb-doc
968 "Takes and expands a type specifier repeatedly like MACROEXPAND.
969 Returns two values: the expansion, and a boolean that is true when
970 expansion happened."
971 (declare (type type-specifier type-specifier))
972 (multiple-value-bind (expansion flag)
973 (typexpand-1 type-specifier env)
974 (if flag
975 (values (typexpand expansion env) t)
976 (values expansion flag))))
978 ;;; Note that the type NAME has been (re)defined, updating the
979 ;;; undefined warnings and VALUES-SPECIFIER-TYPE cache.
980 (defun %note-type-defined (name)
981 (declare (symbol name))
982 (note-name-defined name :type)
983 (values-specifier-type-cache-clear)
984 (values))
987 (!defun-from-collected-cold-init-forms !early-type-cold-init)