emit compiler notes of NLX value-cells when (> SPEED SAFETY)
[sbcl.git] / tests / arith.pure.lisp
blobe6543e7f2fecd5a542199ba52d39b930d6b66c6c
1 ;;;; arithmetic tests with no side effects
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; While most of SBCL is derived from the CMU CL system, the test
7 ;;;; files (like this one) were written from scratch after the fork
8 ;;;; from CMU CL.
9 ;;;;
10 ;;;; This software is in the public domain and is provided with
11 ;;;; absolutely no warranty. See the COPYING and CREDITS files for
12 ;;;; more information.
14 (cl:in-package :cl-user)
16 ;;; Once upon a time, in the process of porting CMUCL's SPARC backend
17 ;;; to SBCL, multiplications were excitingly broken. While it's
18 ;;; unlikely that anything with such fundamental arithmetic errors as
19 ;;; these are going to get this far, it's probably worth checking.
20 (macrolet ((test (op res1 res2)
21 `(progn
22 (assert (= (,op 4 2) ,res1))
23 (assert (= (,op 2 4) ,res2))
24 (assert (= (funcall (compile nil '(lambda (x y) (,op x y))) 4 2)
25 ,res1))
26 (assert (= (funcall (compile nil '(lambda (x y) (,op x y))) 2 4)
27 ,res2)))))
28 (test + 6 6)
29 (test - 2 -2)
30 (test * 8 8)
31 (test / 2 1/2)
32 (test expt 16 16))
34 ;;; In a bug reported by Wolfhard Buss on cmucl-imp 2002-06-18 (BUG
35 ;;; 184), sbcl didn't catch all divisions by zero, notably divisions
36 ;;; of bignums and ratios by 0. Fixed in sbcl-0.7.6.13.
37 (assert (raises-error? (/ 2/3 0) division-by-zero))
38 (assert (raises-error? (/ (1+ most-positive-fixnum) 0) division-by-zero))
40 ;;; In a bug reported by Raymond Toy on cmucl-imp 2002-07-18, (COERCE
41 ;;; <RATIONAL> '(COMPLEX FLOAT)) was failing to return a complex
42 ;;; float; a patch was given by Wolfhard Buss cmucl-imp 2002-07-19.
43 (assert (= (coerce 1 '(complex float)) #c(1.0 0.0)))
44 (assert (= (coerce 1/2 '(complex float)) #c(0.5 0.0)))
45 (assert (= (coerce 1.0d0 '(complex float)) #c(1.0d0 0.0d0)))
47 ;;; (COERCE #c(<RATIONAL> <RATIONAL>) '(complex float)) resulted in
48 ;;; an error up to 0.8.17.31
49 (assert (= (coerce #c(1 2) '(complex float)) #c(1.0 2.0)))
51 ;;; COERCE also sometimes failed to verify that a particular coercion
52 ;;; was possible (in particular coercing rationals to bounded float
53 ;;; types.
54 (assert (raises-error? (coerce 1 '(float 2.0 3.0)) type-error))
55 (assert (raises-error? (coerce 1 '(single-float -1.0 0.0)) type-error))
56 (assert (eql (coerce 1 '(single-float -1.0 2.0)) 1.0))
58 ;;; ANSI says MIN and MAX should signal TYPE-ERROR if any argument
59 ;;; isn't REAL. SBCL 0.7.7 didn't in the 1-arg case. (reported as a
60 ;;; bug in CMU CL on #lisp IRC by lrasinen 2002-09-01)
61 (assert (null (ignore-errors (min '(1 2 3)))))
62 (assert (= (min -1) -1))
63 (assert (null (ignore-errors (min 1 #(1 2 3)))))
64 (assert (= (min 10 11) 10))
65 (assert (null (ignore-errors (min (find-package "CL") -5.0))))
66 (assert (= (min 5.0 -3) -3))
67 (assert (null (ignore-errors (max #c(4 3)))))
68 (assert (= (max 0) 0))
69 (assert (null (ignore-errors (max "MIX" 3))))
70 (assert (= (max -1 10.0) 10.0))
71 (assert (null (ignore-errors (max 3 #'max))))
72 (assert (= (max -3 0) 0))
74 ;;; (CEILING x 2^k) was optimized incorrectly
75 (loop for divisor in '(-4 4)
76 for ceiler = (compile nil `(lambda (x)
77 (declare (fixnum x))
78 (declare (optimize (speed 3)))
79 (ceiling x ,divisor)))
80 do (loop for i from -5 to 5
81 for exact-q = (/ i divisor)
82 do (multiple-value-bind (q r)
83 (funcall ceiler i)
84 (assert (= (+ (* q divisor) r) i))
85 (assert (<= exact-q q))
86 (assert (< q (1+ exact-q))))))
88 ;;; (TRUNCATE x 2^k) was optimized incorrectly
89 (loop for divisor in '(-4 4)
90 for truncater = (compile nil `(lambda (x)
91 (declare (fixnum x))
92 (declare (optimize (speed 3)))
93 (truncate x ,divisor)))
94 do (loop for i from -9 to 9
95 for exact-q = (/ i divisor)
96 do (multiple-value-bind (q r)
97 (funcall truncater i)
98 (assert (= (+ (* q divisor) r) i))
99 (assert (<= (abs q) (abs exact-q)))
100 (assert (< (abs exact-q) (1+ (abs q)))))))
102 ;;; CEILING had a corner case, spotted by Paul Dietz
103 (assert (= (ceiling most-negative-fixnum (1+ most-positive-fixnum)) -1))
105 ;;; give any optimizers of constant multiplication a light testing.
106 ;;; 100 may seem low, but (a) it caught CSR's initial errors, and (b)
107 ;;; before checking in, CSR tested with 10000. So one hundred
108 ;;; checkins later, we'll have doubled the coverage.
109 (dotimes (i 100)
110 (let* ((x (random most-positive-fixnum))
111 (x2 (* x 2))
112 (x3 (* x 3)))
113 (let ((fn (handler-bind ((sb-ext:compiler-note
114 (lambda (c)
115 (when (<= x3 most-positive-fixnum)
116 (error c)))))
117 (compile nil
118 `(lambda (y)
119 (declare (optimize speed) (type (integer 0 3) y))
120 (* y ,x))))))
121 (unless (and (= (funcall fn 0) 0)
122 (= (funcall fn 1) x)
123 (= (funcall fn 2) x2)
124 (= (funcall fn 3) x3))
125 (error "bad results for ~D" x)))))
127 ;;; Bugs reported by Paul Dietz:
129 ;;; (GCD 0 x) must return (abs x)
130 (dolist (x (list -10 (* 3 most-negative-fixnum)))
131 (assert (= (gcd 0 x) (abs x))))
132 ;;; LCM returns a non-negative number
133 (assert (= (lcm 4 -10) 20))
134 (assert (= (lcm 0 0) 0))
136 ;;; PPC bignum arithmetic bug:
137 (multiple-value-bind (quo rem)
138 (truncate 291351647815394962053040658028983955 10000000000000000000000000)
139 (assert (= quo 29135164781))
140 (assert (= rem 5394962053040658028983955)))
142 ;;; x86 LEA bug:
143 (assert (= (funcall
144 (compile nil '(lambda (x) (declare (bit x)) (+ x #xf0000000)))
146 #xf0000001))
148 ;;; LOGBITP on bignums:
149 (dolist (x '(((1+ most-positive-fixnum) 1 nil)
150 ((1+ most-positive-fixnum) -1 t)
151 ((1+ most-positive-fixnum) (1+ most-positive-fixnum) nil)
152 ((1+ most-positive-fixnum) (1- most-negative-fixnum) t)
153 (1 (ash most-negative-fixnum 1) nil)
154 (#.(- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1) most-negative-fixnum t)
155 (#.(1+ (- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1)) (ash most-negative-fixnum 1) t)
156 (#.(+ 2 (- sb-vm:n-word-bits sb-vm:n-fixnum-tag-bits 1)) (ash most-negative-fixnum 1) t)
157 (#.(+ sb-vm:n-word-bits 32) (ash most-negative-fixnum #.(+ 32 sb-vm:n-fixnum-tag-bits 2)) nil)
158 (#.(+ sb-vm:n-word-bits 33) (ash most-negative-fixnum #.(+ 32 sb-vm:n-fixnum-tag-bits 2)) t)))
159 (destructuring-bind (index int result) x
160 (assert (eq (eval `(logbitp ,index ,int)) result))))
162 ;;; off-by-1 type inference error for %DPB and %DEPOSIT-FIELD:
163 (let ((f (compile nil '(lambda (b)
164 (integer-length (dpb b (byte 4 28) -1005))))))
165 (assert (= (funcall f 1230070) 32)))
166 (let ((f (compile nil '(lambda (b)
167 (integer-length (deposit-field b (byte 4 28) -1005))))))
168 (assert (= (funcall f 1230070) 32)))
170 ;;; type inference leading to an internal compiler error:
171 (let ((f (compile nil '(lambda (x)
172 (declare (type fixnum x))
173 (ldb (byte 0 0) x)))))
174 (assert (= (funcall f 1) 0))
175 (assert (= (funcall f most-positive-fixnum) 0))
176 (assert (= (funcall f -1) 0)))
178 ;;; Alpha bignum arithmetic bug:
179 (assert (= (* 966082078641 419216044685) 404997107848943140073085))
181 ;;; Alpha smallnum arithmetic bug:
182 (assert (= (ash -129876 -1026) -1))
184 ;;; Alpha middlenum (yes, really! Affecting numbers between 2^32 and
185 ;;; 2^64 :) arithmetic bug
186 (let ((fn (compile nil '(LAMBDA (A B C D)
187 (DECLARE (TYPE (INTEGER -1621 -513) A)
188 (TYPE (INTEGER -3 34163) B)
189 (TYPE (INTEGER -9485132993 81272960) C)
190 (TYPE (INTEGER -255340814 519943) D)
191 (IGNORABLE A B C D)
192 (OPTIMIZE (SPEED 3) (SAFETY 1) (DEBUG 1)))
193 (TRUNCATE C (MIN -100 4149605))))))
194 (assert (= (funcall fn -1332 5864 -6963328729 -43789079) 69633287)))
196 ;;; Here's another fantastic Alpha backend bug: the code to load
197 ;;; immediate 64-bit constants into a register was wrong.
198 (let ((fn (compile nil '(LAMBDA (A B C D)
199 (DECLARE (TYPE (INTEGER -3563 2733564) A)
200 (TYPE (INTEGER -548947 7159) B)
201 (TYPE (INTEGER -19 0) C)
202 (TYPE (INTEGER -2546009 0) D)
203 (IGNORABLE A B C D)
204 (OPTIMIZE (SPEED 3) (SAFETY 1) (DEBUG 1)))
205 (CASE A
206 ((89 125 16) (ASH A (MIN 18 -706)))
207 (T (DPB -3 (BYTE 30 30) -1)))))))
208 (assert (= (funcall fn 1227072 -529823 -18 -792831) -2147483649)))
210 ;;; ASH of a negative bignum by a bignum count would erroneously
211 ;;; return 0 prior to sbcl-0.8.4.4
212 (assert (= (ash (1- most-negative-fixnum) (1- most-negative-fixnum)) -1))
214 ;;; Whoops. Too much optimization in division operators for 0
215 ;;; divisor.
216 (macrolet ((frob (name)
217 `(let ((fn (compile nil '(lambda (x)
218 (declare (optimize speed) (fixnum x))
219 (,name x 0)))))
220 (assert (raises-error? (funcall fn 1) division-by-zero)))))
221 (frob mod)
222 (frob truncate)
223 (frob rem)
224 (frob /)
225 (frob floor)
226 (frob ceiling))
228 ;; Check that the logic in SB-KERNEL::BASIC-COMPARE for doing fixnum/float
229 ;; comparisons without rationalizing the floats still gives the right anwers
230 ;; in the edge cases (had a fencepost error).
231 (macrolet ((test (range type sign)
232 `(let (ints
233 floats
234 (start (- ,(find-symbol (format nil
235 "MOST-~A-EXACTLY-~A-FIXNUM"
236 sign type)
237 :sb-kernel)
238 ,range)))
239 (dotimes (i (1+ (* ,range 2)))
240 (let* ((x (+ start i))
241 (y (coerce x ',type)))
242 (push x ints)
243 (push y floats)))
244 (dolist (i ints)
245 (dolist (f floats)
246 (dolist (op '(< <= = >= >))
247 (unless (eq (funcall op i f)
248 (funcall op i (rationalize f)))
249 (error "(not (eq (~a ~a ~f) (~a ~a ~a)))~%"
250 op i f
251 op i (rationalize f)))
252 (unless (eq (funcall op f i)
253 (funcall op (rationalize f) i))
254 (error "(not (eq (~a ~f ~a) (~a ~a ~a)))~%"
255 op f i
256 op (rationalize f) i))))))))
257 (test 32 double-float negative)
258 (test 32 double-float positive)
259 (test 32 single-float negative)
260 (test 32 single-float positive))
262 ;; x86-64 sign-extension bug found using pfdietz's random tester.
263 (assert (= 286142502
264 (funcall (lambda ()
265 (declare (notinline logxor))
266 (min (logxor 0 0 0 286142502))))))
268 ;; Small bugs in LOGCOUNT can still allow SBCL to be built and thus go
269 ;; unnoticed, so check more thoroughly here.
270 (with-test (:name :logcount)
271 (flet ((test (x n)
272 (unless (= (logcount x) n)
273 (error "logcount failure for ~a" x))))
274 ;; Test with some patterns with well known number of ones/zeroes ...
275 (dotimes (i 128)
276 (let ((x (ash 1 i)))
277 (test x 1)
278 (test (- x) i)
279 (test (1- x) i)))
280 ;; ... and with some random integers of varying length.
281 (flet ((test-logcount (x)
282 (declare (type integer x))
283 (do ((result 0 (1+ result))
284 (x (if (minusp x)
285 (lognot x)
287 (logand x (1- x))))
288 ((zerop x) result))))
289 (dotimes (i 200)
290 (let ((x (random (ash 1 i))))
291 (test x (test-logcount x))
292 (test (- x) (test-logcount (- x))))))))
294 ;; 1.0 had a broken ATANH on win32
295 (with-test (:name :atanh)
296 (assert (= (atanh 0.9d0) 1.4722194895832204d0)))
298 ;; Test some cases of integer operations with constant arguments
299 (with-test (:name :constant-integers)
300 (labels ((test-forms (op x y header &rest forms)
301 (let ((val (funcall op x y)))
302 (dolist (form forms)
303 (let ((new-val (funcall (compile nil (append header form)) x y)))
304 (unless (eql val new-val)
305 (error "~S /= ~S: ~S ~S ~S~%" val new-val (append header form) x y))))))
306 (test-case (op x y type)
307 (test-forms op x y `(lambda (x y &aux z)
308 (declare (type ,type x y)
309 (ignorable x y z)
310 (notinline identity)
311 (optimize speed (safety 0))))
312 `((,op x ,y))
313 `((setf z (,op x ,y))
314 (identity x)
316 `((values (,op x ,y) x))
317 `((,op ,x y))
318 `((setf z (,op ,x y))
319 (identity y)
321 `((values (,op ,x y) y))
323 `((identity x)
324 (,op x ,y))
325 `((identity x)
326 (setf z (,op x ,y))
327 (identity x)
329 `((identity x)
330 (values (,op x ,y) x))
331 `((identity y)
332 (,op ,x y))
333 `((identity y)
334 (setf z (,op ,x y))
335 (identity y)
337 `((identity y)
338 (values (,op ,x y) y))))
339 (test-op (op)
340 (let ((ub `(unsigned-byte ,sb-vm:n-word-bits))
341 (sb `(signed-byte ,sb-vm:n-word-bits)))
342 (loop for (x y type)
343 in `((2 1 fixnum)
344 (2 1 ,ub)
345 (2 1 ,sb)
346 (,(1+ (ash 1 28)) ,(1- (ash 1 28)) fixnum)
347 (,(+ 3 (ash 1 30)) ,(+ 2 (ash 1 30)) ,ub)
348 (,(- -2 (ash 1 29)) ,(- 3 (ash 1 29)) ,sb)
349 ,@(when (> sb-vm:n-word-bits 32)
350 `((,(1+ (ash 1 29)) ,(1- (ash 1 29)) fixnum)
351 (,(1+ (ash 1 31)) ,(1- (ash 1 31)) ,ub)
352 (,(- -2 (ash 1 31)) ,(- 3 (ash 1 30)) ,sb)
353 (,(ash 1 40) ,(ash 1 39) fixnum)
354 (,(ash 1 40) ,(ash 1 39) ,ub)
355 (,(ash 1 40) ,(ash 1 39) ,sb)))
356 ;; fixnums that can be represented as 32-bit
357 ;; sign-extended immediates on x86-64
358 ,@(when (and (> sb-vm:n-word-bits 32)
359 (< sb-vm:n-fixnum-tag-bits 3))
360 `((,(1+ (ash 1 (- 31 sb-vm:n-fixnum-tag-bits)))
361 ,(1- (ash 1 (- 32 sb-vm:n-fixnum-tag-bits)))
362 fixnum))))
364 (test-case op x y type)
365 (test-case op x x type)))))
366 (mapc #'test-op '(+ - * truncate
367 < <= = >= >
369 eq))))
371 ;; GCD used to sometimes return negative values. The following did, on 32 bit
372 ;; builds.
373 (with-test (:name :gcd)
374 (assert (plusp (gcd 20286123923750474264166990598656
375 680564733841876926926749214863536422912))))
377 (with-test (:name :expt-zero-zero)
378 ;; Check that (expt 0.0 0.0) and (expt 0 0.0) signal error, but (expt 0.0 0)
379 ;; returns 1.0
380 (assert (raises-error? (expt 0.0 0.0) sb-int:arguments-out-of-domain-error))
381 (assert (raises-error? (expt 0 0.0) sb-int:arguments-out-of-domain-error))
382 (assert (eql (expt 0.0 0) 1.0)))
384 (with-test (:name :multiple-constant-folding)
385 (let ((*random-state* (make-random-state t)))
386 (flet ((make-args ()
387 (let (args vars)
388 (loop repeat (1+ (random 12))
389 do (if (zerop (random 2))
390 (let ((var (gensym)))
391 (push var args)
392 (push var vars))
393 (push (- (random 21) 10) args)))
394 (values args vars))))
395 (dolist (op '(+ * logior logxor logand logeqv gcd lcm - /))
396 (loop repeat 10
397 do (multiple-value-bind (args vars) (make-args)
398 (let ((fast (compile nil `(lambda ,vars
399 (,op ,@args))))
400 (slow (compile nil `(lambda ,vars
401 (declare (notinline ,op))
402 (,op ,@args)))))
403 (loop repeat 3
404 do (let* ((call-args (loop repeat (length vars)
405 collect (- (random 21) 10)))
406 (fast-result (handler-case
407 (apply fast call-args)
408 (division-by-zero () :div0)))
409 (slow-result (handler-case
410 (apply slow call-args)
411 (division-by-zero () :div0))))
412 (if (eql fast-result slow-result)
413 (print (list :ok `(,op ,@args) :=> fast-result))
414 (error "oops: ~S, ~S" args call-args)))))))))))
416 ;;; (TRUNCATE <unsigned-word> <constant unsigned-word>) is optimized
417 ;;; to use multiplication instead of division. This propagates to FLOOR,
418 ;;; MOD and REM. Test that the transform is indeed triggered and test
419 ;;; several cases for correct results.
420 (with-test (:name (:integer-division-using-multiplication :used)
421 :skipped-on '(not (or :x86-64 :x86)))
422 (dolist (fun '(truncate floor ceiling mod rem))
423 (let* ((foo (compile nil `(lambda (x)
424 (declare (optimize (speed 3)
425 (space 1)
426 (compilation-speed 0))
427 (type (unsigned-byte
428 ,sb-vm:n-word-bits) x))
429 (,fun x 9))))
430 (disassembly (with-output-to-string (s)
431 (disassemble foo :stream s))))
432 ;; KLUDGE copied from test :float-division-using-exact-reciprocal
433 ;; in compiler.pure.lisp.
434 (assert (and (not (search "DIV" disassembly))
435 (search "MUL" disassembly))))))
437 (with-test (:name (:integer-division-using-multiplication :correctness))
438 (let ((*random-state* (make-random-state t)))
439 (dolist (dividend-type `((unsigned-byte ,sb-vm:n-word-bits)
440 (and fixnum unsigned-byte)
441 (integer 10000 10100)))
442 (dolist (divisor `(;; Some special cases from the paper
443 7 10 14 641 274177
444 ;; Range extremes
446 ,most-positive-fixnum
447 ,(1- (expt 2 sb-vm:n-word-bits))
448 ;; Some random values
449 ,@(loop for i from 8 to sb-vm:n-word-bits
450 for r = (random (expt 2 i))
451 ;; We don't want 0, 1 and powers of 2.
452 when (not (zerop (logand r (1- r))))
453 collect r)))
454 (dolist (fun '(truncate ceiling floor mod rem))
455 (let ((foo (compile nil `(lambda (x)
456 (declare (optimize (speed 3)
457 (space 1)
458 (compilation-speed 0))
459 (type ,dividend-type x))
460 (,fun x ,divisor)))))
461 (dolist (dividend `(0 1 ,most-positive-fixnum
462 ,(1- divisor) ,divisor
463 ,(1- (* divisor 2)) ,(* divisor 2)
464 ,@(loop repeat 4
465 collect (+ 10000 (random 101)))
466 ,@(loop for i from 4 to sb-vm:n-word-bits
467 for pow = (expt 2 (1- i))
468 for r = (+ pow (random pow))
469 collect r)))
470 (when (typep dividend dividend-type)
471 (multiple-value-bind (q1 r1)
472 (funcall foo dividend)
473 (multiple-value-bind (q2 r2)
474 (funcall fun dividend divisor)
475 (unless (and (= q1 q2)
476 (eql r1 r2))
477 (error "bad results for ~s with dividend type ~s"
478 (list fun dividend divisor)
479 dividend-type))))))))))))
481 ;; The fast path for logbitp underestimated sb!vm:n-positive-fixnum-bits
482 ;; for > 61 bit fixnums.
483 (with-test (:name :logbitp-wide-fixnum)
484 (assert (not (logbitp (1- (integer-length most-positive-fixnum))
485 most-negative-fixnum))))
487 ;; EXPT dispatches in a complicated way on the types of its arguments.
488 ;; Check that all possible combinations are covered.
489 (with-test (:name (:expt :argument-type-combinations))
490 (let ((numbers '(2 ; fixnum
491 3/5 ; ratio
492 1.2f0 ; single-float
493 2.0d0 ; double-float
494 #c(3/5 1/7) ; complex rational
495 #c(1.2f0 1.3f0) ; complex single-float
496 #c(2.0d0 3.0d0))) ; complex double-float
497 (bignum (expt 2 64))
498 results)
499 (dolist (base (cons bignum numbers))
500 (dolist (power numbers)
501 (format t "(expt ~s ~s) => " base power)
502 (let ((result (expt base power)))
503 (format t "~s~%" result)
504 (push result results))))
505 (assert (every #'numberp results))))
507 (with-test (:name :bug-741564)
508 ;; The bug was that in (expt <fixnum> <(complex double-float)>) the
509 ;; calculation was partially done only to single-float precision,
510 ;; making the complex double-float result too unprecise. Some other
511 ;; combinations of argument types were affected, too; test that all
512 ;; of them are good to double-float precision.
513 (labels ((nearly-equal-p (x y)
514 "Are the arguments equal to nearly double-float precision?"
515 (declare (type double-float x y))
516 (< (/ (abs (- x y)) (abs y))
517 (* double-float-epsilon 4))) ; Differences in the two least
518 ; significant mantissa bits
519 ; are OK.
520 (test-complex (x y)
521 (and (nearly-equal-p (realpart x) (realpart y))
522 (nearly-equal-p (imagpart x) (imagpart y))))
523 (print-result (msg base power got expected)
524 (format t "~a (expt ~s ~s)~%got ~s~%expected ~s~%"
525 msg base power got expected)))
526 (let ((n-broken 0))
527 (flet ((test (base power coerce-to-type)
528 (let* ((got (expt base power))
529 (expected (expt (coerce base coerce-to-type) power))
530 (result (test-complex got expected)))
531 (print-result (if result "Good:" "Bad:")
532 base power got expected)
533 (unless result
534 (incf n-broken)))))
535 (dolist (base (list 2 ; fixnum
536 (expt 2 64) ; bignum
537 3/5 ; ratio
538 2.0f0)) ; single-float
539 (let ((power #c(-2.5d0 -4.5d0))) ; complex double-float
540 (test base power 'double-float)))
541 (dolist (base (list #c(2.0f0 3.0f0) ; complex single-float
542 #c(2 3) ; complex fixnum
543 (complex (expt 2 64) (expt 2 65))
544 ; complex bignum
545 #c(3/5 1/7))) ; complex ratio
546 (dolist (power (list #c(-2.5d0 -4.5d0) ; complex double-float
547 -2.5d0)) ; double-float
548 (test base power '(complex double-float)))))
549 (when (> n-broken 0)
550 (error "Number of broken combinations: ~a" n-broken)))))
552 (with-test (:name (:ldb :rlwinm :ppc))
553 (let ((one (compile nil '(lambda (a) (ldb (byte 9 27) a))))
554 (two (compile nil '(lambda (a)
555 (declare (type (integer -3 57216651) a))
556 (ldb (byte 9 27) a)))))
557 (assert (= 0 (- (funcall one 10) (funcall two 10))))))