Reduce debug-info size on x86oids and ARM.
[sbcl.git] / src / compiler / x86 / call.lisp
blobd8122aa0220bec26f10977cf1413d46760a9339b
1 ;;;; function call for the x86 VM
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!VM")
14 ;;;; interfaces to IR2 conversion
16 ;;; Return a wired TN describing the N'th full call argument passing
17 ;;; location.
18 (defun standard-arg-location (n)
19 (declare (type unsigned-byte n))
20 (if (< n register-arg-count)
21 (make-wired-tn *backend-t-primitive-type* descriptor-reg-sc-number
22 (nth n *register-arg-offsets*))
23 (make-wired-tn *backend-t-primitive-type* control-stack-sc-number n)))
25 (defun standard-arg-location-sc (n)
26 (declare (type unsigned-byte n))
27 (if (< n register-arg-count)
28 (make-sc-offset descriptor-reg-sc-number
29 (nth n *register-arg-offsets*))
30 (make-sc-offset control-stack-sc-number n)))
32 (defconstant arg-count-sc (make-sc-offset any-reg-sc-number ecx-offset))
33 (defconstant closure-sc (make-sc-offset descriptor-reg-sc-number eax-offset))
35 ;;; Make a passing location TN for a local call return PC.
36 ;;;
37 ;;; Always wire the return PC location to the stack in its standard
38 ;;; location.
39 (defun make-return-pc-passing-location (standard)
40 (declare (ignore standard))
41 (make-wired-tn (primitive-type-or-lose 'system-area-pointer)
42 sap-stack-sc-number return-pc-save-offset))
44 (defconstant return-pc-passing-offset
45 (make-sc-offset sap-stack-sc-number return-pc-save-offset))
47 ;;; This is similar to MAKE-RETURN-PC-PASSING-LOCATION, but makes a
48 ;;; location to pass OLD-FP in.
49 ;;;
50 ;;; This is wired in both the standard and the local-call conventions,
51 ;;; because we want to be able to assume it's always there. Besides,
52 ;;; the x86 doesn't have enough registers to really make it profitable
53 ;;; to pass it in a register.
54 (defun make-old-fp-passing-location (standard)
55 (declare (ignore standard))
56 (make-wired-tn *fixnum-primitive-type* control-stack-sc-number
57 ocfp-save-offset))
59 (defconstant old-fp-passing-offset
60 (make-sc-offset control-stack-sc-number ocfp-save-offset))
62 ;;; Make the TNs used to hold OLD-FP and RETURN-PC within the current
63 ;;; function. We treat these specially so that the debugger can find
64 ;;; them at a known location.
65 ;;;
66 ;;; Without using a save-tn - which does not make much sense if it is
67 ;;; wired to the stack?
68 (defun make-old-fp-save-location (physenv)
69 (physenv-debug-live-tn (make-wired-tn *fixnum-primitive-type*
70 control-stack-sc-number
71 ocfp-save-offset)
72 physenv))
73 (defun make-return-pc-save-location (physenv)
74 (physenv-debug-live-tn
75 (make-wired-tn (primitive-type-or-lose 'system-area-pointer)
76 sap-stack-sc-number return-pc-save-offset)
77 physenv))
79 ;;; Make a TN for the standard argument count passing location. We only
80 ;;; need to make the standard location, since a count is never passed when we
81 ;;; are using non-standard conventions.
82 (defun make-arg-count-location ()
83 (make-wired-tn *fixnum-primitive-type* any-reg-sc-number ecx-offset))
85 ;;; Make a TN to hold the number-stack frame pointer. This is allocated
86 ;;; once per component, and is component-live.
87 (defun make-nfp-tn ()
88 (make-restricted-tn *fixnum-primitive-type* ignore-me-sc-number))
90 (defun make-stack-pointer-tn ()
91 (make-normal-tn *fixnum-primitive-type*))
93 (defun make-number-stack-pointer-tn ()
94 (make-restricted-tn *fixnum-primitive-type* ignore-me-sc-number))
96 ;;; Return a list of TNs that can be used to represent an unknown-values
97 ;;; continuation within a function.
98 (defun make-unknown-values-locations ()
99 (list (make-stack-pointer-tn)
100 (make-normal-tn *fixnum-primitive-type*)))
102 ;;; This function is called by the ENTRY-ANALYZE phase, allowing
103 ;;; VM-dependent initialization of the IR2-COMPONENT structure. We
104 ;;; push placeholder entries in the CONSTANTS to leave room for
105 ;;; additional noise in the code object header.
106 (defun select-component-format (component)
107 (declare (type component component))
108 ;; The 1+ here is because for the x86 the first constant is a
109 ;; pointer to a list of fixups, or NIL if the code object has none.
110 ;; (If I understand correctly, the fixups are needed at GC copy
111 ;; time because the X86 code isn't relocatable.)
113 ;; KLUDGE: It'd be cleaner to have the fixups entry be a named
114 ;; element of the CODE (aka component) primitive object. However,
115 ;; it's currently a large, tricky, error-prone chore to change
116 ;; the layout of any primitive object, so for the foreseeable future
117 ;; we'll just live with this ugliness. -- WHN 2002-01-02
118 (dotimes (i (1+ code-constants-offset))
119 (vector-push-extend nil
120 (ir2-component-constants (component-info component))))
121 (values))
123 ;;;; frame hackery
125 ;;; This is used for setting up the Old-FP in local call.
126 (define-vop (current-fp)
127 (:results (val :scs (any-reg control-stack)))
128 (:generator 1
129 (move val ebp-tn)))
131 ;;; We don't have a separate NFP, so we don't need to do anything here.
132 (define-vop (compute-old-nfp)
133 (:results (val))
134 (:ignore val)
135 (:generator 1
136 nil))
138 ;;; Accessing a slot from an earlier stack frame is definite hackery.
139 (define-vop (ancestor-frame-ref)
140 (:args (frame-pointer :scs (descriptor-reg))
141 (variable-home-tn :load-if nil))
142 (:results (value :scs (descriptor-reg any-reg)))
143 (:policy :fast-safe)
144 (:generator 4
145 (aver (sc-is variable-home-tn control-stack))
146 (loadw value frame-pointer
147 (frame-word-offset (tn-offset variable-home-tn)))))
148 (define-vop (ancestor-frame-set)
149 (:args (frame-pointer :scs (descriptor-reg))
150 (value :scs (descriptor-reg any-reg)))
151 (:results (variable-home-tn :load-if nil))
152 (:policy :fast-safe)
153 (:generator 4
154 (aver (sc-is variable-home-tn control-stack))
155 (storew value frame-pointer
156 (frame-word-offset (tn-offset variable-home-tn)))))
158 (macrolet ((define-frame-op
159 (suffix sc stack-sc instruction
160 &optional (ea
161 `(make-ea :dword
162 :base frame-pointer
163 :disp (frame-byte-offset
164 (tn-offset variable-home-tn)))))
165 (let ((reffer (symbolicate 'ancestor-frame-ref '/ suffix))
166 (setter (symbolicate 'ancestor-frame-set '/ suffix)))
167 `(progn
168 (define-vop (,reffer ancestor-frame-ref)
169 (:results (value :scs (,sc)))
170 (:generator 4
171 (aver (sc-is variable-home-tn ,stack-sc))
172 (inst ,instruction value
173 ,ea)))
174 (define-vop (,setter ancestor-frame-set)
175 (:args (frame-pointer :scs (descriptor-reg))
176 (value :scs (,sc)))
177 (:generator 4
178 (aver (sc-is variable-home-tn ,stack-sc))
179 (inst ,instruction ,ea value))))))
180 (define-x87-frame-op
181 (suffix sc stack-sc (load set)
182 &optional (ea
183 `(make-ea :dword
184 :base frame-pointer
185 :disp (frame-byte-offset
186 (tn-offset variable-home-tn)))))
187 (let ((reffer (symbolicate 'ancestor-frame-ref '/ suffix))
188 (setter (symbolicate 'ancestor-frame-set '/ suffix)))
189 `(progn
190 (define-vop (,reffer ancestor-frame-ref)
191 (:results (value :scs (,sc)))
192 (:generator 4
193 (aver (sc-is variable-home-tn ,stack-sc))
194 ,(if (symbolp load)
195 `(with-empty-tn@fp-top (value)
196 (inst ,load ,ea))
197 load)))
198 (define-vop (,setter ancestor-frame-set)
199 (:args (frame-pointer :scs (descriptor-reg))
200 (value :scs (,sc)))
201 (:generator 4
202 (aver (sc-is variable-home-tn ,stack-sc))
203 ,(if (symbolp set)
204 `(with-tn@fp-top (value)
205 (inst ,set ,ea))
206 set)))))))
207 (define-frame-op signed-byte-32 signed-reg signed-stack mov)
208 (define-frame-op unsigned-byte-32 unsigned-reg unsigned-stack mov)
209 (define-frame-op system-area-pointer sap-reg sap-stack mov)
211 (define-x87-frame-op double-float double-reg double-stack
212 (fldd fstd) (make-ea :dword
213 :base frame-pointer
214 :disp (frame-byte-offset
215 (1+ (tn-offset variable-home-tn)))))
216 (define-x87-frame-op single-float single-reg single-stack
217 (fld fst))
219 (define-x87-frame-op complex-double-float complex-double-reg
220 complex-double-stack
221 ((let ((real (complex-double-reg-real-tn value))
222 (imag (complex-double-reg-imag-tn value)))
223 (with-empty-tn@fp-top (real)
224 (inst fldd (ea-for-cdf-real-stack variable-home-tn frame-pointer)))
225 (with-empty-tn@fp-top (imag)
226 (inst fldd (ea-for-cdf-imag-stack variable-home-tn frame-pointer))))
227 (let ((real (complex-double-reg-real-tn value))
228 (imag (complex-double-reg-imag-tn value)))
229 (with-tn@fp-top (real)
230 (inst fstd (ea-for-cdf-real-stack variable-home-tn frame-pointer)))
231 (with-tn@fp-top (imag)
232 (inst fstd (ea-for-cdf-imag-stack variable-home-tn frame-pointer))))))
233 (define-x87-frame-op complex-single-float complex-single-reg
234 complex-single-stack
235 ((let ((real (complex-single-reg-real-tn value))
236 (imag (complex-single-reg-imag-tn value)))
237 (with-empty-tn@fp-top (real)
238 (inst fld (ea-for-csf-real-stack variable-home-tn frame-pointer)))
239 (with-empty-tn@fp-top (imag)
240 (inst fld (ea-for-csf-imag-stack variable-home-tn frame-pointer))))
241 (let ((real (complex-single-reg-real-tn value))
242 (imag (complex-single-reg-imag-tn value)))
243 (with-tn@fp-top (real)
244 (inst fst (ea-for-csf-real-stack variable-home-tn frame-pointer)))
245 (with-tn@fp-top (imag)
246 (inst fst (ea-for-csf-imag-stack variable-home-tn frame-pointer)))))))
248 (defun primitive-type-indirect-cell-type (ptype)
249 (declare (type primitive-type ptype))
250 (macrolet ((foo (&body data)
251 `(case (primitive-type-name ptype)
252 ,@(loop for (name stack-sc ref set) in data
253 collect
254 `(,name
255 (load-time-value
256 (list (primitive-type-or-lose ',name)
257 (sc-or-lose ',stack-sc)
258 (lambda (node block fp value res)
259 (sb!c::vop ,ref node block
260 fp value res))
261 (lambda (node block fp new-val value)
262 (sb!c::vop ,set node block
263 fp new-val value)))))))))
264 (foo (double-float double-stack
265 ancestor-frame-ref/double-float
266 ancestor-frame-set/double-float)
267 (single-float single-stack
268 ancestor-frame-ref/single-float
269 ancestor-frame-set/single-float)
270 (complex-double-float complex-double-stack
271 ancestor-frame-ref/complex-double-float
272 ancestor-frame-set/complex-double-float)
273 (complex-single-float complex-single-stack
274 ancestor-frame-ref/complex-single-float
275 ancestor-frame-set/complex-single-float)
276 (signed-byte-32 signed-stack
277 ancestor-frame-ref/signed-byte-32
278 ancestor-frame-set/signed-byte-32)
279 (unsigned-byte-32 unsigned-stack
280 ancestor-frame-ref/unsigned-byte-32
281 ancestor-frame-set/unsigned-byte-32)
282 (unsigned-byte-31 unsigned-stack
283 ancestor-frame-ref/unsigned-byte-32
284 ancestor-frame-set/unsigned-byte-32)
285 (system-area-pointer sap-stack
286 ancestor-frame-ref/system-area-pointer
287 ancestor-frame-set/system-area-pointer))))
289 (define-vop (xep-allocate-frame)
290 (:info start-lab)
291 (:generator 1
292 (emit-alignment n-lowtag-bits)
293 (emit-label start-lab)
294 ;; Skip space for the function header.
295 (inst simple-fun-header-word)
296 (dotimes (i (1- simple-fun-code-offset))
297 (inst dword 0))
299 ;; The start of the actual code.
300 ;; Save the return-pc.
301 (popw ebp-tn (frame-word-offset return-pc-save-offset))))
303 (define-vop (xep-setup-sp)
304 (:generator 1
305 (inst lea esp-tn
306 (make-ea :dword :base ebp-tn
307 :disp (- (* n-word-bytes
308 (- (max 3 (sb-allocated-size 'stack))
309 sp->fp-offset)))))))
311 ;;; This is emitted directly before either a known-call-local, call-local,
312 ;;; or a multiple-call-local. All it does is allocate stack space for the
313 ;;; callee (who has the same size stack as us).
314 (define-vop (allocate-frame)
315 (:results (res :scs (any-reg))
316 (nfp))
317 (:info callee)
318 (:ignore nfp callee)
319 (:generator 2
320 (inst lea res (make-ea :dword :base esp-tn
321 :disp (- (* sp->fp-offset n-word-bytes))))
322 (inst sub esp-tn (* n-word-bytes (sb-allocated-size 'stack)))))
324 ;;; Allocate a partial frame for passing stack arguments in a full
325 ;;; call. NARGS is the number of arguments passed. We allocate at
326 ;;; least 3 slots, because the XEP noise is going to want to use them
327 ;;; before it can extend the stack.
328 (define-vop (allocate-full-call-frame)
329 (:info nargs)
330 (:results (res :scs (any-reg)))
331 (:generator 2
332 (inst lea res (make-ea :dword :base esp-tn
333 :disp (- (* sp->fp-offset n-word-bytes))))
334 (inst sub esp-tn (* (max nargs 3) n-word-bytes))))
336 ;;; Emit code needed at the return-point from an unknown-values call
337 ;;; for a fixed number of values. Values is the head of the TN-REF
338 ;;; list for the locations that the values are to be received into.
339 ;;; Nvals is the number of values that are to be received (should
340 ;;; equal the length of Values).
342 ;;; If 0 or 1 values are expected, then we just emit an instruction to
343 ;;; reset the SP (which will only be executed when other than 1 value
344 ;;; is returned.)
346 ;;; In the general case we have to do three things:
347 ;;; -- Default unsupplied register values. This need only be done
348 ;;; when a single value is returned, since register values are
349 ;;; defaulted by the called in the non-single case.
350 ;;; -- Default unsupplied stack values. This needs to be done whenever
351 ;;; there are stack values.
352 ;;; -- Reset SP. This must be done whenever other than 1 value is
353 ;;; returned, regardless of the number of values desired.
354 (defun default-unknown-values (vop values nvals node)
355 (declare (type (or tn-ref null) values)
356 (type unsigned-byte nvals))
357 (let ((type (sb!c::basic-combination-derived-type node)))
358 (cond
359 ((<= nvals 1)
360 (note-this-location vop :single-value-return)
361 (cond
362 ((<= (values-type-max-value-count type)
363 register-arg-count)
364 (when (and (named-type-p type)
365 (eq nil (named-type-name type)))
366 ;; The function never returns, it may happen that the code
367 ;; ends right here leavig the :SINGLE-VALUE-RETURN note
368 ;; dangling. Let's emit a NOP.
369 (inst nop)))
370 ((not (values-type-may-be-single-value-p type))
371 (inst mov esp-tn ebx-tn))
372 ((member :cmov *backend-subfeatures*)
373 (inst cmov :c esp-tn ebx-tn))
375 (let ((single-value (gen-label)))
376 (inst jmp :nc single-value)
377 (inst mov esp-tn ebx-tn)
378 (emit-label single-value)))))
379 ((<= nvals register-arg-count)
380 (note-this-location vop :unknown-return)
381 (when (values-type-may-be-single-value-p type)
382 (let ((regs-defaulted (gen-label)))
383 (inst jmp :c regs-defaulted)
384 ;; Default the unsupplied registers.
385 (let* ((2nd-tn-ref (tn-ref-across values))
386 (2nd-tn (tn-ref-tn 2nd-tn-ref)))
387 (inst mov 2nd-tn nil-value)
388 (when (> nvals 2)
389 (loop
390 for tn-ref = (tn-ref-across 2nd-tn-ref)
391 then (tn-ref-across tn-ref)
392 for count from 2 below register-arg-count
393 do (inst mov (tn-ref-tn tn-ref) 2nd-tn))))
394 (inst mov ebx-tn esp-tn)
395 (emit-label regs-defaulted)))
396 (when (< register-arg-count
397 (values-type-max-value-count type))
398 (inst mov esp-tn ebx-tn)))
399 ((<= nvals 7)
400 ;; The number of bytes depends on the relative jump instructions.
401 ;; Best case is 31+(n-3)*14, worst case is 35+(n-3)*18. For
402 ;; NVALS=6 that is 73/89 bytes, and for NVALS=7 that is 87/107
403 ;; bytes which is likely better than using the blt below.
404 (let ((regs-defaulted (gen-label))
405 (defaulting-done (gen-label))
406 (default-stack-slots (gen-label)))
407 (note-this-location vop :unknown-return)
408 ;; Branch off to the MV case.
409 (inst jmp :c regs-defaulted)
410 ;; Do the single value case.
411 ;; Default the register args
412 (inst mov eax-tn nil-value)
413 (do ((i 1 (1+ i))
414 (val (tn-ref-across values) (tn-ref-across val)))
415 ((= i (min nvals register-arg-count)))
416 (inst mov (tn-ref-tn val) eax-tn))
417 ;; Fake other registers so it looks like we returned with all the
418 ;; registers filled in.
419 (move ebx-tn esp-tn)
420 (inst jmp default-stack-slots)
421 (emit-label regs-defaulted)
422 (inst mov eax-tn nil-value)
423 (collect ((defaults))
424 (do ((i register-arg-count (1+ i))
425 (val (do ((i 0 (1+ i))
426 (val values (tn-ref-across val)))
427 ((= i register-arg-count) val))
428 (tn-ref-across val)))
429 ((null val))
430 (let ((default-lab (gen-label))
431 (tn (tn-ref-tn val))
432 (first-stack-arg-p (= i register-arg-count)))
433 (defaults (cons default-lab
434 (cons tn first-stack-arg-p)))
435 (inst cmp ecx-tn (fixnumize i))
436 (inst jmp :be default-lab)
437 (when first-stack-arg-p
438 ;; There are stack args so the frame of the callee is
439 ;; still there, save EDX in its first slot temporalily.
440 (storew edx-tn ebx-tn (frame-word-offset sp->fp-offset)))
441 (loadw edx-tn ebx-tn (frame-word-offset (+ sp->fp-offset i)))
442 (inst mov tn edx-tn)))
443 (emit-label defaulting-done)
444 (loadw edx-tn ebx-tn (frame-word-offset sp->fp-offset))
445 (move esp-tn ebx-tn)
446 (let ((defaults (defaults)))
447 (when defaults
448 (assemble (*elsewhere*)
449 (emit-label default-stack-slots)
450 (dolist (default defaults)
451 (emit-label (car default))
452 (when (cddr default)
453 ;; We are setting the first stack argument to NIL.
454 ;; The callee's stack frame is dead, save EDX by
455 ;; pushing it to the stack, it will end up at same
456 ;; place as in the (STOREW EDX-TN EBX-TN -1) case
457 ;; above.
458 (inst push edx-tn))
459 (inst mov (second default) eax-tn))
460 (inst jmp defaulting-done)))))))
462 ;; 91 bytes for this branch.
463 (let ((regs-defaulted (gen-label))
464 (restore-edi (gen-label))
465 (no-stack-args (gen-label))
466 (default-stack-vals (gen-label))
467 (count-okay (gen-label)))
468 (note-this-location vop :unknown-return)
469 ;; Branch off to the MV case.
470 (inst jmp :c regs-defaulted)
471 ;; Default the register args, and set up the stack as if we
472 ;; entered the MV return point.
473 (inst mov ebx-tn esp-tn)
474 (inst mov edi-tn nil-value)
475 (inst mov esi-tn edi-tn)
476 ;; Compute a pointer to where to put the [defaulted] stack values.
477 (emit-label no-stack-args)
478 (inst push edx-tn)
479 (inst push edi-tn)
480 (inst lea edi-tn
481 (make-ea :dword :base ebp-tn
482 :disp (frame-byte-offset register-arg-count)))
483 ;; Load EAX with NIL so we can quickly store it, and set up
484 ;; stuff for the loop.
485 (inst mov eax-tn nil-value)
486 (inst std)
487 (inst mov ecx-tn (- nvals register-arg-count))
488 ;; Jump into the default loop.
489 (inst jmp default-stack-vals)
490 ;; The regs are defaulted. We need to copy any stack arguments,
491 ;; and then default the remaining stack arguments.
492 (emit-label regs-defaulted)
493 ;; Compute the number of stack arguments, and if it's zero or
494 ;; less, don't copy any stack arguments.
495 (inst sub ecx-tn (fixnumize register-arg-count))
496 (inst jmp :le no-stack-args)
497 ;; Save EDI.
498 (storew edi-tn ebx-tn (frame-word-offset (+ sp->fp-offset 1)))
499 ;; Throw away any unwanted args.
500 (inst cmp ecx-tn (fixnumize (- nvals register-arg-count)))
501 (inst jmp :be count-okay)
502 (inst mov ecx-tn (fixnumize (- nvals register-arg-count)))
503 (emit-label count-okay)
504 ;; Save the number of stack values.
505 (inst mov eax-tn ecx-tn)
506 ;; Compute a pointer to where the stack args go.
507 (inst lea edi-tn
508 (make-ea :dword :base ebp-tn
509 :disp (frame-byte-offset register-arg-count)))
510 ;; Save ESI, and compute a pointer to where the args come from.
511 (storew esi-tn ebx-tn (frame-word-offset (+ sp->fp-offset 2)))
512 (inst lea esi-tn
513 (make-ea :dword :base ebx-tn
514 :disp (frame-byte-offset
515 (+ sp->fp-offset register-arg-count))))
516 ;; Do the copy.
517 (inst shr ecx-tn word-shift) ; make word count
518 (inst std)
519 (inst rep)
520 (inst movs :dword)
521 ;; Restore ESI.
522 (loadw esi-tn ebx-tn (frame-word-offset (+ sp->fp-offset 2)))
523 ;; Now we have to default the remaining args. Find out how many.
524 (inst sub eax-tn (fixnumize (- nvals register-arg-count)))
525 (inst neg eax-tn)
526 ;; If none, then just blow out of here.
527 (inst jmp :le restore-edi)
528 (inst mov ecx-tn eax-tn)
529 (inst shr ecx-tn word-shift) ; word count
530 ;; Load EAX with NIL for fast storing.
531 (inst mov eax-tn nil-value)
532 ;; Do the store.
533 (emit-label default-stack-vals)
534 (inst rep)
535 (inst stos eax-tn)
536 ;; Restore EDI, and reset the stack.
537 (emit-label restore-edi)
538 (loadw edi-tn ebx-tn (frame-word-offset (+ sp->fp-offset 1)))
539 (inst mov esp-tn ebx-tn)
540 (inst cld)))))
541 (values))
543 ;;;; unknown values receiving
545 ;;; Emit code needed at the return point for an unknown-values call
546 ;;; for an arbitrary number of values.
548 ;;; We do the single and non-single cases with no shared code: there
549 ;;; doesn't seem to be any potential overlap, and receiving a single
550 ;;; value is more important efficiency-wise.
552 ;;; When there is a single value, we just push it on the stack,
553 ;;; returning the old SP and 1.
555 ;;; When there is a variable number of values, we move all of the
556 ;;; argument registers onto the stack, and return ARGS and NARGS.
558 ;;; ARGS and NARGS are TNs wired to the named locations. We must
559 ;;; explicitly allocate these TNs, since their lifetimes overlap with
560 ;;; the results start and count. (Also, it's nice to be able to target
561 ;;; them.)
562 (defun receive-unknown-values (args nargs start count node)
563 (declare (type tn args nargs start count))
564 (let ((type (sb!c::basic-combination-derived-type node))
565 (variable-values (gen-label))
566 (stack-values (gen-label))
567 (done (gen-label)))
568 (when (values-type-may-be-single-value-p type)
569 (inst jmp :c variable-values)
570 (cond ((location= start (first *register-arg-tns*))
571 (inst push (first *register-arg-tns*))
572 (inst lea start (make-ea :dword :base esp-tn :disp n-word-bytes)))
573 (t (inst mov start esp-tn)
574 (inst push (first *register-arg-tns*))))
575 (inst mov count (fixnumize 1))
576 (inst jmp done)
577 (emit-label variable-values))
578 ;; The stack frame is burnt and RETurned from if there are no
579 ;; stack values. In this case quickly reallocate sufficient space.
580 (when (<= (values-type-min-value-count type)
581 register-arg-count)
582 (inst cmp nargs (fixnumize register-arg-count))
583 (inst jmp :g stack-values)
584 (inst sub esp-tn nargs)
585 (emit-label stack-values))
586 ;; dtc: this writes the registers onto the stack even if they are
587 ;; not needed, only the number specified in ecx are used and have
588 ;; stack allocated to them. No harm is done.
589 (loop
590 for arg in *register-arg-tns*
591 for i downfrom -1
592 for j below (values-type-max-value-count type)
593 do (storew arg args i))
594 (move start args)
595 (move count nargs)
597 (emit-label done))
598 (values))
600 ;;; VOP that can be inherited by unknown values receivers. The main thing this
601 ;;; handles is allocation of the result temporaries.
602 (define-vop (unknown-values-receiver)
603 (:temporary (:sc descriptor-reg :offset ebx-offset
604 :from :eval :to (:result 0))
605 values-start)
606 (:temporary (:sc any-reg :offset ecx-offset
607 :from :eval :to (:result 1))
608 nvals)
609 (:results (start :scs (any-reg control-stack))
610 (count :scs (any-reg control-stack))))
612 ;;;; local call with unknown values convention return
614 (defun check-ocfp-and-return-pc (old-fp return-pc)
615 #+nil
616 (format t "*known-return: old-fp ~S, tn-kind ~S; ~S ~S~%"
617 old-fp (sb!c::tn-kind old-fp) (sb!c::tn-save-tn old-fp)
618 (sb!c::tn-kind (sb!c::tn-save-tn old-fp)))
619 #+nil
620 (format t "*known-return: return-pc ~S, tn-kind ~S; ~S ~S~%"
621 return-pc (sb!c::tn-kind return-pc)
622 (sb!c::tn-save-tn return-pc)
623 (sb!c::tn-kind (sb!c::tn-save-tn return-pc)))
624 (unless (and (sc-is old-fp control-stack)
625 (= (tn-offset old-fp) ocfp-save-offset))
626 (error "ocfp not on stack in standard save location?"))
627 (unless (and (sc-is return-pc sap-stack)
628 (= (tn-offset return-pc) return-pc-save-offset))
629 (error "return-pc not on stack in standard save location?")))
631 ;;; The local call convention doesn't fit that well with x86-style
632 ;;; calls. Emit a header for local calls to pop the return address
633 ;;; in the right place.
634 (defun emit-block-header (start-label trampoline-label fall-thru-p alignp)
635 (declare (ignore alignp))
636 (when trampoline-label
637 (when fall-thru-p
638 (inst jmp start-label))
639 (emit-label trampoline-label)
640 (popw ebp-tn (frame-word-offset return-pc-save-offset)))
641 (emit-label start-label))
643 ;;; Non-TR local call for a fixed number of values passed according to
644 ;;; the unknown values convention.
646 ;;; FP is the frame pointer in install before doing the call.
648 ;;; NFP would be the number-stack frame pointer if we had a separate
649 ;;; number stack.
651 ;;; Args are the argument passing locations, which are specified only
652 ;;; to terminate their lifetimes in the caller.
654 ;;; VALUES are the return value locations (wired to the standard
655 ;;; passing locations). NVALS is the number of values received.
657 ;;; Save is the save info, which we can ignore since saving has been
658 ;;; done.
660 ;;; TARGET is a continuation pointing to the start of the called
661 ;;; function.
662 (define-vop (call-local)
663 (:args (fp)
664 (nfp)
665 (args :more t))
666 (:results (values :more t))
667 (:save-p t)
668 (:move-args :local-call)
669 (:info arg-locs callee target nvals)
670 (:vop-var vop)
671 (:ignore nfp arg-locs args callee)
672 (:node-var node)
673 (:generator 5
674 (move ebp-tn fp)
675 (note-this-location vop :call-site)
676 (inst call target)
677 (default-unknown-values vop values nvals node)))
679 ;;; Non-TR local call for a variable number of return values passed according
680 ;;; to the unknown values convention. The results are the start of the values
681 ;;; glob and the number of values received.
682 (define-vop (multiple-call-local unknown-values-receiver)
683 (:args (fp)
684 (nfp)
685 (args :more t))
686 (:save-p t)
687 (:move-args :local-call)
688 (:info save callee target)
689 (:ignore args save nfp callee)
690 (:vop-var vop)
691 (:node-var node)
692 (:generator 20
693 (move ebp-tn fp)
694 (note-this-location vop :call-site)
695 (inst call target)
696 (note-this-location vop :unknown-return)
697 (receive-unknown-values values-start nvals start count node)))
699 ;;;; local call with known values return
701 ;;; Non-TR local call with known return locations. Known-value return
702 ;;; works just like argument passing in local call.
704 ;;; Note: we can't use normal load-tn allocation for the fixed args,
705 ;;; since all registers may be tied up by the more operand. Instead,
706 ;;; we use MAYBE-LOAD-STACK-TN.
707 (define-vop (known-call-local)
708 (:args (fp)
709 (nfp)
710 (args :more t))
711 (:results (res :more t))
712 (:move-args :local-call)
713 (:save-p t)
714 (:info save callee target)
715 (:ignore args res save nfp callee)
716 (:vop-var vop)
717 (:generator 5
718 (move ebp-tn fp)
719 (note-this-location vop :call-site)
720 (inst call target)
721 (note-this-location vop :known-return)))
723 ;;; From Douglas Crosher
724 ;;; Return from known values call. We receive the return locations as
725 ;;; arguments to terminate their lifetimes in the returning function. We
726 ;;; restore FP and CSP and jump to the Return-PC.
727 (define-vop (known-return)
728 (:args (old-fp)
729 (return-pc)
730 (vals :more t))
731 (:move-args :known-return)
732 (:info val-locs)
733 (:ignore val-locs vals)
734 (:vop-var vop)
735 (:generator 6
736 (check-ocfp-and-return-pc old-fp return-pc)
737 ;; Zot all of the stack except for the old-fp and return-pc.
738 (inst mov esp-tn ebp-tn)
739 (inst pop ebp-tn)
740 (inst ret)))
742 ;;;; full call
744 ;;; There is something of a cross-product effect with full calls.
745 ;;; Different versions are used depending on whether we know the
746 ;;; number of arguments or the name of the called function, and
747 ;;; whether we want fixed values, unknown values, or a tail call.
749 ;;; In full call, the arguments are passed creating a partial frame on
750 ;;; the stack top and storing stack arguments into that frame. On
751 ;;; entry to the callee, this partial frame is pointed to by FP.
753 ;;; This macro helps in the definition of full call VOPs by avoiding
754 ;;; code replication in defining the cross-product VOPs.
756 ;;; NAME is the name of the VOP to define.
758 ;;; NAMED is true if the first argument is an fdefinition object whose
759 ;;; definition is to be called.
761 ;;; RETURN is either :FIXED, :UNKNOWN or :TAIL:
762 ;;; -- If :FIXED, then the call is for a fixed number of values, returned in
763 ;;; the standard passing locations (passed as result operands).
764 ;;; -- If :UNKNOWN, then the result values are pushed on the stack, and the
765 ;;; result values are specified by the Start and Count as in the
766 ;;; unknown-values continuation representation.
767 ;;; -- If :TAIL, then do a tail-recursive call. No values are returned.
768 ;;; The Old-Fp and Return-PC are passed as the second and third arguments.
770 ;;; In non-tail calls, the pointer to the stack arguments is passed as
771 ;;; the last fixed argument. If Variable is false, then the passing
772 ;;; locations are passed as a more arg. Variable is true if there are
773 ;;; a variable number of arguments passed on the stack. Variable
774 ;;; cannot be specified with :TAIL return. TR variable argument call
775 ;;; is implemented separately.
777 ;;; In tail call with fixed arguments, the passing locations are
778 ;;; passed as a more arg, but there is no new-FP, since the arguments
779 ;;; have been set up in the current frame.
780 (macrolet ((define-full-call (name named return variable)
781 (aver (not (and variable (eq return :tail))))
782 `(define-vop (,name
783 ,@(when (eq return :unknown)
784 '(unknown-values-receiver)))
785 (:args
786 ,@(unless (eq return :tail)
787 '((new-fp :scs (any-reg) :to (:argument 1))))
789 (fun :scs (descriptor-reg control-stack)
790 :target eax :to (:argument 0))
792 ,@(when (eq return :tail)
793 '((old-fp)
794 (return-pc)))
796 ,@(unless variable '((args :more t :scs (descriptor-reg)))))
798 ,@(when (eq return :fixed)
799 '((:results (values :more t))))
801 (:save-p ,(if (eq return :tail) :compute-only t))
803 ,@(unless (or (eq return :tail) variable)
804 '((:move-args :full-call)))
806 (:vop-var vop)
807 (:info
808 ,@(unless (or variable (eq return :tail)) '(arg-locs))
809 ,@(unless variable '(nargs))
810 ,@(when (eq return :fixed) '(nvals))
811 step-instrumenting)
813 (:ignore
814 ,@(unless (or variable (eq return :tail)) '(arg-locs))
815 ,@(unless variable '(args)))
817 ;; We pass either the fdefn object (for named call) or
818 ;; the actual function object (for unnamed call) in
819 ;; EAX. With named call, closure-tramp will replace it
820 ;; with the real function and invoke the real function
821 ;; for closures. Non-closures do not need this value,
822 ;; so don't care what shows up in it.
823 (:temporary
824 (:sc descriptor-reg
825 :offset eax-offset
826 :from (:argument 0)
827 :to :eval)
828 eax)
830 ;; We pass the number of arguments in ECX.
831 (:temporary (:sc unsigned-reg :offset ecx-offset :to :eval) ecx)
833 ;; With variable call, we have to load the
834 ;; register-args out of the (new) stack frame before
835 ;; doing the call. Therefore, we have to tell the
836 ;; lifetime stuff that we need to use them.
837 ,@(when variable
838 (mapcar (lambda (name offset)
839 `(:temporary (:sc descriptor-reg
840 :offset ,offset
841 :from (:argument 0)
842 :to :eval)
843 ,name))
844 *register-arg-names* *register-arg-offsets*))
846 ,@(when (eq return :tail)
847 '((:temporary (:sc unsigned-reg
848 :from (:argument 1)
849 :to (:argument 2))
850 old-fp-tmp)))
851 ,@(unless (eq return :tail)
852 '((:node-var node)))
854 (:generator ,(+ (if named 5 0)
855 (if variable 19 1)
856 (if (eq return :tail) 0 10)
858 (if (eq return :unknown) 25 0))
860 ;; This has to be done before the frame pointer is
861 ;; changed! EAX stores the 'lexical environment' needed
862 ;; for closures.
863 (move eax fun)
866 ,@(if variable
867 ;; For variable call, compute the number of
868 ;; arguments and move some of the arguments to
869 ;; registers.
870 (collect ((noise))
871 ;; Compute the number of arguments.
872 (noise '(inst mov ecx new-fp))
873 (noise '(inst sub ecx esp-tn))
874 ;; Move the necessary args to registers,
875 ;; this moves them all even if they are
876 ;; not all needed.
877 (loop
878 for name in *register-arg-names*
879 for index downfrom -1
880 do (noise `(loadw ,name new-fp ,index)))
881 (noise))
882 '((if (zerop nargs)
883 (inst xor ecx ecx)
884 (inst mov ecx (fixnumize nargs)))))
885 ,@(cond ((eq return :tail)
886 '(;; Python has figured out what frame we should
887 ;; return to so might as well use that clue.
888 ;; This seems really important to the
889 ;; implementation of things like
890 ;; (without-interrupts ...)
892 ;; dtc; Could be doing a tail call from a
893 ;; known-local-call etc in which the old-fp
894 ;; or ret-pc are in regs or in non-standard
895 ;; places. If the passing location were
896 ;; wired to the stack in standard locations
897 ;; then these moves will be un-necessary;
898 ;; this is probably best for the x86.
899 (sc-case old-fp
900 ((control-stack)
901 (unless (= ocfp-save-offset
902 (tn-offset old-fp))
903 ;; FIXME: FORMAT T for stale
904 ;; diagnostic output (several of
905 ;; them around here), ick
906 (error "** tail-call old-fp not S0~%")
907 (move old-fp-tmp old-fp)
908 (storew old-fp-tmp
909 ebp-tn
910 (frame-word-offset ocfp-save-offset))))
911 ((any-reg descriptor-reg)
912 (error "** tail-call old-fp in reg not S0~%")
913 (storew old-fp
914 ebp-tn
915 (frame-word-offset ocfp-save-offset))))
917 ;; For tail call, we have to push the
918 ;; return-pc so that it looks like we CALLed
919 ;; despite the fact that we are going to JMP.
920 (inst push return-pc)
923 ;; For non-tail call, we have to save our
924 ;; frame pointer and install the new frame
925 ;; pointer. We can't load stack tns after this
926 ;; point.
927 `(;; Python doesn't seem to allocate a frame
928 ;; here which doesn't leave room for the
929 ;; ofp/ret stuff.
931 ;; The variable args are on the stack and
932 ;; become the frame, but there may be <3
933 ;; args and 3 stack slots are assumed
934 ;; allocate on the call. So need to ensure
935 ;; there are at least 3 slots. This hack
936 ;; just adds 3 more.
937 ,(if variable
938 '(inst sub esp-tn (fixnumize 3)))
940 ;; Bias the new-fp for use as an fp
941 ,(if variable
942 '(inst sub new-fp (fixnumize sp->fp-offset)))
944 ;; Save the fp
945 (storew ebp-tn new-fp
946 (frame-word-offset ocfp-save-offset))
948 (move ebp-tn new-fp) ; NB - now on new stack frame.
951 (when step-instrumenting
952 (emit-single-step-test)
953 (inst jmp :eq DONE)
954 (inst break single-step-around-trap))
955 DONE
957 (note-this-location vop :call-site)
959 (inst ,(if (eq return :tail) 'jmp 'call)
960 ,(if named
961 '(make-ea-for-object-slot eax fdefn-raw-addr-slot
962 other-pointer-lowtag)
963 '(make-ea-for-object-slot eax closure-fun-slot
964 fun-pointer-lowtag)))
965 ,@(ecase return
966 (:fixed
967 '((default-unknown-values vop values nvals node)))
968 (:unknown
969 '((note-this-location vop :unknown-return)
970 (receive-unknown-values values-start nvals start count
971 node)))
972 (:tail))))))
974 (define-full-call call nil :fixed nil)
975 (define-full-call call-named t :fixed nil)
976 (define-full-call multiple-call nil :unknown nil)
977 (define-full-call multiple-call-named t :unknown nil)
978 (define-full-call tail-call nil :tail nil)
979 (define-full-call tail-call-named t :tail nil)
981 (define-full-call call-variable nil :fixed t)
982 (define-full-call multiple-call-variable nil :unknown t))
984 ;;; This is defined separately, since it needs special code that BLT's
985 ;;; the arguments down. All the real work is done in the assembly
986 ;;; routine. We just set things up so that it can find what it needs.
987 (define-vop (tail-call-variable)
988 (:args (args :scs (any-reg control-stack) :target esi)
989 (function :scs (descriptor-reg control-stack) :target eax)
990 (old-fp)
991 (return-pc))
992 (:temporary (:sc unsigned-reg :offset esi-offset :from (:argument 0)) esi)
993 (:temporary (:sc unsigned-reg :offset eax-offset :from (:argument 1)) eax)
994 (:generator 75
995 (check-ocfp-and-return-pc old-fp return-pc)
996 ;; Move these into the passing locations if they are not already there.
997 (move esi args)
998 (move eax function)
999 ;; And jump to the assembly routine.
1000 (inst jmp (make-fixup 'tail-call-variable :assembly-routine))))
1002 ;;;; unknown values return
1004 ;;; Return a single-value using the Unknown-Values convention.
1006 ;;; pfw--get wired-tn conflicts sometimes if register sc specd for args
1007 ;;; having problems targeting args to regs -- using temps instead.
1009 ;;; First off, modifying the return-pc defeats the branch-prediction
1010 ;;; optimizations on modern CPUs quite handily. Second, we can do all
1011 ;;; this without needing a temp register. Fixed the latter, at least.
1012 ;;; -- AB 2006/Feb/04
1013 (define-vop (return-single)
1014 (:args (old-fp)
1015 (return-pc)
1016 (value))
1017 (:ignore value)
1018 (:generator 6
1019 (check-ocfp-and-return-pc old-fp return-pc)
1020 ;; Drop stack above old-fp
1021 (inst mov esp-tn ebp-tn)
1022 ;; Clear the multiple-value return flag
1023 (inst clc)
1024 ;; Restore the old frame pointer
1025 (inst pop ebp-tn)
1026 ;; And return.
1027 (inst ret)))
1029 ;;; Do unknown-values return of a fixed (other than 1) number of
1030 ;;; values. The VALUES are required to be set up in the standard
1031 ;;; passing locations. NVALS is the number of values returned.
1033 ;;; Basically, we just load ECX with the number of values returned and
1034 ;;; EBX with a pointer to the values, set ESP to point to the end of
1035 ;;; the values, and jump directly to return-pc.
1036 (define-vop (return)
1037 (:args (old-fp)
1038 (return-pc :to (:eval 1))
1039 (values :more t))
1040 (:ignore values)
1041 (:info nvals)
1042 ;; In the case of other than one value, we need these registers to
1043 ;; tell the caller where they are and how many there are.
1044 (:temporary (:sc unsigned-reg :offset ebx-offset) ebx)
1045 (:temporary (:sc unsigned-reg :offset ecx-offset) ecx)
1046 ;; We need to stretch the lifetime of return-pc past the argument
1047 ;; registers so that we can default the argument registers without
1048 ;; trashing return-pc.
1049 (:temporary (:sc unsigned-reg :offset (first *register-arg-offsets*)
1050 :from :eval) a0)
1051 (:temporary (:sc unsigned-reg :offset (second *register-arg-offsets*)
1052 :from :eval) a1)
1053 (:temporary (:sc unsigned-reg :offset (third *register-arg-offsets*)
1054 :from :eval) a2)
1056 (:generator 6
1057 (check-ocfp-and-return-pc old-fp return-pc)
1058 (when (= nvals 1)
1059 ;; This is handled in RETURN-SINGLE.
1060 (error "nvalues is 1"))
1061 ;; Establish the values pointer and values count.
1062 (inst lea ebx (make-ea :dword :base ebp-tn
1063 :disp (* sp->fp-offset n-word-bytes)))
1064 (if (zerop nvals)
1065 (inst xor ecx ecx) ; smaller
1066 (inst mov ecx (fixnumize nvals)))
1067 ;; Pre-default any argument register that need it.
1068 (when (< nvals register-arg-count)
1069 (let* ((arg-tns (nthcdr nvals (list a0 a1 a2)))
1070 (first (first arg-tns)))
1071 (inst mov first nil-value)
1072 (dolist (tn (cdr arg-tns))
1073 (inst mov tn first))))
1074 ;; Set the multiple value return flag.
1075 (inst stc)
1076 ;; And away we go. Except that return-pc is still on the
1077 ;; stack and we've changed the stack pointer. So we have to
1078 ;; tell it to index off of EBX instead of EBP.
1079 (cond ((<= nvals register-arg-count)
1080 (inst mov esp-tn ebp-tn)
1081 (inst pop ebp-tn)
1082 (inst ret))
1084 ;; Some values are on the stack after RETURN-PC and OLD-FP,
1085 ;; can't return normally and some slots of the frame will
1086 ;; be used as temporaries by the receiver.
1088 ;; Clear as much of the stack as possible, but not past the
1089 ;; old frame address.
1090 (inst lea esp-tn
1091 (make-ea :dword :base ebp-tn
1092 :disp (frame-byte-offset (1- nvals))))
1093 (move ebp-tn old-fp)
1094 (inst push (make-ea :dword :base ebx
1095 :disp (frame-byte-offset
1096 (+ sp->fp-offset
1097 (tn-offset return-pc)))))
1098 (inst ret)))))
1100 ;;; Do unknown-values return of an arbitrary number of values (passed
1101 ;;; on the stack.) We check for the common case of a single return
1102 ;;; value, and do that inline using the normal single value return
1103 ;;; convention. Otherwise, we branch off to code that calls an
1104 ;;; assembly-routine.
1106 ;;; The assembly routine takes the following args:
1107 ;;; ECX -- number of values to find there.
1108 ;;; ESI -- pointer to where to find the values.
1109 (define-vop (return-multiple)
1110 (:args (old-fp)
1111 (return-pc)
1112 (vals :scs (any-reg) :target esi)
1113 (nvals :scs (any-reg) :target ecx))
1114 (:temporary (:sc unsigned-reg :offset esi-offset :from (:argument 2)) esi)
1115 (:temporary (:sc unsigned-reg :offset ecx-offset :from (:argument 3)) ecx)
1116 (:temporary (:sc descriptor-reg :offset (first *register-arg-offsets*)
1117 :from (:eval 0)) a0)
1118 (:node-var node)
1119 (:generator 13
1120 (check-ocfp-and-return-pc old-fp return-pc)
1121 (unless (policy node (> space speed))
1122 ;; Check for the single case.
1123 (let ((not-single (gen-label)))
1124 (inst cmp nvals (fixnumize 1))
1125 (inst jmp :ne not-single)
1126 ;; Return with one value.
1127 (loadw a0 vals -1)
1128 ;; Clear the stack until ocfp.
1129 (inst mov esp-tn ebp-tn)
1130 ;; clear the multiple-value return flag
1131 (inst clc)
1132 ;; Out of here.
1133 (inst pop ebp-tn)
1134 (inst ret)
1135 ;; Nope, not the single case. Jump to the assembly routine.
1136 (emit-label not-single)))
1137 (move esi vals)
1138 (move ecx nvals)
1139 (inst jmp (make-fixup 'return-multiple :assembly-routine))))
1141 ;;;; XEP hackery
1143 ;;; Get the lexical environment from its passing location.
1144 (define-vop (setup-closure-environment)
1145 (:results (closure :scs (descriptor-reg)))
1146 (:info label)
1147 (:ignore label)
1148 (:generator 6
1149 ;; Get result.
1150 (move closure eax-tn)))
1152 ;;; Copy a &MORE arg from the argument area to the end of the current
1153 ;;; frame. FIXED is the number of non-&MORE arguments.
1155 ;;; The tricky part is doing this without trashing any of the calling
1156 ;;; convention registers that are still needed. This vop is emitted
1157 ;;; directly after the xep-allocate frame. That means the registers
1158 ;;; are in use as follows:
1160 ;;; EAX -- The lexenv.
1161 ;;; EBX -- Available.
1162 ;;; ECX -- The total number of arguments * N-WORD-BYTES.
1163 ;;; EDX -- The first arg.
1164 ;;; EDI -- The second arg.
1165 ;;; ESI -- The third arg.
1167 ;;; So basically, we have one register available for our use: EBX.
1169 ;;; What we can do is push the other regs onto the stack, and then
1170 ;;; restore their values by looking directly below where we put the
1171 ;;; more-args.
1172 (define-vop (copy-more-arg)
1173 (:info fixed)
1174 (:generator 20
1175 ;; Avoid the copy if there are no more args.
1176 (cond ((zerop fixed)
1177 (inst jecxz JUST-ALLOC-FRAME))
1179 (inst cmp ecx-tn (fixnumize fixed))
1180 (inst jmp :be JUST-ALLOC-FRAME)))
1182 ;; Allocate the space on the stack.
1183 ;; stack = ebp + sp->fp-offset - (max 3 frame-size) - (nargs - fixed)
1185 ;; Problem: this might leave some &more args outside esp, so
1186 ;; clamp the movement for now. If fixed > frame-size, reset
1187 ;; esp to the end of the current &more args (which *should*
1188 ;; be a noop?), and only set esp to its final value after the
1189 ;; stack-stack memmove loop. Otherwise, an unlucky signal
1190 ;; could end up overwriting the &more arguments before they're
1191 ;; moved in their final place.
1192 (inst lea ebx-tn
1193 (make-ea :dword :base ebp-tn
1194 :disp (* n-word-bytes
1195 (- sp->fp-offset
1196 (max 0
1197 (- (max 3 (sb-allocated-size 'stack))
1198 fixed))))))
1199 (inst sub ebx-tn ecx-tn) ; Got the new stack in ebx
1200 (inst mov esp-tn ebx-tn)
1202 ;; Now: nargs>=1 && nargs>fixed
1204 ;; Save the original count of args.
1205 (inst mov ebx-tn ecx-tn)
1207 (cond ((< fixed register-arg-count)
1208 ;; We must stop when we run out of stack args, not when we
1209 ;; run out of more args.
1210 ;; Number to copy = nargs-3
1211 (inst sub ecx-tn (fixnumize register-arg-count))
1212 ;; Everything of interest in registers.
1213 (inst jmp :be DO-REGS))
1215 ;; Number to copy = nargs-fixed
1216 (inst sub ecx-tn (fixnumize fixed))))
1218 (let ((delta (* n-word-bytes
1219 (- (max 3 (sb-allocated-size 'stack))
1220 fixed)))
1221 (LOOP (gen-label)))
1222 (cond ((zerop delta)
1223 ;; nothing to move!
1225 ((minusp delta)
1226 ;; stack frame smaller than fixed; moving args to higher
1227 ;; addresses (stack grows downard), so copy from the
1228 ;; end. Moreover, because we'd have to shrink the frame,
1229 ;; esp currently points at the end of the source args.
1230 (inst push ebx-tn)
1232 (emit-label LOOP)
1233 (inst sub ecx-tn n-word-bytes)
1234 (inst mov ebx-tn (make-ea :dword
1235 :base esp-tn :index ecx-tn
1236 ;; compensate for PUSH above
1237 :disp n-word-bytes))
1238 (inst mov (make-ea :dword
1239 :base esp-tn :index ecx-tn
1240 ;; compensate for PUSH, and
1241 ;; add (abs delta)
1242 :disp (- n-word-bytes delta))
1243 ebx-tn)
1244 (inst jmp :nz LOOP)
1246 (inst pop ebx-tn))
1247 ((plusp delta)
1248 ;; stack frame larger than fixed. Moving args to lower
1249 ;; addresses, so copy from the lowest address. esp
1250 ;; already points to the lowest address of the destination.
1251 (inst push ebx-tn)
1252 (inst push esi-tn)
1254 (inst xor ebx-tn ebx-tn)
1255 (emit-label LOOP)
1256 (inst mov esi-tn (make-ea :dword
1257 :base esp-tn :index ebx-tn
1258 ;; PUSHed 2 words
1259 :disp (+ (* 2 n-word-bytes)
1260 delta)))
1261 (inst mov (make-ea :dword
1262 :base esp-tn :index ebx-tn
1263 :disp (* 2 n-word-bytes))
1264 esi-tn)
1265 (inst add ebx-tn n-word-bytes)
1266 (inst sub ecx-tn n-word-bytes)
1267 (inst jmp :nz LOOP)
1269 (inst pop esi-tn)
1270 (inst pop ebx-tn))))
1271 DO-REGS
1272 ;; stack can now be set to its final size
1273 (when (< (max 3 (sb-allocated-size 'stack)) fixed)
1274 (inst add esp-tn (* n-word-bytes
1275 (- fixed
1276 (max 3 (sb-allocated-size 'stack))))))
1278 ;; Restore ECX
1279 (inst mov ecx-tn ebx-tn)
1281 ;; Here: nargs>=1 && nargs>fixed
1282 (when (< fixed register-arg-count)
1283 ;; Now we have to deposit any more args that showed up in
1284 ;; registers.
1285 (do ((i fixed))
1286 ( nil )
1287 ;; Store it relative to ebp
1288 (inst mov (make-ea :dword :base ebp-tn
1289 :disp (* n-word-bytes
1290 (- sp->fp-offset
1291 (+ 1
1292 (- i fixed)
1293 (max 3 (sb-allocated-size
1294 'stack))))))
1295 (nth i *register-arg-tns*))
1297 (incf i)
1298 (when (>= i register-arg-count)
1299 (return))
1301 ;; Don't deposit any more than there are.
1302 (if (zerop i)
1303 (inst test ecx-tn ecx-tn)
1304 (inst cmp ecx-tn (fixnumize i)))
1305 (inst jmp :eq DONE)))
1307 (inst jmp DONE)
1309 JUST-ALLOC-FRAME
1310 (inst lea esp-tn
1311 (make-ea :dword :base ebp-tn
1312 :disp (* n-word-bytes
1313 (- sp->fp-offset
1314 (max 3 (sb-allocated-size 'stack))))))
1316 DONE))
1318 (define-vop (more-kw-arg)
1319 (:translate sb!c::%more-kw-arg)
1320 (:policy :fast-safe)
1321 (:args (object :scs (descriptor-reg) :to (:result 1))
1322 (index :scs (any-reg immediate) :to (:result 1) :target keyword))
1323 (:arg-types * tagged-num)
1324 (:results (value :scs (descriptor-reg any-reg))
1325 (keyword :scs (descriptor-reg any-reg)))
1326 (:result-types * *)
1327 (:generator 4
1328 (sc-case index
1329 (immediate
1330 (inst mov value (make-ea :dword :base object :disp (tn-value index)))
1331 (inst mov keyword (make-ea :dword :base object
1332 :disp (+ (tn-value index) n-word-bytes))))
1334 (inst mov value (make-ea :dword :base object :index index))
1335 (inst mov keyword (make-ea :dword :base object :index index
1336 :disp n-word-bytes))))))
1338 (define-vop (more-arg/c)
1339 (:translate sb!c::%more-arg)
1340 (:policy :fast-safe)
1341 (:args (object :scs (descriptor-reg) :to (:result 1)))
1342 (:info index)
1343 (:arg-types * (:constant (signed-byte 32)))
1344 (:results (value :scs (descriptor-reg any-reg)))
1345 (:result-types *)
1346 (:generator 3
1347 (inst mov value (make-ea :dword :base object
1348 :disp (- (* index n-word-bytes))))))
1350 (define-vop (more-arg)
1351 (:translate sb!c::%more-arg)
1352 (:policy :fast-safe)
1353 (:args (object :scs (descriptor-reg) :to (:result 1))
1354 (index :scs (any-reg) :to (:result 1) :target value))
1355 (:arg-types * tagged-num)
1356 (:results (value :scs (descriptor-reg any-reg)))
1357 (:result-types *)
1358 (:generator 4
1359 (move value index)
1360 (inst neg value)
1361 (inst mov value (make-ea :dword :base object :index value))))
1363 ;;; Turn more arg (context, count) into a list.
1364 (define-vop (listify-rest-args)
1365 (:translate %listify-rest-args)
1366 (:policy :safe)
1367 (:args (context :scs (descriptor-reg) :target src)
1368 (count :scs (any-reg) :target ecx))
1369 (:arg-types * tagged-num)
1370 (:temporary (:sc unsigned-reg :offset esi-offset :from (:argument 0)) src)
1371 (:temporary (:sc unsigned-reg :offset ecx-offset :from (:argument 1)) ecx)
1372 (:temporary (:sc unsigned-reg :offset eax-offset) eax)
1373 (:temporary (:sc unsigned-reg) dst)
1374 (:results (result :scs (descriptor-reg)))
1375 (:node-var node)
1376 (:generator 20
1377 (let ((enter (gen-label))
1378 (loop (gen-label))
1379 (done (gen-label))
1380 (stack-allocate-p (node-stack-allocate-p node)))
1381 (move src context)
1382 (move ecx count)
1383 ;; Check to see whether there are no args, and just return NIL if so.
1384 (inst mov result nil-value)
1385 (inst jecxz done)
1386 (inst lea dst (make-ea :dword :base ecx :index ecx))
1387 (maybe-pseudo-atomic stack-allocate-p
1388 (allocation dst dst node stack-allocate-p list-pointer-lowtag)
1389 ;; Set decrement mode (successive args at lower addresses)
1390 (inst std)
1391 ;; Set up the result.
1392 (move result dst)
1393 ;; Jump into the middle of the loop, 'cause that's where we want
1394 ;; to start.
1395 (inst jmp enter)
1396 (emit-label loop)
1397 ;; Compute a pointer to the next cons.
1398 (inst add dst (* cons-size n-word-bytes))
1399 ;; Store a pointer to this cons in the CDR of the previous cons.
1400 (storew dst dst -1 list-pointer-lowtag)
1401 (emit-label enter)
1402 ;; Grab one value and stash it in the car of this cons.
1403 (inst lods eax)
1404 (storew eax dst 0 list-pointer-lowtag)
1405 ;; Go back for more.
1406 (inst sub ecx n-word-bytes)
1407 (inst jmp :nz loop)
1408 ;; NIL out the last cons.
1409 (storew nil-value dst 1 list-pointer-lowtag)
1410 (inst cld))
1411 (emit-label done))))
1413 ;;; Return the location and size of the &MORE arg glob created by
1414 ;;; COPY-MORE-ARG. SUPPLIED is the total number of arguments supplied
1415 ;;; (originally passed in ECX). FIXED is the number of non-rest
1416 ;;; arguments.
1418 ;;; We must duplicate some of the work done by COPY-MORE-ARG, since at
1419 ;;; that time the environment is in a pretty brain-damaged state,
1420 ;;; preventing this info from being returned as values. What we do is
1421 ;;; compute supplied - fixed, and return a pointer that many words
1422 ;;; below the current stack top.
1423 (define-vop (more-arg-context)
1424 (:policy :fast-safe)
1425 (:translate sb!c::%more-arg-context)
1426 (:args (supplied :scs (any-reg) :target count))
1427 (:arg-types positive-fixnum (:constant fixnum))
1428 (:info fixed)
1429 (:results (context :scs (descriptor-reg))
1430 (count :scs (any-reg)))
1431 (:result-types t tagged-num)
1432 (:note "more-arg-context")
1433 (:generator 5
1434 (move count supplied)
1435 ;; SP at this point points at the last arg pushed.
1436 ;; Point to the first more-arg, not above it.
1437 (inst lea context (make-ea :dword :base esp-tn
1438 :index count :scale 1
1439 :disp (- (+ (fixnumize fixed) n-word-bytes))))
1440 (unless (zerop fixed)
1441 (inst sub count (fixnumize fixed)))))
1443 ;;; Signal wrong argument count error if NARGS isn't equal to COUNT.
1444 (define-vop (verify-arg-count)
1445 (:policy :fast-safe)
1446 (:args (nargs :scs (any-reg)))
1447 (:arg-types positive-fixnum (:constant t) (:constant t))
1448 (:info min max)
1449 (:vop-var vop)
1450 (:save-p :compute-only)
1451 (:generator 3
1452 (let ((err-lab
1453 (generate-error-code vop 'invalid-arg-count-error nargs)))
1454 (cond ((not min)
1455 (if (zerop max)
1456 (inst test nargs nargs)
1457 (inst cmp nargs (fixnumize max)))
1458 (inst jmp :ne err-lab))
1459 (max
1460 (when (plusp min)
1461 (inst cmp nargs (fixnumize min))
1462 (inst jmp :b err-lab))
1463 (inst cmp nargs (fixnumize max))
1464 (inst jmp :a err-lab))
1465 ((plusp min)
1466 (inst cmp nargs (fixnumize min))
1467 (inst jmp :b err-lab))))))
1469 ;;; Various other error signallers.
1470 (macrolet ((def (name error translate &rest args)
1471 `(define-vop (,name)
1472 ,@(when translate
1473 `((:policy :fast-safe)
1474 (:translate ,translate)))
1475 (:args ,@(mapcar (lambda (arg)
1476 `(,arg :scs (any-reg descriptor-reg)))
1477 args))
1478 (:vop-var vop)
1479 (:save-p :compute-only)
1480 (:generator 1000
1481 (error-call vop ',error ,@args)))))
1482 (def arg-count-error invalid-arg-count-error
1483 sb!c::%arg-count-error nargs fname)
1484 (def type-check-error object-not-type-error sb!c::%type-check-error
1485 object type)
1486 (def layout-invalid-error layout-invalid-error sb!c::%layout-invalid-error
1487 object layout)
1488 (def odd-key-args-error odd-key-args-error
1489 sb!c::%odd-key-args-error)
1490 (def unknown-key-arg-error unknown-key-arg-error
1491 sb!c::%unknown-key-arg-error key)
1492 (def nil-fun-returned-error nil-fun-returned-error nil fun))
1494 ;;; Single-stepping
1496 (defun emit-single-step-test ()
1497 ;; We use different ways of representing whether stepping is on on
1498 ;; +SB-THREAD / -SB-THREAD: on +SB-THREAD, we use a slot in the
1499 ;; thread structure. On -SB-THREAD we use the value of a static
1500 ;; symbol. Things are done this way, since reading a thread-local
1501 ;; slot from a symbol would require an extra register on +SB-THREAD,
1502 ;; and reading a slot from a thread structure would require an extra
1503 ;; register on -SB-THREAD.
1504 #!+sb-thread
1505 (progn
1506 #!+win32 (inst push eax-tn)
1507 (with-tls-ea (EA :base #!+win32 eax-tn #!-win32 :unused
1508 :disp-type :constant
1509 :disp (* thread-stepping-slot n-word-bytes))
1510 (inst cmp EA nil-value :maybe-fs))
1511 #!+win32 (inst pop eax-tn))
1512 #!-sb-thread
1513 (inst cmp (make-ea-for-symbol-value sb!impl::*stepping*)
1514 nil-value))
1516 (define-vop (step-instrument-before-vop)
1517 (:policy :fast-safe)
1518 (:vop-var vop)
1519 (:generator 3
1520 (emit-single-step-test)
1521 (inst jmp :eq DONE)
1522 (inst break single-step-before-trap)
1523 DONE
1524 (note-this-location vop :step-before-vop)))