Improve/fix SB-DISASSEM:SAP-REF-INT
[sbcl.git] / src / compiler / target-disassem.lisp
blob79bfec8f6c481c18d44b2f16bdad6ab8ceb8a25d
1 ;;;; disassembler-related stuff not needed in cross-compilation host
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!DISASSEM")
14 ;;;; FIXME: A lot of stupid package prefixes would go away if DISASSEM
15 ;;;; would use the SB!DI package. And some more would go away if it would
16 ;;;; use SB!SYS (in order to get to the SAP-FOO operators).
18 ;;;; combining instructions where one specializes another
20 ;;; Return non-NIL if the instruction SPECIAL is a more specific
21 ;;; version of GENERAL (i.e., the same instruction, but with more
22 ;;; constraints).
23 (defun inst-specializes-p (special general)
24 (declare (type instruction special general))
25 (let ((smask (inst-mask special))
26 (gmask (inst-mask general)))
27 (and (dchunk= (inst-id general)
28 (dchunk-and (inst-id special) gmask))
29 (dchunk-strict-superset-p smask gmask))))
31 ;;; a bit arbitrary, but should work ok...
32 ;;;
33 ;;; Return an integer corresponding to the specificity of the
34 ;;; instruction INST.
35 (defun specializer-rank (inst)
36 (declare (type instruction inst))
37 (* (dchunk-count-bits (inst-mask inst)) 4))
39 ;;; Order the list of instructions INSTS with more specific (more
40 ;;; constant bits, or same-as argument constains) ones first. Returns
41 ;;; the ordered list.
42 (defun order-specializers (insts)
43 (declare (type list insts))
44 (sort insts #'> :key #'specializer-rank))
46 (defun specialization-error (insts)
47 (bug
48 "~@<Instructions either aren't related or conflict in some way: ~4I~_~S~:>"
49 insts))
51 ;;; Given a list of instructions INSTS, Sees if one of these instructions is a
52 ;;; more general form of all the others, in which case they are put into its
53 ;;; specializers list, and it is returned. Otherwise an error is signaled.
54 (defun try-specializing (insts)
55 (declare (type list insts))
56 (let ((masters (copy-list insts)))
57 (dolist (possible-master insts)
58 (dolist (possible-specializer insts)
59 (unless (or (eq possible-specializer possible-master)
60 (inst-specializes-p possible-specializer possible-master))
61 (setf masters (delete possible-master masters))
62 (return) ; exit the inner loop
63 )))
64 (cond ((null masters)
65 (specialization-error insts))
66 ((cdr masters)
67 (error "multiple specializing masters: ~S" masters))
69 (let ((master (car masters)))
70 (setf (inst-specializers master)
71 (order-specializers (remove master insts)))
72 master)))))
74 ;;;; choosing an instruction
76 #!-sb-fluid (declaim (inline inst-matches-p choose-inst-specialization))
78 ;;; Return non-NIL if all constant-bits in INST match CHUNK.
79 (defun inst-matches-p (inst chunk)
80 (declare (type instruction inst)
81 (type dchunk chunk))
82 (dchunk= (dchunk-and (inst-mask inst) chunk) (inst-id inst)))
84 ;;; Given an instruction object, INST, and a bit-pattern, CHUNK, pick
85 ;;; the most specific instruction on INST's specializer list whose
86 ;;; constraints are met by CHUNK. If none do, then return INST.
87 (defun choose-inst-specialization (inst chunk)
88 (declare (type instruction inst)
89 (type dchunk chunk))
90 (or (dolist (spec (inst-specializers inst) nil)
91 (declare (type instruction spec))
92 (when (inst-matches-p spec chunk)
93 (return spec)))
94 inst))
96 ;;;; searching for an instruction in instruction space
98 ;;; Return the instruction object within INST-SPACE corresponding to the
99 ;;; bit-pattern CHUNK, or NIL if there isn't one.
100 (defun find-inst (chunk inst-space)
101 (declare (type dchunk chunk)
102 (type (or null inst-space instruction) inst-space))
103 (etypecase inst-space
104 (null nil)
105 (instruction
106 (if (inst-matches-p inst-space chunk)
107 (choose-inst-specialization inst-space chunk)
108 nil))
109 (inst-space
110 (let* ((mask (ispace-valid-mask inst-space))
111 (id (dchunk-and mask chunk)))
112 (declare (type dchunk id mask))
113 (dolist (choice (ispace-choices inst-space))
114 (declare (type inst-space-choice choice))
115 (when (dchunk= id (ischoice-common-id choice))
116 (return (find-inst chunk (ischoice-subspace choice)))))))))
118 ;;;; building the instruction space
120 ;;; Returns an instruction-space object corresponding to the list of
121 ;;; instructions INSTS. If the optional parameter INITIAL-MASK is
122 ;;; supplied, only bits it has set are used.
123 (defun build-inst-space (insts &optional (initial-mask dchunk-one))
124 ;; This is done by finding any set of bits that's common to
125 ;; all instructions, building an instruction-space node that selects on those
126 ;; bits, and recursively handle sets of instructions with a common value for
127 ;; these bits (which, since there should be fewer instructions than in INSTS,
128 ;; should have some additional set of bits to select on, etc). If there
129 ;; are no common bits, or all instructions have the same value within those
130 ;; bits, TRY-SPECIALIZING is called, which handles the cases of many
131 ;; variations on a single instruction.
132 (declare (type list insts)
133 (type dchunk initial-mask))
134 (cond ((null insts)
135 nil)
136 ((null (cdr insts))
137 (car insts))
139 (let ((vmask (dchunk-copy initial-mask)))
140 (dolist (inst insts)
141 (dchunk-andf vmask (inst-mask inst)))
142 (if (dchunk-zerop vmask)
143 (try-specializing insts)
144 (let ((buckets nil))
145 (dolist (inst insts)
146 (let* ((common-id (dchunk-and (inst-id inst) vmask))
147 (bucket (assoc common-id buckets :test #'dchunk=)))
148 (cond ((null bucket)
149 (push (list common-id inst) buckets))
151 (push inst (cdr bucket))))))
152 (let ((submask (dchunk-clear initial-mask vmask)))
153 (if (= (length buckets) 1)
154 (try-specializing insts)
155 (make-inst-space
156 :valid-mask vmask
157 :choices (mapcar (lambda (bucket)
158 (make-inst-space-choice
159 :subspace (build-inst-space
160 (cdr bucket)
161 submask)
162 :common-id (car bucket)))
163 buckets))))))))))
165 ;;;; an inst-space printer for debugging purposes
167 (defun print-masked-binary (num mask word-size &optional (show word-size))
168 (do ((bit (1- word-size) (1- bit)))
169 ((< bit 0))
170 (write-char (cond ((logbitp bit mask)
171 (if (logbitp bit num) #\1 #\0))
172 ((< bit show) #\x)
173 (t #\space)))))
175 (defun print-inst-bits (inst)
176 (print-masked-binary (inst-id inst)
177 (inst-mask inst)
178 dchunk-bits
179 (bytes-to-bits (inst-length inst))))
181 ;;; Print a nicely-formatted version of INST-SPACE.
182 (defun print-inst-space (inst-space &optional (indent 0))
183 (etypecase inst-space
184 (null)
185 (instruction
186 (format t "~Vt[~A(~A)~40T" indent
187 (inst-name inst-space)
188 (inst-format-name inst-space))
189 (print-inst-bits inst-space)
190 (dolist (inst (inst-specializers inst-space))
191 (format t "~%~Vt:~A~40T" indent (inst-name inst))
192 (print-inst-bits inst))
193 (write-char #\])
194 (terpri))
195 (inst-space
196 (format t "~Vt---- ~8,'0X ----~%"
197 indent
198 (ispace-valid-mask inst-space))
199 (map nil
200 (lambda (choice)
201 (format t "~Vt~8,'0X ==>~%"
202 (+ 2 indent)
203 (ischoice-common-id choice))
204 (print-inst-space (ischoice-subspace choice)
205 (+ 4 indent)))
206 (ispace-choices inst-space)))))
208 ;;;; (The actual disassembly part follows.)
210 ;;; Code object layout:
211 ;;; header-word
212 ;;; code-size (starting from first inst, in bytes)
213 ;;; entry-points (points to first function header)
214 ;;; debug-info
215 ;;; constant1
216 ;;; constant2
217 ;;; ...
218 ;;; <padding to dual-word boundary>
219 ;;; start of instructions
220 ;;; ...
221 ;;; fun-headers and lra's buried in here randomly
222 ;;; ...
223 ;;; <padding to dual-word boundary>
225 ;;; Function header layout (dual word aligned):
226 ;;; header-word
227 ;;; self pointer
228 ;;; next pointer (next function header)
229 ;;; name
230 ;;; arglist
231 ;;; type
233 ;;; LRA layout (dual word aligned):
234 ;;; header-word
236 #!-sb-fluid (declaim (inline words-to-bytes))
238 (eval-when (:compile-toplevel :load-toplevel :execute)
239 ;;; Convert a word-offset NUM to a byte-offset.
240 (defun words-to-bytes (num)
241 (declare (type offset num))
242 (ash num sb!vm:word-shift))
243 ) ; EVAL-WHEN
245 (defconstant lra-size (words-to-bytes 1))
247 (defstruct (offs-hook (:copier nil))
248 (offset 0 :type offset)
249 (fun (missing-arg) :type function)
250 (before-address nil :type (member t nil)))
252 (defmethod print-object ((seg segment) stream)
253 (print-unreadable-object (seg stream :type t)
254 (let ((addr (sap-int (funcall (seg-sap-maker seg)))))
255 (format stream "#X~X..~X[~W]~:[ (#X~X)~;~*~]~@[ in ~S~]"
256 addr (+ addr (seg-length seg)) (seg-length seg)
257 (= (seg-virtual-location seg) addr)
258 (seg-virtual-location seg)
259 (seg-code seg)))))
261 ;;;; function ops
263 (defun fun-self (fun)
264 (declare (type compiled-function fun))
265 (%simple-fun-self (%fun-fun fun)))
267 (defun fun-code (fun)
268 (declare (type compiled-function fun))
269 (fun-code-header (fun-self fun)))
271 (defun fun-next (fun)
272 (declare (type compiled-function fun))
273 (%simple-fun-next (%fun-fun fun)))
275 (defun fun-address (fun)
276 (declare (type compiled-function fun))
277 (- (get-lisp-obj-address (%fun-fun fun)) sb!vm:fun-pointer-lowtag))
279 ;;; the offset of FUNCTION from the start of its code-component's
280 ;;; instruction area
281 (defun fun-insts-offset (function)
282 (declare (type compiled-function function))
283 (- (fun-address function)
284 (sap-int (code-instructions (fun-code function)))))
286 ;;; the offset of FUNCTION from the start of its code-component
287 (defun fun-offset (function)
288 (declare (type compiled-function function))
289 (words-to-bytes (get-closure-length function)))
291 ;;;; operations on code-components (which hold the instructions for
292 ;;;; one or more functions)
294 ;;; Return the length of the instruction area in CODE-COMPONENT.
295 (defun code-inst-area-length (code-component)
296 (declare (type code-component code-component))
297 (%code-code-size code-component))
299 (defun segment-offs-to-code-offs (offset segment)
300 (without-gcing
301 (let* ((seg-base-addr (sap-int (funcall (seg-sap-maker segment))))
302 (code-addr
303 (logandc1 sb!vm:lowtag-mask
304 (get-lisp-obj-address (seg-code segment))))
305 (addr (+ offset seg-base-addr)))
306 (declare (type address seg-base-addr code-addr addr))
307 (- addr code-addr))))
309 (defun code-offs-to-segment-offs (offset segment)
310 (without-gcing
311 (let* ((seg-base-addr (sap-int (funcall (seg-sap-maker segment))))
312 (code-addr
313 (logandc1 sb!vm:lowtag-mask
314 (get-lisp-obj-address (seg-code segment))))
315 (addr (+ offset code-addr)))
316 (declare (type address seg-base-addr code-addr addr))
317 (- addr seg-base-addr))))
319 (defun code-insts-offs-to-segment-offs (offset segment)
320 (without-gcing
321 (let* ((seg-base-addr (sap-int (funcall (seg-sap-maker segment))))
322 (code-insts-addr
323 (sap-int (code-instructions (seg-code segment))))
324 (addr (+ offset code-insts-addr)))
325 (declare (type address seg-base-addr code-insts-addr addr))
326 (- addr seg-base-addr))))
328 #!-(or x86 x86-64)
329 (defun lra-hook (chunk stream dstate)
330 (declare (type dchunk chunk)
331 (ignore chunk)
332 (type (or null stream) stream)
333 (type disassem-state dstate))
334 (when (and (aligned-p (+ (seg-virtual-location (dstate-segment dstate))
335 (dstate-cur-offs dstate))
336 (* 2 sb!vm:n-word-bytes))
337 ;; Check type.
338 (= (sap-ref-8 (dstate-segment-sap dstate)
339 (if (eq (dstate-byte-order dstate)
340 :little-endian)
341 (dstate-cur-offs dstate)
342 (+ (dstate-cur-offs dstate)
343 (1- lra-size))))
344 sb!vm:return-pc-header-widetag))
345 (unless (null stream)
346 (note "possible LRA header" dstate)))
347 nil)
349 ;;; Print the fun-header (entry-point) pseudo-instruction at the
350 ;;; current location in DSTATE to STREAM.
351 (defun fun-header-hook (stream dstate)
352 (declare (type (or null stream) stream)
353 (type disassem-state dstate))
354 (unless (null stream)
355 (let* ((seg (dstate-segment dstate))
356 (code (seg-code seg))
357 (woffs (ash (segment-offs-to-code-offs (dstate-cur-offs dstate) seg)
358 (- sb!vm:word-shift))) ; bytes -> words
359 (name (code-header-ref code (+ woffs sb!vm:simple-fun-name-slot)))
360 (args (code-header-ref code (+ woffs sb!vm:simple-fun-arglist-slot)))
361 (type (code-header-ref code (+ woffs sb!vm:simple-fun-type-slot))))
362 ;; if the function's name conveys its args, don't show ARGS too
363 (format stream ".~A ~S~:[~:A~;~]" 'entry name
364 (and (typep name '(cons (eql lambda) (cons list)))
365 (equal args (second name)))
366 args)
367 (note (lambda (stream)
368 (format stream "~:S" type)) ; use format to print NIL as ()
369 dstate)))
370 (incf (dstate-next-offs dstate)
371 (words-to-bytes sb!vm:simple-fun-code-offset)))
373 (defun alignment-hook (chunk stream dstate)
374 (declare (type dchunk chunk)
375 (ignore chunk)
376 (type (or null stream) stream)
377 (type disassem-state dstate))
378 (let ((location
379 (+ (seg-virtual-location (dstate-segment dstate))
380 (dstate-cur-offs dstate)))
381 (alignment (dstate-alignment dstate)))
382 (unless (aligned-p location alignment)
383 (when stream
384 (format stream "~A~Vt~W~%" '.align
385 (dstate-argument-column dstate)
386 alignment))
387 (incf (dstate-next-offs dstate)
388 (- (align location alignment) location)))
389 nil))
391 (defun rewind-current-segment (dstate segment)
392 (declare (type disassem-state dstate)
393 (type segment segment))
394 (setf (dstate-segment dstate) segment)
395 (setf (dstate-inst-properties dstate) nil)
396 (setf (dstate-cur-offs-hooks dstate)
397 (stable-sort (nreverse (copy-list (seg-hooks segment)))
398 (lambda (oh1 oh2)
399 (or (< (offs-hook-offset oh1) (offs-hook-offset oh2))
400 (and (= (offs-hook-offset oh1)
401 (offs-hook-offset oh2))
402 (offs-hook-before-address oh1)
403 (not (offs-hook-before-address oh2)))))))
404 (setf (dstate-cur-offs dstate) 0)
405 (setf (dstate-cur-labels dstate) (dstate-labels dstate)))
407 (defun call-offs-hooks (before-address stream dstate)
408 (declare (type (or null stream) stream)
409 (type disassem-state dstate))
410 (let ((cur-offs (dstate-cur-offs dstate)))
411 (setf (dstate-next-offs dstate) cur-offs)
412 (loop
413 (let ((next-hook (car (dstate-cur-offs-hooks dstate))))
414 (when (null next-hook)
415 (return))
416 (let ((hook-offs (offs-hook-offset next-hook)))
417 (when (or (> hook-offs cur-offs)
418 (and (= hook-offs cur-offs)
419 before-address
420 (not (offs-hook-before-address next-hook))))
421 (return))
422 (unless (< hook-offs cur-offs)
423 (funcall (offs-hook-fun next-hook) stream dstate))
424 (pop (dstate-cur-offs-hooks dstate))
425 (unless (= (dstate-next-offs dstate) cur-offs)
426 (return)))))))
428 (defun call-fun-hooks (chunk stream dstate)
429 (let ((hooks (dstate-fun-hooks dstate))
430 (cur-offs (dstate-cur-offs dstate)))
431 (setf (dstate-next-offs dstate) cur-offs)
432 (dolist (hook hooks nil)
433 (let ((prefix-p (funcall hook chunk stream dstate)))
434 (unless (= (dstate-next-offs dstate) cur-offs)
435 (return prefix-p))))))
437 ;;; Print enough spaces to fill the column used for instruction bytes,
438 ;;; assuming that N-BYTES many instruction bytes have already been
439 ;;; printed in it, then print an additional space as separator to the
440 ;;; opcode column.
441 (defun pad-inst-column (stream n-bytes)
442 (declare (type stream stream)
443 (type text-width n-bytes))
444 (when (> *disassem-inst-column-width* 0)
445 (dotimes (i (- *disassem-inst-column-width* (* 2 n-bytes)))
446 (write-char #\space stream))
447 (write-char #\space stream)))
449 (defun handle-bogus-instruction (stream dstate prefix-len)
450 (let ((alignment (dstate-alignment dstate)))
451 (unless (null stream)
452 (multiple-value-bind (words bytes)
453 (truncate alignment sb!vm:n-word-bytes)
454 (when (> words 0)
455 (print-inst (* words sb!vm:n-word-bytes) stream dstate
456 :trailing-space nil))
457 (when (> bytes 0)
458 (print-inst bytes stream dstate :trailing-space nil)))
459 (pad-inst-column stream (+ prefix-len alignment))
460 (decf (dstate-cur-offs dstate) prefix-len)
461 (print-bytes (+ prefix-len alignment) stream dstate))
462 (incf (dstate-next-offs dstate) alignment)))
464 ;;; FIXME: This should be an FLET but it's too big to look at comfortably.
465 (declaim (inline !sap-ref-dchunk))
466 (defun !sap-ref-dchunk (sap byte-offset byte-order)
467 (declare (type system-area-pointer sap)
468 (type offset byte-offset)
469 (muffle-conditions compiler-note) ; returns possible bignum
470 ;; Not all backends can actually disassemble for either byte order.
471 (ignorable byte-order)
472 (optimize (speed 3) (safety 0)))
473 #!+x86-64
474 (logand (sap-ref-word sap byte-offset) dchunk-one)
475 #!-x86-64
476 (the dchunk
477 ;; Why all the noise with hand addition? I have no idea.
478 ;; The target can only disassemble its own instruction set + byte order,
479 ;; so probably this should just be SAP-REF-WORD.
480 (ecase dchunk-bits
481 (32 (if (eq byte-order :big-endian)
482 (+ (ash (sap-ref-8 sap byte-offset) 24)
483 (ash (sap-ref-8 sap (+ 1 byte-offset)) 16)
484 (ash (sap-ref-8 sap (+ 2 byte-offset)) 8)
485 (sap-ref-8 sap (+ 3 byte-offset)))
486 (+ (sap-ref-8 sap byte-offset)
487 (ash (sap-ref-8 sap (+ 1 byte-offset)) 8)
488 (ash (sap-ref-8 sap (+ 2 byte-offset)) 16)
489 (ash (sap-ref-8 sap (+ 3 byte-offset)) 24))))
490 (64 (if (eq byte-order :big-endian)
491 (+ (ash (sap-ref-8 sap byte-offset) 56)
492 (ash (sap-ref-8 sap (+ 1 byte-offset)) 48)
493 (ash (sap-ref-8 sap (+ 2 byte-offset)) 40)
494 (ash (sap-ref-8 sap (+ 3 byte-offset)) 32)
495 (ash (sap-ref-8 sap (+ 4 byte-offset)) 24)
496 (ash (sap-ref-8 sap (+ 5 byte-offset)) 16)
497 (ash (sap-ref-8 sap (+ 6 byte-offset)) 8)
498 (sap-ref-8 sap (+ 7 byte-offset)))
499 (+ (sap-ref-8 sap byte-offset)
500 (ash (sap-ref-8 sap (+ 1 byte-offset)) 8)
501 (ash (sap-ref-8 sap (+ 2 byte-offset)) 16)
502 (ash (sap-ref-8 sap (+ 3 byte-offset)) 24)
503 (ash (sap-ref-8 sap (+ 4 byte-offset)) 32)
504 (ash (sap-ref-8 sap (+ 5 byte-offset)) 40)
505 (ash (sap-ref-8 sap (+ 6 byte-offset)) 48)
506 (ash (sap-ref-8 sap (+ 7 byte-offset)) 56)))))))
508 (defstruct (filtered-arg (:copier nil) (:predicate nil) (:constructor nil))
509 next)
510 ;;; Return an arbitrary object (one that is a subtype of FILTERED-ARG)
511 ;;; that is automatically returned to the dstate's filtered-arg-pool
512 ;;; after disassembly of the current instruction.
513 ;;; Any given disassembler backend must use the same constructor for
514 ;;; its filtered args that participate in the pool.
515 (defun new-filtered-arg (dstate constructor)
516 (let ((arg (dstate-filtered-arg-pool-free dstate)))
517 (if arg
518 (setf (dstate-filtered-arg-pool-free dstate) (filtered-arg-next arg))
519 (setf arg (funcall constructor)))
520 (sb!c::push-in filtered-arg-next arg (dstate-filtered-arg-pool-in-use dstate))
521 arg))
523 ;;; Iterate through the instructions in SEGMENT, calling FUNCTION for
524 ;;; each instruction, with arguments of CHUNK, STREAM, and DSTATE.
525 ;;; Additionally, unless STREAM is NIL, several items are output to it:
526 ;;; things printed from several hooks, for example labels, and instruction
527 ;;; bytes before FUNCTION is called, notes and a newline afterwards.
528 ;;; Instructions having an INST-PRINTER of NIL are treated as prefix
529 ;;; instructions which makes them print on the same line as the following
530 ;;; instruction, outputting their INST-PRINT-NAME (unless that is NIL)
531 ;;; before FUNCTION is called for the following instruction.
532 (defun map-segment-instructions (function segment dstate &optional stream)
533 (declare (type function function)
534 (type segment segment)
535 (type disassem-state dstate)
536 (type (or null stream) stream))
538 (let ((ispace (get-inst-space))
539 (data-end-offset
540 ;; If the segment starts with unboxed data,
541 ;; dump some number of words using the .WORD pseudo-ops.
542 (if (and (seg-unboxed-data-range segment)
543 (= (segment-offs-to-code-offs 0 segment)
544 (car (seg-unboxed-data-range segment))))
545 (code-offs-to-segment-offs (cdr (seg-unboxed-data-range segment))
546 segment)
547 0)) ; sentinel value
548 (prefix-p nil) ; just processed a prefix inst
549 (prefix-len 0) ; sum of lengths of any prefix instruction(s)
550 (prefix-print-names nil)) ; reverse list of prefixes seen
552 (rewind-current-segment dstate segment)
554 (loop
555 (when (>= (dstate-cur-offs dstate) (seg-length (dstate-segment dstate)))
556 ;; done!
557 (when (and stream (> prefix-len 0))
558 (pad-inst-column stream prefix-len)
559 (decf (dstate-cur-offs dstate) prefix-len)
560 (print-bytes prefix-len stream dstate)
561 (incf (dstate-cur-offs dstate) prefix-len))
562 (return))
564 (setf (dstate-next-offs dstate) (dstate-cur-offs dstate))
566 (call-offs-hooks t stream dstate)
567 (unless (or prefix-p (null stream))
568 (print-current-address stream dstate))
569 (call-offs-hooks nil stream dstate)
571 (when (< (dstate-cur-offs dstate) data-end-offset)
572 (when stream
573 (without-gcing
574 (format stream "~A #x~v,'0x" '.word
575 (* 2 sb!vm:n-word-bytes)
576 (sap-ref-int (funcall (seg-sap-maker segment))
577 (dstate-cur-offs dstate)
578 sb!vm:n-word-bytes
579 (dstate-byte-order dstate)))))
580 (setf (dstate-next-offs dstate)
581 (+ (dstate-cur-offs dstate) sb!vm:n-word-bytes)))
583 (unless (> (dstate-next-offs dstate) (dstate-cur-offs dstate))
584 ;; FIXME: this can probably be WITH-PINNED-OBJECTS. For octet vectors and code
585 ;; there is something to pin, whereas if you are passing a memory address then
586 ;; you are either inside without-gcing anyway for this to be sensible at all,
587 ;; or are disassembling foreign code.
588 (without-gcing
589 (setf (dstate-segment-sap dstate) (funcall (seg-sap-maker segment)))
591 (let* ((bytes-remaining (- (seg-length (dstate-segment dstate))
592 (dstate-cur-offs dstate)))
593 (chunk
594 (multiple-value-bind (sap offset)
595 ;; Don't read beyond the segment. This can occur with DISASSEMBLE-MEMORY
596 ;; on a function whose code ends in pad bytes that are not an integral
597 ;; number of instructions, and maybe you're so unlucky as to be
598 ;; on the exact last page of your heap.
599 (if (< bytes-remaining (/ dchunk-bits 8))
600 (let* ((scratch-buf (dstate-scratch-buf dstate))
601 (sap (vector-sap scratch-buf)))
602 ;; We're inside a WITHOUT-GCING (up above).
603 ;; Otherwise, put (dstate-scratch-buf dstate) in WPO
604 (fill scratch-buf 0)
605 (system-area-ub8-copy
606 (dstate-segment-sap dstate)
607 (dstate-cur-offs dstate)
608 sap 0 bytes-remaining)
609 (values sap 0))
610 (values (dstate-segment-sap dstate)
611 (dstate-cur-offs dstate)))
612 (!sap-ref-dchunk sap offset (dstate-byte-order dstate))))
613 (fun-prefix-p (call-fun-hooks chunk stream dstate)))
614 (if (> (dstate-next-offs dstate) (dstate-cur-offs dstate))
615 (setf prefix-p fun-prefix-p)
616 (let ((inst (find-inst chunk ispace)))
617 (cond ((null inst)
618 (handle-bogus-instruction stream dstate prefix-len)
619 (setf prefix-p nil))
620 ;; On x86, the pad bytes at the end of a simple-fun
621 ;; decode as "ADD [RAX], AL" if there are 2 bytes,
622 ;; but if there's only 1 byte, it should show "BYTE 0".
623 ;; There's really nothing we can do about the former.
624 ((> (inst-length inst) bytes-remaining)
625 (when stream
626 (print-inst bytes-remaining stream dstate)
627 (print-bytes bytes-remaining stream dstate)
628 (terpri stream))
629 (return))
631 (setf (dstate-next-offs dstate)
632 (+ (dstate-cur-offs dstate)
633 (inst-length inst)))
634 (let ((orig-next (dstate-next-offs dstate))
635 (control (inst-control inst)))
636 (when stream
637 (print-inst (inst-length inst) stream dstate
638 :trailing-space nil))
640 (dolist (item (inst-prefilters inst))
641 (declare (optimize (sb!c::insert-array-bounds-checks 0)))
642 ;; item = #(INDEX FUNCTION SIGN-EXTEND-P BYTE-SPEC ...).
643 (flet ((extract-byte (spec-index)
644 (let* ((byte-spec (svref item spec-index))
645 (integer (dchunk-extract chunk byte-spec)))
646 (if (svref item 2) ; SIGN-EXTEND-P
647 (sign-extend integer (byte-size byte-spec))
648 integer))))
649 (let ((item-length (length item))
650 (fun (svref item 1)))
651 (setf (svref (dstate-filtered-values dstate) (svref item 0))
652 (case item-length
653 (2 (funcall fun dstate)) ; no subfields
654 (3 (bug "Bogus prefilter"))
655 (4 (funcall fun dstate (extract-byte 3))) ; one subfield
656 (5 (funcall fun dstate ; two subfields
657 (extract-byte 3) (extract-byte 4)))
658 (t (apply fun dstate ; > 2 subfields
659 (loop for i from 3 below item-length
660 collect (extract-byte i)))))))))
662 (setf prefix-p (null (inst-printer inst)))
664 (when stream
665 ;; Print any instruction bytes recognized by
666 ;; the prefilter which calls read-suffix and
667 ;; updates next-offs.
668 (let ((suffix-len (- (dstate-next-offs dstate)
669 orig-next)))
670 (when (plusp suffix-len)
671 (print-inst suffix-len stream dstate
672 :offset (inst-length inst)
673 :trailing-space nil))
674 ;; Keep track of the number of bytes
675 ;; printed so far.
676 (incf prefix-len (+ (inst-length inst)
677 suffix-len)))
678 (if prefix-p
679 (let ((name (inst-print-name inst)))
680 (when name
681 (push name prefix-print-names)))
682 (progn
683 ;; PREFIX-LEN includes the length of the
684 ;; current (non-prefix) instruction here.
685 (pad-inst-column stream prefix-len)
686 (dolist (name (reverse prefix-print-names))
687 (princ name stream)
688 (write-char #\space stream)))))
690 (funcall function chunk inst)
692 (when control
693 (funcall control chunk inst stream dstate))))))))))
695 (setf (dstate-cur-offs dstate) (dstate-next-offs dstate))
697 (when stream
698 (unless prefix-p
699 (setf prefix-len 0
700 prefix-print-names nil)
701 (print-notes-and-newline stream dstate))
702 (setf (dstate-output-state dstate) nil))
703 (unless prefix-p
704 (let ((arg (dstate-filtered-arg-pool-in-use dstate)))
705 (loop (unless arg (return))
706 (let ((saved-next (filtered-arg-next arg)))
707 (sb!c::push-in filtered-arg-next arg
708 (dstate-filtered-arg-pool-free dstate))
709 (setq arg saved-next))))
710 (setf (dstate-filtered-arg-pool-in-use dstate) nil)
711 (setf (dstate-inst-properties dstate) nil)))))
714 (defun collect-labelish-operands (args cache)
715 (awhen (remove-if-not #'arg-use-label args)
716 (let* ((list (mapcar (lambda (arg &aux (fun (arg-use-label arg))
717 (prefilter (arg-prefilter arg))
718 (bytes (arg-fields arg)))
719 ;; Require byte specs or a prefilter (or both).
720 ;; Prefilter alone is ok - it can use READ-SUFFIX.
721 ;; Additionally, you can't have :use-label T
722 ;; if multiple fields exist with no prefilter.
723 (aver (or prefilter
724 (if (eq fun t) (singleton-p bytes) bytes)))
725 ;; If arg has a prefilter, just compute its index,
726 ;; otherwise keep the byte specs for extraction.
727 (coerce (cons (if (eq fun t) #'identity fun)
728 (if prefilter
729 (list (posq arg args))
730 (cons (arg-sign-extend-p arg) bytes)))
731 'vector))
732 it))
733 (repr (if (cdr list) list (car list))) ; usually just 1 item
734 (table (assq :labeller cache)))
735 (or (find repr (cdr table) :test 'equalp)
736 (car (push repr (cdr table)))))))
738 ;;; Make an initial non-printing disassembly pass through DSTATE,
739 ;;; noting any addresses that are referenced by instructions in this
740 ;;; segment.
741 (defun add-segment-labels (segment dstate)
742 ;; add labels at the beginning with a label-number of nil; we'll notice
743 ;; later and fill them in (and sort them)
744 (declare (type disassem-state dstate))
745 (let ((labels (dstate-labels dstate)))
746 (map-segment-instructions
747 (lambda (chunk inst)
748 (declare (type dchunk chunk) (type instruction inst))
749 (declare (optimize (sb!c::insert-array-bounds-checks 0)))
750 (loop with list = (inst-labeller inst)
751 while list
752 ;; item = #(FUNCTION PREFILTERED-VALUE-INDEX)
753 ;; | #(FUNCTION SIGN-EXTEND-P BYTE-SPEC ...)
754 for item = (if (listp list) (pop list) (prog1 list (setq list nil)))
755 then (pop list)
756 do (let* ((item-length (length item))
757 (index/signedp (svref item 1))
758 (adjusted-value
759 (funcall
760 (svref item 0)
761 (flet ((extract-byte (spec-index)
762 (let* ((byte-spec (svref item spec-index))
763 (integer (dchunk-extract chunk byte-spec)))
764 (if index/signedp
765 (sign-extend integer (byte-size byte-spec))
766 integer))))
767 (case item-length
768 (2 (svref (dstate-filtered-values dstate) index/signedp))
769 (3 (extract-byte 2)) ; extract exactly one byte
770 (t ; extract >1 byte.
771 ;; FIXME: this is strictly redundant.
772 ;; You should combine fields in the prefilter
773 ;; so that the labeller receives a single byte.
774 ;; AARCH64 and HPPA make use of this though.
775 (loop for i from 2 below item-length
776 collect (extract-byte i)))))
777 dstate)))
778 ;; If non-integer, the value is not a label.
779 (when (and (integerp adjusted-value)
780 (not (assoc adjusted-value labels)))
781 (push (cons adjusted-value nil) labels)))))
782 segment
783 dstate)
784 (setf (dstate-labels dstate) labels)
785 ;; erase any notes that got there by accident
786 (setf (dstate-notes dstate) nil)))
788 ;;; If any labels in DSTATE have been added since the last call to
789 ;;; this function, give them label-numbers, enter them in the
790 ;;; hash-table, and make sure the label list is in sorted order.
791 (defun number-labels (dstate)
792 (let ((labels (dstate-labels dstate)))
793 (when (and labels (null (cdar labels)))
794 ;; at least one label left un-numbered
795 (setf labels (sort labels #'< :key #'car))
796 (let ((max -1)
797 (label-hash (dstate-label-hash dstate)))
798 (dolist (label labels)
799 (when (not (null (cdr label)))
800 (setf max (max max (cdr label)))))
801 (dolist (label labels)
802 (when (null (cdr label))
803 (incf max)
804 (setf (cdr label) max)
805 (setf (gethash (car label) label-hash)
806 (format nil "L~W" max)))))
807 (setf (dstate-labels dstate) labels))))
809 (defun collect-inst-variants (base-name package variants cache)
810 (loop for printer in variants
811 for index from 1
812 collect
813 (destructuring-bind (format-name
814 (&rest arg-constraints)
815 &optional (printer :default)
816 &key (print-name
817 (without-package-locks (intern base-name package)))
818 control)
819 printer
820 (declare (type (or symbol string) print-name))
821 (let* ((format (format-or-lose format-name))
822 (args (copy-list (format-args format)))
823 (format-length (bytes-to-bits (format-length format))))
824 (dolist (constraint arg-constraints)
825 (destructuring-bind (name . props) constraint
826 (let ((cell (member name args :key #'arg-name))
827 (arg))
828 (if cell
829 (setf (car cell) (setf arg (copy-structure (car cell))))
830 (setf args (nconc args (list (setf arg (%make-arg name))))))
831 (apply #'modify-arg
832 arg format-length (and props (cons :value props))))))
833 (multiple-value-bind (mask id) (compute-mask-id args)
834 (make-instruction
835 base-name format-name print-name
836 (format-length format) mask id
837 (awhen (if (eq printer :default)
838 (format-default-printer format)
839 printer)
840 (find-printer-fun it args cache (list base-name index)))
841 (collect-labelish-operands args cache)
842 (collect-prefiltering-args args cache)
843 control))))))
845 (defun !compile-inst-printers ()
846 (let ((package sb!assem::*backend-instruction-set-package*)
847 (cache (list (list :printer) (list :prefilter) (list :labeller))))
848 (do-symbols (symbol package)
849 (awhen (get symbol 'instruction-flavors)
850 (setf (get symbol 'instruction-flavors)
851 (collect-inst-variants
852 (string-upcase symbol) package it cache))))
853 (apply 'format t
854 "~&Disassembler: ~D printers, ~D prefilters, ~D labelers~%"
855 (mapcar (lambda (x) (length (cdr x))) cache))))
857 ;;; Get the instruction-space, creating it if necessary.
858 (defun get-inst-space (&key (package sb!assem::*backend-instruction-set-package*)
859 force)
860 (let ((ispace *disassem-inst-space*))
861 (when (or force (null ispace))
862 (let ((insts nil))
863 (do-symbols (symbol package)
864 (setq insts (nconc (copy-list (get symbol 'instruction-flavors))
865 insts)))
866 (setf ispace (build-inst-space insts)))
867 (setf *disassem-inst-space* ispace))
868 ispace))
870 ;;;; Add global hooks.
872 (defun add-offs-hook (segment addr hook)
873 (let ((entry (cons addr hook)))
874 (if (null (seg-hooks segment))
875 (setf (seg-hooks segment) (list entry))
876 (push entry (cdr (last (seg-hooks segment)))))))
878 (defun add-offs-note-hook (segment addr note)
879 (add-offs-hook segment
880 addr
881 (lambda (stream dstate)
882 (declare (type (or null stream) stream)
883 (type disassem-state dstate))
884 (when stream
885 (note note dstate)))))
887 (defun add-offs-comment-hook (segment addr comment)
888 (add-offs-hook segment
889 addr
890 (lambda (stream dstate)
891 (declare (type (or null stream) stream)
892 (ignore dstate))
893 (when stream
894 (write-string ";;; " stream)
895 (etypecase comment
896 (string
897 (write-string comment stream))
898 (function
899 (funcall comment stream)))
900 (terpri stream)))))
902 (defun add-fun-hook (dstate function)
903 (push function (dstate-fun-hooks dstate)))
905 (defun set-location-printing-range (dstate from length)
906 (setf (dstate-addr-print-len dstate) ; in characters
907 ;; 4 bits per hex digit
908 (ceiling (integer-length (logxor from (+ from length))) 4)))
910 ;;; Print the current address in DSTATE to STREAM, plus any labels that
911 ;;; correspond to it, and leave the cursor in the instruction column.
912 (defun print-current-address (stream dstate)
913 (declare (type stream stream)
914 (type disassem-state dstate))
915 (let* ((location
916 (+ (seg-virtual-location (dstate-segment dstate))
917 (dstate-cur-offs dstate)))
918 (location-column-width *disassem-location-column-width*)
919 (plen ; the number of rightmost hex chars of this address to print
920 (or (dstate-addr-print-len dstate)
921 ;; Usually we've already set the width, but in case not...
922 (let ((seg (dstate-segment dstate)))
923 (set-location-printing-range
924 dstate (seg-virtual-location seg) (seg-length seg))))))
926 (if (eq (dstate-output-state dstate) :beginning) ; on the first line
927 (if location-column-width
928 ;; If there's a user-specified width, force that number of hex chars
929 ;; regardless of whether it's greater or smaller than PLEN.
930 (setq plen location-column-width)
931 ;; No specified width. The PLEN of this line becomes the width.
932 ;; Adjust the DSTATE's argument column for it.
933 (incf (dstate-argument-column dstate)
934 (setq location-column-width plen)))
935 ;; not the first line
936 (if location-column-width
937 ;; A specified width smaller than that required clips significant
938 ;; digits, but larger should not cause leading zeros to appear.
939 (setq plen (min plen location-column-width))
940 ;; Otherwise use the previously computed addr-print-len
941 (setq location-column-width plen)))
943 (incf location-column-width 2) ; account for leading "; "
944 (fresh-line stream)
945 (princ "; " stream)
947 ;; print the location
948 ;; [this is equivalent to (format stream "~V,'0x:" plen printed-value), but
949 ;; usually avoids any consing]
950 ;; FIXME: if this cruft is actually a speed win, the format-string compiler
951 ;; should be improved to obviate the obfuscation. If it is not a win,
952 ;; we should just replace it with the above format string already.
953 (tab0 (- location-column-width plen) stream)
954 (let* ((printed-bits (* 4 plen))
955 (printed-value (ldb (byte printed-bits 0) location))
956 (leading-zeros
957 (truncate (- printed-bits (integer-length printed-value)) 4)))
958 (dotimes (i leading-zeros)
959 (write-char #\0 stream))
960 (unless (zerop printed-value)
961 (write printed-value :stream stream :base 16 :radix nil))
962 (unless (zerop plen)
963 (write-char #\: stream)))
965 ;; print any labels
966 (loop
967 (let* ((next-label (car (dstate-cur-labels dstate)))
968 (label-location (car next-label)))
969 (when (or (null label-location) (> label-location location))
970 (return))
971 (unless (< label-location location)
972 (format stream " L~W:" (cdr next-label)))
973 (pop (dstate-cur-labels dstate))))
975 ;; move to the instruction column
976 (tab0 (+ location-column-width 1 label-column-width) stream)
979 (eval-when (:compile-toplevel :execute)
980 (sb!xc:defmacro with-print-restrictions (&rest body)
981 `(let ((*print-pretty* t)
982 (*print-lines* 2)
983 (*print-length* 4)
984 (*print-level* 3))
985 ,@body)))
987 ;;; Print a newline to STREAM, inserting any pending notes in DSTATE
988 ;;; as end-of-line comments. If there is more than one note, a
989 ;;; separate line will be used for each one.
990 (defun print-notes-and-newline (stream dstate)
991 (declare (type stream stream)
992 (type disassem-state dstate))
993 (with-print-restrictions
994 (dolist (note (dstate-notes dstate))
995 (format stream "~Vt " *disassem-note-column*)
996 (pprint-logical-block (stream nil :per-line-prefix "; ")
997 (etypecase note
998 (string
999 (write-string note stream))
1000 (function
1001 (funcall note stream))))
1002 (terpri stream))
1003 (fresh-line stream)
1004 (setf (dstate-notes dstate) nil)))
1006 ;;; Print NUM instruction bytes to STREAM as hex values.
1007 (defun print-inst (num stream dstate &key (offset 0) (trailing-space t))
1008 (when (> *disassem-inst-column-width* 0)
1009 (let ((sap (dstate-segment-sap dstate))
1010 (start-offs (+ offset (dstate-cur-offs dstate))))
1011 (dotimes (offs num)
1012 (format stream "~2,'0x" (sap-ref-8 sap (+ offs start-offs))))
1013 (when trailing-space
1014 (pad-inst-column stream num)))))
1016 ;;; Disassemble NUM bytes to STREAM as simple `BYTE' instructions.
1017 (defun print-bytes (num stream dstate)
1018 (declare (type offset num)
1019 (type stream stream)
1020 (type disassem-state dstate))
1021 (format stream "~A~Vt" 'BYTE (dstate-argument-column dstate))
1022 (let ((sap (dstate-segment-sap dstate))
1023 (start-offs (dstate-cur-offs dstate)))
1024 (dotimes (offs num)
1025 (unless (zerop offs)
1026 (write-string ", " stream))
1027 (format stream "#X~2,'0x" (sap-ref-8 sap (+ offs start-offs))))))
1029 (defvar *default-dstate-hooks*
1030 (list* #!-(or x86 x86-64) #'lra-hook nil))
1032 ;;; Make a disassembler-state object.
1033 (defun make-dstate (&optional (fun-hooks *default-dstate-hooks*))
1034 (let ((alignment *disassem-inst-alignment-bytes*)
1035 (arg-column
1036 (+ 2 ; for the leading "; " on each line
1037 (or *disassem-location-column-width* 0)
1039 label-column-width
1040 *disassem-inst-column-width*
1041 (if (zerop *disassem-inst-column-width*) 0 1)
1042 *disassem-opcode-column-width*)))
1044 (when (> alignment 1)
1045 (push #'alignment-hook fun-hooks))
1047 (%make-dstate :fun-hooks fun-hooks
1048 :argument-column arg-column
1049 :alignment alignment
1050 :byte-order sb!c:*backend-byte-order*)))
1052 (defun add-fun-header-hooks (segment)
1053 (declare (type segment segment))
1054 (do ((fun (awhen (seg-code segment) (%code-entry-points it))
1055 (fun-next fun))
1056 (length (seg-length segment)))
1057 ((null fun))
1058 (let ((offset (code-offs-to-segment-offs (fun-offset fun) segment)))
1059 (when (<= 0 offset length)
1060 ;; Up to 2 words of zeros might be present to align the next
1061 ;; simple-fun. Limit on OFFSET is to avoid incorrect triggering
1062 ;; in case of unexpected weirdness. FIXME: verify all zero bytes
1063 (when (< 0 offset (* sb!vm:n-word-bytes 2))
1064 (push (make-offs-hook
1065 :fun (lambda (stream dstate)
1066 (when stream
1067 (format stream ".SKIP ~D" offset))
1068 (incf (dstate-next-offs dstate) offset))
1069 :offset 0) ; at 0 bytes into this seg, skip OFFSET bytes
1070 (seg-hooks segment)))
1071 (push (make-offs-hook :offset offset :fun #'fun-header-hook)
1072 (seg-hooks segment))))))
1074 ;;; A SAP-MAKER is a no-argument function that returns a SAP.
1076 ;; FIXME: Are the objects we are taking saps for always pinned?
1077 #!-sb-fluid (declaim (inline sap-maker))
1078 (defun sap-maker (function input offset)
1079 (declare (optimize (speed 3))
1080 (muffle-conditions compiler-note)
1081 (type (function (t) system-area-pointer) function)
1082 (type offset offset))
1083 (let ((old-sap (sap+ (funcall function input) offset)))
1084 (declare (type system-area-pointer old-sap))
1085 (lambda ()
1086 (let ((new-addr
1087 (+ (sap-int (funcall function input)) offset)))
1088 ;; Saving the sap like this avoids consing except when the sap
1089 ;; changes (because the sap-int, arith, etc., get inlined).
1090 (declare (type address new-addr))
1091 (if (= (sap-int old-sap) new-addr)
1092 old-sap
1093 (setf old-sap (int-sap new-addr)))))))
1095 (defun vector-sap-maker (vector offset)
1096 (declare (optimize (speed 3))
1097 (type offset offset))
1098 (sap-maker #'vector-sap vector offset))
1100 (defun code-sap-maker (code offset)
1101 (declare (optimize (speed 3))
1102 (type code-component code)
1103 (type offset offset))
1104 (sap-maker #'code-instructions code offset))
1106 (defun memory-sap-maker (address)
1107 (declare (optimize (speed 3))
1108 (muffle-conditions compiler-note)
1109 (type address address))
1110 (let ((sap (int-sap address)))
1111 (lambda () sap)))
1113 (defstruct (source-form-cache (:conc-name sfcache-)
1114 (:copier nil))
1115 (debug-source nil :type (or null sb!di:debug-source))
1116 (toplevel-form-index -1 :type fixnum)
1117 (last-location-retrieved nil :type (or null sb!di:code-location))
1118 (last-form-retrieved -1 :type fixnum))
1120 ;;; Return a memory segment located at the system-area-pointer returned by
1121 ;;; SAP-MAKER and LENGTH bytes long in the disassem-state object DSTATE.
1123 ;;; &KEY arguments include :VIRTUAL-LOCATION (by default the same as
1124 ;;; the address), :DEBUG-FUN, :SOURCE-FORM-CACHE (a
1125 ;;; SOURCE-FORM-CACHE object), and :HOOKS (a list of OFFS-HOOK
1126 ;;; objects).
1127 (defun make-segment (sap-maker length
1128 &key
1129 code virtual-location
1130 debug-fun source-form-cache
1131 hooks)
1132 (declare (type (function () system-area-pointer) sap-maker)
1133 (type disassem-length length)
1134 (type (or null address) virtual-location)
1135 (type (or null sb!di:debug-fun) debug-fun)
1136 (type (or null source-form-cache) source-form-cache))
1137 (let* ((segment
1138 (%make-segment
1139 :sap-maker sap-maker
1140 :length length
1141 :virtual-location (or virtual-location
1142 (sap-int (funcall sap-maker)))
1143 :hooks hooks
1144 :code code
1145 :unboxed-data-range
1146 (and code
1147 (let ((n-words (code-n-unboxed-data-words code))
1148 (start (code-header-words code)))
1149 (and (plusp n-words)
1150 (cons (* sb!vm:n-word-bytes start)
1151 (* sb!vm:n-word-bytes (+ start n-words)))))))))
1152 (add-debugging-hooks segment debug-fun source-form-cache)
1153 (add-fun-header-hooks segment)
1154 segment))
1156 (defun make-vector-segment (vector offset &rest args)
1157 (declare (type vector vector)
1158 (type offset offset)
1159 (inline make-segment))
1160 (apply #'make-segment (vector-sap-maker vector offset) args))
1162 (defun make-code-segment (code offset length &rest args)
1163 (declare (type code-component code)
1164 (type offset offset)
1165 (inline make-segment))
1166 (apply #'make-segment (code-sap-maker code offset) length :code code args))
1168 (defun make-memory-segment (address &rest args)
1169 (declare (type address address)
1170 (inline make-segment))
1171 (apply #'make-segment (memory-sap-maker address) args))
1173 ;;; just for fun
1174 (defun print-fun-headers (function)
1175 (declare (type compiled-function function))
1176 (let* ((self (fun-self function))
1177 (code (fun-code-header self)))
1178 (format t "Code-header ~S: size: ~S~%" code (%code-code-size code))
1179 (do ((fun (%code-entry-points code) (%simple-fun-next fun)))
1180 ((null fun))
1181 ;; There is function header fun-offset words from the
1182 ;; code header.
1183 (format t "Fun-header ~S at offset ~W (words):~% ~S ~A => ~S~%"
1185 (get-closure-length fun)
1186 (%simple-fun-name fun)
1187 (%simple-fun-arglist fun)
1188 (%simple-fun-type fun)))))
1190 ;;; getting at the source code...
1192 (defun get-different-source-form (loc context &optional cache)
1193 (if (and cache
1194 (eq (sb!di:code-location-debug-source loc)
1195 (sfcache-debug-source cache))
1196 (eq (sb!di:code-location-toplevel-form-offset loc)
1197 (sfcache-toplevel-form-index cache))
1198 (or (eql (sb!di:code-location-form-number loc)
1199 (sfcache-last-form-retrieved cache))
1200 (awhen (sfcache-last-location-retrieved cache)
1201 (sb!di:code-location= loc it))))
1202 (values nil nil)
1203 (let ((form (sb!debug::code-location-source-form loc context nil)))
1204 (when cache
1205 (setf (sfcache-debug-source cache)
1206 (sb!di:code-location-debug-source loc))
1207 (setf (sfcache-toplevel-form-index cache)
1208 (sb!di:code-location-toplevel-form-offset loc))
1209 (setf (sfcache-last-form-retrieved cache)
1210 (sb!di:code-location-form-number loc))
1211 (setf (sfcache-last-location-retrieved cache) loc))
1212 (values form t))))
1214 ;;;; stuff to use debugging info to augment the disassembly
1216 (defun code-fun-map (code)
1217 (declare (type code-component code))
1218 (sb!c::compiled-debug-info-fun-map (%code-debug-info code)))
1220 (defstruct (location-group (:copier nil) (:predicate nil))
1221 ;; This was (VECTOR (OR LIST FIXNUM)) but that doesn't have any
1222 ;; specialization other than T, and the cross-compiler has trouble
1223 ;; with (SB!XC:TYPEP #() '(VECTOR (OR LIST FIXNUM)))
1224 (locations #() :type simple-vector))
1226 ;;; Return the vector of DEBUG-VARs currently associated with DSTATE.
1227 (defun dstate-debug-vars (dstate)
1228 (declare (type disassem-state dstate))
1229 (storage-info-debug-vars (seg-storage-info (dstate-segment dstate))))
1231 ;;; Given the OFFSET of a location within the location-group called
1232 ;;; LG-NAME, see whether there's a current mapping to a source
1233 ;;; variable in DSTATE, and if so, return the offset of that variable
1234 ;;; in the current debug-var vector.
1235 (defun find-valid-storage-location (offset lg-name dstate)
1236 (declare (type offset offset)
1237 (type symbol lg-name)
1238 (type disassem-state dstate))
1239 (let* ((storage-info
1240 (seg-storage-info (dstate-segment dstate)))
1241 (location-group
1242 (and storage-info
1243 (cdr (assoc lg-name (storage-info-groups storage-info)))))
1244 (currently-valid
1245 (dstate-current-valid-locations dstate)))
1246 (and location-group
1247 (not (null currently-valid))
1248 (let ((locations (location-group-locations location-group)))
1249 (and (< offset (length locations))
1250 (let ((used-by (aref locations offset)))
1251 (and used-by
1252 (let ((debug-var-num
1253 (typecase used-by
1254 (fixnum
1255 (and (not
1256 (zerop (bit currently-valid used-by)))
1257 used-by))
1258 (list
1259 (some (lambda (num)
1260 (and (not
1261 (zerop
1262 (bit currently-valid num)))
1263 num))
1264 used-by)))))
1265 (and debug-var-num
1266 (progn
1267 ;; Found a valid storage reference!
1268 ;; can't use it again until it's revalidated...
1269 (setf (bit (dstate-current-valid-locations
1270 dstate)
1271 debug-var-num)
1273 debug-var-num))
1274 ))))))))
1276 ;;; Return a new vector which has the same contents as the old one
1277 ;;; VEC, plus new cells (for a total size of NEW-LEN). The additional
1278 ;;; elements are initialized to INITIAL-ELEMENT.
1279 (defun grow-vector (vec new-len &optional initial-element)
1280 (declare (type vector vec)
1281 (type fixnum new-len))
1282 (let ((new
1283 (make-sequence `(vector ,(array-element-type vec) ,new-len)
1284 new-len
1285 :initial-element initial-element)))
1286 (dotimes (i (length vec))
1287 (setf (aref new i) (aref vec i)))
1288 new))
1290 ;;; Return a STORAGE-INFO struction describing the object-to-source
1291 ;;; variable mappings from DEBUG-FUN.
1292 (defun storage-info-for-debug-fun (debug-fun)
1293 (declare (type sb!di:debug-fun debug-fun))
1294 (let ((sc-vec sb!c::*backend-sc-numbers*)
1295 (groups nil)
1296 (debug-vars (sb!di::debug-fun-debug-vars
1297 debug-fun)))
1298 (and debug-vars
1299 (dotimes (debug-var-offset
1300 (length debug-vars)
1301 (make-storage-info :groups groups
1302 :debug-vars debug-vars))
1303 (let ((debug-var (aref debug-vars debug-var-offset)))
1304 #+nil
1305 (format t ";;; At offset ~W: ~S~%" debug-var-offset debug-var)
1306 (let* ((sc-offset
1307 (sb!di::compiled-debug-var-sc-offset debug-var))
1308 (sb-name
1309 (sb!c:sb-name
1310 (sb!c:sc-sb (aref sc-vec
1311 (sb!c:sc-offset-scn sc-offset))))))
1312 #+nil
1313 (format t ";;; SET: ~S[~W]~%"
1314 sb-name (sb!c:sc-offset-offset sc-offset))
1315 (unless (null sb-name)
1316 (let ((group (cdr (assoc sb-name groups))))
1317 (when (null group)
1318 (setf group (make-location-group))
1319 (push `(,sb-name . ,group) groups))
1320 (let* ((locations (location-group-locations group))
1321 (length (length locations))
1322 (offset (sb!c:sc-offset-offset sc-offset)))
1323 (when (>= offset length)
1324 (setf locations
1325 (grow-vector locations
1326 (max (* 2 length)
1327 (1+ offset))
1328 nil)
1329 (location-group-locations group)
1330 locations))
1331 (let ((already-there (aref locations offset)))
1332 (cond ((null already-there)
1333 (setf (aref locations offset) debug-var-offset))
1334 ((eql already-there debug-var-offset))
1336 (if (listp already-there)
1337 (pushnew debug-var-offset
1338 (aref locations offset))
1339 (setf (aref locations offset)
1340 (list debug-var-offset
1341 already-there)))))
1342 )))))))
1345 (defun source-available-p (debug-fun)
1346 (handler-case
1347 (sb!di:do-debug-fun-blocks (block debug-fun)
1348 (declare (ignore block))
1349 (return t))
1350 (sb!di:no-debug-blocks () nil)))
1352 (defun print-block-boundary (stream dstate)
1353 (let ((os (dstate-output-state dstate)))
1354 (when (not (eq os :beginning))
1355 (when (not (eq os :block-boundary))
1356 (terpri stream))
1357 (setf (dstate-output-state dstate)
1358 :block-boundary))))
1360 ;;; Add hooks to track the source code in SEGMENT during disassembly.
1361 ;;; SFCACHE can be either NIL or it can be a SOURCE-FORM-CACHE
1362 ;;; structure, in which case it is used to cache forms from files.
1363 (defun add-source-tracking-hooks (segment debug-fun &optional sfcache)
1364 (declare (type segment segment)
1365 (type (or null sb!di:debug-fun) debug-fun)
1366 (type (or null source-form-cache) sfcache))
1367 (let ((last-block-pc -1))
1368 (flet ((add-hook (pc fun &optional before-address)
1369 (push (make-offs-hook
1370 :offset (code-insts-offs-to-segment-offs pc segment)
1371 :fun fun
1372 :before-address before-address)
1373 (seg-hooks segment))))
1374 (handler-case
1375 (sb!di:do-debug-fun-blocks (block debug-fun)
1376 (let ((first-location-in-block-p t))
1377 (sb!di:do-debug-block-locations (loc block)
1378 (let ((pc (sb!di::compiled-code-location-pc loc)))
1380 ;; Put blank lines in at block boundaries
1381 (when (and first-location-in-block-p
1382 (/= pc last-block-pc))
1383 (setf first-location-in-block-p nil)
1384 (add-hook pc
1385 (lambda (stream dstate)
1386 (print-block-boundary stream dstate))
1388 (setf last-block-pc pc))
1390 ;; Print out corresponding source; this information is not
1391 ;; all that accurate, but it's better than nothing
1392 (unless (zerop (sb!di:code-location-form-number loc))
1393 (multiple-value-bind (form new)
1394 (get-different-source-form loc 0 sfcache)
1395 (when new
1396 (let ((at-block-begin (= pc last-block-pc)))
1397 (add-hook
1399 (lambda (stream dstate)
1400 (declare (ignore dstate))
1401 (when stream
1402 (unless at-block-begin
1403 (terpri stream))
1404 (format stream ";;; [~W] "
1405 (sb!di:code-location-form-number
1406 loc))
1407 (prin1-short form stream)
1408 (terpri stream)
1409 (terpri stream)))
1410 t)))))
1412 ;; Keep track of variable live-ness as best we can.
1413 (let ((live-set
1414 (copy-seq (sb!di::compiled-code-location-live-set
1415 loc))))
1416 (add-hook
1418 (lambda (stream dstate)
1419 (declare (ignore stream))
1420 (setf (dstate-current-valid-locations dstate)
1421 live-set)
1422 #+nil
1423 (note (lambda (stream)
1424 (let ((*print-length* nil))
1425 (format stream "live set: ~S"
1426 live-set)))
1427 dstate))))
1428 ))))
1429 (sb!di:no-debug-blocks () nil)))))
1431 (defvar *disassemble-annotate* t
1432 #!+sb-doc
1433 "Annotate DISASSEMBLE output with source code.")
1435 (defun add-debugging-hooks (segment debug-fun &optional sfcache)
1436 (when debug-fun
1437 (setf (seg-storage-info segment)
1438 (storage-info-for-debug-fun debug-fun))
1439 (when *disassemble-annotate*
1440 (add-source-tracking-hooks segment debug-fun sfcache))
1441 (let ((kind (sb!di:debug-fun-kind debug-fun)))
1442 (flet ((add-new-hook (n)
1443 (push (make-offs-hook
1444 :offset 0
1445 :fun (lambda (stream dstate)
1446 (declare (ignore stream))
1447 (note n dstate)))
1448 (seg-hooks segment))))
1449 (case kind
1450 (:external)
1451 ((nil)
1452 (add-new-hook "no-arg-parsing entry point"))
1454 (add-new-hook (lambda (stream)
1455 (format stream "~S entry point" kind)))))))))
1457 ;;; Return a list of the segments of memory containing machine code
1458 ;;; instructions for FUNCTION.
1459 (defun get-fun-segments (function)
1460 (declare (type compiled-function function))
1461 (let* ((function (fun-self function))
1462 (code (fun-code function))
1463 (fun-map (code-fun-map code))
1464 (fname (%simple-fun-name function))
1465 (sfcache (make-source-form-cache)))
1466 (let ((first-block-seen-p nil)
1467 (nil-block-seen-p nil)
1468 (last-offset 0)
1469 (last-debug-fun nil)
1470 (segments nil))
1471 (flet ((add-seg (offs len df)
1472 (when (> len 0)
1473 (push (make-code-segment code offs len
1474 :debug-fun df
1475 :source-form-cache sfcache)
1476 segments))))
1477 (dotimes (fmap-index (length fun-map))
1478 (let ((fmap-entry (aref fun-map fmap-index)))
1479 (etypecase fmap-entry
1480 (integer
1481 (when first-block-seen-p
1482 (add-seg last-offset
1483 (- fmap-entry last-offset)
1484 last-debug-fun)
1485 (setf last-debug-fun nil))
1486 (setf last-offset fmap-entry))
1487 (sb!c::compiled-debug-fun
1488 (let ((name (sb!c::compiled-debug-fun-name fmap-entry))
1489 (kind (sb!c::compiled-debug-fun-kind fmap-entry)))
1490 #+nil
1491 (format t ";;; SAW ~S ~S ~S,~S ~W,~W~%"
1492 name kind first-block-seen-p nil-block-seen-p
1493 last-offset
1494 (sb!c::compiled-debug-fun-start-pc fmap-entry))
1495 (cond (#+nil (eq last-offset fun-offset)
1496 (and (equal name fname) (not first-block-seen-p))
1497 (setf first-block-seen-p t))
1498 ((eq kind :external)
1499 (when first-block-seen-p
1500 (return)))
1501 ((eq kind nil)
1502 (when nil-block-seen-p
1503 (return))
1504 (when first-block-seen-p
1505 (setf nil-block-seen-p t))))
1506 (setf last-debug-fun
1507 (sb!di::make-compiled-debug-fun fmap-entry code)))))))
1508 (let ((max-offset (code-inst-area-length code)))
1509 (when (and first-block-seen-p last-debug-fun)
1510 (add-seg last-offset
1511 (- max-offset last-offset)
1512 last-debug-fun))
1513 (if (null segments)
1514 (let ((offs (fun-insts-offset function)))
1515 (list
1516 (make-code-segment code offs (- max-offset offs))))
1517 (nreverse segments)))))))
1519 ;;; Return a list of the segments of memory containing machine code
1520 ;;; instructions for the code-component CODE. If START-OFFSET and/or
1521 ;;; LENGTH is supplied, only that part of the code-segment is used
1522 ;;; (but these are constrained to lie within the code-segment).
1523 (defun get-code-segments (code
1524 &optional
1525 (start-offset 0)
1526 (length (code-inst-area-length code)))
1527 (declare (type code-component code)
1528 (type offset start-offset)
1529 (type disassem-length length))
1530 (let ((segments nil))
1531 (when (%code-debug-info code)
1532 (let ((fun-map (code-fun-map code))
1533 (sfcache (make-source-form-cache)))
1534 (let ((last-offset 0)
1535 (last-debug-fun nil))
1536 (flet ((add-seg (offs len df)
1537 (let* ((restricted-offs
1538 (min (max start-offset offs)
1539 (+ start-offset length)))
1540 (restricted-len
1541 (- (min (max start-offset (+ offs len))
1542 (+ start-offset length))
1543 restricted-offs)))
1544 (when (> restricted-len 0)
1545 (push (make-code-segment code
1546 restricted-offs restricted-len
1547 :debug-fun df
1548 :source-form-cache sfcache)
1549 segments)))))
1550 (dotimes (fun-map-index (length fun-map))
1551 (let ((fun-map-entry (aref fun-map fun-map-index)))
1552 (etypecase fun-map-entry
1553 (integer
1554 (add-seg last-offset (- fun-map-entry last-offset)
1555 last-debug-fun)
1556 (setf last-debug-fun nil)
1557 (setf last-offset fun-map-entry))
1558 (sb!c::compiled-debug-fun
1559 (setf last-debug-fun
1560 (sb!di::make-compiled-debug-fun fun-map-entry
1561 code))))))
1562 (when last-debug-fun
1563 (add-seg last-offset
1564 (- (code-inst-area-length code) last-offset)
1565 last-debug-fun))))))
1566 (if (null segments)
1567 (list (make-code-segment code start-offset length))
1568 (nreverse segments))))
1570 ;;; Compute labels for all the memory segments in SEGLIST and adds
1571 ;;; them to DSTATE. It's important to call this function with all the
1572 ;;; segments you're interested in, so that it can find references from
1573 ;;; one to another.
1574 (defun label-segments (seglist dstate)
1575 (declare (type list seglist)
1576 (type disassem-state dstate))
1577 (dolist (seg seglist)
1578 (add-segment-labels seg dstate))
1579 ;; Now remove any labels that don't point anywhere in the segments
1580 ;; we have.
1581 (setf (dstate-labels dstate)
1582 (remove-if (lambda (lab)
1583 (not
1584 (some (lambda (seg)
1585 (let ((start (seg-virtual-location seg)))
1586 (<= start
1587 (car lab)
1588 (+ start (seg-length seg)))))
1589 seglist)))
1590 (dstate-labels dstate))))
1592 ;;; Disassemble the machine code instructions in SEGMENT to STREAM.
1593 (defun disassemble-segment (segment stream dstate)
1594 (declare (type segment segment)
1595 (type stream stream)
1596 (type disassem-state dstate))
1597 (let ((*print-pretty* nil)) ; otherwise the pp conses hugely
1598 (number-labels dstate)
1599 (map-segment-instructions
1600 (lambda (chunk inst)
1601 (declare (type dchunk chunk) (type instruction inst))
1602 (awhen (inst-printer inst)
1603 (funcall it chunk inst stream dstate)))
1604 segment
1605 dstate
1606 stream)))
1608 ;;; Disassemble the machine code instructions in each memory segment
1609 ;;; in SEGMENTS in turn to STREAM.
1610 (defun disassemble-segments (segments stream dstate)
1611 (declare (type list segments)
1612 (type stream stream)
1613 (type disassem-state dstate))
1614 (unless (null segments)
1615 (let ((n-segments (length segments))
1616 (first (car segments))
1617 (last (car (last segments))))
1618 ;; One origin per segment is printed. As with the per-line display,
1619 ;; the segment is thought of as immovable for rendering of addresses,
1620 ;; though in fact the disassembler transiently allows movement.
1621 (format stream "~&; Size: ~a bytes. Origin: #x~x~@[ (segment 1 of ~D)~]"
1622 (reduce #'+ segments :key #'seg-length)
1623 (seg-virtual-location first)
1624 (if (> n-segments 1) n-segments))
1625 (set-location-printing-range dstate
1626 (seg-virtual-location first)
1627 (- (+ (seg-virtual-location last)
1628 (seg-length last))
1629 (seg-virtual-location first)))
1630 (setf (dstate-output-state dstate) :beginning)
1631 (let ((i 0))
1632 (dolist (seg segments)
1633 (when (> (incf i) 1)
1634 (format stream "~&; Origin #x~x (segment ~D of ~D)"
1635 (seg-virtual-location seg) i n-segments))
1636 (disassemble-segment seg stream dstate))))))
1639 ;;;; top level functions
1641 ;;; Disassemble the machine code instructions for FUNCTION.
1642 (defun disassemble-fun (fun &key
1643 (stream *standard-output*)
1644 (use-labels t))
1645 (declare (type compiled-function fun)
1646 (type stream stream)
1647 (type (member t nil) use-labels))
1648 (let* ((dstate (make-dstate))
1649 (segments (get-fun-segments fun)))
1650 (when use-labels
1651 (label-segments segments dstate))
1652 (disassemble-segments segments stream dstate)))
1654 (defun valid-extended-function-designators-for-disassemble-p (thing)
1655 (typecase thing
1656 ((satisfies legal-fun-name-p)
1657 (compiled-funs-or-lose (fdefinition thing) thing))
1658 (sb!pcl::%method-function
1659 ;; in a %METHOD-FUNCTION, the user code is in the fast function, so
1660 ;; we to disassemble both.
1661 ;; FIXME: interpreted methods need to be compiled as above.
1662 (list thing (sb!pcl::%method-function-fast-function thing)))
1663 ((or (cons (eql lambda))
1664 #!+sb-fasteval sb!interpreter:interpreted-function
1665 #!+sb-eval sb!eval:interpreted-function)
1666 (compile nil thing))
1667 (function thing)
1668 (t nil)))
1670 (defun compiled-funs-or-lose (thing &optional (name thing))
1671 (let ((funs (valid-extended-function-designators-for-disassemble-p thing)))
1672 (if funs
1673 funs
1674 (error 'simple-type-error
1675 :datum thing
1676 :expected-type '(satisfies valid-extended-function-designators-for-disassemble-p)
1677 :format-control "Can't make a compiled function from ~S"
1678 :format-arguments (list name)))))
1680 (defun disassemble (object &key
1681 (stream *standard-output*)
1682 (use-labels t))
1683 #!+sb-doc
1684 "Disassemble the compiled code associated with OBJECT, which can be a
1685 function, a lambda expression, or a symbol with a function definition. If
1686 it is not already compiled, the compiler is called to produce something to
1687 disassemble."
1688 (declare (type (or function symbol cons) object)
1689 (type (or (member t) stream) stream)
1690 (type (member t nil) use-labels))
1691 (flet ((disassemble1 (fun)
1692 (format stream "~&; disassembly for ~S" (%fun-name fun))
1693 (disassemble-fun fun
1694 :stream stream
1695 :use-labels use-labels)))
1696 (mapc #'disassemble1 (ensure-list (compiled-funs-or-lose object))))
1697 nil)
1699 ;;; Disassembles the given area of memory starting at ADDRESS and
1700 ;;; LENGTH long. Note that if CODE-COMPONENT is NIL and this memory
1701 ;;; could move during a GC, you'd better disable it around the call to
1702 ;;; this function.
1703 (defun disassemble-memory (address
1704 length
1705 &key
1706 (stream *standard-output*)
1707 code-component
1708 (use-labels t))
1709 (declare (type (or address system-area-pointer) address)
1710 (type disassem-length length)
1711 (type stream stream)
1712 (type (or null code-component) code-component)
1713 (type (member t nil) use-labels))
1714 (let* ((address
1715 (if (system-area-pointer-p address)
1716 (sap-int address)
1717 address))
1718 (dstate (make-dstate))
1719 (segments
1720 (if code-component
1721 (let ((code-offs
1722 (- address
1723 (sap-int
1724 (code-instructions code-component)))))
1725 (when (or (< code-offs 0)
1726 (> code-offs (code-inst-area-length code-component)))
1727 (error "address ~X not in the code component ~S"
1728 address code-component))
1729 (get-code-segments code-component code-offs length))
1730 (list (make-memory-segment address length)))))
1731 (when use-labels
1732 (label-segments segments dstate))
1733 (disassemble-segments segments stream dstate)))
1735 ;;; Disassemble the machine code instructions associated with
1736 ;;; CODE-COMPONENT (this may include multiple entry points).
1737 (defun disassemble-code-component (code-component &key
1738 (stream *standard-output*)
1739 (use-labels t))
1740 (declare (type (or code-component compiled-function)
1741 code-component)
1742 (type stream stream)
1743 (type (member t nil) use-labels))
1744 (let* ((code-component
1745 (if (functionp code-component)
1746 (fun-code code-component)
1747 code-component))
1748 (dstate (make-dstate))
1749 (segments (get-code-segments code-component)))
1750 (when use-labels
1751 (label-segments segments dstate))
1752 (disassemble-segments segments stream dstate)))
1754 ;;;; code to disassemble assembler segments
1756 (defun assem-segment-to-disassem-segment (assem-segment)
1757 (declare (type sb!assem:segment assem-segment))
1758 (let ((contents (sb!assem:segment-contents-as-vector assem-segment)))
1759 (make-vector-segment contents 0 (length contents) :virtual-location 0)))
1761 ;;; Disassemble the machine code instructions associated with
1762 ;;; ASSEM-SEGMENT (of type assem:segment).
1763 (defun disassemble-assem-segment (assem-segment stream)
1764 (declare (type sb!assem:segment assem-segment)
1765 (type stream stream))
1766 (let ((dstate (make-dstate))
1767 (disassem-segments
1768 (list (assem-segment-to-disassem-segment assem-segment))))
1769 (label-segments disassem-segments dstate)
1770 (disassemble-segments disassem-segments stream dstate)))
1772 ;;; routines to find things in the Lisp environment
1774 ;;; an alist of (SYMBOL-SLOT-OFFSET . ACCESS-FUN-NAME) for slots
1775 ;;; in a symbol object that we know about
1776 (defparameter *grokked-symbol-slots*
1777 (sort (copy-list `((,sb!vm:symbol-value-slot . symbol-value)
1778 (,sb!vm:symbol-info-slot . symbol-info)
1779 (,sb!vm:symbol-name-slot . symbol-name)
1780 (,sb!vm:symbol-package-slot . symbol-package)))
1782 :key #'car))
1784 ;;; Given ADDRESS, try and figure out if which slot of which symbol is
1785 ;;; being referred to. Of course we can just give up, so it's not a
1786 ;;; big deal... Return two values, the symbol and the name of the
1787 ;;; access function of the slot.
1788 (defun grok-symbol-slot-ref (address)
1789 (declare (type address address))
1790 (if (not (aligned-p address sb!vm:n-word-bytes))
1791 (values nil nil)
1792 (do ((slots-tail *grokked-symbol-slots* (cdr slots-tail)))
1793 ((null slots-tail)
1794 (values nil nil))
1795 (let* ((field (car slots-tail))
1796 (slot-offset (words-to-bytes (car field)))
1797 (maybe-symbol-addr (- address slot-offset))
1798 (maybe-symbol
1799 (make-lisp-obj
1800 (+ maybe-symbol-addr sb!vm:other-pointer-lowtag))))
1801 (when (symbolp maybe-symbol)
1802 (return (values maybe-symbol (cdr field))))))))
1804 ;;; Given a BYTE-OFFSET from NIL, try and figure out which slot of
1805 ;;; which symbol is being referred to. Of course we can just give up,
1806 ;;; so it's not a big deal... Return two values, the symbol and the
1807 ;;; access function.
1808 (defun grok-nil-indexed-symbol-slot-ref (byte-offset)
1809 (declare (type offset byte-offset))
1810 (grok-symbol-slot-ref (+ sb!vm::nil-value byte-offset)))
1812 ;;; Return the Lisp object located BYTE-OFFSET from NIL.
1813 (defun get-nil-indexed-object (byte-offset)
1814 (declare (type offset byte-offset))
1815 (make-lisp-obj (+ sb!vm::nil-value byte-offset)))
1817 ;;; Return two values; the Lisp object located at BYTE-OFFSET in the
1818 ;;; constant area of the code-object in the current segment and T, or
1819 ;;; NIL and NIL if there is no code-object in the current segment.
1820 (defun get-code-constant (byte-offset dstate)
1821 (declare (type offset byte-offset)
1822 (type disassem-state dstate))
1823 (let ((code (seg-code (dstate-segment dstate))))
1824 (if code
1825 (values (code-header-ref code
1826 (ash (+ byte-offset sb!vm:other-pointer-lowtag)
1827 (- sb!vm:word-shift)))
1829 (values nil nil))))
1831 (defun get-code-constant-absolute (addr dstate &optional width)
1832 (declare (type address addr))
1833 (declare (type disassem-state dstate))
1834 (declare (ignore width))
1835 (let ((code (seg-code (dstate-segment dstate))))
1836 (if (null code)
1837 (return-from get-code-constant-absolute (values nil nil)))
1838 ;; This WITHOUT-GCING, while not technically broken, is extremely deceptive
1839 ;; because if it is really needed, then this function has a broken API.
1840 ;; Since ADDR comes in as absolute, CODE must not move between the caller's
1841 ;; computation and the comparison below. But we're already in WITHOUT-GCING
1842 ;; in MAP-SEGMENT-INSTRUCTIONS, so, who cares, I guess?
1843 (without-gcing
1844 (let* ((n-header-bytes (* (code-header-words code) sb!vm:n-word-bytes))
1845 (header-addr (- (get-lisp-obj-address code)
1846 sb!vm:other-pointer-lowtag))
1847 (code-start (+ header-addr n-header-bytes)))
1848 (cond ((< header-addr addr code-start)
1849 (values (sap-ref-lispobj (int-sap addr) 0) t))
1851 (values nil nil)))))))
1853 (defvar *assembler-routines-by-addr* nil)
1855 ;;; Build an address-name hash-table from the name-address hash
1856 (defun invert-address-hash (htable &optional (addr-hash (make-hash-table)))
1857 (maphash (lambda (name address)
1858 (setf (gethash address addr-hash) name))
1859 htable)
1860 addr-hash)
1862 ;;; Return the name of the primitive Lisp assembler routine or foreign
1863 ;;; symbol located at ADDRESS, or NIL if there isn't one.
1864 (defun find-assembler-routine (address)
1865 (declare (type address address))
1866 (when (null *assembler-routines-by-addr*)
1867 (setf *assembler-routines-by-addr*
1868 (invert-address-hash sb!fasl:*assembler-routines*))
1869 #!-sb-dynamic-core
1870 (setf *assembler-routines-by-addr*
1871 (invert-address-hash *static-foreign-symbols*
1872 *assembler-routines-by-addr*))
1873 (loop for static in sb!vm:*static-funs*
1874 for address = (+ sb!vm::nil-value
1875 (sb!vm::static-fun-offset static))
1877 (setf (gethash address *assembler-routines-by-addr*)
1878 static))
1879 ;; Not really a routine, but it uses the similar logic for annotations
1880 #!+sb-safepoint
1881 (setf (gethash sb!vm::gc-safepoint-page-addr *assembler-routines-by-addr*)
1882 "safepoint"))
1883 (gethash address *assembler-routines-by-addr*))
1885 ;;;; some handy function for machine-dependent code to use...
1887 (defun sap-ref-int (sap offset length byte-order)
1888 (declare (type system-area-pointer sap)
1889 (type (member 1 2 4 8) length)
1890 (type (member :little-endian :big-endian) byte-order))
1891 (if (or (eq length 1)
1892 (and (eq byte-order #!+big-endian :big-endian #!+little-endian :little-endian)
1893 #!-(or arm arm64 ppc x86 x86-64) ; unaligned loads are ok for these
1894 (not (logtest (1- size) (sap-int (sap+ sap offset))))))
1895 (funcall (case length ; native byte order and acceptable alignment
1896 (8 #'sap-ref-64)
1897 (4 #'sap-ref-32)
1898 (2 #'sap-ref-16)
1899 (t #'sap-ref-8)) sap offset)
1900 (binding* (((offset increment)
1901 (cond ((eq byte-order :big-endian) (values offset +1))
1902 (t (values (+ offset (1- length)) -1))))
1903 (val 0))
1904 (dotimes (i length val)
1905 (declare (index i))
1906 (setq val (logior (ash val 8) (sap-ref-8 sap offset)))
1907 (incf offset increment)))))
1909 (defun read-suffix (length dstate)
1910 (declare (type (member 8 16 32 64) length)
1911 (type disassem-state dstate)
1912 (optimize (speed 3) (safety 0)))
1913 (let ((length (ecase length (8 1) (16 2) (32 4) (64 8))))
1914 (declare (type (unsigned-byte 4) length))
1915 (prog1
1916 (sap-ref-int (dstate-segment-sap dstate)
1917 (dstate-next-offs dstate)
1918 length
1919 (dstate-byte-order dstate))
1920 (incf (dstate-next-offs dstate) length))))
1922 ;;;; optional routines to make notes about code
1924 ;;; Store NOTE (which can be either a string or a function with a
1925 ;;; single stream argument) to be printed as an end-of-line comment
1926 ;;; after the current instruction is disassembled.
1927 (defun note (note dstate)
1928 (declare (type (or string function) note)
1929 (type disassem-state dstate))
1930 (push note (dstate-notes dstate)))
1932 (defun prin1-short (thing stream)
1933 (with-print-restrictions
1934 (prin1 thing stream)))
1936 (defun prin1-quoted-short (thing stream)
1937 (if (self-evaluating-p thing)
1938 (prin1-short thing stream)
1939 (prin1-short `',thing stream)))
1941 ;;; Store a note about the lisp constant located BYTE-OFFSET bytes
1942 ;;; from the current code-component, to be printed as an end-of-line
1943 ;;; comment after the current instruction is disassembled.
1944 (defun note-code-constant (byte-offset dstate)
1945 (declare (type offset byte-offset)
1946 (type disassem-state dstate))
1947 (multiple-value-bind (const valid)
1948 (get-code-constant byte-offset dstate)
1949 (when valid
1950 (note (lambda (stream)
1951 (prin1-quoted-short const stream))
1952 dstate))
1953 const))
1955 ;;; Store a note about the lisp constant located at ADDR in the
1956 ;;; current code-component, to be printed as an end-of-line comment
1957 ;;; after the current instruction is disassembled.
1958 (defun note-code-constant-absolute (addr dstate &optional width)
1959 (declare (type address addr)
1960 (type disassem-state dstate))
1961 (multiple-value-bind (const valid)
1962 (get-code-constant-absolute addr dstate width)
1963 (when valid
1964 (note (lambda (stream)
1965 (prin1-quoted-short const stream))
1966 dstate))
1967 (values const valid)))
1969 ;;; If the memory address located NIL-BYTE-OFFSET bytes from the
1970 ;;; constant NIL is a valid slot in a symbol, store a note describing
1971 ;;; which symbol and slot, to be printed as an end-of-line comment
1972 ;;; after the current instruction is disassembled. Returns non-NIL iff
1973 ;;; a note was recorded.
1974 (defun maybe-note-nil-indexed-symbol-slot-ref (nil-byte-offset dstate)
1975 (declare (type offset nil-byte-offset)
1976 (type disassem-state dstate))
1977 (multiple-value-bind (symbol access-fun)
1978 (grok-nil-indexed-symbol-slot-ref nil-byte-offset)
1979 (when access-fun
1980 (note (lambda (stream)
1981 (prin1 (if (eq access-fun 'symbol-value)
1982 symbol
1983 `(,access-fun ',symbol))
1984 stream))
1985 dstate))
1986 access-fun))
1988 ;;; If the memory address located NIL-BYTE-OFFSET bytes from the
1989 ;;; constant NIL is a valid lisp object, store a note describing which
1990 ;;; symbol and slot, to be printed as an end-of-line comment after the
1991 ;;; current instruction is disassembled. Returns non-NIL iff a note
1992 ;;; was recorded.
1993 (defun maybe-note-nil-indexed-object (nil-byte-offset dstate)
1994 (declare (type offset nil-byte-offset)
1995 (type disassem-state dstate))
1996 (let ((obj (get-nil-indexed-object nil-byte-offset)))
1997 (note (lambda (stream)
1998 (prin1-quoted-short obj stream))
1999 dstate)
2002 ;;; If ADDRESS is the address of a primitive assembler routine or
2003 ;;; foreign symbol, store a note describing which one, to be printed
2004 ;;; as an end-of-line comment after the current instruction is
2005 ;;; disassembled. Returns non-NIL iff a note was recorded. If
2006 ;;; NOTE-ADDRESS-P is non-NIL, a note of the address is also made.
2007 (defun maybe-note-assembler-routine (address note-address-p dstate)
2008 (declare (type disassem-state dstate))
2009 (unless (typep address 'address)
2010 (return-from maybe-note-assembler-routine nil))
2011 (let ((name (or
2012 (find-assembler-routine address)
2013 #!+linkage-table
2014 (sap-foreign-symbol (int-sap address)))))
2015 (unless (null name)
2016 (note (lambda (stream)
2017 (if note-address-p
2018 (format stream "#x~8,'0x: ~a" address name)
2019 (princ name stream)))
2020 dstate))
2021 name))
2023 ;;; If there's a valid mapping from OFFSET in the storage class
2024 ;;; SC-NAME to a source variable, make a note of the source-variable
2025 ;;; name, to be printed as an end-of-line comment after the current
2026 ;;; instruction is disassembled. Returns non-NIL iff a note was
2027 ;;; recorded.
2028 (defun maybe-note-single-storage-ref (offset sc-name dstate)
2029 (declare (type offset offset)
2030 (type symbol sc-name)
2031 (type disassem-state dstate))
2032 (let ((storage-location
2033 (find-valid-storage-location offset sc-name dstate)))
2034 (when storage-location
2035 (note (lambda (stream)
2036 (princ (sb!di:debug-var-symbol
2037 (aref (storage-info-debug-vars
2038 (seg-storage-info (dstate-segment dstate)))
2039 storage-location))
2040 stream))
2041 dstate)
2042 t)))
2044 ;;; If there's a valid mapping from OFFSET in the storage-base called
2045 ;;; SB-NAME to a source variable, make a note equating ASSOC-WITH with
2046 ;;; the source-variable name, to be printed as an end-of-line comment
2047 ;;; after the current instruction is disassembled. Returns non-NIL iff
2048 ;;; a note was recorded.
2049 (defun maybe-note-associated-storage-ref (offset sb-name assoc-with dstate)
2050 (declare (type offset offset)
2051 (type symbol sb-name)
2052 (type (or symbol string) assoc-with)
2053 (type disassem-state dstate))
2054 (let ((storage-location
2055 (find-valid-storage-location offset sb-name dstate)))
2056 (when storage-location
2057 (note (lambda (stream)
2058 (format stream "~A = ~S"
2059 assoc-with
2060 (sb!di:debug-var-symbol
2061 (aref (dstate-debug-vars dstate)
2062 storage-location))))
2063 dstate)
2064 t)))
2066 (defun maybe-note-static-symbol (offset dstate)
2067 (dolist (symbol sb!vm:*static-symbols*)
2068 (when (= (get-lisp-obj-address symbol) offset)
2069 (return (note (lambda (s) (prin1 symbol s)) dstate)))))
2071 (defun get-internal-error-name (errnum)
2072 (cadr (svref sb!c:+backend-internal-errors+ errnum)))
2074 (defun get-sc-name (sc-offs)
2075 (sb!c:location-print-name
2076 ;; FIXME: This seems like an awful lot of computation just to get a name.
2077 ;; Couldn't we just use lookup in *BACKEND-SC-NAMES*, without having to cons
2078 ;; up a new object?
2079 (sb!c:make-random-tn :kind :normal
2080 :sc (svref sb!c:*backend-sc-numbers*
2081 (sb!c:sc-offset-scn sc-offs))
2082 :offset (sb!c:sc-offset-offset sc-offs))))
2084 ;;; When called from an error break instruction's :DISASSEM-CONTROL (or
2085 ;;; :DISASSEM-PRINTER) function, will correctly deal with printing the
2086 ;;; arguments to the break.
2088 ;;; ERROR-PARSE-FUN should be a function that accepts:
2089 ;;; 1) a SYSTEM-AREA-POINTER
2090 ;;; 2) a BYTE-OFFSET from the SAP to begin at
2091 ;;; It should read information from the SAP starting at BYTE-OFFSET, and
2092 ;;; return four values:
2093 ;;; 1) the error number
2094 ;;; 2) the total length, in bytes, of the information
2095 ;;; 3) a list of SC-OFFSETs of the locations of the error parameters
2096 ;;; 4) a list of the length (as read from the SAP), in bytes, of each
2097 ;;; of the return values.
2098 (defun handle-break-args (error-parse-fun stream dstate)
2099 (declare (type function error-parse-fun)
2100 (type (or null stream) stream)
2101 (type disassem-state dstate))
2102 (multiple-value-bind (errnum adjust sc-offsets lengths)
2103 (funcall error-parse-fun
2104 (dstate-segment-sap dstate)
2105 (dstate-next-offs dstate)
2106 (null stream))
2107 (when stream
2108 (setf (dstate-cur-offs dstate)
2109 (dstate-next-offs dstate))
2110 (flet ((emit-err-arg ()
2111 (let ((num (pop lengths)))
2112 (print-notes-and-newline stream dstate)
2113 (print-current-address stream dstate)
2114 (print-inst num stream dstate)
2115 (print-bytes num stream dstate)
2116 (incf (dstate-cur-offs dstate) num)))
2117 (emit-note (note)
2118 (when note
2119 (note note dstate))))
2120 ;; ARM64 encodes the error number in BRK instruction itself
2121 #!-arm64
2122 (emit-err-arg)
2123 (emit-note (symbol-name (get-internal-error-name errnum)))
2124 (dolist (sc-offs sc-offsets)
2125 (emit-err-arg)
2126 (if (= (sb!c:sc-offset-scn sc-offs)
2127 sb!vm:constant-sc-number)
2128 (note-code-constant (* (1- (sb!c:sc-offset-offset sc-offs))
2129 sb!vm:n-word-bytes)
2130 dstate)
2131 (emit-note (get-sc-name sc-offs))))))
2132 (incf (dstate-next-offs dstate) adjust)))
2134 ;;; arm64 stores an error-number in the instruction bytes,
2135 ;;; so can't easily share this code.
2136 ;;; But probably we should just add the conditionalization in here.
2137 #!-arm64
2138 (defun snarf-error-junk (sap offset &optional length-only)
2139 (let* ((error-number (sap-ref-8 sap offset))
2140 (length (sb!kernel::error-length error-number))
2141 (index (1+ offset)))
2142 (declare (type system-area-pointer sap)
2143 (type (unsigned-byte 8) length))
2144 (cond (length-only
2145 (loop repeat length do (sb!c:sap-read-var-integerf sap index))
2146 (values 0 (- index offset) nil nil))
2148 (collect ((sc-offsets)
2149 (lengths))
2150 (lengths 1) ;; error-number
2151 (loop repeat length do
2152 (let ((old-index index))
2153 (sc-offsets (sb!c:sap-read-var-integerf sap index))
2154 (lengths (- index old-index))))
2155 (values error-number
2156 (- index offset)
2157 (sc-offsets)
2158 (lengths)))))))
2160 ;; A prefilter set is a list of vectors specifying bytes to extract
2161 ;; and a function to call on the extracted value(s).
2162 ;; EQUALP lists of vectors can be coalesced, since they're immutable.
2163 (defun collect-prefiltering-args (args cache)
2164 (awhen (remove-if-not #'arg-prefilter args)
2165 (let ((repr
2166 (mapcar (lambda (arg &aux (bytes (arg-fields arg)))
2167 (coerce (list* (posq arg args)
2168 (arg-prefilter arg)
2169 (and bytes (cons (arg-sign-extend-p arg) bytes)))
2170 'vector))
2171 it))
2172 (table (assq :prefilter cache)))
2173 (or (find repr (cdr table) :test 'equalp)
2174 (car (push repr (cdr table)))))))
2176 (defun unintern-init-only-stuff ()
2177 ;; Remove compile-time-only metadata. This preserves compatibility with the
2178 ;; older disassembler macros which wrapped GEN-ARG-TYPE-DEF-FORM and such
2179 ;; in (EVAL-WHEN (:COMPILE-TOPLEVEL :EXECUTE)), which in turn required that
2180 ;; all prefilters, labellers, and printers be defined at cross-compile-time.
2181 ;; A consequence of :LOAD-TOPLEVEL not being there was that was not possible
2182 ;; to add instruction definitions to an image without also recompiling
2183 ;; the backend's "insts" file. It also was not possible to incrementally
2184 ;; recompile and/or use slam.sh because of a bunch of mostly harmless bugs
2185 ;; in the function cache (a/k/a identical-code-folding) logic that was only
2186 ;; guaranteed to do the right thing from a clean compile. Additionally,
2187 ;; you had to use (GET-INST-SPACE :FORCE T) to pick up new definitions.
2188 ;; Given those considerations which made extending a running disassembler
2189 ;; nontrivial, the code-generating code is not so useful after the
2190 ;; initial instruction space is built, so it can all be removed.
2191 ;; But if you need all these macros to exist for some reason,
2192 ;; then define one of the two following features to keep them:
2193 #!+(or sb-fluid sb-retain-assembler-macros)
2194 (return-from unintern-init-only-stuff)
2196 (do-symbols (symbol sb!assem::*backend-instruction-set-package*)
2197 (remf (symbol-plist symbol) 'arg-type)
2198 (remf (symbol-plist symbol) 'inst-format))
2200 ;; Get rid of functions that only make sense with metadata available.
2201 (dolist (s '(%def-arg-type %def-inst-format %gen-arg-forms
2202 all-arg-refs-relevant-p arg-or-lose arg-position arg-value-form
2203 collect-labelish-operands collect-prefiltering-args
2204 compare-fields-form compile-inst-printer compile-print
2205 compile-printer-body compile-printer-list compile-test
2206 correct-dchunk-bytespec-for-endianness
2207 define-arg-type define-instruction-format
2208 find-first-field-name find-printer-fun format-or-lose
2209 gen-arg-forms make-arg-temp-bindings make-funstate massage-arg
2210 maybe-listify modify-arg pd-error pick-printer-choice
2211 preprocess-chooses preprocess-conditionals preprocess-printer
2212 preprocess-test sharing-cons sharing-mapcar))
2213 (fmakunbound s)
2214 (unintern s 'sb-disassem)))