Coalesce similar strings in compilation to memory if opted for.
[sbcl.git] / src / runtime / gc-common.c
blob2f8991aeb4de1af7082a963d86ced4dbd362892b
1 /*
2 * Garbage Collection common functions for scavenging, moving and sizing
3 * objects. These are for use with both GC (stop & copy GC) and GENCGC
4 */
6 /*
7 * This software is part of the SBCL system. See the README file for
8 * more information.
10 * This software is derived from the CMU CL system, which was
11 * written at Carnegie Mellon University and released into the
12 * public domain. The software is in the public domain and is
13 * provided with absolutely no warranty. See the COPYING and CREDITS
14 * files for more information.
18 * For a review of garbage collection techniques (e.g. generational
19 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
20 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
21 * had been accepted for _ACM Computing Surveys_ and was available
22 * as a PostScript preprint through
23 * <http://www.cs.utexas.edu/users/oops/papers.html>
24 * as
25 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
28 #include <stdio.h>
29 #include <signal.h>
30 #include <string.h>
31 #include "sbcl.h"
32 #include "runtime.h"
33 #include "os.h"
34 #include "interr.h"
35 #include "globals.h"
36 #include "interrupt.h"
37 #include "validate.h"
38 #include "lispregs.h"
39 #include "arch.h"
40 #include "gc.h"
41 #include "genesis/primitive-objects.h"
42 #include "genesis/static-symbols.h"
43 #include "genesis/layout.h"
44 #include "genesis/hash-table.h"
45 #define WANT_SCAV_TRANS_SIZE_TABLES
46 #include "gc-internal.h"
47 #include "forwarding-ptr.h"
48 #include "var-io.h"
50 #ifdef LISP_FEATURE_SPARC
51 #define LONG_FLOAT_SIZE 4
52 #elif defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
53 #define LONG_FLOAT_SIZE 3
54 #endif
56 os_vm_size_t dynamic_space_size = DEFAULT_DYNAMIC_SPACE_SIZE;
57 os_vm_size_t thread_control_stack_size = DEFAULT_CONTROL_STACK_SIZE;
59 sword_t (*scavtab[256])(lispobj *where, lispobj object);
60 lispobj (*transother[256])(lispobj object);
61 sword_t (*sizetab[256])(lispobj *where);
62 struct weak_pointer *weak_pointers;
64 os_vm_size_t bytes_consed_between_gcs = 12*1024*1024;
66 /// These sizing macros return the number of *payload* words,
67 /// exclusive of the object header word. Payload length is always
68 /// an odd number so that total word count is an even number.
69 #define BOXED_NWORDS(obj) (HeaderValue(obj) | 1)
70 // Payload count expressed in 15 bits
71 #define SHORT_BOXED_NWORDS(obj) ((HeaderValue(obj) & SHORT_HEADER_MAX_WORDS) | 1)
72 // Payload count expressed in 8 bits
73 #define TINY_BOXED_NWORDS(obj) ((HeaderValue(obj) & 0xFF) | 1)
76 * copying objects
79 /* gc_general_copy_object is inline from gc-internal.h */
81 /* to copy a boxed object */
82 lispobj
83 copy_object(lispobj object, sword_t nwords)
85 return gc_general_copy_object(object, nwords, BOXED_PAGE_FLAG);
88 static sword_t scav_lose(lispobj *where, lispobj object); /* forward decl */
90 static inline void scav1(lispobj* object_ptr, lispobj object)
92 // GENCGC only:
93 // * With 32-bit words, is_lisp_pointer(object) returns true if object_ptr
94 // points to a forwarding pointer, so we need a sanity check inside the
95 // branch for is_lisp_pointer(). For maximum efficiency, check that only
96 // after from_space_p() returns false, so that valid pointers into
97 // from_space incur no extra test. This could be improved further by
98 // skipping the FP check if 'object' points within dynamic space, i.e.,
99 // when find_page_index() returns >= 0. That would entail injecting
100 // from_space_p() explicitly into the loop, so as to separate the
101 // "was a page found at all" condition from the page generation test.
103 // * With 64-bit words, is_lisp_pointer(object) is false when object_ptr
104 // points to a forwarding pointer, and the fixnump() test also returns
105 // false, so we'll indirect through scavtab[]. This will safely invoke
106 // scav_lose(), detecting corruption without any extra cost.
107 // The major difference between that and the explicit test is that you
108 // won't see 'start' and 'n_words', but if you need those, chances are
109 // you'll want to run under an external debugger in the first place.
110 // [And btw it sure would be nice to assert statically
111 // that is_lisp_pointer(0x01) is indeed false]
113 #define FIX_POINTER() { \
114 lispobj *ptr = native_pointer(object); \
115 if (forwarding_pointer_p(ptr)) \
116 *object_ptr = LOW_WORD(forwarding_pointer_value(ptr)); \
117 else /* Scavenge that pointer. */ \
118 (void)scavtab[widetag_of(object)](object_ptr, object); \
120 #ifdef LISP_FEATURE_IMMOBILE_SPACE
121 page_index_t page;
122 // It would be fine, though suboptimal, to use from_space_p() here.
123 // If it returns false, we don't want to call immobile_space_p()
124 // unless the pointer is *not* into dynamic space.
125 if ((page = find_page_index((void*)object)) >= 0) {
126 if (page_table[page].gen == from_space && !pinned_p(object, page))
127 FIX_POINTER();
128 } else if (immobile_space_p(object)) {
129 lispobj *ptr = native_pointer(object);
130 if (immobile_obj_gen_bits(ptr) == from_space)
131 promote_immobile_obj(ptr, 1);
133 #else
134 if (from_space_p(object)) {
135 FIX_POINTER();
136 } else {
137 #if (N_WORD_BITS == 32) && defined(LISP_FEATURE_GENCGC)
138 if (forwarding_pointer_p(object_ptr))
139 lose("unexpected forwarding pointer in scavenge @ %p\n",
140 object_ptr);
141 #endif
142 /* It points somewhere other than oldspace. Leave it
143 * alone. */
145 #endif
148 // Scavenge a block of memory from 'start' to 'end'
149 // that may contain object headers.
150 void heap_scavenge(lispobj *start, lispobj *end)
152 lispobj *object_ptr;
154 for (object_ptr = start; object_ptr < end;) {
155 lispobj object = *object_ptr;
156 if (other_immediate_lowtag_p(object))
157 /* It's some sort of header object or another. */
158 object_ptr += (scavtab[widetag_of(object)])(object_ptr, object);
159 else { // it's a cons
160 if (is_lisp_pointer(object))
161 scav1(object_ptr, object);
162 object = *++object_ptr;
163 if (is_lisp_pointer(object))
164 scav1(object_ptr, object);
165 ++object_ptr;
168 // This assertion is usually the one that fails when something
169 // is subtly wrong with the heap, so definitely always do it.
170 gc_assert_verbose(object_ptr == end, "Final object pointer %p, start %p, end %p\n",
171 object_ptr, start, end);
174 // Scavenge a block of memory from 'start' extending for 'n_words'
175 // that must not contain any object headers.
176 sword_t scavenge(lispobj *start, sword_t n_words)
178 lispobj *end = start + n_words;
179 lispobj *object_ptr;
180 for (object_ptr = start; object_ptr < end; object_ptr++) {
181 lispobj object = *object_ptr;
182 if (is_lisp_pointer(object)) scav1(object_ptr, object);
184 return n_words;
187 static lispobj trans_fun_header(lispobj object); /* forward decls */
188 static lispobj trans_short_boxed(lispobj object);
190 static sword_t
191 scav_fun_pointer(lispobj *where, lispobj object)
193 gc_dcheck(lowtag_of(object) == FUN_POINTER_LOWTAG);
195 /* Object is a pointer into from_space - not a FP. */
196 lispobj *first_pointer = native_pointer(object);
198 /* must transport object -- object may point to either a function
199 * header, a funcallable instance header, or a closure header. */
200 lispobj copy = widetag_of(*first_pointer) == SIMPLE_FUN_WIDETAG
201 ? trans_fun_header(object) : trans_short_boxed(object);
203 if (copy != object) {
204 /* Set forwarding pointer */
205 set_forwarding_pointer(first_pointer,copy);
208 CHECK_COPY_POSTCONDITIONS(copy, FUN_POINTER_LOWTAG);
210 *where = copy;
212 return 1;
216 static struct code *
217 trans_code(struct code *code)
219 /* if object has already been transported, just return pointer */
220 if (forwarding_pointer_p((lispobj *)code)) {
221 #ifdef DEBUG_CODE_GC
222 printf("Was already transported\n");
223 #endif
224 return (struct code *)native_pointer(forwarding_pointer_value((lispobj*)code));
227 gc_dcheck(widetag_of(code->header) == CODE_HEADER_WIDETAG);
229 /* prepare to transport the code vector */
230 lispobj l_code = (lispobj) LOW_WORD(code) | OTHER_POINTER_LOWTAG;
231 sword_t nheader_words = code_header_words(code->header);
232 sword_t ncode_words = code_instruction_words(code->code_size);
233 sword_t nwords = nheader_words + ncode_words;
234 lispobj l_new_code = gc_general_copy_object(l_code, nwords, CODE_PAGE_FLAG);
235 struct code *new_code = (struct code *) native_pointer(l_new_code);
237 #if defined(DEBUG_CODE_GC)
238 printf("Old code object at 0x%08x, new code object at 0x%08x.\n",
239 (uword_t) code, (uword_t) new_code);
240 printf("Code object is %d words long.\n", nwords);
241 #endif
243 #ifdef LISP_FEATURE_GENCGC
244 if (new_code == code)
245 return new_code;
246 #endif
248 set_forwarding_pointer((lispobj *)code, l_new_code);
250 /* set forwarding pointers for all the function headers in the */
251 /* code object. also fix all self pointers */
252 /* Do this by scanning the new code, since the old header is unusable */
254 uword_t displacement = l_new_code - l_code;
256 for_each_simple_fun(i, nfheaderp, new_code, 1, {
257 /* Calculate the old raw function pointer */
258 struct simple_fun* fheaderp =
259 (struct simple_fun*)LOW_WORD((char*)nfheaderp - displacement);
260 /* Calculate the new lispobj */
261 lispobj nfheaderl = make_lispobj(nfheaderp, FUN_POINTER_LOWTAG);
263 #ifdef DEBUG_CODE_GC
264 printf("fheaderp->header (at %x) <- %x\n",
265 &(fheaderp->header) , nfheaderl);
266 #endif
267 set_forwarding_pointer((lispobj *)fheaderp, nfheaderl);
269 /* fix self pointer. */
270 nfheaderp->self =
271 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
272 FUN_RAW_ADDR_OFFSET +
273 #endif
274 nfheaderl;
276 #ifdef LISP_FEATURE_GENCGC
277 /* Cheneygc doesn't need this os_flush_icache, it flushes the whole
278 spaces once when all copying is done. */
279 os_flush_icache((os_vm_address_t) (((sword_t *)new_code) + nheader_words),
280 ncode_words * sizeof(sword_t));
282 #endif
284 #ifdef LISP_FEATURE_X86
285 gencgc_apply_code_fixups(code, new_code);
286 #endif
288 return new_code;
291 static sword_t
292 scav_code_header(lispobj *where, lispobj header)
294 struct code *code = (struct code *) where;
295 sword_t n_header_words = code_header_words(header);
297 /* Scavenge the boxed section of the code data block. */
298 scavenge(where + 1, n_header_words - 1);
300 /* Scavenge the boxed section of each function object in the
301 * code data block. */
302 for_each_simple_fun(i, function_ptr, code, 1, {
303 scavenge(SIMPLE_FUN_SCAV_START(function_ptr),
304 SIMPLE_FUN_SCAV_NWORDS(function_ptr));
307 return n_header_words + code_instruction_words(code->code_size);
310 static lispobj
311 trans_code_header(lispobj object)
313 struct code *ncode = trans_code((struct code *) native_pointer(object));
314 return (lispobj) LOW_WORD(ncode) | OTHER_POINTER_LOWTAG;
317 static sword_t
318 size_code_header(lispobj *where)
320 return code_header_words(((struct code *)where)->header)
321 + code_instruction_words(((struct code *)where)->code_size);
324 #ifdef RETURN_PC_WIDETAG
325 static sword_t
326 scav_return_pc_header(lispobj *where, lispobj object)
328 lose("attempted to scavenge a return PC header where=%p object=%#lx\n",
329 where, (uword_t) object);
330 return 0; /* bogus return value to satisfy static type checking */
333 static lispobj
334 trans_return_pc_header(lispobj object)
336 struct simple_fun *return_pc = (struct simple_fun *) native_pointer(object);
337 uword_t offset = HeaderValue(return_pc->header) * N_WORD_BYTES;
339 /* Transport the whole code object */
340 struct code *code = (struct code *) ((uword_t) return_pc - offset);
341 struct code *ncode = trans_code(code);
343 return ((lispobj) LOW_WORD(ncode) + offset) | OTHER_POINTER_LOWTAG;
345 #endif /* RETURN_PC_WIDETAG */
347 /* On the 386, closures hold a pointer to the raw address instead of the
348 * function object, so we can use CALL [$FDEFN+const] to invoke
349 * the function without loading it into a register. Given that code
350 * objects don't move, we don't need to update anything, but we do
351 * have to figure out that the function is still live. */
353 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
354 static sword_t
355 scav_closure(lispobj *where, lispobj header)
357 struct closure *closure = (struct closure *)where;
358 int payload_words = SHORT_BOXED_NWORDS(header);
359 lispobj fun = closure->fun - FUN_RAW_ADDR_OFFSET;
360 scavenge(&fun, 1);
361 #ifdef LISP_FEATURE_GENCGC
362 /* The function may have moved so update the raw address. But
363 * don't write unnecessarily. */
364 if (closure->fun != fun + FUN_RAW_ADDR_OFFSET)
365 closure->fun = fun + FUN_RAW_ADDR_OFFSET;
366 #endif
367 // Payload includes 'fun' which was just looked at, so subtract it.
368 scavenge(closure->info, payload_words - 1);
369 return 1 + payload_words;
371 #endif
373 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
374 static sword_t
375 scav_fun_header(lispobj *where, lispobj object)
377 lose("attempted to scavenge a function header where=%p object=%#lx\n",
378 where, (uword_t) object);
379 return 0; /* bogus return value to satisfy static type checking */
381 #endif /* LISP_FEATURE_X86 */
383 static lispobj
384 trans_fun_header(lispobj object)
386 struct simple_fun *fheader = (struct simple_fun *) native_pointer(object);
387 uword_t offset = HeaderValue(fheader->header) * N_WORD_BYTES;
389 /* Transport the whole code object */
390 struct code *code = (struct code *) ((uword_t) fheader - offset);
391 struct code *ncode = trans_code(code);
393 return ((lispobj) LOW_WORD(ncode) + offset) | FUN_POINTER_LOWTAG;
398 * instances
401 static lispobj
402 trans_instance(lispobj object)
404 gc_dcheck(lowtag_of(object) == INSTANCE_POINTER_LOWTAG);
405 lispobj header = *(lispobj*)(object - INSTANCE_POINTER_LOWTAG);
406 return copy_object(object, 1 + (instance_length(header)|1));
409 static sword_t
410 scav_instance_pointer(lispobj *where, lispobj object)
412 /* Object is a pointer into from space - not a FP. */
413 lispobj copy = trans_instance(object);
415 gc_dcheck(copy != object);
417 set_forwarding_pointer(native_pointer(object), copy);
418 *where = copy;
420 return 1;
425 * lists and conses
428 static lispobj trans_list(lispobj object);
430 static sword_t
431 scav_list_pointer(lispobj *where, lispobj object)
433 gc_dcheck(lowtag_of(object) == LIST_POINTER_LOWTAG);
435 lispobj copy = trans_list(object);
436 gc_dcheck(copy != object);
438 CHECK_COPY_POSTCONDITIONS(copy, LIST_POINTER_LOWTAG);
440 *where = copy;
441 return 1;
445 static lispobj
446 trans_list(lispobj object)
448 /* Copy 'object'. */
449 struct cons *copy = (struct cons *)
450 gc_general_alloc(sizeof(struct cons), BOXED_PAGE_FLAG, ALLOC_QUICK);
451 lispobj new_list_pointer = make_lispobj(copy, LIST_POINTER_LOWTAG);
452 copy->car = CONS(object)->car;
453 /* Grab the cdr: set_forwarding_pointer will clobber it in GENCGC */
454 lispobj cdr = CONS(object)->cdr;
455 set_forwarding_pointer((lispobj *)CONS(object), new_list_pointer);
457 /* Try to linearize the list in the cdr direction to help reduce
458 * paging. */
459 while (lowtag_of(cdr) == LIST_POINTER_LOWTAG && from_space_p(cdr)) {
460 lispobj* native_cdr = (lispobj*)CONS(cdr);
461 if (forwarding_pointer_p(native_cdr)) { // Might as well fix now.
462 cdr = forwarding_pointer_value(native_cdr);
463 break;
465 /* Copy 'cdr'. */
466 struct cons *cdr_copy = (struct cons*)
467 gc_general_alloc(sizeof(struct cons), BOXED_PAGE_FLAG, ALLOC_QUICK);
468 cdr_copy->car = ((struct cons*)native_cdr)->car;
469 /* Grab the cdr before it is clobbered. */
470 lispobj next = ((struct cons*)native_cdr)->cdr;
471 /* Set cdr of the predecessor, and store an FP. */
472 set_forwarding_pointer(native_cdr,
473 copy->cdr = make_lispobj(cdr_copy,
474 LIST_POINTER_LOWTAG));
475 copy = cdr_copy;
476 cdr = next;
478 copy->cdr = cdr;
479 return new_list_pointer;
484 * scavenging and transporting other pointers
487 static sword_t
488 scav_other_pointer(lispobj *where, lispobj object)
490 gc_dcheck(lowtag_of(object) == OTHER_POINTER_LOWTAG);
492 /* Object is a pointer into from space - not FP. */
493 lispobj *first_pointer = (lispobj *)(object - OTHER_POINTER_LOWTAG);
494 lispobj copy = transother[widetag_of(*first_pointer)](object);
496 // If the object was large, then instead of transporting it,
497 // gencgc might simply promote the pages and return the same pointer.
498 // That decision is made in general_copy_large_object().
499 if (copy != object) {
500 set_forwarding_pointer(first_pointer, copy);
501 #ifdef LISP_FEATURE_GENCGC
502 *where = copy;
503 #endif
505 #ifndef LISP_FEATURE_GENCGC
506 *where = copy;
507 #endif
508 CHECK_COPY_POSTCONDITIONS(copy, OTHER_POINTER_LOWTAG);
509 return 1;
513 * immediate, boxed, and unboxed objects
516 /* The immediate object scavenger basically wants to be "scav_cons",
517 * and so returns 2. To see why it's right, observe that scavenge() will
518 * not invoke a scavtab entry on any object except for one satisfying
519 * is_lisp_pointer(). So if a scavtab[] function got here,
520 * then it must be via heap_scavenge(). But heap_scavenge() should only
521 * dispatch via scavtab[] if it thought it saw an object header.
522 * So why do we act like it saw a cons? Because conses can contain an
523 * immediate object that satisfies both other_immediate_lowtag_p()
524 * and is_lisp_immediate(), namely, the objects specifically mentioned at
525 * is_cons_half(). So heap_scavenge() is nearly testing is_cons_half()
526 * but even more efficiently, by ignoring the unusual immediate widetags
527 * until we get to scav_immediate.
529 * And just to hammer the point home: we won't blow past the end of a specific
530 * range of words when scavenging a binding or control stack or anything else,
531 * because scavenge() skips immediate objects all by itself,
532 * or rather it skips anything not satisfying is_lisp_pointer().
534 * As to the unbound marker, see rev. 09c78105eabc6bf2b339f421d4ed1df4678003db
535 * which says that we might see it in conses for reasons somewhat unknown.
537 static sword_t
538 scav_immediate(lispobj *where, lispobj object)
540 object = *++where;
541 if (is_lisp_pointer(object)) scav1(where, object);
542 return 2;
545 static lispobj
546 trans_immediate(lispobj object)
548 lose("trying to transport an immediate\n");
549 return NIL; /* bogus return value to satisfy static type checking */
552 static sword_t
553 size_immediate(lispobj *where)
555 return 1;
558 static inline boolean bignum_logbitp_inline(int index, struct bignum* bignum)
560 int len = HeaderValue(bignum->header);
561 int word_index = index / N_WORD_BITS;
562 int bit_index = index % N_WORD_BITS;
563 return word_index < len ? (bignum->digits[word_index] >> bit_index) & 1 : 0;
565 boolean positive_bignum_logbitp(int index, struct bignum* bignum)
567 /* If the bignum in the layout has another pointer to it (besides the layout)
568 acting as a root, and which is scavenged first, then transporting the
569 bignum causes the layout to see a FP, as would copying an instance whose
570 layout that is. This is a nearly impossible scenario to create organically
571 in Lisp, because mostly nothing ever looks again at that exact (EQ) bignum
572 except for a few things that would cause it to be pinned anyway,
573 such as it being kept in a local variable during structure manipulation.
574 See 'interleaved-raw.impure.lisp' for a way to trigger this */
575 if (forwarding_pointer_p((lispobj*)bignum)) {
576 lispobj forwarded = forwarding_pointer_value((lispobj*)bignum);
577 #if 0
578 fprintf(stderr, "GC bignum_logbitp(): fwd from %p to %p\n",
579 (void*)bignum, (void*)forwarded);
580 #endif
581 bignum = (struct bignum*)native_pointer(forwarded);
583 return bignum_logbitp_inline(index, bignum);
586 // Helper function for stepping through the tagged slots of an instance in
587 // scav_instance and verify_space.
588 void
589 instance_scan(void (*proc)(lispobj*, sword_t),
590 lispobj *instance_slots,
591 sword_t nslots, /* number of payload words */
592 lispobj layout_bitmap)
594 sword_t index;
596 if (fixnump(layout_bitmap)) {
597 sword_t bitmap = (sword_t)layout_bitmap >> N_FIXNUM_TAG_BITS; // signed integer!
598 for (index = 0; index < nslots ; index++, bitmap >>= 1)
599 if (bitmap & 1)
600 proc(instance_slots + index, 1);
601 } else { /* huge bitmap */
602 struct bignum * bitmap;
603 bitmap = (struct bignum*)native_pointer(layout_bitmap);
604 if (forwarding_pointer_p((lispobj*)bitmap))
605 bitmap = (struct bignum*)
606 native_pointer(forwarding_pointer_value((lispobj*)bitmap));
607 for (index = 0; index < nslots ; index++)
608 if (bignum_logbitp_inline(index, bitmap))
609 proc(instance_slots + index, 1);
613 static sword_t
614 scav_instance(lispobj *where, lispobj header)
616 lispobj* layout = (lispobj*)instance_layout(where);
617 lispobj lbitmap = make_fixnum(-1);
619 if (layout) {
620 layout = native_pointer((lispobj)layout);
621 #ifdef LISP_FEATURE_COMPACT_INSTANCE_HEADER
622 if (__immobile_obj_gen_bits(layout) == from_space)
623 promote_immobile_obj(layout, 1);
624 #else
625 if (forwarding_pointer_p(layout))
626 layout = native_pointer(forwarding_pointer_value(layout));
627 #endif
628 lbitmap = ((struct layout*)layout)->bitmap;
630 sword_t nslots = instance_length(header) | 1;
631 if (lbitmap == make_fixnum(-1))
632 scavenge(where+1, nslots);
633 else if (!fixnump(lbitmap))
634 instance_scan((void(*)(lispobj*,sword_t))scavenge,
635 where+1, nslots, lbitmap);
636 else {
637 sword_t bitmap = (sword_t)lbitmap >> N_FIXNUM_TAG_BITS; // signed integer!
638 sword_t n = nslots;
639 lispobj obj;
640 for ( ; n-- ; bitmap >>= 1) {
641 ++where;
642 if ((bitmap & 1) && is_lisp_pointer(obj = *where))
643 scav1(where, obj);
646 return 1 + nslots;
649 #ifdef LISP_FEATURE_COMPACT_INSTANCE_HEADER
650 static sword_t
651 scav_funinstance(lispobj *where, lispobj header)
653 // This works because the layout is in the header word of all instances,
654 // ordinary and funcallable, when compact headers are enabled.
655 // The trampoline slot in the funcallable-instance is raw, but can be
656 // scavenged, because it points to readonly space, never oldspace.
657 // (And for certain backends it looks like a fixnum, not a pointer)
658 return scav_instance(where, header);
660 #endif
662 //// Boxed object scav/trans/size functions
664 #define DEF_SCAV_BOXED(suffix, sizer) \
665 static sword_t __attribute__((unused)) \
666 scav_##suffix(lispobj *where, lispobj header) { \
667 return 1 + scavenge(where+1, sizer(header)); \
669 static lispobj trans_##suffix(lispobj object) { \
670 return copy_object(object, 1 + sizer(*native_pointer(object))); \
672 static sword_t size_##suffix(lispobj *where) { return 1 + sizer(*where); }
674 DEF_SCAV_BOXED(boxed, BOXED_NWORDS)
675 DEF_SCAV_BOXED(short_boxed, SHORT_BOXED_NWORDS)
676 DEF_SCAV_BOXED(tiny_boxed, TINY_BOXED_NWORDS)
678 /* Note: on the sparc we don't have to do anything special for fdefns, */
679 /* 'cause the raw-addr has a function lowtag. */
680 #if !defined(LISP_FEATURE_SPARC) && !defined(LISP_FEATURE_ARM)
681 static sword_t
682 scav_fdefn(lispobj *where, lispobj object)
684 struct fdefn *fdefn = (struct fdefn *)where;
686 /* FSHOW((stderr, "scav_fdefn, function = %p, raw_addr = %p\n",
687 fdefn->fun, fdefn->raw_addr)); */
689 scavenge(where + 1, 2); // 'name' and 'fun'
690 #ifndef LISP_FEATURE_IMMOBILE_CODE
691 lispobj raw_fun = (lispobj)fdefn->raw_addr;
692 if (raw_fun > READ_ONLY_SPACE_END) {
693 lispobj simple_fun = raw_fun - FUN_RAW_ADDR_OFFSET;
694 scavenge(&simple_fun, 1);
695 /* Don't write unnecessarily. */
696 if (simple_fun != raw_fun - FUN_RAW_ADDR_OFFSET)
697 fdefn->raw_addr = (char *)simple_fun + FUN_RAW_ADDR_OFFSET;
699 #elif defined(LISP_FEATURE_X86_64)
700 lispobj obj = fdefn_raw_referent(fdefn);
701 if (obj) {
702 lispobj new = obj;
703 scavenge(&new, 1); // enliven
704 gc_dcheck(new == obj); // must not move
706 #else
707 # error "Need to implement scav_fdefn"
708 #endif
709 return 4;
711 #endif
713 static sword_t
714 scav_unboxed(lispobj *where, lispobj object)
716 sword_t length = HeaderValue(object) + 1;
717 return CEILING(length, 2);
720 static lispobj
721 trans_unboxed(lispobj object)
723 gc_dcheck(lowtag_of(object) == OTHER_POINTER_LOWTAG);
724 sword_t length = HeaderValue(*native_pointer(object)) + 1;
725 return copy_unboxed_object(object, CEILING(length, 2));
728 static lispobj
729 trans_ratio_or_complex(lispobj object)
731 gc_dcheck(lowtag_of(object) == OTHER_POINTER_LOWTAG);
732 lispobj* x = native_pointer(object);
733 lispobj a = x[1];
734 lispobj b = x[2];
736 /* A zero ratio or complex means it was just allocated by fixed-alloc and
737 a bignum can still be written there. Not a problem with a conservative GC
738 since it will be pinned down. */
739 if (fixnump(a) && fixnump(b)
740 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
741 && a && b
742 #endif
745 return copy_unboxed_object(object, 4);
747 return copy_object(object, 4);
750 /* vector-like objects */
751 static lispobj
752 trans_vector(lispobj object)
754 gc_dcheck(lowtag_of(object) == OTHER_POINTER_LOWTAG);
756 sword_t length =
757 fixnum_value(((struct vector*)native_pointer(object))->length);
758 return copy_large_object(object, CEILING(length + 2, 2));
761 static sword_t
762 size_vector(lispobj *where)
764 sword_t length = fixnum_value(((struct vector*)where)->length);
765 return CEILING(length + 2, 2);
768 static inline uword_t
769 NWORDS(uword_t x, uword_t n_bits)
771 /* A good compiler should be able to constant-fold this whole thing,
772 even with the conditional. */
773 if(n_bits <= N_WORD_BITS) {
774 uword_t elements_per_word = N_WORD_BITS/n_bits;
776 return CEILING(x, elements_per_word)/elements_per_word;
778 else {
779 /* FIXME: should have some sort of assertion that N_WORD_BITS
780 evenly divides n_bits */
781 return x * (n_bits/N_WORD_BITS);
785 #define DEF_SCAV_TRANS_SIZE_UB(nbits) \
786 DEF_SPECIALIZED_VECTOR(vector_unsigned_byte_##nbits, NWORDS(length, nbits))
787 #define DEF_SPECIALIZED_VECTOR(name, nwords) \
788 static sword_t __attribute__((unused)) scav_##name(lispobj *where, lispobj header) { \
789 sword_t length = fixnum_value(((struct vector*)where)->length); \
790 return CEILING(nwords + 2, 2); \
792 static lispobj __attribute__((unused)) trans_##name(lispobj object) { \
793 gc_dcheck(lowtag_of(object) == OTHER_POINTER_LOWTAG); \
794 sword_t length = fixnum_value(((struct vector*)(object-OTHER_POINTER_LOWTAG))->length); \
795 return copy_large_unboxed_object(object, CEILING(nwords + 2, 2)); \
797 static sword_t __attribute__((unused)) size_##name(lispobj *where) { \
798 sword_t length = fixnum_value(((struct vector*)where)->length); \
799 return CEILING(nwords + 2, 2); \
802 DEF_SPECIALIZED_VECTOR(vector_nil, 0*length)
803 DEF_SPECIALIZED_VECTOR(vector_bit, NWORDS(length,1))
804 /* NOTE: strings contain one more element of data (a terminating '\0'
805 * to help interface with C functions) than indicated by the length slot.
806 * This is true even for UCS4 strings, despite that C APIs are unlikely
807 * to have a convention that expects 4 zero bytes. */
808 DEF_SPECIALIZED_VECTOR(base_string, NWORDS((length+1), 8))
809 DEF_SPECIALIZED_VECTOR(character_string, NWORDS((length+1), 32))
810 DEF_SCAV_TRANS_SIZE_UB(2)
811 DEF_SCAV_TRANS_SIZE_UB(4)
812 DEF_SCAV_TRANS_SIZE_UB(8)
813 DEF_SCAV_TRANS_SIZE_UB(16)
814 DEF_SCAV_TRANS_SIZE_UB(32)
815 DEF_SCAV_TRANS_SIZE_UB(64)
816 DEF_SCAV_TRANS_SIZE_UB(128)
817 #ifdef LONG_FLOAT_SIZE
818 DEF_SPECIALIZED_VECTOR(vector_long_float, length * LONG_FLOAT_SIZE)
819 DEF_SPECIALIZED_VECTOR(vector_complex_long_float, length * (2 * LONG_FLOAT_SIZE))
820 #endif
822 static lispobj
823 trans_weak_pointer(lispobj object)
825 lispobj copy;
826 gc_dcheck(lowtag_of(object) == OTHER_POINTER_LOWTAG);
828 #if defined(DEBUG_WEAK)
829 printf("Transporting weak pointer from 0x%08x\n", object);
830 #endif
832 /* Need to remember where all the weak pointers are that have */
833 /* been transported so they can be fixed up in a post-GC pass. */
835 copy = copy_object(object, WEAK_POINTER_NWORDS);
836 #ifndef LISP_FEATURE_GENCGC
837 struct weak_pointer *wp = (struct weak_pointer *) native_pointer(copy);
839 gc_dcheck(widetag_of(wp->header)==WEAK_POINTER_WIDETAG);
840 /* Push the weak pointer onto the list of weak pointers. */
841 if (weak_pointer_breakable_p(wp)) {
842 wp->next = (struct weak_pointer *)LOW_WORD(weak_pointers);
843 weak_pointers = wp;
845 #endif
846 return copy;
849 void scan_weak_pointers(void)
851 struct weak_pointer *wp, *next_wp;
852 for (wp = weak_pointers, next_wp = NULL; wp != NULL; wp = next_wp) {
853 gc_assert(widetag_of(wp->header)==WEAK_POINTER_WIDETAG);
855 next_wp = wp->next;
856 wp->next = NULL;
857 if (next_wp == wp) /* gencgc uses a ref to self for end of list */
858 next_wp = NULL;
860 lispobj pointee = wp->value;
861 gc_assert(is_lisp_pointer(pointee));
862 lispobj *objaddr = native_pointer(pointee);
864 /* Now, we need to check whether the object has been forwarded. If
865 * it has been, the weak pointer is still good and needs to be
866 * updated. Otherwise, the weak pointer needs to be broken. */
868 if (from_space_p(pointee)) {
869 wp->value = forwarding_pointer_p(objaddr) ?
870 LOW_WORD(forwarding_pointer_value(objaddr)) : UNBOUND_MARKER_WIDETAG;
872 #ifdef LISP_FEATURE_IMMOBILE_SPACE
873 else if (immobile_space_p(pointee) &&
874 immobile_obj_gen_bits(objaddr) == from_space) {
875 wp->value = UNBOUND_MARKER_WIDETAG;
877 #endif
878 else
879 lose("unbreakable pointer %p", wp);
884 /* Hash tables */
886 #if N_WORD_BITS == 32
887 #define EQ_HASH_MASK 0x1fffffff
888 #elif N_WORD_BITS == 64
889 #define EQ_HASH_MASK 0x1fffffffffffffff
890 #endif
892 /* Compute the EQ-hash of KEY. This must match POINTER-HASH in
893 * target-hash-table.lisp. */
894 #define EQ_HASH(key) ((key) & EQ_HASH_MASK)
896 /* List of weak hash tables chained through their NEXT-WEAK-HASH-TABLE
897 * slot. Set to NULL at the end of a collection.
899 * This is not optimal because, when a table is tenured, it won't be
900 * processed automatically; only the yougest generation is GC'd by
901 * default. On the other hand, all applications will need an
902 * occasional full GC anyway, so it's not that bad either. */
903 struct hash_table *weak_hash_tables = NULL;
905 /* Return true if OBJ has already survived the current GC. */
906 static inline int pointer_survived_gc_yet(lispobj obj)
908 #ifdef LISP_FEATURE_CHENEYGC
909 // This is the most straightforward definition.
910 return (!from_space_p(obj) || forwarding_pointer_p(native_pointer(obj)));
911 #else
912 /* Check for a pointer to dynamic space before considering immobile space.
913 Based on the relative size of the spaces, this should be a win because
914 if the object is in the dynamic space and not the 'from' generation
915 we don't want to test immobile_space_p() at all.
916 Additionally, pinned_p() is both more expensive and less likely than
917 forwarding_pointer_p(), so we want to reverse those conditions, which
918 would not be possible with pinned_p() buried inside from_space_p(). */
919 page_index_t page_index = find_page_index((void*)obj);
920 if (page_index >= 0)
921 return page_table[page_index].gen != from_space ||
922 forwarding_pointer_p(native_pointer(obj)) ||
923 pinned_p(obj, page_index);
924 #ifdef LISP_FEATURE_IMMOBILE_SPACE
925 if (immobile_space_p(obj))
926 return immobile_obj_gen_bits(native_pointer(obj)) != from_space;
927 #endif
928 return 1;
929 #endif
932 #ifdef EMPTY_HT_SLOT /* only if it's a static symbol */
933 // "ish" because EMPTY_HT_SLOT is of course a pointer.
934 # define ht_cell_nonpointerish(x) (!is_lisp_pointer(x) || x==EMPTY_HT_SLOT)
935 #else
936 # define ht_cell_nonpointerish(x) !is_lisp_pointer(x)
937 #endif
939 static int survived_gc_yet_KEY(lispobj key, lispobj value) {
940 return ht_cell_nonpointerish(key) || pointer_survived_gc_yet(key);
942 static int survived_gc_yet_VALUE(lispobj key, lispobj value) {
943 return ht_cell_nonpointerish(value) || pointer_survived_gc_yet(value);
945 static int survived_gc_yet_AND(lispobj key, lispobj value) {
946 int key_nonpointer = ht_cell_nonpointerish(key);
947 int val_nonpointer = ht_cell_nonpointerish(value);
948 if (key_nonpointer && val_nonpointer) return 1;
949 return (key_nonpointer || pointer_survived_gc_yet(key))
950 && (val_nonpointer || pointer_survived_gc_yet(value));
952 static int survived_gc_yet_OR(lispobj key, lispobj value) {
953 int key_nonpointer = ht_cell_nonpointerish(key);
954 int val_nonpointer = ht_cell_nonpointerish(value);
955 if (key_nonpointer || val_nonpointer) return 1;
956 // Both MUST be pointers
957 return pointer_survived_gc_yet(key) || pointer_survived_gc_yet(value);
960 static int (*weak_hash_entry_alivep_fun(lispobj weakness))(lispobj,lispobj)
962 switch (weakness) {
963 case KEY: return survived_gc_yet_KEY;
964 case VALUE: return survived_gc_yet_VALUE;
965 case KEY_OR_VALUE: return survived_gc_yet_OR;
966 case KEY_AND_VALUE: return survived_gc_yet_AND;
967 case NIL: return NULL;
968 default: lose("Bad hash table weakness");
972 /* Return the beginning of data in ARRAY (skipping the header and the
973 * length) or NULL if it isn't an array of the specified widetag after
974 * all. */
975 static inline lispobj *
976 get_array_data (lispobj array, int widetag, uword_t *length)
978 if (is_lisp_pointer(array) && widetag_of(*native_pointer(array)) == widetag) {
979 if (length != NULL)
980 *length = fixnum_value(native_pointer(array)[1]);
981 return native_pointer(array) + 2;
982 } else {
983 return NULL;
987 /* Only need to worry about scavenging the _real_ entries in the
988 * table. Phantom entries such as the hash table itself at index 0 and
989 * the empty marker at index 1 were scavenged by scav_vector that
990 * either called this function directly or arranged for it to be
991 * called later by pushing the hash table onto weak_hash_tables. */
992 static void
993 scav_hash_table_entries (struct hash_table *hash_table)
995 lispobj *kv_vector;
996 uword_t kv_length;
997 lispobj *index_vector;
998 uword_t length;
999 lispobj *next_vector;
1000 uword_t next_vector_length;
1001 lispobj *hash_vector;
1002 uword_t hash_vector_length;
1003 lispobj empty_symbol;
1004 lispobj weakness = hash_table->weakness;
1005 uword_t i;
1007 kv_vector = get_array_data(hash_table->table,
1008 SIMPLE_VECTOR_WIDETAG, &kv_length);
1009 if (kv_vector == NULL)
1010 lose("invalid kv_vector %x\n", hash_table->table);
1012 index_vector = get_array_data(hash_table->index_vector,
1013 SIMPLE_ARRAY_WORD_WIDETAG, &length);
1014 if (index_vector == NULL)
1015 lose("invalid index_vector %x\n", hash_table->index_vector);
1017 next_vector = get_array_data(hash_table->next_vector,
1018 SIMPLE_ARRAY_WORD_WIDETAG,
1019 &next_vector_length);
1020 if (next_vector == NULL)
1021 lose("invalid next_vector %x\n", hash_table->next_vector);
1023 hash_vector = get_array_data(hash_table->hash_vector,
1024 SIMPLE_ARRAY_WORD_WIDETAG,
1025 &hash_vector_length);
1026 if (hash_vector != NULL)
1027 gc_assert(hash_vector_length == next_vector_length);
1029 /* These lengths could be different as the index_vector can be a
1030 * different length from the others, a larger index_vector could
1031 * help reduce collisions. */
1032 gc_assert(next_vector_length*2 == kv_length);
1034 empty_symbol = kv_vector[1];
1035 /* fprintf(stderr,"* empty_symbol = %x\n", empty_symbol);*/
1036 if (widetag_of(*native_pointer(empty_symbol)) != SYMBOL_WIDETAG) {
1037 lose("not a symbol where empty-hash-table-slot symbol expected: %x\n",
1038 *native_pointer(empty_symbol));
1041 /* Work through the KV vector. */
1042 int (*alivep_test)(lispobj,lispobj) = weak_hash_entry_alivep_fun(weakness);
1043 #define SCAV_ENTRIES(aliveness_predicate) \
1044 for (i = 1; i < next_vector_length; i++) { \
1045 lispobj old_key = kv_vector[2*i]; \
1046 lispobj __attribute__((unused)) value = kv_vector[2*i+1]; \
1047 if (aliveness_predicate) { \
1048 /* Scavenge the key and value. */ \
1049 scavenge(&kv_vector[2*i], 2); \
1050 /* If an EQ-based key has moved, mark the hash-table for rehash */ \
1051 if (!hash_vector || hash_vector[i] == MAGIC_HASH_VECTOR_VALUE) { \
1052 lispobj new_key = kv_vector[2*i]; \
1053 if (old_key != new_key && new_key != empty_symbol) \
1054 hash_table->needs_rehash_p = T; \
1056 if (alivep_test)
1057 SCAV_ENTRIES(alivep_test(old_key, value))
1058 else
1059 SCAV_ENTRIES(1)
1062 sword_t
1063 scav_vector (lispobj *where, lispobj object)
1065 sword_t kv_length = fixnum_value(where[1]);
1066 struct hash_table *hash_table;
1068 /* SB-VM:VECTOR-VALID-HASHING-SUBTYPE is set for EQ-based and weak
1069 * hash tables in the Lisp HASH-TABLE code to indicate need for
1070 * special GC support. */
1071 if ((HeaderValue(object) & 0xFF) == subtype_VectorNormal) {
1072 normal:
1073 scavenge(where + 2, kv_length);
1074 return CEILING(kv_length + 2, 2);
1077 /* Scavenge element 0, which may be a hash-table structure. */
1078 scavenge(where+2, 1);
1079 if (!is_lisp_pointer(where[2])) {
1080 /* This'll happen when REHASH clears the header of old-kv-vector
1081 * and fills it with zero, but some other thread simulatenously
1082 * sets the header in %%PUTHASH.
1084 fprintf(stderr,
1085 "Warning: no pointer at %p in hash table: this indicates "
1086 "non-fatal corruption caused by concurrent access to a "
1087 "hash-table from multiple threads. Any accesses to "
1088 "hash-tables shared between threads should be protected "
1089 "by locks.\n", (void*)&where[2]);
1090 goto normal;
1092 hash_table = (struct hash_table *)native_pointer(where[2]);
1093 /*FSHOW((stderr,"/hash_table = %x\n", hash_table));*/
1094 if (widetag_of(hash_table->header) != INSTANCE_WIDETAG) {
1095 lose("hash table not instance (%x at %x)\n",
1096 hash_table->header,
1097 hash_table);
1100 /* Scavenge element 1, which should be some internal symbol that
1101 * the hash table code reserves for marking empty slots. */
1102 scavenge(where+3, 1);
1103 if (!is_lisp_pointer(where[3])) {
1104 lose("not empty-hash-table-slot symbol pointer: %x\n", where[3]);
1107 /* Scavenge hash table, which will fix the positions of the other
1108 * needed objects. */
1109 scav_instance((lispobj *)hash_table, hash_table->header);
1111 /* Cross-check the kv_vector. */
1112 if (where != native_pointer(hash_table->table)) {
1113 lose("hash_table table!=this table %x\n", hash_table->table);
1116 if (hash_table->weakness == NIL) {
1117 scav_hash_table_entries(hash_table);
1118 } else {
1119 /* Delay scavenging of this table by pushing it onto
1120 * weak_hash_tables (if it's not there already) for the weak
1121 * object phase. */
1122 if (hash_table->next_weak_hash_table == NIL) {
1123 hash_table->next_weak_hash_table = (lispobj)weak_hash_tables;
1124 weak_hash_tables = hash_table;
1128 return (CEILING(kv_length + 2, 2));
1131 void
1132 scav_weak_hash_tables (void)
1134 struct hash_table *table;
1136 /* Scavenge entries whose triggers are known to survive. */
1137 for (table = weak_hash_tables; table != NULL;
1138 table = (struct hash_table *)table->next_weak_hash_table) {
1139 scav_hash_table_entries(table);
1143 /* Walk through the chain whose first element is *FIRST and remove
1144 * dead weak entries. */
1145 static inline void
1146 scan_weak_hash_table_chain (struct hash_table *hash_table, lispobj *prev,
1147 lispobj *kv_vector, lispobj *index_vector,
1148 lispobj *next_vector, lispobj *hash_vector,
1149 lispobj empty_symbol, int (*alivep_test)(lispobj,lispobj))
1151 unsigned index = *prev;
1152 while (index) {
1153 unsigned next = next_vector[index];
1154 lispobj key = kv_vector[2 * index];
1155 lispobj value = kv_vector[2 * index + 1];
1156 gc_assert(key != empty_symbol);
1157 gc_assert(value != empty_symbol);
1158 if (!alivep_test(key, value)) {
1159 unsigned count = fixnum_value(hash_table->number_entries);
1160 gc_assert(count > 0);
1161 *prev = next;
1162 hash_table->number_entries = make_fixnum(count - 1);
1163 next_vector[index] = fixnum_value(hash_table->next_free_kv);
1164 hash_table->next_free_kv = make_fixnum(index);
1165 kv_vector[2 * index] = empty_symbol;
1166 kv_vector[2 * index + 1] = empty_symbol;
1167 if (hash_vector)
1168 hash_vector[index] = MAGIC_HASH_VECTOR_VALUE;
1169 } else {
1170 prev = &next_vector[index];
1172 index = next;
1176 static void
1177 scan_weak_hash_table (struct hash_table *hash_table)
1179 lispobj *kv_vector;
1180 lispobj *index_vector;
1181 uword_t length = 0; /* prevent warning */
1182 lispobj *next_vector;
1183 uword_t next_vector_length = 0; /* prevent warning */
1184 lispobj *hash_vector;
1185 lispobj empty_symbol;
1186 lispobj weakness = hash_table->weakness;
1187 uword_t i;
1189 kv_vector = get_array_data(hash_table->table,
1190 SIMPLE_VECTOR_WIDETAG, NULL);
1191 index_vector = get_array_data(hash_table->index_vector,
1192 SIMPLE_ARRAY_WORD_WIDETAG, &length);
1193 next_vector = get_array_data(hash_table->next_vector,
1194 SIMPLE_ARRAY_WORD_WIDETAG,
1195 &next_vector_length);
1196 hash_vector = get_array_data(hash_table->hash_vector,
1197 SIMPLE_ARRAY_WORD_WIDETAG, NULL);
1198 empty_symbol = kv_vector[1];
1200 for (i = 0; i < length; i++) {
1201 scan_weak_hash_table_chain(hash_table, &index_vector[i],
1202 kv_vector, index_vector, next_vector,
1203 hash_vector, empty_symbol,
1204 weak_hash_entry_alivep_fun(weakness));
1208 /* Remove dead entries from weak hash tables. */
1209 void
1210 scan_weak_hash_tables (void)
1212 struct hash_table *table, *next;
1214 for (table = weak_hash_tables; table != NULL; table = next) {
1215 next = (struct hash_table *)table->next_weak_hash_table;
1216 table->next_weak_hash_table = NIL;
1217 scan_weak_hash_table(table);
1220 weak_hash_tables = NULL;
1225 * initialization
1228 static sword_t
1229 scav_lose(lispobj *where, lispobj object)
1231 lose("no scavenge function for object %p (widetag 0x%x)\n",
1232 (uword_t)object,
1233 widetag_of(*where));
1235 return 0; /* bogus return value to satisfy static type checking */
1238 static lispobj
1239 trans_lose(lispobj object)
1241 lose("no transport function for object %p (widetag 0x%x)\n",
1242 (void*)object,
1243 widetag_of(*native_pointer(object)));
1244 return NIL; /* bogus return value to satisfy static type checking */
1247 static sword_t
1248 size_lose(lispobj *where)
1250 lose("no size function for object at %p (widetag 0x%x)\n",
1251 (void*)where,
1252 widetag_of(*where));
1253 return 1; /* bogus return value to satisfy static type checking */
1258 * initialization
1261 #include "genesis/gc-tables.h"
1264 static lispobj *search_spaces(void *pointer)
1266 lispobj *start;
1267 if (((start = search_dynamic_space(pointer)) != NULL) ||
1268 #ifdef LISP_FEATURE_IMMOBILE_SPACE
1269 ((start = search_immobile_space(pointer)) != NULL) ||
1270 #endif
1271 ((start = search_static_space(pointer)) != NULL) ||
1272 ((start = search_read_only_space(pointer)) != NULL))
1273 return start;
1274 return NULL;
1277 /* Find the code object for the given pc, or return NULL on
1278 failure. */
1279 lispobj *
1280 component_ptr_from_pc(lispobj *pc)
1282 lispobj *object = search_spaces(pc);
1284 if (object != NULL && widetag_of(*object) == CODE_HEADER_WIDETAG)
1285 return object;
1287 return NULL;
1290 /* Scan an area looking for an object which encloses the given pointer.
1291 * Return the object start on success, or NULL on failure. */
1292 lispobj *
1293 gc_search_space3(void *pointer, lispobj *start, void *limit)
1295 if (pointer < (void*)start || pointer >= limit) return NULL;
1297 size_t count;
1298 #if 0
1299 /* CAUTION: this code is _significantly_ slower than the production version
1300 due to the extra checks for forwarding. Only use it if debugging */
1301 for ( ; (void*)start < limit ; start += count) {
1302 lispobj *forwarded_start;
1303 if (forwarding_pointer_p(start))
1304 forwarded_start = native_pointer(forwarding_pointer_value(start));
1305 else
1306 forwarded_start = start;
1307 lispobj thing = *forwarded_start;
1308 count = is_cons_half(thing) ? 2 : sizetab[widetag_of(thing)](forwarded_start);
1309 /* Check whether the pointer is within this object. */
1310 if (pointer < (void*)(start+count)) return start;
1312 #else
1313 for ( ; (void*)start < limit ; start += count) {
1314 lispobj thing = *start;
1315 count = is_cons_half(thing) ? 2 : sizetab[widetag_of(thing)](start);
1316 /* Check whether the pointer is within this object. */
1317 if (pointer < (void*)(start+count)) return start;
1319 #endif
1320 return NULL;
1323 /* Helper for valid_lisp_pointer_p (below) and
1324 * conservative_root_p (gencgc).
1326 * pointer is the pointer to check validity of,
1327 * and start_addr is the address of the enclosing object.
1329 * This is actually quite simple to check: because the heap state is assumed
1330 * consistent, and 'start_addr' is known good, having come from
1331 * gc_search_space(), only the 'pointer' argument is dubious.
1332 * So make 'start_addr' into a tagged pointer and see if that matches 'pointer'.
1333 * If it does, then 'pointer' is valid.
1336 properly_tagged_p_internal(lispobj pointer, lispobj *start_addr)
1338 // If a headerless object, confirm that 'pointer' is a list pointer.
1339 // Given the precondition that the heap is in a valid state,
1340 // it may be assumed that one check of is_cons_half() suffices;
1341 // we don't need to check the other half.
1342 lispobj header = *start_addr;
1343 if (is_cons_half(header))
1344 return make_lispobj(start_addr, LIST_POINTER_LOWTAG) == pointer;
1346 // Because this heap object was not deemed to be a cons,
1347 // it must be an object header. Don't need a check except when paranoid.
1348 gc_dcheck(other_immediate_lowtag_p(header));
1350 // The space of potential widetags has 64 elements, not 256,
1351 // because of the constant low 2 bits.
1352 int widetag = widetag_of(header);
1353 int lowtag = lowtag_for_widetag[widetag>>2];
1354 if (lowtag && make_lispobj(start_addr, lowtag) == pointer)
1355 return 1; // instant win
1357 if (widetag == CODE_HEADER_WIDETAG) {
1358 // Check for RETURN_PC_HEADER first since it's quicker.
1359 // Then consider the embedded simple-funs.
1360 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
1361 /* The all-architecture test below is good as far as it goes,
1362 * but an LRA object is similar to a FUN-POINTER: It is
1363 * embedded within a CODE-OBJECT pointed to by start_addr, and
1364 * cannot be found by simply walking the heap, therefore we
1365 * need to check for it. -- AB, 2010-Jun-04 */
1366 if (lowtag_of(pointer) == OTHER_POINTER_LOWTAG) {
1367 lispobj *potential_lra = native_pointer(pointer);
1368 if ((widetag_of(potential_lra[0]) == RETURN_PC_WIDETAG) &&
1369 ((potential_lra - HeaderValue(potential_lra[0])) == start_addr)) {
1370 return 1; /* It's as good as we can verify. */
1373 #endif
1374 if (lowtag_of(pointer) == FUN_POINTER_LOWTAG) {
1375 struct simple_fun *pfun =
1376 (struct simple_fun*)(pointer-FUN_POINTER_LOWTAG);
1377 for_each_simple_fun(i, function, (struct code*)start_addr, 0, {
1378 if (pfun == function) return 1;
1382 return 0; // no good
1385 /* META: Note the ambiguous word "validate" in the comment below.
1386 * This means "Decide whether <x> is valid".
1387 * But when you see os_validate() elsewhere, that doesn't mean to ask
1388 * whether something is valid, it says to *make* it valid.
1389 * I think it would be nice if we could avoid using the word in the
1390 * sense in which os_validate() uses it, which would entail renaming
1391 * a bunch of stuff, which is harder than just explaining why
1392 * the comments can be deceptive */
1394 /* Used by the debugger to validate possibly bogus pointers before
1395 * calling MAKE-LISP-OBJ on them.
1397 * FIXME: We would like to make this perfect, because if the debugger
1398 * constructs a reference to a bugs lisp object, and it ends up in a
1399 * location scavenged by the GC all hell breaks loose.
1401 * Whereas conservative_root_p has to be conservative
1402 * and return true for all valid pointers, this could actually be eager
1403 * and lie about a few pointers without bad results... but that should
1404 * be reflected in the name.
1407 valid_lisp_pointer_p(lispobj pointer)
1409 lispobj *start = search_spaces((void*)pointer);
1410 if (start != NULL)
1411 return properly_tagged_descriptor_p((void*)pointer, start);
1412 return 0;
1415 boolean
1416 maybe_gc(os_context_t *context)
1418 lispobj gc_happened;
1419 struct thread *thread = arch_os_get_current_thread();
1420 boolean were_in_lisp = !foreign_function_call_active_p(thread);
1422 if (were_in_lisp) {
1423 fake_foreign_function_call(context);
1426 /* SUB-GC may return without GCing if *GC-INHIBIT* is set, in
1427 * which case we will be running with no gc trigger barrier
1428 * thing for a while. But it shouldn't be long until the end
1429 * of WITHOUT-GCING.
1431 * FIXME: It would be good to protect the end of dynamic space for
1432 * CheneyGC and signal a storage condition from there.
1435 /* Restore the signal mask from the interrupted context before
1436 * calling into Lisp if interrupts are enabled. Why not always?
1438 * Suppose there is a WITHOUT-INTERRUPTS block far, far out. If an
1439 * interrupt hits while in SUB-GC, it is deferred and the
1440 * os_context_sigmask of that interrupt is set to block further
1441 * deferrable interrupts (until the first one is
1442 * handled). Unfortunately, that context refers to this place and
1443 * when we return from here the signals will not be blocked.
1445 * A kludgy alternative is to propagate the sigmask change to the
1446 * outer context.
1448 #if !(defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_SAFEPOINT))
1449 check_gc_signals_unblocked_or_lose(os_context_sigmask_addr(context));
1450 unblock_gc_signals(0, 0);
1451 #endif
1452 FSHOW((stderr, "/maybe_gc: calling SUB_GC\n"));
1453 /* FIXME: Nothing must go wrong during GC else we end up running
1454 * the debugger, error handlers, and user code in general in a
1455 * potentially unsafe place. Running out of the control stack or
1456 * the heap in SUB-GC are ways to lose. Of course, deferrables
1457 * cannot be unblocked because there may be a pending handler, or
1458 * we may even be in a WITHOUT-INTERRUPTS. */
1459 gc_happened = funcall0(StaticSymbolFunction(SUB_GC));
1460 FSHOW((stderr, "/maybe_gc: gc_happened=%s\n",
1461 (gc_happened == NIL)
1462 ? "NIL"
1463 : ((gc_happened == T)
1464 ? "T"
1465 : "0")));
1466 /* gc_happened can take three values: T, NIL, 0.
1468 * T means that the thread managed to trigger a GC, and post-gc
1469 * must be called.
1471 * NIL means that the thread is within without-gcing, and no GC
1472 * has occurred.
1474 * Finally, 0 means that *a* GC has occurred, but it wasn't
1475 * triggered by this thread; success, but post-gc doesn't have
1476 * to be called.
1478 if ((gc_happened == T) &&
1479 /* See if interrupts are enabled or it's possible to enable
1480 * them. POST-GC has a similar check, but we don't want to
1481 * unlock deferrables in that case and get a pending interrupt
1482 * here. */
1483 ((SymbolValue(INTERRUPTS_ENABLED,thread) != NIL) ||
1484 (SymbolValue(ALLOW_WITH_INTERRUPTS,thread) != NIL))) {
1485 #ifndef LISP_FEATURE_WIN32
1486 sigset_t *context_sigmask = os_context_sigmask_addr(context);
1487 if (!deferrables_blocked_p(context_sigmask)) {
1488 thread_sigmask(SIG_SETMASK, context_sigmask, 0);
1489 #ifndef LISP_FEATURE_SB_SAFEPOINT
1490 check_gc_signals_unblocked_or_lose(0);
1491 #endif
1492 #endif
1493 FSHOW((stderr, "/maybe_gc: calling POST_GC\n"));
1494 funcall0(StaticSymbolFunction(POST_GC));
1495 #ifndef LISP_FEATURE_WIN32
1496 } else {
1497 FSHOW((stderr, "/maybe_gc: punting on POST_GC due to blockage\n"));
1499 #endif
1502 if (were_in_lisp) {
1503 undo_fake_foreign_function_call(context);
1504 } else {
1505 /* Otherwise done by undo_fake_foreign_function_call. And
1506 something later wants them to be blocked. What a nice
1507 interface.*/
1508 block_blockable_signals(0);
1511 FSHOW((stderr, "/maybe_gc: returning\n"));
1512 return (gc_happened != NIL);
1515 #define BYTES_ZERO_BEFORE_END (1<<12)
1517 /* There used to be a similar function called SCRUB-CONTROL-STACK in
1518 * Lisp and another called zero_stack() in cheneygc.c, but since it's
1519 * shorter to express in, and more often called from C, I keep only
1520 * the C one after fixing it. -- MG 2009-03-25 */
1522 /* Zero the unused portion of the control stack so that old objects
1523 * are not kept alive because of uninitialized stack variables.
1525 * "To summarize the problem, since not all allocated stack frame
1526 * slots are guaranteed to be written by the time you call an another
1527 * function or GC, there may be garbage pointers retained in your dead
1528 * stack locations. The stack scrubbing only affects the part of the
1529 * stack from the SP to the end of the allocated stack." - ram, on
1530 * cmucl-imp, Tue, 25 Sep 2001
1532 * So, as an (admittedly lame) workaround, from time to time we call
1533 * scrub-control-stack to zero out all the unused portion. This is
1534 * supposed to happen when the stack is mostly empty, so that we have
1535 * a chance of clearing more of it: callers are currently (2002.07.18)
1536 * REPL, SUB-GC and sig_stop_for_gc_handler. */
1538 /* Take care not to tread on the guard page and the hard guard page as
1539 * it would be unkind to sig_stop_for_gc_handler. Touching the return
1540 * guard page is not dangerous. For this to work the guard page must
1541 * be zeroed when protected. */
1543 /* FIXME: I think there is no guarantee that once
1544 * BYTES_ZERO_BEFORE_END bytes are zero the rest are also zero. This
1545 * may be what the "lame" adjective in the above comment is for. In
1546 * this case, exact gc may lose badly. */
1547 void
1548 scrub_control_stack()
1550 scrub_thread_control_stack(arch_os_get_current_thread());
1553 void
1554 scrub_thread_control_stack(struct thread *th)
1556 os_vm_address_t guard_page_address = CONTROL_STACK_GUARD_PAGE(th);
1557 os_vm_address_t hard_guard_page_address = CONTROL_STACK_HARD_GUARD_PAGE(th);
1558 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
1559 /* On these targets scrubbing from C is a bad idea, so we punt to
1560 * a routine in $ARCH-assem.S. */
1561 extern void arch_scrub_control_stack(struct thread *, os_vm_address_t, os_vm_address_t);
1562 arch_scrub_control_stack(th, guard_page_address, hard_guard_page_address);
1563 #else
1564 lispobj *sp = access_control_stack_pointer(th);
1565 scrub:
1566 if ((((os_vm_address_t)sp < (hard_guard_page_address + os_vm_page_size)) &&
1567 ((os_vm_address_t)sp >= hard_guard_page_address)) ||
1568 (((os_vm_address_t)sp < (guard_page_address + os_vm_page_size)) &&
1569 ((os_vm_address_t)sp >= guard_page_address) &&
1570 (th->control_stack_guard_page_protected != NIL)))
1571 return;
1572 #ifdef LISP_FEATURE_STACK_GROWS_DOWNWARD_NOT_UPWARD
1573 do {
1574 *sp = 0;
1575 } while (((uword_t)sp--) & (BYTES_ZERO_BEFORE_END - 1));
1576 if ((os_vm_address_t)sp < (hard_guard_page_address + os_vm_page_size))
1577 return;
1578 do {
1579 if (*sp)
1580 goto scrub;
1581 } while (((uword_t)sp--) & (BYTES_ZERO_BEFORE_END - 1));
1582 #else
1583 do {
1584 *sp = 0;
1585 } while (((uword_t)++sp) & (BYTES_ZERO_BEFORE_END - 1));
1586 if ((os_vm_address_t)sp >= hard_guard_page_address)
1587 return;
1588 do {
1589 if (*sp)
1590 goto scrub;
1591 } while (((uword_t)++sp) & (BYTES_ZERO_BEFORE_END - 1));
1592 #endif
1593 #endif /* LISP_FEATURE_C_STACK_IS_CONTROL_STACK */
1596 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
1598 void
1599 scavenge_control_stack(struct thread *th)
1601 lispobj *object_ptr;
1603 /* In order to properly support dynamic-extent allocation of
1604 * non-CONS objects, the control stack requires special handling.
1605 * Rather than calling scavenge() directly, grovel over it fixing
1606 * broken hearts, scavenging pointers to oldspace, and pitching a
1607 * fit when encountering unboxed data. This prevents stray object
1608 * headers from causing the scavenger to blow past the end of the
1609 * stack (an error case checked in scavenge()). We don't worry
1610 * about treating unboxed words as boxed or vice versa, because
1611 * the compiler isn't allowed to store unboxed objects on the
1612 * control stack. -- AB, 2011-Dec-02 */
1614 for (object_ptr = th->control_stack_start;
1615 object_ptr < access_control_stack_pointer(th);
1616 object_ptr++) {
1618 lispobj object = *object_ptr;
1619 #ifdef LISP_FEATURE_GENCGC
1620 if (forwarding_pointer_p(object_ptr))
1621 lose("unexpected forwarding pointer in scavenge_control_stack: %p, start=%p, end=%p\n",
1622 object_ptr, th->control_stack_start, access_control_stack_pointer(th));
1623 #endif
1624 if (is_lisp_pointer(object) && from_space_p(object)) {
1625 /* It currently points to old space. Check for a
1626 * forwarding pointer. */
1627 lispobj *ptr = native_pointer(object);
1628 if (forwarding_pointer_p(ptr)) {
1629 /* Yes, there's a forwarding pointer. */
1630 *object_ptr = LOW_WORD(forwarding_pointer_value(ptr));
1631 } else {
1632 /* Scavenge that pointer. */
1633 long n_words_scavenged =
1634 (scavtab[widetag_of(object)])(object_ptr, object);
1635 gc_assert(n_words_scavenged == 1);
1637 } else if (scavtab[widetag_of(object)] == scav_lose) {
1638 lose("unboxed object in scavenge_control_stack: %p->%x, start=%p, end=%p\n",
1639 object_ptr, object, th->control_stack_start, access_control_stack_pointer(th));
1644 /* Scavenging Interrupt Contexts */
1646 static int boxed_registers[] = BOXED_REGISTERS;
1648 /* The GC has a notion of an "interior pointer" register, an unboxed
1649 * register that typically contains a pointer to inside an object
1650 * referenced by another pointer. The most obvious of these is the
1651 * program counter, although many compiler backends define a "Lisp
1652 * Interior Pointer" register known to the runtime as reg_LIP, and
1653 * various CPU architectures have other registers that also partake of
1654 * the interior-pointer nature. As the code for pairing an interior
1655 * pointer value up with its "base" register, and fixing it up after
1656 * scavenging is complete is horribly repetitive, a few macros paper
1657 * over the monotony. --AB, 2010-Jul-14 */
1659 /* These macros are only ever used over a lexical environment which
1660 * defines a pointer to an os_context_t called context, thus we don't
1661 * bother to pass that context in as a parameter. */
1663 /* Define how to access a given interior pointer. */
1664 #define ACCESS_INTERIOR_POINTER_pc \
1665 *os_context_pc_addr(context)
1666 #define ACCESS_INTERIOR_POINTER_lip \
1667 *os_context_register_addr(context, reg_LIP)
1668 #define ACCESS_INTERIOR_POINTER_lr \
1669 *os_context_lr_addr(context)
1670 #define ACCESS_INTERIOR_POINTER_npc \
1671 *os_context_npc_addr(context)
1672 #define ACCESS_INTERIOR_POINTER_ctr \
1673 *os_context_ctr_addr(context)
1675 #define INTERIOR_POINTER_VARS(name) \
1676 uword_t name##_offset; \
1677 int name##_register_pair
1679 #define PAIR_INTERIOR_POINTER(name) \
1680 pair_interior_pointer(context, \
1681 ACCESS_INTERIOR_POINTER_##name, \
1682 &name##_offset, \
1683 &name##_register_pair)
1685 /* One complexity here is that if a paired register is not found for
1686 * an interior pointer, then that pointer does not get updated.
1687 * Originally, there was some commentary about using an index of -1
1688 * when calling os_context_register_addr() on SPARC referring to the
1689 * program counter, but the real reason is to allow an interior
1690 * pointer register to point to the runtime, read-only space, or
1691 * static space without problems. */
1692 #define FIXUP_INTERIOR_POINTER(name) \
1693 do { \
1694 if (name##_register_pair >= 0) { \
1695 ACCESS_INTERIOR_POINTER_##name = \
1696 (*os_context_register_addr(context, \
1697 name##_register_pair) \
1698 & ~LOWTAG_MASK) \
1699 + name##_offset; \
1701 } while (0)
1704 static void
1705 pair_interior_pointer(os_context_t *context, uword_t pointer,
1706 uword_t *saved_offset, int *register_pair)
1708 unsigned int i;
1711 * I (RLT) think this is trying to find the boxed register that is
1712 * closest to the LIP address, without going past it. Usually, it's
1713 * reg_CODE or reg_LRA. But sometimes, nothing can be found.
1715 /* 0x7FFFFFFF on 32-bit platforms;
1716 0x7FFFFFFFFFFFFFFF on 64-bit platforms */
1717 *saved_offset = (((uword_t)1) << (N_WORD_BITS - 1)) - 1;
1718 *register_pair = -1;
1719 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
1720 uword_t reg;
1721 uword_t offset;
1722 int index;
1724 index = boxed_registers[i];
1725 reg = *os_context_register_addr(context, index);
1727 /* An interior pointer is never relative to a non-pointer
1728 * register (an oversight in the original implementation).
1729 * The simplest argument for why this is true is to consider
1730 * the fixnum that happens by coincide to be the word-index in
1731 * memory of the header for some object plus two. This is
1732 * happenstance would cause the register containing the fixnum
1733 * to be selected as the register_pair if the interior pointer
1734 * is to anywhere after the first two words of the object.
1735 * The fixnum won't be changed during GC, but the object might
1736 * move, thus destroying the interior pointer. --AB,
1737 * 2010-Jul-14 */
1739 if (is_lisp_pointer(reg) &&
1740 ((reg & ~LOWTAG_MASK) <= pointer)) {
1741 offset = pointer - (reg & ~LOWTAG_MASK);
1742 if (offset < *saved_offset) {
1743 *saved_offset = offset;
1744 *register_pair = index;
1750 static void
1751 scavenge_interrupt_context(os_context_t * context)
1753 unsigned int i;
1755 /* FIXME: The various #ifdef noise here is precisely that: noise.
1756 * Is it possible to fold it into the macrology so that we have
1757 * one set of #ifdefs and then INTERIOR_POINTER_VARS /et alia/
1758 * compile out for the registers that don't exist on a given
1759 * platform? */
1761 INTERIOR_POINTER_VARS(pc);
1762 #ifdef reg_LIP
1763 INTERIOR_POINTER_VARS(lip);
1764 #endif
1765 #ifdef ARCH_HAS_LINK_REGISTER
1766 INTERIOR_POINTER_VARS(lr);
1767 #endif
1768 #ifdef ARCH_HAS_NPC_REGISTER
1769 INTERIOR_POINTER_VARS(npc);
1770 #endif
1771 #ifdef LISP_FEATURE_PPC
1772 INTERIOR_POINTER_VARS(ctr);
1773 #endif
1775 PAIR_INTERIOR_POINTER(pc);
1776 #ifdef reg_LIP
1777 PAIR_INTERIOR_POINTER(lip);
1778 #endif
1779 #ifdef ARCH_HAS_LINK_REGISTER
1780 PAIR_INTERIOR_POINTER(lr);
1781 #endif
1782 #ifdef ARCH_HAS_NPC_REGISTER
1783 PAIR_INTERIOR_POINTER(npc);
1784 #endif
1785 #ifdef LISP_FEATURE_PPC
1786 PAIR_INTERIOR_POINTER(ctr);
1787 #endif
1789 /* Scavenge all boxed registers in the context. */
1790 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
1791 os_context_register_t *boxed_reg;
1792 lispobj datum;
1794 /* We can't "just" cast os_context_register_addr() to a
1795 * pointer to lispobj and pass it to scavenge, because some
1796 * systems can have a wider register width than we use for
1797 * lisp objects, and on big-endian systems casting a pointer
1798 * to a narrower target type doesn't work properly.
1799 * Therefore, we copy the value out to a temporary lispobj
1800 * variable, scavenge there, and copy the value back in.
1802 * FIXME: lispobj is unsigned, os_context_register_t may be
1803 * signed or unsigned, are we truncating or sign-extending
1804 * values here that shouldn't be modified? Possibly affects
1805 * any architecture that has 32-bit and 64-bit variants where
1806 * we run in 32-bit mode on 64-bit hardware when the OS is set
1807 * up for 64-bit from the start. Or an environment with
1808 * 32-bit addresses and 64-bit registers. */
1810 boxed_reg = os_context_register_addr(context, boxed_registers[i]);
1811 datum = *boxed_reg;
1812 scavenge(&datum, 1);
1813 *boxed_reg = datum;
1816 /* Now that the scavenging is done, repair the various interior
1817 * pointers. */
1818 FIXUP_INTERIOR_POINTER(pc);
1819 #ifdef reg_LIP
1820 FIXUP_INTERIOR_POINTER(lip);
1821 #endif
1822 #ifdef ARCH_HAS_LINK_REGISTER
1823 FIXUP_INTERIOR_POINTER(lr);
1824 #endif
1825 #ifdef ARCH_HAS_NPC_REGISTER
1826 FIXUP_INTERIOR_POINTER(npc);
1827 #endif
1828 #ifdef LISP_FEATURE_PPC
1829 FIXUP_INTERIOR_POINTER(ctr);
1830 #endif
1833 void
1834 scavenge_interrupt_contexts(struct thread *th)
1836 int i, index;
1837 os_context_t *context;
1839 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
1841 #if defined(DEBUG_PRINT_CONTEXT_INDEX)
1842 printf("Number of active contexts: %d\n", index);
1843 #endif
1845 for (i = 0; i < index; i++) {
1846 context = th->interrupt_contexts[i];
1847 scavenge_interrupt_context(context);
1850 #endif /* x86oid targets */
1852 void varint_unpacker_init(struct varint_unpacker* unpacker, lispobj integer)
1854 if (fixnump(integer)) {
1855 unpacker->word = fixnum_value(integer);
1856 unpacker->limit = N_WORD_BYTES;
1857 unpacker->data = (char*)&unpacker->word;
1858 } else {
1859 struct bignum* bignum = (struct bignum*)(integer - OTHER_POINTER_LOWTAG);
1860 unpacker->word = 0;
1861 unpacker->limit = HeaderValue(bignum->header) * N_WORD_BYTES;
1862 unpacker->data = (char*)bignum->digits;
1864 unpacker->index = 0;
1867 // Fetch the next varint from 'unpacker' into 'result'.
1868 // Because there is no length prefix on the number of varints encoded,
1869 // spurious trailing zeros might be observed. The data consumer can
1870 // circumvent that by storing a count as the first value in the series.
1871 // Return 1 for success, 0 for EOF.
1872 int varint_unpack(struct varint_unpacker* unpacker, int* result)
1874 if (unpacker->index >= unpacker->limit) return 0;
1875 int accumulator = 0;
1876 int shift = 0;
1877 while (1) {
1878 #ifdef LISP_FEATURE_LITTLE_ENDIAN
1879 int byte = unpacker->data[unpacker->index];
1880 #else
1881 // bignums are little-endian in word order,
1882 // but machine-native within each word.
1883 // We could pack bytes MSB-to-LSB in the bigdigits,
1884 // but that seems less intuitive on the Lisp side.
1885 int word_index = unpacker->index / N_WORD_BYTES;
1886 int byte_index = unpacker->index % N_WORD_BYTES;
1887 int byte = (((unsigned int*)unpacker->data)[word_index]
1888 >> (byte_index * 8)) & 0xFF;
1889 #endif
1890 ++unpacker->index;
1891 accumulator |= (byte & 0x7F) << shift;
1892 if (!(byte & 0x80)) break;
1893 gc_assert(unpacker->index < unpacker->limit);
1894 shift += 7;
1896 *result = accumulator;
1897 return 1;
1900 /* Our own implementation of heapsort, because some C libraries have a qsort()
1901 * that calls malloc() apparently, which we MUST NOT do. */
1903 typedef uword_t* heap;
1905 #define swap(a,i,j) { uword_t temp=a[i];a[i]=a[j];a[j]=temp; }
1906 static void sift_down(heap array, int start, int end)
1908 int root = start;
1909 while (root * 2 + 1 <= end) {
1910 int child = root * 2 + 1;
1911 if (child + 1 <= end && array[child] < array[child+1])
1912 ++child;
1913 if (array[root] < array[child]) {
1914 swap(array, root, child);
1915 root = child;
1916 } else {
1917 return;
1922 static void heapify(heap array, int length)
1924 int start = (length - 2) / 2;
1925 while (start >= 0) {
1926 sift_down(array, start, length-1);
1927 --start;
1931 void gc_heapsort_uwords(heap array, int length)
1933 heapify(array, length);
1934 int end = length - 1;
1935 while (end > 0) {
1936 swap(array, end, 0);
1937 --end;
1938 sift_down(array, 0, end);
1942 //// Coalescing of constant strings for SAVE-LISP-AND-DIE
1944 static void remap_string(lispobj* where, struct hopscotch_table* ht)
1946 lispobj obj = *where;
1947 struct vector* s = (struct vector*)native_pointer(obj);
1948 extern char gc_coalesce_string_literals;
1949 // gc_coalesce_string_literals represents the "aggressiveness" level.
1950 // If 1, then we share strings tagged as +STRING-SHAREABLE+,
1951 // but if >1, those and also +STRING-SHAREABLE-NONSTD+.
1952 int mask = (gc_coalesce_string_literals>1 ? 6 : 2)<<N_WIDETAG_BITS;
1954 if (lowtag_of(obj) == OTHER_POINTER_LOWTAG &&
1955 (widetag_of(s->header) == SIMPLE_BASE_STRING_WIDETAG
1956 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
1957 || widetag_of(s->header) == SIMPLE_CHARACTER_STRING_WIDETAG
1958 #endif
1959 ) && (s->header & mask) != 0) { /* shareable string */
1960 int index = hopscotch_get(ht, (uword_t)s, 0);
1961 if (!index) // Not found
1962 hopscotch_insert(ht, (uword_t)s, 1);
1963 else
1964 *where = make_lispobj((void*)ht->keys[index-1], OTHER_POINTER_LOWTAG);
1968 static uword_t remap_strings(lispobj* where, lispobj* limit, uword_t arg)
1970 struct hopscotch_table* ht = (struct hopscotch_table*)arg;
1971 lispobj layout, bitmap, *next;
1972 sword_t nwords, i, j;
1974 for ( ; where < limit ; where = next ) {
1975 lispobj header = *where;
1976 if (is_cons_half(header)) {
1977 remap_string(where+0, ht);
1978 remap_string(where+1, ht);
1979 next = where + 2;
1980 } else {
1981 int widetag = widetag_of(header);
1982 nwords = sizetab[widetag](where);
1983 next = where + nwords;
1984 switch (widetag) {
1985 case INSTANCE_WIDETAG: // mixed boxed/unboxed objects
1986 #ifdef LISP_FEATURE_COMPACT_INSTANCE_HEADER
1987 case FUNCALLABLE_INSTANCE_WIDETAG:
1988 #endif
1989 layout = instance_layout(where);
1990 bitmap = ((struct layout*)native_pointer(layout))->bitmap;
1991 for(i=1; i<nwords; ++i)
1992 if (layout_bitmap_logbitp(i-1, bitmap))
1993 remap_string(where+i, ht);
1994 continue;
1995 case CODE_HEADER_WIDETAG:
1996 for_each_simple_fun(i, fun, (struct code*)where, 0, {
1997 lispobj* fun_slots = SIMPLE_FUN_SCAV_START(fun);
1998 for (j=0; j<SIMPLE_FUN_SCAV_NWORDS(fun); ++j)
1999 remap_string(fun_slots+j, ht);
2001 nwords = code_header_words(header);
2002 break;
2003 default:
2004 if (unboxed_obj_widetag_p(widetag))
2005 continue; // Ignore this object.
2007 for(i=1; i<nwords; ++i)
2008 remap_string(where+i, ht);
2011 return 0;
2014 void coalesce_strings()
2016 struct hopscotch_table ht;
2017 hopscotch_create(&ht, HOPSCOTCH_STRING_HASH, 0, 1<<17, 0);
2018 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2019 remap_strings((lispobj*)IMMOBILE_SPACE_START,
2020 (lispobj*)SYMBOL(IMMOBILE_FIXEDOBJ_FREE_POINTER)->value,
2021 (uword_t)&ht);
2022 remap_strings((lispobj*)IMMOBILE_VARYOBJ_SUBSPACE_START,
2023 (lispobj*)SYMBOL(IMMOBILE_SPACE_FREE_POINTER)->value,
2024 (uword_t)&ht);
2025 #endif
2026 walk_generation(remap_strings, -1, (uword_t)&ht);
2027 hopscotch_delete(&ht);