Coalesce similar strings in compilation to memory if opted for.
[sbcl.git] / src / code / string.lisp
blob04e18ade8e18015176c91bf6192265e86e0ca2cb
1 ;;;; This software is part of the SBCL system. See the README file for
2 ;;;; more information.
3 ;;;;
4 ;;;; This software is derived from the CMU CL system, which was
5 ;;;; written at Carnegie Mellon University and released into the
6 ;;;; public domain. The software is in the public domain and is
7 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
8 ;;;; files for more information.
10 (in-package "SB!IMPL")
12 (eval-when (:compile-toplevel)
13 (sb!xc:defmacro %string (x) `(if (stringp ,x) ,x (string ,x))))
15 (defun string (x)
16 "Coerces X into a string. If X is a string, X is returned. If X is a
17 symbol, its name is returned. If X is a character then a one element
18 string containing that character is returned. If X cannot be coerced
19 into a string, an error occurs."
20 (declare (explicit-check))
21 (cond ((stringp x) x)
22 ((symbolp x) (symbol-name x))
23 ((characterp x)
24 (let ((res (make-string 1)))
25 (setf (schar res 0) x) res))
27 (error 'simple-type-error
28 :datum x
29 :expected-type 'string-designator
30 :format-control "~S is not a string designator."
31 :format-arguments (list x)))))
33 ;;; %CHECK-VECTOR-SEQUENCE-BOUNDS is used to verify that the START and
34 ;;; END arguments are valid bounding indices.
35 (defun %check-vector-sequence-bounds (vector start end)
36 (%check-vector-sequence-bounds vector start end))
38 (eval-when (:compile-toplevel)
39 ;;; WITH-ONE-STRING is used to set up some string hacking things. The
40 ;;; keywords are parsed, and the string is hacked into a
41 ;;; simple-string.
42 (sb!xc:defmacro with-one-string ((string start end) &body forms)
43 `(let ((,string (%string ,string)))
44 (with-array-data ((,string ,string)
45 (,start ,start)
46 (,end ,end)
47 :check-fill-pointer t)
48 ,@forms)))
49 ;;; WITH-TWO-STRINGS is used to set up string comparison operations. The
50 ;;; keywords are parsed, and the strings are hacked into SIMPLE-STRINGs.
51 (sb!xc:defmacro with-two-strings (string1 string2 start1 end1 cum-offset-1
52 start2 end2 &rest forms)
53 `(let ((,string1 (%string ,string1))
54 (,string2 (%string ,string2)))
55 (with-array-data ((,string1 ,string1 :offset-var ,cum-offset-1)
56 (,start1 ,start1)
57 (,end1 ,end1)
58 :check-fill-pointer t)
59 (with-array-data ((,string2 ,string2)
60 (,start2 ,start2)
61 (,end2 ,end2)
62 :check-fill-pointer t)
63 ,@forms))))
65 (sb!xc:defmacro with-two-arg-strings (string1 string2 start1 end1 cum-offset-1
66 start2 end2 &rest forms)
67 `(let ((,string1 (%string ,string1))
68 (,string2 (%string ,string2)))
69 (with-array-data ((,string1 ,string1 :offset-var ,cum-offset-1)
70 (,start1)
71 (,end1)
72 :check-fill-pointer t)
73 (with-array-data ((,string2 ,string2)
74 (,start2)
75 (,end2)
76 :check-fill-pointer t)
77 ,@forms))))
79 ) ; EVAL-WHEN
81 (defun char (string index)
82 "Given a string and a non-negative integer index less than the length of
83 the string, returns the character object representing the character at
84 that position in the string."
85 (declare (optimize (safety 1)))
86 (char string index))
88 (defun %charset (string index new-el)
89 (declare (optimize (safety 1)))
90 (setf (char string index) new-el))
92 (defun schar (string index)
93 "SCHAR returns the character object at an indexed position in a string
94 just as CHAR does, except the string must be a simple-string."
95 (declare (optimize (safety 1)))
96 (schar string index))
98 (defun %scharset (string index new-el)
99 (declare (optimize (safety 1)))
100 (setf (schar string index) new-el))
102 (defun string=* (string1 string2 start1 end1 start2 end2)
103 (declare (optimize speed))
104 (with-two-strings string1 string2 start1 end1 nil start2 end2
105 (let ((len (- end1 start1)))
106 (unless (= len (- end2 start2)) ; trivial
107 (return-from string=* nil))
108 ;; Optimizing the non-unicode builds is not terribly important
109 ;; because no per-character test for base/UCS4 is needed.
110 #!+sb-unicode
111 (let* ((widetag1 (%other-pointer-widetag string1))
112 (widetag2 (%other-pointer-widetag string2))
113 (char-shift
114 #!+(or x86 x86-64)
115 ;; The cost of WITH-PINNED-OBJECTS is near nothing on x86,
116 ;; and memcmp() is much faster except below a cutoff point.
117 ;; The threshold is higher on x86-32 because the overhead
118 ;; of a foreign call is higher due to FPU stack save/restore.
119 (if (and (= widetag1 widetag2)
120 (>= len #!+x86 16
121 #!+x86-64 8))
122 (case widetag1
123 (#.sb!vm:simple-base-string-widetag 0)
124 (#.sb!vm:simple-character-string-widetag 2)))))
125 (when char-shift
126 (return-from string=*
127 ;; Efficiently compute byte indices. Derive-type on ASH isn't
128 ;; good enough. For 32-bit, it should be ok because
129 ;; (TYPEP (ASH ARRAY-TOTAL-SIZE-LIMIT 2) 'SB-VM:SIGNED-WORD) => T
130 ;; For 63-bit fixnums, that's false in theory, but true in practice.
131 ;; ARRAY-TOTAL-SIZE-LIMIT is too large for a 48-bit address space.
132 (macrolet ((sap (string start)
133 `(sap+ (vector-sap (truly-the string ,string))
134 (scale ,start)))
135 (scale (index)
136 `(truly-the sb!vm:signed-word
137 (ash (truly-the index ,index) char-shift))))
138 (declare (optimize (sb!c:alien-funcall-saves-fp-and-pc 0)))
139 (with-pinned-objects (string1 string2)
140 (zerop (alien-funcall
141 (extern-alien "memcmp"
142 (function int (* char) (* char) long))
143 (sap string1 start1) (sap string2 start2)
144 (scale len)))))))
145 (macrolet
146 ((char-loop (type1 type2)
147 `(return-from string=*
148 (let ((string1 (truly-the (simple-array ,type1 1) string1))
149 (string2 (truly-the (simple-array ,type2 1) string2)))
150 (declare (optimize (sb!c::insert-array-bounds-checks 0)))
151 (do ((index1 start1 (1+ index1))
152 (index2 start2 (1+ index2)))
153 ((>= index1 end1) t)
154 (declare (index index1 index2))
155 (unless (char= (schar string1 index1)
156 (schar string2 index2))
157 (return nil)))))))
158 ;; On x86-64, short strings with same widetag use the general case.
159 ;; Why not always have cases for equal widetags and short strings?
160 ;; Because the code below deals with comparison when memcpy _can't_
161 ;; be used and is essential to this logic. No major speed gain is had
162 ;; with extra cases where memcpy would do, but was avoided.
163 ;; On non-x86, Lisp code is used always because I did not profile
164 ;; memcmp(), and this code is at least as good as %SP-STRING-COMPARE.
165 ;; Also, (ARRAY NIL) always punts.
166 (cond #!-x86-64
167 ((= widetag1 widetag2)
168 (case widetag1
169 (#.sb!vm:simple-base-string-widetag
170 (char-loop base-char base-char))
171 (#.sb!vm:simple-character-string-widetag
172 (char-loop character character))))
173 ((or (and (= widetag1 sb!vm:simple-character-string-widetag)
174 (= widetag2 sb!vm:simple-base-string-widetag))
175 (and (= widetag2 sb!vm:simple-character-string-widetag)
176 (= widetag1 sb!vm:simple-base-string-widetag)
177 (progn (rotatef start1 start2)
178 (rotatef end1 end2)
179 (rotatef string1 string2)
180 t)))
181 (char-loop character base-char))))))
182 (not (%sp-string-compare string1 start1 end1 string2 start2 end2))))
184 (defun string/=* (string1 string2 start1 end1 start2 end2)
185 (with-two-strings string1 string2 start1 end1 offset1 start2 end2
186 (let ((comparison (%sp-string-compare string1 start1 end1
187 string2 start2 end2)))
188 (if comparison (- (the fixnum comparison) offset1)))))
190 (eval-when (:compile-toplevel :execute)
192 ;;; LESSP is true if the desired expansion is for STRING<* or STRING<=*.
193 ;;; EQUALP is true if the desired expansion is for STRING<=* or STRING>=*.
194 (sb!xc:defmacro string<>=*-body (lessp equalp)
195 (let ((offset1 (gensym)))
196 `(with-two-strings string1 string2 start1 end1 ,offset1 start2 end2
197 (let ((index (%sp-string-compare string1 start1 end1
198 string2 start2 end2)))
199 (if index
200 (cond ((= (the fixnum index) (the fixnum end1))
201 ,(if lessp
202 `(- (the fixnum index) ,offset1)
203 `nil))
204 ((= (+ (the fixnum index) (- start2 start1))
205 (the fixnum end2))
206 ,(if lessp
207 `nil
208 `(- (the fixnum index) ,offset1)))
209 ((,(if lessp 'char< 'char>)
210 (schar string1 index)
211 (schar string2 (+ (the fixnum index) (- start2 start1))))
212 (- (the fixnum index) ,offset1))
213 (t nil))
214 ,(if equalp `(- (the fixnum end1) ,offset1) nil))))))
215 ) ; EVAL-WHEN
217 (defun string<* (string1 string2 start1 end1 start2 end2)
218 (declare (fixnum start1 start2))
219 (string<>=*-body t nil))
221 (defun string>* (string1 string2 start1 end1 start2 end2)
222 (declare (fixnum start1 start2))
223 (string<>=*-body nil nil))
225 (defun string<=* (string1 string2 start1 end1 start2 end2)
226 (declare (fixnum start1 start2))
227 (string<>=*-body t t))
229 (defun string>=* (string1 string2 start1 end1 start2 end2)
230 (declare (fixnum start1 start2))
231 (string<>=*-body nil t))
233 (defun string< (string1 string2 &key (start1 0) end1 (start2 0) end2)
234 "Given two strings, if the first string is lexicographically less than
235 the second string, returns the longest common prefix (using char=)
236 of the two strings. Otherwise, returns ()."
237 (string<* string1 string2 start1 end1 start2 end2))
239 (defun two-arg-string< (string1 string2)
240 (string<* string1 string2 0 nil 0 nil))
242 (defun string> (string1 string2 &key (start1 0) end1 (start2 0) end2)
243 "Given two strings, if the first string is lexicographically greater than
244 the second string, returns the longest common prefix (using char=)
245 of the two strings. Otherwise, returns ()."
246 (string>* string1 string2 start1 end1 start2 end2))
248 (defun two-arg-string> (string1 string2)
249 (string>* string1 string2 0 nil 0 nil))
251 (defun string<= (string1 string2 &key (start1 0) end1 (start2 0) end2)
252 "Given two strings, if the first string is lexicographically less than
253 or equal to the second string, returns the longest common prefix
254 (using char=) of the two strings. Otherwise, returns ()."
255 (string<=* string1 string2 start1 end1 start2 end2))
257 (defun two-arg-string<= (string1 string2)
258 (string<=* string1 string2 0 nil 0 nil))
260 (defun string>= (string1 string2 &key (start1 0) end1 (start2 0) end2)
261 "Given two strings, if the first string is lexicographically greater
262 than or equal to the second string, returns the longest common prefix
263 (using char=) of the two strings. Otherwise, returns ()."
264 (string>=* string1 string2 start1 end1 start2 end2))
266 (defun two-arg-string>= (string1 string2)
267 (string>=* string1 string2 0 nil 0 nil))
269 ;;; Note: (STRING= "PREFIX" "SHORT" :END2 (LENGTH "PREFIX")) gives
270 ;;; an error instead of returning NIL as I would have expected.
271 ;;; The ANSI spec for STRING= itself doesn't seem to clarify this
272 ;;; much, but the SUBSEQ-OUT-OF-BOUNDS writeup seems to say that
273 ;;; this is conforming (and required) behavior, because any index
274 ;;; out of range is an error. (So there seems to be no concise and
275 ;;; efficient way to test for strings which begin with a particular
276 ;;; pattern. Alas..) -- WHN 19991206
277 (defun string= (string1 string2 &key (start1 0) end1 (start2 0) end2)
278 "Given two strings (string1 and string2), and optional integers start1,
279 start2, end1 and end2, compares characters in string1 to characters in
280 string2 (using char=)."
281 (string=* string1 string2 start1 end1 start2 end2))
283 (defun two-arg-string= (string1 string2)
284 (string=* string1 string2 0 nil 0 nil))
286 (defun string/= (string1 string2 &key (start1 0) end1 (start2 0) end2)
287 "Given two strings, if the first string is not lexicographically equal
288 to the second string, returns the longest common prefix (using char=)
289 of the two strings. Otherwise, returns ()."
290 (string/=* string1 string2 start1 end1 start2 end2))
292 (defun two-arg-string/= (string1 string2)
293 (string/=* string1 string2 0 nil 0 nil))
295 (eval-when (:compile-toplevel :execute)
297 ;;; STRING-NOT-EQUAL-LOOP is used to generate character comparison loops for
298 ;;; STRING-EQUAL and STRING-NOT-EQUAL.
299 (sb!xc:defmacro string-not-equal-loop (end
300 end-value
301 &optional (abort-value nil abortp))
302 (declare (fixnum end))
303 (let ((end-test (if (= end 1)
304 `(= index1 (the fixnum end1))
305 `(= index2 (the fixnum end2)))))
306 `(locally (declare (inline two-arg-char-equal))
307 (do ((index1 start1 (1+ index1))
308 (index2 start2 (1+ index2)))
309 (,(if abortp
310 end-test
311 `(or ,end-test
312 (not (char-equal (schar string1 index1)
313 (schar string2 index2)))))
314 ,end-value)
315 (declare (fixnum index1 index2))
316 ,@(if abortp
317 `((if (not (char-equal (schar string1 index1)
318 (schar string2 index2)))
319 (return ,abort-value))))))))
321 ) ; EVAL-WHEN
323 (defun string-equal (string1 string2 &key (start1 0) end1 (start2 0) end2)
324 "Given two strings (string1 and string2), and optional integers start1,
325 start2, end1 and end2, compares characters in string1 to characters in
326 string2 (using char-equal)."
327 (declare (fixnum start1 start2))
328 (with-two-strings string1 string2 start1 end1 nil start2 end2
329 (let ((slen1 (- (the fixnum end1) start1))
330 (slen2 (- (the fixnum end2) start2)))
331 (declare (fixnum slen1 slen2))
332 (when (= slen1 slen2)
333 ;;return NIL immediately if lengths aren't equal.
334 (string-not-equal-loop 1 t nil)))))
336 (defun two-arg-string-equal (string1 string2)
337 (with-two-arg-strings string1 string2 start1 end1 nil start2 end2
338 (let ((slen1 (- (the fixnum end1) start1))
339 (slen2 (- (the fixnum end2) start2)))
340 (declare (fixnum slen1 slen2))
341 (when (= slen1 slen2)
342 (string-not-equal-loop 1 t nil)))))
344 (defun string-not-equal (string1 string2 &key (start1 0) end1 (start2 0) end2)
345 "Given two strings, if the first string is not lexicographically equal
346 to the second string, returns the longest common prefix (using char-equal)
347 of the two strings. Otherwise, returns ()."
348 (with-two-strings string1 string2 start1 end1 offset1 start2 end2
349 (let ((slen1 (- end1 start1))
350 (slen2 (- end2 start2)))
351 (declare (fixnum slen1 slen2))
352 (cond ((= slen1 slen2)
353 (string-not-equal-loop 1 nil (- index1 offset1)))
354 ((< slen1 slen2)
355 (string-not-equal-loop 1 (- index1 offset1)))
357 (string-not-equal-loop 2 (- index1 offset1)))))))
359 (defun two-arg-string-not-equal (string1 string2)
360 (with-two-arg-strings string1 string2 start1 end1 offset1 start2 end2
361 (let ((slen1 (- end1 start1))
362 (slen2 (- end2 start2)))
363 (declare (fixnum slen1 slen2))
364 (cond ((= slen1 slen2)
365 (string-not-equal-loop 1 nil (- index1 offset1)))
366 ((< slen1 slen2)
367 (string-not-equal-loop 1 (- index1 offset1)))
369 (string-not-equal-loop 2 (- index1 offset1)))))))
371 (eval-when (:compile-toplevel :execute)
373 ;;; STRING-LESS-GREATER-EQUAL-TESTS returns a test on the lengths of string1
374 ;;; and string2 and a test on the current characters from string1 and string2
375 ;;; for the following macro.
376 (defun string-less-greater-equal-tests (lessp equalp)
377 (if lessp
378 (if equalp
379 ;; STRING-NOT-GREATERP
380 (values '<= `(not (char-greaterp char1 char2)))
381 ;; STRING-LESSP
382 (values '< `(char-lessp char1 char2)))
383 (if equalp
384 ;; STRING-NOT-LESSP
385 (values '>= `(not (char-lessp char1 char2)))
386 ;; STRING-GREATERP
387 (values '> `(char-greaterp char1 char2)))))
389 (sb!xc:defmacro string-less-greater-equal (lessp equalp)
390 (multiple-value-bind (length-test character-test)
391 (string-less-greater-equal-tests lessp equalp)
392 `(locally (declare (inline two-arg-char-equal))
393 (with-two-strings string1 string2 start1 end1 offset1 start2 end2
394 (let ((slen1 (- (the fixnum end1) start1))
395 (slen2 (- (the fixnum end2) start2)))
396 (declare (fixnum slen1 slen2))
397 (do ((index1 start1 (1+ index1))
398 (index2 start2 (1+ index2))
399 (char1)
400 (char2))
401 ((or (= index1 (the fixnum end1)) (= index2 (the fixnum end2)))
402 (if (,length-test slen1 slen2) (- index1 offset1)))
403 (declare (fixnum index1 index2))
404 (setq char1 (schar string1 index1))
405 (setq char2 (schar string2 index2))
406 (if (not (char-equal char1 char2))
407 (if ,character-test
408 (return (- index1 offset1))
409 (return ())))))))))
411 ) ; EVAL-WHEN
413 (defun string-lessp* (string1 string2 start1 end1 start2 end2)
414 (declare (fixnum start1 start2))
415 (string-less-greater-equal t nil))
417 (defun string-greaterp* (string1 string2 start1 end1 start2 end2)
418 (declare (fixnum start1 start2))
419 (string-less-greater-equal nil nil))
421 (defun string-not-lessp* (string1 string2 start1 end1 start2 end2)
422 (declare (fixnum start1 start2))
423 (string-less-greater-equal nil t))
425 (defun string-not-greaterp* (string1 string2 start1 end1 start2 end2)
426 (declare (fixnum start1 start2))
427 (string-less-greater-equal t t))
429 (defun string-lessp (string1 string2 &key (start1 0) end1 (start2 0) end2)
430 "Given two strings, if the first string is lexicographically less than
431 the second string, returns the longest common prefix (using char-equal)
432 of the two strings. Otherwise, returns ()."
433 (string-lessp* string1 string2 start1 end1 start2 end2))
435 (defun two-arg-string-lessp (string1 string2)
436 (string-lessp* string1 string2 0 nil 0 nil))
438 (defun string-greaterp (string1 string2 &key (start1 0) end1 (start2 0) end2)
439 "Given two strings, if the first string is lexicographically greater than
440 the second string, returns the longest common prefix (using char-equal)
441 of the two strings. Otherwise, returns ()."
442 (string-greaterp* string1 string2 start1 end1 start2 end2))
444 (defun two-arg-string-greaterp (string1 string2)
445 (string-greaterp* string1 string2 0 nil 0 nil))
447 (defun string-not-lessp (string1 string2 &key (start1 0) end1 (start2 0) end2)
448 "Given two strings, if the first string is lexicographically greater
449 than or equal to the second string, returns the longest common prefix
450 (using char-equal) of the two strings. Otherwise, returns ()."
451 (string-not-lessp* string1 string2 start1 end1 start2 end2))
453 (defun two-arg-string-not-lessp (string1 string2)
454 (string-not-lessp* string1 string2 0 nil 0 nil))
456 (defun string-not-greaterp (string1 string2 &key (start1 0) end1 (start2 0)
457 end2)
458 "Given two strings, if the first string is lexicographically less than
459 or equal to the second string, returns the longest common prefix
460 (using char-equal) of the two strings. Otherwise, returns ()."
461 (string-not-greaterp* string1 string2 start1 end1 start2 end2))
464 (defun two-arg-string-not-greaterp (string1 string2)
465 (string-not-greaterp* string1 string2 0 nil 0 nil))
467 (defun make-string (count &key
468 (element-type 'character)
469 ((:initial-element fill-char)))
470 "Given a character count and an optional fill character, makes and returns a
471 new string COUNT long filled with the fill character."
472 (declare (index count))
473 (declare (explicit-check))
474 ;; FIXME: while this is a correct implementation relying on an IR1 transform,
475 ;; it would be better if in the following example (assuming NOTINLINE):
476 ;; (MAKE-STRING 1000 :ELEMENT-TYPE 'BIT :INITIAL-element #\a)
477 ;; we could report that "BIT is not a subtype of CHARACTER"
478 ;; instead of "#\a is not of type BIT". Additionally, in this case:
479 ;; (MAKE-STRING 200000000 :ELEMENT-TYPE 'WORD :INITIAL-ELEMENT #\a)
480 ;; the error reported is heap exhaustion rather than type mismatch.
481 (if fill-char
482 (make-string count :element-type element-type
483 :initial-element (the character fill-char))
484 (make-string count :element-type element-type)))
486 (flet ((%upcase (string start end)
487 (declare (string string) (index start) (type sequence-end end))
488 (let ((saved-header string))
489 (with-one-string (string start end)
490 (do ((index start (1+ index)))
491 ((= index (the fixnum end)))
492 (declare (fixnum index))
493 (setf (schar string index) (char-upcase (schar string index)))))
494 saved-header)))
495 (defun string-upcase (string &key (start 0) end)
496 (%upcase (copy-seq (string string)) start end))
497 (defun nstring-upcase (string &key (start 0) end)
498 (%upcase string start end))
499 ) ; FLET
501 (flet ((%downcase (string start end)
502 (declare (string string) (index start) (type sequence-end end))
503 (let ((saved-header string))
504 (with-one-string (string start end)
505 (do ((index start (1+ index)))
506 ((= index (the fixnum end)))
507 (declare (fixnum index))
508 (setf (schar string index)
509 (char-downcase (schar string index)))))
510 saved-header)))
511 (defun string-downcase (string &key (start 0) end)
512 (%downcase (copy-seq (string string)) start end))
513 (defun nstring-downcase (string &key (start 0) end)
514 (%downcase string start end))
515 ) ; FLET
516 (flet ((%capitalize (string start end)
517 (declare (string string) (index start) (type sequence-end end))
518 (let ((saved-header string))
519 (with-one-string (string start end)
520 (do ((index start (1+ index))
521 (new-word? t)
522 (char nil))
523 ((= index (the fixnum end)))
524 (declare (fixnum index))
525 (setq char (schar string index))
526 (cond ((not (alphanumericp char))
527 (setq new-word? t))
528 (new-word?
529 ;; CHAR is the first case-modifiable character after
530 ;; a sequence of non-case-modifiable characters.
531 (setf (schar string index) (char-upcase char))
532 (setq new-word? nil))
534 (setf (schar string index) (char-downcase char))))))
535 saved-header)))
536 (defun string-capitalize (string &key (start 0) end)
537 (%capitalize (copy-seq (string string)) start end))
538 (defun nstring-capitalize (string &key (start 0) end)
539 (%capitalize string start end))
540 ) ; FLET
543 (defun generic-string-trim (char-bag string left-p right-p)
544 (let ((header (%string string)))
545 (with-array-data ((string header)
546 (start)
547 (end)
548 :check-fill-pointer t)
549 (let* ((left-end (if left-p
550 (do ((index start (1+ index)))
551 ((or (= index (the fixnum end))
552 (not (find (schar string index)
553 char-bag
554 :test #'char=)))
555 index)
556 (declare (fixnum index)))
557 start))
558 (right-end (if right-p
559 (do ((index (1- (the fixnum end)) (1- index)))
560 ((or (< index left-end)
561 (not (find (schar string index)
562 char-bag
563 :test #'char=)))
564 (1+ index))
565 (declare (fixnum index)))
566 end)))
567 (if (and (eql left-end start)
568 (eql right-end end))
569 header
570 (subseq (the simple-string string) left-end right-end))))))
572 (defun string-left-trim (char-bag string)
573 (generic-string-trim char-bag string t nil))
575 (defun string-right-trim (char-bag string)
576 (generic-string-trim char-bag string nil t))
578 (defun string-trim (char-bag string)
579 (generic-string-trim char-bag string t t))
581 (defun logically-readonlyize (string &optional (always-shareable t))
582 ;; "Always" means that regardless of whether the user want
583 ;; coalescing of strings used as literals in code compiled to memory,
584 ;; the string is shareable.
585 ;; #b01_ ; symbol name, literal compiled to fasl, some other stuff
586 ;; #b10_ ; literal compiled to core
587 (set-header-data (the string string)
588 (if always-shareable
589 +string-shareable+
590 +string-shareable-nonstd+)))