Preliminary work towards threads on win32
[sbcl.git] / src / runtime / interrupt.c
blob9b82a58f8cbf1135812c1ce40f100fb4c439efb7
1 /*
2 * interrupt-handling magic
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
43 #include "sbcl.h"
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <string.h>
48 #include <signal.h>
49 #include <sys/types.h>
50 #ifndef LISP_FEATURE_WIN32
51 #include <sys/wait.h>
52 #endif
53 #include <errno.h>
55 #include "runtime.h"
56 #include "arch.h"
57 #include "os.h"
58 #include "interrupt.h"
59 #include "globals.h"
60 #include "lispregs.h"
61 #include "validate.h"
62 #include "interr.h"
63 #include "gc.h"
64 #include "alloc.h"
65 #include "dynbind.h"
66 #include "pseudo-atomic.h"
67 #include "genesis/fdefn.h"
68 #include "genesis/simple-fun.h"
69 #include "genesis/cons.h"
71 /* When we catch an internal error, should we pass it back to Lisp to
72 * be handled in a high-level way? (Early in cold init, the answer is
73 * 'no', because Lisp is still too brain-dead to handle anything.
74 * After sufficient initialization has been completed, the answer
75 * becomes 'yes'.) */
76 boolean internal_errors_enabled = 0;
78 #ifndef LISP_FEATURE_WIN32
79 static
80 void (*interrupt_low_level_handlers[NSIG]) (int, siginfo_t*, os_context_t*);
81 #endif
82 union interrupt_handler interrupt_handlers[NSIG];
84 /* Under Linux on some architectures, we appear to have to restore the
85 * FPU control word from the context, as after the signal is delivered
86 * we appear to have a null FPU control word. */
87 #if defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
88 #define RESTORE_FP_CONTROL_WORD(context,void_context) \
89 os_context_t *context = arch_os_get_context(&void_context); \
90 os_restore_fp_control(context);
91 #else
92 #define RESTORE_FP_CONTROL_WORD(context,void_context) \
93 os_context_t *context = arch_os_get_context(&void_context);
94 #endif
96 /* Foreign code may want to start some threads on its own.
97 * Non-targetted, truly asynchronous signals can be delivered to
98 * basically any thread, but invoking Lisp handlers in such foregign
99 * threads is really bad, so let's resignal it.
101 * This should at least bring attention to the problem, but it cannot
102 * work for SIGSEGV and similar. It is good enough for timers, and
103 * maybe all deferrables. */
105 #if defined(LISP_FEATURE_SB_THREAD) && !defined(LISP_FEATURE_WIN32)
106 static void
107 add_handled_signals(sigset_t *sigset)
109 int i;
110 for(i = 1; i < NSIG; i++) {
111 if (!(ARE_SAME_HANDLER(interrupt_low_level_handlers[i], SIG_DFL)) ||
112 !(ARE_SAME_HANDLER(interrupt_handlers[i].c, SIG_DFL))) {
113 sigaddset(sigset, i);
118 void block_signals(sigset_t *what, sigset_t *where, sigset_t *old);
119 #endif
121 static boolean
122 maybe_resignal_to_lisp_thread(int signal, os_context_t *context)
124 #if defined(LISP_FEATURE_SB_THREAD) && !defined(LISP_FEATURE_WIN32)
125 if (!pthread_getspecific(lisp_thread)) {
126 if (!(sigismember(&deferrable_sigset,signal))) {
127 corruption_warning_and_maybe_lose
128 ("Received signal %d in non-lisp thread %lu, resignalling to a lisp thread.",
129 signal,
130 pthread_self());
133 sigset_t sigset;
134 sigemptyset(&sigset);
135 add_handled_signals(&sigset);
136 block_signals(&sigset, 0, 0);
137 block_signals(&sigset, os_context_sigmask_addr(context), 0);
138 kill(getpid(), signal);
140 return 1;
141 } else
142 #endif
143 return 0;
146 /* These are to be used in signal handlers. Currently all handlers are
147 * called from one of:
149 * interrupt_handle_now_handler
150 * maybe_now_maybe_later
151 * unblock_me_trampoline
152 * low_level_handle_now_handler
153 * low_level_maybe_now_maybe_later
154 * low_level_unblock_me_trampoline
156 * This gives us a single point of control (or six) over errno, fp
157 * control word, and fixing up signal context on sparc.
159 * The SPARC/Linux platform doesn't quite do signals the way we want
160 * them done. The third argument in the handler isn't filled in by the
161 * kernel properly, so we fix it up ourselves in the
162 * arch_os_get_context(..) function. -- CSR, 2002-07-23
164 #define SAVE_ERRNO(signal,context,void_context) \
166 int _saved_errno = errno; \
167 RESTORE_FP_CONTROL_WORD(context,void_context); \
168 if (!maybe_resignal_to_lisp_thread(signal, context)) \
171 #define RESTORE_ERRNO \
173 errno = _saved_errno; \
176 static void run_deferred_handler(struct interrupt_data *data,
177 os_context_t *context);
178 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
179 static void store_signal_data_for_later (struct interrupt_data *data,
180 void *handler, int signal,
181 siginfo_t *info,
182 os_context_t *context);
185 /* Generic signal related utilities. */
187 void
188 get_current_sigmask(sigset_t *sigset)
190 /* Get the current sigmask, by blocking the empty set. */
191 thread_sigmask(SIG_BLOCK, 0, sigset);
194 void
195 block_signals(sigset_t *what, sigset_t *where, sigset_t *old)
197 if (where) {
198 int i;
199 if (old)
200 sigcopyset(old, where);
201 for(i = 1; i < NSIG; i++) {
202 if (sigismember(what, i))
203 sigaddset(where, i);
205 } else {
206 thread_sigmask(SIG_BLOCK, what, old);
210 void
211 unblock_signals(sigset_t *what, sigset_t *where, sigset_t *old)
213 if (where) {
214 int i;
215 if (old)
216 sigcopyset(old, where);
217 for(i = 1; i < NSIG; i++) {
218 if (sigismember(what, i))
219 sigdelset(where, i);
221 } else {
222 thread_sigmask(SIG_UNBLOCK, what, old);
226 static void
227 print_sigset(sigset_t *sigset)
229 int i;
230 for(i = 1; i < NSIG; i++) {
231 if (sigismember(sigset, i))
232 fprintf(stderr, "Signal %d masked\n", i);
236 /* Return 1 is all signals is sigset2 are masked in sigset, return 0
237 * if all re unmasked else die. Passing NULL for sigset is a shorthand
238 * for the current sigmask. */
239 boolean
240 all_signals_blocked_p(sigset_t *sigset, sigset_t *sigset2,
241 const char *name)
243 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
244 int i;
245 boolean has_blocked = 0, has_unblocked = 0;
246 sigset_t current;
247 if (sigset == 0) {
248 get_current_sigmask(&current);
249 sigset = &current;
251 for(i = 1; i < NSIG; i++) {
252 if (sigismember(sigset2, i)) {
253 if (sigismember(sigset, i))
254 has_blocked = 1;
255 else
256 has_unblocked = 1;
259 if (has_blocked && has_unblocked) {
260 print_sigset(sigset);
261 lose("some %s signals blocked, some unblocked\n", name);
263 if (has_blocked)
264 return 1;
265 else
266 return 0;
267 #endif
271 /* Deferrables, blockables, gc signals. */
273 void
274 sigaddset_deferrable(sigset_t *s)
276 sigaddset(s, SIGHUP);
277 sigaddset(s, SIGINT);
278 sigaddset(s, SIGTERM);
279 sigaddset(s, SIGQUIT);
280 sigaddset(s, SIGPIPE);
281 sigaddset(s, SIGALRM);
282 sigaddset(s, SIGURG);
283 sigaddset(s, SIGTSTP);
284 sigaddset(s, SIGCHLD);
285 sigaddset(s, SIGIO);
286 #ifndef LISP_FEATURE_HPUX
287 sigaddset(s, SIGXCPU);
288 sigaddset(s, SIGXFSZ);
289 #endif
290 sigaddset(s, SIGVTALRM);
291 sigaddset(s, SIGPROF);
292 sigaddset(s, SIGWINCH);
295 void
296 sigaddset_blockable(sigset_t *sigset)
298 sigaddset_deferrable(sigset);
299 sigaddset_gc(sigset);
302 void
303 sigaddset_gc(sigset_t *sigset)
305 #ifdef THREADS_USING_GCSIGNAL
306 sigaddset(sigset,SIG_STOP_FOR_GC);
307 #endif
310 /* initialized in interrupt_init */
311 sigset_t deferrable_sigset;
312 sigset_t blockable_sigset;
313 sigset_t gc_sigset;
315 #endif
317 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
318 boolean
319 deferrables_blocked_p(sigset_t *sigset)
321 return all_signals_blocked_p(sigset, &deferrable_sigset, "deferrable");
323 #endif
325 void
326 check_deferrables_unblocked_or_lose(sigset_t *sigset)
328 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
329 if (deferrables_blocked_p(sigset))
330 lose("deferrables blocked\n");
331 #endif
334 void
335 check_deferrables_blocked_or_lose(sigset_t *sigset)
337 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
338 if (!deferrables_blocked_p(sigset))
339 lose("deferrables unblocked\n");
340 #endif
343 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
344 boolean
345 blockables_blocked_p(sigset_t *sigset)
347 return all_signals_blocked_p(sigset, &blockable_sigset, "blockable");
349 #endif
351 void
352 check_blockables_unblocked_or_lose(sigset_t *sigset)
354 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
355 if (blockables_blocked_p(sigset))
356 lose("blockables blocked\n");
357 #endif
360 void
361 check_blockables_blocked_or_lose(sigset_t *sigset)
363 #if !defined(LISP_FEATURE_WIN32)
364 /* On Windows, there are no actual signals, but since the win32 port
365 * tracks the sigmask and checks it explicitly, some functions are
366 * still required to keep the mask set up properly. (After all, the
367 * goal of the sigmask emulation is to not have to change all the
368 * call sites in the first place.)
370 * However, this does not hold for all signals equally: While
371 * deferrables matter ("is interrupt-thread okay?"), it is not worth
372 * having to set up blockables properly (which include the
373 * non-existing GC signals).
375 * Yet, as the original comment explains it:
376 * Adjusting FREE-INTERRUPT-CONTEXT-INDEX* and other aspecs of
377 * fake_foreign_function_call machinery are sometimes useful here[...].
379 * So we merely skip this assertion.
380 * -- DFL, trying to expand on a comment by AK.
382 if (!blockables_blocked_p(sigset))
383 lose("blockables unblocked\n");
384 #endif
387 #ifndef LISP_FEATURE_SB_SAFEPOINT
388 #if !defined(LISP_FEATURE_WIN32)
389 boolean
390 gc_signals_blocked_p(sigset_t *sigset)
392 return all_signals_blocked_p(sigset, &gc_sigset, "gc");
394 #endif
396 void
397 check_gc_signals_unblocked_or_lose(sigset_t *sigset)
399 #if !defined(LISP_FEATURE_WIN32)
400 if (gc_signals_blocked_p(sigset))
401 lose("gc signals blocked\n");
402 #endif
405 void
406 check_gc_signals_blocked_or_lose(sigset_t *sigset)
408 #if !defined(LISP_FEATURE_WIN32)
409 if (!gc_signals_blocked_p(sigset))
410 lose("gc signals unblocked\n");
411 #endif
413 #endif
415 void
416 block_deferrable_signals(sigset_t *where, sigset_t *old)
418 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
419 block_signals(&deferrable_sigset, where, old);
420 #endif
423 void
424 block_blockable_signals(sigset_t *where, sigset_t *old)
426 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
427 block_signals(&blockable_sigset, where, old);
428 #endif
431 #ifndef LISP_FEATURE_SB_SAFEPOINT
432 void
433 block_gc_signals(sigset_t *where, sigset_t *old)
435 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
436 block_signals(&gc_sigset, where, old);
437 #endif
439 #endif
441 void
442 unblock_deferrable_signals(sigset_t *where, sigset_t *old)
444 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
445 if (interrupt_handler_pending_p())
446 lose("unblock_deferrable_signals: losing proposition\n");
447 #ifndef LISP_FEATURE_SB_SAFEPOINT
448 check_gc_signals_unblocked_or_lose(where);
449 #endif
450 unblock_signals(&deferrable_sigset, where, old);
451 #endif
454 void
455 unblock_blockable_signals(sigset_t *where, sigset_t *old)
457 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
458 unblock_signals(&blockable_sigset, where, old);
459 #endif
462 #ifndef LISP_FEATURE_SB_SAFEPOINT
463 void
464 unblock_gc_signals(sigset_t *where, sigset_t *old)
466 #ifndef LISP_FEATURE_WIN32
467 unblock_signals(&gc_sigset, where, old);
468 #endif
470 #endif
472 void
473 unblock_signals_in_context_and_maybe_warn(os_context_t *context)
475 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
476 sigset_t *sigset = os_context_sigmask_addr(context);
477 #ifndef LISP_FEATURE_SB_SAFEPOINT
478 if (all_signals_blocked_p(sigset, &gc_sigset, "gc")) {
479 corruption_warning_and_maybe_lose(
480 "Enabling blocked gc signals to allow returning to Lisp without risking\n\
481 gc deadlocks. Since GC signals are only blocked in signal handlers when \n\
482 they are not safe to interrupt at all, this is a pretty severe occurrence.\n");
483 unblock_gc_signals(sigset, 0);
485 #endif
486 if (!interrupt_handler_pending_p()) {
487 unblock_deferrable_signals(sigset, 0);
489 #endif
493 inline static void
494 check_interrupts_enabled_or_lose(os_context_t *context)
496 struct thread *thread=arch_os_get_current_thread();
497 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
498 lose("interrupts not enabled\n");
499 if (arch_pseudo_atomic_atomic(context))
500 lose ("in pseudo atomic section\n");
503 /* Save sigset (or the current sigmask if 0) if there is no pending
504 * handler, because that means that deferabbles are already blocked.
505 * The purpose is to avoid losing the pending gc signal if a
506 * deferrable interrupt async unwinds between clearing the pseudo
507 * atomic and trapping to GC.*/
508 #ifndef LISP_FEATURE_SB_SAFEPOINT
509 void
510 maybe_save_gc_mask_and_block_deferrables(sigset_t *sigset)
512 #ifndef LISP_FEATURE_WIN32
513 struct thread *thread = arch_os_get_current_thread();
514 struct interrupt_data *data = thread->interrupt_data;
515 sigset_t oldset;
516 /* Obviously, this function is called when signals may not be
517 * blocked. Let's make sure we are not interrupted. */
518 block_blockable_signals(0, &oldset);
519 #ifndef LISP_FEATURE_SB_THREAD
520 /* With threads a SIG_STOP_FOR_GC and a normal GC may also want to
521 * block. */
522 if (data->gc_blocked_deferrables)
523 lose("gc_blocked_deferrables already true\n");
524 #endif
525 if ((!data->pending_handler) &&
526 (!data->gc_blocked_deferrables)) {
527 FSHOW_SIGNAL((stderr,"/setting gc_blocked_deferrables\n"));
528 data->gc_blocked_deferrables = 1;
529 if (sigset) {
530 /* This is the sigmask of some context. */
531 sigcopyset(&data->pending_mask, sigset);
532 sigaddset_deferrable(sigset);
533 thread_sigmask(SIG_SETMASK,&oldset,0);
534 return;
535 } else {
536 /* Operating on the current sigmask. Save oldset and
537 * unblock gc signals. In the end, this is equivalent to
538 * blocking the deferrables. */
539 sigcopyset(&data->pending_mask, &oldset);
540 thread_sigmask(SIG_UNBLOCK, &gc_sigset, 0);
541 return;
544 thread_sigmask(SIG_SETMASK,&oldset,0);
545 #endif
547 #endif
549 /* Are we leaving WITH-GCING and already running with interrupts
550 * enabled, without the protection of *GC-INHIBIT* T and there is gc
551 * (or stop for gc) pending, but we haven't trapped yet? */
553 in_leaving_without_gcing_race_p(struct thread *thread)
555 return ((SymbolValue(IN_WITHOUT_GCING,thread) != NIL) &&
556 (SymbolValue(INTERRUPTS_ENABLED,thread) != NIL) &&
557 (SymbolValue(GC_INHIBIT,thread) == NIL) &&
558 ((SymbolValue(GC_PENDING,thread) != NIL)
559 #if defined(LISP_FEATURE_SB_THREAD)
560 || (SymbolValue(STOP_FOR_GC_PENDING,thread) != NIL)
561 #endif
565 /* Check our baroque invariants. */
566 void
567 check_interrupt_context_or_lose(os_context_t *context)
569 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
570 struct thread *thread = arch_os_get_current_thread();
571 struct interrupt_data *data = thread->interrupt_data;
572 int interrupt_deferred_p = (data->pending_handler != 0);
573 int interrupt_pending = (SymbolValue(INTERRUPT_PENDING,thread) != NIL);
574 sigset_t *sigset = os_context_sigmask_addr(context);
575 /* On PPC pseudo_atomic_interrupted is cleared when coming out of
576 * handle_allocation_trap. */
577 #if defined(LISP_FEATURE_GENCGC) && !defined(GENCGC_IS_PRECISE)
578 int interrupts_enabled = (SymbolValue(INTERRUPTS_ENABLED,thread) != NIL);
579 int gc_inhibit = (SymbolValue(GC_INHIBIT,thread) != NIL);
580 int gc_pending = (SymbolValue(GC_PENDING,thread) == T);
581 int pseudo_atomic_interrupted = get_pseudo_atomic_interrupted(thread);
582 int in_race_p = in_leaving_without_gcing_race_p(thread);
583 /* In the time window between leaving the *INTERRUPTS-ENABLED* NIL
584 * section and trapping, a SIG_STOP_FOR_GC would see the next
585 * check fail, for this reason sig_stop_for_gc handler does not
586 * call this function. */
587 if (interrupt_deferred_p) {
588 if (!(!interrupts_enabled || pseudo_atomic_interrupted || in_race_p))
589 lose("Stray deferred interrupt.\n");
591 if (gc_pending)
592 if (!(pseudo_atomic_interrupted || gc_inhibit || in_race_p))
593 lose("GC_PENDING, but why?\n");
594 #if defined(LISP_FEATURE_SB_THREAD)
596 int stop_for_gc_pending =
597 (SymbolValue(STOP_FOR_GC_PENDING,thread) != NIL);
598 if (stop_for_gc_pending)
599 if (!(pseudo_atomic_interrupted || gc_inhibit || in_race_p))
600 lose("STOP_FOR_GC_PENDING, but why?\n");
601 if (pseudo_atomic_interrupted)
602 if (!(gc_pending || stop_for_gc_pending || interrupt_deferred_p))
603 lose("pseudo_atomic_interrupted, but why?\n");
605 #else
606 if (pseudo_atomic_interrupted)
607 if (!(gc_pending || interrupt_deferred_p))
608 lose("pseudo_atomic_interrupted, but why?\n");
609 #endif
610 #endif
611 if (interrupt_pending && !interrupt_deferred_p)
612 lose("INTERRUPT_PENDING but not pending handler.\n");
613 if ((data->gc_blocked_deferrables) && interrupt_pending)
614 lose("gc_blocked_deferrables and interrupt pending\n.");
615 if (data->gc_blocked_deferrables)
616 check_deferrables_blocked_or_lose(sigset);
617 if (interrupt_pending || interrupt_deferred_p ||
618 data->gc_blocked_deferrables)
619 check_deferrables_blocked_or_lose(sigset);
620 else {
621 check_deferrables_unblocked_or_lose(sigset);
622 #ifndef LISP_FEATURE_SB_SAFEPOINT
623 /* If deferrables are unblocked then we are open to signals
624 * that run lisp code. */
625 check_gc_signals_unblocked_or_lose(sigset);
626 #endif
628 #endif
632 * utility routines used by various signal handlers
635 static void
636 build_fake_control_stack_frames(struct thread *th,os_context_t *context)
638 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
640 lispobj oldcont;
642 /* Build a fake stack frame or frames */
644 access_control_frame_pointer(th) =
645 (lispobj *)(unsigned long)
646 (*os_context_register_addr(context, reg_CSP));
647 if ((lispobj *)(unsigned long)
648 (*os_context_register_addr(context, reg_CFP))
649 == access_control_frame_pointer(th)) {
650 /* There is a small window during call where the callee's
651 * frame isn't built yet. */
652 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
653 == FUN_POINTER_LOWTAG) {
654 /* We have called, but not built the new frame, so
655 * build it for them. */
656 access_control_frame_pointer(th)[0] =
657 *os_context_register_addr(context, reg_OCFP);
658 access_control_frame_pointer(th)[1] =
659 *os_context_register_addr(context, reg_LRA);
660 access_control_frame_pointer(th) += 8;
661 /* Build our frame on top of it. */
662 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
664 else {
665 /* We haven't yet called, build our frame as if the
666 * partial frame wasn't there. */
667 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
670 /* We can't tell whether we are still in the caller if it had to
671 * allocate a stack frame due to stack arguments. */
672 /* This observation provoked some past CMUCL maintainer to ask
673 * "Can anything strange happen during return?" */
674 else {
675 /* normal case */
676 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
679 access_control_stack_pointer(th) = access_control_frame_pointer(th) + 8;
681 access_control_frame_pointer(th)[0] = oldcont;
682 access_control_frame_pointer(th)[1] = NIL;
683 access_control_frame_pointer(th)[2] =
684 (lispobj)(*os_context_register_addr(context, reg_CODE));
685 #endif
688 /* Stores the context for gc to scavange and builds fake stack
689 * frames. */
690 void
691 fake_foreign_function_call(os_context_t *context)
693 int context_index;
694 struct thread *thread=arch_os_get_current_thread();
696 /* context_index incrementing must not be interrupted */
697 check_blockables_blocked_or_lose(0);
699 /* Get current Lisp state from context. */
700 #ifdef reg_ALLOC
701 #ifdef LISP_FEATURE_SB_THREAD
702 thread->pseudo_atomic_bits =
703 #else
704 dynamic_space_free_pointer =
705 (lispobj *)(unsigned long)
706 #endif
707 (*os_context_register_addr(context, reg_ALLOC));
708 /* fprintf(stderr,"dynamic_space_free_pointer: %p\n", */
709 /* dynamic_space_free_pointer); */
710 #if defined(LISP_FEATURE_ALPHA) || defined(LISP_FEATURE_MIPS)
711 if ((long)dynamic_space_free_pointer & 1) {
712 lose("dead in fake_foreign_function_call, context = %x\n", context);
714 #endif
715 /* why doesnt PPC and SPARC do something like this: */
716 #if defined(LISP_FEATURE_HPPA)
717 if ((long)dynamic_space_free_pointer & 4) {
718 lose("dead in fake_foreign_function_call, context = %x, d_s_f_p = %x\n", context, dynamic_space_free_pointer);
720 #endif
721 #endif
722 #ifdef reg_BSP
723 set_binding_stack_pointer(thread,
724 *os_context_register_addr(context, reg_BSP));
725 #endif
727 build_fake_control_stack_frames(thread,context);
729 /* Do dynamic binding of the active interrupt context index
730 * and save the context in the context array. */
731 context_index =
732 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread));
734 if (context_index >= MAX_INTERRUPTS) {
735 lose("maximum interrupt nesting depth (%d) exceeded\n", MAX_INTERRUPTS);
738 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
739 make_fixnum(context_index + 1),thread);
741 thread->interrupt_contexts[context_index] = context;
743 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
744 /* x86oid targets don't maintain the foreign function call flag at
745 * all, so leave them to believe that they are never in foreign
746 * code. */
747 foreign_function_call_active_p(thread) = 1;
748 #endif
751 /* blocks all blockable signals. If you are calling from a signal handler,
752 * the usual signal mask will be restored from the context when the handler
753 * finishes. Otherwise, be careful */
754 void
755 undo_fake_foreign_function_call(os_context_t *context)
757 struct thread *thread=arch_os_get_current_thread();
758 /* Block all blockable signals. */
759 block_blockable_signals(0, 0);
761 foreign_function_call_active_p(thread) = 0;
763 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
764 unbind(thread);
766 #if defined(reg_ALLOC) && !defined(LISP_FEATURE_SB_THREAD)
767 /* Put the dynamic space free pointer back into the context. */
768 *os_context_register_addr(context, reg_ALLOC) =
769 (unsigned long) dynamic_space_free_pointer
770 | (*os_context_register_addr(context, reg_ALLOC)
771 & LOWTAG_MASK);
773 ((unsigned long)(*os_context_register_addr(context, reg_ALLOC))
774 & ~LOWTAG_MASK)
775 | ((unsigned long) dynamic_space_free_pointer & LOWTAG_MASK);
777 #endif
778 #if defined(reg_ALLOC) && defined(LISP_FEATURE_SB_THREAD)
779 /* Put the pseudo-atomic bits and dynamic space free pointer back
780 * into the context (p-a-bits for p-a, and dynamic space free
781 * pointer for ROOM). */
782 *os_context_register_addr(context, reg_ALLOC) =
783 (unsigned long) dynamic_space_free_pointer
784 | (thread->pseudo_atomic_bits & LOWTAG_MASK);
785 /* And clear them so we don't get bit later by call-in/call-out
786 * not updating them. */
787 thread->pseudo_atomic_bits = 0;
788 #endif
791 /* a handler for the signal caused by execution of a trap opcode
792 * signalling an internal error */
793 void
794 interrupt_internal_error(os_context_t *context, boolean continuable)
796 lispobj context_sap;
798 fake_foreign_function_call(context);
800 if (!internal_errors_enabled) {
801 describe_internal_error(context);
802 /* There's no good way to recover from an internal error
803 * before the Lisp error handling mechanism is set up. */
804 lose("internal error too early in init, can't recover\n");
807 /* Allocate the SAP object while the interrupts are still
808 * disabled. */
809 #ifndef LISP_FEATURE_SB_SAFEPOINT
810 unblock_gc_signals(0, 0);
811 #endif
812 context_sap = alloc_sap(context);
814 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
815 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
816 #endif
818 #if defined(LISP_FEATURE_LINUX) && defined(LISP_FEATURE_MIPS)
819 /* Workaround for blocked SIGTRAP. */
821 sigset_t newset;
822 sigemptyset(&newset);
823 sigaddset(&newset, SIGTRAP);
824 thread_sigmask(SIG_UNBLOCK, &newset, 0);
826 #endif
828 SHOW("in interrupt_internal_error");
829 #if QSHOW == 2
830 /* Display some rudimentary debugging information about the
831 * error, so that even if the Lisp error handler gets badly
832 * confused, we have a chance to determine what's going on. */
833 describe_internal_error(context);
834 #endif
835 funcall2(StaticSymbolFunction(INTERNAL_ERROR), context_sap,
836 continuable ? T : NIL);
838 undo_fake_foreign_function_call(context); /* blocks signals again */
839 if (continuable)
840 arch_skip_instruction(context);
843 boolean
844 interrupt_handler_pending_p(void)
846 struct thread *thread = arch_os_get_current_thread();
847 struct interrupt_data *data = thread->interrupt_data;
848 return (data->pending_handler != 0);
851 void
852 interrupt_handle_pending(os_context_t *context)
854 /* There are three ways we can get here. First, if an interrupt
855 * occurs within pseudo-atomic, it will be deferred, and we'll
856 * trap to here at the end of the pseudo-atomic block. Second, if
857 * the GC (in alloc()) decides that a GC is required, it will set
858 * *GC-PENDING* and pseudo-atomic-interrupted if not *GC-INHIBIT*,
859 * and alloc() is always called from within pseudo-atomic, and
860 * thus we end up here again. Third, when calling GC-ON or at the
861 * end of a WITHOUT-GCING, MAYBE-HANDLE-PENDING-GC will trap to
862 * here if there is a pending GC. Fourth, ahem, at the end of
863 * WITHOUT-INTERRUPTS (bar complications with nesting).
865 * A fourth way happens with safepoints: In addition to a stop for
866 * GC that is pending, there are thruptions. Both mechanisms are
867 * mostly signal-free, yet also of an asynchronous nature, so it makes
868 * sense to let interrupt_handle_pending take care of running them:
869 * It gets run precisely at those places where it is safe to process
870 * pending asynchronous tasks. */
872 struct thread *thread = arch_os_get_current_thread();
873 struct interrupt_data *data = thread->interrupt_data;
875 if (arch_pseudo_atomic_atomic(context)) {
876 lose("Handling pending interrupt in pseudo atomic.");
879 FSHOW_SIGNAL((stderr, "/entering interrupt_handle_pending\n"));
881 check_blockables_blocked_or_lose(0);
882 #ifndef LISP_FEATURE_SB_SAFEPOINT
884 * (On safepoint builds, there is no gc_blocked_deferrables nor
885 * SIG_STOP_FOR_GC.)
887 /* If GC/SIG_STOP_FOR_GC struck during PA and there was no pending
888 * handler, then the pending mask was saved and
889 * gc_blocked_deferrables set. Hence, there can be no pending
890 * handler and it's safe to restore the pending mask.
892 * Note, that if gc_blocked_deferrables is false we may still have
893 * to GC. In this case, we are coming out of a WITHOUT-GCING or a
894 * pseudo atomic was interrupt be a deferrable first. */
895 if (data->gc_blocked_deferrables) {
896 if (data->pending_handler)
897 lose("GC blocked deferrables but still got a pending handler.");
898 if (SymbolValue(GC_INHIBIT,thread)!=NIL)
899 lose("GC blocked deferrables while GC is inhibited.");
900 /* Restore the saved signal mask from the original signal (the
901 * one that interrupted us during the critical section) into
902 * the os_context for the signal we're currently in the
903 * handler for. This should ensure that when we return from
904 * the handler the blocked signals are unblocked. */
905 #ifndef LISP_FEATURE_WIN32
906 sigcopyset(os_context_sigmask_addr(context), &data->pending_mask);
907 #endif
908 data->gc_blocked_deferrables = 0;
910 #endif
912 if (SymbolValue(GC_INHIBIT,thread)==NIL) {
913 void *original_pending_handler = data->pending_handler;
915 #ifdef LISP_FEATURE_SB_SAFEPOINT
916 /* handles the STOP_FOR_GC_PENDING case, plus THRUPTIONS */
917 if (SymbolValue(STOP_FOR_GC_PENDING,thread) != NIL
918 # ifdef LISP_FEATURE_SB_THRUPTION
919 || SymbolValue(THRUPTION_PENDING,thread) != NIL
920 # endif
923 /* We ought to take this chance to do a pitstop now. */
925 /* Now, it goes without saying that the context sigmask
926 * tweaking around this call is not pretty. However, it
927 * currently seems to be "needed" for the following
928 * situation. (So let's find a better solution and remove
929 * this comment afterwards.)
931 * Suppose we are in a signal handler (let's say SIGALRM).
932 * At the end of a WITHOUT-INTERRUPTS, the lisp code notices
933 * that a thruption is pending, and says to itself "let's
934 * receive pending interrupts then". We trust that the
935 * caller is happy to run those sorts of things now,
936 * including thruptions, otherwise it wouldn't have called
937 * us. But that's the problem: Even though we can guess the
938 * caller's intention, may_thrupt() would see that signals
939 * are blocked in the signal context (because that context
940 * itself points to a signal handler). So we cheat and
941 * pretend that signals weren't blocked.
942 * --DFL */
943 #ifndef LISP_FEATURE_WIN32
944 sigset_t old, *ctxset = os_context_sigmask_addr(context);
945 unblock_signals(&deferrable_sigset, ctxset, &old);
946 #endif
947 thread_pitstop(context);
948 #ifndef LISP_FEATURE_WIN32
949 sigcopyset(&old, ctxset);
950 #endif
952 #elif defined(LISP_FEATURE_SB_THREAD)
953 if (SymbolValue(STOP_FOR_GC_PENDING,thread) != NIL) {
954 /* STOP_FOR_GC_PENDING and GC_PENDING are cleared by
955 * the signal handler if it actually stops us. */
956 arch_clear_pseudo_atomic_interrupted(context);
957 sig_stop_for_gc_handler(SIG_STOP_FOR_GC,NULL,context);
958 } else
959 #endif
960 /* Test for T and not for != NIL since the value :IN-PROGRESS
961 * is used in SUB-GC as part of the mechanism to supress
962 * recursive gcs.*/
963 if (SymbolValue(GC_PENDING,thread) == T) {
965 /* Two reasons for doing this. First, if there is a
966 * pending handler we don't want to run. Second, we are
967 * going to clear pseudo atomic interrupted to avoid
968 * spurious trapping on every allocation in SUB_GC and
969 * having a pending handler with interrupts enabled and
970 * without pseudo atomic interrupted breaks an
971 * invariant. */
972 if (data->pending_handler) {
973 bind_variable(ALLOW_WITH_INTERRUPTS, NIL, thread);
974 bind_variable(INTERRUPTS_ENABLED, NIL, thread);
977 arch_clear_pseudo_atomic_interrupted(context);
979 /* GC_PENDING is cleared in SUB-GC, or if another thread
980 * is doing a gc already we will get a SIG_STOP_FOR_GC and
981 * that will clear it.
983 * If there is a pending handler or gc was triggerred in a
984 * signal handler then maybe_gc won't run POST_GC and will
985 * return normally. */
986 if (!maybe_gc(context))
987 lose("GC not inhibited but maybe_gc did not GC.");
989 if (data->pending_handler) {
990 unbind(thread);
991 unbind(thread);
993 } else if (SymbolValue(GC_PENDING,thread) != NIL) {
994 /* It's not NIL or T so GC_PENDING is :IN-PROGRESS. If
995 * GC-PENDING is not NIL then we cannot trap on pseudo
996 * atomic due to GC (see if(GC_PENDING) logic in
997 * cheneygc.c an gengcgc.c), plus there is a outer
998 * WITHOUT-INTERRUPTS SUB_GC, so how did we end up
999 * here? */
1000 lose("Trapping to run pending handler while GC in progress.");
1003 check_blockables_blocked_or_lose(0);
1005 /* No GC shall be lost. If SUB_GC triggers another GC then
1006 * that should be handled on the spot. */
1007 if (SymbolValue(GC_PENDING,thread) != NIL)
1008 lose("GC_PENDING after doing gc.");
1009 #ifdef THREADS_USING_GCSIGNAL
1010 if (SymbolValue(STOP_FOR_GC_PENDING,thread) != NIL)
1011 lose("STOP_FOR_GC_PENDING after doing gc.");
1012 #endif
1013 /* Check two things. First, that gc does not clobber a handler
1014 * that's already pending. Second, that there is no interrupt
1015 * lossage: if original_pending_handler was NULL then even if
1016 * an interrupt arrived during GC (POST-GC, really) it was
1017 * handled. */
1018 if (original_pending_handler != data->pending_handler)
1019 lose("pending handler changed in gc: %x -> %d.",
1020 original_pending_handler, data->pending_handler);
1023 #ifndef LISP_FEATURE_WIN32
1024 /* There may be no pending handler, because it was only a gc that
1025 * had to be executed or because Lisp is a bit too eager to call
1026 * DO-PENDING-INTERRUPT. */
1027 if ((SymbolValue(INTERRUPTS_ENABLED,thread) != NIL) &&
1028 (data->pending_handler)) {
1029 /* No matter how we ended up here, clear both
1030 * INTERRUPT_PENDING and pseudo atomic interrupted. It's safe
1031 * because we checked above that there is no GC pending. */
1032 SetSymbolValue(INTERRUPT_PENDING, NIL, thread);
1033 arch_clear_pseudo_atomic_interrupted(context);
1034 /* Restore the sigmask in the context. */
1035 sigcopyset(os_context_sigmask_addr(context), &data->pending_mask);
1036 run_deferred_handler(data, context);
1038 #ifdef LISP_FEATURE_SB_THRUPTION
1039 if (SymbolValue(THRUPTION_PENDING,thread)==T)
1040 /* Special case for the following situation: There is a
1041 * thruption pending, but a signal had been deferred. The
1042 * pitstop at the top of this function could only take care
1043 * of GC, and skipped the thruption, so we need to try again
1044 * now that INTERRUPT_PENDING and the sigmask have been
1045 * reset. */
1046 while (check_pending_thruptions(context))
1048 #endif
1049 #endif
1050 #ifdef LISP_FEATURE_GENCGC
1051 if (get_pseudo_atomic_interrupted(thread))
1052 lose("pseudo_atomic_interrupted after interrupt_handle_pending\n");
1053 #endif
1054 /* It is possible that the end of this function was reached
1055 * without never actually doing anything, the tests in Lisp for
1056 * when to call receive-pending-interrupt are not exact. */
1057 FSHOW_SIGNAL((stderr, "/exiting interrupt_handle_pending\n"));
1061 void
1062 interrupt_handle_now(int signal, siginfo_t *info, os_context_t *context)
1064 boolean were_in_lisp;
1065 union interrupt_handler handler;
1067 check_blockables_blocked_or_lose(0);
1069 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
1070 if (sigismember(&deferrable_sigset,signal))
1071 check_interrupts_enabled_or_lose(context);
1072 #endif
1074 handler = interrupt_handlers[signal];
1076 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
1077 return;
1080 were_in_lisp = !foreign_function_call_active_p(arch_os_get_current_thread());
1081 if (were_in_lisp)
1083 fake_foreign_function_call(context);
1086 FSHOW_SIGNAL((stderr,
1087 "/entering interrupt_handle_now(%d, info, context)\n",
1088 signal));
1090 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
1092 /* This can happen if someone tries to ignore or default one
1093 * of the signals we need for runtime support, and the runtime
1094 * support decides to pass on it. */
1095 lose("no handler for signal %d in interrupt_handle_now(..)\n", signal);
1097 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
1098 /* Once we've decided what to do about contexts in a
1099 * return-elsewhere world (the original context will no longer
1100 * be available; should we copy it or was nobody using it anyway?)
1101 * then we should convert this to return-elsewhere */
1103 /* CMUCL comment said "Allocate the SAPs while the interrupts
1104 * are still disabled.". I (dan, 2003.08.21) assume this is
1105 * because we're not in pseudoatomic and allocation shouldn't
1106 * be interrupted. In which case it's no longer an issue as
1107 * all our allocation from C now goes through a PA wrapper,
1108 * but still, doesn't hurt.
1110 * Yeah, but non-gencgc platforms don't really wrap allocation
1111 * in PA. MG - 2005-08-29 */
1113 lispobj info_sap, context_sap;
1114 /* Leave deferrable signals blocked, the handler itself will
1115 * allow signals again when it sees fit. */
1116 #ifndef LISP_FEATURE_SB_SAFEPOINT
1117 unblock_gc_signals(0, 0);
1118 #endif
1119 context_sap = alloc_sap(context);
1120 info_sap = alloc_sap(info);
1122 FSHOW_SIGNAL((stderr,"/calling Lisp-level handler\n"));
1124 #ifdef LISP_FEATURE_SB_SAFEPOINT
1125 WITH_GC_AT_SAFEPOINTS_ONLY()
1126 #endif
1127 funcall3(handler.lisp,
1128 make_fixnum(signal),
1129 info_sap,
1130 context_sap);
1131 } else {
1132 /* This cannot happen in sane circumstances. */
1134 FSHOW_SIGNAL((stderr,"/calling C-level handler\n"));
1136 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
1137 /* Allow signals again. */
1138 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
1139 (*handler.c)(signal, info, context);
1140 #endif
1143 if (were_in_lisp)
1145 undo_fake_foreign_function_call(context); /* block signals again */
1148 FSHOW_SIGNAL((stderr,
1149 "/returning from interrupt_handle_now(%d, info, context)\n",
1150 signal));
1153 /* This is called at the end of a critical section if the indications
1154 * are that some signal was deferred during the section. Note that as
1155 * far as C or the kernel is concerned we dealt with the signal
1156 * already; we're just doing the Lisp-level processing now that we
1157 * put off then */
1158 static void
1159 run_deferred_handler(struct interrupt_data *data, os_context_t *context)
1161 /* The pending_handler may enable interrupts and then another
1162 * interrupt may hit, overwrite interrupt_data, so reset the
1163 * pending handler before calling it. Trust the handler to finish
1164 * with the siginfo before enabling interrupts. */
1165 void (*pending_handler) (int, siginfo_t*, os_context_t*) =
1166 data->pending_handler;
1168 data->pending_handler=0;
1169 FSHOW_SIGNAL((stderr, "/running deferred handler %p\n", pending_handler));
1170 (*pending_handler)(data->pending_signal,&(data->pending_info), context);
1173 #ifndef LISP_FEATURE_WIN32
1174 boolean
1175 maybe_defer_handler(void *handler, struct interrupt_data *data,
1176 int signal, siginfo_t *info, os_context_t *context)
1178 struct thread *thread=arch_os_get_current_thread();
1180 check_blockables_blocked_or_lose(0);
1182 if (SymbolValue(INTERRUPT_PENDING,thread) != NIL)
1183 lose("interrupt already pending\n");
1184 if (thread->interrupt_data->pending_handler)
1185 lose("there is a pending handler already (PA)\n");
1186 if (data->gc_blocked_deferrables)
1187 lose("maybe_defer_handler: gc_blocked_deferrables true\n");
1188 check_interrupt_context_or_lose(context);
1189 /* If interrupts are disabled then INTERRUPT_PENDING is set and
1190 * not PSEDUO_ATOMIC_INTERRUPTED. This is important for a pseudo
1191 * atomic section inside a WITHOUT-INTERRUPTS.
1193 * Also, if in_leaving_without_gcing_race_p then
1194 * interrupt_handle_pending is going to be called soon, so
1195 * stashing the signal away is safe.
1197 if ((SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) ||
1198 in_leaving_without_gcing_race_p(thread)) {
1199 FSHOW_SIGNAL((stderr,
1200 "/maybe_defer_handler(%x,%d): deferred (RACE=%d)\n",
1201 (unsigned int)handler,signal,
1202 in_leaving_without_gcing_race_p(thread)));
1203 store_signal_data_for_later(data,handler,signal,info,context);
1204 SetSymbolValue(INTERRUPT_PENDING, T,thread);
1205 check_interrupt_context_or_lose(context);
1206 return 1;
1208 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
1209 * actually use its argument for anything on x86, so this branch
1210 * may succeed even when context is null (gencgc alloc()) */
1211 if (arch_pseudo_atomic_atomic(context)) {
1212 FSHOW_SIGNAL((stderr,
1213 "/maybe_defer_handler(%x,%d): deferred(PA)\n",
1214 (unsigned int)handler,signal));
1215 store_signal_data_for_later(data,handler,signal,info,context);
1216 arch_set_pseudo_atomic_interrupted(context);
1217 check_interrupt_context_or_lose(context);
1218 return 1;
1220 FSHOW_SIGNAL((stderr,
1221 "/maybe_defer_handler(%x,%d): not deferred\n",
1222 (unsigned int)handler,signal));
1223 return 0;
1226 static void
1227 store_signal_data_for_later (struct interrupt_data *data, void *handler,
1228 int signal,
1229 siginfo_t *info, os_context_t *context)
1231 if (data->pending_handler)
1232 lose("tried to overwrite pending interrupt handler %x with %x\n",
1233 data->pending_handler, handler);
1234 if (!handler)
1235 lose("tried to defer null interrupt handler\n");
1236 data->pending_handler = handler;
1237 data->pending_signal = signal;
1238 if(info)
1239 memcpy(&(data->pending_info), info, sizeof(siginfo_t));
1241 FSHOW_SIGNAL((stderr, "/store_signal_data_for_later: signal: %d\n",
1242 signal));
1244 if(!context)
1245 lose("Null context");
1247 /* the signal mask in the context (from before we were
1248 * interrupted) is copied to be restored when run_deferred_handler
1249 * happens. Then the usually-blocked signals are added to the mask
1250 * in the context so that we are running with blocked signals when
1251 * the handler returns */
1252 sigcopyset(&(data->pending_mask),os_context_sigmask_addr(context));
1253 sigaddset_deferrable(os_context_sigmask_addr(context));
1256 static void
1257 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
1259 SAVE_ERRNO(signal,context,void_context);
1260 struct thread *thread = arch_os_get_current_thread();
1261 struct interrupt_data *data = thread->interrupt_data;
1262 if(!maybe_defer_handler(interrupt_handle_now,data,signal,info,context))
1263 interrupt_handle_now(signal, info, context);
1264 RESTORE_ERRNO;
1267 static void
1268 low_level_interrupt_handle_now(int signal, siginfo_t *info,
1269 os_context_t *context)
1271 /* No FP control fixage needed, caller has done that. */
1272 check_blockables_blocked_or_lose(0);
1273 check_interrupts_enabled_or_lose(context);
1274 (*interrupt_low_level_handlers[signal])(signal, info, context);
1275 /* No Darwin context fixage needed, caller does that. */
1278 static void
1279 low_level_maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
1281 SAVE_ERRNO(signal,context,void_context);
1282 struct thread *thread = arch_os_get_current_thread();
1283 struct interrupt_data *data = thread->interrupt_data;
1285 if(!maybe_defer_handler(low_level_interrupt_handle_now,data,
1286 signal,info,context))
1287 low_level_interrupt_handle_now(signal, info, context);
1288 RESTORE_ERRNO;
1290 #endif
1292 #ifdef THREADS_USING_GCSIGNAL
1294 /* This function must not cons, because that may trigger a GC. */
1295 void
1296 sig_stop_for_gc_handler(int signal, siginfo_t *info, os_context_t *context)
1298 struct thread *thread=arch_os_get_current_thread();
1299 boolean was_in_lisp;
1301 /* Test for GC_INHIBIT _first_, else we'd trap on every single
1302 * pseudo atomic until gc is finally allowed. */
1303 if (SymbolValue(GC_INHIBIT,thread) != NIL) {
1304 FSHOW_SIGNAL((stderr, "sig_stop_for_gc deferred (*GC-INHIBIT*)\n"));
1305 SetSymbolValue(STOP_FOR_GC_PENDING,T,thread);
1306 return;
1307 } else if (arch_pseudo_atomic_atomic(context)) {
1308 FSHOW_SIGNAL((stderr,"sig_stop_for_gc deferred (PA)\n"));
1309 SetSymbolValue(STOP_FOR_GC_PENDING,T,thread);
1310 arch_set_pseudo_atomic_interrupted(context);
1311 maybe_save_gc_mask_and_block_deferrables
1312 (os_context_sigmask_addr(context));
1313 return;
1316 FSHOW_SIGNAL((stderr, "/sig_stop_for_gc_handler\n"));
1318 /* Not PA and GC not inhibited -- we can stop now. */
1320 was_in_lisp = !foreign_function_call_active_p(arch_os_get_current_thread());
1322 if (was_in_lisp) {
1323 /* need the context stored so it can have registers scavenged */
1324 fake_foreign_function_call(context);
1327 /* Not pending anymore. */
1328 SetSymbolValue(GC_PENDING,NIL,thread);
1329 SetSymbolValue(STOP_FOR_GC_PENDING,NIL,thread);
1331 /* Consider this: in a PA section GC is requested: GC_PENDING,
1332 * pseudo_atomic_interrupted and gc_blocked_deferrables are set,
1333 * deferrables are blocked then pseudo_atomic_atomic is cleared,
1334 * but a SIG_STOP_FOR_GC arrives before trapping to
1335 * interrupt_handle_pending. Here, GC_PENDING is cleared but
1336 * pseudo_atomic_interrupted is not and we go on running with
1337 * pseudo_atomic_interrupted but without a pending interrupt or
1338 * GC. GC_BLOCKED_DEFERRABLES is also left at 1. So let's tidy it
1339 * up. */
1340 if (thread->interrupt_data->gc_blocked_deferrables) {
1341 FSHOW_SIGNAL((stderr,"cleaning up after gc_blocked_deferrables\n"));
1342 clear_pseudo_atomic_interrupted(thread);
1343 sigcopyset(os_context_sigmask_addr(context),
1344 &thread->interrupt_data->pending_mask);
1345 thread->interrupt_data->gc_blocked_deferrables = 0;
1348 if(thread_state(thread)!=STATE_RUNNING) {
1349 lose("sig_stop_for_gc_handler: wrong thread state: %ld\n",
1350 fixnum_value(thread->state));
1353 set_thread_state(thread,STATE_STOPPED);
1354 FSHOW_SIGNAL((stderr,"suspended\n"));
1356 /* While waiting for gc to finish occupy ourselves with zeroing
1357 * the unused portion of the control stack to reduce conservatism.
1358 * On hypothetic platforms with threads and exact gc it is
1359 * actually a must. */
1360 scrub_control_stack();
1362 wait_for_thread_state_change(thread, STATE_STOPPED);
1363 FSHOW_SIGNAL((stderr,"resumed\n"));
1365 if(thread_state(thread)!=STATE_RUNNING) {
1366 lose("sig_stop_for_gc_handler: wrong thread state on wakeup: %ld\n",
1367 fixnum_value(thread_state(thread)));
1370 if (was_in_lisp) {
1371 undo_fake_foreign_function_call(context);
1375 #endif
1377 void
1378 interrupt_handle_now_handler(int signal, siginfo_t *info, void *void_context)
1380 SAVE_ERRNO(signal,context,void_context);
1381 #ifndef LISP_FEATURE_WIN32
1382 if ((signal == SIGILL) || (signal == SIGBUS)
1383 #ifndef LISP_FEATURE_LINUX
1384 || (signal == SIGEMT)
1385 #endif
1387 corruption_warning_and_maybe_lose("Signal %d received", signal);
1388 #endif
1389 interrupt_handle_now(signal, info, context);
1390 RESTORE_ERRNO;
1393 /* manipulate the signal context and stack such that when the handler
1394 * returns, it will call function instead of whatever it was doing
1395 * previously
1398 #if (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
1399 extern int *context_eflags_addr(os_context_t *context);
1400 #endif
1402 extern lispobj call_into_lisp(lispobj fun, lispobj *args, int nargs);
1403 extern void post_signal_tramp(void);
1404 extern void call_into_lisp_tramp(void);
1406 void
1407 arrange_return_to_c_function(os_context_t *context,
1408 call_into_lisp_lookalike funptr,
1409 lispobj function)
1411 #if !(defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_SAFEPOINT))
1412 check_gc_signals_unblocked_or_lose
1413 (os_context_sigmask_addr(context));
1414 #endif
1415 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
1416 void * fun=native_pointer(function);
1417 void *code = &(((struct simple_fun *) fun)->code);
1418 #endif
1420 /* Build a stack frame showing `interrupted' so that the
1421 * user's backtrace makes (as much) sense (as usual) */
1423 /* fp state is saved and restored by call_into_lisp */
1424 /* FIXME: errno is not restored, but since current uses of this
1425 * function only call Lisp code that signals an error, it's not
1426 * much of a problem. In other words, running out of the control
1427 * stack between a syscall and (GET-ERRNO) may clobber errno if
1428 * something fails during signalling or in the handler. But I
1429 * can't see what can go wrong as long as there is no CONTINUE
1430 * like restart on them. */
1431 #ifdef LISP_FEATURE_X86
1432 /* Suppose the existence of some function that saved all
1433 * registers, called call_into_lisp, then restored GP registers and
1434 * returned. It would look something like this:
1436 push ebp
1437 mov ebp esp
1438 pushfl
1439 pushal
1440 push $0
1441 push $0
1442 pushl {address of function to call}
1443 call 0x8058db0 <call_into_lisp>
1444 addl $12,%esp
1445 popal
1446 popfl
1447 leave
1450 * What we do here is set up the stack that call_into_lisp would
1451 * expect to see if it had been called by this code, and frob the
1452 * signal context so that signal return goes directly to call_into_lisp,
1453 * and when that function (and the lisp function it invoked) returns,
1454 * it returns to the second half of this imaginary function which
1455 * restores all registers and returns to C
1457 * For this to work, the latter part of the imaginary function
1458 * must obviously exist in reality. That would be post_signal_tramp
1461 u32 *sp=(u32 *)*os_context_register_addr(context,reg_ESP);
1463 #if defined(LISP_FEATURE_DARWIN)
1464 u32 *register_save_area = (u32 *)os_validate(0, 0x40);
1466 FSHOW_SIGNAL((stderr, "/arrange_return_to_lisp_function: preparing to go to function %x, sp: %x\n", function, sp));
1467 FSHOW_SIGNAL((stderr, "/arrange_return_to_lisp_function: context: %x, &context %x\n", context, &context));
1469 /* 1. os_validate (malloc/mmap) register_save_block
1470 * 2. copy register state into register_save_block
1471 * 3. put a pointer to register_save_block in a register in the context
1472 * 4. set the context's EIP to point to a trampoline which:
1473 * a. builds the fake stack frame from the block
1474 * b. frees the block
1475 * c. calls the function
1478 *register_save_area = *os_context_pc_addr(context);
1479 *(register_save_area + 1) = function;
1480 *(register_save_area + 2) = *os_context_register_addr(context,reg_EDI);
1481 *(register_save_area + 3) = *os_context_register_addr(context,reg_ESI);
1482 *(register_save_area + 4) = *os_context_register_addr(context,reg_EDX);
1483 *(register_save_area + 5) = *os_context_register_addr(context,reg_ECX);
1484 *(register_save_area + 6) = *os_context_register_addr(context,reg_EBX);
1485 *(register_save_area + 7) = *os_context_register_addr(context,reg_EAX);
1486 *(register_save_area + 8) = *context_eflags_addr(context);
1488 *os_context_pc_addr(context) =
1489 (os_context_register_t) funptr;
1490 *os_context_register_addr(context,reg_ECX) =
1491 (os_context_register_t) register_save_area;
1492 #else
1494 /* return address for call_into_lisp: */
1495 *(sp-15) = (u32)post_signal_tramp;
1496 *(sp-14) = function; /* args for call_into_lisp : function*/
1497 *(sp-13) = 0; /* arg array */
1498 *(sp-12) = 0; /* no. args */
1499 /* this order matches that used in POPAD */
1500 *(sp-11)=*os_context_register_addr(context,reg_EDI);
1501 *(sp-10)=*os_context_register_addr(context,reg_ESI);
1503 *(sp-9)=*os_context_register_addr(context,reg_ESP)-8;
1504 /* POPAD ignores the value of ESP: */
1505 *(sp-8)=0;
1506 *(sp-7)=*os_context_register_addr(context,reg_EBX);
1508 *(sp-6)=*os_context_register_addr(context,reg_EDX);
1509 *(sp-5)=*os_context_register_addr(context,reg_ECX);
1510 *(sp-4)=*os_context_register_addr(context,reg_EAX);
1511 *(sp-3)=*context_eflags_addr(context);
1512 *(sp-2)=*os_context_register_addr(context,reg_EBP);
1513 *(sp-1)=*os_context_pc_addr(context);
1515 #endif
1517 #elif defined(LISP_FEATURE_X86_64)
1518 u64 *sp=(u64 *)*os_context_register_addr(context,reg_RSP);
1520 /* return address for call_into_lisp: */
1521 *(sp-18) = (u64)post_signal_tramp;
1523 *(sp-17)=*os_context_register_addr(context,reg_R15);
1524 *(sp-16)=*os_context_register_addr(context,reg_R14);
1525 *(sp-15)=*os_context_register_addr(context,reg_R13);
1526 *(sp-14)=*os_context_register_addr(context,reg_R12);
1527 *(sp-13)=*os_context_register_addr(context,reg_R11);
1528 *(sp-12)=*os_context_register_addr(context,reg_R10);
1529 *(sp-11)=*os_context_register_addr(context,reg_R9);
1530 *(sp-10)=*os_context_register_addr(context,reg_R8);
1531 *(sp-9)=*os_context_register_addr(context,reg_RDI);
1532 *(sp-8)=*os_context_register_addr(context,reg_RSI);
1533 /* skip RBP and RSP */
1534 *(sp-7)=*os_context_register_addr(context,reg_RBX);
1535 *(sp-6)=*os_context_register_addr(context,reg_RDX);
1536 *(sp-5)=*os_context_register_addr(context,reg_RCX);
1537 *(sp-4)=*os_context_register_addr(context,reg_RAX);
1538 *(sp-3)=*context_eflags_addr(context);
1539 *(sp-2)=*os_context_register_addr(context,reg_RBP);
1540 *(sp-1)=*os_context_pc_addr(context);
1542 *os_context_register_addr(context,reg_RDI) =
1543 (os_context_register_t)function; /* function */
1544 *os_context_register_addr(context,reg_RSI) = 0; /* arg. array */
1545 *os_context_register_addr(context,reg_RDX) = 0; /* no. args */
1546 #else
1547 struct thread *th=arch_os_get_current_thread();
1548 build_fake_control_stack_frames(th,context);
1549 #endif
1551 #ifdef LISP_FEATURE_X86
1553 #if !defined(LISP_FEATURE_DARWIN)
1554 *os_context_pc_addr(context) = (os_context_register_t)funptr;
1555 *os_context_register_addr(context,reg_ECX) = 0;
1556 *os_context_register_addr(context,reg_EBP) = (os_context_register_t)(sp-2);
1557 #ifdef __NetBSD__
1558 *os_context_register_addr(context,reg_UESP) =
1559 (os_context_register_t)(sp-15);
1560 #else
1561 *os_context_register_addr(context,reg_ESP) = (os_context_register_t)(sp-15);
1562 #endif /* __NETBSD__ */
1563 #endif /* LISP_FEATURE_DARWIN */
1565 #elif defined(LISP_FEATURE_X86_64)
1566 *os_context_pc_addr(context) = (os_context_register_t)funptr;
1567 *os_context_register_addr(context,reg_RCX) = 0;
1568 *os_context_register_addr(context,reg_RBP) = (os_context_register_t)(sp-2);
1569 *os_context_register_addr(context,reg_RSP) = (os_context_register_t)(sp-18);
1570 #else
1571 /* this much of the calling convention is common to all
1572 non-x86 ports */
1573 *os_context_pc_addr(context) = (os_context_register_t)(unsigned long)code;
1574 *os_context_register_addr(context,reg_NARGS) = 0;
1575 *os_context_register_addr(context,reg_LIP) =
1576 (os_context_register_t)(unsigned long)code;
1577 *os_context_register_addr(context,reg_CFP) =
1578 (os_context_register_t)(unsigned long)access_control_frame_pointer(th);
1579 #endif
1580 #ifdef ARCH_HAS_NPC_REGISTER
1581 *os_context_npc_addr(context) =
1582 4 + *os_context_pc_addr(context);
1583 #endif
1584 #ifdef LISP_FEATURE_SPARC
1585 *os_context_register_addr(context,reg_CODE) =
1586 (os_context_register_t)(fun + FUN_POINTER_LOWTAG);
1587 #endif
1588 FSHOW((stderr, "/arranged return to Lisp function (0x%lx)\n",
1589 (long)function));
1592 void
1593 arrange_return_to_lisp_function(os_context_t *context, lispobj function)
1595 #if defined(LISP_FEATURE_DARWIN) && defined(LISP_FEATURE_X86)
1596 arrange_return_to_c_function(context, call_into_lisp_tramp, function);
1597 #else
1598 arrange_return_to_c_function(context, call_into_lisp, function);
1599 #endif
1602 /* KLUDGE: Theoretically the approach we use for undefined alien
1603 * variables should work for functions as well, but on PPC/Darwin
1604 * we get bus error at bogus addresses instead, hence this workaround,
1605 * that has the added benefit of automatically discriminating between
1606 * functions and variables.
1608 void
1609 undefined_alien_function(void)
1611 funcall0(StaticSymbolFunction(UNDEFINED_ALIEN_FUNCTION_ERROR));
1614 void lower_thread_control_stack_guard_page(struct thread *th)
1616 protect_control_stack_guard_page(0, th);
1617 protect_control_stack_return_guard_page(1, th);
1618 th->control_stack_guard_page_protected = NIL;
1619 fprintf(stderr, "INFO: Control stack guard page unprotected\n");
1622 void reset_thread_control_stack_guard_page(struct thread *th)
1624 memset(CONTROL_STACK_GUARD_PAGE(th), 0, os_vm_page_size);
1625 protect_control_stack_guard_page(1, th);
1626 protect_control_stack_return_guard_page(0, th);
1627 th->control_stack_guard_page_protected = T;
1628 fprintf(stderr, "INFO: Control stack guard page reprotected\n");
1631 /* Called from the REPL, too. */
1632 void reset_control_stack_guard_page(void)
1634 struct thread *th=arch_os_get_current_thread();
1635 if (th->control_stack_guard_page_protected == NIL) {
1636 reset_thread_control_stack_guard_page(th);
1640 void lower_control_stack_guard_page(void)
1642 lower_thread_control_stack_guard_page(arch_os_get_current_thread());
1645 boolean
1646 handle_guard_page_triggered(os_context_t *context,os_vm_address_t addr)
1648 struct thread *th=arch_os_get_current_thread();
1650 if(addr >= CONTROL_STACK_HARD_GUARD_PAGE(th) &&
1651 addr < CONTROL_STACK_HARD_GUARD_PAGE(th) + os_vm_page_size) {
1652 lose("Control stack exhausted");
1654 else if(addr >= CONTROL_STACK_GUARD_PAGE(th) &&
1655 addr < CONTROL_STACK_GUARD_PAGE(th) + os_vm_page_size) {
1656 /* We hit the end of the control stack: disable guard page
1657 * protection so the error handler has some headroom, protect the
1658 * previous page so that we can catch returns from the guard page
1659 * and restore it. */
1660 if (th->control_stack_guard_page_protected == NIL)
1661 lose("control_stack_guard_page_protected NIL");
1662 lower_control_stack_guard_page();
1663 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
1664 /* For the unfortunate case, when the control stack is
1665 * exhausted in a signal handler. */
1666 unblock_signals_in_context_and_maybe_warn(context);
1667 #endif
1668 arrange_return_to_lisp_function
1669 (context, StaticSymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
1670 return 1;
1672 else if(addr >= CONTROL_STACK_RETURN_GUARD_PAGE(th) &&
1673 addr < CONTROL_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
1674 /* We're returning from the guard page: reprotect it, and
1675 * unprotect this one. This works even if we somehow missed
1676 * the return-guard-page, and hit it on our way to new
1677 * exhaustion instead. */
1678 if (th->control_stack_guard_page_protected != NIL)
1679 lose("control_stack_guard_page_protected not NIL");
1680 reset_control_stack_guard_page();
1681 return 1;
1683 else if(addr >= BINDING_STACK_HARD_GUARD_PAGE(th) &&
1684 addr < BINDING_STACK_HARD_GUARD_PAGE(th) + os_vm_page_size) {
1685 lose("Binding stack exhausted");
1687 else if(addr >= BINDING_STACK_GUARD_PAGE(th) &&
1688 addr < BINDING_STACK_GUARD_PAGE(th) + os_vm_page_size) {
1689 protect_binding_stack_guard_page(0, NULL);
1690 protect_binding_stack_return_guard_page(1, NULL);
1691 fprintf(stderr, "INFO: Binding stack guard page unprotected\n");
1693 /* For the unfortunate case, when the binding stack is
1694 * exhausted in a signal handler. */
1695 unblock_signals_in_context_and_maybe_warn(context);
1696 arrange_return_to_lisp_function
1697 (context, StaticSymbolFunction(BINDING_STACK_EXHAUSTED_ERROR));
1698 return 1;
1700 else if(addr >= BINDING_STACK_RETURN_GUARD_PAGE(th) &&
1701 addr < BINDING_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
1702 protect_binding_stack_guard_page(1, NULL);
1703 protect_binding_stack_return_guard_page(0, NULL);
1704 fprintf(stderr, "INFO: Binding stack guard page reprotected\n");
1705 return 1;
1707 else if(addr >= ALIEN_STACK_HARD_GUARD_PAGE(th) &&
1708 addr < ALIEN_STACK_HARD_GUARD_PAGE(th) + os_vm_page_size) {
1709 lose("Alien stack exhausted");
1711 else if(addr >= ALIEN_STACK_GUARD_PAGE(th) &&
1712 addr < ALIEN_STACK_GUARD_PAGE(th) + os_vm_page_size) {
1713 protect_alien_stack_guard_page(0, NULL);
1714 protect_alien_stack_return_guard_page(1, NULL);
1715 fprintf(stderr, "INFO: Alien stack guard page unprotected\n");
1717 /* For the unfortunate case, when the alien stack is
1718 * exhausted in a signal handler. */
1719 unblock_signals_in_context_and_maybe_warn(context);
1720 arrange_return_to_lisp_function
1721 (context, StaticSymbolFunction(ALIEN_STACK_EXHAUSTED_ERROR));
1722 return 1;
1724 else if(addr >= ALIEN_STACK_RETURN_GUARD_PAGE(th) &&
1725 addr < ALIEN_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
1726 protect_alien_stack_guard_page(1, NULL);
1727 protect_alien_stack_return_guard_page(0, NULL);
1728 fprintf(stderr, "INFO: Alien stack guard page reprotected\n");
1729 return 1;
1731 else if (addr >= undefined_alien_address &&
1732 addr < undefined_alien_address + os_vm_page_size) {
1733 arrange_return_to_lisp_function
1734 (context, StaticSymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
1735 return 1;
1737 else return 0;
1741 * noise to install handlers
1744 #ifndef LISP_FEATURE_WIN32
1745 /* In Linux 2.4 synchronous signals (sigtrap & co) can be delivered if
1746 * they are blocked, in Linux 2.6 the default handler is invoked
1747 * instead that usually coredumps. One might hastily think that adding
1748 * SA_NODEFER helps, but until ~2.6.13 if SA_NODEFER is specified then
1749 * the whole sa_mask is ignored and instead of not adding the signal
1750 * in question to the mask. That means if it's not blockable the
1751 * signal must be unblocked at the beginning of signal handlers.
1753 * It turns out that NetBSD's SA_NODEFER doesn't DTRT in a different
1754 * way: if SA_NODEFER is set and the signal is in sa_mask, the signal
1755 * will be unblocked in the sigmask during the signal handler. -- RMK
1756 * X-mas day, 2005
1758 static volatile int sigaction_nodefer_works = -1;
1760 #define SA_NODEFER_TEST_BLOCK_SIGNAL SIGABRT
1761 #define SA_NODEFER_TEST_KILL_SIGNAL SIGUSR1
1763 static void
1764 sigaction_nodefer_test_handler(int signal, siginfo_t *info, void *void_context)
1766 sigset_t current;
1767 int i;
1768 get_current_sigmask(&current);
1769 /* There should be exactly two blocked signals: the two we added
1770 * to sa_mask when setting up the handler. NetBSD doesn't block
1771 * the signal we're handling when SA_NODEFER is set; Linux before
1772 * 2.6.13 or so also doesn't block the other signal when
1773 * SA_NODEFER is set. */
1774 for(i = 1; i < NSIG; i++)
1775 if (sigismember(&current, i) !=
1776 (((i == SA_NODEFER_TEST_BLOCK_SIGNAL) || (i == signal)) ? 1 : 0)) {
1777 FSHOW_SIGNAL((stderr, "SA_NODEFER doesn't work, signal %d\n", i));
1778 sigaction_nodefer_works = 0;
1780 if (sigaction_nodefer_works == -1)
1781 sigaction_nodefer_works = 1;
1784 static void
1785 see_if_sigaction_nodefer_works(void)
1787 struct sigaction sa, old_sa;
1789 sa.sa_flags = SA_SIGINFO | SA_NODEFER;
1790 sa.sa_sigaction = sigaction_nodefer_test_handler;
1791 sigemptyset(&sa.sa_mask);
1792 sigaddset(&sa.sa_mask, SA_NODEFER_TEST_BLOCK_SIGNAL);
1793 sigaddset(&sa.sa_mask, SA_NODEFER_TEST_KILL_SIGNAL);
1794 sigaction(SA_NODEFER_TEST_KILL_SIGNAL, &sa, &old_sa);
1795 /* Make sure no signals are blocked. */
1797 sigset_t empty;
1798 sigemptyset(&empty);
1799 thread_sigmask(SIG_SETMASK, &empty, 0);
1801 kill(getpid(), SA_NODEFER_TEST_KILL_SIGNAL);
1802 while (sigaction_nodefer_works == -1);
1803 sigaction(SA_NODEFER_TEST_KILL_SIGNAL, &old_sa, NULL);
1806 #undef SA_NODEFER_TEST_BLOCK_SIGNAL
1807 #undef SA_NODEFER_TEST_KILL_SIGNAL
1809 static void
1810 unblock_me_trampoline(int signal, siginfo_t *info, void *void_context)
1812 SAVE_ERRNO(signal,context,void_context);
1813 sigset_t unblock;
1815 sigemptyset(&unblock);
1816 sigaddset(&unblock, signal);
1817 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
1818 interrupt_handle_now(signal, info, context);
1819 RESTORE_ERRNO;
1822 static void
1823 low_level_unblock_me_trampoline(int signal, siginfo_t *info, void *void_context)
1825 SAVE_ERRNO(signal,context,void_context);
1826 sigset_t unblock;
1828 sigemptyset(&unblock);
1829 sigaddset(&unblock, signal);
1830 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
1831 (*interrupt_low_level_handlers[signal])(signal, info, context);
1832 RESTORE_ERRNO;
1835 static void
1836 low_level_handle_now_handler(int signal, siginfo_t *info, void *void_context)
1838 SAVE_ERRNO(signal,context,void_context);
1839 (*interrupt_low_level_handlers[signal])(signal, info, context);
1840 RESTORE_ERRNO;
1843 void
1844 undoably_install_low_level_interrupt_handler (int signal,
1845 interrupt_handler_t handler)
1847 struct sigaction sa;
1849 if (0 > signal || signal >= NSIG) {
1850 lose("bad signal number %d\n", signal);
1853 if (ARE_SAME_HANDLER(handler, SIG_DFL))
1854 sa.sa_sigaction = (void (*)(int, siginfo_t*, void*))handler;
1855 else if (sigismember(&deferrable_sigset,signal))
1856 sa.sa_sigaction = low_level_maybe_now_maybe_later;
1857 else if (!sigaction_nodefer_works &&
1858 !sigismember(&blockable_sigset, signal))
1859 sa.sa_sigaction = low_level_unblock_me_trampoline;
1860 else
1861 sa.sa_sigaction = low_level_handle_now_handler;
1863 #ifdef LISP_FEATURE_SB_THRUPTION
1864 /* It's in `deferrable_sigset' so that we block&unblock it properly,
1865 * but we don't actually want to defer it. And if we put it only
1866 * into blockable_sigset, we'd have to special-case it around thread
1867 * creation at least. */
1868 if (signal == SIGPIPE)
1869 sa.sa_sigaction = low_level_handle_now_handler;
1870 #endif
1872 sigcopyset(&sa.sa_mask, &blockable_sigset);
1873 sa.sa_flags = SA_SIGINFO | SA_RESTART
1874 | (sigaction_nodefer_works ? SA_NODEFER : 0);
1875 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
1876 if(signal==SIG_MEMORY_FAULT) {
1877 sa.sa_flags |= SA_ONSTACK;
1878 # ifdef LISP_FEATURE_SB_SAFEPOINT
1879 sigaddset(&sa.sa_mask, SIGRTMIN);
1880 sigaddset(&sa.sa_mask, SIGRTMIN+1);
1881 # endif
1883 #endif
1885 sigaction(signal, &sa, NULL);
1886 interrupt_low_level_handlers[signal] =
1887 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
1889 #endif
1891 /* This is called from Lisp. */
1892 unsigned long
1893 install_handler(int signal, void handler(int, siginfo_t*, os_context_t*))
1895 #ifndef LISP_FEATURE_WIN32
1896 struct sigaction sa;
1897 sigset_t old;
1898 union interrupt_handler oldhandler;
1900 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
1902 block_blockable_signals(0, &old);
1904 FSHOW((stderr, "/interrupt_low_level_handlers[signal]=%x\n",
1905 (unsigned int)interrupt_low_level_handlers[signal]));
1906 if (interrupt_low_level_handlers[signal]==0) {
1907 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
1908 ARE_SAME_HANDLER(handler, SIG_IGN))
1909 sa.sa_sigaction = (void (*)(int, siginfo_t*, void*))handler;
1910 else if (sigismember(&deferrable_sigset, signal))
1911 sa.sa_sigaction = maybe_now_maybe_later;
1912 else if (!sigaction_nodefer_works &&
1913 !sigismember(&blockable_sigset, signal))
1914 sa.sa_sigaction = unblock_me_trampoline;
1915 else
1916 sa.sa_sigaction = interrupt_handle_now_handler;
1918 sigcopyset(&sa.sa_mask, &blockable_sigset);
1919 sa.sa_flags = SA_SIGINFO | SA_RESTART |
1920 (sigaction_nodefer_works ? SA_NODEFER : 0);
1921 sigaction(signal, &sa, NULL);
1924 oldhandler = interrupt_handlers[signal];
1925 interrupt_handlers[signal].c = handler;
1927 thread_sigmask(SIG_SETMASK, &old, 0);
1929 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
1931 return (unsigned long)oldhandler.lisp;
1932 #else
1933 /* Probably-wrong Win32 hack */
1934 return 0;
1935 #endif
1938 /* This must not go through lisp as it's allowed anytime, even when on
1939 * the altstack. */
1940 void
1941 sigabrt_handler(int signal, siginfo_t *info, os_context_t *context)
1943 lose("SIGABRT received.\n");
1946 void
1947 interrupt_init(void)
1949 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
1950 int i;
1951 SHOW("entering interrupt_init()");
1952 #ifndef LISP_FEATURE_WIN32
1953 see_if_sigaction_nodefer_works();
1954 #endif
1955 sigemptyset(&deferrable_sigset);
1956 sigemptyset(&blockable_sigset);
1957 sigemptyset(&gc_sigset);
1958 sigaddset_deferrable(&deferrable_sigset);
1959 sigaddset_blockable(&blockable_sigset);
1960 sigaddset_gc(&gc_sigset);
1961 #endif
1963 #ifndef LISP_FEATURE_WIN32
1964 /* Set up high level handler information. */
1965 for (i = 0; i < NSIG; i++) {
1966 interrupt_handlers[i].c =
1967 /* (The cast here blasts away the distinction between
1968 * SA_SIGACTION-style three-argument handlers and
1969 * signal(..)-style one-argument handlers, which is OK
1970 * because it works to call the 1-argument form where the
1971 * 3-argument form is expected.) */
1972 (void (*)(int, siginfo_t*, os_context_t*))SIG_DFL;
1974 undoably_install_low_level_interrupt_handler(SIGABRT, sigabrt_handler);
1975 #endif
1976 SHOW("returning from interrupt_init()");
1979 #ifndef LISP_FEATURE_WIN32
1981 siginfo_code(siginfo_t *info)
1983 return info->si_code;
1985 os_vm_address_t current_memory_fault_address;
1987 void
1988 lisp_memory_fault_error(os_context_t *context, os_vm_address_t addr)
1990 /* FIXME: This is lossy: if we get another memory fault (eg. from
1991 * another thread) before lisp has read this, we lose the information.
1992 * However, since this is mostly informative, we'll live with that for
1993 * now -- some address is better then no address in this case.
1995 current_memory_fault_address = addr;
1996 /* To allow debugging memory faults in signal handlers and such. */
1997 corruption_warning_and_maybe_lose("Memory fault at %x (pc=%p, sp=%p)",
1998 addr,
1999 *os_context_pc_addr(context),
2000 #ifdef ARCH_HAS_STACK_POINTER
2001 *os_context_sp_addr(context)
2002 #else
2004 #endif
2006 unblock_signals_in_context_and_maybe_warn(context);
2007 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
2008 arrange_return_to_lisp_function(context,
2009 StaticSymbolFunction(MEMORY_FAULT_ERROR));
2010 #else
2011 funcall0(StaticSymbolFunction(MEMORY_FAULT_ERROR));
2012 #endif
2014 #endif
2016 static void
2017 unhandled_trap_error(os_context_t *context)
2019 lispobj context_sap;
2020 fake_foreign_function_call(context);
2021 #ifndef LISP_FEATURE_SB_SAFEPOINT
2022 unblock_gc_signals(0, 0);
2023 #endif
2024 context_sap = alloc_sap(context);
2025 #if !defined(LISP_FEATURE_WIN32) || defined(LISP_FEATURE_SB_THREAD)
2026 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
2027 #endif
2028 funcall1(StaticSymbolFunction(UNHANDLED_TRAP_ERROR), context_sap);
2029 lose("UNHANDLED-TRAP-ERROR fell through");
2032 /* Common logic for trapping instructions. How we actually handle each
2033 * case is highly architecture dependent, but the overall shape is
2034 * this. */
2035 void
2036 handle_trap(os_context_t *context, int trap)
2038 switch(trap) {
2039 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
2040 case trap_PendingInterrupt:
2041 FSHOW((stderr, "/<trap pending interrupt>\n"));
2042 arch_skip_instruction(context);
2043 interrupt_handle_pending(context);
2044 break;
2045 #endif
2046 case trap_Error:
2047 case trap_Cerror:
2048 FSHOW((stderr, "/<trap error/cerror %d>\n", trap));
2049 interrupt_internal_error(context, trap==trap_Cerror);
2050 break;
2051 case trap_Breakpoint:
2052 arch_handle_breakpoint(context);
2053 break;
2054 case trap_FunEndBreakpoint:
2055 arch_handle_fun_end_breakpoint(context);
2056 break;
2057 #ifdef trap_AfterBreakpoint
2058 case trap_AfterBreakpoint:
2059 arch_handle_after_breakpoint(context);
2060 break;
2061 #endif
2062 #ifdef trap_SingleStepAround
2063 case trap_SingleStepAround:
2064 case trap_SingleStepBefore:
2065 arch_handle_single_step_trap(context, trap);
2066 break;
2067 #endif
2068 #ifdef LISP_FEATURE_SB_SAFEPOINT
2069 case trap_GlobalSafepoint:
2070 fake_foreign_function_call(context);
2071 thread_in_lisp_raised(context);
2072 undo_fake_foreign_function_call(context);
2073 arch_skip_instruction(context);
2074 break;
2075 case trap_CspSafepoint:
2076 fake_foreign_function_call(context);
2077 thread_in_safety_transition(context);
2078 undo_fake_foreign_function_call(context);
2079 arch_skip_instruction(context);
2080 break;
2081 #endif
2082 #if defined(LISP_FEATURE_SPARC) && defined(LISP_FEATURE_GENCGC)
2083 case trap_Allocation:
2084 arch_handle_allocation_trap(context);
2085 arch_skip_instruction(context);
2086 break;
2087 #endif
2088 case trap_Halt:
2089 fake_foreign_function_call(context);
2090 lose("%%PRIMITIVE HALT called; the party is over.\n");
2091 default:
2092 unhandled_trap_error(context);