Add some bits to LAYOUT
[sbcl.git] / src / code / print.lisp
blobfdf3577bcd99edf5313f892a28ed74ad7aa81341
1 ;;;; the printer
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 ;;;; exported printer control variables
16 (!defvar *print-readably* nil
17 "If true, all objects will be printed readably. If readable printing
18 is impossible, an error will be signalled. This overrides the value of
19 *PRINT-ESCAPE*.")
20 (!defvar *print-escape* t
21 "Should we print in a reasonably machine-readable way? (possibly
22 overridden by *PRINT-READABLY*)")
23 (!defvar *print-pretty* nil ; (set later when pretty-printer is initialized)
24 "Should pretty printing be used?")
25 (!defvar *print-base* 10.
26 "The output base for RATIONALs (including integers).")
27 (!defvar *print-radix* nil
28 "Should base be verified when printing RATIONALs?")
29 (!defvar *print-level* nil
30 "How many levels should be printed before abbreviating with \"#\"?")
31 (!defvar *print-length* nil
32 "How many elements at any level should be printed before abbreviating
33 with \"...\"?")
34 (!defvar *print-circle* nil
35 "Should we use #n= and #n# notation to preserve uniqueness in general (and
36 circularity in particular) when printing?")
37 (!defvar *print-case* :upcase
38 "What case should the printer should use default?")
39 (!defvar *print-array* t
40 "Should the contents of arrays be printed?")
41 (!defvar *print-gensym* t
42 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
43 (!defvar *print-lines* nil
44 "The maximum number of lines to print per object.")
45 (!defvar *print-right-margin* nil
46 "The position of the right margin in ems (for pretty-printing).")
47 (!defvar *print-miser-width* nil
48 "If the remaining space between the current column and the right margin
49 is less than this, then print using ``miser-style'' output. Miser
50 style conditional newlines are turned on, and all indentations are
51 turned off. If NIL, never use miser mode.")
52 (defvar *print-pprint-dispatch*
53 (sb!pretty::make-pprint-dispatch-table) ; for type-correctness
54 "The pprint-dispatch-table that controls how to pretty-print objects.")
55 (!defvar *suppress-print-errors* nil
56 "Suppress printer errors when the condition is of the type designated by this
57 variable: an unreadable object representing the error is printed instead.")
59 ;; duplicate defglobal because this file is compiled before "reader"
60 (defglobal *standard-readtable* nil)
62 (defun %with-standard-io-syntax (function)
63 (declare (type function function))
64 (let ((*package* (load-time-value (find-package "COMMON-LISP-USER") t))
65 (*print-array* t)
66 (*print-base* 10)
67 (*print-case* :upcase)
68 (*print-circle* nil)
69 (*print-escape* t)
70 (*print-gensym* t)
71 (*print-length* nil)
72 (*print-level* nil)
73 (*print-lines* nil)
74 (*print-miser-width* nil)
75 (*print-pprint-dispatch* sb!pretty::*standard-pprint-dispatch-table*)
76 (*print-pretty* nil)
77 (*print-radix* nil)
78 (*print-readably* t)
79 (*print-right-margin* nil)
80 (*read-base* 10)
81 (*read-default-float-format* 'single-float)
82 (*read-eval* t)
83 (*read-suppress* nil)
84 (*readtable* *standard-readtable*)
85 (*suppress-print-errors* nil))
86 (funcall function)))
88 ;;;; routines to print objects
90 (macrolet ((def (fn doc &rest forms)
91 `(defun ,fn
92 (object
93 &key
94 ,@(if (eq fn 'write) '(stream))
95 ((:escape *print-escape*) *print-escape*)
96 ((:radix *print-radix*) *print-radix*)
97 ((:base *print-base*) *print-base*)
98 ((:circle *print-circle*) *print-circle*)
99 ((:pretty *print-pretty*) *print-pretty*)
100 ((:level *print-level*) *print-level*)
101 ((:length *print-length*) *print-length*)
102 ((:case *print-case*) *print-case*)
103 ((:array *print-array*) *print-array*)
104 ((:gensym *print-gensym*) *print-gensym*)
105 ((:readably *print-readably*) *print-readably*)
106 ((:right-margin *print-right-margin*)
107 *print-right-margin*)
108 ((:miser-width *print-miser-width*)
109 *print-miser-width*)
110 ((:lines *print-lines*) *print-lines*)
111 ((:pprint-dispatch *print-pprint-dispatch*)
112 *print-pprint-dispatch*)
113 ((:suppress-errors *suppress-print-errors*)
114 *suppress-print-errors*))
115 ,doc
116 (declare (explicit-check))
117 ,@forms)))
118 (def write
119 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*."
120 (output-object object (out-stream-from-designator stream))
121 object)
122 (def write-to-string
123 "Return the printed representation of OBJECT as a string."
124 (stringify-object object)))
126 ;;; Same as a call to (WRITE OBJECT :STREAM STREAM), but returning OBJECT.
127 (defun %write (object stream)
128 (declare (explicit-check))
129 (output-object object (out-stream-from-designator stream))
130 object)
132 (defun prin1 (object &optional stream)
133 "Output a mostly READable printed representation of OBJECT on the specified
134 STREAM."
135 (declare (explicit-check))
136 (let ((*print-escape* t))
137 (output-object object (out-stream-from-designator stream)))
138 object)
140 (defun princ (object &optional stream)
141 "Output an aesthetic but not necessarily READable printed representation
142 of OBJECT on the specified STREAM."
143 (declare (explicit-check))
144 (let ((*print-escape* nil)
145 (*print-readably* nil))
146 (output-object object (out-stream-from-designator stream)))
147 object)
149 (defun print (object &optional stream)
150 "Output a newline, the mostly READable printed representation of OBJECT, and
151 space to the specified STREAM."
152 (declare (explicit-check))
153 (let ((stream (out-stream-from-designator stream)))
154 (terpri stream)
155 (prin1 object stream)
156 (write-char #\space stream)
157 object))
159 (defun pprint (object &optional stream)
160 "Prettily output OBJECT preceded by a newline."
161 (declare (explicit-check))
162 (let ((*print-pretty* t)
163 (*print-escape* t)
164 (stream (out-stream-from-designator stream)))
165 (terpri stream)
166 (output-object object stream))
167 (values))
169 (defun prin1-to-string (object)
170 "Return the printed representation of OBJECT as a string with
171 slashification on."
172 (let ((*print-escape* t))
173 (stringify-object object)))
175 (defun princ-to-string (object)
176 "Return the printed representation of OBJECT as a string with
177 slashification off."
178 (let ((*print-escape* nil)
179 (*print-readably* nil))
180 (stringify-object object)))
182 ;;; This produces the printed representation of an object as a string.
183 ;;; The few ...-TO-STRING functions above call this.
184 (defun stringify-object (object)
185 (typecase object
186 (integer
187 (multiple-value-bind (fun pretty)
188 (and *print-pretty* (pprint-dispatch object))
189 (if pretty
190 (with-simple-output-to-string (stream)
191 (sb!pretty::with-pretty-stream (stream)
192 (funcall fun stream object)))
193 (let ((buffer-size (approx-chars-in-repr object)))
194 (let* ((string (make-string buffer-size :element-type 'base-char))
195 (stream (%make-finite-base-string-output-stream string)))
196 (declare (inline %make-finite-base-string-output-stream))
197 (declare (truly-dynamic-extent stream))
198 (output-integer object stream *print-base* *print-radix*)
199 (%shrink-vector string
200 (finite-base-string-output-stream-pointer stream)))))))
201 ;; Could do something for other numeric types, symbols, ...
203 (with-simple-output-to-string (stream)
204 (output-object object stream)))))
206 ;;; Estimate the number of chars in the printed representation of OBJECT.
207 ;;; The answer must be an overestimate or exact; never an underestimate.
208 (defun approx-chars-in-repr (object)
209 (declare (integer object))
210 ;; Round *PRINT-BASE* down to the nearest lower power-of-2, call that N,
211 ;; and "guess" that the one character can represent N bits.
212 ;; This is exact for bases which are exactly a power-of-2, or an overestimate
213 ;; otherwise, as mandated by the finite output stream.
214 (let ((bits-per-char
215 (aref #.(!coerce-to-specialized
216 ;; base 2 or base 3 = 1 bit per character
217 ;; base 4 .. base 7 = 2 bits per character
218 ;; base 8 .. base 15 = 3 bits per character, etc
219 #(1 1 2 2 2 2 3 3 3 3 3 3 3 3
220 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5)
221 '(unsigned-byte 8))
222 (- *print-base* 2))))
223 (+ (if (minusp object) 1 0) ; leading sign
224 (if *print-radix* 4 0) ; #rNN or trailing decimal
225 (ceiling (if (fixnump object)
226 sb!vm:n-positive-fixnum-bits
227 (* (%bignum-length object) sb!bignum::digit-size))
228 bits-per-char))))
230 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
232 (defun print-not-readable-error (object stream)
233 (restart-case
234 (error 'print-not-readable :object object)
235 (print-unreadably ()
236 :report "Print unreadably."
237 (let ((*print-readably* nil))
238 (output-object object stream)
239 object))
240 (use-value (o)
241 :report "Supply an object to be printed instead."
242 :interactive
243 (lambda ()
244 (read-evaluated-form "~@<Enter an object (evaluated): ~@:>"))
245 (output-object o stream)
246 o)))
248 ;;; guts of PRINT-UNREADABLE-OBJECT
249 (defun %print-unreadable-object (object stream type identity &optional body)
250 (declare (type (or null function) body))
251 (if *print-readably*
252 (print-not-readable-error object stream)
253 (flet ((print-description ()
254 (when type
255 (write (type-of object) :stream stream :circle nil
256 :level nil :length nil)
257 ;; Do NOT insert a pprint-newline here.
258 ;; See ba34717602d80e5fd74d10e61f4729fb0d019a0c
259 (write-char #\space stream))
260 (when body
261 (funcall body))
262 (when identity
263 (when (or body (not type))
264 (write-char #\space stream))
265 ;; Nor here.
266 (write-char #\{ stream)
267 (write (get-lisp-obj-address object) :stream stream
268 :radix nil :base 16)
269 (write-char #\} stream))))
270 (cond ((print-pretty-on-stream-p stream)
271 ;; Since we're printing prettily on STREAM, format the
272 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
273 ;; not rebind the stream when it is already a pretty stream,
274 ;; so output from the body will go to the same stream.
275 (pprint-logical-block (stream nil :prefix "#<" :suffix ">")
276 (print-description)))
278 (write-string "#<" stream)
279 (print-description)
280 (write-char #\> stream)))))
281 nil)
283 ;;;; OUTPUT-OBJECT -- the main entry point
285 ;;; Objects whose print representation identifies them EQLly don't
286 ;;; need to be checked for circularity.
287 (defun uniquely-identified-by-print-p (x)
288 (or (numberp x)
289 (characterp x)
290 (and (symbolp x)
291 (symbol-package x))))
293 (defvar *in-print-error* nil)
295 ;;; Output OBJECT to STREAM observing all printer control variables.
296 (defun output-object (object stream)
297 ;; FIXME: this function is declared EXPLICIT-CHECK, so it allows STREAM
298 ;; to be T or NIL (a stream-designator), which is not really right
299 ;; if eventually the call will be to a PRINT-OBJECT method,
300 ;; since the generic function should always receive a stream.
301 (declare (explicit-check))
302 (labels ((print-it (stream)
303 (multiple-value-bind (fun pretty)
304 (and *print-pretty* (pprint-dispatch object))
305 (if pretty
306 (sb!pretty::with-pretty-stream (stream)
307 (funcall fun stream object))
308 (output-ugly-object stream object))))
309 (handle-it (stream)
310 (if *suppress-print-errors*
311 (handler-bind ((condition
312 (lambda (condition) nil
313 (when (typep condition *suppress-print-errors*)
314 (cond (*in-print-error*
315 (write-string "(error printing " stream)
316 (write-string *in-print-error* stream)
317 (write-string ")" stream))
319 ;; Give outer handlers a chance.
320 (with-simple-restart
321 (continue "Suppress the error.")
322 (signal condition))
323 (let ((*print-readably* nil)
324 (*print-escape* t))
325 (write-string
326 "#<error printing a " stream)
327 (let ((*in-print-error* "type"))
328 (output-object (type-of object) stream))
329 (write-string ": " stream)
330 (let ((*in-print-error* "condition"))
331 (output-object condition stream))
332 (write-string ">" stream))))
333 (return-from handle-it object)))))
334 (print-it stream))
335 (print-it stream)))
336 (check-it (stream)
337 (multiple-value-bind (marker initiate)
338 (check-for-circularity object t)
339 (if (eq initiate :initiate)
340 (let ((*circularity-hash-table*
341 (make-hash-table :test 'eq)))
342 (check-it (make-broadcast-stream))
343 (let ((*circularity-counter* 0))
344 (check-it stream)))
345 ;; otherwise
346 (if marker
347 (when (handle-circularity marker stream)
348 (handle-it stream))
349 (handle-it stream))))))
350 (cond (;; Maybe we don't need to bother with circularity detection.
351 (or (not *print-circle*)
352 (uniquely-identified-by-print-p object))
353 (handle-it stream))
354 (;; If we have already started circularity detection, this
355 ;; object might be a shared reference. If we have not, then
356 ;; if it is a compound object it might contain a circular
357 ;; reference to itself or multiple shared references.
358 (or *circularity-hash-table*
359 (compound-object-p object))
360 (check-it stream))
362 (handle-it stream)))))
364 ;;; Output OBJECT to STREAM observing all printer control variables
365 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
366 ;;; then the pretty printer will be used for any components of OBJECT,
367 ;;; just not for OBJECT itself.
368 (defun output-ugly-object (stream object)
369 (when (%instancep object)
370 (let* ((layout (layout-of object))
371 (classoid (layout-classoid layout)))
372 ;; If an instance has no layout, it has no PRINT-OBJECT method.
373 ;; Additionally, if the object is an obsolete CONDITION, don't crash.
374 ;; (There is no update-instance protocol for conditions)
375 (when (or (sb!kernel::undefined-classoid-p classoid)
376 (and (layout-invalid layout)
377 (logtest (layout-%flags layout) +condition-layout-flag+)))
378 ;; not only is this unreadable, it's unprintable too.
379 (return-from output-ugly-object
380 (print-unreadable-object (object stream :identity t)
381 (format stream "UNPRINTABLE instance of ~W" classoid))))))
382 (print-object object stream))
384 ;;;; symbols
386 (defmethod print-object ((object symbol) stream)
387 (if (or *print-escape* *print-readably*)
388 ;; Write so that reading back works
389 (output-symbol object (symbol-package object) stream)
390 ;; Write only the characters of the name, never the package
391 (let ((rt *readtable*))
392 (funcall (truly-the function
393 (choose-symbol-out-fun *print-case* (%readtable-case rt)))
394 (symbol-name object) stream rt))))
396 (defun output-symbol (symbol package stream)
397 (let* ((readably *print-readably*)
398 (readtable (if readably *standard-readtable* *readtable*))
399 (out-fun (choose-symbol-out-fun *print-case* (%readtable-case readtable))))
400 (flet ((output-token (name)
401 (declare (type simple-string name))
402 (cond ((or (and (readtable-normalization readtable)
403 (not (sb!unicode:normalized-p name :nfkc)))
404 (symbol-quotep name readtable))
405 ;; Output NAME surrounded with |'s,
406 ;; and with any embedded |'s or \'s escaped.
407 (write-char #\| stream)
408 (dotimes (index (length name))
409 (let ((char (char name index)))
410 ;; Hmm. Should these depend on what characters
411 ;; are actually escapes in the readtable ?
412 ;; (See similar remark at DEFUN QUOTE-STRING)
413 (when (or (char= char #\\) (char= char #\|))
414 (write-char #\\ stream))
415 (write-char char stream)))
416 (write-char #\| stream))
418 (funcall (truly-the function out-fun) name stream readtable)))))
419 (let ((name (symbol-name symbol))
420 (current (sane-package)))
421 (cond
422 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
423 ;; requires that keywords be printed with preceding colons
424 ;; always, regardless of the value of *PACKAGE*.
425 ((eq package *keyword-package*)
426 (write-char #\: stream))
427 ;; Otherwise, if the symbol's home package is the current
428 ;; one, then a prefix is never necessary.
429 ((eq package current))
430 ;; Uninterned symbols print with a leading #:.
431 ((null package)
432 (when (or *print-gensym* readably)
433 (write-string "#:" stream)))
435 (multiple-value-bind (found accessible) (find-symbol name current)
436 ;; If we can find the symbol by looking it up, it need not
437 ;; be qualified. This can happen if the symbol has been
438 ;; inherited from a package other than its home package.
440 ;; To preserve print-read consistency, use the local nickname if
441 ;; one exists.
442 (unless (and accessible (eq found symbol))
443 (let ((prefix (or (car (rassoc package (package-%local-nicknames current)))
444 (package-name package))))
445 (output-token prefix))
446 (write-char #\: stream)
447 (when (eql (find-external-symbol name package) 0)
448 (write-char #\: stream))))))
449 (output-token name)))))
451 ;;;; escaping symbols
453 ;;; When we print symbols we have to figure out if they need to be
454 ;;; printed with escape characters. This isn't a whole lot easier than
455 ;;; reading symbols in the first place.
457 ;;; For each character, the value of the corresponding element is a
458 ;;; fixnum with bits set corresponding to attributes that the
459 ;;; character has. At characters have at least one bit set, so we can
460 ;;; search for any character with a positive test.
461 (defvar *character-attributes*
462 (make-array 160 ; FIXME
463 :element-type '(unsigned-byte 16)
464 :initial-element 0))
465 (declaim (type (simple-array (unsigned-byte 16) (#.160)) ; FIXME
466 *character-attributes*))
468 ;;; constants which are a bit-mask for each interesting character attribute
469 (defconstant other-attribute (ash 1 0)) ; Anything else legal.
470 (defconstant number-attribute (ash 1 1)) ; A numeric digit.
471 (defconstant uppercase-attribute (ash 1 2)) ; An uppercase letter.
472 (defconstant lowercase-attribute (ash 1 3)) ; A lowercase letter.
473 (defconstant sign-attribute (ash 1 4)) ; +-
474 (defconstant extension-attribute (ash 1 5)) ; ^_
475 (defconstant dot-attribute (ash 1 6)) ; .
476 (defconstant slash-attribute (ash 1 7)) ; /
477 (defconstant funny-attribute (ash 1 8)) ; Anything illegal.
479 (eval-when (:compile-toplevel :load-toplevel :execute)
481 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
482 ;;; that don't need to be escaped (according to READTABLE-CASE.)
483 (defparameter *attribute-names*
484 `((number . number-attribute) (lowercase . lowercase-attribute)
485 (uppercase . uppercase-attribute) (letter . letter-attribute)
486 (sign . sign-attribute) (extension . extension-attribute)
487 (dot . dot-attribute) (slash . slash-attribute)
488 (other . other-attribute) (funny . funny-attribute)))
490 ) ; EVAL-WHEN
492 ;;; For each character, the value of the corresponding element is the
493 ;;; lowest base in which that character is a digit.
494 (declaim (type (simple-array (unsigned-byte 8) (128)) ; FIXME: range?
495 *digit-bases*))
496 (defvar *digit-bases*
497 (make-array 128 ; FIXME
498 :element-type '(unsigned-byte 8)))
500 (defun !printer-cold-init ()
501 ;; The dispatch table will be changed later, so this doesn't really matter
502 ;; except if a full call to WRITE wants to read the current binding.
503 (setq *print-pprint-dispatch* (sb!pretty::make-pprint-dispatch-table))
504 (setq *digit-bases* (make-array 128 ; FIXME
505 :element-type '(unsigned-byte 8)
506 :initial-element 36)
507 *character-attributes* (make-array 160 ; FIXME
508 :element-type '(unsigned-byte 16)
509 :initial-element 0))
510 (dotimes (i 36)
511 (let ((char (digit-char i 36)))
512 (setf (aref *digit-bases* (char-code char)) i)))
514 (flet ((set-bit (char bit)
515 (let ((code (char-code char)))
516 (setf (aref *character-attributes* code)
517 (logior bit (aref *character-attributes* code))))))
519 (dolist (char '(#\! #\@ #\$ #\% #\& #\* #\= #\~ #\[ #\] #\{ #\}
520 #\? #\< #\>))
521 (set-bit char other-attribute))
523 (dotimes (i 10)
524 (set-bit (digit-char i) number-attribute))
526 (do ((code (char-code #\A) (1+ code))
527 (end (char-code #\Z)))
528 ((> code end))
529 (declare (fixnum code end))
530 (set-bit (code-char code) uppercase-attribute)
531 (set-bit (char-downcase (code-char code)) lowercase-attribute))
533 (set-bit #\- sign-attribute)
534 (set-bit #\+ sign-attribute)
535 (set-bit #\^ extension-attribute)
536 (set-bit #\_ extension-attribute)
537 (set-bit #\. dot-attribute)
538 (set-bit #\/ slash-attribute)
540 ;; Mark anything not explicitly allowed as funny.
541 (dotimes (i 160) ; FIXME
542 (when (zerop (aref *character-attributes* i))
543 (setf (aref *character-attributes* i) funny-attribute))))
544 ) ; end !COLD-PRINT-INIT
546 ;;; A FSM-like thingie that determines whether a symbol is a potential
547 ;;; number or has evil characters in it.
548 (defun symbol-quotep (name readtable)
549 (declare (simple-string name))
550 (macrolet ((advance (tag &optional (at-end t))
551 `(progn
552 (when (= index len)
553 ,(if at-end '(go TEST-SIGN) '(return nil)))
554 (setq current (schar name index)
555 code (char-code current)
556 bits (cond ; FIXME
557 ((< code 160) (aref attributes code))
558 ((upper-case-p current) uppercase-attribute)
559 ((lower-case-p current) lowercase-attribute)
560 (t other-attribute)))
561 (incf index)
562 (go ,tag)))
563 (test (&rest attributes)
564 `(not (zerop
565 (the fixnum
566 (logand
567 (logior ,@(mapcar
568 (lambda (x)
569 (or (cdr (assoc x
570 *attribute-names*))
571 (error "Blast!")))
572 attributes))
573 bits)))))
574 (digitp ()
575 `(and (< code 128) ; FIXME
576 (< (the fixnum (aref bases code)) base))))
578 (prog ((len (length name))
579 (attributes *character-attributes*)
580 (bases *digit-bases*)
581 (base *print-base*)
582 (letter-attribute
583 (case (%readtable-case readtable)
584 (#.+readtable-upcase+ uppercase-attribute)
585 (#.+readtable-downcase+ lowercase-attribute)
586 (t (logior lowercase-attribute uppercase-attribute))))
587 (index 0)
588 (bits 0)
589 (code 0)
590 current)
591 (declare (fixnum len base index bits code))
592 (advance START t)
594 TEST-SIGN ; At end, see whether it is a sign...
595 (return (not (test sign)))
597 OTHER ; not potential number, see whether funny chars...
598 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
599 funny-attribute)
600 letter-attribute)))
601 (do ((i (1- index) (1+ i)))
602 ((= i len) (return-from symbol-quotep nil))
603 (unless (zerop (logand (let* ((char (schar name i))
604 (code (char-code char)))
605 (cond
606 ((< code 160) (aref attributes code))
607 ((upper-case-p char) uppercase-attribute)
608 ((lower-case-p char) lowercase-attribute)
609 (t other-attribute)))
610 mask))
611 (return-from symbol-quotep t))))
613 START
614 (when (digitp)
615 (if (test letter)
616 (advance LAST-DIGIT-ALPHA)
617 (advance DIGIT)))
618 (when (test letter number other slash) (advance OTHER nil))
619 (when (char= current #\.) (advance DOT-FOUND))
620 (when (test sign extension) (advance START-STUFF nil))
621 (return t)
623 DOT-FOUND ; leading dots...
624 (when (test letter) (advance START-DOT-MARKER nil))
625 (when (digitp) (advance DOT-DIGIT))
626 (when (test number other) (advance OTHER nil))
627 (when (test extension slash sign) (advance START-DOT-STUFF nil))
628 (when (char= current #\.) (advance DOT-FOUND))
629 (return t)
631 START-STUFF ; leading stuff before any dot or digit
632 (when (digitp)
633 (if (test letter)
634 (advance LAST-DIGIT-ALPHA)
635 (advance DIGIT)))
636 (when (test number other) (advance OTHER nil))
637 (when (test letter) (advance START-MARKER nil))
638 (when (char= current #\.) (advance START-DOT-STUFF nil))
639 (when (test sign extension slash) (advance START-STUFF nil))
640 (return t)
642 START-MARKER ; number marker in leading stuff...
643 (when (test letter) (advance OTHER nil))
644 (go START-STUFF)
646 START-DOT-STUFF ; leading stuff containing dot without digit...
647 (when (test letter) (advance START-DOT-STUFF nil))
648 (when (digitp) (advance DOT-DIGIT))
649 (when (test sign extension dot slash) (advance START-DOT-STUFF nil))
650 (when (test number other) (advance OTHER nil))
651 (return t)
653 START-DOT-MARKER ; number marker in leading stuff with dot..
654 ;; leading stuff containing dot without digit followed by letter...
655 (when (test letter) (advance OTHER nil))
656 (go START-DOT-STUFF)
658 DOT-DIGIT ; in a thing with dots...
659 (when (test letter) (advance DOT-MARKER))
660 (when (digitp) (advance DOT-DIGIT))
661 (when (test number other) (advance OTHER nil))
662 (when (test sign extension dot slash) (advance DOT-DIGIT))
663 (return t)
665 DOT-MARKER ; number marker in number with dot...
666 (when (test letter) (advance OTHER nil))
667 (go DOT-DIGIT)
669 LAST-DIGIT-ALPHA ; previous char is a letter digit...
670 (when (or (digitp) (test sign slash))
671 (advance ALPHA-DIGIT))
672 (when (test letter number other dot) (advance OTHER nil))
673 (return t)
675 ALPHA-DIGIT ; seen a digit which is a letter...
676 (when (or (digitp) (test sign slash))
677 (if (test letter)
678 (advance LAST-DIGIT-ALPHA)
679 (advance ALPHA-DIGIT)))
680 (when (test letter) (advance ALPHA-MARKER))
681 (when (test number other dot) (advance OTHER nil))
682 (return t)
684 ALPHA-MARKER ; number marker in number with alpha digit...
685 (when (test letter) (advance OTHER nil))
686 (go ALPHA-DIGIT)
688 DIGIT ; seen only ordinary (non-alphabetic) numeric digits...
689 (when (digitp)
690 (if (test letter)
691 (advance ALPHA-DIGIT)
692 (advance DIGIT)))
693 (when (test number other) (advance OTHER nil))
694 (when (test letter) (advance MARKER))
695 (when (test extension slash sign) (advance DIGIT))
696 (when (char= current #\.) (advance DOT-DIGIT))
697 (return t)
699 MARKER ; number marker in a numeric number...
700 ;; ("What," you may ask, "is a 'number marker'?" It's something
701 ;; that a conforming implementation might use in number syntax.
702 ;; See ANSI 2.3.1.1 "Potential Numbers as Tokens".)
703 (when (test letter) (advance OTHER nil))
704 (go DIGIT))))
706 ;;;; case hackery: One of these functions is chosen to output symbol
707 ;;;; names according to the values of *PRINT-CASE* and READTABLE-CASE.
709 ;;; called when:
710 ;;; READTABLE-CASE *PRINT-CASE*
711 ;;; :UPCASE :UPCASE
712 ;;; :DOWNCASE :DOWNCASE
713 ;;; :PRESERVE any
714 (defun output-preserve-symbol (pname stream readtable)
715 (declare (ignore readtable))
716 (write-string pname stream))
718 ;;; called when:
719 ;;; READTABLE-CASE *PRINT-CASE*
720 ;;; :UPCASE :DOWNCASE
721 (defun output-lowercase-symbol (pname stream readtable)
722 (declare (simple-string pname) (ignore readtable))
723 (dotimes (index (length pname))
724 (let ((char (schar pname index)))
725 (write-char (char-downcase char) stream))))
727 ;;; called when:
728 ;;; READTABLE-CASE *PRINT-CASE*
729 ;;; :DOWNCASE :UPCASE
730 (defun output-uppercase-symbol (pname stream readtable)
731 (declare (simple-string pname) (ignore readtable))
732 (dotimes (index (length pname))
733 (let ((char (schar pname index)))
734 (write-char (char-upcase char) stream))))
736 ;;; called when:
737 ;;; READTABLE-CASE *PRINT-CASE*
738 ;;; :UPCASE :CAPITALIZE
739 ;;; :DOWNCASE :CAPITALIZE
740 (defun output-capitalize-symbol (pname stream readtable)
741 (declare (simple-string pname))
742 (let ((prev-not-alphanum t)
743 (up (eql (%readtable-case readtable) +readtable-upcase+)))
744 (dotimes (i (length pname))
745 (let ((char (char pname i)))
746 (write-char (if up
747 (if (or prev-not-alphanum (lower-case-p char))
748 char
749 (char-downcase char))
750 (if prev-not-alphanum
751 (char-upcase char)
752 char))
753 stream)
754 (setq prev-not-alphanum (not (alphanumericp char)))))))
756 ;;; called when:
757 ;;; READTABLE-CASE *PRINT-CASE*
758 ;;; :INVERT any
759 (defun output-invert-symbol (pname stream readtable)
760 (declare (simple-string pname) (ignore readtable))
761 (let ((all-upper t)
762 (all-lower t))
763 (dotimes (i (length pname))
764 (let ((ch (schar pname i)))
765 (when (both-case-p ch)
766 (if (upper-case-p ch)
767 (setq all-lower nil)
768 (setq all-upper nil)))))
769 (cond (all-upper (output-lowercase-symbol pname stream nil))
770 (all-lower (output-uppercase-symbol pname stream nil))
772 (write-string pname stream)))))
774 (defun choose-symbol-out-fun (print-case readtable-case)
775 (macrolet
776 ((compute-fun-vector (&aux (vector (make-array 12)))
777 ;; Pack a 2D array of functions into a simple-vector.
778 ;; Major axis is *PRINT-CASE*, minor axis is %READTABLE-CASE.
779 (dotimes (readtable-case-index 4)
780 (dotimes (print-case-index 3)
781 (let ((readtable-case
782 (elt '(:upcase :downcase :preserve :invert) readtable-case-index))
783 (print-case
784 (elt '(:upcase :downcase :capitalize) print-case-index)))
785 (setf (aref vector (logior (ash print-case-index 2)
786 readtable-case-index))
787 (case readtable-case
788 (:upcase
789 (case print-case
790 (:upcase 'output-preserve-symbol)
791 (:downcase 'output-lowercase-symbol)
792 (:capitalize 'output-capitalize-symbol)))
793 (:downcase
794 (case print-case
795 (:upcase 'output-uppercase-symbol)
796 (:downcase 'output-preserve-symbol)
797 (:capitalize 'output-capitalize-symbol)))
798 (:preserve 'output-preserve-symbol)
799 (:invert 'output-invert-symbol))))))
800 `(load-time-value (vector ,@(map 'list (lambda (x) `(function ,x)) vector))
801 t)))
802 (aref (compute-fun-vector)
803 (logior (case print-case (:upcase 0) (:downcase 4) (t 8))
804 (truly-the (mod 4) readtable-case)))))
806 ;;;; recursive objects
808 (defmethod print-object ((list cons) stream)
809 (descend-into (stream)
810 (write-char #\( stream)
811 (let ((length 0)
812 (list list))
813 (loop
814 (punt-print-if-too-long length stream)
815 (output-object (pop list) stream)
816 (unless list
817 (return))
818 (when (or (atom list)
819 (check-for-circularity list))
820 (write-string " . " stream)
821 (output-object list stream)
822 (return))
823 (write-char #\space stream)
824 (incf length)))
825 (write-char #\) stream)))
827 (defmethod print-object ((vector vector) stream)
828 (let ((readably *print-readably*))
829 (cond ((stringp vector)
830 (cond ((and readably (not (typep vector '(vector character))))
831 (output-unreadable-array-readably vector stream))
832 ((or *print-escape* readably)
833 (write-char #\" stream)
834 (quote-string vector stream)
835 (write-char #\" stream))
837 (write-string vector stream))))
838 ((not (or *print-array* readably))
839 (output-terse-array vector stream))
840 ((bit-vector-p vector)
841 (write-string "#*" stream)
842 (dovector (bit vector)
843 ;; (Don't use OUTPUT-OBJECT here, since this code
844 ;; has to work for all possible *PRINT-BASE* values.)
845 (write-char (if (zerop bit) #\0 #\1) stream)))
846 ((or (not readably) (array-readably-printable-p vector))
847 (descend-into (stream)
848 (write-string "#(" stream)
849 (dotimes (i (length vector))
850 (unless (zerop i)
851 (write-char #\space stream))
852 (punt-print-if-too-long i stream)
853 (output-object (aref vector i) stream))
854 (write-string ")" stream)))
857 (output-unreadable-array-readably vector stream)))))
859 ;;; This function outputs a string quoting characters sufficiently
860 ;;; so that someone can read it in again. Basically, put a slash in
861 ;;; front of an character satisfying NEEDS-SLASH-P.
862 (defun quote-string (string stream)
863 (macrolet ((needs-slash-p (char)
864 ;; KLUDGE: We probably should look at the readtable, but just do
865 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
866 `(or (char= ,char #\\)
867 (char= ,char #\"))))
868 (with-array-data ((data string) (start) (end)
869 :check-fill-pointer t)
870 (do ((index start (1+ index)))
871 ((>= index end))
872 (let ((char (schar data index)))
873 (when (needs-slash-p char) (write-char #\\ stream))
874 (write-char char stream))))))
876 (defun array-readably-printable-p (array)
877 (and (eq (array-element-type array) t)
878 (let ((zero (position 0 (array-dimensions array)))
879 (number (position 0 (array-dimensions array)
880 :test (complement #'eql)
881 :from-end t)))
882 (or (null zero) (null number) (> zero number)))))
884 ;;; Output the printed representation of any array in either the #< or #A
885 ;;; form.
886 (defmethod print-object ((array array) stream)
887 (if (or *print-array* *print-readably*)
888 (output-array-guts array stream)
889 (output-terse-array array stream)))
891 ;;; Output the abbreviated #< form of an array.
892 (defun output-terse-array (array stream)
893 (let ((*print-level* nil)
894 (*print-length* nil))
895 (print-unreadable-object (array stream :type t :identity t))))
897 ;;; Convert an array into a list that can be used with MAKE-ARRAY's
898 ;;; :INITIAL-CONTENTS keyword argument.
899 (defun listify-array (array)
900 (flet ((compact (seq)
901 (typecase array
902 (string
903 (coerce seq '(simple-array character (*))))
904 ((array bit)
905 (coerce seq 'bit-vector))
907 seq))))
908 (if (typep array '(or string bit-vector))
909 (compact array)
910 (with-array-data ((data array) (start) (end))
911 (declare (ignore end))
912 (labels ((listify (dimensions index)
913 (if (null dimensions)
914 (aref data index)
915 (let* ((dimension (car dimensions))
916 (dimensions (cdr dimensions))
917 (count (reduce #'* dimensions)))
918 (loop for i below dimension
919 for list = (listify dimensions index)
920 collect (if (and dimensions
921 (null (cdr dimensions)))
922 (compact list)
923 list)
924 do (incf index count))))))
925 (listify (array-dimensions array) start))))))
927 ;;; Use nonstandard #A(dimensions element-type contents)
928 ;;; to avoid using #.
929 (defun output-unreadable-array-readably (array stream)
930 (let ((array (list* (array-dimensions array)
931 (array-element-type array)
932 (listify-array array))))
933 (write-string "#A" stream)
934 (write array :stream stream)
935 nil))
937 ;;; Output the readable #A form of an array.
938 (defun output-array-guts (array stream)
939 (cond ((or (not *print-readably*)
940 (array-readably-printable-p array))
941 (write-char #\# stream)
942 (output-integer (array-rank array) stream 10 nil)
943 (write-char #\A stream)
944 (with-array-data ((data array) (start) (end))
945 (declare (ignore end))
946 (sub-output-array-guts data (array-dimensions array) stream start)))
948 (output-unreadable-array-readably array stream))))
950 (defun sub-output-array-guts (array dimensions stream index)
951 (declare (type (simple-array * (*)) array) (fixnum index))
952 (cond ((null dimensions)
953 (output-object (aref array index) stream))
955 (descend-into (stream)
956 (write-char #\( stream)
957 (let* ((dimension (car dimensions))
958 (dimensions (cdr dimensions))
959 (count (reduce #'* dimensions)))
960 (dotimes (i dimension)
961 (unless (zerop i)
962 (write-char #\space stream))
963 (punt-print-if-too-long i stream)
964 (sub-output-array-guts array dimensions stream index)
965 (incf index count)))
966 (write-char #\) stream)))))
969 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
971 (defun %output-radix (base stream)
972 (write-char #\# stream)
973 (write-char (case base
974 (2 #\b)
975 (8 #\o)
976 (16 #\x)
977 (t (%output-reasonable-integer-in-base base 10 stream)
978 #\r))
979 stream))
981 (defun %output-reasonable-integer-in-base (n base stream)
982 (multiple-value-bind (q r)
983 (truncate n base)
984 ;; Recurse until you have all the digits pushed on
985 ;; the stack.
986 (unless (zerop q)
987 (%output-reasonable-integer-in-base q base stream))
988 ;; Then as each recursive call unwinds, turn the
989 ;; digit (in remainder) into a character and output
990 ;; the character.
991 (write-char
992 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" r)
993 stream)))
995 ;;; *POWER-CACHE* is an alist mapping bases to power-vectors. It is
996 ;;; filled and probed by POWERS-FOR-BASE. SCRUB-POWER-CACHE is called
997 ;;; always prior a GC to drop overly large bignums from the cache.
999 ;;; It doesn't need a lock, but if you work on SCRUB-POWER-CACHE or
1000 ;;; POWERS-FOR-BASE, see that you don't break the assumptions!
1001 (defglobal *power-cache* (make-array 37 :initial-element nil))
1002 (declaim (type (simple-vector 37) *power-cache*))
1004 (defconstant +power-cache-integer-length-limit+ 2048)
1006 (defun scrub-power-cache (&aux (cache *power-cache*))
1007 (dotimes (i (length cache))
1008 (let ((powers (aref cache i)))
1009 (when powers
1010 (let ((too-big (position-if
1011 (lambda (x)
1012 (>= (integer-length x)
1013 +power-cache-integer-length-limit+))
1014 (the simple-vector powers))))
1015 (when too-big
1016 (setf (aref cache i) (subseq powers 0 too-big))))))))
1018 ;;; Compute (and cache) a power vector for a BASE and LIMIT:
1019 ;;; the vector holds integers for which
1020 ;;; (aref powers k) == (expt base (expt 2 k))
1021 ;;; holds.
1022 (defun powers-for-base (base limit)
1023 (flet ((compute-powers (from)
1024 (let (powers)
1025 (do ((p from (* p p)))
1026 ((> p limit)
1027 ;; We don't actually need this, but we also
1028 ;; prefer not to cons it up a second time...
1029 (push p powers))
1030 (push p powers))
1031 (nreverse powers))))
1032 (let* ((cache *power-cache*)
1033 (powers (aref cache base)))
1034 (setf (aref cache base)
1035 (concatenate 'vector powers
1036 (compute-powers
1037 (if powers
1038 (let* ((len (length powers))
1039 (max (svref powers (1- len))))
1040 (if (> max limit)
1041 (return-from powers-for-base powers)
1042 (* max max)))
1043 base)))))))
1045 ;; Algorithm by Harald Hanche-Olsen, sbcl-devel 2005-02-05
1046 (defun %output-huge-integer-in-base (n base stream)
1047 (declare (type bignum n) (type fixnum base))
1048 ;; POWER is a vector for which the following holds:
1049 ;; (aref power k) == (expt base (expt 2 k))
1050 (let* ((power (powers-for-base base n))
1051 (k-start (or (position-if (lambda (x) (> x n)) power)
1052 (bug "power-vector too short"))))
1053 (labels ((bisect (n k exactp)
1054 (declare (fixnum k))
1055 ;; N is the number to bisect
1056 ;; K on initial entry BASE^(2^K) > N
1057 ;; EXACTP is true if 2^K is the exact number of digits
1058 (cond ((zerop n)
1059 (when exactp
1060 (loop repeat (ash 1 k) do (write-char #\0 stream))))
1061 ((zerop k)
1062 (write-char
1063 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" n)
1064 stream))
1066 (setf k (1- k))
1067 (multiple-value-bind (q r) (truncate n (aref power k))
1068 ;; EXACTP is NIL only at the head of the
1069 ;; initial number, as we don't know the number
1070 ;; of digits there, but we do know that it
1071 ;; doesn't get any leading zeros.
1072 (bisect q k exactp)
1073 (bisect r k (or exactp (plusp q))))))))
1074 (bisect n k-start nil))))
1076 (defun %output-integer-in-base (integer base stream)
1077 (when (minusp integer)
1078 (write-char #\- stream)
1079 (setf integer (- integer)))
1080 ;; The ideal cutoff point between these two algorithms is almost
1081 ;; certainly quite platform dependent: this gives 87 for 32 bit
1082 ;; SBCL, which is about right at least for x86/Darwin.
1083 (if (or (fixnump integer)
1084 (< (integer-length integer) (* 3 sb!vm:n-positive-fixnum-bits)))
1085 (%output-reasonable-integer-in-base integer base stream)
1086 (%output-huge-integer-in-base integer base stream)))
1088 ;;; This gets both a method and a specifically named function
1089 ;;; since the latter is called from a few places.
1090 (defmethod print-object ((object integer) stream)
1091 (output-integer object stream *print-base* *print-radix*))
1092 (defun output-integer (integer stream base radixp)
1093 (cond (radixp
1094 (unless (= base 10) (%output-radix base stream))
1095 (%output-integer-in-base integer base stream)
1096 (when (= base 10) (write-char #\. stream)))
1098 (%output-integer-in-base integer base stream))))
1100 (defmethod print-object ((ratio ratio) stream)
1101 (let ((base *print-base*))
1102 (when *print-radix*
1103 (%output-radix base stream))
1104 (%output-integer-in-base (numerator ratio) base stream)
1105 (write-char #\/ stream)
1106 (%output-integer-in-base (denominator ratio) base stream)))
1108 (defmethod print-object ((complex complex) stream)
1109 (write-string "#C(" stream)
1110 (output-object (realpart complex) stream)
1111 (write-char #\space stream)
1112 (output-object (imagpart complex) stream)
1113 (write-char #\) stream))
1115 ;;;; float printing
1117 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1118 ;;; most of the work for all printing of floating point numbers in
1119 ;;; FORMAT. It converts a floating point number to a string in a free
1120 ;;; or fixed format with no exponent. The interpretation of the
1121 ;;; arguments is as follows:
1123 ;;; X - The floating point number to convert, which must not be
1124 ;;; negative.
1125 ;;; WIDTH - The preferred field width, used to determine the number
1126 ;;; of fraction digits to produce if the FDIGITS parameter
1127 ;;; is unspecified or NIL. If the non-fraction digits and the
1128 ;;; decimal point alone exceed this width, no fraction digits
1129 ;;; will be produced unless a non-NIL value of FDIGITS has been
1130 ;;; specified. Field overflow is not considerd an error at this
1131 ;;; level.
1132 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1133 ;;; trailing zeroes may be introduced as needed. May be
1134 ;;; unspecified or NIL, in which case as many digits as possible
1135 ;;; are generated, subject to the constraint that there are no
1136 ;;; trailing zeroes.
1137 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1138 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1139 ;;; and cannot lose precision.
1140 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1141 ;;; number of fraction digits which will be produced, regardless
1142 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1143 ;;; the ~E format directive to prevent complete loss of
1144 ;;; significance in the printed value due to a bogus choice of
1145 ;;; scale factor.
1147 ;;; Returns:
1148 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1149 ;;; where the results have the following interpretation:
1151 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1152 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1153 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1154 ;;; decimal point.
1155 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1156 ;;; decimal point.
1157 ;;; POINT-POS - The position of the digit preceding the decimal
1158 ;;; point. Zero indicates point before first digit.
1160 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1161 ;;; accuracy. Specifically, the decimal number printed is the closest
1162 ;;; possible approximation to the true value of the binary number to
1163 ;;; be printed from among all decimal representations with the same
1164 ;;; number of digits. In free-format output, i.e. with the number of
1165 ;;; digits unconstrained, it is guaranteed that all the information is
1166 ;;; preserved, so that a properly- rounding reader can reconstruct the
1167 ;;; original binary number, bit-for-bit, from its printed decimal
1168 ;;; representation. Furthermore, only as many digits as necessary to
1169 ;;; satisfy this condition will be printed.
1171 ;;; FLOAT-DIGITS actually generates the digits for positive numbers;
1172 ;;; see below for comments.
1174 (defun flonum-to-string (x &optional width fdigits scale fmin)
1175 (declare (type float x))
1176 ;; FIXME: I think only FORMAT-DOLLARS calls FLONUM-TO-STRING with
1177 ;; possibly-negative X.
1178 (setf x (abs x))
1179 (multiple-value-bind (e string)
1180 (if fdigits
1181 (flonum-to-digits x (min (- (+ fdigits (or scale 0)))
1182 (- (or fmin 0))))
1183 (if (and width (> width 1))
1184 (let ((w (multiple-value-list
1185 (flonum-to-digits x
1186 (max 1
1187 (+ (1- width)
1188 (if (and scale (minusp scale))
1189 scale 0)))
1190 t)))
1191 (f (multiple-value-list
1192 (flonum-to-digits x (- (+ (or fmin 0)
1193 (if scale scale 0)))))))
1194 (cond
1195 ((>= (length (cadr w)) (length (cadr f)))
1196 (values-list w))
1197 (t (values-list f))))
1198 (flonum-to-digits x)))
1199 (let ((e (if (zerop x)
1201 (+ e (or scale 0))))
1202 (stream (make-string-output-stream)))
1203 (if (plusp e)
1204 (progn
1205 (write-string string stream :end (min (length string) e))
1206 (dotimes (i (- e (length string)))
1207 (write-char #\0 stream))
1208 (write-char #\. stream)
1209 (write-string string stream :start (min (length string) e))
1210 (when fdigits
1211 (dotimes (i (- fdigits
1212 (- (length string)
1213 (min (length string) e))))
1214 (write-char #\0 stream))))
1215 (progn
1216 (write-string "." stream)
1217 (dotimes (i (- e))
1218 (write-char #\0 stream))
1219 (write-string string stream :end (when fdigits
1220 (min (length string)
1221 (max (or fmin 0)
1222 (+ fdigits e)))))
1223 (when fdigits
1224 (dotimes (i (+ fdigits e (- (length string))))
1225 (write-char #\0 stream)))))
1226 (let ((string (get-output-stream-string stream)))
1227 (values string (length string)
1228 (char= (char string 0) #\.)
1229 (char= (char string (1- (length string))) #\.)
1230 (position #\. string))))))
1232 ;;; implementation of figure 1 from Burger and Dybvig, 1996. It is
1233 ;;; extended in order to handle rounding.
1235 ;;; As the implementation of the Dragon from Classic CMUCL (and
1236 ;;; previously in SBCL above FLONUM-TO-STRING) says: "DO NOT EVEN
1237 ;;; THINK OF ATTEMPTING TO UNDERSTAND THIS CODE WITHOUT READING THE
1238 ;;; PAPER!", and in this case we have to add that even reading the
1239 ;;; paper might not bring immediate illumination as CSR has attempted
1240 ;;; to turn idiomatic Scheme into idiomatic Lisp.
1242 ;;; FIXME: figure 1 from Burger and Dybvig is the unoptimized
1243 ;;; algorithm, noticeably slow at finding the exponent. Figure 2 has
1244 ;;; an improved algorithm, but CSR ran out of energy.
1246 ;;; possible extension for the enthusiastic: printing floats in bases
1247 ;;; other than base 10.
1248 (defconstant single-float-min-e
1249 (- 2 sb!vm:single-float-bias sb!vm:single-float-digits))
1250 (defconstant double-float-min-e
1251 (- 2 sb!vm:double-float-bias sb!vm:double-float-digits))
1252 #!+long-float
1253 (defconstant long-float-min-e
1254 (nth-value 1 (decode-float least-positive-long-float)))
1256 ;;; Call CHAR-FUN with the digits of FLOAT
1257 ;;; PROLOGUE-FUN and EPILOGUE-FUN are called with the exponent before
1258 ;;; and after printing to set up the state.
1259 (declaim (inline %flonum-to-digits))
1260 (defun %flonum-to-digits (char-fun
1261 prologue-fun
1262 epilogue-fun
1263 float &optional position relativep)
1264 (let ((print-base 10) ; B
1265 (float-radix 2) ; b
1266 (float-digits (float-digits float)) ; p
1267 (min-e
1268 (etypecase float
1269 (single-float single-float-min-e)
1270 (double-float double-float-min-e)
1271 #!+long-float
1272 (long-float long-float-min-e))))
1273 (multiple-value-bind (f e)
1274 (integer-decode-float float)
1275 (let ( ;; FIXME: these even tests assume normal IEEE rounding
1276 ;; mode. I wonder if we should cater for non-normal?
1277 (high-ok (evenp f))
1278 (low-ok (evenp f)))
1279 (labels ((scale (r s m+ m-)
1280 (do ((r+m+ (+ r m+))
1281 (k 0 (1+ k))
1282 (s s (* s print-base)))
1283 ((not (or (> r+m+ s)
1284 (and high-ok (= r+m+ s))))
1285 (do ((k k (1- k))
1286 (r r (* r print-base))
1287 (m+ m+ (* m+ print-base))
1288 (m- m- (* m- print-base)))
1289 ((not (and (> r m-) ; Extension to handle zero
1290 (let ((x (* (+ r m+) print-base)))
1291 (or (< x s)
1292 (and (not high-ok)
1293 (= x s))))))
1294 (funcall prologue-fun k)
1295 (generate r s m+ m-)
1296 (funcall epilogue-fun k))))))
1297 (generate (r s m+ m-)
1298 (let (d tc1 tc2)
1299 (tagbody
1300 loop
1301 (setf (values d r) (truncate (* r print-base) s))
1302 (setf m+ (* m+ print-base))
1303 (setf m- (* m- print-base))
1304 (setf tc1 (or (< r m-) (and low-ok (= r m-))))
1305 (setf tc2 (let ((r+m+ (+ r m+)))
1306 (or (> r+m+ s)
1307 (and high-ok (= r+m+ s)))))
1308 (when (or tc1 tc2)
1309 (go end))
1310 (funcall char-fun d)
1311 (go loop)
1313 (let ((d (cond
1314 ((and (not tc1) tc2) (1+ d))
1315 ((and tc1 (not tc2)) d)
1316 ((< (* r 2) s)
1319 (1+ d)))))
1320 (funcall char-fun d)))))
1321 (initialize ()
1322 (let (r s m+ m-)
1323 (cond ((>= e 0)
1324 (let ((be (expt float-radix e)))
1325 (if (/= f (expt float-radix (1- float-digits)))
1326 ;; multiply F by 2 first, avoding consing two bignums
1327 (setf r (* f 2 be)
1329 m+ be
1330 m- be)
1331 (setf m- be
1332 m+ (* be float-radix)
1333 r (* f 2 m+)
1334 s (* float-radix 2)))))
1335 ((or (= e min-e)
1336 (/= f (expt float-radix (1- float-digits))))
1337 (setf r (* f 2)
1338 s (expt float-radix (- 1 e))
1339 m+ 1
1340 m- 1))
1342 (setf r (* f float-radix 2)
1343 s (expt float-radix (- 2 e))
1344 m+ float-radix
1345 m- 1)))
1346 (when position
1347 (when relativep
1348 (aver (> position 0))
1349 (do ((k 0 (1+ k))
1350 ;; running out of letters here
1351 (l 1 (* l print-base)))
1352 ((>= (* s l) (+ r m+))
1353 ;; k is now \hat{k}
1354 (if (< (+ r (* s (/ (expt print-base (- k position)) 2)))
1355 (* s l))
1356 (setf position (- k position))
1357 (setf position (- k position 1))))))
1358 (let* ((x (/ (* s (expt print-base position)) 2))
1359 (low (max m- x))
1360 (high (max m+ x)))
1361 (when (<= m- low)
1362 (setf m- low)
1363 (setf low-ok t))
1364 (when (<= m+ high)
1365 (setf m+ high)
1366 (setf high-ok t))))
1367 (values r s m+ m-))))
1368 (multiple-value-bind (r s m+ m-) (initialize)
1369 (scale r s m+ m-)))))))
1371 (defun flonum-to-digits (float &optional position relativep)
1372 (let ((digit-characters "0123456789"))
1373 (with-push-char (:element-type base-char)
1374 (%flonum-to-digits
1375 (lambda (d)
1376 (push-char (char digit-characters d)))
1377 (lambda (k) k)
1378 (lambda (k) (values k (get-pushed-string)))
1379 float position relativep))))
1381 (defun print-float (float stream)
1382 (let ((position 0)
1383 (dot-position 0)
1384 (digit-characters "0123456789")
1385 (e-min -3)
1386 (e-max 8))
1387 (%flonum-to-digits
1388 (lambda (d)
1389 (when (= position dot-position)
1390 (write-char #\. stream))
1391 (write-char (char digit-characters d) stream)
1392 (incf position))
1393 (lambda (k)
1394 (cond ((not (< e-min k e-max))
1395 (setf dot-position 1))
1396 ((plusp k)
1397 (setf dot-position k))
1399 (setf dot-position -1)
1400 (write-char #\0 stream)
1401 (write-char #\. stream)
1402 (loop for i below (- k)
1403 do (write-char #\0 stream)))))
1404 (lambda (k)
1405 (when (<= position dot-position)
1406 (loop for i below (- dot-position position)
1407 do (write-char #\0 stream))
1408 (write-char #\. stream)
1409 (write-char #\0 stream))
1410 (if (< e-min k e-max)
1411 (print-float-exponent float 0 stream)
1412 (print-float-exponent float (1- k) stream)))
1413 float)))
1415 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1416 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1417 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1418 ;;; original number. There may be some loss of precision due the
1419 ;;; floating point representation. The scaling is always done with
1420 ;;; long float arithmetic, which helps printing of lesser precisions
1421 ;;; as well as avoiding generic arithmetic.
1423 ;;; When computing our initial scale factor using EXPT, we pull out
1424 ;;; part of the computation to avoid over/under flow. When
1425 ;;; denormalized, we must pull out a large factor, since there is more
1426 ;;; negative exponent range than positive range.
1428 (eval-when (:compile-toplevel :execute)
1429 (setf *read-default-float-format*
1430 #!+long-float 'long-float #!-long-float 'double-float))
1431 (defun scale-exponent (original-x)
1432 (let* ((x (coerce original-x 'long-float)))
1433 (multiple-value-bind (sig exponent) (decode-float x)
1434 (declare (ignore sig))
1435 (if (= x 0.0e0)
1436 (values (float 0.0e0 original-x) 1)
1437 (let* ((ex (locally (declare (optimize (safety 0)))
1438 (the fixnum
1439 (round (* exponent
1440 ;; this is the closest double float
1441 ;; to (log 2 10), but expressed so
1442 ;; that we're not vulnerable to the
1443 ;; host lisp's interpretation of
1444 ;; arithmetic. (FIXME: it turns
1445 ;; out that sbcl itself is off by 1
1446 ;; ulp in this value, which is a
1447 ;; little unfortunate.)
1448 (load-time-value
1449 #!-long-float
1450 (make-double-float 1070810131 1352628735)
1451 #!+long-float
1452 (error "(log 2 10) not computed")))))))
1453 (x (if (minusp ex)
1454 (if (float-denormalized-p x)
1455 #!-long-float
1456 (* x 1.0e16 (expt 10.0e0 (- (- ex) 16)))
1457 #!+long-float
1458 (* x 1.0e18 (expt 10.0e0 (- (- ex) 18)))
1459 (* x 10.0e0 (expt 10.0e0 (- (- ex) 1))))
1460 (/ x 10.0e0 (expt 10.0e0 (1- ex))))))
1461 (do ((d 10.0e0 (* d 10.0e0))
1462 (y x (/ x d))
1463 (ex ex (1+ ex)))
1464 ((< y 1.0e0)
1465 (do ((m 10.0e0 (* m 10.0e0))
1466 (z y (* y m))
1467 (ex ex (1- ex)))
1468 ((>= z 0.1e0)
1469 (values (float z original-x) ex))
1470 (declare (long-float m) (integer ex))))
1471 (declare (long-float d))))))))
1472 (eval-when (:compile-toplevel :execute)
1473 (setf *read-default-float-format* 'single-float))
1475 ;;;; entry point for the float printer
1477 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1478 ;;; argument is printed free-format, in either exponential or
1479 ;;; non-exponential notation, depending on its magnitude.
1481 ;;; NOTE: When a number is to be printed in exponential format, it is
1482 ;;; scaled in floating point. Since precision may be lost in this
1483 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1484 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1485 ;;; extensive computations with integers of similar magnitude to that
1486 ;;; of the number being printed. For large exponents, the bignums
1487 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1488 ;;; fast and the exponent range is not too large, then it might become
1489 ;;; attractive to handle exponential notation with the same accuracy
1490 ;;; as non-exponential notation, using the method described in the
1491 ;;; Steele and White paper.
1493 ;;; NOTE II: this has been bypassed slightly by implementing Burger
1494 ;;; and Dybvig, 1996. When someone has time (KLUDGE) they can
1495 ;;; probably (a) implement the optimizations suggested by Burger and
1496 ;;; Dyvbig, and (b) remove all vestiges of Dragon4, including from
1497 ;;; fixed-format printing.
1499 ;;; Print the appropriate exponent marker for X and the specified exponent.
1500 (defun print-float-exponent (x exp stream)
1501 (declare (type float x) (type integer exp) (type stream stream))
1502 (cond ((case *read-default-float-format*
1503 ((short-float single-float)
1504 (typep x 'single-float))
1505 ((double-float #!-long-float long-float)
1506 (typep x 'double-float))
1507 #!+long-float
1508 (long-float
1509 (typep x 'long-float)))
1510 (unless (eql exp 0)
1511 (write-char #\e stream)
1512 (%output-integer-in-base exp 10 stream)))
1514 (write-char
1515 (etypecase x
1516 (single-float #\f)
1517 (double-float #\d)
1518 (short-float #\s)
1519 (long-float #\L))
1520 stream)
1521 (%output-integer-in-base exp 10 stream))))
1523 (defun output-float-infinity (x stream)
1524 (declare (float x) (stream stream))
1525 (cond (*read-eval*
1526 (write-string "#." stream))
1527 (*print-readably*
1528 (return-from output-float-infinity
1529 (print-not-readable-error x stream)))
1531 (write-string "#<" stream)))
1532 (write-string "SB-EXT:" stream)
1533 (write-string (symbol-name (float-format-name x)) stream)
1534 (write-string (if (plusp x) "-POSITIVE-" "-NEGATIVE-")
1535 stream)
1536 (write-string "INFINITY" stream)
1537 (unless *read-eval*
1538 (write-string ">" stream)))
1540 (defun output-float-nan (x stream)
1541 (print-unreadable-object (x stream)
1542 (princ (float-format-name x) stream)
1543 (write-string (if (float-trapping-nan-p x) " trapping" " quiet") stream)
1544 (write-string " NaN" stream)))
1546 (declaim (inline output-float))
1547 (defun output-float (x stream)
1548 (cond
1549 ((float-infinity-p x)
1550 (output-float-infinity x stream))
1551 ((float-nan-p x)
1552 (output-float-nan x stream))
1554 (let ((x (cond ((minusp (float-sign x))
1555 (write-char #\- stream)
1556 (- x))
1558 x))))
1559 (cond
1560 ((zerop x)
1561 (write-string "0.0" stream)
1562 (print-float-exponent x 0 stream))
1564 (print-float x stream)))))))
1566 ;;; the function called by OUTPUT-OBJECT to handle floats
1567 (defmethod print-object ((x single-float) stream)
1568 (output-float x stream))
1570 (defmethod print-object ((x double-float) stream)
1571 (output-float x stream))
1574 ;;;; other leaf objects
1576 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1577 ;;; the character name or the character in the #\char format.
1578 (defmethod print-object ((char character) stream)
1579 (if (or *print-escape* *print-readably*)
1580 (let ((graphicp (and (graphic-char-p char)
1581 (standard-char-p char)))
1582 (name (char-name char)))
1583 (write-string "#\\" stream)
1584 (if (and name (or (not graphicp) *print-readably*))
1585 (quote-string name stream)
1586 (write-char char stream)))
1587 (write-char char stream)))
1589 (defmethod print-object ((sap system-area-pointer) stream)
1590 (cond (*read-eval*
1591 (format stream "#.(~S #X~8,'0X)" 'int-sap (sap-int sap)))
1593 (print-unreadable-object (sap stream)
1594 (format stream "system area pointer: #X~8,'0X" (sap-int sap))))))
1596 (defmethod print-object ((weak-pointer weak-pointer) stream)
1597 (print-unreadable-object (weak-pointer stream)
1598 (multiple-value-bind (value validp) (weak-pointer-value weak-pointer)
1599 (cond (validp
1600 (write-string "weak pointer: " stream)
1601 (write value :stream stream))
1603 (write-string "broken weak pointer" stream))))))
1605 (defmethod print-object ((component code-component) stream)
1606 (print-unreadable-object (component stream :identity t)
1607 (let ((dinfo (%code-debug-info component)))
1608 (cond ((eq dinfo :bogus-lra)
1609 (write-string "bogus code object" stream))
1611 (format stream "code object [~D]" (code-n-entries component))
1612 (let ((fun-name (awhen (%code-entry-point component 0)
1613 (%simple-fun-name it))))
1614 (when fun-name
1615 (write-char #\Space stream)
1616 (write fun-name :stream stream))
1617 (cond ((not (typep dinfo 'sb!c::debug-info)))
1618 ((neq (sb!c::debug-info-name dinfo) fun-name)
1619 (write-string ", " stream)
1620 (output-object (sb!c::debug-info-name dinfo) stream)))))))))
1622 #!-(or x86 x86-64)
1623 (defmethod print-object ((lra lra) stream)
1624 (print-unreadable-object (lra stream :identity t)
1625 (write-string "return PC object" stream)))
1627 (defmethod print-object ((fdefn fdefn) stream)
1628 (print-unreadable-object (fdefn stream :type t)
1629 ;; As fdefn names are particularly relevant to those hacking on the compiler
1630 ;; and disassembler, be maximally helpful by neither abbreviating (SETF ...)
1631 ;; due to length cutoff, nor failing to print a package if needed.
1632 ;; Some folks seem to love same-named symbols way too much.
1633 (let ((*print-length* 20)) ; arbitrary
1634 (prin1 (fdefn-name fdefn) stream))))
1636 #!+sb-simd-pack
1637 (defmethod print-object ((pack simd-pack) stream)
1638 (cond ((and *print-readably* *read-eval*)
1639 (multiple-value-bind (format maker extractor)
1640 (etypecase pack
1641 ((simd-pack double-float)
1642 (values "#.(~S ~S ~S)"
1643 '%make-simd-pack-double #'%simd-pack-doubles))
1644 ((simd-pack single-float)
1645 (values "#.(~S ~S ~S ~S ~S)"
1646 '%make-simd-pack-single #'%simd-pack-singles))
1648 (values "#.(~S #X~16,'0X #X~16,'0X)"
1649 '%make-simd-pack-ub64 #'%simd-pack-ub64s)))
1650 (multiple-value-call
1651 #'format stream format maker (funcall extractor pack))))
1653 (print-unreadable-object (pack stream)
1654 (flet ((all-ones-p (value start end &aux (mask (- (ash 1 end) (ash 1 start))))
1655 (= (logand value mask) mask))
1656 (split-num (value start)
1657 (loop
1658 for i from 0 to 3
1659 and v = (ash value (- start)) then (ash v -8)
1660 collect (logand v #xFF))))
1661 (multiple-value-bind (low high)
1662 (%simd-pack-ub64s pack)
1663 (etypecase pack
1664 ((simd-pack double-float)
1665 (multiple-value-bind (v0 v1) (%simd-pack-doubles pack)
1666 (format stream "~S~@{ ~:[~,13E~;~*TRUE~]~}"
1667 'simd-pack
1668 (all-ones-p low 0 64) v0
1669 (all-ones-p high 0 64) v1)))
1670 ((simd-pack single-float)
1671 (multiple-value-bind (v0 v1 v2 v3) (%simd-pack-singles pack)
1672 (format stream "~S~@{ ~:[~,7E~;~*TRUE~]~}"
1673 'simd-pack
1674 (all-ones-p low 0 32) v0
1675 (all-ones-p low 32 64) v1
1676 (all-ones-p high 0 32) v2
1677 (all-ones-p high 32 64) v3)))
1679 (format stream "~S~@{ ~{ ~2,'0X~}~}"
1680 'simd-pack
1681 (split-num low 0) (split-num low 32)
1682 (split-num high 0) (split-num high 32))))))))))
1684 ;;;; functions
1686 (defmethod print-object ((object function) stream)
1687 (let* ((name (%fun-name object))
1688 (proper-name-p (and (legal-fun-name-p name) (fboundp name)
1689 (eq (fdefinition name) object))))
1690 ;; ":TYPE T" is no good, since CLOSURE doesn't have full-fledged status.
1691 (print-unreadable-object (object stream :identity (not proper-name-p))
1692 (format stream "~A~@[ ~S~]"
1693 ;; TYPE-OF is so that GFs print as #<STANDARD-GENERIC-FUNCTION>
1694 ;; and not #<FUNCTION> before SRC;PCL;PRINT-OBJECT is loaded.
1695 (if (closurep object) 'closure (type-of object))
1696 name))))
1698 ;;;; catch-all for unknown things
1700 (defmethod print-object ((object t) stream)
1701 (flet ((output-it (stream)
1702 (when (eq object sb!pcl:+slot-unbound+)
1703 (print-unreadable-object (object stream)
1704 ;; If specifically the unbound marker with 0 data,
1705 ;; as opposed to any other unbound marker.
1706 (write-string "unbound" stream))
1707 (return-from output-it))
1708 (print-unreadable-object (object stream :identity t)
1709 (let ((lowtag (lowtag-of object)))
1710 (case lowtag
1711 (#.sb!vm:other-pointer-lowtag
1712 (let ((widetag (widetag-of object)))
1713 (case widetag
1714 (#.sb!vm:value-cell-widetag
1715 (write-string "value cell " stream)
1716 (output-object (value-cell-ref object) stream))
1718 (write-string "unknown pointer object, widetag=" stream)
1719 (output-integer widetag stream 16 t)))))
1720 ((#.sb!vm:fun-pointer-lowtag
1721 #.sb!vm:instance-pointer-lowtag
1722 #.sb!vm:list-pointer-lowtag)
1723 (write-string "unknown pointer object, lowtag=" stream)
1724 (output-integer lowtag stream 16 t))
1726 (case (widetag-of object)
1727 (#.sb!vm:unbound-marker-widetag
1728 (write-string "unbound marker" stream))
1730 (write-string "unknown immediate object, lowtag=" stream)
1731 (output-integer lowtag stream 2 t)
1732 (write-string ", widetag=" stream)
1733 (output-integer (widetag-of object) stream 16 t)))))))))
1734 (if *print-pretty*
1735 ;; This block might not be necessary. Not sure, probably can't hurt.
1736 (pprint-logical-block (stream nil) (output-it stream))
1737 (output-it stream))))