[ruby/irb] Change debug test workaround only enabled when output is
[ruby.git] / enumerator.c
blob193a865dbc553626de385f20f53629a766353e1e
1 /************************************************
3 enumerator.c - provides Enumerator class
5 $Author$
7 Copyright (C) 2001-2003 Akinori MUSHA
9 $Idaemons: /home/cvs/rb/enumerator/enumerator.c,v 1.1.1.1 2001/07/15 10:12:48 knu Exp $
10 $RoughId: enumerator.c,v 1.6 2003/07/27 11:03:24 nobu Exp $
11 $Id$
13 ************************************************/
15 #include "ruby/internal/config.h"
17 #ifdef HAVE_FLOAT_H
18 #include <float.h>
19 #endif
21 #include "id.h"
22 #include "internal.h"
23 #include "internal/class.h"
24 #include "internal/enumerator.h"
25 #include "internal/error.h"
26 #include "internal/hash.h"
27 #include "internal/imemo.h"
28 #include "internal/numeric.h"
29 #include "internal/range.h"
30 #include "internal/rational.h"
31 #include "ruby/ruby.h"
34 * Document-class: Enumerator
36 * A class which allows both internal and external iteration.
38 * An Enumerator can be created by the following methods.
39 * - Object#to_enum
40 * - Object#enum_for
41 * - Enumerator.new
43 * Most methods have two forms: a block form where the contents
44 * are evaluated for each item in the enumeration, and a non-block form
45 * which returns a new Enumerator wrapping the iteration.
47 * enumerator = %w(one two three).each
48 * puts enumerator.class # => Enumerator
50 * enumerator.each_with_object("foo") do |item, obj|
51 * puts "#{obj}: #{item}"
52 * end
54 * # foo: one
55 * # foo: two
56 * # foo: three
58 * enum_with_obj = enumerator.each_with_object("foo")
59 * puts enum_with_obj.class # => Enumerator
61 * enum_with_obj.each do |item, obj|
62 * puts "#{obj}: #{item}"
63 * end
65 * # foo: one
66 * # foo: two
67 * # foo: three
69 * This allows you to chain Enumerators together. For example, you
70 * can map a list's elements to strings containing the index
71 * and the element as a string via:
73 * puts %w[foo bar baz].map.with_index { |w, i| "#{i}:#{w}" }
74 * # => ["0:foo", "1:bar", "2:baz"]
76 * == External Iteration
78 * An Enumerator can also be used as an external iterator.
79 * For example, Enumerator#next returns the next value of the iterator
80 * or raises StopIteration if the Enumerator is at the end.
82 * e = [1,2,3].each # returns an enumerator object.
83 * puts e.next # => 1
84 * puts e.next # => 2
85 * puts e.next # => 3
86 * puts e.next # raises StopIteration
88 * +next+, +next_values+, +peek+, and +peek_values+ are the only methods
89 * which use external iteration (and Array#zip(Enumerable-not-Array) which uses +next+ internally).
91 * These methods do not affect other internal enumeration methods,
92 * unless the underlying iteration method itself has side-effect, e.g. IO#each_line.
94 * FrozenError will be raised if these methods are called against a frozen enumerator.
95 * Since +rewind+ and +feed+ also change state for external iteration,
96 * these methods may raise FrozenError too.
98 * External iteration differs *significantly* from internal iteration
99 * due to using a Fiber:
100 * - The Fiber adds some overhead compared to internal enumeration.
101 * - The stacktrace will only include the stack from the Enumerator, not above.
102 * - Fiber-local variables are *not* inherited inside the Enumerator Fiber,
103 * which instead starts with no Fiber-local variables.
104 * - Fiber storage variables *are* inherited and are designed
105 * to handle Enumerator Fibers. Assigning to a Fiber storage variable
106 * only affects the current Fiber, so if you want to change state
107 * in the caller Fiber of the Enumerator Fiber, you need to use an
108 * extra indirection (e.g., use some object in the Fiber storage
109 * variable and mutate some ivar of it).
111 * Concretely:
113 * Thread.current[:fiber_local] = 1
114 * Fiber[:storage_var] = 1
115 * e = Enumerator.new do |y|
116 * p Thread.current[:fiber_local] # for external iteration: nil, for internal iteration: 1
117 * p Fiber[:storage_var] # => 1, inherited
118 * Fiber[:storage_var] += 1
119 * y << 42
120 * end
122 * p e.next # => 42
123 * p Fiber[:storage_var] # => 1 (it ran in a different Fiber)
125 * e.each { p _1 }
126 * p Fiber[:storage_var] # => 2 (it ran in the same Fiber/"stack" as the current Fiber)
128 * == Convert External Iteration to Internal Iteration
130 * You can use an external iterator to implement an internal iterator as follows:
132 * def ext_each(e)
133 * while true
134 * begin
135 * vs = e.next_values
136 * rescue StopIteration
137 * return $!.result
138 * end
139 * y = yield(*vs)
140 * e.feed y
141 * end
142 * end
144 * o = Object.new
146 * def o.each
147 * puts yield
148 * puts yield(1)
149 * puts yield(1, 2)
151 * end
153 * # use o.each as an internal iterator directly.
154 * puts o.each {|*x| puts x; [:b, *x] }
155 * # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
157 * # convert o.each to an external iterator for
158 * # implementing an internal iterator.
159 * puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] }
160 * # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
163 VALUE rb_cEnumerator;
164 static VALUE rb_cLazy;
165 static ID id_rewind, id_new, id_to_enum, id_each_entry;
166 static ID id_next, id_result, id_receiver, id_arguments, id_memo, id_method, id_force;
167 static ID id_begin, id_end, id_step, id_exclude_end;
168 static VALUE sym_each, sym_cycle, sym_yield;
170 static VALUE lazy_use_super_method;
172 extern ID ruby_static_id_cause;
174 #define id_call idCall
175 #define id_cause ruby_static_id_cause
176 #define id_each idEach
177 #define id_eqq idEqq
178 #define id_initialize idInitialize
179 #define id_size idSize
181 VALUE rb_eStopIteration;
183 struct enumerator {
184 VALUE obj;
185 ID meth;
186 VALUE args;
187 VALUE fib;
188 VALUE dst;
189 VALUE lookahead;
190 VALUE feedvalue;
191 VALUE stop_exc;
192 VALUE size;
193 VALUE procs;
194 rb_enumerator_size_func *size_fn;
195 int kw_splat;
198 RUBY_REFERENCES(enumerator_refs) = {
199 RUBY_REF_EDGE(struct enumerator, obj),
200 RUBY_REF_EDGE(struct enumerator, args),
201 RUBY_REF_EDGE(struct enumerator, fib),
202 RUBY_REF_EDGE(struct enumerator, dst),
203 RUBY_REF_EDGE(struct enumerator, lookahead),
204 RUBY_REF_EDGE(struct enumerator, feedvalue),
205 RUBY_REF_EDGE(struct enumerator, stop_exc),
206 RUBY_REF_EDGE(struct enumerator, size),
207 RUBY_REF_EDGE(struct enumerator, procs),
208 RUBY_REF_END
211 static VALUE rb_cGenerator, rb_cYielder, rb_cEnumProducer;
213 struct generator {
214 VALUE proc;
215 VALUE obj;
218 struct yielder {
219 VALUE proc;
222 struct producer {
223 VALUE init;
224 VALUE proc;
227 typedef struct MEMO *lazyenum_proc_func(VALUE, struct MEMO *, VALUE, long);
228 typedef VALUE lazyenum_size_func(VALUE, VALUE);
229 typedef int lazyenum_precheck_func(VALUE proc_entry);
230 typedef struct {
231 lazyenum_proc_func *proc;
232 lazyenum_size_func *size;
233 lazyenum_precheck_func *precheck;
234 } lazyenum_funcs;
236 struct proc_entry {
237 VALUE proc;
238 VALUE memo;
239 const lazyenum_funcs *fn;
242 static VALUE generator_allocate(VALUE klass);
243 static VALUE generator_init(VALUE obj, VALUE proc);
245 static VALUE rb_cEnumChain;
247 struct enum_chain {
248 VALUE enums;
249 long pos;
252 static VALUE rb_cEnumProduct;
254 struct enum_product {
255 VALUE enums;
258 VALUE rb_cArithSeq;
260 static const rb_data_type_t enumerator_data_type = {
261 "enumerator",
263 RUBY_REFS_LIST_PTR(enumerator_refs),
264 RUBY_TYPED_DEFAULT_FREE,
265 NULL, // Nothing allocated externally, so don't need a memsize function
266 NULL,
268 0, NULL, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_DECL_MARKING | RUBY_TYPED_EMBEDDABLE
271 static struct enumerator *
272 enumerator_ptr(VALUE obj)
274 struct enumerator *ptr;
276 TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr);
277 if (!ptr || UNDEF_P(ptr->obj)) {
278 rb_raise(rb_eArgError, "uninitialized enumerator");
280 return ptr;
283 static void
284 proc_entry_mark(void *p)
286 struct proc_entry *ptr = p;
287 rb_gc_mark_movable(ptr->proc);
288 rb_gc_mark_movable(ptr->memo);
291 static void
292 proc_entry_compact(void *p)
294 struct proc_entry *ptr = p;
295 ptr->proc = rb_gc_location(ptr->proc);
296 ptr->memo = rb_gc_location(ptr->memo);
299 static const rb_data_type_t proc_entry_data_type = {
300 "proc_entry",
302 proc_entry_mark,
303 RUBY_TYPED_DEFAULT_FREE,
304 NULL, // Nothing allocated externally, so don't need a memsize function
305 proc_entry_compact,
307 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE
310 static struct proc_entry *
311 proc_entry_ptr(VALUE proc_entry)
313 struct proc_entry *ptr;
315 TypedData_Get_Struct(proc_entry, struct proc_entry, &proc_entry_data_type, ptr);
317 return ptr;
321 * call-seq:
322 * obj.to_enum(method = :each, *args) -> enum
323 * obj.enum_for(method = :each, *args) -> enum
324 * obj.to_enum(method = :each, *args) {|*args| block} -> enum
325 * obj.enum_for(method = :each, *args){|*args| block} -> enum
327 * Creates a new Enumerator which will enumerate by calling +method+ on
328 * +obj+, passing +args+ if any. What was _yielded_ by method becomes
329 * values of enumerator.
331 * If a block is given, it will be used to calculate the size of
332 * the enumerator without the need to iterate it (see Enumerator#size).
334 * === Examples
336 * str = "xyz"
338 * enum = str.enum_for(:each_byte)
339 * enum.each { |b| puts b }
340 * # => 120
341 * # => 121
342 * # => 122
344 * # protect an array from being modified by some_method
345 * a = [1, 2, 3]
346 * some_method(a.to_enum)
348 * # String#split in block form is more memory-effective:
349 * very_large_string.split("|") { |chunk| return chunk if chunk.include?('DATE') }
350 * # This could be rewritten more idiomatically with to_enum:
351 * very_large_string.to_enum(:split, "|").lazy.grep(/DATE/).first
353 * It is typical to call to_enum when defining methods for
354 * a generic Enumerable, in case no block is passed.
356 * Here is such an example, with parameter passing and a sizing block:
358 * module Enumerable
359 * # a generic method to repeat the values of any enumerable
360 * def repeat(n)
361 * raise ArgumentError, "#{n} is negative!" if n < 0
362 * unless block_given?
363 * return to_enum(__method__, n) do # __method__ is :repeat here
364 * sz = size # Call size and multiply by n...
365 * sz * n if sz # but return nil if size itself is nil
366 * end
367 * end
368 * each do |*val|
369 * n.times { yield *val }
370 * end
371 * end
372 * end
374 * %i[hello world].repeat(2) { |w| puts w }
375 * # => Prints 'hello', 'hello', 'world', 'world'
376 * enum = (1..14).repeat(3)
377 * # => returns an Enumerator when called without a block
378 * enum.first(4) # => [1, 1, 1, 2]
379 * enum.size # => 42
381 static VALUE
382 obj_to_enum(int argc, VALUE *argv, VALUE obj)
384 VALUE enumerator, meth = sym_each;
386 if (argc > 0) {
387 --argc;
388 meth = *argv++;
390 enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
391 if (rb_block_given_p()) {
392 RB_OBJ_WRITE(enumerator, &enumerator_ptr(enumerator)->size, rb_block_proc());
394 return enumerator;
397 static VALUE
398 enumerator_allocate(VALUE klass)
400 struct enumerator *ptr;
401 VALUE enum_obj;
403 enum_obj = TypedData_Make_Struct(klass, struct enumerator, &enumerator_data_type, ptr);
404 ptr->obj = Qundef;
406 return enum_obj;
409 static VALUE
410 enumerator_init(VALUE enum_obj, VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, VALUE size, int kw_splat)
412 struct enumerator *ptr;
414 rb_check_frozen(enum_obj);
415 TypedData_Get_Struct(enum_obj, struct enumerator, &enumerator_data_type, ptr);
417 if (!ptr) {
418 rb_raise(rb_eArgError, "unallocated enumerator");
421 RB_OBJ_WRITE(enum_obj, &ptr->obj, obj);
422 ptr->meth = rb_to_id(meth);
423 if (argc) RB_OBJ_WRITE(enum_obj, &ptr->args, rb_ary_new4(argc, argv));
424 ptr->fib = 0;
425 ptr->dst = Qnil;
426 ptr->lookahead = Qundef;
427 ptr->feedvalue = Qundef;
428 ptr->stop_exc = Qfalse;
429 RB_OBJ_WRITE(enum_obj, &ptr->size, size);
430 ptr->size_fn = size_fn;
431 ptr->kw_splat = kw_splat;
433 return enum_obj;
436 static VALUE
437 convert_to_feasible_size_value(VALUE obj)
439 if (NIL_P(obj)) {
440 return obj;
442 else if (rb_respond_to(obj, id_call)) {
443 return obj;
445 else if (RB_FLOAT_TYPE_P(obj) && RFLOAT_VALUE(obj) == HUGE_VAL) {
446 return obj;
448 else {
449 return rb_to_int(obj);
454 * call-seq:
455 * Enumerator.new(size = nil) { |yielder| ... }
457 * Creates a new Enumerator object, which can be used as an
458 * Enumerable.
460 * Iteration is defined by the given block, in
461 * which a "yielder" object, given as block parameter, can be used to
462 * yield a value by calling the +yield+ method (aliased as <code><<</code>):
464 * fib = Enumerator.new do |y|
465 * a = b = 1
466 * loop do
467 * y << a
468 * a, b = b, a + b
469 * end
470 * end
472 * fib.take(10) # => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
474 * The optional parameter can be used to specify how to calculate the size
475 * in a lazy fashion (see Enumerator#size). It can either be a value or
476 * a callable object.
478 static VALUE
479 enumerator_initialize(int argc, VALUE *argv, VALUE obj)
481 VALUE iter = rb_block_proc();
482 VALUE recv = generator_init(generator_allocate(rb_cGenerator), iter);
483 VALUE arg0 = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
484 VALUE size = convert_to_feasible_size_value(arg0);
486 return enumerator_init(obj, recv, sym_each, 0, 0, 0, size, false);
489 /* :nodoc: */
490 static VALUE
491 enumerator_init_copy(VALUE obj, VALUE orig)
493 struct enumerator *ptr0, *ptr1;
495 if (!OBJ_INIT_COPY(obj, orig)) return obj;
496 ptr0 = enumerator_ptr(orig);
497 if (ptr0->fib) {
498 /* Fibers cannot be copied */
499 rb_raise(rb_eTypeError, "can't copy execution context");
502 TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr1);
504 if (!ptr1) {
505 rb_raise(rb_eArgError, "unallocated enumerator");
508 RB_OBJ_WRITE(obj, &ptr1->obj, ptr0->obj);
509 RB_OBJ_WRITE(obj, &ptr1->meth, ptr0->meth);
510 RB_OBJ_WRITE(obj, &ptr1->args, ptr0->args);
511 ptr1->fib = 0;
512 ptr1->lookahead = Qundef;
513 ptr1->feedvalue = Qundef;
514 RB_OBJ_WRITE(obj, &ptr1->size, ptr0->size);
515 ptr1->size_fn = ptr0->size_fn;
517 return obj;
521 * For backwards compatibility; use rb_enumeratorize_with_size
523 VALUE
524 rb_enumeratorize(VALUE obj, VALUE meth, int argc, const VALUE *argv)
526 return rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
529 static VALUE lazy_to_enum_i(VALUE self, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, int kw_splat);
530 static int lazy_precheck(VALUE procs);
532 VALUE
533 rb_enumeratorize_with_size_kw(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, int kw_splat)
535 VALUE base_class = rb_cEnumerator;
537 if (RTEST(rb_obj_is_kind_of(obj, rb_cLazy))) {
538 base_class = rb_cLazy;
540 else if (RTEST(rb_obj_is_kind_of(obj, rb_cEnumChain))) {
541 obj = enumerator_init(enumerator_allocate(rb_cEnumerator), obj, sym_each, 0, 0, 0, Qnil, false);
544 return enumerator_init(enumerator_allocate(base_class),
545 obj, meth, argc, argv, size_fn, Qnil, kw_splat);
548 VALUE
549 rb_enumeratorize_with_size(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn)
551 return rb_enumeratorize_with_size_kw(obj, meth, argc, argv, size_fn, rb_keyword_given_p());
554 static VALUE
555 enumerator_block_call(VALUE obj, rb_block_call_func *func, VALUE arg)
557 int argc = 0;
558 const VALUE *argv = 0;
559 const struct enumerator *e = enumerator_ptr(obj);
560 ID meth = e->meth;
562 VALUE args = e->args;
563 if (args) {
564 argc = RARRAY_LENINT(args);
565 argv = RARRAY_CONST_PTR(args);
568 VALUE ret = rb_block_call_kw(e->obj, meth, argc, argv, func, arg, e->kw_splat);
570 RB_GC_GUARD(args);
572 return ret;
576 * call-seq:
577 * enum.each { |elm| block } -> obj
578 * enum.each -> enum
579 * enum.each(*appending_args) { |elm| block } -> obj
580 * enum.each(*appending_args) -> an_enumerator
582 * Iterates over the block according to how this Enumerator was constructed.
583 * If no block and no arguments are given, returns self.
585 * === Examples
587 * "Hello, world!".scan(/\w+/) #=> ["Hello", "world"]
588 * "Hello, world!".to_enum(:scan, /\w+/).to_a #=> ["Hello", "world"]
589 * "Hello, world!".to_enum(:scan).each(/\w+/).to_a #=> ["Hello", "world"]
591 * obj = Object.new
593 * def obj.each_arg(a, b=:b, *rest)
594 * yield a
595 * yield b
596 * yield rest
597 * :method_returned
598 * end
600 * enum = obj.to_enum :each_arg, :a, :x
602 * enum.each.to_a #=> [:a, :x, []]
603 * enum.each.equal?(enum) #=> true
604 * enum.each { |elm| elm } #=> :method_returned
606 * enum.each(:y, :z).to_a #=> [:a, :x, [:y, :z]]
607 * enum.each(:y, :z).equal?(enum) #=> false
608 * enum.each(:y, :z) { |elm| elm } #=> :method_returned
611 static VALUE
612 enumerator_each(int argc, VALUE *argv, VALUE obj)
614 struct enumerator *e = enumerator_ptr(obj);
616 if (argc > 0) {
617 VALUE args = (e = enumerator_ptr(obj = rb_obj_dup(obj)))->args;
618 if (args) {
619 #if SIZEOF_INT < SIZEOF_LONG
620 /* check int range overflow */
621 rb_long2int(RARRAY_LEN(args) + argc);
622 #endif
623 args = rb_ary_dup(args);
624 rb_ary_cat(args, argv, argc);
626 else {
627 args = rb_ary_new4(argc, argv);
629 RB_OBJ_WRITE(obj, &e->args, args);
630 e->size = Qnil;
631 e->size_fn = 0;
633 if (!rb_block_given_p()) return obj;
635 if (!lazy_precheck(e->procs)) return Qnil;
637 return enumerator_block_call(obj, 0, obj);
640 static VALUE
641 enumerator_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, m))
643 struct MEMO *memo = (struct MEMO *)m;
644 VALUE idx = memo->v1;
645 MEMO_V1_SET(memo, rb_int_succ(idx));
647 if (argc <= 1)
648 return rb_yield_values(2, val, idx);
650 return rb_yield_values(2, rb_ary_new4(argc, argv), idx);
653 static VALUE
654 enumerator_size(VALUE obj);
656 static VALUE
657 enumerator_enum_size(VALUE obj, VALUE args, VALUE eobj)
659 return enumerator_size(obj);
663 * call-seq:
664 * e.with_index(offset = 0) {|(*args), idx| ... }
665 * e.with_index(offset = 0)
667 * Iterates the given block for each element with an index, which
668 * starts from +offset+. If no block is given, returns a new Enumerator
669 * that includes the index, starting from +offset+
671 * +offset+:: the starting index to use
674 static VALUE
675 enumerator_with_index(int argc, VALUE *argv, VALUE obj)
677 VALUE memo;
679 rb_check_arity(argc, 0, 1);
680 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enumerator_enum_size);
681 memo = (!argc || NIL_P(memo = argv[0])) ? INT2FIX(0) : rb_to_int(memo);
682 return enumerator_block_call(obj, enumerator_with_index_i, (VALUE)MEMO_NEW(memo, 0, 0));
686 * call-seq:
687 * e.each_with_index {|(*args), idx| ... }
688 * e.each_with_index
690 * Same as Enumerator#with_index(0), i.e. there is no starting offset.
692 * If no block is given, a new Enumerator is returned that includes the index.
695 static VALUE
696 enumerator_each_with_index(VALUE obj)
698 return enumerator_with_index(0, NULL, obj);
701 static VALUE
702 enumerator_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memo))
704 if (argc <= 1)
705 return rb_yield_values(2, val, memo);
707 return rb_yield_values(2, rb_ary_new4(argc, argv), memo);
711 * call-seq:
712 * e.each_with_object(obj) {|(*args), obj| ... }
713 * e.each_with_object(obj)
714 * e.with_object(obj) {|(*args), obj| ... }
715 * e.with_object(obj)
717 * Iterates the given block for each element with an arbitrary object, +obj+,
718 * and returns +obj+
720 * If no block is given, returns a new Enumerator.
722 * === Example
724 * to_three = Enumerator.new do |y|
725 * 3.times do |x|
726 * y << x
727 * end
728 * end
730 * to_three_with_string = to_three.with_object("foo")
731 * to_three_with_string.each do |x,string|
732 * puts "#{string}: #{x}"
733 * end
735 * # => foo: 0
736 * # => foo: 1
737 * # => foo: 2
739 static VALUE
740 enumerator_with_object(VALUE obj, VALUE memo)
742 RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enumerator_enum_size);
743 enumerator_block_call(obj, enumerator_with_object_i, memo);
745 return memo;
748 static VALUE
749 next_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, obj))
751 struct enumerator *e = enumerator_ptr(obj);
752 VALUE feedvalue = Qnil;
753 VALUE args = rb_ary_new4(argc, argv);
754 rb_fiber_yield(1, &args);
755 if (!UNDEF_P(e->feedvalue)) {
756 feedvalue = e->feedvalue;
757 e->feedvalue = Qundef;
759 return feedvalue;
762 static VALUE
763 next_i(RB_BLOCK_CALL_FUNC_ARGLIST(_, obj))
765 struct enumerator *e = enumerator_ptr(obj);
766 VALUE nil = Qnil;
767 VALUE result;
769 result = rb_block_call(obj, id_each, 0, 0, next_ii, obj);
770 RB_OBJ_WRITE(obj, &e->stop_exc, rb_exc_new2(rb_eStopIteration, "iteration reached an end"));
771 rb_ivar_set(e->stop_exc, id_result, result);
772 return rb_fiber_yield(1, &nil);
775 static void
776 next_init(VALUE obj, struct enumerator *e)
778 VALUE curr = rb_fiber_current();
779 RB_OBJ_WRITE(obj, &e->dst, curr);
780 RB_OBJ_WRITE(obj, &e->fib, rb_fiber_new(next_i, obj));
781 e->lookahead = Qundef;
784 static VALUE
785 get_next_values(VALUE obj, struct enumerator *e)
787 VALUE curr, vs;
789 if (e->stop_exc) {
790 VALUE exc = e->stop_exc;
791 VALUE result = rb_attr_get(exc, id_result);
792 VALUE mesg = rb_attr_get(exc, idMesg);
793 if (!NIL_P(mesg)) mesg = rb_str_dup(mesg);
794 VALUE stop_exc = rb_exc_new_str(rb_eStopIteration, mesg);
795 rb_ivar_set(stop_exc, id_cause, exc);
796 rb_ivar_set(stop_exc, id_result, result);
797 rb_exc_raise(stop_exc);
800 curr = rb_fiber_current();
802 if (!e->fib || !rb_fiber_alive_p(e->fib)) {
803 next_init(obj, e);
806 vs = rb_fiber_resume(e->fib, 1, &curr);
807 if (e->stop_exc) {
808 e->fib = 0;
809 e->dst = Qnil;
810 e->lookahead = Qundef;
811 e->feedvalue = Qundef;
812 rb_exc_raise(e->stop_exc);
814 return vs;
818 * call-seq:
819 * e.next_values -> array
821 * Returns the next object as an array in the enumerator, and move the
822 * internal position forward. When the position reached at the end,
823 * StopIteration is raised.
825 * See class-level notes about external iterators.
827 * This method can be used to distinguish <code>yield</code> and <code>yield
828 * nil</code>.
830 * === Example
832 * o = Object.new
833 * def o.each
834 * yield
835 * yield 1
836 * yield 1, 2
837 * yield nil
838 * yield [1, 2]
839 * end
840 * e = o.to_enum
841 * p e.next_values
842 * p e.next_values
843 * p e.next_values
844 * p e.next_values
845 * p e.next_values
846 * e = o.to_enum
847 * p e.next
848 * p e.next
849 * p e.next
850 * p e.next
851 * p e.next
853 * ## yield args next_values next
854 * # yield [] nil
855 * # yield 1 [1] 1
856 * # yield 1, 2 [1, 2] [1, 2]
857 * # yield nil [nil] nil
858 * # yield [1, 2] [[1, 2]] [1, 2]
862 static VALUE
863 enumerator_next_values(VALUE obj)
865 struct enumerator *e = enumerator_ptr(obj);
866 VALUE vs;
868 rb_check_frozen(obj);
870 if (!UNDEF_P(e->lookahead)) {
871 vs = e->lookahead;
872 e->lookahead = Qundef;
873 return vs;
876 return get_next_values(obj, e);
879 static VALUE
880 ary2sv(VALUE args, int dup)
882 if (!RB_TYPE_P(args, T_ARRAY))
883 return args;
885 switch (RARRAY_LEN(args)) {
886 case 0:
887 return Qnil;
889 case 1:
890 return RARRAY_AREF(args, 0);
892 default:
893 if (dup)
894 return rb_ary_dup(args);
895 return args;
900 * call-seq:
901 * e.next -> object
903 * Returns the next object in the enumerator, and move the internal position
904 * forward. When the position reached at the end, StopIteration is raised.
906 * === Example
908 * a = [1,2,3]
909 * e = a.to_enum
910 * p e.next #=> 1
911 * p e.next #=> 2
912 * p e.next #=> 3
913 * p e.next #raises StopIteration
915 * See class-level notes about external iterators.
919 static VALUE
920 enumerator_next(VALUE obj)
922 VALUE vs = enumerator_next_values(obj);
923 return ary2sv(vs, 0);
926 static VALUE
927 enumerator_peek_values(VALUE obj)
929 struct enumerator *e = enumerator_ptr(obj);
931 rb_check_frozen(obj);
933 if (UNDEF_P(e->lookahead)) {
934 RB_OBJ_WRITE(obj, &e->lookahead, get_next_values(obj, e));
937 return e->lookahead;
941 * call-seq:
942 * e.peek_values -> array
944 * Returns the next object as an array, similar to Enumerator#next_values, but
945 * doesn't move the internal position forward. If the position is already at
946 * the end, StopIteration is raised.
948 * See class-level notes about external iterators.
950 * === Example
952 * o = Object.new
953 * def o.each
954 * yield
955 * yield 1
956 * yield 1, 2
957 * end
958 * e = o.to_enum
959 * p e.peek_values #=> []
960 * e.next
961 * p e.peek_values #=> [1]
962 * p e.peek_values #=> [1]
963 * e.next
964 * p e.peek_values #=> [1, 2]
965 * e.next
966 * p e.peek_values # raises StopIteration
970 static VALUE
971 enumerator_peek_values_m(VALUE obj)
973 return rb_ary_dup(enumerator_peek_values(obj));
977 * call-seq:
978 * e.peek -> object
980 * Returns the next object in the enumerator, but doesn't move the internal
981 * position forward. If the position is already at the end, StopIteration
982 * is raised.
984 * See class-level notes about external iterators.
986 * === Example
988 * a = [1,2,3]
989 * e = a.to_enum
990 * p e.next #=> 1
991 * p e.peek #=> 2
992 * p e.peek #=> 2
993 * p e.peek #=> 2
994 * p e.next #=> 2
995 * p e.next #=> 3
996 * p e.peek #raises StopIteration
1000 static VALUE
1001 enumerator_peek(VALUE obj)
1003 VALUE vs = enumerator_peek_values(obj);
1004 return ary2sv(vs, 1);
1008 * call-seq:
1009 * e.feed obj -> nil
1011 * Sets the value to be returned by the next yield inside +e+.
1013 * If the value is not set, the yield returns nil.
1015 * This value is cleared after being yielded.
1017 * # Array#map passes the array's elements to "yield" and collects the
1018 * # results of "yield" as an array.
1019 * # Following example shows that "next" returns the passed elements and
1020 * # values passed to "feed" are collected as an array which can be
1021 * # obtained by StopIteration#result.
1022 * e = [1,2,3].map
1023 * p e.next #=> 1
1024 * e.feed "a"
1025 * p e.next #=> 2
1026 * e.feed "b"
1027 * p e.next #=> 3
1028 * e.feed "c"
1029 * begin
1030 * e.next
1031 * rescue StopIteration
1032 * p $!.result #=> ["a", "b", "c"]
1033 * end
1035 * o = Object.new
1036 * def o.each
1037 * x = yield # (2) blocks
1038 * p x # (5) => "foo"
1039 * x = yield # (6) blocks
1040 * p x # (8) => nil
1041 * x = yield # (9) blocks
1042 * p x # not reached w/o another e.next
1043 * end
1045 * e = o.to_enum
1046 * e.next # (1)
1047 * e.feed "foo" # (3)
1048 * e.next # (4)
1049 * e.next # (7)
1050 * # (10)
1053 static VALUE
1054 enumerator_feed(VALUE obj, VALUE v)
1056 struct enumerator *e = enumerator_ptr(obj);
1058 rb_check_frozen(obj);
1060 if (!UNDEF_P(e->feedvalue)) {
1061 rb_raise(rb_eTypeError, "feed value already set");
1063 RB_OBJ_WRITE(obj, &e->feedvalue, v);
1065 return Qnil;
1069 * call-seq:
1070 * e.rewind -> e
1072 * Rewinds the enumeration sequence to the beginning.
1074 * If the enclosed object responds to a "rewind" method, it is called.
1077 static VALUE
1078 enumerator_rewind(VALUE obj)
1080 struct enumerator *e = enumerator_ptr(obj);
1082 rb_check_frozen(obj);
1084 rb_check_funcall(e->obj, id_rewind, 0, 0);
1086 e->fib = 0;
1087 e->dst = Qnil;
1088 e->lookahead = Qundef;
1089 e->feedvalue = Qundef;
1090 e->stop_exc = Qfalse;
1091 return obj;
1094 static struct generator *generator_ptr(VALUE obj);
1095 static VALUE append_method(VALUE obj, VALUE str, ID default_method, VALUE default_args);
1097 static VALUE
1098 inspect_enumerator(VALUE obj, VALUE dummy, int recur)
1100 struct enumerator *e;
1101 VALUE eobj, str, cname;
1103 TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, e);
1105 cname = rb_obj_class(obj);
1107 if (!e || UNDEF_P(e->obj)) {
1108 return rb_sprintf("#<%"PRIsVALUE": uninitialized>", rb_class_path(cname));
1111 if (recur) {
1112 str = rb_sprintf("#<%"PRIsVALUE": ...>", rb_class_path(cname));
1113 return str;
1116 if (e->procs) {
1117 long i;
1119 eobj = generator_ptr(e->obj)->obj;
1120 /* In case procs chained enumerator traversing all proc entries manually */
1121 if (rb_obj_class(eobj) == cname) {
1122 str = rb_inspect(eobj);
1124 else {
1125 str = rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE">", rb_class_path(cname), eobj);
1127 for (i = 0; i < RARRAY_LEN(e->procs); i++) {
1128 str = rb_sprintf("#<%"PRIsVALUE": %"PRIsVALUE, cname, str);
1129 append_method(RARRAY_AREF(e->procs, i), str, e->meth, e->args);
1130 rb_str_buf_cat2(str, ">");
1132 return str;
1135 eobj = rb_attr_get(obj, id_receiver);
1136 if (NIL_P(eobj)) {
1137 eobj = e->obj;
1140 /* (1..100).each_cons(2) => "#<Enumerator: 1..100:each_cons(2)>" */
1141 str = rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE, rb_class_path(cname), eobj);
1142 append_method(obj, str, e->meth, e->args);
1144 rb_str_buf_cat2(str, ">");
1146 return str;
1149 static int
1150 key_symbol_p(VALUE key, VALUE val, VALUE arg)
1152 if (SYMBOL_P(key)) return ST_CONTINUE;
1153 *(int *)arg = FALSE;
1154 return ST_STOP;
1157 static int
1158 kwd_append(VALUE key, VALUE val, VALUE str)
1160 if (!SYMBOL_P(key)) rb_raise(rb_eRuntimeError, "non-symbol key inserted");
1161 rb_str_catf(str, "% "PRIsVALUE": %"PRIsVALUE", ", key, val);
1162 return ST_CONTINUE;
1165 static VALUE
1166 append_method(VALUE obj, VALUE str, ID default_method, VALUE default_args)
1168 VALUE method, eargs;
1170 method = rb_attr_get(obj, id_method);
1171 if (method != Qfalse) {
1172 if (!NIL_P(method)) {
1173 Check_Type(method, T_SYMBOL);
1174 method = rb_sym2str(method);
1176 else {
1177 method = rb_id2str(default_method);
1179 rb_str_buf_cat2(str, ":");
1180 rb_str_buf_append(str, method);
1183 eargs = rb_attr_get(obj, id_arguments);
1184 if (NIL_P(eargs)) {
1185 eargs = default_args;
1187 if (eargs != Qfalse) {
1188 long argc = RARRAY_LEN(eargs);
1189 const VALUE *argv = RARRAY_CONST_PTR(eargs); /* WB: no new reference */
1191 if (argc > 0) {
1192 VALUE kwds = Qnil;
1194 rb_str_buf_cat2(str, "(");
1196 if (RB_TYPE_P(argv[argc-1], T_HASH) && !RHASH_EMPTY_P(argv[argc-1])) {
1197 int all_key = TRUE;
1198 rb_hash_foreach(argv[argc-1], key_symbol_p, (VALUE)&all_key);
1199 if (all_key) kwds = argv[--argc];
1202 while (argc--) {
1203 VALUE arg = *argv++;
1205 rb_str_append(str, rb_inspect(arg));
1206 rb_str_buf_cat2(str, ", ");
1208 if (!NIL_P(kwds)) {
1209 rb_hash_foreach(kwds, kwd_append, str);
1211 rb_str_set_len(str, RSTRING_LEN(str)-2);
1212 rb_str_buf_cat2(str, ")");
1216 return str;
1220 * call-seq:
1221 * e.inspect -> string
1223 * Creates a printable version of <i>e</i>.
1226 static VALUE
1227 enumerator_inspect(VALUE obj)
1229 return rb_exec_recursive(inspect_enumerator, obj, 0);
1233 * call-seq:
1234 * e.size -> int, Float::INFINITY or nil
1236 * Returns the size of the enumerator, or +nil+ if it can't be calculated lazily.
1238 * (1..100).to_a.permutation(4).size # => 94109400
1239 * loop.size # => Float::INFINITY
1240 * (1..100).drop_while.size # => nil
1243 static VALUE
1244 enumerator_size(VALUE obj)
1246 struct enumerator *e = enumerator_ptr(obj);
1247 int argc = 0;
1248 const VALUE *argv = NULL;
1249 VALUE size;
1251 if (e->procs) {
1252 struct generator *g = generator_ptr(e->obj);
1253 VALUE receiver = rb_check_funcall(g->obj, id_size, 0, 0);
1254 long i = 0;
1256 for (i = 0; i < RARRAY_LEN(e->procs); i++) {
1257 VALUE proc = RARRAY_AREF(e->procs, i);
1258 struct proc_entry *entry = proc_entry_ptr(proc);
1259 lazyenum_size_func *size_fn = entry->fn->size;
1260 if (!size_fn) {
1261 return Qnil;
1263 receiver = (*size_fn)(proc, receiver);
1265 return receiver;
1268 if (e->size_fn) {
1269 return (*e->size_fn)(e->obj, e->args, obj);
1271 if (e->args) {
1272 argc = (int)RARRAY_LEN(e->args);
1273 argv = RARRAY_CONST_PTR(e->args);
1275 size = rb_check_funcall_kw(e->size, id_call, argc, argv, e->kw_splat);
1276 if (!UNDEF_P(size)) return size;
1277 return e->size;
1281 * Yielder
1283 static void
1284 yielder_mark(void *p)
1286 struct yielder *ptr = p;
1287 rb_gc_mark_movable(ptr->proc);
1290 static void
1291 yielder_compact(void *p)
1293 struct yielder *ptr = p;
1294 ptr->proc = rb_gc_location(ptr->proc);
1297 static const rb_data_type_t yielder_data_type = {
1298 "yielder",
1300 yielder_mark,
1301 RUBY_TYPED_DEFAULT_FREE,
1302 NULL,
1303 yielder_compact,
1305 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE
1308 static struct yielder *
1309 yielder_ptr(VALUE obj)
1311 struct yielder *ptr;
1313 TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr);
1314 if (!ptr || UNDEF_P(ptr->proc)) {
1315 rb_raise(rb_eArgError, "uninitialized yielder");
1317 return ptr;
1320 /* :nodoc: */
1321 static VALUE
1322 yielder_allocate(VALUE klass)
1324 struct yielder *ptr;
1325 VALUE obj;
1327 obj = TypedData_Make_Struct(klass, struct yielder, &yielder_data_type, ptr);
1328 ptr->proc = Qundef;
1330 return obj;
1333 static VALUE
1334 yielder_init(VALUE obj, VALUE proc)
1336 struct yielder *ptr;
1338 TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr);
1340 if (!ptr) {
1341 rb_raise(rb_eArgError, "unallocated yielder");
1344 RB_OBJ_WRITE(obj, &ptr->proc, proc);
1346 return obj;
1349 /* :nodoc: */
1350 static VALUE
1351 yielder_initialize(VALUE obj)
1353 rb_need_block();
1355 return yielder_init(obj, rb_block_proc());
1358 /* :nodoc: */
1359 static VALUE
1360 yielder_yield(VALUE obj, VALUE args)
1362 struct yielder *ptr = yielder_ptr(obj);
1364 return rb_proc_call_kw(ptr->proc, args, RB_PASS_CALLED_KEYWORDS);
1367 /* :nodoc: */
1368 static VALUE
1369 yielder_yield_push(VALUE obj, VALUE arg)
1371 struct yielder *ptr = yielder_ptr(obj);
1373 rb_proc_call_with_block(ptr->proc, 1, &arg, Qnil);
1375 return obj;
1379 * Returns a Proc object that takes arguments and yields them.
1381 * This method is implemented so that a Yielder object can be directly
1382 * passed to another method as a block argument.
1384 * enum = Enumerator.new { |y|
1385 * Dir.glob("*.rb") { |file|
1386 * File.open(file) { |f| f.each_line(&y) }
1390 static VALUE
1391 yielder_to_proc(VALUE obj)
1393 VALUE method = rb_obj_method(obj, sym_yield);
1395 return rb_funcall(method, idTo_proc, 0);
1398 static VALUE
1399 yielder_yield_i(RB_BLOCK_CALL_FUNC_ARGLIST(obj, memo))
1401 return rb_yield_values_kw(argc, argv, RB_PASS_CALLED_KEYWORDS);
1404 static VALUE
1405 yielder_new(void)
1407 return yielder_init(yielder_allocate(rb_cYielder), rb_proc_new(yielder_yield_i, 0));
1411 * Generator
1413 static void
1414 generator_mark(void *p)
1416 struct generator *ptr = p;
1417 rb_gc_mark_movable(ptr->proc);
1418 rb_gc_mark_movable(ptr->obj);
1421 static void
1422 generator_compact(void *p)
1424 struct generator *ptr = p;
1425 ptr->proc = rb_gc_location(ptr->proc);
1426 ptr->obj = rb_gc_location(ptr->obj);
1429 static const rb_data_type_t generator_data_type = {
1430 "generator",
1432 generator_mark,
1433 RUBY_TYPED_DEFAULT_FREE,
1434 NULL,
1435 generator_compact,
1437 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE
1440 static struct generator *
1441 generator_ptr(VALUE obj)
1443 struct generator *ptr;
1445 TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr);
1446 if (!ptr || UNDEF_P(ptr->proc)) {
1447 rb_raise(rb_eArgError, "uninitialized generator");
1449 return ptr;
1452 /* :nodoc: */
1453 static VALUE
1454 generator_allocate(VALUE klass)
1456 struct generator *ptr;
1457 VALUE obj;
1459 obj = TypedData_Make_Struct(klass, struct generator, &generator_data_type, ptr);
1460 ptr->proc = Qundef;
1462 return obj;
1465 static VALUE
1466 generator_init(VALUE obj, VALUE proc)
1468 struct generator *ptr;
1470 rb_check_frozen(obj);
1471 TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr);
1473 if (!ptr) {
1474 rb_raise(rb_eArgError, "unallocated generator");
1477 RB_OBJ_WRITE(obj, &ptr->proc, proc);
1479 return obj;
1482 /* :nodoc: */
1483 static VALUE
1484 generator_initialize(int argc, VALUE *argv, VALUE obj)
1486 VALUE proc;
1488 if (argc == 0) {
1489 rb_need_block();
1491 proc = rb_block_proc();
1493 else {
1494 rb_scan_args(argc, argv, "1", &proc);
1496 if (!rb_obj_is_proc(proc))
1497 rb_raise(rb_eTypeError,
1498 "wrong argument type %"PRIsVALUE" (expected Proc)",
1499 rb_obj_class(proc));
1501 if (rb_block_given_p()) {
1502 rb_warn("given block not used");
1506 return generator_init(obj, proc);
1509 /* :nodoc: */
1510 static VALUE
1511 generator_init_copy(VALUE obj, VALUE orig)
1513 struct generator *ptr0, *ptr1;
1515 if (!OBJ_INIT_COPY(obj, orig)) return obj;
1517 ptr0 = generator_ptr(orig);
1519 TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr1);
1521 if (!ptr1) {
1522 rb_raise(rb_eArgError, "unallocated generator");
1525 RB_OBJ_WRITE(obj, &ptr1->proc, ptr0->proc);
1527 return obj;
1530 /* :nodoc: */
1531 static VALUE
1532 generator_each(int argc, VALUE *argv, VALUE obj)
1534 struct generator *ptr = generator_ptr(obj);
1535 VALUE args = rb_ary_new2(argc + 1);
1537 rb_ary_push(args, yielder_new());
1538 if (argc > 0) {
1539 rb_ary_cat(args, argv, argc);
1542 return rb_proc_call_kw(ptr->proc, args, RB_PASS_CALLED_KEYWORDS);
1545 /* Lazy Enumerator methods */
1546 static VALUE
1547 enum_size(VALUE self)
1549 VALUE r = rb_check_funcall(self, id_size, 0, 0);
1550 return UNDEF_P(r) ? Qnil : r;
1553 static VALUE
1554 lazyenum_size(VALUE self, VALUE args, VALUE eobj)
1556 return enum_size(self);
1559 #define lazy_receiver_size lazy_map_size
1561 static VALUE
1562 lazy_init_iterator(RB_BLOCK_CALL_FUNC_ARGLIST(val, m))
1564 VALUE result;
1565 if (argc == 1) {
1566 VALUE args[2];
1567 args[0] = m;
1568 args[1] = val;
1569 result = rb_yield_values2(2, args);
1571 else {
1572 VALUE args;
1573 int len = rb_long2int((long)argc + 1);
1574 VALUE *nargv = ALLOCV_N(VALUE, args, len);
1576 nargv[0] = m;
1577 if (argc > 0) {
1578 MEMCPY(nargv + 1, argv, VALUE, argc);
1580 result = rb_yield_values2(len, nargv);
1581 ALLOCV_END(args);
1583 if (UNDEF_P(result)) rb_iter_break();
1584 return Qnil;
1587 static VALUE
1588 lazy_init_block_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, m))
1590 rb_block_call(m, id_each, argc-1, argv+1, lazy_init_iterator, val);
1591 return Qnil;
1594 #define memo_value v2
1595 #define memo_flags u3.state
1596 #define LAZY_MEMO_BREAK 1
1597 #define LAZY_MEMO_PACKED 2
1598 #define LAZY_MEMO_BREAK_P(memo) ((memo)->memo_flags & LAZY_MEMO_BREAK)
1599 #define LAZY_MEMO_PACKED_P(memo) ((memo)->memo_flags & LAZY_MEMO_PACKED)
1600 #define LAZY_MEMO_SET_BREAK(memo) ((memo)->memo_flags |= LAZY_MEMO_BREAK)
1601 #define LAZY_MEMO_RESET_BREAK(memo) ((memo)->memo_flags &= ~LAZY_MEMO_BREAK)
1602 #define LAZY_MEMO_SET_VALUE(memo, value) MEMO_V2_SET(memo, value)
1603 #define LAZY_MEMO_SET_PACKED(memo) ((memo)->memo_flags |= LAZY_MEMO_PACKED)
1604 #define LAZY_MEMO_RESET_PACKED(memo) ((memo)->memo_flags &= ~LAZY_MEMO_PACKED)
1606 static VALUE lazy_yielder_result(struct MEMO *result, VALUE yielder, VALUE procs_array, VALUE memos, long i);
1608 static VALUE
1609 lazy_init_yielder(RB_BLOCK_CALL_FUNC_ARGLIST(_, m))
1611 VALUE yielder = RARRAY_AREF(m, 0);
1612 VALUE procs_array = RARRAY_AREF(m, 1);
1613 VALUE memos = rb_attr_get(yielder, id_memo);
1614 struct MEMO *result;
1616 result = MEMO_NEW(m, rb_enum_values_pack(argc, argv),
1617 argc > 1 ? LAZY_MEMO_PACKED : 0);
1618 return lazy_yielder_result(result, yielder, procs_array, memos, 0);
1621 static VALUE
1622 lazy_yielder_yield(struct MEMO *result, long memo_index, int argc, const VALUE *argv)
1624 VALUE m = result->v1;
1625 VALUE yielder = RARRAY_AREF(m, 0);
1626 VALUE procs_array = RARRAY_AREF(m, 1);
1627 VALUE memos = rb_attr_get(yielder, id_memo);
1628 LAZY_MEMO_SET_VALUE(result, rb_enum_values_pack(argc, argv));
1629 if (argc > 1)
1630 LAZY_MEMO_SET_PACKED(result);
1631 else
1632 LAZY_MEMO_RESET_PACKED(result);
1633 return lazy_yielder_result(result, yielder, procs_array, memos, memo_index);
1636 static VALUE
1637 lazy_yielder_result(struct MEMO *result, VALUE yielder, VALUE procs_array, VALUE memos, long i)
1639 int cont = 1;
1641 for (; i < RARRAY_LEN(procs_array); i++) {
1642 VALUE proc = RARRAY_AREF(procs_array, i);
1643 struct proc_entry *entry = proc_entry_ptr(proc);
1644 if (!(*entry->fn->proc)(proc, result, memos, i)) {
1645 cont = 0;
1646 break;
1650 if (cont) {
1651 rb_funcall2(yielder, idLTLT, 1, &(result->memo_value));
1653 if (LAZY_MEMO_BREAK_P(result)) {
1654 rb_iter_break();
1656 return result->memo_value;
1659 static VALUE
1660 lazy_init_block(RB_BLOCK_CALL_FUNC_ARGLIST(val, m))
1662 VALUE procs = RARRAY_AREF(m, 1);
1664 rb_ivar_set(val, id_memo, rb_ary_new2(RARRAY_LEN(procs)));
1665 rb_block_call(RARRAY_AREF(m, 0), id_each, 0, 0,
1666 lazy_init_yielder, rb_ary_new3(2, val, procs));
1667 return Qnil;
1670 static VALUE
1671 lazy_generator_init(VALUE enumerator, VALUE procs)
1673 VALUE generator;
1674 VALUE obj;
1675 struct generator *gen_ptr;
1676 struct enumerator *e = enumerator_ptr(enumerator);
1678 if (RARRAY_LEN(procs) > 0) {
1679 struct generator *old_gen_ptr = generator_ptr(e->obj);
1680 obj = old_gen_ptr->obj;
1682 else {
1683 obj = enumerator;
1686 generator = generator_allocate(rb_cGenerator);
1688 rb_block_call(generator, id_initialize, 0, 0,
1689 lazy_init_block, rb_ary_new3(2, obj, procs));
1691 gen_ptr = generator_ptr(generator);
1692 RB_OBJ_WRITE(generator, &gen_ptr->obj, obj);
1694 return generator;
1697 static int
1698 lazy_precheck(VALUE procs)
1700 if (RTEST(procs)) {
1701 long num_procs = RARRAY_LEN(procs), i = num_procs;
1702 while (i-- > 0) {
1703 VALUE proc = RARRAY_AREF(procs, i);
1704 struct proc_entry *entry = proc_entry_ptr(proc);
1705 lazyenum_precheck_func *precheck = entry->fn->precheck;
1706 if (precheck && !precheck(proc)) return FALSE;
1710 return TRUE;
1714 * Document-class: Enumerator::Lazy
1716 * Enumerator::Lazy is a special type of Enumerator, that allows constructing
1717 * chains of operations without evaluating them immediately, and evaluating
1718 * values on as-needed basis. In order to do so it redefines most of Enumerable
1719 * methods so that they just construct another lazy enumerator.
1721 * Enumerator::Lazy can be constructed from any Enumerable with the
1722 * Enumerable#lazy method.
1724 * lazy = (1..Float::INFINITY).lazy.select(&:odd?).drop(10).take_while { |i| i < 30 }
1725 * # => #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:select>:drop(10)>:take_while>
1727 * The real enumeration is performed when any non-redefined Enumerable method
1728 * is called, like Enumerable#first or Enumerable#to_a (the latter is aliased
1729 * as #force for more semantic code):
1731 * lazy.first(2)
1732 * #=> [21, 23]
1734 * lazy.force
1735 * #=> [21, 23, 25, 27, 29]
1737 * Note that most Enumerable methods that could be called with or without
1738 * a block, on Enumerator::Lazy will always require a block:
1740 * [1, 2, 3].map #=> #<Enumerator: [1, 2, 3]:map>
1741 * [1, 2, 3].lazy.map # ArgumentError: tried to call lazy map without a block
1743 * This class allows idiomatic calculations on long or infinite sequences, as well
1744 * as chaining of calculations without constructing intermediate arrays.
1746 * Example for working with a slowly calculated sequence:
1748 * require 'open-uri'
1750 * # This will fetch all URLs before selecting
1751 * # necessary data
1752 * URLS.map { |u| JSON.parse(URI.open(u).read) }
1753 * .select { |data| data.key?('stats') }
1754 * .first(5)
1756 * # This will fetch URLs one-by-one, only till
1757 * # there is enough data to satisfy the condition
1758 * URLS.lazy.map { |u| JSON.parse(URI.open(u).read) }
1759 * .select { |data| data.key?('stats') }
1760 * .first(5)
1762 * Ending a chain with ".eager" generates a non-lazy enumerator, which
1763 * is suitable for returning or passing to another method that expects
1764 * a normal enumerator.
1766 * def active_items
1767 * groups
1768 * .lazy
1769 * .flat_map(&:items)
1770 * .reject(&:disabled)
1771 * .eager
1772 * end
1774 * # This works lazily; if a checked item is found, it stops
1775 * # iteration and does not look into remaining groups.
1776 * first_checked = active_items.find(&:checked)
1778 * # This returns an array of items like a normal enumerator does.
1779 * all_checked = active_items.select(&:checked)
1784 * call-seq:
1785 * Lazy.new(obj, size=nil) { |yielder, *values| block }
1787 * Creates a new Lazy enumerator. When the enumerator is actually enumerated
1788 * (e.g. by calling #force), +obj+ will be enumerated and each value passed
1789 * to the given block. The block can yield values back using +yielder+.
1790 * For example, to create a "filter+map" enumerator:
1792 * def filter_map(sequence)
1793 * Lazy.new(sequence) do |yielder, *values|
1794 * result = yield *values
1795 * yielder << result if result
1796 * end
1797 * end
1799 * filter_map(1..Float::INFINITY) {|i| i*i if i.even?}.first(5)
1800 * #=> [4, 16, 36, 64, 100]
1802 static VALUE
1803 lazy_initialize(int argc, VALUE *argv, VALUE self)
1805 VALUE obj, size = Qnil;
1806 VALUE generator;
1808 rb_check_arity(argc, 1, 2);
1809 if (!rb_block_given_p()) {
1810 rb_raise(rb_eArgError, "tried to call lazy new without a block");
1812 obj = argv[0];
1813 if (argc > 1) {
1814 size = argv[1];
1816 generator = generator_allocate(rb_cGenerator);
1817 rb_block_call(generator, id_initialize, 0, 0, lazy_init_block_i, obj);
1818 enumerator_init(self, generator, sym_each, 0, 0, 0, size, 0);
1819 rb_ivar_set(self, id_receiver, obj);
1821 return self;
1824 #if 0 /* for RDoc */
1826 * call-seq:
1827 * lazy.to_a -> array
1828 * lazy.force -> array
1830 * Expands +lazy+ enumerator to an array.
1831 * See Enumerable#to_a.
1833 static VALUE
1834 lazy_to_a(VALUE self)
1837 #endif
1839 static void
1840 lazy_set_args(VALUE lazy, VALUE args)
1842 ID id = rb_frame_this_func();
1843 rb_ivar_set(lazy, id_method, ID2SYM(id));
1844 if (NIL_P(args)) {
1845 /* Qfalse indicates that the arguments are empty */
1846 rb_ivar_set(lazy, id_arguments, Qfalse);
1848 else {
1849 rb_ivar_set(lazy, id_arguments, args);
1853 #if 0
1854 static VALUE
1855 lazy_set_method(VALUE lazy, VALUE args, rb_enumerator_size_func *size_fn)
1857 struct enumerator *e = enumerator_ptr(lazy);
1858 lazy_set_args(lazy, args);
1859 e->size_fn = size_fn;
1860 return lazy;
1862 #endif
1864 static VALUE
1865 lazy_add_method(VALUE obj, int argc, VALUE *argv, VALUE args, VALUE memo,
1866 const lazyenum_funcs *fn)
1868 struct enumerator *new_e;
1869 VALUE new_obj;
1870 VALUE new_generator;
1871 VALUE new_procs;
1872 struct enumerator *e = enumerator_ptr(obj);
1873 struct proc_entry *entry;
1874 VALUE entry_obj = TypedData_Make_Struct(rb_cObject, struct proc_entry,
1875 &proc_entry_data_type, entry);
1876 if (rb_block_given_p()) {
1877 RB_OBJ_WRITE(entry_obj, &entry->proc, rb_block_proc());
1879 entry->fn = fn;
1880 RB_OBJ_WRITE(entry_obj, &entry->memo, args);
1882 lazy_set_args(entry_obj, memo);
1884 new_procs = RTEST(e->procs) ? rb_ary_dup(e->procs) : rb_ary_new();
1885 new_generator = lazy_generator_init(obj, new_procs);
1886 rb_ary_push(new_procs, entry_obj);
1888 new_obj = enumerator_init_copy(enumerator_allocate(rb_cLazy), obj);
1889 new_e = RTYPEDDATA_GET_DATA(new_obj);
1890 RB_OBJ_WRITE(new_obj, &new_e->obj, new_generator);
1891 RB_OBJ_WRITE(new_obj, &new_e->procs, new_procs);
1893 if (argc > 0) {
1894 new_e->meth = rb_to_id(*argv++);
1895 --argc;
1897 else {
1898 new_e->meth = id_each;
1901 RB_OBJ_WRITE(new_obj, &new_e->args, rb_ary_new4(argc, argv));
1903 return new_obj;
1907 * call-seq:
1908 * e.lazy -> lazy_enumerator
1910 * Returns an Enumerator::Lazy, which redefines most Enumerable
1911 * methods to postpone enumeration and enumerate values only on an
1912 * as-needed basis.
1914 * === Example
1916 * The following program finds pythagorean triples:
1918 * def pythagorean_triples
1919 * (1..Float::INFINITY).lazy.flat_map {|z|
1920 * (1..z).flat_map {|x|
1921 * (x..z).select {|y|
1922 * x**2 + y**2 == z**2
1923 * }.map {|y|
1924 * [x, y, z]
1928 * end
1929 * # show first ten pythagorean triples
1930 * p pythagorean_triples.take(10).force # take is lazy, so force is needed
1931 * p pythagorean_triples.first(10) # first is eager
1932 * # show pythagorean triples less than 100
1933 * p pythagorean_triples.take_while { |*, z| z < 100 }.force
1935 static VALUE
1936 enumerable_lazy(VALUE obj)
1938 VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, lazyenum_size, rb_keyword_given_p());
1939 /* Qfalse indicates that the Enumerator::Lazy has no method name */
1940 rb_ivar_set(result, id_method, Qfalse);
1941 return result;
1944 static VALUE
1945 lazy_to_enum_i(VALUE obj, VALUE meth, int argc, const VALUE *argv, rb_enumerator_size_func *size_fn, int kw_splat)
1947 return enumerator_init(enumerator_allocate(rb_cLazy),
1948 obj, meth, argc, argv, size_fn, Qnil, kw_splat);
1952 * call-seq:
1953 * lzy.to_enum(method = :each, *args) -> lazy_enum
1954 * lzy.enum_for(method = :each, *args) -> lazy_enum
1955 * lzy.to_enum(method = :each, *args) {|*args| block } -> lazy_enum
1956 * lzy.enum_for(method = :each, *args) {|*args| block } -> lazy_enum
1958 * Similar to Object#to_enum, except it returns a lazy enumerator.
1959 * This makes it easy to define Enumerable methods that will
1960 * naturally remain lazy if called from a lazy enumerator.
1962 * For example, continuing from the example in Object#to_enum:
1964 * # See Object#to_enum for the definition of repeat
1965 * r = 1..Float::INFINITY
1966 * r.repeat(2).first(5) # => [1, 1, 2, 2, 3]
1967 * r.repeat(2).class # => Enumerator
1968 * r.repeat(2).map{|n| n ** 2}.first(5) # => endless loop!
1969 * # works naturally on lazy enumerator:
1970 * r.lazy.repeat(2).class # => Enumerator::Lazy
1971 * r.lazy.repeat(2).map{|n| n ** 2}.first(5) # => [1, 1, 4, 4, 9]
1974 static VALUE
1975 lazy_to_enum(int argc, VALUE *argv, VALUE self)
1977 VALUE lazy, meth = sym_each, super_meth;
1979 if (argc > 0) {
1980 --argc;
1981 meth = *argv++;
1983 if (RTEST((super_meth = rb_hash_aref(lazy_use_super_method, meth)))) {
1984 meth = super_meth;
1986 lazy = lazy_to_enum_i(self, meth, argc, argv, 0, rb_keyword_given_p());
1987 if (rb_block_given_p()) {
1988 RB_OBJ_WRITE(lazy, &enumerator_ptr(lazy)->size, rb_block_proc());
1990 return lazy;
1993 static VALUE
1994 lazy_eager_size(VALUE self, VALUE args, VALUE eobj)
1996 return enum_size(self);
2000 * call-seq:
2001 * lzy.eager -> enum
2003 * Returns a non-lazy Enumerator converted from the lazy enumerator.
2006 static VALUE
2007 lazy_eager(VALUE self)
2009 return enumerator_init(enumerator_allocate(rb_cEnumerator),
2010 self, sym_each, 0, 0, lazy_eager_size, Qnil, 0);
2013 static VALUE
2014 lazyenum_yield(VALUE proc_entry, struct MEMO *result)
2016 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2017 return rb_proc_call_with_block(entry->proc, 1, &result->memo_value, Qnil);
2020 static VALUE
2021 lazyenum_yield_values(VALUE proc_entry, struct MEMO *result)
2023 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2024 int argc = 1;
2025 const VALUE *argv = &result->memo_value;
2026 if (LAZY_MEMO_PACKED_P(result)) {
2027 const VALUE args = *argv;
2028 argc = RARRAY_LENINT(args);
2029 argv = RARRAY_CONST_PTR(args);
2031 return rb_proc_call_with_block(entry->proc, argc, argv, Qnil);
2034 static struct MEMO *
2035 lazy_map_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2037 VALUE value = lazyenum_yield_values(proc_entry, result);
2038 LAZY_MEMO_SET_VALUE(result, value);
2039 LAZY_MEMO_RESET_PACKED(result);
2040 return result;
2043 static VALUE
2044 lazy_map_size(VALUE entry, VALUE receiver)
2046 return receiver;
2049 static const lazyenum_funcs lazy_map_funcs = {
2050 lazy_map_proc, lazy_map_size,
2054 * call-seq:
2055 * lazy.collect { |obj| block } -> lazy_enumerator
2056 * lazy.map { |obj| block } -> lazy_enumerator
2058 * Like Enumerable#map, but chains operation to be lazy-evaluated.
2060 * (1..Float::INFINITY).lazy.map {|i| i**2 }
2061 * #=> #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:map>
2062 * (1..Float::INFINITY).lazy.map {|i| i**2 }.first(3)
2063 * #=> [1, 4, 9]
2066 static VALUE
2067 lazy_map(VALUE obj)
2069 if (!rb_block_given_p()) {
2070 rb_raise(rb_eArgError, "tried to call lazy map without a block");
2073 return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_map_funcs);
2076 struct flat_map_i_arg {
2077 struct MEMO *result;
2078 long index;
2081 static VALUE
2082 lazy_flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, y))
2084 struct flat_map_i_arg *arg = (struct flat_map_i_arg *)y;
2086 return lazy_yielder_yield(arg->result, arg->index, argc, argv);
2089 static struct MEMO *
2090 lazy_flat_map_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2092 VALUE value = lazyenum_yield_values(proc_entry, result);
2093 VALUE ary = 0;
2094 const long proc_index = memo_index + 1;
2095 int break_p = LAZY_MEMO_BREAK_P(result);
2097 if (RB_TYPE_P(value, T_ARRAY)) {
2098 ary = value;
2100 else if (rb_respond_to(value, id_force) && rb_respond_to(value, id_each)) {
2101 struct flat_map_i_arg arg = {.result = result, .index = proc_index};
2102 LAZY_MEMO_RESET_BREAK(result);
2103 rb_block_call(value, id_each, 0, 0, lazy_flat_map_i, (VALUE)&arg);
2104 if (break_p) LAZY_MEMO_SET_BREAK(result);
2105 return 0;
2108 if (ary || !NIL_P(ary = rb_check_array_type(value))) {
2109 long i;
2110 LAZY_MEMO_RESET_BREAK(result);
2111 for (i = 0; i + 1 < RARRAY_LEN(ary); i++) {
2112 const VALUE argv = RARRAY_AREF(ary, i);
2113 lazy_yielder_yield(result, proc_index, 1, &argv);
2115 if (break_p) LAZY_MEMO_SET_BREAK(result);
2116 if (i >= RARRAY_LEN(ary)) return 0;
2117 value = RARRAY_AREF(ary, i);
2119 LAZY_MEMO_SET_VALUE(result, value);
2120 LAZY_MEMO_RESET_PACKED(result);
2121 return result;
2124 static const lazyenum_funcs lazy_flat_map_funcs = {
2125 lazy_flat_map_proc, 0,
2129 * call-seq:
2130 * lazy.collect_concat { |obj| block } -> a_lazy_enumerator
2131 * lazy.flat_map { |obj| block } -> a_lazy_enumerator
2133 * Returns a new lazy enumerator with the concatenated results of running
2134 * +block+ once for every element in the lazy enumerator.
2136 * ["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force
2137 * #=> ["f", "o", "o", "b", "a", "r"]
2139 * A value +x+ returned by +block+ is decomposed if either of
2140 * the following conditions is true:
2142 * * +x+ responds to both each and force, which means that
2143 * +x+ is a lazy enumerator.
2144 * * +x+ is an array or responds to to_ary.
2146 * Otherwise, +x+ is contained as-is in the return value.
2148 * [{a:1}, {b:2}].lazy.flat_map {|i| i}.force
2149 * #=> [{:a=>1}, {:b=>2}]
2151 static VALUE
2152 lazy_flat_map(VALUE obj)
2154 if (!rb_block_given_p()) {
2155 rb_raise(rb_eArgError, "tried to call lazy flat_map without a block");
2158 return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_flat_map_funcs);
2161 static struct MEMO *
2162 lazy_select_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2164 VALUE chain = lazyenum_yield(proc_entry, result);
2165 if (!RTEST(chain)) return 0;
2166 return result;
2169 static const lazyenum_funcs lazy_select_funcs = {
2170 lazy_select_proc, 0,
2174 * call-seq:
2175 * lazy.find_all { |obj| block } -> lazy_enumerator
2176 * lazy.select { |obj| block } -> lazy_enumerator
2177 * lazy.filter { |obj| block } -> lazy_enumerator
2179 * Like Enumerable#select, but chains operation to be lazy-evaluated.
2181 static VALUE
2182 lazy_select(VALUE obj)
2184 if (!rb_block_given_p()) {
2185 rb_raise(rb_eArgError, "tried to call lazy select without a block");
2188 return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_select_funcs);
2191 static struct MEMO *
2192 lazy_filter_map_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2194 VALUE value = lazyenum_yield_values(proc_entry, result);
2195 if (!RTEST(value)) return 0;
2196 LAZY_MEMO_SET_VALUE(result, value);
2197 LAZY_MEMO_RESET_PACKED(result);
2198 return result;
2201 static const lazyenum_funcs lazy_filter_map_funcs = {
2202 lazy_filter_map_proc, 0,
2206 * call-seq:
2207 * lazy.filter_map { |obj| block } -> lazy_enumerator
2209 * Like Enumerable#filter_map, but chains operation to be lazy-evaluated.
2211 * (1..).lazy.filter_map { |i| i * 2 if i.even? }.first(5)
2212 * #=> [4, 8, 12, 16, 20]
2215 static VALUE
2216 lazy_filter_map(VALUE obj)
2218 if (!rb_block_given_p()) {
2219 rb_raise(rb_eArgError, "tried to call lazy filter_map without a block");
2222 return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_filter_map_funcs);
2225 static struct MEMO *
2226 lazy_reject_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2228 VALUE chain = lazyenum_yield(proc_entry, result);
2229 if (RTEST(chain)) return 0;
2230 return result;
2233 static const lazyenum_funcs lazy_reject_funcs = {
2234 lazy_reject_proc, 0,
2238 * call-seq:
2239 * lazy.reject { |obj| block } -> lazy_enumerator
2241 * Like Enumerable#reject, but chains operation to be lazy-evaluated.
2244 static VALUE
2245 lazy_reject(VALUE obj)
2247 if (!rb_block_given_p()) {
2248 rb_raise(rb_eArgError, "tried to call lazy reject without a block");
2251 return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_reject_funcs);
2254 static struct MEMO *
2255 lazy_grep_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2257 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2258 VALUE chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value);
2259 if (!RTEST(chain)) return 0;
2260 return result;
2263 static struct MEMO *
2264 lazy_grep_iter_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2266 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2267 VALUE value, chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value);
2269 if (!RTEST(chain)) return 0;
2270 value = rb_proc_call_with_block(entry->proc, 1, &(result->memo_value), Qnil);
2271 LAZY_MEMO_SET_VALUE(result, value);
2272 LAZY_MEMO_RESET_PACKED(result);
2274 return result;
2277 static const lazyenum_funcs lazy_grep_iter_funcs = {
2278 lazy_grep_iter_proc, 0,
2281 static const lazyenum_funcs lazy_grep_funcs = {
2282 lazy_grep_proc, 0,
2286 * call-seq:
2287 * lazy.grep(pattern) -> lazy_enumerator
2288 * lazy.grep(pattern) { |obj| block } -> lazy_enumerator
2290 * Like Enumerable#grep, but chains operation to be lazy-evaluated.
2293 static VALUE
2294 lazy_grep(VALUE obj, VALUE pattern)
2296 const lazyenum_funcs *const funcs = rb_block_given_p() ?
2297 &lazy_grep_iter_funcs : &lazy_grep_funcs;
2298 return lazy_add_method(obj, 0, 0, pattern, rb_ary_new3(1, pattern), funcs);
2301 static struct MEMO *
2302 lazy_grep_v_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2304 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2305 VALUE chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value);
2306 if (RTEST(chain)) return 0;
2307 return result;
2310 static struct MEMO *
2311 lazy_grep_v_iter_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2313 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2314 VALUE value, chain = rb_funcall(entry->memo, id_eqq, 1, result->memo_value);
2316 if (RTEST(chain)) return 0;
2317 value = rb_proc_call_with_block(entry->proc, 1, &(result->memo_value), Qnil);
2318 LAZY_MEMO_SET_VALUE(result, value);
2319 LAZY_MEMO_RESET_PACKED(result);
2321 return result;
2324 static const lazyenum_funcs lazy_grep_v_iter_funcs = {
2325 lazy_grep_v_iter_proc, 0,
2328 static const lazyenum_funcs lazy_grep_v_funcs = {
2329 lazy_grep_v_proc, 0,
2333 * call-seq:
2334 * lazy.grep_v(pattern) -> lazy_enumerator
2335 * lazy.grep_v(pattern) { |obj| block } -> lazy_enumerator
2337 * Like Enumerable#grep_v, but chains operation to be lazy-evaluated.
2340 static VALUE
2341 lazy_grep_v(VALUE obj, VALUE pattern)
2343 const lazyenum_funcs *const funcs = rb_block_given_p() ?
2344 &lazy_grep_v_iter_funcs : &lazy_grep_v_funcs;
2345 return lazy_add_method(obj, 0, 0, pattern, rb_ary_new3(1, pattern), funcs);
2348 static VALUE
2349 call_next(VALUE obj)
2351 return rb_funcall(obj, id_next, 0);
2354 static VALUE
2355 next_stopped(VALUE obj, VALUE _)
2357 return Qnil;
2360 static struct MEMO *
2361 lazy_zip_arrays_func(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2363 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2364 VALUE ary, arrays = entry->memo;
2365 VALUE memo = rb_ary_entry(memos, memo_index);
2366 long i, count = NIL_P(memo) ? 0 : NUM2LONG(memo);
2368 ary = rb_ary_new2(RARRAY_LEN(arrays) + 1);
2369 rb_ary_push(ary, result->memo_value);
2370 for (i = 0; i < RARRAY_LEN(arrays); i++) {
2371 rb_ary_push(ary, rb_ary_entry(RARRAY_AREF(arrays, i), count));
2373 LAZY_MEMO_SET_VALUE(result, ary);
2374 rb_ary_store(memos, memo_index, LONG2NUM(++count));
2375 return result;
2378 static struct MEMO *
2379 lazy_zip_func(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2381 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2382 VALUE arg = rb_ary_entry(memos, memo_index);
2383 VALUE zip_args = entry->memo;
2384 VALUE ary, v;
2385 long i;
2387 if (NIL_P(arg)) {
2388 arg = rb_ary_new2(RARRAY_LEN(zip_args));
2389 for (i = 0; i < RARRAY_LEN(zip_args); i++) {
2390 rb_ary_push(arg, rb_funcall(RARRAY_AREF(zip_args, i), id_to_enum, 0));
2392 rb_ary_store(memos, memo_index, arg);
2395 ary = rb_ary_new2(RARRAY_LEN(arg) + 1);
2396 rb_ary_push(ary, result->memo_value);
2397 for (i = 0; i < RARRAY_LEN(arg); i++) {
2398 v = rb_rescue2(call_next, RARRAY_AREF(arg, i), next_stopped, 0,
2399 rb_eStopIteration, (VALUE)0);
2400 rb_ary_push(ary, v);
2402 LAZY_MEMO_SET_VALUE(result, ary);
2403 LAZY_MEMO_SET_PACKED(result);
2404 return result;
2407 static const lazyenum_funcs lazy_zip_funcs[] = {
2408 {lazy_zip_func, lazy_receiver_size,},
2409 {lazy_zip_arrays_func, lazy_receiver_size,},
2413 * call-seq:
2414 * lazy.zip(arg, ...) -> lazy_enumerator
2415 * lazy.zip(arg, ...) { |arr| block } -> nil
2417 * Like Enumerable#zip, but chains operation to be lazy-evaluated.
2418 * However, if a block is given to zip, values are enumerated immediately.
2420 static VALUE
2421 lazy_zip(int argc, VALUE *argv, VALUE obj)
2423 VALUE ary, v;
2424 long i;
2425 const lazyenum_funcs *funcs = &lazy_zip_funcs[1];
2427 if (rb_block_given_p()) {
2428 return rb_call_super(argc, argv);
2431 ary = rb_ary_new2(argc);
2432 for (i = 0; i < argc; i++) {
2433 v = rb_check_array_type(argv[i]);
2434 if (NIL_P(v)) {
2435 for (; i < argc; i++) {
2436 if (!rb_respond_to(argv[i], id_each)) {
2437 rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
2438 rb_obj_class(argv[i]));
2441 ary = rb_ary_new4(argc, argv);
2442 funcs = &lazy_zip_funcs[0];
2443 break;
2445 rb_ary_push(ary, v);
2448 return lazy_add_method(obj, 0, 0, ary, ary, funcs);
2451 static struct MEMO *
2452 lazy_take_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2454 long remain;
2455 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2456 VALUE memo = rb_ary_entry(memos, memo_index);
2458 if (NIL_P(memo)) {
2459 memo = entry->memo;
2462 remain = NUM2LONG(memo);
2463 if (--remain == 0) LAZY_MEMO_SET_BREAK(result);
2464 rb_ary_store(memos, memo_index, LONG2NUM(remain));
2465 return result;
2468 static VALUE
2469 lazy_take_size(VALUE entry, VALUE receiver)
2471 long len = NUM2LONG(RARRAY_AREF(rb_ivar_get(entry, id_arguments), 0));
2472 if (NIL_P(receiver) || (FIXNUM_P(receiver) && FIX2LONG(receiver) < len))
2473 return receiver;
2474 return LONG2NUM(len);
2477 static int
2478 lazy_take_precheck(VALUE proc_entry)
2480 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2481 return entry->memo != INT2FIX(0);
2484 static const lazyenum_funcs lazy_take_funcs = {
2485 lazy_take_proc, lazy_take_size, lazy_take_precheck,
2489 * call-seq:
2490 * lazy.take(n) -> lazy_enumerator
2492 * Like Enumerable#take, but chains operation to be lazy-evaluated.
2495 static VALUE
2496 lazy_take(VALUE obj, VALUE n)
2498 long len = NUM2LONG(n);
2500 if (len < 0) {
2501 rb_raise(rb_eArgError, "attempt to take negative size");
2504 n = LONG2NUM(len); /* no more conversion */
2506 return lazy_add_method(obj, 0, 0, n, rb_ary_new3(1, n), &lazy_take_funcs);
2509 static struct MEMO *
2510 lazy_take_while_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2512 VALUE take = lazyenum_yield_values(proc_entry, result);
2513 if (!RTEST(take)) {
2514 LAZY_MEMO_SET_BREAK(result);
2515 return 0;
2517 return result;
2520 static const lazyenum_funcs lazy_take_while_funcs = {
2521 lazy_take_while_proc, 0,
2525 * call-seq:
2526 * lazy.take_while { |obj| block } -> lazy_enumerator
2528 * Like Enumerable#take_while, but chains operation to be lazy-evaluated.
2531 static VALUE
2532 lazy_take_while(VALUE obj)
2534 if (!rb_block_given_p()) {
2535 rb_raise(rb_eArgError, "tried to call lazy take_while without a block");
2538 return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_take_while_funcs);
2541 static VALUE
2542 lazy_drop_size(VALUE proc_entry, VALUE receiver)
2544 long len = NUM2LONG(RARRAY_AREF(rb_ivar_get(proc_entry, id_arguments), 0));
2545 if (NIL_P(receiver))
2546 return receiver;
2547 if (FIXNUM_P(receiver)) {
2548 len = FIX2LONG(receiver) - len;
2549 return LONG2FIX(len < 0 ? 0 : len);
2551 return rb_funcall(receiver, '-', 1, LONG2NUM(len));
2554 static struct MEMO *
2555 lazy_drop_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2557 long remain;
2558 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2559 VALUE memo = rb_ary_entry(memos, memo_index);
2561 if (NIL_P(memo)) {
2562 memo = entry->memo;
2564 remain = NUM2LONG(memo);
2565 if (remain > 0) {
2566 --remain;
2567 rb_ary_store(memos, memo_index, LONG2NUM(remain));
2568 return 0;
2571 return result;
2574 static const lazyenum_funcs lazy_drop_funcs = {
2575 lazy_drop_proc, lazy_drop_size,
2579 * call-seq:
2580 * lazy.drop(n) -> lazy_enumerator
2582 * Like Enumerable#drop, but chains operation to be lazy-evaluated.
2585 static VALUE
2586 lazy_drop(VALUE obj, VALUE n)
2588 long len = NUM2LONG(n);
2589 VALUE argv[2];
2590 argv[0] = sym_each;
2591 argv[1] = n;
2593 if (len < 0) {
2594 rb_raise(rb_eArgError, "attempt to drop negative size");
2597 return lazy_add_method(obj, 2, argv, n, rb_ary_new3(1, n), &lazy_drop_funcs);
2600 static struct MEMO *
2601 lazy_drop_while_proc(VALUE proc_entry, struct MEMO* result, VALUE memos, long memo_index)
2603 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2604 VALUE memo = rb_ary_entry(memos, memo_index);
2606 if (NIL_P(memo)) {
2607 memo = entry->memo;
2610 if (!RTEST(memo)) {
2611 VALUE drop = lazyenum_yield_values(proc_entry, result);
2612 if (RTEST(drop)) return 0;
2613 rb_ary_store(memos, memo_index, Qtrue);
2615 return result;
2618 static const lazyenum_funcs lazy_drop_while_funcs = {
2619 lazy_drop_while_proc, 0,
2623 * call-seq:
2624 * lazy.drop_while { |obj| block } -> lazy_enumerator
2626 * Like Enumerable#drop_while, but chains operation to be lazy-evaluated.
2629 static VALUE
2630 lazy_drop_while(VALUE obj)
2632 if (!rb_block_given_p()) {
2633 rb_raise(rb_eArgError, "tried to call lazy drop_while without a block");
2636 return lazy_add_method(obj, 0, 0, Qfalse, Qnil, &lazy_drop_while_funcs);
2639 static int
2640 lazy_uniq_check(VALUE chain, VALUE memos, long memo_index)
2642 VALUE hash = rb_ary_entry(memos, memo_index);
2644 if (NIL_P(hash)) {
2645 hash = rb_obj_hide(rb_hash_new());
2646 rb_ary_store(memos, memo_index, hash);
2649 return rb_hash_add_new_element(hash, chain, Qfalse);
2652 static struct MEMO *
2653 lazy_uniq_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2655 if (lazy_uniq_check(result->memo_value, memos, memo_index)) return 0;
2656 return result;
2659 static struct MEMO *
2660 lazy_uniq_iter_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2662 VALUE chain = lazyenum_yield(proc_entry, result);
2664 if (lazy_uniq_check(chain, memos, memo_index)) return 0;
2665 return result;
2668 static const lazyenum_funcs lazy_uniq_iter_funcs = {
2669 lazy_uniq_iter_proc, 0,
2672 static const lazyenum_funcs lazy_uniq_funcs = {
2673 lazy_uniq_proc, 0,
2677 * call-seq:
2678 * lazy.uniq -> lazy_enumerator
2679 * lazy.uniq { |item| block } -> lazy_enumerator
2681 * Like Enumerable#uniq, but chains operation to be lazy-evaluated.
2684 static VALUE
2685 lazy_uniq(VALUE obj)
2687 const lazyenum_funcs *const funcs =
2688 rb_block_given_p() ? &lazy_uniq_iter_funcs : &lazy_uniq_funcs;
2689 return lazy_add_method(obj, 0, 0, Qnil, Qnil, funcs);
2692 static struct MEMO *
2693 lazy_compact_proc(VALUE proc_entry, struct MEMO *result, VALUE memos, long memo_index)
2695 if (NIL_P(result->memo_value)) return 0;
2696 return result;
2699 static const lazyenum_funcs lazy_compact_funcs = {
2700 lazy_compact_proc, 0,
2704 * call-seq:
2705 * lazy.compact -> lazy_enumerator
2707 * Like Enumerable#compact, but chains operation to be lazy-evaluated.
2710 static VALUE
2711 lazy_compact(VALUE obj)
2713 return lazy_add_method(obj, 0, 0, Qnil, Qnil, &lazy_compact_funcs);
2716 static struct MEMO *
2717 lazy_with_index_proc(VALUE proc_entry, struct MEMO* result, VALUE memos, long memo_index)
2719 struct proc_entry *entry = proc_entry_ptr(proc_entry);
2720 VALUE memo = rb_ary_entry(memos, memo_index);
2721 VALUE argv[2];
2723 if (NIL_P(memo)) {
2724 memo = entry->memo;
2727 argv[0] = result->memo_value;
2728 argv[1] = memo;
2729 if (entry->proc) {
2730 rb_proc_call_with_block(entry->proc, 2, argv, Qnil);
2731 LAZY_MEMO_RESET_PACKED(result);
2733 else {
2734 LAZY_MEMO_SET_VALUE(result, rb_ary_new_from_values(2, argv));
2735 LAZY_MEMO_SET_PACKED(result);
2737 rb_ary_store(memos, memo_index, LONG2NUM(NUM2LONG(memo) + 1));
2738 return result;
2741 static VALUE
2742 lazy_with_index_size(VALUE proc, VALUE receiver)
2744 return receiver;
2747 static const lazyenum_funcs lazy_with_index_funcs = {
2748 lazy_with_index_proc, lazy_with_index_size,
2752 * call-seq:
2753 * lazy.with_index(offset = 0) {|(*args), idx| block }
2754 * lazy.with_index(offset = 0)
2756 * If a block is given, returns a lazy enumerator that will
2757 * iterate over the given block for each element
2758 * with an index, which starts from +offset+, and returns a
2759 * lazy enumerator that yields the same values (without the index).
2761 * If a block is not given, returns a new lazy enumerator that
2762 * includes the index, starting from +offset+.
2764 * +offset+:: the starting index to use
2766 * See Enumerator#with_index.
2768 static VALUE
2769 lazy_with_index(int argc, VALUE *argv, VALUE obj)
2771 VALUE memo;
2773 rb_scan_args(argc, argv, "01", &memo);
2774 if (NIL_P(memo))
2775 memo = LONG2NUM(0);
2777 return lazy_add_method(obj, 0, 0, memo, rb_ary_new_from_values(1, &memo), &lazy_with_index_funcs);
2780 #if 0 /* for RDoc */
2783 * call-seq:
2784 * lazy.chunk { |elt| ... } -> lazy_enumerator
2786 * Like Enumerable#chunk, but chains operation to be lazy-evaluated.
2788 static VALUE
2789 lazy_chunk(VALUE self)
2794 * call-seq:
2795 * lazy.chunk_while {|elt_before, elt_after| bool } -> lazy_enumerator
2797 * Like Enumerable#chunk_while, but chains operation to be lazy-evaluated.
2799 static VALUE
2800 lazy_chunk_while(VALUE self)
2805 * call-seq:
2806 * lazy.slice_after(pattern) -> lazy_enumerator
2807 * lazy.slice_after { |elt| bool } -> lazy_enumerator
2809 * Like Enumerable#slice_after, but chains operation to be lazy-evaluated.
2811 static VALUE
2812 lazy_slice_after(VALUE self)
2817 * call-seq:
2818 * lazy.slice_before(pattern) -> lazy_enumerator
2819 * lazy.slice_before { |elt| bool } -> lazy_enumerator
2821 * Like Enumerable#slice_before, but chains operation to be lazy-evaluated.
2823 static VALUE
2824 lazy_slice_before(VALUE self)
2829 * call-seq:
2830 * lazy.slice_when {|elt_before, elt_after| bool } -> lazy_enumerator
2832 * Like Enumerable#slice_when, but chains operation to be lazy-evaluated.
2834 static VALUE
2835 lazy_slice_when(VALUE self)
2838 # endif
2840 static VALUE
2841 lazy_super(int argc, VALUE *argv, VALUE lazy)
2843 return enumerable_lazy(rb_call_super(argc, argv));
2847 * call-seq:
2848 * enum.lazy -> lazy_enumerator
2850 * Returns self.
2853 static VALUE
2854 lazy_lazy(VALUE obj)
2856 return obj;
2860 * Document-class: StopIteration
2862 * Raised to stop the iteration, in particular by Enumerator#next. It is
2863 * rescued by Kernel#loop.
2865 * loop do
2866 * puts "Hello"
2867 * raise StopIteration
2868 * puts "World"
2869 * end
2870 * puts "Done!"
2872 * <em>produces:</em>
2874 * Hello
2875 * Done!
2879 * call-seq:
2880 * result -> value
2882 * Returns the return value of the iterator.
2884 * o = Object.new
2885 * def o.each
2886 * yield 1
2887 * yield 2
2888 * yield 3
2889 * 100
2890 * end
2892 * e = o.to_enum
2894 * puts e.next #=> 1
2895 * puts e.next #=> 2
2896 * puts e.next #=> 3
2898 * begin
2899 * e.next
2900 * rescue StopIteration => ex
2901 * puts ex.result #=> 100
2902 * end
2906 static VALUE
2907 stop_result(VALUE self)
2909 return rb_attr_get(self, id_result);
2913 * Producer
2916 static void
2917 producer_mark(void *p)
2919 struct producer *ptr = p;
2920 rb_gc_mark_movable(ptr->init);
2921 rb_gc_mark_movable(ptr->proc);
2924 static void
2925 producer_compact(void *p)
2927 struct producer *ptr = p;
2928 ptr->init = rb_gc_location(ptr->init);
2929 ptr->proc = rb_gc_location(ptr->proc);
2932 #define producer_free RUBY_TYPED_DEFAULT_FREE
2934 static size_t
2935 producer_memsize(const void *p)
2937 return sizeof(struct producer);
2940 static const rb_data_type_t producer_data_type = {
2941 "producer",
2943 producer_mark,
2944 producer_free,
2945 producer_memsize,
2946 producer_compact,
2948 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE
2951 static struct producer *
2952 producer_ptr(VALUE obj)
2954 struct producer *ptr;
2956 TypedData_Get_Struct(obj, struct producer, &producer_data_type, ptr);
2957 if (!ptr || UNDEF_P(ptr->proc)) {
2958 rb_raise(rb_eArgError, "uninitialized producer");
2960 return ptr;
2963 /* :nodoc: */
2964 static VALUE
2965 producer_allocate(VALUE klass)
2967 struct producer *ptr;
2968 VALUE obj;
2970 obj = TypedData_Make_Struct(klass, struct producer, &producer_data_type, ptr);
2971 ptr->init = Qundef;
2972 ptr->proc = Qundef;
2974 return obj;
2977 static VALUE
2978 producer_init(VALUE obj, VALUE init, VALUE proc)
2980 struct producer *ptr;
2982 TypedData_Get_Struct(obj, struct producer, &producer_data_type, ptr);
2984 if (!ptr) {
2985 rb_raise(rb_eArgError, "unallocated producer");
2988 RB_OBJ_WRITE(obj, &ptr->init, init);
2989 RB_OBJ_WRITE(obj, &ptr->proc, proc);
2991 return obj;
2994 static VALUE
2995 producer_each_stop(VALUE dummy, VALUE exc)
2997 return rb_attr_get(exc, id_result);
3000 NORETURN(static VALUE producer_each_i(VALUE obj));
3002 static VALUE
3003 producer_each_i(VALUE obj)
3005 struct producer *ptr;
3006 VALUE init, proc, curr;
3008 ptr = producer_ptr(obj);
3009 init = ptr->init;
3010 proc = ptr->proc;
3012 if (UNDEF_P(init)) {
3013 curr = Qnil;
3015 else {
3016 rb_yield(init);
3017 curr = init;
3020 for (;;) {
3021 curr = rb_funcall(proc, id_call, 1, curr);
3022 rb_yield(curr);
3025 UNREACHABLE_RETURN(Qnil);
3028 /* :nodoc: */
3029 static VALUE
3030 producer_each(VALUE obj)
3032 rb_need_block();
3034 return rb_rescue2(producer_each_i, obj, producer_each_stop, (VALUE)0, rb_eStopIteration, (VALUE)0);
3037 static VALUE
3038 producer_size(VALUE obj, VALUE args, VALUE eobj)
3040 return DBL2NUM(HUGE_VAL);
3044 * call-seq:
3045 * Enumerator.produce(initial = nil) { |prev| block } -> enumerator
3047 * Creates an infinite enumerator from any block, just called over and
3048 * over. The result of the previous iteration is passed to the next one.
3049 * If +initial+ is provided, it is passed to the first iteration, and
3050 * becomes the first element of the enumerator; if it is not provided,
3051 * the first iteration receives +nil+, and its result becomes the first
3052 * element of the iterator.
3054 * Raising StopIteration from the block stops an iteration.
3056 * Enumerator.produce(1, &:succ) # => enumerator of 1, 2, 3, 4, ....
3058 * Enumerator.produce { rand(10) } # => infinite random number sequence
3060 * ancestors = Enumerator.produce(node) { |prev| node = prev.parent or raise StopIteration }
3061 * enclosing_section = ancestors.find { |n| n.type == :section }
3063 * Using ::produce together with Enumerable methods like Enumerable#detect,
3064 * Enumerable#slice_after, Enumerable#take_while can provide Enumerator-based alternatives
3065 * for +while+ and +until+ cycles:
3067 * # Find next Tuesday
3068 * require "date"
3069 * Enumerator.produce(Date.today, &:succ).detect(&:tuesday?)
3071 * # Simple lexer:
3072 * require "strscan"
3073 * scanner = StringScanner.new("7+38/6")
3074 * PATTERN = %r{\d+|[-/+*]}
3075 * Enumerator.produce { scanner.scan(PATTERN) }.slice_after { scanner.eos? }.first
3076 * # => ["7", "+", "38", "/", "6"]
3078 static VALUE
3079 enumerator_s_produce(int argc, VALUE *argv, VALUE klass)
3081 VALUE init, producer;
3083 if (!rb_block_given_p()) rb_raise(rb_eArgError, "no block given");
3085 if (rb_scan_args(argc, argv, "01", &init) == 0) {
3086 init = Qundef;
3089 producer = producer_init(producer_allocate(rb_cEnumProducer), init, rb_block_proc());
3091 return rb_enumeratorize_with_size_kw(producer, sym_each, 0, 0, producer_size, RB_NO_KEYWORDS);
3095 * Document-class: Enumerator::Chain
3097 * Enumerator::Chain is a subclass of Enumerator, which represents a
3098 * chain of enumerables that works as a single enumerator.
3100 * This type of objects can be created by Enumerable#chain and
3101 * Enumerator#+.
3104 static void
3105 enum_chain_mark(void *p)
3107 struct enum_chain *ptr = p;
3108 rb_gc_mark_movable(ptr->enums);
3111 static void
3112 enum_chain_compact(void *p)
3114 struct enum_chain *ptr = p;
3115 ptr->enums = rb_gc_location(ptr->enums);
3118 #define enum_chain_free RUBY_TYPED_DEFAULT_FREE
3120 static size_t
3121 enum_chain_memsize(const void *p)
3123 return sizeof(struct enum_chain);
3126 static const rb_data_type_t enum_chain_data_type = {
3127 "chain",
3129 enum_chain_mark,
3130 enum_chain_free,
3131 enum_chain_memsize,
3132 enum_chain_compact,
3134 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
3137 static struct enum_chain *
3138 enum_chain_ptr(VALUE obj)
3140 struct enum_chain *ptr;
3142 TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr);
3143 if (!ptr || UNDEF_P(ptr->enums)) {
3144 rb_raise(rb_eArgError, "uninitialized chain");
3146 return ptr;
3149 /* :nodoc: */
3150 static VALUE
3151 enum_chain_allocate(VALUE klass)
3153 struct enum_chain *ptr;
3154 VALUE obj;
3156 obj = TypedData_Make_Struct(klass, struct enum_chain, &enum_chain_data_type, ptr);
3157 ptr->enums = Qundef;
3158 ptr->pos = -1;
3160 return obj;
3164 * call-seq:
3165 * Enumerator::Chain.new(*enums) -> enum
3167 * Generates a new enumerator object that iterates over the elements
3168 * of given enumerable objects in sequence.
3170 * e = Enumerator::Chain.new(1..3, [4, 5])
3171 * e.to_a #=> [1, 2, 3, 4, 5]
3172 * e.size #=> 5
3174 static VALUE
3175 enum_chain_initialize(VALUE obj, VALUE enums)
3177 struct enum_chain *ptr;
3179 rb_check_frozen(obj);
3180 TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr);
3182 if (!ptr) rb_raise(rb_eArgError, "unallocated chain");
3184 ptr->enums = rb_obj_freeze(enums);
3185 ptr->pos = -1;
3187 return obj;
3190 static VALUE
3191 new_enum_chain(VALUE enums)
3193 long i;
3194 VALUE obj = enum_chain_initialize(enum_chain_allocate(rb_cEnumChain), enums);
3196 for (i = 0; i < RARRAY_LEN(enums); i++) {
3197 if (RTEST(rb_obj_is_kind_of(RARRAY_AREF(enums, i), rb_cLazy))) {
3198 return enumerable_lazy(obj);
3202 return obj;
3205 /* :nodoc: */
3206 static VALUE
3207 enum_chain_init_copy(VALUE obj, VALUE orig)
3209 struct enum_chain *ptr0, *ptr1;
3211 if (!OBJ_INIT_COPY(obj, orig)) return obj;
3212 ptr0 = enum_chain_ptr(orig);
3214 TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr1);
3216 if (!ptr1) rb_raise(rb_eArgError, "unallocated chain");
3218 ptr1->enums = ptr0->enums;
3219 ptr1->pos = ptr0->pos;
3221 return obj;
3224 static VALUE
3225 enum_chain_total_size(VALUE enums)
3227 VALUE total = INT2FIX(0);
3228 long i;
3230 for (i = 0; i < RARRAY_LEN(enums); i++) {
3231 VALUE size = enum_size(RARRAY_AREF(enums, i));
3233 if (NIL_P(size) || (RB_FLOAT_TYPE_P(size) && isinf(NUM2DBL(size)))) {
3234 return size;
3236 if (!RB_INTEGER_TYPE_P(size)) {
3237 return Qnil;
3240 total = rb_funcall(total, '+', 1, size);
3243 return total;
3247 * call-seq:
3248 * obj.size -> int, Float::INFINITY or nil
3250 * Returns the total size of the enumerator chain calculated by
3251 * summing up the size of each enumerable in the chain. If any of the
3252 * enumerables reports its size as nil or Float::INFINITY, that value
3253 * is returned as the total size.
3255 static VALUE
3256 enum_chain_size(VALUE obj)
3258 return enum_chain_total_size(enum_chain_ptr(obj)->enums);
3261 static VALUE
3262 enum_chain_enum_size(VALUE obj, VALUE args, VALUE eobj)
3264 return enum_chain_size(obj);
3267 static VALUE
3268 enum_chain_enum_no_size(VALUE obj, VALUE args, VALUE eobj)
3270 return Qnil;
3274 * call-seq:
3275 * obj.each(*args) { |...| ... } -> obj
3276 * obj.each(*args) -> enumerator
3278 * Iterates over the elements of the first enumerable by calling the
3279 * "each" method on it with the given arguments, then proceeds to the
3280 * following enumerables in sequence until all of the enumerables are
3281 * exhausted.
3283 * If no block is given, returns an enumerator.
3285 static VALUE
3286 enum_chain_each(int argc, VALUE *argv, VALUE obj)
3288 VALUE enums, block;
3289 struct enum_chain *objptr;
3290 long i;
3292 RETURN_SIZED_ENUMERATOR(obj, argc, argv, argc > 0 ? enum_chain_enum_no_size : enum_chain_enum_size);
3294 objptr = enum_chain_ptr(obj);
3295 enums = objptr->enums;
3296 block = rb_block_proc();
3298 for (i = 0; i < RARRAY_LEN(enums); i++) {
3299 objptr->pos = i;
3300 rb_funcall_with_block(RARRAY_AREF(enums, i), id_each, argc, argv, block);
3303 return obj;
3307 * call-seq:
3308 * obj.rewind -> obj
3310 * Rewinds the enumerator chain by calling the "rewind" method on each
3311 * enumerable in reverse order. Each call is performed only if the
3312 * enumerable responds to the method.
3314 static VALUE
3315 enum_chain_rewind(VALUE obj)
3317 struct enum_chain *objptr = enum_chain_ptr(obj);
3318 VALUE enums = objptr->enums;
3319 long i;
3321 for (i = objptr->pos; 0 <= i && i < RARRAY_LEN(enums); objptr->pos = --i) {
3322 rb_check_funcall(RARRAY_AREF(enums, i), id_rewind, 0, 0);
3325 return obj;
3328 static VALUE
3329 inspect_enum_chain(VALUE obj, VALUE dummy, int recur)
3331 VALUE klass = rb_obj_class(obj);
3332 struct enum_chain *ptr;
3334 TypedData_Get_Struct(obj, struct enum_chain, &enum_chain_data_type, ptr);
3336 if (!ptr || UNDEF_P(ptr->enums)) {
3337 return rb_sprintf("#<%"PRIsVALUE": uninitialized>", rb_class_path(klass));
3340 if (recur) {
3341 return rb_sprintf("#<%"PRIsVALUE": ...>", rb_class_path(klass));
3344 return rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE">", rb_class_path(klass), ptr->enums);
3348 * call-seq:
3349 * obj.inspect -> string
3351 * Returns a printable version of the enumerator chain.
3353 static VALUE
3354 enum_chain_inspect(VALUE obj)
3356 return rb_exec_recursive(inspect_enum_chain, obj, 0);
3360 * call-seq:
3361 * e.chain(*enums) -> enumerator
3363 * Returns an enumerator object generated from this enumerator and
3364 * given enumerables.
3366 * e = (1..3).chain([4, 5])
3367 * e.to_a #=> [1, 2, 3, 4, 5]
3369 static VALUE
3370 enum_chain(int argc, VALUE *argv, VALUE obj)
3372 VALUE enums = rb_ary_new_from_values(1, &obj);
3373 rb_ary_cat(enums, argv, argc);
3374 return new_enum_chain(enums);
3378 * call-seq:
3379 * e + enum -> enumerator
3381 * Returns an enumerator object generated from this enumerator and a
3382 * given enumerable.
3384 * e = (1..3).each + [4, 5]
3385 * e.to_a #=> [1, 2, 3, 4, 5]
3387 static VALUE
3388 enumerator_plus(VALUE obj, VALUE eobj)
3390 return new_enum_chain(rb_ary_new_from_args(2, obj, eobj));
3394 * Document-class: Enumerator::Product
3396 * Enumerator::Product generates a Cartesian product of any number of
3397 * enumerable objects. Iterating over the product of enumerable
3398 * objects is roughly equivalent to nested each_entry loops where the
3399 * loop for the rightmost object is put innermost.
3401 * innings = Enumerator::Product.new(1..9, ['top', 'bottom'])
3403 * innings.each do |i, h|
3404 * p [i, h]
3405 * end
3406 * # [1, "top"]
3407 * # [1, "bottom"]
3408 * # [2, "top"]
3409 * # [2, "bottom"]
3410 * # [3, "top"]
3411 * # [3, "bottom"]
3412 * # ...
3413 * # [9, "top"]
3414 * # [9, "bottom"]
3416 * The method used against each enumerable object is `each_entry`
3417 * instead of `each` so that the product of N enumerable objects
3418 * yields an array of exactly N elements in each iteration.
3420 * When no enumerator is given, it calls a given block once yielding
3421 * an empty argument list.
3423 * This type of objects can be created by Enumerator.product.
3426 static void
3427 enum_product_mark(void *p)
3429 struct enum_product *ptr = p;
3430 rb_gc_mark_movable(ptr->enums);
3433 static void
3434 enum_product_compact(void *p)
3436 struct enum_product *ptr = p;
3437 ptr->enums = rb_gc_location(ptr->enums);
3440 #define enum_product_free RUBY_TYPED_DEFAULT_FREE
3442 static size_t
3443 enum_product_memsize(const void *p)
3445 return sizeof(struct enum_product);
3448 static const rb_data_type_t enum_product_data_type = {
3449 "product",
3451 enum_product_mark,
3452 enum_product_free,
3453 enum_product_memsize,
3454 enum_product_compact,
3456 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
3459 static struct enum_product *
3460 enum_product_ptr(VALUE obj)
3462 struct enum_product *ptr;
3464 TypedData_Get_Struct(obj, struct enum_product, &enum_product_data_type, ptr);
3465 if (!ptr || UNDEF_P(ptr->enums)) {
3466 rb_raise(rb_eArgError, "uninitialized product");
3468 return ptr;
3471 /* :nodoc: */
3472 static VALUE
3473 enum_product_allocate(VALUE klass)
3475 struct enum_product *ptr;
3476 VALUE obj;
3478 obj = TypedData_Make_Struct(klass, struct enum_product, &enum_product_data_type, ptr);
3479 ptr->enums = Qundef;
3481 return obj;
3485 * call-seq:
3486 * Enumerator::Product.new(*enums) -> enum
3488 * Generates a new enumerator object that generates a Cartesian
3489 * product of given enumerable objects.
3491 * e = Enumerator::Product.new(1..3, [4, 5])
3492 * e.to_a #=> [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]
3493 * e.size #=> 6
3495 static VALUE
3496 enum_product_initialize(int argc, VALUE *argv, VALUE obj)
3498 struct enum_product *ptr;
3499 VALUE enums = Qnil, options = Qnil;
3501 rb_scan_args(argc, argv, "*:", &enums, &options);
3503 if (!NIL_P(options) && !RHASH_EMPTY_P(options)) {
3504 rb_exc_raise(rb_keyword_error_new("unknown", rb_hash_keys(options)));
3507 rb_check_frozen(obj);
3508 TypedData_Get_Struct(obj, struct enum_product, &enum_product_data_type, ptr);
3510 if (!ptr) rb_raise(rb_eArgError, "unallocated product");
3512 ptr->enums = rb_obj_freeze(enums);
3514 return obj;
3517 /* :nodoc: */
3518 static VALUE
3519 enum_product_init_copy(VALUE obj, VALUE orig)
3521 struct enum_product *ptr0, *ptr1;
3523 if (!OBJ_INIT_COPY(obj, orig)) return obj;
3524 ptr0 = enum_product_ptr(orig);
3526 TypedData_Get_Struct(obj, struct enum_product, &enum_product_data_type, ptr1);
3528 if (!ptr1) rb_raise(rb_eArgError, "unallocated product");
3530 ptr1->enums = ptr0->enums;
3532 return obj;
3535 static VALUE
3536 enum_product_total_size(VALUE enums)
3538 VALUE total = INT2FIX(1);
3539 VALUE sizes = rb_ary_hidden_new(RARRAY_LEN(enums));
3540 long i;
3542 for (i = 0; i < RARRAY_LEN(enums); i++) {
3543 VALUE size = enum_size(RARRAY_AREF(enums, i));
3544 if (size == INT2FIX(0)) {
3545 rb_ary_resize(sizes, 0);
3546 return size;
3548 rb_ary_push(sizes, size);
3550 for (i = 0; i < RARRAY_LEN(sizes); i++) {
3551 VALUE size = RARRAY_AREF(sizes, i);
3553 if (NIL_P(size) || (RB_TYPE_P(size, T_FLOAT) && isinf(NUM2DBL(size)))) {
3554 return size;
3556 if (!RB_INTEGER_TYPE_P(size)) {
3557 return Qnil;
3560 total = rb_funcall(total, '*', 1, size);
3563 return total;
3567 * call-seq:
3568 * obj.size -> int, Float::INFINITY or nil
3570 * Returns the total size of the enumerator product calculated by
3571 * multiplying the sizes of enumerables in the product. If any of the
3572 * enumerables reports its size as nil or Float::INFINITY, that value
3573 * is returned as the size.
3575 static VALUE
3576 enum_product_size(VALUE obj)
3578 return enum_product_total_size(enum_product_ptr(obj)->enums);
3581 static VALUE
3582 enum_product_enum_size(VALUE obj, VALUE args, VALUE eobj)
3584 return enum_product_size(obj);
3587 struct product_state {
3588 VALUE obj;
3589 VALUE block;
3590 int argc;
3591 VALUE *argv;
3592 int index;
3595 static VALUE product_each(VALUE, struct product_state *);
3597 static VALUE
3598 product_each_i(RB_BLOCK_CALL_FUNC_ARGLIST(value, state))
3600 struct product_state *pstate = (struct product_state *)state;
3601 pstate->argv[pstate->index++] = value;
3603 VALUE val = product_each(pstate->obj, pstate);
3604 pstate->index--;
3605 return val;
3608 static VALUE
3609 product_each(VALUE obj, struct product_state *pstate)
3611 struct enum_product *ptr = enum_product_ptr(obj);
3612 VALUE enums = ptr->enums;
3614 if (pstate->index < pstate->argc) {
3615 VALUE eobj = RARRAY_AREF(enums, pstate->index);
3617 rb_block_call(eobj, id_each_entry, 0, NULL, product_each_i, (VALUE)pstate);
3619 else {
3620 rb_funcall(pstate->block, id_call, 1, rb_ary_new_from_values(pstate->argc, pstate->argv));
3623 return obj;
3626 static VALUE
3627 enum_product_run(VALUE obj, VALUE block)
3629 struct enum_product *ptr = enum_product_ptr(obj);
3630 int argc = RARRAY_LENINT(ptr->enums);
3631 struct product_state state = {
3632 .obj = obj,
3633 .block = block,
3634 .index = 0,
3635 .argc = argc,
3636 .argv = ALLOCA_N(VALUE, argc),
3639 return product_each(obj, &state);
3643 * call-seq:
3644 * obj.each { |...| ... } -> obj
3645 * obj.each -> enumerator
3647 * Iterates over the elements of the first enumerable by calling the
3648 * "each_entry" method on it with the given arguments, then proceeds
3649 * to the following enumerables in sequence until all of the
3650 * enumerables are exhausted.
3652 * If no block is given, returns an enumerator. Otherwise, returns self.
3654 static VALUE
3655 enum_product_each(VALUE obj)
3657 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_product_enum_size);
3659 return enum_product_run(obj, rb_block_proc());
3663 * call-seq:
3664 * obj.rewind -> obj
3666 * Rewinds the product enumerator by calling the "rewind" method on
3667 * each enumerable in reverse order. Each call is performed only if
3668 * the enumerable responds to the method.
3670 static VALUE
3671 enum_product_rewind(VALUE obj)
3673 struct enum_product *ptr = enum_product_ptr(obj);
3674 VALUE enums = ptr->enums;
3675 long i;
3677 for (i = 0; i < RARRAY_LEN(enums); i++) {
3678 rb_check_funcall(RARRAY_AREF(enums, i), id_rewind, 0, 0);
3681 return obj;
3684 static VALUE
3685 inspect_enum_product(VALUE obj, VALUE dummy, int recur)
3687 VALUE klass = rb_obj_class(obj);
3688 struct enum_product *ptr;
3690 TypedData_Get_Struct(obj, struct enum_product, &enum_product_data_type, ptr);
3692 if (!ptr || UNDEF_P(ptr->enums)) {
3693 return rb_sprintf("#<%"PRIsVALUE": uninitialized>", rb_class_path(klass));
3696 if (recur) {
3697 return rb_sprintf("#<%"PRIsVALUE": ...>", rb_class_path(klass));
3700 return rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE">", rb_class_path(klass), ptr->enums);
3704 * call-seq:
3705 * obj.inspect -> string
3707 * Returns a printable version of the product enumerator.
3709 static VALUE
3710 enum_product_inspect(VALUE obj)
3712 return rb_exec_recursive(inspect_enum_product, obj, 0);
3716 * call-seq:
3717 * Enumerator.product(*enums) -> enumerator
3718 * Enumerator.product(*enums) { |elts| ... } -> enumerator
3720 * Generates a new enumerator object that generates a Cartesian
3721 * product of given enumerable objects. This is equivalent to
3722 * Enumerator::Product.new.
3724 * e = Enumerator.product(1..3, [4, 5])
3725 * e.to_a #=> [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]
3726 * e.size #=> 6
3728 * When a block is given, calls the block with each N-element array
3729 * generated and returns +nil+.
3731 static VALUE
3732 enumerator_s_product(int argc, VALUE *argv, VALUE klass)
3734 VALUE enums = Qnil, options = Qnil, block = Qnil;
3736 rb_scan_args(argc, argv, "*:&", &enums, &options, &block);
3738 if (!NIL_P(options) && !RHASH_EMPTY_P(options)) {
3739 rb_exc_raise(rb_keyword_error_new("unknown", rb_hash_keys(options)));
3742 VALUE obj = enum_product_initialize(argc, argv, enum_product_allocate(rb_cEnumProduct));
3744 if (!NIL_P(block)) {
3745 enum_product_run(obj, block);
3746 return Qnil;
3749 return obj;
3753 * Document-class: Enumerator::ArithmeticSequence
3755 * Enumerator::ArithmeticSequence is a subclass of Enumerator,
3756 * that is a representation of sequences of numbers with common difference.
3757 * Instances of this class can be generated by the Range#step and Numeric#step
3758 * methods.
3760 * The class can be used for slicing Array (see Array#slice) or custom
3761 * collections.
3764 VALUE
3765 rb_arith_seq_new(VALUE obj, VALUE meth, int argc, VALUE const *argv,
3766 rb_enumerator_size_func *size_fn,
3767 VALUE beg, VALUE end, VALUE step, int excl)
3769 VALUE aseq = enumerator_init(enumerator_allocate(rb_cArithSeq),
3770 obj, meth, argc, argv, size_fn, Qnil, rb_keyword_given_p());
3771 rb_ivar_set(aseq, id_begin, beg);
3772 rb_ivar_set(aseq, id_end, end);
3773 rb_ivar_set(aseq, id_step, step);
3774 rb_ivar_set(aseq, id_exclude_end, RBOOL(excl));
3775 return aseq;
3779 * call-seq: aseq.begin -> num or nil
3781 * Returns the number that defines the first element of this arithmetic
3782 * sequence.
3784 static inline VALUE
3785 arith_seq_begin(VALUE self)
3787 return rb_ivar_get(self, id_begin);
3791 * call-seq: aseq.end -> num or nil
3793 * Returns the number that defines the end of this arithmetic sequence.
3795 static inline VALUE
3796 arith_seq_end(VALUE self)
3798 return rb_ivar_get(self, id_end);
3802 * call-seq: aseq.step -> num
3804 * Returns the number that defines the common difference between
3805 * two adjacent elements in this arithmetic sequence.
3807 static inline VALUE
3808 arith_seq_step(VALUE self)
3810 return rb_ivar_get(self, id_step);
3814 * call-seq: aseq.exclude_end? -> true or false
3816 * Returns <code>true</code> if this arithmetic sequence excludes its end value.
3818 static inline VALUE
3819 arith_seq_exclude_end(VALUE self)
3821 return rb_ivar_get(self, id_exclude_end);
3824 static inline int
3825 arith_seq_exclude_end_p(VALUE self)
3827 return RTEST(arith_seq_exclude_end(self));
3831 rb_arithmetic_sequence_extract(VALUE obj, rb_arithmetic_sequence_components_t *component)
3833 if (rb_obj_is_kind_of(obj, rb_cArithSeq)) {
3834 component->begin = arith_seq_begin(obj);
3835 component->end = arith_seq_end(obj);
3836 component->step = arith_seq_step(obj);
3837 component->exclude_end = arith_seq_exclude_end_p(obj);
3838 return 1;
3840 else if (rb_range_values(obj, &component->begin, &component->end, &component->exclude_end)) {
3841 component->step = INT2FIX(1);
3842 return 1;
3845 return 0;
3848 VALUE
3849 rb_arithmetic_sequence_beg_len_step(VALUE obj, long *begp, long *lenp, long *stepp, long len, int err)
3851 RBIMPL_NONNULL_ARG(begp);
3852 RBIMPL_NONNULL_ARG(lenp);
3853 RBIMPL_NONNULL_ARG(stepp);
3855 rb_arithmetic_sequence_components_t aseq;
3856 if (!rb_arithmetic_sequence_extract(obj, &aseq)) {
3857 return Qfalse;
3860 long step = NIL_P(aseq.step) ? 1 : NUM2LONG(aseq.step);
3861 *stepp = step;
3863 if (step < 0) {
3864 if (aseq.exclude_end && !NIL_P(aseq.end)) {
3865 /* Handle exclusion before range reversal */
3866 aseq.end = LONG2NUM(NUM2LONG(aseq.end) + 1);
3868 /* Don't exclude the previous beginning */
3869 aseq.exclude_end = 0;
3871 VALUE tmp = aseq.begin;
3872 aseq.begin = aseq.end;
3873 aseq.end = tmp;
3876 if (err == 0 && (step < -1 || step > 1)) {
3877 if (rb_range_component_beg_len(aseq.begin, aseq.end, aseq.exclude_end, begp, lenp, len, 1) == Qtrue) {
3878 if (*begp > len)
3879 goto out_of_range;
3880 if (*lenp > len)
3881 goto out_of_range;
3882 return Qtrue;
3885 else {
3886 return rb_range_component_beg_len(aseq.begin, aseq.end, aseq.exclude_end, begp, lenp, len, err);
3889 out_of_range:
3890 rb_raise(rb_eRangeError, "%+"PRIsVALUE" out of range", obj);
3891 return Qnil;
3895 * call-seq:
3896 * aseq.first -> num or nil
3897 * aseq.first(n) -> an_array
3899 * Returns the first number in this arithmetic sequence,
3900 * or an array of the first +n+ elements.
3902 static VALUE
3903 arith_seq_first(int argc, VALUE *argv, VALUE self)
3905 VALUE b, e, s, ary;
3906 long n;
3907 int x;
3909 rb_check_arity(argc, 0, 1);
3911 b = arith_seq_begin(self);
3912 e = arith_seq_end(self);
3913 s = arith_seq_step(self);
3914 if (argc == 0) {
3915 if (NIL_P(b)) {
3916 return Qnil;
3918 if (!NIL_P(e)) {
3919 VALUE zero = INT2FIX(0);
3920 int r = rb_cmpint(rb_num_coerce_cmp(s, zero, idCmp), s, zero);
3921 if (r > 0 && RTEST(rb_funcall(b, '>', 1, e))) {
3922 return Qnil;
3924 if (r < 0 && RTEST(rb_funcall(b, '<', 1, e))) {
3925 return Qnil;
3928 return b;
3931 // TODO: the following code should be extracted as arith_seq_take
3933 n = NUM2LONG(argv[0]);
3934 if (n < 0) {
3935 rb_raise(rb_eArgError, "attempt to take negative size");
3937 if (n == 0) {
3938 return rb_ary_new_capa(0);
3941 x = arith_seq_exclude_end_p(self);
3943 if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(s)) {
3944 long i = FIX2LONG(b), unit = FIX2LONG(s);
3945 ary = rb_ary_new_capa(n);
3946 while (n > 0 && FIXABLE(i)) {
3947 rb_ary_push(ary, LONG2FIX(i));
3948 i += unit; // FIXABLE + FIXABLE never overflow;
3949 --n;
3951 if (n > 0) {
3952 b = LONG2NUM(i);
3953 while (n > 0) {
3954 rb_ary_push(ary, b);
3955 b = rb_big_plus(b, s);
3956 --n;
3959 return ary;
3961 else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(s)) {
3962 long i = FIX2LONG(b);
3963 long end = FIX2LONG(e);
3964 long unit = FIX2LONG(s);
3965 long len;
3967 if (unit >= 0) {
3968 if (!x) end += 1;
3970 len = end - i;
3971 if (len < 0) len = 0;
3972 ary = rb_ary_new_capa((n < len) ? n : len);
3973 while (n > 0 && i < end) {
3974 rb_ary_push(ary, LONG2FIX(i));
3975 if (i + unit < i) break;
3976 i += unit;
3977 --n;
3980 else {
3981 if (!x) end -= 1;
3983 len = i - end;
3984 if (len < 0) len = 0;
3985 ary = rb_ary_new_capa((n < len) ? n : len);
3986 while (n > 0 && i > end) {
3987 rb_ary_push(ary, LONG2FIX(i));
3988 if (i + unit > i) break;
3989 i += unit;
3990 --n;
3993 return ary;
3995 else if (RB_FLOAT_TYPE_P(b) || RB_FLOAT_TYPE_P(e) || RB_FLOAT_TYPE_P(s)) {
3996 /* generate values like ruby_float_step */
3998 double unit = NUM2DBL(s);
3999 double beg = NUM2DBL(b);
4000 double end = NIL_P(e) ? (unit < 0 ? -1 : 1)*HUGE_VAL : NUM2DBL(e);
4001 double len = ruby_float_step_size(beg, end, unit, x);
4002 long i;
4004 if (n > len)
4005 n = (long)len;
4007 if (isinf(unit)) {
4008 if (len > 0) {
4009 ary = rb_ary_new_capa(1);
4010 rb_ary_push(ary, DBL2NUM(beg));
4012 else {
4013 ary = rb_ary_new_capa(0);
4016 else if (unit == 0) {
4017 VALUE val = DBL2NUM(beg);
4018 ary = rb_ary_new_capa(n);
4019 for (i = 0; i < len; ++i) {
4020 rb_ary_push(ary, val);
4023 else {
4024 ary = rb_ary_new_capa(n);
4025 for (i = 0; i < n; ++i) {
4026 double d = i*unit+beg;
4027 if (unit >= 0 ? end < d : d < end) d = end;
4028 rb_ary_push(ary, DBL2NUM(d));
4032 return ary;
4035 return rb_call_super(argc, argv);
4038 static inline VALUE
4039 num_plus(VALUE a, VALUE b)
4041 if (RB_INTEGER_TYPE_P(a)) {
4042 return rb_int_plus(a, b);
4044 else if (RB_FLOAT_TYPE_P(a)) {
4045 return rb_float_plus(a, b);
4047 else if (RB_TYPE_P(a, T_RATIONAL)) {
4048 return rb_rational_plus(a, b);
4050 else {
4051 return rb_funcallv(a, '+', 1, &b);
4055 static inline VALUE
4056 num_minus(VALUE a, VALUE b)
4058 if (RB_INTEGER_TYPE_P(a)) {
4059 return rb_int_minus(a, b);
4061 else if (RB_FLOAT_TYPE_P(a)) {
4062 return rb_float_minus(a, b);
4064 else if (RB_TYPE_P(a, T_RATIONAL)) {
4065 return rb_rational_minus(a, b);
4067 else {
4068 return rb_funcallv(a, '-', 1, &b);
4072 static inline VALUE
4073 num_mul(VALUE a, VALUE b)
4075 if (RB_INTEGER_TYPE_P(a)) {
4076 return rb_int_mul(a, b);
4078 else if (RB_FLOAT_TYPE_P(a)) {
4079 return rb_float_mul(a, b);
4081 else if (RB_TYPE_P(a, T_RATIONAL)) {
4082 return rb_rational_mul(a, b);
4084 else {
4085 return rb_funcallv(a, '*', 1, &b);
4089 static inline VALUE
4090 num_idiv(VALUE a, VALUE b)
4092 VALUE q;
4093 if (RB_INTEGER_TYPE_P(a)) {
4094 q = rb_int_idiv(a, b);
4096 else if (RB_FLOAT_TYPE_P(a)) {
4097 q = rb_float_div(a, b);
4099 else if (RB_TYPE_P(a, T_RATIONAL)) {
4100 q = rb_rational_div(a, b);
4102 else {
4103 q = rb_funcallv(a, idDiv, 1, &b);
4106 if (RB_INTEGER_TYPE_P(q)) {
4107 return q;
4109 else if (RB_FLOAT_TYPE_P(q)) {
4110 return rb_float_floor(q, 0);
4112 else if (RB_TYPE_P(q, T_RATIONAL)) {
4113 return rb_rational_floor(q, 0);
4115 else {
4116 return rb_funcall(q, rb_intern("floor"), 0);
4121 * call-seq:
4122 * aseq.last -> num or nil
4123 * aseq.last(n) -> an_array
4125 * Returns the last number in this arithmetic sequence,
4126 * or an array of the last +n+ elements.
4128 static VALUE
4129 arith_seq_last(int argc, VALUE *argv, VALUE self)
4131 VALUE b, e, s, len_1, len, last, nv, ary;
4132 int last_is_adjusted;
4133 long n;
4135 e = arith_seq_end(self);
4136 if (NIL_P(e)) {
4137 rb_raise(rb_eRangeError,
4138 "cannot get the last element of endless arithmetic sequence");
4141 b = arith_seq_begin(self);
4142 s = arith_seq_step(self);
4144 len_1 = num_idiv(num_minus(e, b), s);
4145 if (rb_num_negative_int_p(len_1)) {
4146 if (argc == 0) {
4147 return Qnil;
4149 return rb_ary_new_capa(0);
4152 last = num_plus(b, num_mul(s, len_1));
4153 if ((last_is_adjusted = arith_seq_exclude_end_p(self) && rb_equal(last, e))) {
4154 last = num_minus(last, s);
4157 if (argc == 0) {
4158 return last;
4161 if (last_is_adjusted) {
4162 len = len_1;
4164 else {
4165 len = rb_int_plus(len_1, INT2FIX(1));
4168 rb_scan_args(argc, argv, "1", &nv);
4169 if (!RB_INTEGER_TYPE_P(nv)) {
4170 nv = rb_to_int(nv);
4172 if (RTEST(rb_int_gt(nv, len))) {
4173 nv = len;
4175 n = NUM2LONG(nv);
4176 if (n < 0) {
4177 rb_raise(rb_eArgError, "negative array size");
4180 ary = rb_ary_new_capa(n);
4181 b = rb_int_minus(last, rb_int_mul(s, nv));
4182 while (n) {
4183 b = rb_int_plus(b, s);
4184 rb_ary_push(ary, b);
4185 --n;
4188 return ary;
4192 * call-seq:
4193 * aseq.inspect -> string
4195 * Convert this arithmetic sequence to a printable form.
4197 static VALUE
4198 arith_seq_inspect(VALUE self)
4200 struct enumerator *e;
4201 VALUE eobj, str, eargs;
4202 int range_p;
4204 TypedData_Get_Struct(self, struct enumerator, &enumerator_data_type, e);
4206 eobj = rb_attr_get(self, id_receiver);
4207 if (NIL_P(eobj)) {
4208 eobj = e->obj;
4211 range_p = RTEST(rb_obj_is_kind_of(eobj, rb_cRange));
4212 str = rb_sprintf("(%s%"PRIsVALUE"%s.", range_p ? "(" : "", eobj, range_p ? ")" : "");
4214 rb_str_buf_append(str, rb_id2str(e->meth));
4216 eargs = rb_attr_get(eobj, id_arguments);
4217 if (NIL_P(eargs)) {
4218 eargs = e->args;
4220 if (eargs != Qfalse) {
4221 long argc = RARRAY_LEN(eargs);
4222 const VALUE *argv = RARRAY_CONST_PTR(eargs); /* WB: no new reference */
4224 if (argc > 0) {
4225 VALUE kwds = Qnil;
4227 rb_str_buf_cat2(str, "(");
4229 if (RB_TYPE_P(argv[argc-1], T_HASH)) {
4230 int all_key = TRUE;
4231 rb_hash_foreach(argv[argc-1], key_symbol_p, (VALUE)&all_key);
4232 if (all_key) kwds = argv[--argc];
4235 while (argc--) {
4236 VALUE arg = *argv++;
4238 rb_str_append(str, rb_inspect(arg));
4239 rb_str_buf_cat2(str, ", ");
4241 if (!NIL_P(kwds)) {
4242 rb_hash_foreach(kwds, kwd_append, str);
4244 rb_str_set_len(str, RSTRING_LEN(str)-2); /* drop the last ", " */
4245 rb_str_buf_cat2(str, ")");
4249 rb_str_buf_cat2(str, ")");
4251 return str;
4255 * call-seq:
4256 * aseq == obj -> true or false
4258 * Returns <code>true</code> only if +obj+ is an Enumerator::ArithmeticSequence,
4259 * has equivalent begin, end, step, and exclude_end? settings.
4261 static VALUE
4262 arith_seq_eq(VALUE self, VALUE other)
4264 if (!RTEST(rb_obj_is_kind_of(other, rb_cArithSeq))) {
4265 return Qfalse;
4268 if (!rb_equal(arith_seq_begin(self), arith_seq_begin(other))) {
4269 return Qfalse;
4272 if (!rb_equal(arith_seq_end(self), arith_seq_end(other))) {
4273 return Qfalse;
4276 if (!rb_equal(arith_seq_step(self), arith_seq_step(other))) {
4277 return Qfalse;
4280 if (arith_seq_exclude_end_p(self) != arith_seq_exclude_end_p(other)) {
4281 return Qfalse;
4284 return Qtrue;
4288 * call-seq:
4289 * aseq.hash -> integer
4291 * Compute a hash-value for this arithmetic sequence.
4292 * Two arithmetic sequences with same begin, end, step, and exclude_end?
4293 * values will generate the same hash-value.
4295 * See also Object#hash.
4297 static VALUE
4298 arith_seq_hash(VALUE self)
4300 st_index_t hash;
4301 VALUE v;
4303 hash = rb_hash_start(arith_seq_exclude_end_p(self));
4304 v = rb_hash(arith_seq_begin(self));
4305 hash = rb_hash_uint(hash, NUM2LONG(v));
4306 v = rb_hash(arith_seq_end(self));
4307 hash = rb_hash_uint(hash, NUM2LONG(v));
4308 v = rb_hash(arith_seq_step(self));
4309 hash = rb_hash_uint(hash, NUM2LONG(v));
4310 hash = rb_hash_end(hash);
4312 return ST2FIX(hash);
4315 #define NUM_GE(x, y) RTEST(rb_num_coerce_relop((x), (y), idGE))
4317 struct arith_seq_gen {
4318 VALUE current;
4319 VALUE end;
4320 VALUE step;
4321 int excl;
4325 * call-seq:
4326 * aseq.each {|i| block } -> aseq
4327 * aseq.each -> aseq
4329 static VALUE
4330 arith_seq_each(VALUE self)
4332 VALUE c, e, s, len_1, last;
4333 int x;
4335 if (!rb_block_given_p()) return self;
4337 c = arith_seq_begin(self);
4338 e = arith_seq_end(self);
4339 s = arith_seq_step(self);
4340 x = arith_seq_exclude_end_p(self);
4342 if (!RB_TYPE_P(s, T_COMPLEX) && ruby_float_step(c, e, s, x, TRUE)) {
4343 return self;
4346 if (NIL_P(e)) {
4347 while (1) {
4348 rb_yield(c);
4349 c = rb_int_plus(c, s);
4352 return self;
4355 if (rb_equal(s, INT2FIX(0))) {
4356 while (1) {
4357 rb_yield(c);
4360 return self;
4363 len_1 = num_idiv(num_minus(e, c), s);
4364 last = num_plus(c, num_mul(s, len_1));
4365 if (x && rb_equal(last, e)) {
4366 last = num_minus(last, s);
4369 if (rb_num_negative_int_p(s)) {
4370 while (NUM_GE(c, last)) {
4371 rb_yield(c);
4372 c = num_plus(c, s);
4375 else {
4376 while (NUM_GE(last, c)) {
4377 rb_yield(c);
4378 c = num_plus(c, s);
4382 return self;
4386 * call-seq:
4387 * aseq.size -> num or nil
4389 * Returns the number of elements in this arithmetic sequence if it is a finite
4390 * sequence. Otherwise, returns <code>nil</code>.
4392 static VALUE
4393 arith_seq_size(VALUE self)
4395 VALUE b, e, s, len_1, len, last;
4396 int x;
4398 b = arith_seq_begin(self);
4399 e = arith_seq_end(self);
4400 s = arith_seq_step(self);
4401 x = arith_seq_exclude_end_p(self);
4403 if (RB_FLOAT_TYPE_P(b) || RB_FLOAT_TYPE_P(e) || RB_FLOAT_TYPE_P(s)) {
4404 double ee, n;
4406 if (NIL_P(e)) {
4407 if (rb_num_negative_int_p(s)) {
4408 ee = -HUGE_VAL;
4410 else {
4411 ee = HUGE_VAL;
4414 else {
4415 ee = NUM2DBL(e);
4418 n = ruby_float_step_size(NUM2DBL(b), ee, NUM2DBL(s), x);
4419 if (isinf(n)) return DBL2NUM(n);
4420 if (POSFIXABLE(n)) return LONG2FIX((long)n);
4421 return rb_dbl2big(n);
4424 if (NIL_P(e)) {
4425 return DBL2NUM(HUGE_VAL);
4428 if (!rb_obj_is_kind_of(s, rb_cNumeric)) {
4429 s = rb_to_int(s);
4432 if (rb_equal(s, INT2FIX(0))) {
4433 return DBL2NUM(HUGE_VAL);
4436 len_1 = rb_int_idiv(rb_int_minus(e, b), s);
4437 if (rb_num_negative_int_p(len_1)) {
4438 return INT2FIX(0);
4441 last = rb_int_plus(b, rb_int_mul(s, len_1));
4442 if (x && rb_equal(last, e)) {
4443 len = len_1;
4445 else {
4446 len = rb_int_plus(len_1, INT2FIX(1));
4449 return len;
4452 #define sym(name) ID2SYM(rb_intern_const(name))
4453 void
4454 InitVM_Enumerator(void)
4456 ID id_private = rb_intern_const("private");
4458 rb_define_method(rb_mKernel, "to_enum", obj_to_enum, -1);
4459 rb_define_method(rb_mKernel, "enum_for", obj_to_enum, -1);
4461 rb_cEnumerator = rb_define_class("Enumerator", rb_cObject);
4462 rb_include_module(rb_cEnumerator, rb_mEnumerable);
4464 rb_define_alloc_func(rb_cEnumerator, enumerator_allocate);
4465 rb_define_method(rb_cEnumerator, "initialize", enumerator_initialize, -1);
4466 rb_define_method(rb_cEnumerator, "initialize_copy", enumerator_init_copy, 1);
4467 rb_define_method(rb_cEnumerator, "each", enumerator_each, -1);
4468 rb_define_method(rb_cEnumerator, "each_with_index", enumerator_each_with_index, 0);
4469 rb_define_method(rb_cEnumerator, "each_with_object", enumerator_with_object, 1);
4470 rb_define_method(rb_cEnumerator, "with_index", enumerator_with_index, -1);
4471 rb_define_method(rb_cEnumerator, "with_object", enumerator_with_object, 1);
4472 rb_define_method(rb_cEnumerator, "next_values", enumerator_next_values, 0);
4473 rb_define_method(rb_cEnumerator, "peek_values", enumerator_peek_values_m, 0);
4474 rb_define_method(rb_cEnumerator, "next", enumerator_next, 0);
4475 rb_define_method(rb_cEnumerator, "peek", enumerator_peek, 0);
4476 rb_define_method(rb_cEnumerator, "feed", enumerator_feed, 1);
4477 rb_define_method(rb_cEnumerator, "rewind", enumerator_rewind, 0);
4478 rb_define_method(rb_cEnumerator, "inspect", enumerator_inspect, 0);
4479 rb_define_method(rb_cEnumerator, "size", enumerator_size, 0);
4480 rb_define_method(rb_cEnumerator, "+", enumerator_plus, 1);
4481 rb_define_method(rb_mEnumerable, "chain", enum_chain, -1);
4483 /* Lazy */
4484 rb_cLazy = rb_define_class_under(rb_cEnumerator, "Lazy", rb_cEnumerator);
4485 rb_define_method(rb_mEnumerable, "lazy", enumerable_lazy, 0);
4487 rb_define_alias(rb_cLazy, "_enumerable_map", "map");
4488 rb_define_alias(rb_cLazy, "_enumerable_collect", "collect");
4489 rb_define_alias(rb_cLazy, "_enumerable_flat_map", "flat_map");
4490 rb_define_alias(rb_cLazy, "_enumerable_collect_concat", "collect_concat");
4491 rb_define_alias(rb_cLazy, "_enumerable_select", "select");
4492 rb_define_alias(rb_cLazy, "_enumerable_find_all", "find_all");
4493 rb_define_alias(rb_cLazy, "_enumerable_filter", "filter");
4494 rb_define_alias(rb_cLazy, "_enumerable_filter_map", "filter_map");
4495 rb_define_alias(rb_cLazy, "_enumerable_reject", "reject");
4496 rb_define_alias(rb_cLazy, "_enumerable_grep", "grep");
4497 rb_define_alias(rb_cLazy, "_enumerable_grep_v", "grep_v");
4498 rb_define_alias(rb_cLazy, "_enumerable_zip", "zip");
4499 rb_define_alias(rb_cLazy, "_enumerable_take", "take");
4500 rb_define_alias(rb_cLazy, "_enumerable_take_while", "take_while");
4501 rb_define_alias(rb_cLazy, "_enumerable_drop", "drop");
4502 rb_define_alias(rb_cLazy, "_enumerable_drop_while", "drop_while");
4503 rb_define_alias(rb_cLazy, "_enumerable_uniq", "uniq");
4504 rb_define_private_method(rb_cLazy, "_enumerable_with_index", enumerator_with_index, -1);
4506 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_map"));
4507 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_collect"));
4508 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_flat_map"));
4509 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_collect_concat"));
4510 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_select"));
4511 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_find_all"));
4512 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_filter"));
4513 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_filter_map"));
4514 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_reject"));
4515 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_grep"));
4516 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_grep_v"));
4517 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_zip"));
4518 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_take"));
4519 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_take_while"));
4520 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_drop"));
4521 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_drop_while"));
4522 rb_funcall(rb_cLazy, id_private, 1, sym("_enumerable_uniq"));
4524 rb_define_method(rb_cLazy, "initialize", lazy_initialize, -1);
4525 rb_define_method(rb_cLazy, "to_enum", lazy_to_enum, -1);
4526 rb_define_method(rb_cLazy, "enum_for", lazy_to_enum, -1);
4527 rb_define_method(rb_cLazy, "eager", lazy_eager, 0);
4528 rb_define_method(rb_cLazy, "map", lazy_map, 0);
4529 rb_define_method(rb_cLazy, "collect", lazy_map, 0);
4530 rb_define_method(rb_cLazy, "flat_map", lazy_flat_map, 0);
4531 rb_define_method(rb_cLazy, "collect_concat", lazy_flat_map, 0);
4532 rb_define_method(rb_cLazy, "select", lazy_select, 0);
4533 rb_define_method(rb_cLazy, "find_all", lazy_select, 0);
4534 rb_define_method(rb_cLazy, "filter", lazy_select, 0);
4535 rb_define_method(rb_cLazy, "filter_map", lazy_filter_map, 0);
4536 rb_define_method(rb_cLazy, "reject", lazy_reject, 0);
4537 rb_define_method(rb_cLazy, "grep", lazy_grep, 1);
4538 rb_define_method(rb_cLazy, "grep_v", lazy_grep_v, 1);
4539 rb_define_method(rb_cLazy, "zip", lazy_zip, -1);
4540 rb_define_method(rb_cLazy, "take", lazy_take, 1);
4541 rb_define_method(rb_cLazy, "take_while", lazy_take_while, 0);
4542 rb_define_method(rb_cLazy, "drop", lazy_drop, 1);
4543 rb_define_method(rb_cLazy, "drop_while", lazy_drop_while, 0);
4544 rb_define_method(rb_cLazy, "lazy", lazy_lazy, 0);
4545 rb_define_method(rb_cLazy, "chunk", lazy_super, -1);
4546 rb_define_method(rb_cLazy, "slice_before", lazy_super, -1);
4547 rb_define_method(rb_cLazy, "slice_after", lazy_super, -1);
4548 rb_define_method(rb_cLazy, "slice_when", lazy_super, -1);
4549 rb_define_method(rb_cLazy, "chunk_while", lazy_super, -1);
4550 rb_define_method(rb_cLazy, "uniq", lazy_uniq, 0);
4551 rb_define_method(rb_cLazy, "compact", lazy_compact, 0);
4552 rb_define_method(rb_cLazy, "with_index", lazy_with_index, -1);
4554 lazy_use_super_method = rb_hash_new_with_size(18);
4555 rb_hash_aset(lazy_use_super_method, sym("map"), sym("_enumerable_map"));
4556 rb_hash_aset(lazy_use_super_method, sym("collect"), sym("_enumerable_collect"));
4557 rb_hash_aset(lazy_use_super_method, sym("flat_map"), sym("_enumerable_flat_map"));
4558 rb_hash_aset(lazy_use_super_method, sym("collect_concat"), sym("_enumerable_collect_concat"));
4559 rb_hash_aset(lazy_use_super_method, sym("select"), sym("_enumerable_select"));
4560 rb_hash_aset(lazy_use_super_method, sym("find_all"), sym("_enumerable_find_all"));
4561 rb_hash_aset(lazy_use_super_method, sym("filter"), sym("_enumerable_filter"));
4562 rb_hash_aset(lazy_use_super_method, sym("filter_map"), sym("_enumerable_filter_map"));
4563 rb_hash_aset(lazy_use_super_method, sym("reject"), sym("_enumerable_reject"));
4564 rb_hash_aset(lazy_use_super_method, sym("grep"), sym("_enumerable_grep"));
4565 rb_hash_aset(lazy_use_super_method, sym("grep_v"), sym("_enumerable_grep_v"));
4566 rb_hash_aset(lazy_use_super_method, sym("zip"), sym("_enumerable_zip"));
4567 rb_hash_aset(lazy_use_super_method, sym("take"), sym("_enumerable_take"));
4568 rb_hash_aset(lazy_use_super_method, sym("take_while"), sym("_enumerable_take_while"));
4569 rb_hash_aset(lazy_use_super_method, sym("drop"), sym("_enumerable_drop"));
4570 rb_hash_aset(lazy_use_super_method, sym("drop_while"), sym("_enumerable_drop_while"));
4571 rb_hash_aset(lazy_use_super_method, sym("uniq"), sym("_enumerable_uniq"));
4572 rb_hash_aset(lazy_use_super_method, sym("with_index"), sym("_enumerable_with_index"));
4573 rb_obj_freeze(lazy_use_super_method);
4574 rb_vm_register_global_object(lazy_use_super_method);
4576 #if 0 /* for RDoc */
4577 rb_define_method(rb_cLazy, "to_a", lazy_to_a, 0);
4578 rb_define_method(rb_cLazy, "chunk", lazy_chunk, 0);
4579 rb_define_method(rb_cLazy, "chunk_while", lazy_chunk_while, 0);
4580 rb_define_method(rb_cLazy, "slice_after", lazy_slice_after, 0);
4581 rb_define_method(rb_cLazy, "slice_before", lazy_slice_before, 0);
4582 rb_define_method(rb_cLazy, "slice_when", lazy_slice_when, 0);
4583 #endif
4584 rb_define_alias(rb_cLazy, "force", "to_a");
4586 rb_eStopIteration = rb_define_class("StopIteration", rb_eIndexError);
4587 rb_define_method(rb_eStopIteration, "result", stop_result, 0);
4589 /* Generator */
4590 rb_cGenerator = rb_define_class_under(rb_cEnumerator, "Generator", rb_cObject);
4591 rb_include_module(rb_cGenerator, rb_mEnumerable);
4592 rb_define_alloc_func(rb_cGenerator, generator_allocate);
4593 rb_define_method(rb_cGenerator, "initialize", generator_initialize, -1);
4594 rb_define_method(rb_cGenerator, "initialize_copy", generator_init_copy, 1);
4595 rb_define_method(rb_cGenerator, "each", generator_each, -1);
4597 /* Yielder */
4598 rb_cYielder = rb_define_class_under(rb_cEnumerator, "Yielder", rb_cObject);
4599 rb_define_alloc_func(rb_cYielder, yielder_allocate);
4600 rb_define_method(rb_cYielder, "initialize", yielder_initialize, 0);
4601 rb_define_method(rb_cYielder, "yield", yielder_yield, -2);
4602 rb_define_method(rb_cYielder, "<<", yielder_yield_push, 1);
4603 rb_define_method(rb_cYielder, "to_proc", yielder_to_proc, 0);
4605 /* Producer */
4606 rb_cEnumProducer = rb_define_class_under(rb_cEnumerator, "Producer", rb_cObject);
4607 rb_define_alloc_func(rb_cEnumProducer, producer_allocate);
4608 rb_define_method(rb_cEnumProducer, "each", producer_each, 0);
4609 rb_define_singleton_method(rb_cEnumerator, "produce", enumerator_s_produce, -1);
4611 /* Chain */
4612 rb_cEnumChain = rb_define_class_under(rb_cEnumerator, "Chain", rb_cEnumerator);
4613 rb_define_alloc_func(rb_cEnumChain, enum_chain_allocate);
4614 rb_define_method(rb_cEnumChain, "initialize", enum_chain_initialize, -2);
4615 rb_define_method(rb_cEnumChain, "initialize_copy", enum_chain_init_copy, 1);
4616 rb_define_method(rb_cEnumChain, "each", enum_chain_each, -1);
4617 rb_define_method(rb_cEnumChain, "size", enum_chain_size, 0);
4618 rb_define_method(rb_cEnumChain, "rewind", enum_chain_rewind, 0);
4619 rb_define_method(rb_cEnumChain, "inspect", enum_chain_inspect, 0);
4620 rb_undef_method(rb_cEnumChain, "feed");
4621 rb_undef_method(rb_cEnumChain, "next");
4622 rb_undef_method(rb_cEnumChain, "next_values");
4623 rb_undef_method(rb_cEnumChain, "peek");
4624 rb_undef_method(rb_cEnumChain, "peek_values");
4626 /* Product */
4627 rb_cEnumProduct = rb_define_class_under(rb_cEnumerator, "Product", rb_cEnumerator);
4628 rb_define_alloc_func(rb_cEnumProduct, enum_product_allocate);
4629 rb_define_method(rb_cEnumProduct, "initialize", enum_product_initialize, -1);
4630 rb_define_method(rb_cEnumProduct, "initialize_copy", enum_product_init_copy, 1);
4631 rb_define_method(rb_cEnumProduct, "each", enum_product_each, 0);
4632 rb_define_method(rb_cEnumProduct, "size", enum_product_size, 0);
4633 rb_define_method(rb_cEnumProduct, "rewind", enum_product_rewind, 0);
4634 rb_define_method(rb_cEnumProduct, "inspect", enum_product_inspect, 0);
4635 rb_undef_method(rb_cEnumProduct, "feed");
4636 rb_undef_method(rb_cEnumProduct, "next");
4637 rb_undef_method(rb_cEnumProduct, "next_values");
4638 rb_undef_method(rb_cEnumProduct, "peek");
4639 rb_undef_method(rb_cEnumProduct, "peek_values");
4640 rb_define_singleton_method(rb_cEnumerator, "product", enumerator_s_product, -1);
4642 /* ArithmeticSequence */
4643 rb_cArithSeq = rb_define_class_under(rb_cEnumerator, "ArithmeticSequence", rb_cEnumerator);
4644 rb_undef_alloc_func(rb_cArithSeq);
4645 rb_undef_method(CLASS_OF(rb_cArithSeq), "new");
4646 rb_define_method(rb_cArithSeq, "begin", arith_seq_begin, 0);
4647 rb_define_method(rb_cArithSeq, "end", arith_seq_end, 0);
4648 rb_define_method(rb_cArithSeq, "exclude_end?", arith_seq_exclude_end, 0);
4649 rb_define_method(rb_cArithSeq, "step", arith_seq_step, 0);
4650 rb_define_method(rb_cArithSeq, "first", arith_seq_first, -1);
4651 rb_define_method(rb_cArithSeq, "last", arith_seq_last, -1);
4652 rb_define_method(rb_cArithSeq, "inspect", arith_seq_inspect, 0);
4653 rb_define_method(rb_cArithSeq, "==", arith_seq_eq, 1);
4654 rb_define_method(rb_cArithSeq, "===", arith_seq_eq, 1);
4655 rb_define_method(rb_cArithSeq, "eql?", arith_seq_eq, 1);
4656 rb_define_method(rb_cArithSeq, "hash", arith_seq_hash, 0);
4657 rb_define_method(rb_cArithSeq, "each", arith_seq_each, 0);
4658 rb_define_method(rb_cArithSeq, "size", arith_seq_size, 0);
4660 rb_provide("enumerator.so"); /* for backward compatibility */
4662 #undef sym
4664 void
4665 Init_Enumerator(void)
4667 id_rewind = rb_intern_const("rewind");
4668 id_new = rb_intern_const("new");
4669 id_next = rb_intern_const("next");
4670 id_result = rb_intern_const("result");
4671 id_receiver = rb_intern_const("receiver");
4672 id_arguments = rb_intern_const("arguments");
4673 id_memo = rb_intern_const("memo");
4674 id_method = rb_intern_const("method");
4675 id_force = rb_intern_const("force");
4676 id_to_enum = rb_intern_const("to_enum");
4677 id_each_entry = rb_intern_const("each_entry");
4678 id_begin = rb_intern_const("begin");
4679 id_end = rb_intern_const("end");
4680 id_step = rb_intern_const("step");
4681 id_exclude_end = rb_intern_const("exclude_end");
4682 sym_each = ID2SYM(id_each);
4683 sym_cycle = ID2SYM(rb_intern_const("cycle"));
4684 sym_yield = ID2SYM(rb_intern_const("yield"));
4686 InitVM(Enumerator);