Fix tms9918a transparent color rendering
[qemu/z80.git] / hw / lsi53c895a.c
blob9b9f7614e68fd834d4c14ae6b00c1465a390d28e
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the LGPL.
8 */
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
13 #include "hw.h"
14 #include "pci.h"
15 #include "scsi-disk.h"
16 #include "block_int.h"
18 //#define DEBUG_LSI
19 //#define DEBUG_LSI_REG
21 #ifdef DEBUG_LSI
22 #define DPRINTF(fmt, ...) \
23 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
24 #define BADF(fmt, ...) \
25 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
26 #else
27 #define DPRINTF(fmt, ...) do {} while(0)
28 #define BADF(fmt, ...) \
29 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
30 #endif
32 #define LSI_SCNTL0_TRG 0x01
33 #define LSI_SCNTL0_AAP 0x02
34 #define LSI_SCNTL0_EPC 0x08
35 #define LSI_SCNTL0_WATN 0x10
36 #define LSI_SCNTL0_START 0x20
38 #define LSI_SCNTL1_SST 0x01
39 #define LSI_SCNTL1_IARB 0x02
40 #define LSI_SCNTL1_AESP 0x04
41 #define LSI_SCNTL1_RST 0x08
42 #define LSI_SCNTL1_CON 0x10
43 #define LSI_SCNTL1_DHP 0x20
44 #define LSI_SCNTL1_ADB 0x40
45 #define LSI_SCNTL1_EXC 0x80
47 #define LSI_SCNTL2_WSR 0x01
48 #define LSI_SCNTL2_VUE0 0x02
49 #define LSI_SCNTL2_VUE1 0x04
50 #define LSI_SCNTL2_WSS 0x08
51 #define LSI_SCNTL2_SLPHBEN 0x10
52 #define LSI_SCNTL2_SLPMD 0x20
53 #define LSI_SCNTL2_CHM 0x40
54 #define LSI_SCNTL2_SDU 0x80
56 #define LSI_ISTAT0_DIP 0x01
57 #define LSI_ISTAT0_SIP 0x02
58 #define LSI_ISTAT0_INTF 0x04
59 #define LSI_ISTAT0_CON 0x08
60 #define LSI_ISTAT0_SEM 0x10
61 #define LSI_ISTAT0_SIGP 0x20
62 #define LSI_ISTAT0_SRST 0x40
63 #define LSI_ISTAT0_ABRT 0x80
65 #define LSI_ISTAT1_SI 0x01
66 #define LSI_ISTAT1_SRUN 0x02
67 #define LSI_ISTAT1_FLSH 0x04
69 #define LSI_SSTAT0_SDP0 0x01
70 #define LSI_SSTAT0_RST 0x02
71 #define LSI_SSTAT0_WOA 0x04
72 #define LSI_SSTAT0_LOA 0x08
73 #define LSI_SSTAT0_AIP 0x10
74 #define LSI_SSTAT0_OLF 0x20
75 #define LSI_SSTAT0_ORF 0x40
76 #define LSI_SSTAT0_ILF 0x80
78 #define LSI_SIST0_PAR 0x01
79 #define LSI_SIST0_RST 0x02
80 #define LSI_SIST0_UDC 0x04
81 #define LSI_SIST0_SGE 0x08
82 #define LSI_SIST0_RSL 0x10
83 #define LSI_SIST0_SEL 0x20
84 #define LSI_SIST0_CMP 0x40
85 #define LSI_SIST0_MA 0x80
87 #define LSI_SIST1_HTH 0x01
88 #define LSI_SIST1_GEN 0x02
89 #define LSI_SIST1_STO 0x04
90 #define LSI_SIST1_SBMC 0x10
92 #define LSI_SOCL_IO 0x01
93 #define LSI_SOCL_CD 0x02
94 #define LSI_SOCL_MSG 0x04
95 #define LSI_SOCL_ATN 0x08
96 #define LSI_SOCL_SEL 0x10
97 #define LSI_SOCL_BSY 0x20
98 #define LSI_SOCL_ACK 0x40
99 #define LSI_SOCL_REQ 0x80
101 #define LSI_DSTAT_IID 0x01
102 #define LSI_DSTAT_SIR 0x04
103 #define LSI_DSTAT_SSI 0x08
104 #define LSI_DSTAT_ABRT 0x10
105 #define LSI_DSTAT_BF 0x20
106 #define LSI_DSTAT_MDPE 0x40
107 #define LSI_DSTAT_DFE 0x80
109 #define LSI_DCNTL_COM 0x01
110 #define LSI_DCNTL_IRQD 0x02
111 #define LSI_DCNTL_STD 0x04
112 #define LSI_DCNTL_IRQM 0x08
113 #define LSI_DCNTL_SSM 0x10
114 #define LSI_DCNTL_PFEN 0x20
115 #define LSI_DCNTL_PFF 0x40
116 #define LSI_DCNTL_CLSE 0x80
118 #define LSI_DMODE_MAN 0x01
119 #define LSI_DMODE_BOF 0x02
120 #define LSI_DMODE_ERMP 0x04
121 #define LSI_DMODE_ERL 0x08
122 #define LSI_DMODE_DIOM 0x10
123 #define LSI_DMODE_SIOM 0x20
125 #define LSI_CTEST2_DACK 0x01
126 #define LSI_CTEST2_DREQ 0x02
127 #define LSI_CTEST2_TEOP 0x04
128 #define LSI_CTEST2_PCICIE 0x08
129 #define LSI_CTEST2_CM 0x10
130 #define LSI_CTEST2_CIO 0x20
131 #define LSI_CTEST2_SIGP 0x40
132 #define LSI_CTEST2_DDIR 0x80
134 #define LSI_CTEST5_BL2 0x04
135 #define LSI_CTEST5_DDIR 0x08
136 #define LSI_CTEST5_MASR 0x10
137 #define LSI_CTEST5_DFSN 0x20
138 #define LSI_CTEST5_BBCK 0x40
139 #define LSI_CTEST5_ADCK 0x80
141 #define LSI_CCNTL0_DILS 0x01
142 #define LSI_CCNTL0_DISFC 0x10
143 #define LSI_CCNTL0_ENNDJ 0x20
144 #define LSI_CCNTL0_PMJCTL 0x40
145 #define LSI_CCNTL0_ENPMJ 0x80
147 #define LSI_CCNTL1_EN64DBMV 0x01
148 #define LSI_CCNTL1_EN64TIBMV 0x02
149 #define LSI_CCNTL1_64TIMOD 0x04
150 #define LSI_CCNTL1_DDAC 0x08
151 #define LSI_CCNTL1_ZMOD 0x80
153 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
155 #define PHASE_DO 0
156 #define PHASE_DI 1
157 #define PHASE_CMD 2
158 #define PHASE_ST 3
159 #define PHASE_MO 6
160 #define PHASE_MI 7
161 #define PHASE_MASK 7
163 /* Maximum length of MSG IN data. */
164 #define LSI_MAX_MSGIN_LEN 8
166 /* Flag set if this is a tagged command. */
167 #define LSI_TAG_VALID (1 << 16)
169 typedef struct {
170 uint32_t tag;
171 uint32_t pending;
172 int out;
173 } lsi_queue;
175 typedef struct {
176 PCIDevice pci_dev;
177 int mmio_io_addr;
178 int ram_io_addr;
179 uint32_t script_ram_base;
181 int carry; /* ??? Should this be an a visible register somewhere? */
182 int sense;
183 /* Action to take at the end of a MSG IN phase.
184 0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN. */
185 int msg_action;
186 int msg_len;
187 uint8_t msg[LSI_MAX_MSGIN_LEN];
188 /* 0 if SCRIPTS are running or stopped.
189 * 1 if a Wait Reselect instruction has been issued.
190 * 2 if processing DMA from lsi_execute_script.
191 * 3 if a DMA operation is in progress. */
192 int waiting;
193 SCSIDevice *scsi_dev[LSI_MAX_DEVS];
194 SCSIDevice *current_dev;
195 int current_lun;
196 /* The tag is a combination of the device ID and the SCSI tag. */
197 uint32_t current_tag;
198 uint32_t current_dma_len;
199 int command_complete;
200 uint8_t *dma_buf;
201 lsi_queue *queue;
202 int queue_len;
203 int active_commands;
205 uint32_t dsa;
206 uint32_t temp;
207 uint32_t dnad;
208 uint32_t dbc;
209 uint8_t istat0;
210 uint8_t istat1;
211 uint8_t dcmd;
212 uint8_t dstat;
213 uint8_t dien;
214 uint8_t sist0;
215 uint8_t sist1;
216 uint8_t sien0;
217 uint8_t sien1;
218 uint8_t mbox0;
219 uint8_t mbox1;
220 uint8_t dfifo;
221 uint8_t ctest2;
222 uint8_t ctest3;
223 uint8_t ctest4;
224 uint8_t ctest5;
225 uint8_t ccntl0;
226 uint8_t ccntl1;
227 uint32_t dsp;
228 uint32_t dsps;
229 uint8_t dmode;
230 uint8_t dcntl;
231 uint8_t scntl0;
232 uint8_t scntl1;
233 uint8_t scntl2;
234 uint8_t scntl3;
235 uint8_t sstat0;
236 uint8_t sstat1;
237 uint8_t scid;
238 uint8_t sxfer;
239 uint8_t socl;
240 uint8_t sdid;
241 uint8_t ssid;
242 uint8_t sfbr;
243 uint8_t stest1;
244 uint8_t stest2;
245 uint8_t stest3;
246 uint8_t sidl;
247 uint8_t stime0;
248 uint8_t respid0;
249 uint8_t respid1;
250 uint32_t mmrs;
251 uint32_t mmws;
252 uint32_t sfs;
253 uint32_t drs;
254 uint32_t sbms;
255 uint32_t dbms;
256 uint32_t dnad64;
257 uint32_t pmjad1;
258 uint32_t pmjad2;
259 uint32_t rbc;
260 uint32_t ua;
261 uint32_t ia;
262 uint32_t sbc;
263 uint32_t csbc;
264 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
266 /* Script ram is stored as 32-bit words in host byteorder. */
267 uint32_t script_ram[2048];
268 } LSIState;
270 static void lsi_soft_reset(LSIState *s)
272 DPRINTF("Reset\n");
273 s->carry = 0;
275 s->waiting = 0;
276 s->dsa = 0;
277 s->dnad = 0;
278 s->dbc = 0;
279 s->temp = 0;
280 memset(s->scratch, 0, sizeof(s->scratch));
281 s->istat0 = 0;
282 s->istat1 = 0;
283 s->dcmd = 0;
284 s->dstat = 0;
285 s->dien = 0;
286 s->sist0 = 0;
287 s->sist1 = 0;
288 s->sien0 = 0;
289 s->sien1 = 0;
290 s->mbox0 = 0;
291 s->mbox1 = 0;
292 s->dfifo = 0;
293 s->ctest2 = 0;
294 s->ctest3 = 0;
295 s->ctest4 = 0;
296 s->ctest5 = 0;
297 s->ccntl0 = 0;
298 s->ccntl1 = 0;
299 s->dsp = 0;
300 s->dsps = 0;
301 s->dmode = 0;
302 s->dcntl = 0;
303 s->scntl0 = 0xc0;
304 s->scntl1 = 0;
305 s->scntl2 = 0;
306 s->scntl3 = 0;
307 s->sstat0 = 0;
308 s->sstat1 = 0;
309 s->scid = 7;
310 s->sxfer = 0;
311 s->socl = 0;
312 s->stest1 = 0;
313 s->stest2 = 0;
314 s->stest3 = 0;
315 s->sidl = 0;
316 s->stime0 = 0;
317 s->respid0 = 0x80;
318 s->respid1 = 0;
319 s->mmrs = 0;
320 s->mmws = 0;
321 s->sfs = 0;
322 s->drs = 0;
323 s->sbms = 0;
324 s->dbms = 0;
325 s->dnad64 = 0;
326 s->pmjad1 = 0;
327 s->pmjad2 = 0;
328 s->rbc = 0;
329 s->ua = 0;
330 s->ia = 0;
331 s->sbc = 0;
332 s->csbc = 0;
335 static int lsi_dma_40bit(LSIState *s)
337 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
338 return 1;
339 return 0;
342 static int lsi_dma_ti64bit(LSIState *s)
344 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
345 return 1;
346 return 0;
349 static int lsi_dma_64bit(LSIState *s)
351 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
352 return 1;
353 return 0;
356 static uint8_t lsi_reg_readb(LSIState *s, int offset);
357 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
358 static void lsi_execute_script(LSIState *s);
360 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
362 uint32_t buf;
364 /* Optimize reading from SCRIPTS RAM. */
365 if ((addr & 0xffffe000) == s->script_ram_base) {
366 return s->script_ram[(addr & 0x1fff) >> 2];
368 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
369 return cpu_to_le32(buf);
372 static void lsi_stop_script(LSIState *s)
374 s->istat1 &= ~LSI_ISTAT1_SRUN;
377 static void lsi_update_irq(LSIState *s)
379 int level;
380 static int last_level;
382 /* It's unclear whether the DIP/SIP bits should be cleared when the
383 Interrupt Status Registers are cleared or when istat0 is read.
384 We currently do the formwer, which seems to work. */
385 level = 0;
386 if (s->dstat) {
387 if (s->dstat & s->dien)
388 level = 1;
389 s->istat0 |= LSI_ISTAT0_DIP;
390 } else {
391 s->istat0 &= ~LSI_ISTAT0_DIP;
394 if (s->sist0 || s->sist1) {
395 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
396 level = 1;
397 s->istat0 |= LSI_ISTAT0_SIP;
398 } else {
399 s->istat0 &= ~LSI_ISTAT0_SIP;
401 if (s->istat0 & LSI_ISTAT0_INTF)
402 level = 1;
404 if (level != last_level) {
405 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
406 level, s->dstat, s->sist1, s->sist0);
407 last_level = level;
409 qemu_set_irq(s->pci_dev.irq[0], level);
412 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
413 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
415 uint32_t mask0;
416 uint32_t mask1;
418 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
419 stat1, stat0, s->sist1, s->sist0);
420 s->sist0 |= stat0;
421 s->sist1 |= stat1;
422 /* Stop processor on fatal or unmasked interrupt. As a special hack
423 we don't stop processing when raising STO. Instead continue
424 execution and stop at the next insn that accesses the SCSI bus. */
425 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
426 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
427 mask1 &= ~LSI_SIST1_STO;
428 if (s->sist0 & mask0 || s->sist1 & mask1) {
429 lsi_stop_script(s);
431 lsi_update_irq(s);
434 /* Stop SCRIPTS execution and raise a DMA interrupt. */
435 static void lsi_script_dma_interrupt(LSIState *s, int stat)
437 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
438 s->dstat |= stat;
439 lsi_update_irq(s);
440 lsi_stop_script(s);
443 static inline void lsi_set_phase(LSIState *s, int phase)
445 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
448 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
450 /* Trigger a phase mismatch. */
451 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
452 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
453 s->dsp = s->pmjad1;
454 } else {
455 s->dsp = s->pmjad2;
457 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
458 } else {
459 DPRINTF("Phase mismatch interrupt\n");
460 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
461 lsi_stop_script(s);
463 lsi_set_phase(s, new_phase);
467 /* Resume SCRIPTS execution after a DMA operation. */
468 static void lsi_resume_script(LSIState *s)
470 if (s->waiting != 2) {
471 s->waiting = 0;
472 lsi_execute_script(s);
473 } else {
474 s->waiting = 0;
478 /* Initiate a SCSI layer data transfer. */
479 static void lsi_do_dma(LSIState *s, int out)
481 uint32_t count;
482 target_phys_addr_t addr;
484 if (!s->current_dma_len) {
485 /* Wait until data is available. */
486 DPRINTF("DMA no data available\n");
487 return;
490 count = s->dbc;
491 if (count > s->current_dma_len)
492 count = s->current_dma_len;
494 addr = s->dnad;
495 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
496 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
497 addr |= ((uint64_t)s->dnad64 << 32);
498 else if (s->dbms)
499 addr |= ((uint64_t)s->dbms << 32);
500 else if (s->sbms)
501 addr |= ((uint64_t)s->sbms << 32);
503 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
504 s->csbc += count;
505 s->dnad += count;
506 s->dbc -= count;
508 if (s->dma_buf == NULL) {
509 s->dma_buf = s->current_dev->get_buf(s->current_dev,
510 s->current_tag);
513 /* ??? Set SFBR to first data byte. */
514 if (out) {
515 cpu_physical_memory_read(addr, s->dma_buf, count);
516 } else {
517 cpu_physical_memory_write(addr, s->dma_buf, count);
519 s->current_dma_len -= count;
520 if (s->current_dma_len == 0) {
521 s->dma_buf = NULL;
522 if (out) {
523 /* Write the data. */
524 s->current_dev->write_data(s->current_dev, s->current_tag);
525 } else {
526 /* Request any remaining data. */
527 s->current_dev->read_data(s->current_dev, s->current_tag);
529 } else {
530 s->dma_buf += count;
531 lsi_resume_script(s);
536 /* Add a command to the queue. */
537 static void lsi_queue_command(LSIState *s)
539 lsi_queue *p;
541 DPRINTF("Queueing tag=0x%x\n", s->current_tag);
542 if (s->queue_len == s->active_commands) {
543 s->queue_len++;
544 s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
546 p = &s->queue[s->active_commands++];
547 p->tag = s->current_tag;
548 p->pending = 0;
549 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
552 /* Queue a byte for a MSG IN phase. */
553 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
555 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
556 BADF("MSG IN data too long\n");
557 } else {
558 DPRINTF("MSG IN 0x%02x\n", data);
559 s->msg[s->msg_len++] = data;
563 /* Perform reselection to continue a command. */
564 static void lsi_reselect(LSIState *s, uint32_t tag)
566 lsi_queue *p;
567 int n;
568 int id;
570 p = NULL;
571 for (n = 0; n < s->active_commands; n++) {
572 p = &s->queue[n];
573 if (p->tag == tag)
574 break;
576 if (n == s->active_commands) {
577 BADF("Reselected non-existant command tag=0x%x\n", tag);
578 return;
580 id = (tag >> 8) & 0xf;
581 s->ssid = id | 0x80;
582 DPRINTF("Reselected target %d\n", id);
583 s->current_dev = s->scsi_dev[id];
584 s->current_tag = tag;
585 s->scntl1 |= LSI_SCNTL1_CON;
586 lsi_set_phase(s, PHASE_MI);
587 s->msg_action = p->out ? 2 : 3;
588 s->current_dma_len = p->pending;
589 s->dma_buf = NULL;
590 lsi_add_msg_byte(s, 0x80);
591 if (s->current_tag & LSI_TAG_VALID) {
592 lsi_add_msg_byte(s, 0x20);
593 lsi_add_msg_byte(s, tag & 0xff);
596 s->active_commands--;
597 if (n != s->active_commands) {
598 s->queue[n] = s->queue[s->active_commands];
602 /* Record that data is available for a queued command. Returns zero if
603 the device was reselected, nonzero if the IO is deferred. */
604 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
606 lsi_queue *p;
607 int i;
608 for (i = 0; i < s->active_commands; i++) {
609 p = &s->queue[i];
610 if (p->tag == tag) {
611 if (p->pending) {
612 BADF("Multiple IO pending for tag %d\n", tag);
614 p->pending = arg;
615 if (s->waiting == 1) {
616 /* Reselect device. */
617 lsi_reselect(s, tag);
618 return 0;
619 } else {
620 DPRINTF("Queueing IO tag=0x%x\n", tag);
621 p->pending = arg;
622 return 1;
626 BADF("IO with unknown tag %d\n", tag);
627 return 1;
630 /* Callback to indicate that the SCSI layer has completed a transfer. */
631 static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
632 uint32_t arg)
634 LSIState *s = (LSIState *)opaque;
635 int out;
637 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
638 if (reason == SCSI_REASON_DONE) {
639 DPRINTF("Command complete sense=%d\n", (int)arg);
640 s->sense = arg;
641 s->command_complete = 2;
642 if (s->waiting && s->dbc != 0) {
643 /* Raise phase mismatch for short transfers. */
644 lsi_bad_phase(s, out, PHASE_ST);
645 } else {
646 lsi_set_phase(s, PHASE_ST);
648 lsi_resume_script(s);
649 return;
652 if (s->waiting == 1 || tag != s->current_tag) {
653 if (lsi_queue_tag(s, tag, arg))
654 return;
656 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
657 s->current_dma_len = arg;
658 s->command_complete = 1;
659 if (!s->waiting)
660 return;
661 if (s->waiting == 1 || s->dbc == 0) {
662 lsi_resume_script(s);
663 } else {
664 lsi_do_dma(s, out);
668 static void lsi_do_command(LSIState *s)
670 uint8_t buf[16];
671 int n;
673 DPRINTF("Send command len=%d\n", s->dbc);
674 if (s->dbc > 16)
675 s->dbc = 16;
676 cpu_physical_memory_read(s->dnad, buf, s->dbc);
677 s->sfbr = buf[0];
678 s->command_complete = 0;
679 n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
680 s->current_lun);
681 if (n > 0) {
682 lsi_set_phase(s, PHASE_DI);
683 s->current_dev->read_data(s->current_dev, s->current_tag);
684 } else if (n < 0) {
685 lsi_set_phase(s, PHASE_DO);
686 s->current_dev->write_data(s->current_dev, s->current_tag);
689 if (!s->command_complete) {
690 if (n) {
691 /* Command did not complete immediately so disconnect. */
692 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
693 lsi_add_msg_byte(s, 4); /* DISCONNECT */
694 /* wait data */
695 lsi_set_phase(s, PHASE_MI);
696 s->msg_action = 1;
697 lsi_queue_command(s);
698 } else {
699 /* wait command complete */
700 lsi_set_phase(s, PHASE_DI);
705 static void lsi_do_status(LSIState *s)
707 uint8_t sense;
708 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
709 if (s->dbc != 1)
710 BADF("Bad Status move\n");
711 s->dbc = 1;
712 sense = s->sense;
713 s->sfbr = sense;
714 cpu_physical_memory_write(s->dnad, &sense, 1);
715 lsi_set_phase(s, PHASE_MI);
716 s->msg_action = 1;
717 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
720 static void lsi_disconnect(LSIState *s)
722 s->scntl1 &= ~LSI_SCNTL1_CON;
723 s->sstat1 &= ~PHASE_MASK;
726 static void lsi_do_msgin(LSIState *s)
728 int len;
729 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
730 s->sfbr = s->msg[0];
731 len = s->msg_len;
732 if (len > s->dbc)
733 len = s->dbc;
734 cpu_physical_memory_write(s->dnad, s->msg, len);
735 /* Linux drivers rely on the last byte being in the SIDL. */
736 s->sidl = s->msg[len - 1];
737 s->msg_len -= len;
738 if (s->msg_len) {
739 memmove(s->msg, s->msg + len, s->msg_len);
740 } else {
741 /* ??? Check if ATN (not yet implemented) is asserted and maybe
742 switch to PHASE_MO. */
743 switch (s->msg_action) {
744 case 0:
745 lsi_set_phase(s, PHASE_CMD);
746 break;
747 case 1:
748 lsi_disconnect(s);
749 break;
750 case 2:
751 lsi_set_phase(s, PHASE_DO);
752 break;
753 case 3:
754 lsi_set_phase(s, PHASE_DI);
755 break;
756 default:
757 abort();
762 /* Read the next byte during a MSGOUT phase. */
763 static uint8_t lsi_get_msgbyte(LSIState *s)
765 uint8_t data;
766 cpu_physical_memory_read(s->dnad, &data, 1);
767 s->dnad++;
768 s->dbc--;
769 return data;
772 static void lsi_do_msgout(LSIState *s)
774 uint8_t msg;
775 int len;
777 DPRINTF("MSG out len=%d\n", s->dbc);
778 while (s->dbc) {
779 msg = lsi_get_msgbyte(s);
780 s->sfbr = msg;
782 switch (msg) {
783 case 0x00:
784 DPRINTF("MSG: Disconnect\n");
785 lsi_disconnect(s);
786 break;
787 case 0x08:
788 DPRINTF("MSG: No Operation\n");
789 lsi_set_phase(s, PHASE_CMD);
790 break;
791 case 0x01:
792 len = lsi_get_msgbyte(s);
793 msg = lsi_get_msgbyte(s);
794 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
795 switch (msg) {
796 case 1:
797 DPRINTF("SDTR (ignored)\n");
798 s->dbc -= 2;
799 break;
800 case 3:
801 DPRINTF("WDTR (ignored)\n");
802 s->dbc -= 1;
803 break;
804 default:
805 goto bad;
807 break;
808 case 0x20: /* SIMPLE queue */
809 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
810 DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
811 break;
812 case 0x21: /* HEAD of queue */
813 BADF("HEAD queue not implemented\n");
814 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
815 break;
816 case 0x22: /* ORDERED queue */
817 BADF("ORDERED queue not implemented\n");
818 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
819 break;
820 default:
821 if ((msg & 0x80) == 0) {
822 goto bad;
824 s->current_lun = msg & 7;
825 DPRINTF("Select LUN %d\n", s->current_lun);
826 lsi_set_phase(s, PHASE_CMD);
827 break;
830 return;
831 bad:
832 BADF("Unimplemented message 0x%02x\n", msg);
833 lsi_set_phase(s, PHASE_MI);
834 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
835 s->msg_action = 0;
838 /* Sign extend a 24-bit value. */
839 static inline int32_t sxt24(int32_t n)
841 return (n << 8) >> 8;
844 #define LSI_BUF_SIZE 4096
845 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
847 int n;
848 uint8_t buf[LSI_BUF_SIZE];
850 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
851 while (count) {
852 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
853 cpu_physical_memory_read(src, buf, n);
854 cpu_physical_memory_write(dest, buf, n);
855 src += n;
856 dest += n;
857 count -= n;
861 static void lsi_wait_reselect(LSIState *s)
863 int i;
864 DPRINTF("Wait Reselect\n");
865 if (s->current_dma_len)
866 BADF("Reselect with pending DMA\n");
867 for (i = 0; i < s->active_commands; i++) {
868 if (s->queue[i].pending) {
869 lsi_reselect(s, s->queue[i].tag);
870 break;
873 if (s->current_dma_len == 0) {
874 s->waiting = 1;
878 static void lsi_execute_script(LSIState *s)
880 uint32_t insn;
881 uint32_t addr, addr_high;
882 int opcode;
883 int insn_processed = 0;
885 s->istat1 |= LSI_ISTAT1_SRUN;
886 again:
887 insn_processed++;
888 insn = read_dword(s, s->dsp);
889 if (!insn) {
890 /* If we receive an empty opcode increment the DSP by 4 bytes
891 instead of 8 and execute the next opcode at that location */
892 s->dsp += 4;
893 goto again;
895 addr = read_dword(s, s->dsp + 4);
896 addr_high = 0;
897 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
898 s->dsps = addr;
899 s->dcmd = insn >> 24;
900 s->dsp += 8;
901 switch (insn >> 30) {
902 case 0: /* Block move. */
903 if (s->sist1 & LSI_SIST1_STO) {
904 DPRINTF("Delayed select timeout\n");
905 lsi_stop_script(s);
906 break;
908 s->dbc = insn & 0xffffff;
909 s->rbc = s->dbc;
910 /* ??? Set ESA. */
911 s->ia = s->dsp - 8;
912 if (insn & (1 << 29)) {
913 /* Indirect addressing. */
914 addr = read_dword(s, addr);
915 } else if (insn & (1 << 28)) {
916 uint32_t buf[2];
917 int32_t offset;
918 /* Table indirect addressing. */
920 /* 32-bit Table indirect */
921 offset = sxt24(addr);
922 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
923 /* byte count is stored in bits 0:23 only */
924 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
925 s->rbc = s->dbc;
926 addr = cpu_to_le32(buf[1]);
928 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
929 * table, bits [31:24] */
930 if (lsi_dma_40bit(s))
931 addr_high = cpu_to_le32(buf[0]) >> 24;
932 else if (lsi_dma_ti64bit(s)) {
933 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
934 switch (selector) {
935 case 0 ... 0x0f:
936 /* offset index into scratch registers since
937 * TI64 mode can use registers C to R */
938 addr_high = s->scratch[2 + selector];
939 break;
940 case 0x10:
941 addr_high = s->mmrs;
942 break;
943 case 0x11:
944 addr_high = s->mmws;
945 break;
946 case 0x12:
947 addr_high = s->sfs;
948 break;
949 case 0x13:
950 addr_high = s->drs;
951 break;
952 case 0x14:
953 addr_high = s->sbms;
954 break;
955 case 0x15:
956 addr_high = s->dbms;
957 break;
958 default:
959 BADF("Illegal selector specified (0x%x > 0x15)"
960 " for 64-bit DMA block move", selector);
961 break;
964 } else if (lsi_dma_64bit(s)) {
965 /* fetch a 3rd dword if 64-bit direct move is enabled and
966 only if we're not doing table indirect or indirect addressing */
967 s->dbms = read_dword(s, s->dsp);
968 s->dsp += 4;
969 s->ia = s->dsp - 12;
971 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
972 DPRINTF("Wrong phase got %d expected %d\n",
973 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
974 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
975 break;
977 s->dnad = addr;
978 s->dnad64 = addr_high;
979 switch (s->sstat1 & 0x7) {
980 case PHASE_DO:
981 s->waiting = 2;
982 lsi_do_dma(s, 1);
983 if (s->waiting)
984 s->waiting = 3;
985 break;
986 case PHASE_DI:
987 s->waiting = 2;
988 lsi_do_dma(s, 0);
989 if (s->waiting)
990 s->waiting = 3;
991 break;
992 case PHASE_CMD:
993 lsi_do_command(s);
994 break;
995 case PHASE_ST:
996 lsi_do_status(s);
997 break;
998 case PHASE_MO:
999 lsi_do_msgout(s);
1000 break;
1001 case PHASE_MI:
1002 lsi_do_msgin(s);
1003 break;
1004 default:
1005 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1006 exit(1);
1008 s->dfifo = s->dbc & 0xff;
1009 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1010 s->sbc = s->dbc;
1011 s->rbc -= s->dbc;
1012 s->ua = addr + s->dbc;
1013 break;
1015 case 1: /* IO or Read/Write instruction. */
1016 opcode = (insn >> 27) & 7;
1017 if (opcode < 5) {
1018 uint32_t id;
1020 if (insn & (1 << 25)) {
1021 id = read_dword(s, s->dsa + sxt24(insn));
1022 } else {
1023 id = addr;
1025 id = (id >> 16) & 0xf;
1026 if (insn & (1 << 26)) {
1027 addr = s->dsp + sxt24(addr);
1029 s->dnad = addr;
1030 switch (opcode) {
1031 case 0: /* Select */
1032 s->sdid = id;
1033 if (s->current_dma_len && (s->ssid & 0xf) == id) {
1034 DPRINTF("Already reselected by target %d\n", id);
1035 break;
1037 s->sstat0 |= LSI_SSTAT0_WOA;
1038 s->scntl1 &= ~LSI_SCNTL1_IARB;
1039 if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
1040 DPRINTF("Selected absent target %d\n", id);
1041 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1042 lsi_disconnect(s);
1043 break;
1045 DPRINTF("Selected target %d%s\n",
1046 id, insn & (1 << 3) ? " ATN" : "");
1047 /* ??? Linux drivers compain when this is set. Maybe
1048 it only applies in low-level mode (unimplemented).
1049 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1050 s->current_dev = s->scsi_dev[id];
1051 s->current_tag = id << 8;
1052 s->scntl1 |= LSI_SCNTL1_CON;
1053 if (insn & (1 << 3)) {
1054 s->socl |= LSI_SOCL_ATN;
1056 lsi_set_phase(s, PHASE_MO);
1057 break;
1058 case 1: /* Disconnect */
1059 DPRINTF("Wait Disconect\n");
1060 s->scntl1 &= ~LSI_SCNTL1_CON;
1061 break;
1062 case 2: /* Wait Reselect */
1063 lsi_wait_reselect(s);
1064 break;
1065 case 3: /* Set */
1066 DPRINTF("Set%s%s%s%s\n",
1067 insn & (1 << 3) ? " ATN" : "",
1068 insn & (1 << 6) ? " ACK" : "",
1069 insn & (1 << 9) ? " TM" : "",
1070 insn & (1 << 10) ? " CC" : "");
1071 if (insn & (1 << 3)) {
1072 s->socl |= LSI_SOCL_ATN;
1073 lsi_set_phase(s, PHASE_MO);
1075 if (insn & (1 << 9)) {
1076 BADF("Target mode not implemented\n");
1077 exit(1);
1079 if (insn & (1 << 10))
1080 s->carry = 1;
1081 break;
1082 case 4: /* Clear */
1083 DPRINTF("Clear%s%s%s%s\n",
1084 insn & (1 << 3) ? " ATN" : "",
1085 insn & (1 << 6) ? " ACK" : "",
1086 insn & (1 << 9) ? " TM" : "",
1087 insn & (1 << 10) ? " CC" : "");
1088 if (insn & (1 << 3)) {
1089 s->socl &= ~LSI_SOCL_ATN;
1091 if (insn & (1 << 10))
1092 s->carry = 0;
1093 break;
1095 } else {
1096 uint8_t op0;
1097 uint8_t op1;
1098 uint8_t data8;
1099 int reg;
1100 int operator;
1101 #ifdef DEBUG_LSI
1102 static const char *opcode_names[3] =
1103 {"Write", "Read", "Read-Modify-Write"};
1104 static const char *operator_names[8] =
1105 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1106 #endif
1108 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1109 data8 = (insn >> 8) & 0xff;
1110 opcode = (insn >> 27) & 7;
1111 operator = (insn >> 24) & 7;
1112 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1113 opcode_names[opcode - 5], reg,
1114 operator_names[operator], data8, s->sfbr,
1115 (insn & (1 << 23)) ? " SFBR" : "");
1116 op0 = op1 = 0;
1117 switch (opcode) {
1118 case 5: /* From SFBR */
1119 op0 = s->sfbr;
1120 op1 = data8;
1121 break;
1122 case 6: /* To SFBR */
1123 if (operator)
1124 op0 = lsi_reg_readb(s, reg);
1125 op1 = data8;
1126 break;
1127 case 7: /* Read-modify-write */
1128 if (operator)
1129 op0 = lsi_reg_readb(s, reg);
1130 if (insn & (1 << 23)) {
1131 op1 = s->sfbr;
1132 } else {
1133 op1 = data8;
1135 break;
1138 switch (operator) {
1139 case 0: /* move */
1140 op0 = op1;
1141 break;
1142 case 1: /* Shift left */
1143 op1 = op0 >> 7;
1144 op0 = (op0 << 1) | s->carry;
1145 s->carry = op1;
1146 break;
1147 case 2: /* OR */
1148 op0 |= op1;
1149 break;
1150 case 3: /* XOR */
1151 op0 ^= op1;
1152 break;
1153 case 4: /* AND */
1154 op0 &= op1;
1155 break;
1156 case 5: /* SHR */
1157 op1 = op0 & 1;
1158 op0 = (op0 >> 1) | (s->carry << 7);
1159 s->carry = op1;
1160 break;
1161 case 6: /* ADD */
1162 op0 += op1;
1163 s->carry = op0 < op1;
1164 break;
1165 case 7: /* ADC */
1166 op0 += op1 + s->carry;
1167 if (s->carry)
1168 s->carry = op0 <= op1;
1169 else
1170 s->carry = op0 < op1;
1171 break;
1174 switch (opcode) {
1175 case 5: /* From SFBR */
1176 case 7: /* Read-modify-write */
1177 lsi_reg_writeb(s, reg, op0);
1178 break;
1179 case 6: /* To SFBR */
1180 s->sfbr = op0;
1181 break;
1184 break;
1186 case 2: /* Transfer Control. */
1188 int cond;
1189 int jmp;
1191 if ((insn & 0x002e0000) == 0) {
1192 DPRINTF("NOP\n");
1193 break;
1195 if (s->sist1 & LSI_SIST1_STO) {
1196 DPRINTF("Delayed select timeout\n");
1197 lsi_stop_script(s);
1198 break;
1200 cond = jmp = (insn & (1 << 19)) != 0;
1201 if (cond == jmp && (insn & (1 << 21))) {
1202 DPRINTF("Compare carry %d\n", s->carry == jmp);
1203 cond = s->carry != 0;
1205 if (cond == jmp && (insn & (1 << 17))) {
1206 DPRINTF("Compare phase %d %c= %d\n",
1207 (s->sstat1 & PHASE_MASK),
1208 jmp ? '=' : '!',
1209 ((insn >> 24) & 7));
1210 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1212 if (cond == jmp && (insn & (1 << 18))) {
1213 uint8_t mask;
1215 mask = (~insn >> 8) & 0xff;
1216 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1217 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1218 cond = (s->sfbr & mask) == (insn & mask);
1220 if (cond == jmp) {
1221 if (insn & (1 << 23)) {
1222 /* Relative address. */
1223 addr = s->dsp + sxt24(addr);
1225 switch ((insn >> 27) & 7) {
1226 case 0: /* Jump */
1227 DPRINTF("Jump to 0x%08x\n", addr);
1228 s->dsp = addr;
1229 break;
1230 case 1: /* Call */
1231 DPRINTF("Call 0x%08x\n", addr);
1232 s->temp = s->dsp;
1233 s->dsp = addr;
1234 break;
1235 case 2: /* Return */
1236 DPRINTF("Return to 0x%08x\n", s->temp);
1237 s->dsp = s->temp;
1238 break;
1239 case 3: /* Interrupt */
1240 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1241 if ((insn & (1 << 20)) != 0) {
1242 s->istat0 |= LSI_ISTAT0_INTF;
1243 lsi_update_irq(s);
1244 } else {
1245 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1247 break;
1248 default:
1249 DPRINTF("Illegal transfer control\n");
1250 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1251 break;
1253 } else {
1254 DPRINTF("Control condition failed\n");
1257 break;
1259 case 3:
1260 if ((insn & (1 << 29)) == 0) {
1261 /* Memory move. */
1262 uint32_t dest;
1263 /* ??? The docs imply the destination address is loaded into
1264 the TEMP register. However the Linux drivers rely on
1265 the value being presrved. */
1266 dest = read_dword(s, s->dsp);
1267 s->dsp += 4;
1268 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1269 } else {
1270 uint8_t data[7];
1271 int reg;
1272 int n;
1273 int i;
1275 if (insn & (1 << 28)) {
1276 addr = s->dsa + sxt24(addr);
1278 n = (insn & 7);
1279 reg = (insn >> 16) & 0xff;
1280 if (insn & (1 << 24)) {
1281 cpu_physical_memory_read(addr, data, n);
1282 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1283 addr, *(int *)data);
1284 for (i = 0; i < n; i++) {
1285 lsi_reg_writeb(s, reg + i, data[i]);
1287 } else {
1288 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1289 for (i = 0; i < n; i++) {
1290 data[i] = lsi_reg_readb(s, reg + i);
1292 cpu_physical_memory_write(addr, data, n);
1296 if (insn_processed > 10000 && !s->waiting) {
1297 /* Some windows drivers make the device spin waiting for a memory
1298 location to change. If we have been executed a lot of code then
1299 assume this is the case and force an unexpected device disconnect.
1300 This is apparently sufficient to beat the drivers into submission.
1302 if (!(s->sien0 & LSI_SIST0_UDC))
1303 fprintf(stderr, "inf. loop with UDC masked\n");
1304 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1305 lsi_disconnect(s);
1306 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1307 if (s->dcntl & LSI_DCNTL_SSM) {
1308 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1309 } else {
1310 goto again;
1313 DPRINTF("SCRIPTS execution stopped\n");
1316 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1318 uint8_t tmp;
1319 #define CASE_GET_REG24(name, addr) \
1320 case addr: return s->name & 0xff; \
1321 case addr + 1: return (s->name >> 8) & 0xff; \
1322 case addr + 2: return (s->name >> 16) & 0xff;
1324 #define CASE_GET_REG32(name, addr) \
1325 case addr: return s->name & 0xff; \
1326 case addr + 1: return (s->name >> 8) & 0xff; \
1327 case addr + 2: return (s->name >> 16) & 0xff; \
1328 case addr + 3: return (s->name >> 24) & 0xff;
1330 #ifdef DEBUG_LSI_REG
1331 DPRINTF("Read reg %x\n", offset);
1332 #endif
1333 switch (offset) {
1334 case 0x00: /* SCNTL0 */
1335 return s->scntl0;
1336 case 0x01: /* SCNTL1 */
1337 return s->scntl1;
1338 case 0x02: /* SCNTL2 */
1339 return s->scntl2;
1340 case 0x03: /* SCNTL3 */
1341 return s->scntl3;
1342 case 0x04: /* SCID */
1343 return s->scid;
1344 case 0x05: /* SXFER */
1345 return s->sxfer;
1346 case 0x06: /* SDID */
1347 return s->sdid;
1348 case 0x07: /* GPREG0 */
1349 return 0x7f;
1350 case 0x08: /* Revision ID */
1351 return 0x00;
1352 case 0xa: /* SSID */
1353 return s->ssid;
1354 case 0xb: /* SBCL */
1355 /* ??? This is not correct. However it's (hopefully) only
1356 used for diagnostics, so should be ok. */
1357 return 0;
1358 case 0xc: /* DSTAT */
1359 tmp = s->dstat | 0x80;
1360 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1361 s->dstat = 0;
1362 lsi_update_irq(s);
1363 return tmp;
1364 case 0x0d: /* SSTAT0 */
1365 return s->sstat0;
1366 case 0x0e: /* SSTAT1 */
1367 return s->sstat1;
1368 case 0x0f: /* SSTAT2 */
1369 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1370 CASE_GET_REG32(dsa, 0x10)
1371 case 0x14: /* ISTAT0 */
1372 return s->istat0;
1373 case 0x15: /* ISTAT1 */
1374 return s->istat1;
1375 case 0x16: /* MBOX0 */
1376 return s->mbox0;
1377 case 0x17: /* MBOX1 */
1378 return s->mbox1;
1379 case 0x18: /* CTEST0 */
1380 return 0xff;
1381 case 0x19: /* CTEST1 */
1382 return 0;
1383 case 0x1a: /* CTEST2 */
1384 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1385 if (s->istat0 & LSI_ISTAT0_SIGP) {
1386 s->istat0 &= ~LSI_ISTAT0_SIGP;
1387 tmp |= LSI_CTEST2_SIGP;
1389 return tmp;
1390 case 0x1b: /* CTEST3 */
1391 return s->ctest3;
1392 CASE_GET_REG32(temp, 0x1c)
1393 case 0x20: /* DFIFO */
1394 return 0;
1395 case 0x21: /* CTEST4 */
1396 return s->ctest4;
1397 case 0x22: /* CTEST5 */
1398 return s->ctest5;
1399 case 0x23: /* CTEST6 */
1400 return 0;
1401 CASE_GET_REG24(dbc, 0x24)
1402 case 0x27: /* DCMD */
1403 return s->dcmd;
1404 CASE_GET_REG32(dsp, 0x2c)
1405 CASE_GET_REG32(dsps, 0x30)
1406 CASE_GET_REG32(scratch[0], 0x34)
1407 case 0x38: /* DMODE */
1408 return s->dmode;
1409 case 0x39: /* DIEN */
1410 return s->dien;
1411 case 0x3b: /* DCNTL */
1412 return s->dcntl;
1413 case 0x40: /* SIEN0 */
1414 return s->sien0;
1415 case 0x41: /* SIEN1 */
1416 return s->sien1;
1417 case 0x42: /* SIST0 */
1418 tmp = s->sist0;
1419 s->sist0 = 0;
1420 lsi_update_irq(s);
1421 return tmp;
1422 case 0x43: /* SIST1 */
1423 tmp = s->sist1;
1424 s->sist1 = 0;
1425 lsi_update_irq(s);
1426 return tmp;
1427 case 0x46: /* MACNTL */
1428 return 0x0f;
1429 case 0x47: /* GPCNTL0 */
1430 return 0x0f;
1431 case 0x48: /* STIME0 */
1432 return s->stime0;
1433 case 0x4a: /* RESPID0 */
1434 return s->respid0;
1435 case 0x4b: /* RESPID1 */
1436 return s->respid1;
1437 case 0x4d: /* STEST1 */
1438 return s->stest1;
1439 case 0x4e: /* STEST2 */
1440 return s->stest2;
1441 case 0x4f: /* STEST3 */
1442 return s->stest3;
1443 case 0x50: /* SIDL */
1444 /* This is needed by the linux drivers. We currently only update it
1445 during the MSG IN phase. */
1446 return s->sidl;
1447 case 0x52: /* STEST4 */
1448 return 0xe0;
1449 case 0x56: /* CCNTL0 */
1450 return s->ccntl0;
1451 case 0x57: /* CCNTL1 */
1452 return s->ccntl1;
1453 case 0x58: /* SBDL */
1454 /* Some drivers peek at the data bus during the MSG IN phase. */
1455 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1456 return s->msg[0];
1457 return 0;
1458 case 0x59: /* SBDL high */
1459 return 0;
1460 CASE_GET_REG32(mmrs, 0xa0)
1461 CASE_GET_REG32(mmws, 0xa4)
1462 CASE_GET_REG32(sfs, 0xa8)
1463 CASE_GET_REG32(drs, 0xac)
1464 CASE_GET_REG32(sbms, 0xb0)
1465 CASE_GET_REG32(dbms, 0xb4)
1466 CASE_GET_REG32(dnad64, 0xb8)
1467 CASE_GET_REG32(pmjad1, 0xc0)
1468 CASE_GET_REG32(pmjad2, 0xc4)
1469 CASE_GET_REG32(rbc, 0xc8)
1470 CASE_GET_REG32(ua, 0xcc)
1471 CASE_GET_REG32(ia, 0xd4)
1472 CASE_GET_REG32(sbc, 0xd8)
1473 CASE_GET_REG32(csbc, 0xdc)
1475 if (offset >= 0x5c && offset < 0xa0) {
1476 int n;
1477 int shift;
1478 n = (offset - 0x58) >> 2;
1479 shift = (offset & 3) * 8;
1480 return (s->scratch[n] >> shift) & 0xff;
1482 BADF("readb 0x%x\n", offset);
1483 exit(1);
1484 #undef CASE_GET_REG24
1485 #undef CASE_GET_REG32
1488 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1490 #define CASE_SET_REG32(name, addr) \
1491 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1492 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1493 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1494 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1496 #ifdef DEBUG_LSI_REG
1497 DPRINTF("Write reg %x = %02x\n", offset, val);
1498 #endif
1499 switch (offset) {
1500 case 0x00: /* SCNTL0 */
1501 s->scntl0 = val;
1502 if (val & LSI_SCNTL0_START) {
1503 BADF("Start sequence not implemented\n");
1505 break;
1506 case 0x01: /* SCNTL1 */
1507 s->scntl1 = val & ~LSI_SCNTL1_SST;
1508 if (val & LSI_SCNTL1_IARB) {
1509 BADF("Immediate Arbritration not implemented\n");
1511 if (val & LSI_SCNTL1_RST) {
1512 s->sstat0 |= LSI_SSTAT0_RST;
1513 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1514 } else {
1515 s->sstat0 &= ~LSI_SSTAT0_RST;
1517 break;
1518 case 0x02: /* SCNTL2 */
1519 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1520 s->scntl2 = val;
1521 break;
1522 case 0x03: /* SCNTL3 */
1523 s->scntl3 = val;
1524 break;
1525 case 0x04: /* SCID */
1526 s->scid = val;
1527 break;
1528 case 0x05: /* SXFER */
1529 s->sxfer = val;
1530 break;
1531 case 0x06: /* SDID */
1532 if ((val & 0xf) != (s->ssid & 0xf))
1533 BADF("Destination ID does not match SSID\n");
1534 s->sdid = val & 0xf;
1535 break;
1536 case 0x07: /* GPREG0 */
1537 break;
1538 case 0x08: /* SFBR */
1539 /* The CPU is not allowed to write to this register. However the
1540 SCRIPTS register move instructions are. */
1541 s->sfbr = val;
1542 break;
1543 case 0x0a: case 0x0b:
1544 /* Openserver writes to these readonly registers on startup */
1545 return;
1546 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1547 /* Linux writes to these readonly registers on startup. */
1548 return;
1549 CASE_SET_REG32(dsa, 0x10)
1550 case 0x14: /* ISTAT0 */
1551 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1552 if (val & LSI_ISTAT0_ABRT) {
1553 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1555 if (val & LSI_ISTAT0_INTF) {
1556 s->istat0 &= ~LSI_ISTAT0_INTF;
1557 lsi_update_irq(s);
1559 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1560 DPRINTF("Woken by SIGP\n");
1561 s->waiting = 0;
1562 s->dsp = s->dnad;
1563 lsi_execute_script(s);
1565 if (val & LSI_ISTAT0_SRST) {
1566 lsi_soft_reset(s);
1568 break;
1569 case 0x16: /* MBOX0 */
1570 s->mbox0 = val;
1571 break;
1572 case 0x17: /* MBOX1 */
1573 s->mbox1 = val;
1574 break;
1575 case 0x1a: /* CTEST2 */
1576 s->ctest2 = val & LSI_CTEST2_PCICIE;
1577 break;
1578 case 0x1b: /* CTEST3 */
1579 s->ctest3 = val & 0x0f;
1580 break;
1581 CASE_SET_REG32(temp, 0x1c)
1582 case 0x21: /* CTEST4 */
1583 if (val & 7) {
1584 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1586 s->ctest4 = val;
1587 break;
1588 case 0x22: /* CTEST5 */
1589 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1590 BADF("CTEST5 DMA increment not implemented\n");
1592 s->ctest5 = val;
1593 break;
1594 case 0x2c: /* DSP[0:7] */
1595 s->dsp &= 0xffffff00;
1596 s->dsp |= val;
1597 break;
1598 case 0x2d: /* DSP[8:15] */
1599 s->dsp &= 0xffff00ff;
1600 s->dsp |= val << 8;
1601 break;
1602 case 0x2e: /* DSP[16:23] */
1603 s->dsp &= 0xff00ffff;
1604 s->dsp |= val << 16;
1605 break;
1606 case 0x2f: /* DSP[24:31] */
1607 s->dsp &= 0x00ffffff;
1608 s->dsp |= val << 24;
1609 if ((s->dmode & LSI_DMODE_MAN) == 0
1610 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1611 lsi_execute_script(s);
1612 break;
1613 CASE_SET_REG32(dsps, 0x30)
1614 CASE_SET_REG32(scratch[0], 0x34)
1615 case 0x38: /* DMODE */
1616 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1617 BADF("IO mappings not implemented\n");
1619 s->dmode = val;
1620 break;
1621 case 0x39: /* DIEN */
1622 s->dien = val;
1623 lsi_update_irq(s);
1624 break;
1625 case 0x3b: /* DCNTL */
1626 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1627 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1628 lsi_execute_script(s);
1629 break;
1630 case 0x40: /* SIEN0 */
1631 s->sien0 = val;
1632 lsi_update_irq(s);
1633 break;
1634 case 0x41: /* SIEN1 */
1635 s->sien1 = val;
1636 lsi_update_irq(s);
1637 break;
1638 case 0x47: /* GPCNTL0 */
1639 break;
1640 case 0x48: /* STIME0 */
1641 s->stime0 = val;
1642 break;
1643 case 0x49: /* STIME1 */
1644 if (val & 0xf) {
1645 DPRINTF("General purpose timer not implemented\n");
1646 /* ??? Raising the interrupt immediately seems to be sufficient
1647 to keep the FreeBSD driver happy. */
1648 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1650 break;
1651 case 0x4a: /* RESPID0 */
1652 s->respid0 = val;
1653 break;
1654 case 0x4b: /* RESPID1 */
1655 s->respid1 = val;
1656 break;
1657 case 0x4d: /* STEST1 */
1658 s->stest1 = val;
1659 break;
1660 case 0x4e: /* STEST2 */
1661 if (val & 1) {
1662 BADF("Low level mode not implemented\n");
1664 s->stest2 = val;
1665 break;
1666 case 0x4f: /* STEST3 */
1667 if (val & 0x41) {
1668 BADF("SCSI FIFO test mode not implemented\n");
1670 s->stest3 = val;
1671 break;
1672 case 0x56: /* CCNTL0 */
1673 s->ccntl0 = val;
1674 break;
1675 case 0x57: /* CCNTL1 */
1676 s->ccntl1 = val;
1677 break;
1678 CASE_SET_REG32(mmrs, 0xa0)
1679 CASE_SET_REG32(mmws, 0xa4)
1680 CASE_SET_REG32(sfs, 0xa8)
1681 CASE_SET_REG32(drs, 0xac)
1682 CASE_SET_REG32(sbms, 0xb0)
1683 CASE_SET_REG32(dbms, 0xb4)
1684 CASE_SET_REG32(dnad64, 0xb8)
1685 CASE_SET_REG32(pmjad1, 0xc0)
1686 CASE_SET_REG32(pmjad2, 0xc4)
1687 CASE_SET_REG32(rbc, 0xc8)
1688 CASE_SET_REG32(ua, 0xcc)
1689 CASE_SET_REG32(ia, 0xd4)
1690 CASE_SET_REG32(sbc, 0xd8)
1691 CASE_SET_REG32(csbc, 0xdc)
1692 default:
1693 if (offset >= 0x5c && offset < 0xa0) {
1694 int n;
1695 int shift;
1696 n = (offset - 0x58) >> 2;
1697 shift = (offset & 3) * 8;
1698 s->scratch[n] &= ~(0xff << shift);
1699 s->scratch[n] |= (val & 0xff) << shift;
1700 } else {
1701 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1704 #undef CASE_SET_REG32
1707 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1709 LSIState *s = (LSIState *)opaque;
1711 lsi_reg_writeb(s, addr & 0xff, val);
1714 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1716 LSIState *s = (LSIState *)opaque;
1718 addr &= 0xff;
1719 lsi_reg_writeb(s, addr, val & 0xff);
1720 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1723 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1725 LSIState *s = (LSIState *)opaque;
1727 addr &= 0xff;
1728 lsi_reg_writeb(s, addr, val & 0xff);
1729 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1730 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1731 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1734 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1736 LSIState *s = (LSIState *)opaque;
1738 return lsi_reg_readb(s, addr & 0xff);
1741 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1743 LSIState *s = (LSIState *)opaque;
1744 uint32_t val;
1746 addr &= 0xff;
1747 val = lsi_reg_readb(s, addr);
1748 val |= lsi_reg_readb(s, addr + 1) << 8;
1749 return val;
1752 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1754 LSIState *s = (LSIState *)opaque;
1755 uint32_t val;
1756 addr &= 0xff;
1757 val = lsi_reg_readb(s, addr);
1758 val |= lsi_reg_readb(s, addr + 1) << 8;
1759 val |= lsi_reg_readb(s, addr + 2) << 16;
1760 val |= lsi_reg_readb(s, addr + 3) << 24;
1761 return val;
1764 static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
1765 lsi_mmio_readb,
1766 lsi_mmio_readw,
1767 lsi_mmio_readl,
1770 static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
1771 lsi_mmio_writeb,
1772 lsi_mmio_writew,
1773 lsi_mmio_writel,
1776 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1778 LSIState *s = (LSIState *)opaque;
1779 uint32_t newval;
1780 int shift;
1782 addr &= 0x1fff;
1783 newval = s->script_ram[addr >> 2];
1784 shift = (addr & 3) * 8;
1785 newval &= ~(0xff << shift);
1786 newval |= val << shift;
1787 s->script_ram[addr >> 2] = newval;
1790 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1792 LSIState *s = (LSIState *)opaque;
1793 uint32_t newval;
1795 addr &= 0x1fff;
1796 newval = s->script_ram[addr >> 2];
1797 if (addr & 2) {
1798 newval = (newval & 0xffff) | (val << 16);
1799 } else {
1800 newval = (newval & 0xffff0000) | val;
1802 s->script_ram[addr >> 2] = newval;
1806 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1808 LSIState *s = (LSIState *)opaque;
1810 addr &= 0x1fff;
1811 s->script_ram[addr >> 2] = val;
1814 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1816 LSIState *s = (LSIState *)opaque;
1817 uint32_t val;
1819 addr &= 0x1fff;
1820 val = s->script_ram[addr >> 2];
1821 val >>= (addr & 3) * 8;
1822 return val & 0xff;
1825 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1827 LSIState *s = (LSIState *)opaque;
1828 uint32_t val;
1830 addr &= 0x1fff;
1831 val = s->script_ram[addr >> 2];
1832 if (addr & 2)
1833 val >>= 16;
1834 return le16_to_cpu(val);
1837 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1839 LSIState *s = (LSIState *)opaque;
1841 addr &= 0x1fff;
1842 return le32_to_cpu(s->script_ram[addr >> 2]);
1845 static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
1846 lsi_ram_readb,
1847 lsi_ram_readw,
1848 lsi_ram_readl,
1851 static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
1852 lsi_ram_writeb,
1853 lsi_ram_writew,
1854 lsi_ram_writel,
1857 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1859 LSIState *s = (LSIState *)opaque;
1860 return lsi_reg_readb(s, addr & 0xff);
1863 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1865 LSIState *s = (LSIState *)opaque;
1866 uint32_t val;
1867 addr &= 0xff;
1868 val = lsi_reg_readb(s, addr);
1869 val |= lsi_reg_readb(s, addr + 1) << 8;
1870 return val;
1873 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1875 LSIState *s = (LSIState *)opaque;
1876 uint32_t val;
1877 addr &= 0xff;
1878 val = lsi_reg_readb(s, addr);
1879 val |= lsi_reg_readb(s, addr + 1) << 8;
1880 val |= lsi_reg_readb(s, addr + 2) << 16;
1881 val |= lsi_reg_readb(s, addr + 3) << 24;
1882 return val;
1885 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1887 LSIState *s = (LSIState *)opaque;
1888 lsi_reg_writeb(s, addr & 0xff, val);
1891 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1893 LSIState *s = (LSIState *)opaque;
1894 addr &= 0xff;
1895 lsi_reg_writeb(s, addr, val & 0xff);
1896 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1899 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1901 LSIState *s = (LSIState *)opaque;
1902 addr &= 0xff;
1903 lsi_reg_writeb(s, addr, val & 0xff);
1904 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1905 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1906 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1909 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1910 uint32_t addr, uint32_t size, int type)
1912 LSIState *s = (LSIState *)pci_dev;
1914 DPRINTF("Mapping IO at %08x\n", addr);
1916 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1917 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1918 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1919 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1920 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1921 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1924 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1925 uint32_t addr, uint32_t size, int type)
1927 LSIState *s = (LSIState *)pci_dev;
1929 DPRINTF("Mapping ram at %08x\n", addr);
1930 s->script_ram_base = addr;
1931 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1934 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1935 uint32_t addr, uint32_t size, int type)
1937 LSIState *s = (LSIState *)pci_dev;
1939 DPRINTF("Mapping registers at %08x\n", addr);
1940 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1943 void lsi_scsi_attach(DeviceState *host, BlockDriverState *bd, int id)
1945 LSIState *s = (LSIState *)host;
1947 if (id < 0) {
1948 for (id = 0; id < LSI_MAX_DEVS; id++) {
1949 if (s->scsi_dev[id] == NULL)
1950 break;
1953 if (id >= LSI_MAX_DEVS) {
1954 BADF("Bad Device ID %d\n", id);
1955 return;
1957 if (s->scsi_dev[id]) {
1958 DPRINTF("Destroying device %d\n", id);
1959 s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1961 DPRINTF("Attaching block device %d\n", id);
1962 s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1963 if (s->scsi_dev[id] == NULL)
1964 s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1965 bd->private = &s->pci_dev;
1968 static int lsi_scsi_uninit(PCIDevice *d)
1970 LSIState *s = (LSIState *) d;
1972 cpu_unregister_io_memory(s->mmio_io_addr);
1973 cpu_unregister_io_memory(s->ram_io_addr);
1975 qemu_free(s->queue);
1977 return 0;
1980 static void lsi_scsi_init(PCIDevice *dev)
1982 LSIState *s = (LSIState *)dev;
1983 uint8_t *pci_conf;
1985 pci_conf = s->pci_dev.config;
1987 /* PCI Vendor ID (word) */
1988 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
1989 /* PCI device ID (word) */
1990 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
1991 /* PCI base class code */
1992 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
1993 /* PCI subsystem ID */
1994 pci_conf[0x2e] = 0x00;
1995 pci_conf[0x2f] = 0x10;
1996 /* PCI latency timer = 255 */
1997 pci_conf[0x0d] = 0xff;
1998 /* Interrupt pin 1 */
1999 pci_conf[0x3d] = 0x01;
2001 s->mmio_io_addr = cpu_register_io_memory(0, lsi_mmio_readfn,
2002 lsi_mmio_writefn, s);
2003 s->ram_io_addr = cpu_register_io_memory(0, lsi_ram_readfn,
2004 lsi_ram_writefn, s);
2006 pci_register_io_region((struct PCIDevice *)s, 0, 256,
2007 PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2008 pci_register_io_region((struct PCIDevice *)s, 1, 0x400,
2009 PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
2010 pci_register_io_region((struct PCIDevice *)s, 2, 0x2000,
2011 PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
2012 s->queue = qemu_malloc(sizeof(lsi_queue));
2013 s->queue_len = 1;
2014 s->active_commands = 0;
2015 s->pci_dev.unregister = lsi_scsi_uninit;
2017 lsi_soft_reset(s);
2019 scsi_bus_new(&dev->qdev, lsi_scsi_attach);
2022 static void lsi53c895a_register_devices(void)
2024 pci_qdev_register("lsi53c895a", sizeof(LSIState), lsi_scsi_init);
2027 device_init(lsi53c895a_register_devices);