virtio-serial: Simplify virtio_serial_load()
[qemu/stefanha.git] / hw / mips_malta.c
blob9042b57ddf9c03ab61f3381e922da8a258510bb8
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "usb-uhci.h"
37 #include "vmware_vga.h"
38 #include "qemu-char.h"
39 #include "sysemu.h"
40 #include "audio/audio.h"
41 #include "boards.h"
42 #include "qemu-log.h"
43 #include "mips-bios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
47 #include "mc146818rtc.h"
49 //#define DEBUG_BOARD_INIT
51 #define ENVP_ADDR 0x80002000l
52 #define ENVP_NB_ENTRIES 16
53 #define ENVP_ENTRY_SIZE 256
55 #define MAX_IDE_BUS 2
57 typedef struct {
58 uint32_t leds;
59 uint32_t brk;
60 uint32_t gpout;
61 uint32_t i2cin;
62 uint32_t i2coe;
63 uint32_t i2cout;
64 uint32_t i2csel;
65 CharDriverState *display;
66 char display_text[9];
67 SerialState *uart;
68 } MaltaFPGAState;
70 static PITState *pit;
72 static struct _loaderparams {
73 int ram_size;
74 const char *kernel_filename;
75 const char *kernel_cmdline;
76 const char *initrd_filename;
77 } loaderparams;
79 /* Malta FPGA */
80 static void malta_fpga_update_display(void *opaque)
82 char leds_text[9];
83 int i;
84 MaltaFPGAState *s = opaque;
86 for (i = 7 ; i >= 0 ; i--) {
87 if (s->leds & (1 << i))
88 leds_text[i] = '#';
89 else
90 leds_text[i] = ' ';
92 leds_text[8] = '\0';
94 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
95 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
99 * EEPROM 24C01 / 24C02 emulation.
101 * Emulation for serial EEPROMs:
102 * 24C01 - 1024 bit (128 x 8)
103 * 24C02 - 2048 bit (256 x 8)
105 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
108 //~ #define DEBUG
110 #if defined(DEBUG)
111 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
112 #else
113 # define logout(fmt, ...) ((void)0)
114 #endif
116 struct _eeprom24c0x_t {
117 uint8_t tick;
118 uint8_t address;
119 uint8_t command;
120 uint8_t ack;
121 uint8_t scl;
122 uint8_t sda;
123 uint8_t data;
124 //~ uint16_t size;
125 uint8_t contents[256];
128 typedef struct _eeprom24c0x_t eeprom24c0x_t;
130 static eeprom24c0x_t eeprom = {
131 .contents = {
132 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
133 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
134 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
135 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
136 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
137 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
138 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
140 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
141 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
151 static uint8_t eeprom24c0x_read(void)
153 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
154 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
155 return eeprom.sda;
158 static void eeprom24c0x_write(int scl, int sda)
160 if (eeprom.scl && scl && (eeprom.sda != sda)) {
161 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
162 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
163 if (!sda) {
164 eeprom.tick = 1;
165 eeprom.command = 0;
167 } else if (eeprom.tick == 0 && !eeprom.ack) {
168 /* Waiting for start. */
169 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
170 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
171 } else if (!eeprom.scl && scl) {
172 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
173 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
174 if (eeprom.ack) {
175 logout("\ti2c ack bit = 0\n");
176 sda = 0;
177 eeprom.ack = 0;
178 } else if (eeprom.sda == sda) {
179 uint8_t bit = (sda != 0);
180 logout("\ti2c bit = %d\n", bit);
181 if (eeprom.tick < 9) {
182 eeprom.command <<= 1;
183 eeprom.command += bit;
184 eeprom.tick++;
185 if (eeprom.tick == 9) {
186 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
187 eeprom.ack = 1;
189 } else if (eeprom.tick < 17) {
190 if (eeprom.command & 1) {
191 sda = ((eeprom.data & 0x80) != 0);
193 eeprom.address <<= 1;
194 eeprom.address += bit;
195 eeprom.tick++;
196 eeprom.data <<= 1;
197 if (eeprom.tick == 17) {
198 eeprom.data = eeprom.contents[eeprom.address];
199 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
200 eeprom.ack = 1;
201 eeprom.tick = 0;
203 } else if (eeprom.tick >= 17) {
204 sda = 0;
206 } else {
207 logout("\tsda changed with raising scl\n");
209 } else {
210 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
212 eeprom.scl = scl;
213 eeprom.sda = sda;
216 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
218 MaltaFPGAState *s = opaque;
219 uint32_t val = 0;
220 uint32_t saddr;
222 saddr = (addr & 0xfffff);
224 switch (saddr) {
226 /* SWITCH Register */
227 case 0x00200:
228 val = 0x00000000; /* All switches closed */
229 break;
231 /* STATUS Register */
232 case 0x00208:
233 #ifdef TARGET_WORDS_BIGENDIAN
234 val = 0x00000012;
235 #else
236 val = 0x00000010;
237 #endif
238 break;
240 /* JMPRS Register */
241 case 0x00210:
242 val = 0x00;
243 break;
245 /* LEDBAR Register */
246 case 0x00408:
247 val = s->leds;
248 break;
250 /* BRKRES Register */
251 case 0x00508:
252 val = s->brk;
253 break;
255 /* UART Registers are handled directly by the serial device */
257 /* GPOUT Register */
258 case 0x00a00:
259 val = s->gpout;
260 break;
262 /* XXX: implement a real I2C controller */
264 /* GPINP Register */
265 case 0x00a08:
266 /* IN = OUT until a real I2C control is implemented */
267 if (s->i2csel)
268 val = s->i2cout;
269 else
270 val = 0x00;
271 break;
273 /* I2CINP Register */
274 case 0x00b00:
275 val = ((s->i2cin & ~1) | eeprom24c0x_read());
276 break;
278 /* I2COE Register */
279 case 0x00b08:
280 val = s->i2coe;
281 break;
283 /* I2COUT Register */
284 case 0x00b10:
285 val = s->i2cout;
286 break;
288 /* I2CSEL Register */
289 case 0x00b18:
290 val = s->i2csel;
291 break;
293 default:
294 #if 0
295 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
296 addr);
297 #endif
298 break;
300 return val;
303 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
304 uint32_t val)
306 MaltaFPGAState *s = opaque;
307 uint32_t saddr;
309 saddr = (addr & 0xfffff);
311 switch (saddr) {
313 /* SWITCH Register */
314 case 0x00200:
315 break;
317 /* JMPRS Register */
318 case 0x00210:
319 break;
321 /* LEDBAR Register */
322 /* XXX: implement a 8-LED array */
323 case 0x00408:
324 s->leds = val & 0xff;
325 break;
327 /* ASCIIWORD Register */
328 case 0x00410:
329 snprintf(s->display_text, 9, "%08X", val);
330 malta_fpga_update_display(s);
331 break;
333 /* ASCIIPOS0 to ASCIIPOS7 Registers */
334 case 0x00418:
335 case 0x00420:
336 case 0x00428:
337 case 0x00430:
338 case 0x00438:
339 case 0x00440:
340 case 0x00448:
341 case 0x00450:
342 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
343 malta_fpga_update_display(s);
344 break;
346 /* SOFTRES Register */
347 case 0x00500:
348 if (val == 0x42)
349 qemu_system_reset_request ();
350 break;
352 /* BRKRES Register */
353 case 0x00508:
354 s->brk = val & 0xff;
355 break;
357 /* UART Registers are handled directly by the serial device */
359 /* GPOUT Register */
360 case 0x00a00:
361 s->gpout = val & 0xff;
362 break;
364 /* I2COE Register */
365 case 0x00b08:
366 s->i2coe = val & 0x03;
367 break;
369 /* I2COUT Register */
370 case 0x00b10:
371 eeprom24c0x_write(val & 0x02, val & 0x01);
372 s->i2cout = val;
373 break;
375 /* I2CSEL Register */
376 case 0x00b18:
377 s->i2csel = val & 0x01;
378 break;
380 default:
381 #if 0
382 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
383 addr);
384 #endif
385 break;
389 static CPUReadMemoryFunc * const malta_fpga_read[] = {
390 malta_fpga_readl,
391 malta_fpga_readl,
392 malta_fpga_readl
395 static CPUWriteMemoryFunc * const malta_fpga_write[] = {
396 malta_fpga_writel,
397 malta_fpga_writel,
398 malta_fpga_writel
401 static void malta_fpga_reset(void *opaque)
403 MaltaFPGAState *s = opaque;
405 s->leds = 0x00;
406 s->brk = 0x0a;
407 s->gpout = 0x00;
408 s->i2cin = 0x3;
409 s->i2coe = 0x0;
410 s->i2cout = 0x3;
411 s->i2csel = 0x1;
413 s->display_text[8] = '\0';
414 snprintf(s->display_text, 9, " ");
417 static void malta_fpga_led_init(CharDriverState *chr)
419 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
420 qemu_chr_printf(chr, "+--------+\r\n");
421 qemu_chr_printf(chr, "+ +\r\n");
422 qemu_chr_printf(chr, "+--------+\r\n");
423 qemu_chr_printf(chr, "\n");
424 qemu_chr_printf(chr, "Malta ASCII\r\n");
425 qemu_chr_printf(chr, "+--------+\r\n");
426 qemu_chr_printf(chr, "+ +\r\n");
427 qemu_chr_printf(chr, "+--------+\r\n");
430 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
432 MaltaFPGAState *s;
433 int malta;
435 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
437 malta = cpu_register_io_memory(malta_fpga_read,
438 malta_fpga_write, s);
440 cpu_register_physical_memory(base, 0x900, malta);
441 /* 0xa00 is less than a page, so will still get the right offsets. */
442 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
444 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
446 #ifdef TARGET_WORDS_BIGENDIAN
447 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
448 #else
449 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
450 #endif
452 malta_fpga_reset(s);
453 qemu_register_reset(malta_fpga_reset, s);
455 return s;
458 /* Audio support */
459 static void audio_init (PCIBus *pci_bus)
461 struct soundhw *c;
462 int audio_enabled = 0;
464 for (c = soundhw; !audio_enabled && c->name; ++c) {
465 audio_enabled = c->enabled;
468 if (audio_enabled) {
469 for (c = soundhw; c->name; ++c) {
470 if (c->enabled) {
471 c->init.init_pci(pci_bus);
477 /* Network support */
478 static void network_init(void)
480 int i;
482 for(i = 0; i < nb_nics; i++) {
483 NICInfo *nd = &nd_table[i];
484 const char *default_devaddr = NULL;
486 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
487 /* The malta board has a PCNet card using PCI SLOT 11 */
488 default_devaddr = "0b";
490 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
494 /* ROM and pseudo bootloader
496 The following code implements a very very simple bootloader. It first
497 loads the registers a0 to a3 to the values expected by the OS, and
498 then jump at the kernel address.
500 The bootloader should pass the locations of the kernel arguments and
501 environment variables tables. Those tables contain the 32-bit address
502 of NULL terminated strings. The environment variables table should be
503 terminated by a NULL address.
505 For a simpler implementation, the number of kernel arguments is fixed
506 to two (the name of the kernel and the command line), and the two
507 tables are actually the same one.
509 The registers a0 to a3 should contain the following values:
510 a0 - number of kernel arguments
511 a1 - 32-bit address of the kernel arguments table
512 a2 - 32-bit address of the environment variables table
513 a3 - RAM size in bytes
516 static void write_bootloader (CPUState *env, uint8_t *base,
517 int64_t kernel_entry)
519 uint32_t *p;
521 /* Small bootloader */
522 p = (uint32_t *)base;
523 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
524 stl_raw(p++, 0x00000000); /* nop */
526 /* YAMON service vector */
527 stl_raw(base + 0x500, 0xbfc00580); /* start: */
528 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
529 stl_raw(base + 0x520, 0xbfc00580); /* start: */
530 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
531 stl_raw(base + 0x534, 0xbfc00808); /* print: */
532 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
533 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
534 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
535 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
536 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
537 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
538 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
539 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
542 /* Second part of the bootloader */
543 p = (uint32_t *) (base + 0x580);
544 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
545 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
546 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
547 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
548 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
549 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
550 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
551 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
552 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
554 /* Load BAR registers as done by YAMON */
555 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
557 #ifdef TARGET_WORDS_BIGENDIAN
558 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
559 #else
560 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
561 #endif
562 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
564 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
566 #ifdef TARGET_WORDS_BIGENDIAN
567 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
568 #else
569 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
570 #endif
571 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
572 #ifdef TARGET_WORDS_BIGENDIAN
573 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
574 #else
575 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
576 #endif
577 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
579 #ifdef TARGET_WORDS_BIGENDIAN
580 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
581 #else
582 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
583 #endif
584 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
585 #ifdef TARGET_WORDS_BIGENDIAN
586 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
587 #else
588 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
589 #endif
590 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
592 #ifdef TARGET_WORDS_BIGENDIAN
593 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
594 #else
595 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
596 #endif
597 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
598 #ifdef TARGET_WORDS_BIGENDIAN
599 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
600 #else
601 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
602 #endif
603 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
605 /* Jump to kernel code */
606 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
607 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
608 stl_raw(p++, 0x03e00008); /* jr ra */
609 stl_raw(p++, 0x00000000); /* nop */
611 /* YAMON subroutines */
612 p = (uint32_t *) (base + 0x800);
613 stl_raw(p++, 0x03e00008); /* jr ra */
614 stl_raw(p++, 0x24020000); /* li v0,0 */
615 /* 808 YAMON print */
616 stl_raw(p++, 0x03e06821); /* move t5,ra */
617 stl_raw(p++, 0x00805821); /* move t3,a0 */
618 stl_raw(p++, 0x00a05021); /* move t2,a1 */
619 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
620 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
621 stl_raw(p++, 0x10800005); /* beqz a0,834 */
622 stl_raw(p++, 0x00000000); /* nop */
623 stl_raw(p++, 0x0ff0021c); /* jal 870 */
624 stl_raw(p++, 0x00000000); /* nop */
625 stl_raw(p++, 0x08000205); /* j 814 */
626 stl_raw(p++, 0x00000000); /* nop */
627 stl_raw(p++, 0x01a00008); /* jr t5 */
628 stl_raw(p++, 0x01602021); /* move a0,t3 */
629 /* 0x83c YAMON print_count */
630 stl_raw(p++, 0x03e06821); /* move t5,ra */
631 stl_raw(p++, 0x00805821); /* move t3,a0 */
632 stl_raw(p++, 0x00a05021); /* move t2,a1 */
633 stl_raw(p++, 0x00c06021); /* move t4,a2 */
634 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
635 stl_raw(p++, 0x0ff0021c); /* jal 870 */
636 stl_raw(p++, 0x00000000); /* nop */
637 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
638 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
639 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
640 stl_raw(p++, 0x00000000); /* nop */
641 stl_raw(p++, 0x01a00008); /* jr t5 */
642 stl_raw(p++, 0x01602021); /* move a0,t3 */
643 /* 0x870 */
644 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
645 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
646 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
647 stl_raw(p++, 0x00000000); /* nop */
648 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
649 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
650 stl_raw(p++, 0x00000000); /* nop */
651 stl_raw(p++, 0x03e00008); /* jr ra */
652 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
656 static void prom_set(uint32_t* prom_buf, int index, const char *string, ...)
658 va_list ap;
659 int32_t table_addr;
661 if (index >= ENVP_NB_ENTRIES)
662 return;
664 if (string == NULL) {
665 prom_buf[index] = 0;
666 return;
669 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
670 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
672 va_start(ap, string);
673 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
674 va_end(ap);
677 /* Kernel */
678 static int64_t load_kernel (void)
680 int64_t kernel_entry, kernel_high;
681 long initrd_size;
682 ram_addr_t initrd_offset;
683 int big_endian;
684 uint32_t *prom_buf;
685 long prom_size;
686 int prom_index = 0;
688 #ifdef TARGET_WORDS_BIGENDIAN
689 big_endian = 1;
690 #else
691 big_endian = 0;
692 #endif
694 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
695 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
696 big_endian, ELF_MACHINE, 1) < 0) {
697 fprintf(stderr, "qemu: could not load kernel '%s'\n",
698 loaderparams.kernel_filename);
699 exit(1);
702 /* load initrd */
703 initrd_size = 0;
704 initrd_offset = 0;
705 if (loaderparams.initrd_filename) {
706 initrd_size = get_image_size (loaderparams.initrd_filename);
707 if (initrd_size > 0) {
708 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
709 if (initrd_offset + initrd_size > ram_size) {
710 fprintf(stderr,
711 "qemu: memory too small for initial ram disk '%s'\n",
712 loaderparams.initrd_filename);
713 exit(1);
715 initrd_size = load_image_targphys(loaderparams.initrd_filename,
716 initrd_offset,
717 ram_size - initrd_offset);
719 if (initrd_size == (target_ulong) -1) {
720 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
721 loaderparams.initrd_filename);
722 exit(1);
726 /* Setup prom parameters. */
727 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
728 prom_buf = qemu_malloc(prom_size);
730 prom_set(prom_buf, prom_index++, loaderparams.kernel_filename);
731 if (initrd_size > 0) {
732 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
733 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
734 loaderparams.kernel_cmdline);
735 } else {
736 prom_set(prom_buf, prom_index++, loaderparams.kernel_cmdline);
739 prom_set(prom_buf, prom_index++, "memsize");
740 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
741 prom_set(prom_buf, prom_index++, "modetty0");
742 prom_set(prom_buf, prom_index++, "38400n8r");
743 prom_set(prom_buf, prom_index++, NULL);
745 rom_add_blob_fixed("prom", prom_buf, prom_size,
746 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
748 return kernel_entry;
751 static void main_cpu_reset(void *opaque)
753 CPUState *env = opaque;
754 cpu_reset(env);
756 /* The bootloader does not need to be rewritten as it is located in a
757 read only location. The kernel location and the arguments table
758 location does not change. */
759 if (loaderparams.kernel_filename) {
760 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
764 static void cpu_request_exit(void *opaque, int irq, int level)
766 CPUState *env = cpu_single_env;
768 if (env && level) {
769 cpu_exit(env);
773 static
774 void mips_malta_init (ram_addr_t ram_size,
775 const char *boot_device,
776 const char *kernel_filename, const char *kernel_cmdline,
777 const char *initrd_filename, const char *cpu_model)
779 char *filename;
780 ram_addr_t ram_offset;
781 ram_addr_t bios_offset;
782 target_long bios_size;
783 int64_t kernel_entry;
784 PCIBus *pci_bus;
785 ISADevice *isa_dev;
786 CPUState *env;
787 ISADevice *rtc_state;
788 FDCtrl *floppy_controller;
789 MaltaFPGAState *malta_fpga;
790 qemu_irq *i8259;
791 qemu_irq *cpu_exit_irq;
792 int piix4_devfn;
793 uint8_t *eeprom_buf;
794 i2c_bus *smbus;
795 int i;
796 DriveInfo *dinfo;
797 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
798 DriveInfo *fd[MAX_FD];
799 int fl_idx = 0;
800 int fl_sectors = 0;
801 int be;
803 /* Make sure the first 3 serial ports are associated with a device. */
804 for(i = 0; i < 3; i++) {
805 if (!serial_hds[i]) {
806 char label[32];
807 snprintf(label, sizeof(label), "serial%d", i);
808 serial_hds[i] = qemu_chr_open(label, "null", NULL);
812 /* init CPUs */
813 if (cpu_model == NULL) {
814 #ifdef TARGET_MIPS64
815 cpu_model = "20Kc";
816 #else
817 cpu_model = "24Kf";
818 #endif
820 env = cpu_init(cpu_model);
821 if (!env) {
822 fprintf(stderr, "Unable to find CPU definition\n");
823 exit(1);
825 qemu_register_reset(main_cpu_reset, env);
827 /* allocate RAM */
828 if (ram_size > (256 << 20)) {
829 fprintf(stderr,
830 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
831 ((unsigned int)ram_size / (1 << 20)));
832 exit(1);
834 ram_offset = qemu_ram_alloc(ram_size);
835 bios_offset = qemu_ram_alloc(BIOS_SIZE);
838 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
840 /* Map the bios at two physical locations, as on the real board. */
841 cpu_register_physical_memory(0x1e000000LL,
842 BIOS_SIZE, bios_offset | IO_MEM_ROM);
843 cpu_register_physical_memory(0x1fc00000LL,
844 BIOS_SIZE, bios_offset | IO_MEM_ROM);
846 #ifdef TARGET_WORDS_BIGENDIAN
847 be = 1;
848 #else
849 be = 0;
850 #endif
851 /* FPGA */
852 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
854 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
855 if (kernel_filename) {
856 /* Write a small bootloader to the flash location. */
857 loaderparams.ram_size = ram_size;
858 loaderparams.kernel_filename = kernel_filename;
859 loaderparams.kernel_cmdline = kernel_cmdline;
860 loaderparams.initrd_filename = initrd_filename;
861 kernel_entry = load_kernel();
862 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
863 } else {
864 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
865 if (dinfo) {
866 /* Load firmware from flash. */
867 bios_size = 0x400000;
868 fl_sectors = bios_size >> 16;
869 #ifdef DEBUG_BOARD_INIT
870 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
871 "offset %08lx addr %08llx '%s' %x\n",
872 fl_idx, bios_size, bios_offset, 0x1e000000LL,
873 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
874 #endif
875 pflash_cfi01_register(0x1e000000LL, bios_offset,
876 dinfo->bdrv, 65536, fl_sectors,
877 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
878 fl_idx++;
879 } else {
880 /* Load a BIOS image. */
881 if (bios_name == NULL)
882 bios_name = BIOS_FILENAME;
883 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
884 if (filename) {
885 bios_size = load_image_targphys(filename, 0x1fc00000LL,
886 BIOS_SIZE);
887 qemu_free(filename);
888 } else {
889 bios_size = -1;
891 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
892 fprintf(stderr,
893 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
894 bios_name);
895 exit(1);
898 /* In little endian mode the 32bit words in the bios are swapped,
899 a neat trick which allows bi-endian firmware. */
900 #ifndef TARGET_WORDS_BIGENDIAN
902 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
903 uint32_t *end = addr + bios_size;
904 while (addr < end) {
905 bswap32s(addr);
908 #endif
911 /* Board ID = 0x420 (Malta Board with CoreLV)
912 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
913 map to the board ID. */
914 stl_phys(0x1fc00010LL, 0x00000420);
916 /* Init internal devices */
917 cpu_mips_irq_init_cpu(env);
918 cpu_mips_clock_init(env);
920 /* Interrupt controller */
921 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
922 i8259 = i8259_init(env->irq[2]);
924 /* Northbridge */
925 pci_bus = pci_gt64120_init(i8259);
927 /* Southbridge */
929 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
930 fprintf(stderr, "qemu: too many IDE bus\n");
931 exit(1);
934 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
935 hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
938 piix4_devfn = piix4_init(pci_bus, 80);
939 isa_bus_irqs(i8259);
940 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
941 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
942 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_reserve_irq(9),
943 NULL, NULL, 0);
944 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
945 for (i = 0; i < 8; i++) {
946 /* TODO: Populate SPD eeprom data. */
947 DeviceState *eeprom;
948 eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
949 qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
950 qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
951 qdev_init_nofail(eeprom);
953 pit = pit_init(0x40, isa_reserve_irq(0));
954 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
955 DMA_init(0, cpu_exit_irq);
957 /* Super I/O */
958 isa_dev = isa_create_simple("i8042");
960 rtc_state = rtc_init(2000, NULL);
961 serial_isa_init(0, serial_hds[0]);
962 serial_isa_init(1, serial_hds[1]);
963 if (parallel_hds[0])
964 parallel_init(0, parallel_hds[0]);
965 for(i = 0; i < MAX_FD; i++) {
966 fd[i] = drive_get(IF_FLOPPY, 0, i);
968 floppy_controller = fdctrl_init_isa(fd);
970 /* Sound card */
971 audio_init(pci_bus);
973 /* Network card */
974 network_init();
976 /* Optional PCI video card */
977 if (cirrus_vga_enabled) {
978 pci_cirrus_vga_init(pci_bus);
979 } else if (vmsvga_enabled) {
980 pci_vmsvga_init(pci_bus);
981 } else if (std_vga_enabled) {
982 pci_vga_init(pci_bus, 0, 0);
986 static QEMUMachine mips_malta_machine = {
987 .name = "malta",
988 .desc = "MIPS Malta Core LV",
989 .init = mips_malta_init,
990 .is_default = 1,
993 static void mips_malta_machine_init(void)
995 qemu_register_machine(&mips_malta_machine);
998 machine_init(mips_malta_machine_init);