merage qemu master
[qemu/qemu-JZ.git] / hw / slavio_misc.c
blob2c383ca6ef9f893019db861bcb59f45d9d0af0eb
1 /*
2 * QEMU Sparc SLAVIO aux io port emulation
4 * Copyright (c) 2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "sysemu.h"
28 /* debug misc */
29 //#define DEBUG_MISC
32 * This is the auxio port, chip control and system control part of
33 * chip STP2001 (Slave I/O), also produced as NCR89C105. See
34 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
36 * This also includes the PMC CPU idle controller.
39 #ifdef DEBUG_MISC
40 #define MISC_DPRINTF(fmt, args...) \
41 do { printf("MISC: " fmt , ##args); } while (0)
42 #else
43 #define MISC_DPRINTF(fmt, args...)
44 #endif
46 typedef struct MiscState {
47 qemu_irq irq;
48 uint8_t config;
49 uint8_t aux1, aux2;
50 uint8_t diag, mctrl;
51 uint32_t sysctrl;
52 uint16_t leds;
53 qemu_irq cpu_halt;
54 qemu_irq fdc_tc;
55 } MiscState;
57 #define MISC_SIZE 1
58 #define SYSCTRL_SIZE 4
59 #define LED_MAXADDR 1
60 #define LED_SIZE (LED_MAXADDR + 1)
62 #define MISC_MASK 0x0fff0000
63 #define MISC_LEDS 0x01600000
64 #define MISC_CFG 0x01800000
65 #define MISC_DIAG 0x01a00000
66 #define MISC_MDM 0x01b00000
67 #define MISC_SYS 0x01f00000
69 #define AUX1_TC 0x02
71 #define AUX2_PWROFF 0x01
72 #define AUX2_PWRINTCLR 0x02
73 #define AUX2_PWRFAIL 0x20
75 #define CFG_PWRINTEN 0x08
77 #define SYS_RESET 0x01
78 #define SYS_RESETSTAT 0x02
80 static void slavio_misc_update_irq(void *opaque)
82 MiscState *s = opaque;
84 if ((s->aux2 & AUX2_PWRFAIL) && (s->config & CFG_PWRINTEN)) {
85 MISC_DPRINTF("Raise IRQ\n");
86 qemu_irq_raise(s->irq);
87 } else {
88 MISC_DPRINTF("Lower IRQ\n");
89 qemu_irq_lower(s->irq);
93 static void slavio_misc_reset(void *opaque)
95 MiscState *s = opaque;
97 // Diagnostic and system control registers not cleared in reset
98 s->config = s->aux1 = s->aux2 = s->mctrl = 0;
101 void slavio_set_power_fail(void *opaque, int power_failing)
103 MiscState *s = opaque;
105 MISC_DPRINTF("Power fail: %d, config: %d\n", power_failing, s->config);
106 if (power_failing && (s->config & CFG_PWRINTEN)) {
107 s->aux2 |= AUX2_PWRFAIL;
108 } else {
109 s->aux2 &= ~AUX2_PWRFAIL;
111 slavio_misc_update_irq(s);
114 static void slavio_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
115 uint32_t val)
117 MiscState *s = opaque;
119 MISC_DPRINTF("Write config %2.2x\n", val & 0xff);
120 s->config = val & 0xff;
121 slavio_misc_update_irq(s);
124 static uint32_t slavio_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
126 MiscState *s = opaque;
127 uint32_t ret = 0;
129 ret = s->config;
130 MISC_DPRINTF("Read config %2.2x\n", ret);
131 return ret;
134 static CPUReadMemoryFunc *slavio_cfg_mem_read[3] = {
135 slavio_cfg_mem_readb,
136 NULL,
137 NULL,
140 static CPUWriteMemoryFunc *slavio_cfg_mem_write[3] = {
141 slavio_cfg_mem_writeb,
142 NULL,
143 NULL,
146 static void slavio_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
147 uint32_t val)
149 MiscState *s = opaque;
151 MISC_DPRINTF("Write diag %2.2x\n", val & 0xff);
152 s->diag = val & 0xff;
155 static uint32_t slavio_diag_mem_readb(void *opaque, target_phys_addr_t addr)
157 MiscState *s = opaque;
158 uint32_t ret = 0;
160 ret = s->diag;
161 MISC_DPRINTF("Read diag %2.2x\n", ret);
162 return ret;
165 static CPUReadMemoryFunc *slavio_diag_mem_read[3] = {
166 slavio_diag_mem_readb,
167 NULL,
168 NULL,
171 static CPUWriteMemoryFunc *slavio_diag_mem_write[3] = {
172 slavio_diag_mem_writeb,
173 NULL,
174 NULL,
177 static void slavio_mdm_mem_writeb(void *opaque, target_phys_addr_t addr,
178 uint32_t val)
180 MiscState *s = opaque;
182 MISC_DPRINTF("Write modem control %2.2x\n", val & 0xff);
183 s->mctrl = val & 0xff;
186 static uint32_t slavio_mdm_mem_readb(void *opaque, target_phys_addr_t addr)
188 MiscState *s = opaque;
189 uint32_t ret = 0;
191 ret = s->mctrl;
192 MISC_DPRINTF("Read modem control %2.2x\n", ret);
193 return ret;
196 static CPUReadMemoryFunc *slavio_mdm_mem_read[3] = {
197 slavio_mdm_mem_readb,
198 NULL,
199 NULL,
202 static CPUWriteMemoryFunc *slavio_mdm_mem_write[3] = {
203 slavio_mdm_mem_writeb,
204 NULL,
205 NULL,
208 static void slavio_aux1_mem_writeb(void *opaque, target_phys_addr_t addr,
209 uint32_t val)
211 MiscState *s = opaque;
213 MISC_DPRINTF("Write aux1 %2.2x\n", val & 0xff);
214 if (val & AUX1_TC) {
215 // Send a pulse to floppy terminal count line
216 if (s->fdc_tc) {
217 qemu_irq_raise(s->fdc_tc);
218 qemu_irq_lower(s->fdc_tc);
220 val &= ~AUX1_TC;
222 s->aux1 = val & 0xff;
225 static uint32_t slavio_aux1_mem_readb(void *opaque, target_phys_addr_t addr)
227 MiscState *s = opaque;
228 uint32_t ret = 0;
230 ret = s->aux1;
231 MISC_DPRINTF("Read aux1 %2.2x\n", ret);
233 return ret;
236 static CPUReadMemoryFunc *slavio_aux1_mem_read[3] = {
237 slavio_aux1_mem_readb,
238 NULL,
239 NULL,
242 static CPUWriteMemoryFunc *slavio_aux1_mem_write[3] = {
243 slavio_aux1_mem_writeb,
244 NULL,
245 NULL,
248 static void slavio_aux2_mem_writeb(void *opaque, target_phys_addr_t addr,
249 uint32_t val)
251 MiscState *s = opaque;
253 val &= AUX2_PWRINTCLR | AUX2_PWROFF;
254 MISC_DPRINTF("Write aux2 %2.2x\n", val);
255 val |= s->aux2 & AUX2_PWRFAIL;
256 if (val & AUX2_PWRINTCLR) // Clear Power Fail int
257 val &= AUX2_PWROFF;
258 s->aux2 = val;
259 if (val & AUX2_PWROFF)
260 qemu_system_shutdown_request();
261 slavio_misc_update_irq(s);
264 static uint32_t slavio_aux2_mem_readb(void *opaque, target_phys_addr_t addr)
266 MiscState *s = opaque;
267 uint32_t ret = 0;
269 ret = s->aux2;
270 MISC_DPRINTF("Read aux2 %2.2x\n", ret);
272 return ret;
275 static CPUReadMemoryFunc *slavio_aux2_mem_read[3] = {
276 slavio_aux2_mem_readb,
277 NULL,
278 NULL,
281 static CPUWriteMemoryFunc *slavio_aux2_mem_write[3] = {
282 slavio_aux2_mem_writeb,
283 NULL,
284 NULL,
287 static void apc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
289 MiscState *s = opaque;
291 MISC_DPRINTF("Write power management %2.2x\n", val & 0xff);
292 qemu_irq_raise(s->cpu_halt);
295 static uint32_t apc_mem_readb(void *opaque, target_phys_addr_t addr)
297 uint32_t ret = 0;
299 MISC_DPRINTF("Read power management %2.2x\n", ret);
300 return ret;
303 static CPUReadMemoryFunc *apc_mem_read[3] = {
304 apc_mem_readb,
305 NULL,
306 NULL,
309 static CPUWriteMemoryFunc *apc_mem_write[3] = {
310 apc_mem_writeb,
311 NULL,
312 NULL,
315 static uint32_t slavio_sysctrl_mem_readl(void *opaque, target_phys_addr_t addr)
317 MiscState *s = opaque;
318 uint32_t ret = 0;
320 switch (addr) {
321 case 0:
322 ret = s->sysctrl;
323 break;
324 default:
325 break;
327 MISC_DPRINTF("Read system control %08x\n", ret);
328 return ret;
331 static void slavio_sysctrl_mem_writel(void *opaque, target_phys_addr_t addr,
332 uint32_t val)
334 MiscState *s = opaque;
336 MISC_DPRINTF("Write system control %08x\n", val);
337 switch (addr) {
338 case 0:
339 if (val & SYS_RESET) {
340 s->sysctrl = SYS_RESETSTAT;
341 qemu_system_reset_request();
343 break;
344 default:
345 break;
349 static CPUReadMemoryFunc *slavio_sysctrl_mem_read[3] = {
350 NULL,
351 NULL,
352 slavio_sysctrl_mem_readl,
355 static CPUWriteMemoryFunc *slavio_sysctrl_mem_write[3] = {
356 NULL,
357 NULL,
358 slavio_sysctrl_mem_writel,
361 static uint32_t slavio_led_mem_readw(void *opaque, target_phys_addr_t addr)
363 MiscState *s = opaque;
364 uint32_t ret = 0;
366 switch (addr) {
367 case 0:
368 ret = s->leds;
369 break;
370 default:
371 break;
373 MISC_DPRINTF("Read diagnostic LED %04x\n", ret);
374 return ret;
377 static void slavio_led_mem_writew(void *opaque, target_phys_addr_t addr,
378 uint32_t val)
380 MiscState *s = opaque;
382 MISC_DPRINTF("Write diagnostic LED %04x\n", val & 0xffff);
383 switch (addr) {
384 case 0:
385 s->leds = val;
386 break;
387 default:
388 break;
392 static CPUReadMemoryFunc *slavio_led_mem_read[3] = {
393 NULL,
394 slavio_led_mem_readw,
395 NULL,
398 static CPUWriteMemoryFunc *slavio_led_mem_write[3] = {
399 NULL,
400 slavio_led_mem_writew,
401 NULL,
404 static void slavio_misc_save(QEMUFile *f, void *opaque)
406 MiscState *s = opaque;
407 uint32_t tmp = 0;
408 uint8_t tmp8;
410 qemu_put_be32s(f, &tmp); /* ignored, was IRQ. */
411 qemu_put_8s(f, &s->config);
412 qemu_put_8s(f, &s->aux1);
413 qemu_put_8s(f, &s->aux2);
414 qemu_put_8s(f, &s->diag);
415 qemu_put_8s(f, &s->mctrl);
416 tmp8 = s->sysctrl & 0xff;
417 qemu_put_8s(f, &tmp8);
420 static int slavio_misc_load(QEMUFile *f, void *opaque, int version_id)
422 MiscState *s = opaque;
423 uint32_t tmp;
424 uint8_t tmp8;
426 if (version_id != 1)
427 return -EINVAL;
429 qemu_get_be32s(f, &tmp);
430 qemu_get_8s(f, &s->config);
431 qemu_get_8s(f, &s->aux1);
432 qemu_get_8s(f, &s->aux2);
433 qemu_get_8s(f, &s->diag);
434 qemu_get_8s(f, &s->mctrl);
435 qemu_get_8s(f, &tmp8);
436 s->sysctrl = (uint32_t)tmp8;
437 return 0;
440 void *slavio_misc_init(target_phys_addr_t base, target_phys_addr_t power_base,
441 target_phys_addr_t aux1_base,
442 target_phys_addr_t aux2_base, qemu_irq irq,
443 qemu_irq cpu_halt, qemu_irq **fdc_tc)
445 int io;
446 MiscState *s;
448 s = qemu_mallocz(sizeof(MiscState));
449 if (!s)
450 return NULL;
452 if (base) {
453 /* 8 bit registers */
455 // Slavio control
456 io = cpu_register_io_memory(0, slavio_cfg_mem_read,
457 slavio_cfg_mem_write, s);
458 cpu_register_physical_memory(base + MISC_CFG, MISC_SIZE, io);
460 // Diagnostics
461 io = cpu_register_io_memory(0, slavio_diag_mem_read,
462 slavio_diag_mem_write, s);
463 cpu_register_physical_memory(base + MISC_DIAG, MISC_SIZE, io);
465 // Modem control
466 io = cpu_register_io_memory(0, slavio_mdm_mem_read,
467 slavio_mdm_mem_write, s);
468 cpu_register_physical_memory(base + MISC_MDM, MISC_SIZE, io);
470 /* 16 bit registers */
471 io = cpu_register_io_memory(0, slavio_led_mem_read,
472 slavio_led_mem_write, s);
473 /* ss600mp diag LEDs */
474 cpu_register_physical_memory(base + MISC_LEDS, MISC_SIZE, io);
476 /* 32 bit registers */
477 io = cpu_register_io_memory(0, slavio_sysctrl_mem_read,
478 slavio_sysctrl_mem_write, s);
479 // System control
480 cpu_register_physical_memory(base + MISC_SYS, SYSCTRL_SIZE, io);
483 // AUX 1 (Misc System Functions)
484 if (aux1_base) {
485 io = cpu_register_io_memory(0, slavio_aux1_mem_read,
486 slavio_aux1_mem_write, s);
487 cpu_register_physical_memory(aux1_base, MISC_SIZE, io);
490 // AUX 2 (Software Powerdown Control)
491 if (aux2_base) {
492 io = cpu_register_io_memory(0, slavio_aux2_mem_read,
493 slavio_aux2_mem_write, s);
494 cpu_register_physical_memory(aux2_base, MISC_SIZE, io);
497 // Power management (APC) XXX: not a Slavio device
498 if (power_base) {
499 io = cpu_register_io_memory(0, apc_mem_read, apc_mem_write, s);
500 cpu_register_physical_memory(power_base, MISC_SIZE, io);
503 s->irq = irq;
504 s->cpu_halt = cpu_halt;
505 *fdc_tc = &s->fdc_tc;
507 register_savevm("slavio_misc", base, 1, slavio_misc_save, slavio_misc_load,
509 qemu_register_reset(slavio_misc_reset, s);
510 slavio_misc_reset(s);
512 return s;