merage qemu master
[qemu/qemu-JZ.git] / hw / pxa2xx_mmci.c
blob46258b49bec51391112056003a8d7ff94462a2bf
1 /*
2 * Intel XScale PXA255/270 MultiMediaCard/SD/SDIO Controller emulation.
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
7 * This code is licensed under the GPLv2.
8 */
10 #include "hw.h"
11 #include "pxa.h"
12 #include "sd.h"
14 struct pxa2xx_mmci_s {
15 qemu_irq irq;
16 void *dma;
18 SDState *card;
20 uint32_t status;
21 uint32_t clkrt;
22 uint32_t spi;
23 uint32_t cmdat;
24 uint32_t resp_tout;
25 uint32_t read_tout;
26 int blklen;
27 int numblk;
28 uint32_t intmask;
29 uint32_t intreq;
30 int cmd;
31 uint32_t arg;
33 int active;
34 int bytesleft;
35 uint8_t tx_fifo[64];
36 int tx_start;
37 int tx_len;
38 uint8_t rx_fifo[32];
39 int rx_start;
40 int rx_len;
41 uint16_t resp_fifo[9];
42 int resp_len;
44 int cmdreq;
45 int ac_width;
48 #define MMC_STRPCL 0x00 /* MMC Clock Start/Stop register */
49 #define MMC_STAT 0x04 /* MMC Status register */
50 #define MMC_CLKRT 0x08 /* MMC Clock Rate register */
51 #define MMC_SPI 0x0c /* MMC SPI Mode register */
52 #define MMC_CMDAT 0x10 /* MMC Command/Data register */
53 #define MMC_RESTO 0x14 /* MMC Response Time-Out register */
54 #define MMC_RDTO 0x18 /* MMC Read Time-Out register */
55 #define MMC_BLKLEN 0x1c /* MMC Block Length register */
56 #define MMC_NUMBLK 0x20 /* MMC Number of Blocks register */
57 #define MMC_PRTBUF 0x24 /* MMC Buffer Partly Full register */
58 #define MMC_I_MASK 0x28 /* MMC Interrupt Mask register */
59 #define MMC_I_REG 0x2c /* MMC Interrupt Request register */
60 #define MMC_CMD 0x30 /* MMC Command register */
61 #define MMC_ARGH 0x34 /* MMC Argument High register */
62 #define MMC_ARGL 0x38 /* MMC Argument Low register */
63 #define MMC_RES 0x3c /* MMC Response FIFO */
64 #define MMC_RXFIFO 0x40 /* MMC Receive FIFO */
65 #define MMC_TXFIFO 0x44 /* MMC Transmit FIFO */
66 #define MMC_RDWAIT 0x48 /* MMC RD_WAIT register */
67 #define MMC_BLKS_REM 0x4c /* MMC Blocks Remaining register */
69 /* Bitfield masks */
70 #define STRPCL_STOP_CLK (1 << 0)
71 #define STRPCL_STRT_CLK (1 << 1)
72 #define STAT_TOUT_RES (1 << 1)
73 #define STAT_CLK_EN (1 << 8)
74 #define STAT_DATA_DONE (1 << 11)
75 #define STAT_PRG_DONE (1 << 12)
76 #define STAT_END_CMDRES (1 << 13)
77 #define SPI_SPI_MODE (1 << 0)
78 #define CMDAT_RES_TYPE (3 << 0)
79 #define CMDAT_DATA_EN (1 << 2)
80 #define CMDAT_WR_RD (1 << 3)
81 #define CMDAT_DMA_EN (1 << 7)
82 #define CMDAT_STOP_TRAN (1 << 10)
83 #define INT_DATA_DONE (1 << 0)
84 #define INT_PRG_DONE (1 << 1)
85 #define INT_END_CMD (1 << 2)
86 #define INT_STOP_CMD (1 << 3)
87 #define INT_CLK_OFF (1 << 4)
88 #define INT_RXFIFO_REQ (1 << 5)
89 #define INT_TXFIFO_REQ (1 << 6)
90 #define INT_TINT (1 << 7)
91 #define INT_DAT_ERR (1 << 8)
92 #define INT_RES_ERR (1 << 9)
93 #define INT_RD_STALLED (1 << 10)
94 #define INT_SDIO_INT (1 << 11)
95 #define INT_SDIO_SACK (1 << 12)
96 #define PRTBUF_PRT_BUF (1 << 0)
98 /* Route internal interrupt lines to the global IC and DMA */
99 static void pxa2xx_mmci_int_update(struct pxa2xx_mmci_s *s)
101 uint32_t mask = s->intmask;
102 if (s->cmdat & CMDAT_DMA_EN) {
103 mask |= INT_RXFIFO_REQ | INT_TXFIFO_REQ;
105 pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma,
106 PXA2XX_RX_RQ_MMCI, !!(s->intreq & INT_RXFIFO_REQ));
107 pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma,
108 PXA2XX_TX_RQ_MMCI, !!(s->intreq & INT_TXFIFO_REQ));
111 qemu_set_irq(s->irq, !!(s->intreq & ~mask));
114 static void pxa2xx_mmci_fifo_update(struct pxa2xx_mmci_s *s)
116 if (!s->active)
117 return;
119 if (s->cmdat & CMDAT_WR_RD) {
120 while (s->bytesleft && s->tx_len) {
121 sd_write_data(s->card, s->tx_fifo[s->tx_start ++]);
122 s->tx_start &= 0x1f;
123 s->tx_len --;
124 s->bytesleft --;
126 if (s->bytesleft)
127 s->intreq |= INT_TXFIFO_REQ;
128 } else
129 while (s->bytesleft && s->rx_len < 32) {
130 s->rx_fifo[(s->rx_start + (s->rx_len ++)) & 0x1f] =
131 sd_read_data(s->card);
132 s->bytesleft --;
133 s->intreq |= INT_RXFIFO_REQ;
136 if (!s->bytesleft) {
137 s->active = 0;
138 s->intreq |= INT_DATA_DONE;
139 s->status |= STAT_DATA_DONE;
141 if (s->cmdat & CMDAT_WR_RD) {
142 s->intreq |= INT_PRG_DONE;
143 s->status |= STAT_PRG_DONE;
147 pxa2xx_mmci_int_update(s);
150 static void pxa2xx_mmci_wakequeues(struct pxa2xx_mmci_s *s)
152 int rsplen, i;
153 struct sd_request_s request;
154 uint8_t response[16];
156 s->active = 1;
157 s->rx_len = 0;
158 s->tx_len = 0;
159 s->cmdreq = 0;
161 request.cmd = s->cmd;
162 request.arg = s->arg;
163 request.crc = 0; /* FIXME */
165 rsplen = sd_do_command(s->card, &request, response);
166 s->intreq |= INT_END_CMD;
168 memset(s->resp_fifo, 0, sizeof(s->resp_fifo));
169 switch (s->cmdat & CMDAT_RES_TYPE) {
170 #define PXAMMCI_RESP(wd, value0, value1) \
171 s->resp_fifo[(wd) + 0] |= (value0); \
172 s->resp_fifo[(wd) + 1] |= (value1) << 8;
173 case 0: /* No response */
174 goto complete;
176 case 1: /* R1, R4, R5 or R6 */
177 if (rsplen < 4)
178 goto timeout;
179 goto complete;
181 case 2: /* R2 */
182 if (rsplen < 16)
183 goto timeout;
184 goto complete;
186 case 3: /* R3 */
187 if (rsplen < 4)
188 goto timeout;
189 goto complete;
191 complete:
192 for (i = 0; rsplen > 0; i ++, rsplen -= 2) {
193 PXAMMCI_RESP(i, response[i * 2], response[i * 2 + 1]);
195 s->status |= STAT_END_CMDRES;
197 if (!(s->cmdat & CMDAT_DATA_EN))
198 s->active = 0;
199 else
200 s->bytesleft = s->numblk * s->blklen;
202 s->resp_len = 0;
203 break;
205 timeout:
206 s->active = 0;
207 s->status |= STAT_TOUT_RES;
208 break;
211 pxa2xx_mmci_fifo_update(s);
214 static uint32_t pxa2xx_mmci_read(void *opaque, target_phys_addr_t offset)
216 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
217 uint32_t ret;
219 switch (offset) {
220 case MMC_STRPCL:
221 return 0;
222 case MMC_STAT:
223 return s->status;
224 case MMC_CLKRT:
225 return s->clkrt;
226 case MMC_SPI:
227 return s->spi;
228 case MMC_CMDAT:
229 return s->cmdat;
230 case MMC_RESTO:
231 return s->resp_tout;
232 case MMC_RDTO:
233 return s->read_tout;
234 case MMC_BLKLEN:
235 return s->blklen;
236 case MMC_NUMBLK:
237 return s->numblk;
238 case MMC_PRTBUF:
239 return 0;
240 case MMC_I_MASK:
241 return s->intmask;
242 case MMC_I_REG:
243 return s->intreq;
244 case MMC_CMD:
245 return s->cmd | 0x40;
246 case MMC_ARGH:
247 return s->arg >> 16;
248 case MMC_ARGL:
249 return s->arg & 0xffff;
250 case MMC_RES:
251 if (s->resp_len < 9)
252 return s->resp_fifo[s->resp_len ++];
253 return 0;
254 case MMC_RXFIFO:
255 ret = 0;
256 while (s->ac_width -- && s->rx_len) {
257 ret |= s->rx_fifo[s->rx_start ++] << (s->ac_width << 3);
258 s->rx_start &= 0x1f;
259 s->rx_len --;
261 s->intreq &= ~INT_RXFIFO_REQ;
262 pxa2xx_mmci_fifo_update(s);
263 return ret;
264 case MMC_RDWAIT:
265 return 0;
266 case MMC_BLKS_REM:
267 return s->numblk;
268 default:
269 cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n",
270 __FUNCTION__, offset);
273 return 0;
276 static void pxa2xx_mmci_write(void *opaque,
277 target_phys_addr_t offset, uint32_t value)
279 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
281 switch (offset) {
282 case MMC_STRPCL:
283 if (value & STRPCL_STRT_CLK) {
284 s->status |= STAT_CLK_EN;
285 s->intreq &= ~INT_CLK_OFF;
287 if (s->cmdreq && !(s->cmdat & CMDAT_STOP_TRAN)) {
288 s->status &= STAT_CLK_EN;
289 pxa2xx_mmci_wakequeues(s);
293 if (value & STRPCL_STOP_CLK) {
294 s->status &= ~STAT_CLK_EN;
295 s->intreq |= INT_CLK_OFF;
296 s->active = 0;
299 pxa2xx_mmci_int_update(s);
300 break;
302 case MMC_CLKRT:
303 s->clkrt = value & 7;
304 break;
306 case MMC_SPI:
307 s->spi = value & 0xf;
308 if (value & SPI_SPI_MODE)
309 printf("%s: attempted to use card in SPI mode\n", __FUNCTION__);
310 break;
312 case MMC_CMDAT:
313 s->cmdat = value & 0x3dff;
314 s->active = 0;
315 s->cmdreq = 1;
316 if (!(value & CMDAT_STOP_TRAN)) {
317 s->status &= STAT_CLK_EN;
319 if (s->status & STAT_CLK_EN)
320 pxa2xx_mmci_wakequeues(s);
323 pxa2xx_mmci_int_update(s);
324 break;
326 case MMC_RESTO:
327 s->resp_tout = value & 0x7f;
328 break;
330 case MMC_RDTO:
331 s->read_tout = value & 0xffff;
332 break;
334 case MMC_BLKLEN:
335 s->blklen = value & 0xfff;
336 break;
338 case MMC_NUMBLK:
339 s->numblk = value & 0xffff;
340 break;
342 case MMC_PRTBUF:
343 if (value & PRTBUF_PRT_BUF) {
344 s->tx_start ^= 32;
345 s->tx_len = 0;
347 pxa2xx_mmci_fifo_update(s);
348 break;
350 case MMC_I_MASK:
351 s->intmask = value & 0x1fff;
352 pxa2xx_mmci_int_update(s);
353 break;
355 case MMC_CMD:
356 s->cmd = value & 0x3f;
357 break;
359 case MMC_ARGH:
360 s->arg &= 0x0000ffff;
361 s->arg |= value << 16;
362 break;
364 case MMC_ARGL:
365 s->arg &= 0xffff0000;
366 s->arg |= value & 0x0000ffff;
367 break;
369 case MMC_TXFIFO:
370 while (s->ac_width -- && s->tx_len < 0x20)
371 s->tx_fifo[(s->tx_start + (s->tx_len ++)) & 0x1f] =
372 (value >> (s->ac_width << 3)) & 0xff;
373 s->intreq &= ~INT_TXFIFO_REQ;
374 pxa2xx_mmci_fifo_update(s);
375 break;
377 case MMC_RDWAIT:
378 case MMC_BLKS_REM:
379 break;
381 default:
382 cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n",
383 __FUNCTION__, offset);
387 static uint32_t pxa2xx_mmci_readb(void *opaque, target_phys_addr_t offset)
389 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
390 s->ac_width = 1;
391 return pxa2xx_mmci_read(opaque, offset);
394 static uint32_t pxa2xx_mmci_readh(void *opaque, target_phys_addr_t offset)
396 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
397 s->ac_width = 2;
398 return pxa2xx_mmci_read(opaque, offset);
401 static uint32_t pxa2xx_mmci_readw(void *opaque, target_phys_addr_t offset)
403 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
404 s->ac_width = 4;
405 return pxa2xx_mmci_read(opaque, offset);
408 static CPUReadMemoryFunc *pxa2xx_mmci_readfn[] = {
409 pxa2xx_mmci_readb,
410 pxa2xx_mmci_readh,
411 pxa2xx_mmci_readw
414 static void pxa2xx_mmci_writeb(void *opaque,
415 target_phys_addr_t offset, uint32_t value)
417 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
418 s->ac_width = 1;
419 pxa2xx_mmci_write(opaque, offset, value);
422 static void pxa2xx_mmci_writeh(void *opaque,
423 target_phys_addr_t offset, uint32_t value)
425 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
426 s->ac_width = 2;
427 pxa2xx_mmci_write(opaque, offset, value);
430 static void pxa2xx_mmci_writew(void *opaque,
431 target_phys_addr_t offset, uint32_t value)
433 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
434 s->ac_width = 4;
435 pxa2xx_mmci_write(opaque, offset, value);
438 static CPUWriteMemoryFunc *pxa2xx_mmci_writefn[] = {
439 pxa2xx_mmci_writeb,
440 pxa2xx_mmci_writeh,
441 pxa2xx_mmci_writew
444 static void pxa2xx_mmci_save(QEMUFile *f, void *opaque)
446 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
447 int i;
449 qemu_put_be32s(f, &s->status);
450 qemu_put_be32s(f, &s->clkrt);
451 qemu_put_be32s(f, &s->spi);
452 qemu_put_be32s(f, &s->cmdat);
453 qemu_put_be32s(f, &s->resp_tout);
454 qemu_put_be32s(f, &s->read_tout);
455 qemu_put_be32(f, s->blklen);
456 qemu_put_be32(f, s->numblk);
457 qemu_put_be32s(f, &s->intmask);
458 qemu_put_be32s(f, &s->intreq);
459 qemu_put_be32(f, s->cmd);
460 qemu_put_be32s(f, &s->arg);
461 qemu_put_be32(f, s->cmdreq);
462 qemu_put_be32(f, s->active);
463 qemu_put_be32(f, s->bytesleft);
465 qemu_put_byte(f, s->tx_len);
466 for (i = 0; i < s->tx_len; i ++)
467 qemu_put_byte(f, s->tx_fifo[(s->tx_start + i) & 63]);
469 qemu_put_byte(f, s->rx_len);
470 for (i = 0; i < s->rx_len; i ++)
471 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 31]);
473 qemu_put_byte(f, s->resp_len);
474 for (i = s->resp_len; i < 9; i ++)
475 qemu_put_be16s(f, &s->resp_fifo[i]);
478 static int pxa2xx_mmci_load(QEMUFile *f, void *opaque, int version_id)
480 struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
481 int i;
483 qemu_get_be32s(f, &s->status);
484 qemu_get_be32s(f, &s->clkrt);
485 qemu_get_be32s(f, &s->spi);
486 qemu_get_be32s(f, &s->cmdat);
487 qemu_get_be32s(f, &s->resp_tout);
488 qemu_get_be32s(f, &s->read_tout);
489 s->blklen = qemu_get_be32(f);
490 s->numblk = qemu_get_be32(f);
491 qemu_get_be32s(f, &s->intmask);
492 qemu_get_be32s(f, &s->intreq);
493 s->cmd = qemu_get_be32(f);
494 qemu_get_be32s(f, &s->arg);
495 s->cmdreq = qemu_get_be32(f);
496 s->active = qemu_get_be32(f);
497 s->bytesleft = qemu_get_be32(f);
499 s->tx_len = qemu_get_byte(f);
500 s->tx_start = 0;
501 if (s->tx_len >= sizeof(s->tx_fifo) || s->tx_len < 0)
502 return -EINVAL;
503 for (i = 0; i < s->tx_len; i ++)
504 s->tx_fifo[i] = qemu_get_byte(f);
506 s->rx_len = qemu_get_byte(f);
507 s->rx_start = 0;
508 if (s->rx_len >= sizeof(s->rx_fifo) || s->rx_len < 0)
509 return -EINVAL;
510 for (i = 0; i < s->rx_len; i ++)
511 s->rx_fifo[i] = qemu_get_byte(f);
513 s->resp_len = qemu_get_byte(f);
514 if (s->resp_len > 9 || s->resp_len < 0)
515 return -EINVAL;
516 for (i = s->resp_len; i < 9; i ++)
517 qemu_get_be16s(f, &s->resp_fifo[i]);
519 return 0;
522 struct pxa2xx_mmci_s *pxa2xx_mmci_init(target_phys_addr_t base,
523 BlockDriverState *bd, qemu_irq irq, void *dma)
525 int iomemtype;
526 struct pxa2xx_mmci_s *s;
528 s = (struct pxa2xx_mmci_s *) qemu_mallocz(sizeof(struct pxa2xx_mmci_s));
529 s->irq = irq;
530 s->dma = dma;
532 iomemtype = cpu_register_io_memory(0, pxa2xx_mmci_readfn,
533 pxa2xx_mmci_writefn, s);
534 cpu_register_physical_memory(base, 0x00100000, iomemtype);
536 /* Instantiate the actual storage */
537 s->card = sd_init(bd, 0);
539 register_savevm("pxa2xx_mmci", 0, 0,
540 pxa2xx_mmci_save, pxa2xx_mmci_load, s);
542 return s;
545 void pxa2xx_mmci_handlers(struct pxa2xx_mmci_s *s, qemu_irq readonly,
546 qemu_irq coverswitch)
548 sd_set_cb(s->card, readonly, coverswitch);