merage qemu master
[qemu/qemu-JZ.git] / hw / pl181.c
blob8583490d920cbe36c0726eceafa92270fe33a975
1 /*
2 * Arm PrimeCell PL181 MultiMedia Card Interface
4 * Copyright (c) 2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
8 */
10 #include "hw.h"
11 #include "primecell.h"
12 #include "sd.h"
14 //#define DEBUG_PL181 1
16 #ifdef DEBUG_PL181
17 #define DPRINTF(fmt, args...) \
18 do { printf("pl181: " fmt , ##args); } while (0)
19 #else
20 #define DPRINTF(fmt, args...) do {} while(0)
21 #endif
23 #define PL181_FIFO_LEN 16
25 typedef struct {
26 SDState *card;
27 uint32_t clock;
28 uint32_t power;
29 uint32_t cmdarg;
30 uint32_t cmd;
31 uint32_t datatimer;
32 uint32_t datalength;
33 uint32_t respcmd;
34 uint32_t response[4];
35 uint32_t datactrl;
36 uint32_t datacnt;
37 uint32_t status;
38 uint32_t mask[2];
39 int fifo_pos;
40 int fifo_len;
41 /* The linux 2.6.21 driver is buggy, and misbehaves if new data arrives
42 while it is reading the FIFO. We hack around this be defering
43 subsequent transfers until after the driver polls the status word.
44 http://www.arm.linux.org.uk/developer/patches/viewpatch.php?id=4446/1
46 int linux_hack;
47 uint32_t fifo[PL181_FIFO_LEN];
48 qemu_irq irq[2];
49 } pl181_state;
51 #define PL181_CMD_INDEX 0x3f
52 #define PL181_CMD_RESPONSE (1 << 6)
53 #define PL181_CMD_LONGRESP (1 << 7)
54 #define PL181_CMD_INTERRUPT (1 << 8)
55 #define PL181_CMD_PENDING (1 << 9)
56 #define PL181_CMD_ENABLE (1 << 10)
58 #define PL181_DATA_ENABLE (1 << 0)
59 #define PL181_DATA_DIRECTION (1 << 1)
60 #define PL181_DATA_MODE (1 << 2)
61 #define PL181_DATA_DMAENABLE (1 << 3)
63 #define PL181_STATUS_CMDCRCFAIL (1 << 0)
64 #define PL181_STATUS_DATACRCFAIL (1 << 1)
65 #define PL181_STATUS_CMDTIMEOUT (1 << 2)
66 #define PL181_STATUS_DATATIMEOUT (1 << 3)
67 #define PL181_STATUS_TXUNDERRUN (1 << 4)
68 #define PL181_STATUS_RXOVERRUN (1 << 5)
69 #define PL181_STATUS_CMDRESPEND (1 << 6)
70 #define PL181_STATUS_CMDSENT (1 << 7)
71 #define PL181_STATUS_DATAEND (1 << 8)
72 #define PL181_STATUS_DATABLOCKEND (1 << 10)
73 #define PL181_STATUS_CMDACTIVE (1 << 11)
74 #define PL181_STATUS_TXACTIVE (1 << 12)
75 #define PL181_STATUS_RXACTIVE (1 << 13)
76 #define PL181_STATUS_TXFIFOHALFEMPTY (1 << 14)
77 #define PL181_STATUS_RXFIFOHALFFULL (1 << 15)
78 #define PL181_STATUS_TXFIFOFULL (1 << 16)
79 #define PL181_STATUS_RXFIFOFULL (1 << 17)
80 #define PL181_STATUS_TXFIFOEMPTY (1 << 18)
81 #define PL181_STATUS_RXFIFOEMPTY (1 << 19)
82 #define PL181_STATUS_TXDATAAVLBL (1 << 20)
83 #define PL181_STATUS_RXDATAAVLBL (1 << 21)
85 #define PL181_STATUS_TX_FIFO (PL181_STATUS_TXACTIVE \
86 |PL181_STATUS_TXFIFOHALFEMPTY \
87 |PL181_STATUS_TXFIFOFULL \
88 |PL181_STATUS_TXFIFOEMPTY \
89 |PL181_STATUS_TXDATAAVLBL)
90 #define PL181_STATUS_RX_FIFO (PL181_STATUS_RXACTIVE \
91 |PL181_STATUS_RXFIFOHALFFULL \
92 |PL181_STATUS_RXFIFOFULL \
93 |PL181_STATUS_RXFIFOEMPTY \
94 |PL181_STATUS_RXDATAAVLBL)
96 static const unsigned char pl181_id[] =
97 { 0x81, 0x11, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
99 static void pl181_update(pl181_state *s)
101 int i;
102 for (i = 0; i < 2; i++) {
103 qemu_set_irq(s->irq[i], (s->status & s->mask[i]) != 0);
107 static void pl181_fifo_push(pl181_state *s, uint32_t value)
109 int n;
111 if (s->fifo_len == PL181_FIFO_LEN) {
112 fprintf(stderr, "pl181: FIFO overflow\n");
113 return;
115 n = (s->fifo_pos + s->fifo_len) & (PL181_FIFO_LEN - 1);
116 s->fifo_len++;
117 s->fifo[n] = value;
118 DPRINTF("FIFO push %08x\n", (int)value);
121 static uint32_t pl181_fifo_pop(pl181_state *s)
123 uint32_t value;
125 if (s->fifo_len == 0) {
126 fprintf(stderr, "pl181: FIFO underflow\n");
127 return 0;
129 value = s->fifo[s->fifo_pos];
130 s->fifo_len--;
131 s->fifo_pos = (s->fifo_pos + 1) & (PL181_FIFO_LEN - 1);
132 DPRINTF("FIFO pop %08x\n", (int)value);
133 return value;
136 static void pl181_send_command(pl181_state *s)
138 struct sd_request_s request;
139 uint8_t response[16];
140 int rlen;
142 request.cmd = s->cmd & PL181_CMD_INDEX;
143 request.arg = s->cmdarg;
144 DPRINTF("Command %d %08x\n", request.cmd, request.arg);
145 rlen = sd_do_command(s->card, &request, response);
146 if (rlen < 0)
147 goto error;
148 if (s->cmd & PL181_CMD_RESPONSE) {
149 #define RWORD(n) ((response[n] << 24) | (response[n + 1] << 16) \
150 | (response[n + 2] << 8) | response[n + 3])
151 if (rlen == 0 || (rlen == 4 && (s->cmd & PL181_CMD_LONGRESP)))
152 goto error;
153 if (rlen != 4 && rlen != 16)
154 goto error;
155 s->response[0] = RWORD(0);
156 if (rlen == 4) {
157 s->response[1] = s->response[2] = s->response[3] = 0;
158 } else {
159 s->response[1] = RWORD(4);
160 s->response[2] = RWORD(8);
161 s->response[3] = RWORD(12) & ~1;
163 DPRINTF("Response received\n");
164 s->status |= PL181_STATUS_CMDRESPEND;
165 #undef RWORD
166 } else {
167 DPRINTF("Command sent\n");
168 s->status |= PL181_STATUS_CMDSENT;
170 return;
172 error:
173 DPRINTF("Timeout\n");
174 s->status |= PL181_STATUS_CMDTIMEOUT;
177 /* Transfer data between the card and the FIFO. This is complicated by
178 the FIFO holding 32-bit words and the card taking data in single byte
179 chunks. FIFO bytes are transferred in little-endian order. */
181 static void pl181_fifo_run(pl181_state *s)
183 uint32_t bits;
184 uint32_t value;
185 int n;
186 int limit;
187 int is_read;
189 is_read = (s->datactrl & PL181_DATA_DIRECTION) != 0;
190 if (s->datacnt != 0 && (!is_read || sd_data_ready(s->card))
191 && !s->linux_hack) {
192 limit = is_read ? PL181_FIFO_LEN : 0;
193 n = 0;
194 value = 0;
195 while (s->datacnt && s->fifo_len != limit) {
196 if (is_read) {
197 value |= (uint32_t)sd_read_data(s->card) << (n * 8);
198 n++;
199 if (n == 4) {
200 pl181_fifo_push(s, value);
201 value = 0;
202 n = 0;
204 } else {
205 if (n == 0) {
206 value = pl181_fifo_pop(s);
207 n = 4;
209 sd_write_data(s->card, value & 0xff);
210 value >>= 8;
211 n--;
213 s->datacnt--;
215 if (n && is_read) {
216 pl181_fifo_push(s, value);
219 s->status &= ~(PL181_STATUS_RX_FIFO | PL181_STATUS_TX_FIFO);
220 if (s->datacnt == 0) {
221 s->status |= PL181_STATUS_DATAEND;
222 /* HACK: */
223 s->status |= PL181_STATUS_DATABLOCKEND;
224 DPRINTF("Transfer Complete\n");
226 if (s->datacnt == 0 && s->fifo_len == 0) {
227 s->datactrl &= ~PL181_DATA_ENABLE;
228 DPRINTF("Data engine idle\n");
229 } else {
230 /* Update FIFO bits. */
231 bits = PL181_STATUS_TXACTIVE | PL181_STATUS_RXACTIVE;
232 if (s->fifo_len == 0) {
233 bits |= PL181_STATUS_TXFIFOEMPTY;
234 bits |= PL181_STATUS_RXFIFOEMPTY;
235 } else {
236 bits |= PL181_STATUS_TXDATAAVLBL;
237 bits |= PL181_STATUS_RXDATAAVLBL;
239 if (s->fifo_len == 16) {
240 bits |= PL181_STATUS_TXFIFOFULL;
241 bits |= PL181_STATUS_RXFIFOFULL;
243 if (s->fifo_len <= 8) {
244 bits |= PL181_STATUS_TXFIFOHALFEMPTY;
246 if (s->fifo_len >= 8) {
247 bits |= PL181_STATUS_RXFIFOHALFFULL;
249 if (s->datactrl & PL181_DATA_DIRECTION) {
250 bits &= PL181_STATUS_RX_FIFO;
251 } else {
252 bits &= PL181_STATUS_TX_FIFO;
254 s->status |= bits;
258 static uint32_t pl181_read(void *opaque, target_phys_addr_t offset)
260 pl181_state *s = (pl181_state *)opaque;
261 uint32_t tmp;
263 if (offset >= 0xfe0 && offset < 0x1000) {
264 return pl181_id[(offset - 0xfe0) >> 2];
266 switch (offset) {
267 case 0x00: /* Power */
268 return s->power;
269 case 0x04: /* Clock */
270 return s->clock;
271 case 0x08: /* Argument */
272 return s->cmdarg;
273 case 0x0c: /* Command */
274 return s->cmd;
275 case 0x10: /* RespCmd */
276 return s->respcmd;
277 case 0x14: /* Response0 */
278 return s->response[0];
279 case 0x18: /* Response1 */
280 return s->response[1];
281 case 0x1c: /* Response2 */
282 return s->response[2];
283 case 0x20: /* Response3 */
284 return s->response[3];
285 case 0x24: /* DataTimer */
286 return s->datatimer;
287 case 0x28: /* DataLength */
288 return s->datalength;
289 case 0x2c: /* DataCtrl */
290 return s->datactrl;
291 case 0x30: /* DataCnt */
292 return s->datacnt;
293 case 0x34: /* Status */
294 tmp = s->status;
295 if (s->linux_hack) {
296 s->linux_hack = 0;
297 pl181_fifo_run(s);
298 pl181_update(s);
300 return tmp;
301 case 0x3c: /* Mask0 */
302 return s->mask[0];
303 case 0x40: /* Mask1 */
304 return s->mask[1];
305 case 0x48: /* FifoCnt */
306 /* The documentation is somewhat vague about exactly what FifoCnt
307 does. On real hardware it appears to be when decrememnted
308 when a word is transfered between the FIFO and the serial
309 data engine. DataCnt is decremented after each byte is
310 transfered between the serial engine and the card.
311 We don't emulate this level of detail, so both can be the same. */
312 tmp = (s->datacnt + 3) >> 2;
313 if (s->linux_hack) {
314 s->linux_hack = 0;
315 pl181_fifo_run(s);
316 pl181_update(s);
318 return tmp;
319 case 0x80: case 0x84: case 0x88: case 0x8c: /* FifoData */
320 case 0x90: case 0x94: case 0x98: case 0x9c:
321 case 0xa0: case 0xa4: case 0xa8: case 0xac:
322 case 0xb0: case 0xb4: case 0xb8: case 0xbc:
323 if (s->fifo_len == 0) {
324 fprintf(stderr, "pl181: Unexpected FIFO read\n");
325 return 0;
326 } else {
327 uint32_t value;
328 value = pl181_fifo_pop(s);
329 s->linux_hack = 1;
330 pl181_fifo_run(s);
331 pl181_update(s);
332 return value;
334 default:
335 cpu_abort (cpu_single_env, "pl181_read: Bad offset %x\n", (int)offset);
336 return 0;
340 static void pl181_write(void *opaque, target_phys_addr_t offset,
341 uint32_t value)
343 pl181_state *s = (pl181_state *)opaque;
345 switch (offset) {
346 case 0x00: /* Power */
347 s->power = value & 0xff;
348 break;
349 case 0x04: /* Clock */
350 s->clock = value & 0xff;
351 break;
352 case 0x08: /* Argument */
353 s->cmdarg = value;
354 break;
355 case 0x0c: /* Command */
356 s->cmd = value;
357 if (s->cmd & PL181_CMD_ENABLE) {
358 if (s->cmd & PL181_CMD_INTERRUPT) {
359 fprintf(stderr, "pl181: Interrupt mode not implemented\n");
360 abort();
361 } if (s->cmd & PL181_CMD_PENDING) {
362 fprintf(stderr, "pl181: Pending commands not implemented\n");
363 abort();
364 } else {
365 pl181_send_command(s);
366 pl181_fifo_run(s);
368 /* The command has completed one way or the other. */
369 s->cmd &= ~PL181_CMD_ENABLE;
371 break;
372 case 0x24: /* DataTimer */
373 s->datatimer = value;
374 break;
375 case 0x28: /* DataLength */
376 s->datalength = value & 0xffff;
377 break;
378 case 0x2c: /* DataCtrl */
379 s->datactrl = value & 0xff;
380 if (value & PL181_DATA_ENABLE) {
381 s->datacnt = s->datalength;
382 pl181_fifo_run(s);
384 break;
385 case 0x38: /* Clear */
386 s->status &= ~(value & 0x7ff);
387 break;
388 case 0x3c: /* Mask0 */
389 s->mask[0] = value;
390 break;
391 case 0x40: /* Mask1 */
392 s->mask[1] = value;
393 break;
394 case 0x80: case 0x84: case 0x88: case 0x8c: /* FifoData */
395 case 0x90: case 0x94: case 0x98: case 0x9c:
396 case 0xa0: case 0xa4: case 0xa8: case 0xac:
397 case 0xb0: case 0xb4: case 0xb8: case 0xbc:
398 if (s->datacnt == 0) {
399 fprintf(stderr, "pl181: Unexpected FIFO write\n");
400 } else {
401 pl181_fifo_push(s, value);
402 pl181_fifo_run(s);
404 break;
405 default:
406 cpu_abort (cpu_single_env, "pl181_write: Bad offset %x\n", (int)offset);
408 pl181_update(s);
411 static CPUReadMemoryFunc *pl181_readfn[] = {
412 pl181_read,
413 pl181_read,
414 pl181_read
417 static CPUWriteMemoryFunc *pl181_writefn[] = {
418 pl181_write,
419 pl181_write,
420 pl181_write
423 static void pl181_reset(void *opaque)
425 pl181_state *s = (pl181_state *)opaque;
427 s->power = 0;
428 s->cmdarg = 0;
429 s->cmd = 0;
430 s->datatimer = 0;
431 s->datalength = 0;
432 s->respcmd = 0;
433 s->response[0] = 0;
434 s->response[1] = 0;
435 s->response[2] = 0;
436 s->response[3] = 0;
437 s->datatimer = 0;
438 s->datalength = 0;
439 s->datactrl = 0;
440 s->datacnt = 0;
441 s->status = 0;
442 s->linux_hack = 0;
443 s->mask[0] = 0;
444 s->mask[1] = 0;
447 void pl181_init(uint32_t base, BlockDriverState *bd,
448 qemu_irq irq0, qemu_irq irq1)
450 int iomemtype;
451 pl181_state *s;
453 s = (pl181_state *)qemu_mallocz(sizeof(pl181_state));
454 iomemtype = cpu_register_io_memory(0, pl181_readfn,
455 pl181_writefn, s);
456 cpu_register_physical_memory(base, 0x00001000, iomemtype);
457 s->card = sd_init(bd, 0);
458 s->irq[0] = irq0;
459 s->irq[1] = irq1;
460 qemu_register_reset(pl181_reset, s);
461 pl181_reset(s);
462 /* ??? Save/restore. */