merage qemu master
[qemu/qemu-JZ.git] / cpu-exec.c
blobe1797862321c6ceacb8cc31b41fa22d7d24433c9
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #define CPU_NO_GLOBAL_REGS
22 #include "exec.h"
23 #include "disas.h"
24 #include "tcg.h"
25 #include "kvm.h"
27 #if !defined(CONFIG_SOFTMMU)
28 #undef EAX
29 #undef ECX
30 #undef EDX
31 #undef EBX
32 #undef ESP
33 #undef EBP
34 #undef ESI
35 #undef EDI
36 #undef EIP
37 #include <signal.h>
38 #ifdef __linux__
39 #include <sys/ucontext.h>
40 #endif
41 #endif
43 #if defined(__sparc__) && !defined(HOST_SOLARIS)
44 // Work around ugly bugs in glibc that mangle global register contents
45 #undef env
46 #define env cpu_single_env
47 #endif
49 int tb_invalidated_flag;
51 //#define DEBUG_EXEC
52 //#define DEBUG_SIGNAL
54 void cpu_loop_exit(void)
56 /* NOTE: the register at this point must be saved by hand because
57 longjmp restore them */
58 regs_to_env();
59 longjmp(env->jmp_env, 1);
62 /* exit the current TB from a signal handler. The host registers are
63 restored in a state compatible with the CPU emulator
65 void cpu_resume_from_signal(CPUState *env1, void *puc)
67 #if !defined(CONFIG_SOFTMMU)
68 #ifdef __linux__
69 struct ucontext *uc = puc;
70 #elif defined(__OpenBSD__)
71 struct sigcontext *uc = puc;
72 #endif
73 #endif
75 env = env1;
77 /* XXX: restore cpu registers saved in host registers */
79 #if !defined(CONFIG_SOFTMMU)
80 if (puc) {
81 /* XXX: use siglongjmp ? */
82 #ifdef __linux__
83 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
84 #elif defined(__OpenBSD__)
85 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
86 #endif
88 #endif
89 env->exception_index = -1;
90 longjmp(env->jmp_env, 1);
93 /* Execute the code without caching the generated code. An interpreter
94 could be used if available. */
95 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
97 unsigned long next_tb;
98 TranslationBlock *tb;
100 /* Should never happen.
101 We only end up here when an existing TB is too long. */
102 if (max_cycles > CF_COUNT_MASK)
103 max_cycles = CF_COUNT_MASK;
105 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
106 max_cycles);
107 env->current_tb = tb;
108 /* execute the generated code */
109 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
111 if ((next_tb & 3) == 2) {
112 /* Restore PC. This may happen if async event occurs before
113 the TB starts executing. */
114 cpu_pc_from_tb(env, tb);
116 tb_phys_invalidate(tb, -1);
117 tb_free(tb);
120 static TranslationBlock *tb_find_slow(target_ulong pc,
121 target_ulong cs_base,
122 uint64_t flags)
124 TranslationBlock *tb, **ptb1;
125 unsigned int h;
126 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
128 tb_invalidated_flag = 0;
130 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
132 /* find translated block using physical mappings */
133 phys_pc = get_phys_addr_code(env, pc);
134 phys_page1 = phys_pc & TARGET_PAGE_MASK;
135 phys_page2 = -1;
136 h = tb_phys_hash_func(phys_pc);
137 ptb1 = &tb_phys_hash[h];
138 for(;;) {
139 tb = *ptb1;
140 if (!tb)
141 goto not_found;
142 if (tb->pc == pc &&
143 tb->page_addr[0] == phys_page1 &&
144 tb->cs_base == cs_base &&
145 tb->flags == flags) {
146 /* check next page if needed */
147 if (tb->page_addr[1] != -1) {
148 virt_page2 = (pc & TARGET_PAGE_MASK) +
149 TARGET_PAGE_SIZE;
150 phys_page2 = get_phys_addr_code(env, virt_page2);
151 if (tb->page_addr[1] == phys_page2)
152 goto found;
153 } else {
154 goto found;
157 ptb1 = &tb->phys_hash_next;
159 not_found:
160 /* if no translated code available, then translate it now */
161 tb = tb_gen_code(env, pc, cs_base, flags, 0);
163 found:
164 /* we add the TB in the virtual pc hash table */
165 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
166 return tb;
169 static inline TranslationBlock *tb_find_fast(void)
171 TranslationBlock *tb;
172 target_ulong cs_base, pc;
173 int flags;
175 /* we record a subset of the CPU state. It will
176 always be the same before a given translated block
177 is executed. */
178 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
179 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
180 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
181 tb->flags != flags)) {
182 tb = tb_find_slow(pc, cs_base, flags);
184 return tb;
187 static CPUDebugExcpHandler *debug_excp_handler;
189 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
191 CPUDebugExcpHandler *old_handler = debug_excp_handler;
193 debug_excp_handler = handler;
194 return old_handler;
197 static void cpu_handle_debug_exception(CPUState *env)
199 CPUWatchpoint *wp;
201 if (!env->watchpoint_hit)
202 TAILQ_FOREACH(wp, &env->watchpoints, entry)
203 wp->flags &= ~BP_WATCHPOINT_HIT;
205 if (debug_excp_handler)
206 debug_excp_handler(env);
209 /* main execution loop */
211 int cpu_exec(CPUState *env1)
213 #define DECLARE_HOST_REGS 1
214 #include "hostregs_helper.h"
215 int ret, interrupt_request;
216 TranslationBlock *tb;
217 uint8_t *tc_ptr;
218 unsigned long next_tb;
220 if (cpu_halted(env1) == EXCP_HALTED)
221 return EXCP_HALTED;
223 cpu_single_env = env1;
225 /* first we save global registers */
226 #define SAVE_HOST_REGS 1
227 #include "hostregs_helper.h"
228 env = env1;
230 env_to_regs();
231 #if defined(TARGET_I386)
232 /* put eflags in CPU temporary format */
233 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
234 DF = 1 - (2 * ((env->eflags >> 10) & 1));
235 CC_OP = CC_OP_EFLAGS;
236 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
237 #elif defined(TARGET_SPARC)
238 #elif defined(TARGET_M68K)
239 env->cc_op = CC_OP_FLAGS;
240 env->cc_dest = env->sr & 0xf;
241 env->cc_x = (env->sr >> 4) & 1;
242 #elif defined(TARGET_ALPHA)
243 #elif defined(TARGET_ARM)
244 #elif defined(TARGET_PPC)
245 #elif defined(TARGET_MIPS)
246 #elif defined(TARGET_SH4)
247 #elif defined(TARGET_CRIS)
248 /* XXXXX */
249 #else
250 #error unsupported target CPU
251 #endif
252 env->exception_index = -1;
254 /* prepare setjmp context for exception handling */
255 for(;;) {
256 if (setjmp(env->jmp_env) == 0) {
257 env->current_tb = NULL;
258 /* if an exception is pending, we execute it here */
259 if (env->exception_index >= 0) {
260 if (env->exception_index >= EXCP_INTERRUPT) {
261 /* exit request from the cpu execution loop */
262 ret = env->exception_index;
263 if (ret == EXCP_DEBUG)
264 cpu_handle_debug_exception(env);
265 break;
266 } else if (env->user_mode_only) {
267 /* if user mode only, we simulate a fake exception
268 which will be handled outside the cpu execution
269 loop */
270 #if defined(TARGET_I386)
271 do_interrupt_user(env->exception_index,
272 env->exception_is_int,
273 env->error_code,
274 env->exception_next_eip);
275 /* successfully delivered */
276 env->old_exception = -1;
277 #endif
278 ret = env->exception_index;
279 break;
280 } else {
281 #if defined(TARGET_I386)
282 /* simulate a real cpu exception. On i386, it can
283 trigger new exceptions, but we do not handle
284 double or triple faults yet. */
285 do_interrupt(env->exception_index,
286 env->exception_is_int,
287 env->error_code,
288 env->exception_next_eip, 0);
289 /* successfully delivered */
290 env->old_exception = -1;
291 #elif defined(TARGET_PPC)
292 do_interrupt(env);
293 #elif defined(TARGET_MIPS)
294 do_interrupt(env);
295 #elif defined(TARGET_SPARC)
296 do_interrupt(env);
297 #elif defined(TARGET_ARM)
298 do_interrupt(env);
299 #elif defined(TARGET_SH4)
300 do_interrupt(env);
301 #elif defined(TARGET_ALPHA)
302 do_interrupt(env);
303 #elif defined(TARGET_CRIS)
304 do_interrupt(env);
305 #elif defined(TARGET_M68K)
306 do_interrupt(0);
307 #endif
309 env->exception_index = -1;
311 #ifdef USE_KQEMU
312 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
313 int ret;
314 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
315 ret = kqemu_cpu_exec(env);
316 /* put eflags in CPU temporary format */
317 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
318 DF = 1 - (2 * ((env->eflags >> 10) & 1));
319 CC_OP = CC_OP_EFLAGS;
320 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
321 if (ret == 1) {
322 /* exception */
323 longjmp(env->jmp_env, 1);
324 } else if (ret == 2) {
325 /* softmmu execution needed */
326 } else {
327 if (env->interrupt_request != 0) {
328 /* hardware interrupt will be executed just after */
329 } else {
330 /* otherwise, we restart */
331 longjmp(env->jmp_env, 1);
335 #endif
337 if (kvm_enabled()) {
338 kvm_cpu_exec(env);
339 longjmp(env->jmp_env, 1);
342 next_tb = 0; /* force lookup of first TB */
343 for(;;) {
344 interrupt_request = env->interrupt_request;
345 if (unlikely(interrupt_request)) {
346 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
347 /* Mask out external interrupts for this step. */
348 interrupt_request &= ~(CPU_INTERRUPT_HARD |
349 CPU_INTERRUPT_FIQ |
350 CPU_INTERRUPT_SMI |
351 CPU_INTERRUPT_NMI);
353 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
354 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
355 env->exception_index = EXCP_DEBUG;
356 cpu_loop_exit();
358 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
359 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
360 if (interrupt_request & CPU_INTERRUPT_HALT) {
361 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
362 env->halted = 1;
363 env->exception_index = EXCP_HLT;
364 cpu_loop_exit();
366 #endif
367 #if defined(TARGET_I386)
368 if (env->hflags2 & HF2_GIF_MASK) {
369 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
370 !(env->hflags & HF_SMM_MASK)) {
371 svm_check_intercept(SVM_EXIT_SMI);
372 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
373 do_smm_enter();
374 next_tb = 0;
375 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
376 !(env->hflags2 & HF2_NMI_MASK)) {
377 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
378 env->hflags2 |= HF2_NMI_MASK;
379 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
380 next_tb = 0;
381 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
382 (((env->hflags2 & HF2_VINTR_MASK) &&
383 (env->hflags2 & HF2_HIF_MASK)) ||
384 (!(env->hflags2 & HF2_VINTR_MASK) &&
385 (env->eflags & IF_MASK &&
386 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
387 int intno;
388 svm_check_intercept(SVM_EXIT_INTR);
389 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
390 intno = cpu_get_pic_interrupt(env);
391 if (loglevel & CPU_LOG_TB_IN_ASM) {
392 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
394 do_interrupt(intno, 0, 0, 0, 1);
395 /* ensure that no TB jump will be modified as
396 the program flow was changed */
397 next_tb = 0;
398 #if !defined(CONFIG_USER_ONLY)
399 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
400 (env->eflags & IF_MASK) &&
401 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
402 int intno;
403 /* FIXME: this should respect TPR */
404 svm_check_intercept(SVM_EXIT_VINTR);
405 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
406 if (loglevel & CPU_LOG_TB_IN_ASM)
407 fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
408 do_interrupt(intno, 0, 0, 0, 1);
409 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
410 next_tb = 0;
411 #endif
414 #elif defined(TARGET_PPC)
415 #if 0
416 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
417 cpu_ppc_reset(env);
419 #endif
420 if (interrupt_request & CPU_INTERRUPT_HARD) {
421 ppc_hw_interrupt(env);
422 if (env->pending_interrupts == 0)
423 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
424 next_tb = 0;
426 #elif defined(TARGET_MIPS)
427 if (interrupt_request & CPU_INTERRUPT_HARD)
429 if (env->CP0_Cause&0x400)
431 printf("HARD INT \n");
432 printf("env->CP0_Status %x env->CP0_Cause %x CP0Ca_IP_mask %x \n",env->CP0_Status,env->CP0_Cause,CP0Ca_IP_mask);
433 printf("CP0St_IE %x CP0St_EXL %x CP0St_ERL %x \n",CP0St_IE,CP0St_EXL,CP0St_ERL);
434 printf("env->hflags %x MIPS_HFLAG_DM %x \n",env->hflags ,MIPS_HFLAG_DM);
437 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
438 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
439 (env->CP0_Status & (1 << CP0St_IE)) &&
440 !(env->CP0_Status & (1 << CP0St_EXL)) &&
441 !(env->CP0_Status & (1 << CP0St_ERL)) &&
442 !(env->hflags & MIPS_HFLAG_DM)) {
443 /* Raise it */
444 env->exception_index = EXCP_EXT_INTERRUPT;
445 env->error_code = 0;
446 do_interrupt(env);
447 next_tb = 0;
449 #elif defined(TARGET_SPARC)
450 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
451 (env->psret != 0)) {
452 int pil = env->interrupt_index & 15;
453 int type = env->interrupt_index & 0xf0;
455 if (((type == TT_EXTINT) &&
456 (pil == 15 || pil > env->psrpil)) ||
457 type != TT_EXTINT) {
458 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
459 env->exception_index = env->interrupt_index;
460 do_interrupt(env);
461 env->interrupt_index = 0;
462 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
463 cpu_check_irqs(env);
464 #endif
465 next_tb = 0;
467 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
468 //do_interrupt(0, 0, 0, 0, 0);
469 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
471 #elif defined(TARGET_ARM)
472 if (interrupt_request & CPU_INTERRUPT_FIQ
473 && !(env->uncached_cpsr & CPSR_F)) {
474 env->exception_index = EXCP_FIQ;
475 do_interrupt(env);
476 next_tb = 0;
478 /* ARMv7-M interrupt return works by loading a magic value
479 into the PC. On real hardware the load causes the
480 return to occur. The qemu implementation performs the
481 jump normally, then does the exception return when the
482 CPU tries to execute code at the magic address.
483 This will cause the magic PC value to be pushed to
484 the stack if an interrupt occured at the wrong time.
485 We avoid this by disabling interrupts when
486 pc contains a magic address. */
487 if (interrupt_request & CPU_INTERRUPT_HARD
488 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
489 || !(env->uncached_cpsr & CPSR_I))) {
490 env->exception_index = EXCP_IRQ;
491 do_interrupt(env);
492 next_tb = 0;
494 #elif defined(TARGET_SH4)
495 if (interrupt_request & CPU_INTERRUPT_HARD) {
496 do_interrupt(env);
497 next_tb = 0;
499 #elif defined(TARGET_ALPHA)
500 if (interrupt_request & CPU_INTERRUPT_HARD) {
501 do_interrupt(env);
502 next_tb = 0;
504 #elif defined(TARGET_CRIS)
505 if (interrupt_request & CPU_INTERRUPT_HARD
506 && (env->pregs[PR_CCS] & I_FLAG)) {
507 env->exception_index = EXCP_IRQ;
508 do_interrupt(env);
509 next_tb = 0;
511 if (interrupt_request & CPU_INTERRUPT_NMI
512 && (env->pregs[PR_CCS] & M_FLAG)) {
513 env->exception_index = EXCP_NMI;
514 do_interrupt(env);
515 next_tb = 0;
517 #elif defined(TARGET_M68K)
518 if (interrupt_request & CPU_INTERRUPT_HARD
519 && ((env->sr & SR_I) >> SR_I_SHIFT)
520 < env->pending_level) {
521 /* Real hardware gets the interrupt vector via an
522 IACK cycle at this point. Current emulated
523 hardware doesn't rely on this, so we
524 provide/save the vector when the interrupt is
525 first signalled. */
526 env->exception_index = env->pending_vector;
527 do_interrupt(1);
528 next_tb = 0;
530 #endif
531 /* Don't use the cached interupt_request value,
532 do_interrupt may have updated the EXITTB flag. */
533 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
534 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
535 /* ensure that no TB jump will be modified as
536 the program flow was changed */
537 next_tb = 0;
539 if (interrupt_request & CPU_INTERRUPT_EXIT) {
540 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
541 env->exception_index = EXCP_INTERRUPT;
542 cpu_loop_exit();
545 #ifdef DEBUG_EXEC
546 if ((loglevel & CPU_LOG_TB_CPU)) {
547 /* restore flags in standard format */
548 regs_to_env();
549 #if defined(TARGET_I386)
550 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
551 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
552 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
553 #elif defined(TARGET_ARM)
554 cpu_dump_state(env, logfile, fprintf, 0);
555 #elif defined(TARGET_SPARC)
556 cpu_dump_state(env, logfile, fprintf, 0);
557 #elif defined(TARGET_PPC)
558 cpu_dump_state(env, logfile, fprintf, 0);
559 #elif defined(TARGET_M68K)
560 cpu_m68k_flush_flags(env, env->cc_op);
561 env->cc_op = CC_OP_FLAGS;
562 env->sr = (env->sr & 0xffe0)
563 | env->cc_dest | (env->cc_x << 4);
564 cpu_dump_state(env, logfile, fprintf, 0);
565 #elif defined(TARGET_MIPS)
566 cpu_dump_state(env, logfile, fprintf, 0);
567 #elif defined(TARGET_SH4)
568 cpu_dump_state(env, logfile, fprintf, 0);
569 #elif defined(TARGET_ALPHA)
570 cpu_dump_state(env, logfile, fprintf, 0);
571 #elif defined(TARGET_CRIS)
572 cpu_dump_state(env, logfile, fprintf, 0);
573 #else
574 #error unsupported target CPU
575 #endif
577 #endif
578 spin_lock(&tb_lock);
579 tb = tb_find_fast();
580 /* Note: we do it here to avoid a gcc bug on Mac OS X when
581 doing it in tb_find_slow */
582 if (tb_invalidated_flag) {
583 /* as some TB could have been invalidated because
584 of memory exceptions while generating the code, we
585 must recompute the hash index here */
586 next_tb = 0;
587 tb_invalidated_flag = 0;
589 #ifdef DEBUG_EXEC
590 if ((loglevel & CPU_LOG_EXEC)) {
591 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
592 (long)tb->tc_ptr, tb->pc,
593 lookup_symbol(tb->pc));
595 #endif
596 /* see if we can patch the calling TB. When the TB
597 spans two pages, we cannot safely do a direct
598 jump. */
600 if (next_tb != 0 &&
601 #ifdef USE_KQEMU
602 (env->kqemu_enabled != 2) &&
603 #endif
604 tb->page_addr[1] == -1) {
605 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
608 spin_unlock(&tb_lock);
609 env->current_tb = tb;
611 /* cpu_interrupt might be called while translating the
612 TB, but before it is linked into a potentially
613 infinite loop and becomes env->current_tb. Avoid
614 starting execution if there is a pending interrupt. */
615 if (unlikely (env->interrupt_request & CPU_INTERRUPT_EXIT))
616 env->current_tb = NULL;
618 while (env->current_tb) {
619 tc_ptr = tb->tc_ptr;
620 /* execute the generated code */
621 #if defined(__sparc__) && !defined(HOST_SOLARIS)
622 #undef env
623 env = cpu_single_env;
624 #define env cpu_single_env
625 #endif
626 next_tb = tcg_qemu_tb_exec(tc_ptr);
627 env->current_tb = NULL;
628 if ((next_tb & 3) == 2) {
629 /* Instruction counter expired. */
630 int insns_left;
631 tb = (TranslationBlock *)(long)(next_tb & ~3);
632 /* Restore PC. */
633 cpu_pc_from_tb(env, tb);
634 insns_left = env->icount_decr.u32;
635 if (env->icount_extra && insns_left >= 0) {
636 /* Refill decrementer and continue execution. */
637 env->icount_extra += insns_left;
638 if (env->icount_extra > 0xffff) {
639 insns_left = 0xffff;
640 } else {
641 insns_left = env->icount_extra;
643 env->icount_extra -= insns_left;
644 env->icount_decr.u16.low = insns_left;
645 } else {
646 if (insns_left > 0) {
647 /* Execute remaining instructions. */
648 cpu_exec_nocache(insns_left, tb);
650 env->exception_index = EXCP_INTERRUPT;
651 next_tb = 0;
652 cpu_loop_exit();
656 /* reset soft MMU for next block (it can currently
657 only be set by a memory fault) */
658 #if defined(USE_KQEMU)
659 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
660 if (kqemu_is_ok(env) &&
661 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
662 cpu_loop_exit();
664 #endif
665 } /* for(;;) */
666 } else {
667 env_to_regs();
669 } /* for(;;) */
672 #if defined(TARGET_I386)
673 /* restore flags in standard format */
674 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
675 #elif defined(TARGET_ARM)
676 /* XXX: Save/restore host fpu exception state?. */
677 #elif defined(TARGET_SPARC)
678 #elif defined(TARGET_PPC)
679 #elif defined(TARGET_M68K)
680 cpu_m68k_flush_flags(env, env->cc_op);
681 env->cc_op = CC_OP_FLAGS;
682 env->sr = (env->sr & 0xffe0)
683 | env->cc_dest | (env->cc_x << 4);
684 #elif defined(TARGET_MIPS)
685 #elif defined(TARGET_SH4)
686 #elif defined(TARGET_ALPHA)
687 #elif defined(TARGET_CRIS)
688 /* XXXXX */
689 #else
690 #error unsupported target CPU
691 #endif
693 /* restore global registers */
694 #include "hostregs_helper.h"
696 /* fail safe : never use cpu_single_env outside cpu_exec() */
697 cpu_single_env = NULL;
698 return ret;
701 /* must only be called from the generated code as an exception can be
702 generated */
703 void tb_invalidate_page_range(target_ulong start, target_ulong end)
705 /* XXX: cannot enable it yet because it yields to MMU exception
706 where NIP != read address on PowerPC */
707 #if 0
708 target_ulong phys_addr;
709 phys_addr = get_phys_addr_code(env, start);
710 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
711 #endif
714 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
716 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
718 CPUX86State *saved_env;
720 saved_env = env;
721 env = s;
722 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
723 selector &= 0xffff;
724 cpu_x86_load_seg_cache(env, seg_reg, selector,
725 (selector << 4), 0xffff, 0);
726 } else {
727 helper_load_seg(seg_reg, selector);
729 env = saved_env;
732 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
734 CPUX86State *saved_env;
736 saved_env = env;
737 env = s;
739 helper_fsave(ptr, data32);
741 env = saved_env;
744 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
746 CPUX86State *saved_env;
748 saved_env = env;
749 env = s;
751 helper_frstor(ptr, data32);
753 env = saved_env;
756 #endif /* TARGET_I386 */
758 #if !defined(CONFIG_SOFTMMU)
760 #if defined(TARGET_I386)
762 /* 'pc' is the host PC at which the exception was raised. 'address' is
763 the effective address of the memory exception. 'is_write' is 1 if a
764 write caused the exception and otherwise 0'. 'old_set' is the
765 signal set which should be restored */
766 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
767 int is_write, sigset_t *old_set,
768 void *puc)
770 TranslationBlock *tb;
771 int ret;
773 if (cpu_single_env)
774 env = cpu_single_env; /* XXX: find a correct solution for multithread */
775 #if defined(DEBUG_SIGNAL)
776 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
777 pc, address, is_write, *(unsigned long *)old_set);
778 #endif
779 /* XXX: locking issue */
780 if (is_write && page_unprotect(h2g(address), pc, puc)) {
781 return 1;
784 /* see if it is an MMU fault */
785 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
786 if (ret < 0)
787 return 0; /* not an MMU fault */
788 if (ret == 0)
789 return 1; /* the MMU fault was handled without causing real CPU fault */
790 /* now we have a real cpu fault */
791 tb = tb_find_pc(pc);
792 if (tb) {
793 /* the PC is inside the translated code. It means that we have
794 a virtual CPU fault */
795 cpu_restore_state(tb, env, pc, puc);
797 if (ret == 1) {
798 #if 0
799 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
800 env->eip, env->cr[2], env->error_code);
801 #endif
802 /* we restore the process signal mask as the sigreturn should
803 do it (XXX: use sigsetjmp) */
804 sigprocmask(SIG_SETMASK, old_set, NULL);
805 raise_exception_err(env->exception_index, env->error_code);
806 } else {
807 /* activate soft MMU for this block */
808 env->hflags |= HF_SOFTMMU_MASK;
809 cpu_resume_from_signal(env, puc);
811 /* never comes here */
812 return 1;
815 #elif defined(TARGET_ARM)
816 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
817 int is_write, sigset_t *old_set,
818 void *puc)
820 TranslationBlock *tb;
821 int ret;
823 if (cpu_single_env)
824 env = cpu_single_env; /* XXX: find a correct solution for multithread */
825 #if defined(DEBUG_SIGNAL)
826 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
827 pc, address, is_write, *(unsigned long *)old_set);
828 #endif
829 /* XXX: locking issue */
830 if (is_write && page_unprotect(h2g(address), pc, puc)) {
831 return 1;
833 /* see if it is an MMU fault */
834 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
835 if (ret < 0)
836 return 0; /* not an MMU fault */
837 if (ret == 0)
838 return 1; /* the MMU fault was handled without causing real CPU fault */
839 /* now we have a real cpu fault */
840 tb = tb_find_pc(pc);
841 if (tb) {
842 /* the PC is inside the translated code. It means that we have
843 a virtual CPU fault */
844 cpu_restore_state(tb, env, pc, puc);
846 /* we restore the process signal mask as the sigreturn should
847 do it (XXX: use sigsetjmp) */
848 sigprocmask(SIG_SETMASK, old_set, NULL);
849 cpu_loop_exit();
850 /* never comes here */
851 return 1;
853 #elif defined(TARGET_SPARC)
854 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
855 int is_write, sigset_t *old_set,
856 void *puc)
858 TranslationBlock *tb;
859 int ret;
861 if (cpu_single_env)
862 env = cpu_single_env; /* XXX: find a correct solution for multithread */
863 #if defined(DEBUG_SIGNAL)
864 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
865 pc, address, is_write, *(unsigned long *)old_set);
866 #endif
867 /* XXX: locking issue */
868 if (is_write && page_unprotect(h2g(address), pc, puc)) {
869 return 1;
871 /* see if it is an MMU fault */
872 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
873 if (ret < 0)
874 return 0; /* not an MMU fault */
875 if (ret == 0)
876 return 1; /* the MMU fault was handled without causing real CPU fault */
877 /* now we have a real cpu fault */
878 tb = tb_find_pc(pc);
879 if (tb) {
880 /* the PC is inside the translated code. It means that we have
881 a virtual CPU fault */
882 cpu_restore_state(tb, env, pc, puc);
884 /* we restore the process signal mask as the sigreturn should
885 do it (XXX: use sigsetjmp) */
886 sigprocmask(SIG_SETMASK, old_set, NULL);
887 cpu_loop_exit();
888 /* never comes here */
889 return 1;
891 #elif defined (TARGET_PPC)
892 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
893 int is_write, sigset_t *old_set,
894 void *puc)
896 TranslationBlock *tb;
897 int ret;
899 if (cpu_single_env)
900 env = cpu_single_env; /* XXX: find a correct solution for multithread */
901 #if defined(DEBUG_SIGNAL)
902 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
903 pc, address, is_write, *(unsigned long *)old_set);
904 #endif
905 /* XXX: locking issue */
906 if (is_write && page_unprotect(h2g(address), pc, puc)) {
907 return 1;
910 /* see if it is an MMU fault */
911 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
912 if (ret < 0)
913 return 0; /* not an MMU fault */
914 if (ret == 0)
915 return 1; /* the MMU fault was handled without causing real CPU fault */
917 /* now we have a real cpu fault */
918 tb = tb_find_pc(pc);
919 if (tb) {
920 /* the PC is inside the translated code. It means that we have
921 a virtual CPU fault */
922 cpu_restore_state(tb, env, pc, puc);
924 if (ret == 1) {
925 #if 0
926 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
927 env->nip, env->error_code, tb);
928 #endif
929 /* we restore the process signal mask as the sigreturn should
930 do it (XXX: use sigsetjmp) */
931 sigprocmask(SIG_SETMASK, old_set, NULL);
932 cpu_loop_exit();
933 } else {
934 /* activate soft MMU for this block */
935 cpu_resume_from_signal(env, puc);
937 /* never comes here */
938 return 1;
941 #elif defined(TARGET_M68K)
942 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
943 int is_write, sigset_t *old_set,
944 void *puc)
946 TranslationBlock *tb;
947 int ret;
949 if (cpu_single_env)
950 env = cpu_single_env; /* XXX: find a correct solution for multithread */
951 #if defined(DEBUG_SIGNAL)
952 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
953 pc, address, is_write, *(unsigned long *)old_set);
954 #endif
955 /* XXX: locking issue */
956 if (is_write && page_unprotect(address, pc, puc)) {
957 return 1;
959 /* see if it is an MMU fault */
960 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
961 if (ret < 0)
962 return 0; /* not an MMU fault */
963 if (ret == 0)
964 return 1; /* the MMU fault was handled without causing real CPU fault */
965 /* now we have a real cpu fault */
966 tb = tb_find_pc(pc);
967 if (tb) {
968 /* the PC is inside the translated code. It means that we have
969 a virtual CPU fault */
970 cpu_restore_state(tb, env, pc, puc);
972 /* we restore the process signal mask as the sigreturn should
973 do it (XXX: use sigsetjmp) */
974 sigprocmask(SIG_SETMASK, old_set, NULL);
975 cpu_loop_exit();
976 /* never comes here */
977 return 1;
980 #elif defined (TARGET_MIPS)
981 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
982 int is_write, sigset_t *old_set,
983 void *puc)
985 TranslationBlock *tb;
986 int ret;
988 if (cpu_single_env)
989 env = cpu_single_env; /* XXX: find a correct solution for multithread */
990 #if defined(DEBUG_SIGNAL)
991 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
992 pc, address, is_write, *(unsigned long *)old_set);
993 #endif
994 /* XXX: locking issue */
995 if (is_write && page_unprotect(h2g(address), pc, puc)) {
996 return 1;
999 /* see if it is an MMU fault */
1000 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1001 if (ret < 0)
1002 return 0; /* not an MMU fault */
1003 if (ret == 0)
1004 return 1; /* the MMU fault was handled without causing real CPU fault */
1006 /* now we have a real cpu fault */
1007 tb = tb_find_pc(pc);
1008 if (tb) {
1009 /* the PC is inside the translated code. It means that we have
1010 a virtual CPU fault */
1011 cpu_restore_state(tb, env, pc, puc);
1013 if (ret == 1) {
1014 #if 0
1015 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1016 env->PC, env->error_code, tb);
1017 #endif
1018 /* we restore the process signal mask as the sigreturn should
1019 do it (XXX: use sigsetjmp) */
1020 sigprocmask(SIG_SETMASK, old_set, NULL);
1021 cpu_loop_exit();
1022 } else {
1023 /* activate soft MMU for this block */
1024 cpu_resume_from_signal(env, puc);
1026 /* never comes here */
1027 return 1;
1030 #elif defined (TARGET_SH4)
1031 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1032 int is_write, sigset_t *old_set,
1033 void *puc)
1035 TranslationBlock *tb;
1036 int ret;
1038 if (cpu_single_env)
1039 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1040 #if defined(DEBUG_SIGNAL)
1041 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1042 pc, address, is_write, *(unsigned long *)old_set);
1043 #endif
1044 /* XXX: locking issue */
1045 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1046 return 1;
1049 /* see if it is an MMU fault */
1050 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1051 if (ret < 0)
1052 return 0; /* not an MMU fault */
1053 if (ret == 0)
1054 return 1; /* the MMU fault was handled without causing real CPU fault */
1056 /* now we have a real cpu fault */
1057 tb = tb_find_pc(pc);
1058 if (tb) {
1059 /* the PC is inside the translated code. It means that we have
1060 a virtual CPU fault */
1061 cpu_restore_state(tb, env, pc, puc);
1063 #if 0
1064 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1065 env->nip, env->error_code, tb);
1066 #endif
1067 /* we restore the process signal mask as the sigreturn should
1068 do it (XXX: use sigsetjmp) */
1069 sigprocmask(SIG_SETMASK, old_set, NULL);
1070 cpu_loop_exit();
1071 /* never comes here */
1072 return 1;
1075 #elif defined (TARGET_ALPHA)
1076 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1077 int is_write, sigset_t *old_set,
1078 void *puc)
1080 TranslationBlock *tb;
1081 int ret;
1083 if (cpu_single_env)
1084 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1085 #if defined(DEBUG_SIGNAL)
1086 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1087 pc, address, is_write, *(unsigned long *)old_set);
1088 #endif
1089 /* XXX: locking issue */
1090 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1091 return 1;
1094 /* see if it is an MMU fault */
1095 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1096 if (ret < 0)
1097 return 0; /* not an MMU fault */
1098 if (ret == 0)
1099 return 1; /* the MMU fault was handled without causing real CPU fault */
1101 /* now we have a real cpu fault */
1102 tb = tb_find_pc(pc);
1103 if (tb) {
1104 /* the PC is inside the translated code. It means that we have
1105 a virtual CPU fault */
1106 cpu_restore_state(tb, env, pc, puc);
1108 #if 0
1109 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1110 env->nip, env->error_code, tb);
1111 #endif
1112 /* we restore the process signal mask as the sigreturn should
1113 do it (XXX: use sigsetjmp) */
1114 sigprocmask(SIG_SETMASK, old_set, NULL);
1115 cpu_loop_exit();
1116 /* never comes here */
1117 return 1;
1119 #elif defined (TARGET_CRIS)
1120 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1121 int is_write, sigset_t *old_set,
1122 void *puc)
1124 TranslationBlock *tb;
1125 int ret;
1127 if (cpu_single_env)
1128 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1129 #if defined(DEBUG_SIGNAL)
1130 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1131 pc, address, is_write, *(unsigned long *)old_set);
1132 #endif
1133 /* XXX: locking issue */
1134 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1135 return 1;
1138 /* see if it is an MMU fault */
1139 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1140 if (ret < 0)
1141 return 0; /* not an MMU fault */
1142 if (ret == 0)
1143 return 1; /* the MMU fault was handled without causing real CPU fault */
1145 /* now we have a real cpu fault */
1146 tb = tb_find_pc(pc);
1147 if (tb) {
1148 /* the PC is inside the translated code. It means that we have
1149 a virtual CPU fault */
1150 cpu_restore_state(tb, env, pc, puc);
1152 /* we restore the process signal mask as the sigreturn should
1153 do it (XXX: use sigsetjmp) */
1154 sigprocmask(SIG_SETMASK, old_set, NULL);
1155 cpu_loop_exit();
1156 /* never comes here */
1157 return 1;
1160 #else
1161 #error unsupported target CPU
1162 #endif
1164 #if defined(__i386__)
1166 #if defined(__APPLE__)
1167 # include <sys/ucontext.h>
1169 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1170 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1171 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1172 #else
1173 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1174 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1175 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1176 #endif
1178 int cpu_signal_handler(int host_signum, void *pinfo,
1179 void *puc)
1181 siginfo_t *info = pinfo;
1182 struct ucontext *uc = puc;
1183 unsigned long pc;
1184 int trapno;
1186 #ifndef REG_EIP
1187 /* for glibc 2.1 */
1188 #define REG_EIP EIP
1189 #define REG_ERR ERR
1190 #define REG_TRAPNO TRAPNO
1191 #endif
1192 pc = EIP_sig(uc);
1193 trapno = TRAP_sig(uc);
1194 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1195 trapno == 0xe ?
1196 (ERROR_sig(uc) >> 1) & 1 : 0,
1197 &uc->uc_sigmask, puc);
1200 #elif defined(__x86_64__)
1202 #ifdef __NetBSD__
1203 #define REG_ERR _REG_ERR
1204 #define REG_TRAPNO _REG_TRAPNO
1206 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)]
1207 #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc)
1208 #else
1209 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)]
1210 #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP)
1211 #endif
1213 int cpu_signal_handler(int host_signum, void *pinfo,
1214 void *puc)
1216 siginfo_t *info = pinfo;
1217 unsigned long pc;
1218 #ifdef __NetBSD__
1219 ucontext_t *uc = puc;
1220 #else
1221 struct ucontext *uc = puc;
1222 #endif
1224 pc = QEMU_UC_MACHINE_PC(uc);
1225 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1226 QEMU_UC_MCONTEXT_GREGS(uc, REG_TRAPNO) == 0xe ?
1227 (QEMU_UC_MCONTEXT_GREGS(uc, REG_ERR) >> 1) & 1 : 0,
1228 &uc->uc_sigmask, puc);
1231 #elif defined(__powerpc__)
1233 /***********************************************************************
1234 * signal context platform-specific definitions
1235 * From Wine
1237 #ifdef linux
1238 /* All Registers access - only for local access */
1239 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1240 /* Gpr Registers access */
1241 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1242 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1243 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1244 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1245 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1246 # define LR_sig(context) REG_sig(link, context) /* Link register */
1247 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1248 /* Float Registers access */
1249 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1250 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1251 /* Exception Registers access */
1252 # define DAR_sig(context) REG_sig(dar, context)
1253 # define DSISR_sig(context) REG_sig(dsisr, context)
1254 # define TRAP_sig(context) REG_sig(trap, context)
1255 #endif /* linux */
1257 #ifdef __APPLE__
1258 # include <sys/ucontext.h>
1259 typedef struct ucontext SIGCONTEXT;
1260 /* All Registers access - only for local access */
1261 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1262 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1263 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1264 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1265 /* Gpr Registers access */
1266 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1267 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1268 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1269 # define CTR_sig(context) REG_sig(ctr, context)
1270 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1271 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1272 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1273 /* Float Registers access */
1274 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1275 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1276 /* Exception Registers access */
1277 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1278 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1279 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1280 #endif /* __APPLE__ */
1282 int cpu_signal_handler(int host_signum, void *pinfo,
1283 void *puc)
1285 siginfo_t *info = pinfo;
1286 struct ucontext *uc = puc;
1287 unsigned long pc;
1288 int is_write;
1290 pc = IAR_sig(uc);
1291 is_write = 0;
1292 #if 0
1293 /* ppc 4xx case */
1294 if (DSISR_sig(uc) & 0x00800000)
1295 is_write = 1;
1296 #else
1297 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1298 is_write = 1;
1299 #endif
1300 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1301 is_write, &uc->uc_sigmask, puc);
1304 #elif defined(__alpha__)
1306 int cpu_signal_handler(int host_signum, void *pinfo,
1307 void *puc)
1309 siginfo_t *info = pinfo;
1310 struct ucontext *uc = puc;
1311 uint32_t *pc = uc->uc_mcontext.sc_pc;
1312 uint32_t insn = *pc;
1313 int is_write = 0;
1315 /* XXX: need kernel patch to get write flag faster */
1316 switch (insn >> 26) {
1317 case 0x0d: // stw
1318 case 0x0e: // stb
1319 case 0x0f: // stq_u
1320 case 0x24: // stf
1321 case 0x25: // stg
1322 case 0x26: // sts
1323 case 0x27: // stt
1324 case 0x2c: // stl
1325 case 0x2d: // stq
1326 case 0x2e: // stl_c
1327 case 0x2f: // stq_c
1328 is_write = 1;
1331 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1332 is_write, &uc->uc_sigmask, puc);
1334 #elif defined(__sparc__)
1336 int cpu_signal_handler(int host_signum, void *pinfo,
1337 void *puc)
1339 siginfo_t *info = pinfo;
1340 int is_write;
1341 uint32_t insn;
1342 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1343 uint32_t *regs = (uint32_t *)(info + 1);
1344 void *sigmask = (regs + 20);
1345 /* XXX: is there a standard glibc define ? */
1346 unsigned long pc = regs[1];
1347 #else
1348 #ifdef __linux__
1349 struct sigcontext *sc = puc;
1350 unsigned long pc = sc->sigc_regs.tpc;
1351 void *sigmask = (void *)sc->sigc_mask;
1352 #elif defined(__OpenBSD__)
1353 struct sigcontext *uc = puc;
1354 unsigned long pc = uc->sc_pc;
1355 void *sigmask = (void *)(long)uc->sc_mask;
1356 #endif
1357 #endif
1359 /* XXX: need kernel patch to get write flag faster */
1360 is_write = 0;
1361 insn = *(uint32_t *)pc;
1362 if ((insn >> 30) == 3) {
1363 switch((insn >> 19) & 0x3f) {
1364 case 0x05: // stb
1365 case 0x06: // sth
1366 case 0x04: // st
1367 case 0x07: // std
1368 case 0x24: // stf
1369 case 0x27: // stdf
1370 case 0x25: // stfsr
1371 is_write = 1;
1372 break;
1375 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1376 is_write, sigmask, NULL);
1379 #elif defined(__arm__)
1381 int cpu_signal_handler(int host_signum, void *pinfo,
1382 void *puc)
1384 siginfo_t *info = pinfo;
1385 struct ucontext *uc = puc;
1386 unsigned long pc;
1387 int is_write;
1389 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1390 pc = uc->uc_mcontext.gregs[R15];
1391 #else
1392 pc = uc->uc_mcontext.arm_pc;
1393 #endif
1394 /* XXX: compute is_write */
1395 is_write = 0;
1396 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1397 is_write,
1398 &uc->uc_sigmask, puc);
1401 #elif defined(__mc68000)
1403 int cpu_signal_handler(int host_signum, void *pinfo,
1404 void *puc)
1406 siginfo_t *info = pinfo;
1407 struct ucontext *uc = puc;
1408 unsigned long pc;
1409 int is_write;
1411 pc = uc->uc_mcontext.gregs[16];
1412 /* XXX: compute is_write */
1413 is_write = 0;
1414 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1415 is_write,
1416 &uc->uc_sigmask, puc);
1419 #elif defined(__ia64)
1421 #ifndef __ISR_VALID
1422 /* This ought to be in <bits/siginfo.h>... */
1423 # define __ISR_VALID 1
1424 #endif
1426 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1428 siginfo_t *info = pinfo;
1429 struct ucontext *uc = puc;
1430 unsigned long ip;
1431 int is_write = 0;
1433 ip = uc->uc_mcontext.sc_ip;
1434 switch (host_signum) {
1435 case SIGILL:
1436 case SIGFPE:
1437 case SIGSEGV:
1438 case SIGBUS:
1439 case SIGTRAP:
1440 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1441 /* ISR.W (write-access) is bit 33: */
1442 is_write = (info->si_isr >> 33) & 1;
1443 break;
1445 default:
1446 break;
1448 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1449 is_write,
1450 &uc->uc_sigmask, puc);
1453 #elif defined(__s390__)
1455 int cpu_signal_handler(int host_signum, void *pinfo,
1456 void *puc)
1458 siginfo_t *info = pinfo;
1459 struct ucontext *uc = puc;
1460 unsigned long pc;
1461 int is_write;
1463 pc = uc->uc_mcontext.psw.addr;
1464 /* XXX: compute is_write */
1465 is_write = 0;
1466 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1467 is_write, &uc->uc_sigmask, puc);
1470 #elif defined(__mips__)
1472 int cpu_signal_handler(int host_signum, void *pinfo,
1473 void *puc)
1475 siginfo_t *info = pinfo;
1476 struct ucontext *uc = puc;
1477 greg_t pc = uc->uc_mcontext.pc;
1478 int is_write;
1480 /* XXX: compute is_write */
1481 is_write = 0;
1482 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1483 is_write, &uc->uc_sigmask, puc);
1486 #elif defined(__hppa__)
1488 int cpu_signal_handler(int host_signum, void *pinfo,
1489 void *puc)
1491 struct siginfo *info = pinfo;
1492 struct ucontext *uc = puc;
1493 unsigned long pc;
1494 int is_write;
1496 pc = uc->uc_mcontext.sc_iaoq[0];
1497 /* FIXME: compute is_write */
1498 is_write = 0;
1499 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1500 is_write,
1501 &uc->uc_sigmask, puc);
1504 #else
1506 #error host CPU specific signal handler needed
1508 #endif
1510 #endif /* !defined(CONFIG_SOFTMMU) */