Add v{add,sub}cuw instructions.
[qemu/qemu-JZ.git] / target-ppc / op_helper.c
blob81df85b3b761d563ecd4d28e6e618d8f1923a9f0
1 /*
2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include <string.h>
21 #include "exec.h"
22 #include "host-utils.h"
23 #include "helper.h"
25 #include "helper_regs.h"
27 //#define DEBUG_OP
28 //#define DEBUG_EXCEPTIONS
29 //#define DEBUG_SOFTWARE_TLB
31 /*****************************************************************************/
32 /* Exceptions processing helpers */
34 void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
36 #if 0
37 printf("Raise exception %3x code : %d\n", exception, error_code);
38 #endif
39 env->exception_index = exception;
40 env->error_code = error_code;
41 cpu_loop_exit();
44 void helper_raise_exception (uint32_t exception)
46 helper_raise_exception_err(exception, 0);
49 /*****************************************************************************/
50 /* Registers load and stores */
51 target_ulong helper_load_cr (void)
53 return (env->crf[0] << 28) |
54 (env->crf[1] << 24) |
55 (env->crf[2] << 20) |
56 (env->crf[3] << 16) |
57 (env->crf[4] << 12) |
58 (env->crf[5] << 8) |
59 (env->crf[6] << 4) |
60 (env->crf[7] << 0);
63 void helper_store_cr (target_ulong val, uint32_t mask)
65 int i, sh;
67 for (i = 0, sh = 7; i < 8; i++, sh--) {
68 if (mask & (1 << sh))
69 env->crf[i] = (val >> (sh * 4)) & 0xFUL;
73 /*****************************************************************************/
74 /* SPR accesses */
75 void helper_load_dump_spr (uint32_t sprn)
77 if (loglevel != 0) {
78 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
79 sprn, sprn, env->spr[sprn]);
83 void helper_store_dump_spr (uint32_t sprn)
85 if (loglevel != 0) {
86 fprintf(logfile, "Write SPR %d %03x <= " ADDRX "\n",
87 sprn, sprn, env->spr[sprn]);
91 target_ulong helper_load_tbl (void)
93 return cpu_ppc_load_tbl(env);
96 target_ulong helper_load_tbu (void)
98 return cpu_ppc_load_tbu(env);
101 target_ulong helper_load_atbl (void)
103 return cpu_ppc_load_atbl(env);
106 target_ulong helper_load_atbu (void)
108 return cpu_ppc_load_atbu(env);
111 target_ulong helper_load_601_rtcl (void)
113 return cpu_ppc601_load_rtcl(env);
116 target_ulong helper_load_601_rtcu (void)
118 return cpu_ppc601_load_rtcu(env);
121 #if !defined(CONFIG_USER_ONLY)
122 #if defined (TARGET_PPC64)
123 void helper_store_asr (target_ulong val)
125 ppc_store_asr(env, val);
127 #endif
129 void helper_store_sdr1 (target_ulong val)
131 ppc_store_sdr1(env, val);
134 void helper_store_tbl (target_ulong val)
136 cpu_ppc_store_tbl(env, val);
139 void helper_store_tbu (target_ulong val)
141 cpu_ppc_store_tbu(env, val);
144 void helper_store_atbl (target_ulong val)
146 cpu_ppc_store_atbl(env, val);
149 void helper_store_atbu (target_ulong val)
151 cpu_ppc_store_atbu(env, val);
154 void helper_store_601_rtcl (target_ulong val)
156 cpu_ppc601_store_rtcl(env, val);
159 void helper_store_601_rtcu (target_ulong val)
161 cpu_ppc601_store_rtcu(env, val);
164 target_ulong helper_load_decr (void)
166 return cpu_ppc_load_decr(env);
169 void helper_store_decr (target_ulong val)
171 cpu_ppc_store_decr(env, val);
174 void helper_store_hid0_601 (target_ulong val)
176 target_ulong hid0;
178 hid0 = env->spr[SPR_HID0];
179 if ((val ^ hid0) & 0x00000008) {
180 /* Change current endianness */
181 env->hflags &= ~(1 << MSR_LE);
182 env->hflags_nmsr &= ~(1 << MSR_LE);
183 env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
184 env->hflags |= env->hflags_nmsr;
185 if (loglevel != 0) {
186 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
187 __func__, val & 0x8 ? 'l' : 'b', env->hflags);
190 env->spr[SPR_HID0] = (uint32_t)val;
193 void helper_store_403_pbr (uint32_t num, target_ulong value)
195 if (likely(env->pb[num] != value)) {
196 env->pb[num] = value;
197 /* Should be optimized */
198 tlb_flush(env, 1);
202 target_ulong helper_load_40x_pit (void)
204 return load_40x_pit(env);
207 void helper_store_40x_pit (target_ulong val)
209 store_40x_pit(env, val);
212 void helper_store_40x_dbcr0 (target_ulong val)
214 store_40x_dbcr0(env, val);
217 void helper_store_40x_sler (target_ulong val)
219 store_40x_sler(env, val);
222 void helper_store_booke_tcr (target_ulong val)
224 store_booke_tcr(env, val);
227 void helper_store_booke_tsr (target_ulong val)
229 store_booke_tsr(env, val);
232 void helper_store_ibatu (uint32_t nr, target_ulong val)
234 ppc_store_ibatu(env, nr, val);
237 void helper_store_ibatl (uint32_t nr, target_ulong val)
239 ppc_store_ibatl(env, nr, val);
242 void helper_store_dbatu (uint32_t nr, target_ulong val)
244 ppc_store_dbatu(env, nr, val);
247 void helper_store_dbatl (uint32_t nr, target_ulong val)
249 ppc_store_dbatl(env, nr, val);
252 void helper_store_601_batl (uint32_t nr, target_ulong val)
254 ppc_store_ibatl_601(env, nr, val);
257 void helper_store_601_batu (uint32_t nr, target_ulong val)
259 ppc_store_ibatu_601(env, nr, val);
261 #endif
263 /*****************************************************************************/
264 /* Memory load and stores */
266 static always_inline target_ulong addr_add(target_ulong addr, target_long arg)
268 #if defined(TARGET_PPC64)
269 if (!msr_sf)
270 return (uint32_t)(addr + arg);
271 else
272 #endif
273 return addr + arg;
276 void helper_lmw (target_ulong addr, uint32_t reg)
278 for (; reg < 32; reg++) {
279 if (msr_le)
280 env->gpr[reg] = bswap32(ldl(addr));
281 else
282 env->gpr[reg] = ldl(addr);
283 addr = addr_add(addr, 4);
287 void helper_stmw (target_ulong addr, uint32_t reg)
289 for (; reg < 32; reg++) {
290 if (msr_le)
291 stl(addr, bswap32((uint32_t)env->gpr[reg]));
292 else
293 stl(addr, (uint32_t)env->gpr[reg]);
294 addr = addr_add(addr, 4);
298 void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
300 int sh;
301 for (; nb > 3; nb -= 4) {
302 env->gpr[reg] = ldl(addr);
303 reg = (reg + 1) % 32;
304 addr = addr_add(addr, 4);
306 if (unlikely(nb > 0)) {
307 env->gpr[reg] = 0;
308 for (sh = 24; nb > 0; nb--, sh -= 8) {
309 env->gpr[reg] |= ldub(addr) << sh;
310 addr = addr_add(addr, 1);
314 /* PPC32 specification says we must generate an exception if
315 * rA is in the range of registers to be loaded.
316 * In an other hand, IBM says this is valid, but rA won't be loaded.
317 * For now, I'll follow the spec...
319 void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
321 if (likely(xer_bc != 0)) {
322 if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
323 (reg < rb && (reg + xer_bc) > rb))) {
324 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
325 POWERPC_EXCP_INVAL |
326 POWERPC_EXCP_INVAL_LSWX);
327 } else {
328 helper_lsw(addr, xer_bc, reg);
333 void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
335 int sh;
336 for (; nb > 3; nb -= 4) {
337 stl(addr, env->gpr[reg]);
338 reg = (reg + 1) % 32;
339 addr = addr_add(addr, 4);
341 if (unlikely(nb > 0)) {
342 for (sh = 24; nb > 0; nb--, sh -= 8) {
343 stb(addr, (env->gpr[reg] >> sh) & 0xFF);
344 addr = addr_add(addr, 1);
349 static void do_dcbz(target_ulong addr, int dcache_line_size)
351 addr &= ~(dcache_line_size - 1);
352 int i;
353 for (i = 0 ; i < dcache_line_size ; i += 4) {
354 stl(addr + i , 0);
356 if (env->reserve == addr)
357 env->reserve = (target_ulong)-1ULL;
360 void helper_dcbz(target_ulong addr)
362 do_dcbz(addr, env->dcache_line_size);
365 void helper_dcbz_970(target_ulong addr)
367 if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
368 do_dcbz(addr, 32);
369 else
370 do_dcbz(addr, env->dcache_line_size);
373 void helper_icbi(target_ulong addr)
375 uint32_t tmp;
377 addr &= ~(env->dcache_line_size - 1);
378 /* Invalidate one cache line :
379 * PowerPC specification says this is to be treated like a load
380 * (not a fetch) by the MMU. To be sure it will be so,
381 * do the load "by hand".
383 tmp = ldl(addr);
384 tb_invalidate_page_range(addr, addr + env->icache_line_size);
387 // XXX: to be tested
388 target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
390 int i, c, d;
391 d = 24;
392 for (i = 0; i < xer_bc; i++) {
393 c = ldub(addr);
394 addr = addr_add(addr, 1);
395 /* ra (if not 0) and rb are never modified */
396 if (likely(reg != rb && (ra == 0 || reg != ra))) {
397 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
399 if (unlikely(c == xer_cmp))
400 break;
401 if (likely(d != 0)) {
402 d -= 8;
403 } else {
404 d = 24;
405 reg++;
406 reg = reg & 0x1F;
409 return i;
412 /*****************************************************************************/
413 /* Fixed point operations helpers */
414 #if defined(TARGET_PPC64)
416 /* multiply high word */
417 uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
419 uint64_t tl, th;
421 muls64(&tl, &th, arg1, arg2);
422 return th;
425 /* multiply high word unsigned */
426 uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
428 uint64_t tl, th;
430 mulu64(&tl, &th, arg1, arg2);
431 return th;
434 uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
436 int64_t th;
437 uint64_t tl;
439 muls64(&tl, (uint64_t *)&th, arg1, arg2);
440 /* If th != 0 && th != -1, then we had an overflow */
441 if (likely((uint64_t)(th + 1) <= 1)) {
442 env->xer &= ~(1 << XER_OV);
443 } else {
444 env->xer |= (1 << XER_OV) | (1 << XER_SO);
446 return (int64_t)tl;
448 #endif
450 target_ulong helper_cntlzw (target_ulong t)
452 return clz32(t);
455 #if defined(TARGET_PPC64)
456 target_ulong helper_cntlzd (target_ulong t)
458 return clz64(t);
460 #endif
462 /* shift right arithmetic helper */
463 target_ulong helper_sraw (target_ulong value, target_ulong shift)
465 int32_t ret;
467 if (likely(!(shift & 0x20))) {
468 if (likely((uint32_t)shift != 0)) {
469 shift &= 0x1f;
470 ret = (int32_t)value >> shift;
471 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
472 env->xer &= ~(1 << XER_CA);
473 } else {
474 env->xer |= (1 << XER_CA);
476 } else {
477 ret = (int32_t)value;
478 env->xer &= ~(1 << XER_CA);
480 } else {
481 ret = (int32_t)value >> 31;
482 if (ret) {
483 env->xer |= (1 << XER_CA);
484 } else {
485 env->xer &= ~(1 << XER_CA);
488 return (target_long)ret;
491 #if defined(TARGET_PPC64)
492 target_ulong helper_srad (target_ulong value, target_ulong shift)
494 int64_t ret;
496 if (likely(!(shift & 0x40))) {
497 if (likely((uint64_t)shift != 0)) {
498 shift &= 0x3f;
499 ret = (int64_t)value >> shift;
500 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
501 env->xer &= ~(1 << XER_CA);
502 } else {
503 env->xer |= (1 << XER_CA);
505 } else {
506 ret = (int64_t)value;
507 env->xer &= ~(1 << XER_CA);
509 } else {
510 ret = (int64_t)value >> 63;
511 if (ret) {
512 env->xer |= (1 << XER_CA);
513 } else {
514 env->xer &= ~(1 << XER_CA);
517 return ret;
519 #endif
521 target_ulong helper_popcntb (target_ulong val)
523 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
524 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
525 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
526 return val;
529 #if defined(TARGET_PPC64)
530 target_ulong helper_popcntb_64 (target_ulong val)
532 val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
533 val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
534 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL);
535 return val;
537 #endif
539 /*****************************************************************************/
540 /* Floating point operations helpers */
541 uint64_t helper_float32_to_float64(uint32_t arg)
543 CPU_FloatU f;
544 CPU_DoubleU d;
545 f.l = arg;
546 d.d = float32_to_float64(f.f, &env->fp_status);
547 return d.ll;
550 uint32_t helper_float64_to_float32(uint64_t arg)
552 CPU_FloatU f;
553 CPU_DoubleU d;
554 d.ll = arg;
555 f.f = float64_to_float32(d.d, &env->fp_status);
556 return f.l;
559 static always_inline int isden (float64 d)
561 CPU_DoubleU u;
563 u.d = d;
565 return ((u.ll >> 52) & 0x7FF) == 0;
568 uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
570 CPU_DoubleU farg;
571 int isneg;
572 int ret;
573 farg.ll = arg;
574 isneg = float64_is_neg(farg.d);
575 if (unlikely(float64_is_nan(farg.d))) {
576 if (float64_is_signaling_nan(farg.d)) {
577 /* Signaling NaN: flags are undefined */
578 ret = 0x00;
579 } else {
580 /* Quiet NaN */
581 ret = 0x11;
583 } else if (unlikely(float64_is_infinity(farg.d))) {
584 /* +/- infinity */
585 if (isneg)
586 ret = 0x09;
587 else
588 ret = 0x05;
589 } else {
590 if (float64_is_zero(farg.d)) {
591 /* +/- zero */
592 if (isneg)
593 ret = 0x12;
594 else
595 ret = 0x02;
596 } else {
597 if (isden(farg.d)) {
598 /* Denormalized numbers */
599 ret = 0x10;
600 } else {
601 /* Normalized numbers */
602 ret = 0x00;
604 if (isneg) {
605 ret |= 0x08;
606 } else {
607 ret |= 0x04;
611 if (set_fprf) {
612 /* We update FPSCR_FPRF */
613 env->fpscr &= ~(0x1F << FPSCR_FPRF);
614 env->fpscr |= ret << FPSCR_FPRF;
616 /* We just need fpcc to update Rc1 */
617 return ret & 0xF;
620 /* Floating-point invalid operations exception */
621 static always_inline uint64_t fload_invalid_op_excp (int op)
623 uint64_t ret = 0;
624 int ve;
626 ve = fpscr_ve;
627 switch (op) {
628 case POWERPC_EXCP_FP_VXSNAN:
629 env->fpscr |= 1 << FPSCR_VXSNAN;
630 break;
631 case POWERPC_EXCP_FP_VXSOFT:
632 env->fpscr |= 1 << FPSCR_VXSOFT;
633 break;
634 case POWERPC_EXCP_FP_VXISI:
635 /* Magnitude subtraction of infinities */
636 env->fpscr |= 1 << FPSCR_VXISI;
637 goto update_arith;
638 case POWERPC_EXCP_FP_VXIDI:
639 /* Division of infinity by infinity */
640 env->fpscr |= 1 << FPSCR_VXIDI;
641 goto update_arith;
642 case POWERPC_EXCP_FP_VXZDZ:
643 /* Division of zero by zero */
644 env->fpscr |= 1 << FPSCR_VXZDZ;
645 goto update_arith;
646 case POWERPC_EXCP_FP_VXIMZ:
647 /* Multiplication of zero by infinity */
648 env->fpscr |= 1 << FPSCR_VXIMZ;
649 goto update_arith;
650 case POWERPC_EXCP_FP_VXVC:
651 /* Ordered comparison of NaN */
652 env->fpscr |= 1 << FPSCR_VXVC;
653 env->fpscr &= ~(0xF << FPSCR_FPCC);
654 env->fpscr |= 0x11 << FPSCR_FPCC;
655 /* We must update the target FPR before raising the exception */
656 if (ve != 0) {
657 env->exception_index = POWERPC_EXCP_PROGRAM;
658 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
659 /* Update the floating-point enabled exception summary */
660 env->fpscr |= 1 << FPSCR_FEX;
661 /* Exception is differed */
662 ve = 0;
664 break;
665 case POWERPC_EXCP_FP_VXSQRT:
666 /* Square root of a negative number */
667 env->fpscr |= 1 << FPSCR_VXSQRT;
668 update_arith:
669 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
670 if (ve == 0) {
671 /* Set the result to quiet NaN */
672 ret = 0xFFF8000000000000ULL;
673 env->fpscr &= ~(0xF << FPSCR_FPCC);
674 env->fpscr |= 0x11 << FPSCR_FPCC;
676 break;
677 case POWERPC_EXCP_FP_VXCVI:
678 /* Invalid conversion */
679 env->fpscr |= 1 << FPSCR_VXCVI;
680 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
681 if (ve == 0) {
682 /* Set the result to quiet NaN */
683 ret = 0xFFF8000000000000ULL;
684 env->fpscr &= ~(0xF << FPSCR_FPCC);
685 env->fpscr |= 0x11 << FPSCR_FPCC;
687 break;
689 /* Update the floating-point invalid operation summary */
690 env->fpscr |= 1 << FPSCR_VX;
691 /* Update the floating-point exception summary */
692 env->fpscr |= 1 << FPSCR_FX;
693 if (ve != 0) {
694 /* Update the floating-point enabled exception summary */
695 env->fpscr |= 1 << FPSCR_FEX;
696 if (msr_fe0 != 0 || msr_fe1 != 0)
697 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
699 return ret;
702 static always_inline void float_zero_divide_excp (void)
704 env->fpscr |= 1 << FPSCR_ZX;
705 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
706 /* Update the floating-point exception summary */
707 env->fpscr |= 1 << FPSCR_FX;
708 if (fpscr_ze != 0) {
709 /* Update the floating-point enabled exception summary */
710 env->fpscr |= 1 << FPSCR_FEX;
711 if (msr_fe0 != 0 || msr_fe1 != 0) {
712 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
713 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
718 static always_inline void float_overflow_excp (void)
720 env->fpscr |= 1 << FPSCR_OX;
721 /* Update the floating-point exception summary */
722 env->fpscr |= 1 << FPSCR_FX;
723 if (fpscr_oe != 0) {
724 /* XXX: should adjust the result */
725 /* Update the floating-point enabled exception summary */
726 env->fpscr |= 1 << FPSCR_FEX;
727 /* We must update the target FPR before raising the exception */
728 env->exception_index = POWERPC_EXCP_PROGRAM;
729 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
730 } else {
731 env->fpscr |= 1 << FPSCR_XX;
732 env->fpscr |= 1 << FPSCR_FI;
736 static always_inline void float_underflow_excp (void)
738 env->fpscr |= 1 << FPSCR_UX;
739 /* Update the floating-point exception summary */
740 env->fpscr |= 1 << FPSCR_FX;
741 if (fpscr_ue != 0) {
742 /* XXX: should adjust the result */
743 /* Update the floating-point enabled exception summary */
744 env->fpscr |= 1 << FPSCR_FEX;
745 /* We must update the target FPR before raising the exception */
746 env->exception_index = POWERPC_EXCP_PROGRAM;
747 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
751 static always_inline void float_inexact_excp (void)
753 env->fpscr |= 1 << FPSCR_XX;
754 /* Update the floating-point exception summary */
755 env->fpscr |= 1 << FPSCR_FX;
756 if (fpscr_xe != 0) {
757 /* Update the floating-point enabled exception summary */
758 env->fpscr |= 1 << FPSCR_FEX;
759 /* We must update the target FPR before raising the exception */
760 env->exception_index = POWERPC_EXCP_PROGRAM;
761 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
765 static always_inline void fpscr_set_rounding_mode (void)
767 int rnd_type;
769 /* Set rounding mode */
770 switch (fpscr_rn) {
771 case 0:
772 /* Best approximation (round to nearest) */
773 rnd_type = float_round_nearest_even;
774 break;
775 case 1:
776 /* Smaller magnitude (round toward zero) */
777 rnd_type = float_round_to_zero;
778 break;
779 case 2:
780 /* Round toward +infinite */
781 rnd_type = float_round_up;
782 break;
783 default:
784 case 3:
785 /* Round toward -infinite */
786 rnd_type = float_round_down;
787 break;
789 set_float_rounding_mode(rnd_type, &env->fp_status);
792 void helper_fpscr_clrbit (uint32_t bit)
794 int prev;
796 prev = (env->fpscr >> bit) & 1;
797 env->fpscr &= ~(1 << bit);
798 if (prev == 1) {
799 switch (bit) {
800 case FPSCR_RN1:
801 case FPSCR_RN:
802 fpscr_set_rounding_mode();
803 break;
804 default:
805 break;
810 void helper_fpscr_setbit (uint32_t bit)
812 int prev;
814 prev = (env->fpscr >> bit) & 1;
815 env->fpscr |= 1 << bit;
816 if (prev == 0) {
817 switch (bit) {
818 case FPSCR_VX:
819 env->fpscr |= 1 << FPSCR_FX;
820 if (fpscr_ve)
821 goto raise_ve;
822 case FPSCR_OX:
823 env->fpscr |= 1 << FPSCR_FX;
824 if (fpscr_oe)
825 goto raise_oe;
826 break;
827 case FPSCR_UX:
828 env->fpscr |= 1 << FPSCR_FX;
829 if (fpscr_ue)
830 goto raise_ue;
831 break;
832 case FPSCR_ZX:
833 env->fpscr |= 1 << FPSCR_FX;
834 if (fpscr_ze)
835 goto raise_ze;
836 break;
837 case FPSCR_XX:
838 env->fpscr |= 1 << FPSCR_FX;
839 if (fpscr_xe)
840 goto raise_xe;
841 break;
842 case FPSCR_VXSNAN:
843 case FPSCR_VXISI:
844 case FPSCR_VXIDI:
845 case FPSCR_VXZDZ:
846 case FPSCR_VXIMZ:
847 case FPSCR_VXVC:
848 case FPSCR_VXSOFT:
849 case FPSCR_VXSQRT:
850 case FPSCR_VXCVI:
851 env->fpscr |= 1 << FPSCR_VX;
852 env->fpscr |= 1 << FPSCR_FX;
853 if (fpscr_ve != 0)
854 goto raise_ve;
855 break;
856 case FPSCR_VE:
857 if (fpscr_vx != 0) {
858 raise_ve:
859 env->error_code = POWERPC_EXCP_FP;
860 if (fpscr_vxsnan)
861 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
862 if (fpscr_vxisi)
863 env->error_code |= POWERPC_EXCP_FP_VXISI;
864 if (fpscr_vxidi)
865 env->error_code |= POWERPC_EXCP_FP_VXIDI;
866 if (fpscr_vxzdz)
867 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
868 if (fpscr_vximz)
869 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
870 if (fpscr_vxvc)
871 env->error_code |= POWERPC_EXCP_FP_VXVC;
872 if (fpscr_vxsoft)
873 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
874 if (fpscr_vxsqrt)
875 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
876 if (fpscr_vxcvi)
877 env->error_code |= POWERPC_EXCP_FP_VXCVI;
878 goto raise_excp;
880 break;
881 case FPSCR_OE:
882 if (fpscr_ox != 0) {
883 raise_oe:
884 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
885 goto raise_excp;
887 break;
888 case FPSCR_UE:
889 if (fpscr_ux != 0) {
890 raise_ue:
891 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
892 goto raise_excp;
894 break;
895 case FPSCR_ZE:
896 if (fpscr_zx != 0) {
897 raise_ze:
898 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
899 goto raise_excp;
901 break;
902 case FPSCR_XE:
903 if (fpscr_xx != 0) {
904 raise_xe:
905 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
906 goto raise_excp;
908 break;
909 case FPSCR_RN1:
910 case FPSCR_RN:
911 fpscr_set_rounding_mode();
912 break;
913 default:
914 break;
915 raise_excp:
916 /* Update the floating-point enabled exception summary */
917 env->fpscr |= 1 << FPSCR_FEX;
918 /* We have to update Rc1 before raising the exception */
919 env->exception_index = POWERPC_EXCP_PROGRAM;
920 break;
925 void helper_store_fpscr (uint64_t arg, uint32_t mask)
928 * We use only the 32 LSB of the incoming fpr
930 uint32_t prev, new;
931 int i;
933 prev = env->fpscr;
934 new = (uint32_t)arg;
935 new &= ~0x60000000;
936 new |= prev & 0x60000000;
937 for (i = 0; i < 8; i++) {
938 if (mask & (1 << i)) {
939 env->fpscr &= ~(0xF << (4 * i));
940 env->fpscr |= new & (0xF << (4 * i));
943 /* Update VX and FEX */
944 if (fpscr_ix != 0)
945 env->fpscr |= 1 << FPSCR_VX;
946 else
947 env->fpscr &= ~(1 << FPSCR_VX);
948 if ((fpscr_ex & fpscr_eex) != 0) {
949 env->fpscr |= 1 << FPSCR_FEX;
950 env->exception_index = POWERPC_EXCP_PROGRAM;
951 /* XXX: we should compute it properly */
952 env->error_code = POWERPC_EXCP_FP;
954 else
955 env->fpscr &= ~(1 << FPSCR_FEX);
956 fpscr_set_rounding_mode();
959 void helper_float_check_status (void)
961 #ifdef CONFIG_SOFTFLOAT
962 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
963 (env->error_code & POWERPC_EXCP_FP)) {
964 /* Differred floating-point exception after target FPR update */
965 if (msr_fe0 != 0 || msr_fe1 != 0)
966 helper_raise_exception_err(env->exception_index, env->error_code);
967 } else {
968 int status = get_float_exception_flags(&env->fp_status);
969 if (status & float_flag_divbyzero) {
970 float_zero_divide_excp();
971 } else if (status & float_flag_overflow) {
972 float_overflow_excp();
973 } else if (status & float_flag_underflow) {
974 float_underflow_excp();
975 } else if (status & float_flag_inexact) {
976 float_inexact_excp();
979 #else
980 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
981 (env->error_code & POWERPC_EXCP_FP)) {
982 /* Differred floating-point exception after target FPR update */
983 if (msr_fe0 != 0 || msr_fe1 != 0)
984 helper_raise_exception_err(env->exception_index, env->error_code);
986 #endif
989 #ifdef CONFIG_SOFTFLOAT
990 void helper_reset_fpstatus (void)
992 set_float_exception_flags(0, &env->fp_status);
994 #endif
996 /* fadd - fadd. */
997 uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
999 CPU_DoubleU farg1, farg2;
1001 farg1.ll = arg1;
1002 farg2.ll = arg2;
1003 #if USE_PRECISE_EMULATION
1004 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1005 float64_is_signaling_nan(farg2.d))) {
1006 /* sNaN addition */
1007 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1008 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1009 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
1010 /* Magnitude subtraction of infinities */
1011 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1012 } else {
1013 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1015 #else
1016 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1017 #endif
1018 return farg1.ll;
1021 /* fsub - fsub. */
1022 uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
1024 CPU_DoubleU farg1, farg2;
1026 farg1.ll = arg1;
1027 farg2.ll = arg2;
1028 #if USE_PRECISE_EMULATION
1030 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1031 float64_is_signaling_nan(farg2.d))) {
1032 /* sNaN subtraction */
1033 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1034 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1035 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
1036 /* Magnitude subtraction of infinities */
1037 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1038 } else {
1039 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1042 #else
1043 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1044 #endif
1045 return farg1.ll;
1048 /* fmul - fmul. */
1049 uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
1051 CPU_DoubleU farg1, farg2;
1053 farg1.ll = arg1;
1054 farg2.ll = arg2;
1055 #if USE_PRECISE_EMULATION
1056 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1057 float64_is_signaling_nan(farg2.d))) {
1058 /* sNaN multiplication */
1059 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1060 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1061 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1062 /* Multiplication of zero by infinity */
1063 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1064 } else {
1065 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1067 #else
1068 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1069 #endif
1070 return farg1.ll;
1073 /* fdiv - fdiv. */
1074 uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
1076 CPU_DoubleU farg1, farg2;
1078 farg1.ll = arg1;
1079 farg2.ll = arg2;
1080 #if USE_PRECISE_EMULATION
1081 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1082 float64_is_signaling_nan(farg2.d))) {
1083 /* sNaN division */
1084 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1085 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
1086 /* Division of infinity by infinity */
1087 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
1088 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
1089 /* Division of zero by zero */
1090 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1091 } else {
1092 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1094 #else
1095 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1096 #endif
1097 return farg1.ll;
1100 /* fabs */
1101 uint64_t helper_fabs (uint64_t arg)
1103 CPU_DoubleU farg;
1105 farg.ll = arg;
1106 farg.d = float64_abs(farg.d);
1107 return farg.ll;
1110 /* fnabs */
1111 uint64_t helper_fnabs (uint64_t arg)
1113 CPU_DoubleU farg;
1115 farg.ll = arg;
1116 farg.d = float64_abs(farg.d);
1117 farg.d = float64_chs(farg.d);
1118 return farg.ll;
1121 /* fneg */
1122 uint64_t helper_fneg (uint64_t arg)
1124 CPU_DoubleU farg;
1126 farg.ll = arg;
1127 farg.d = float64_chs(farg.d);
1128 return farg.ll;
1131 /* fctiw - fctiw. */
1132 uint64_t helper_fctiw (uint64_t arg)
1134 CPU_DoubleU farg;
1135 farg.ll = arg;
1137 if (unlikely(float64_is_signaling_nan(farg.d))) {
1138 /* sNaN conversion */
1139 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1140 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1141 /* qNan / infinity conversion */
1142 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1143 } else {
1144 farg.ll = float64_to_int32(farg.d, &env->fp_status);
1145 #if USE_PRECISE_EMULATION
1146 /* XXX: higher bits are not supposed to be significant.
1147 * to make tests easier, return the same as a real PowerPC 750
1149 farg.ll |= 0xFFF80000ULL << 32;
1150 #endif
1152 return farg.ll;
1155 /* fctiwz - fctiwz. */
1156 uint64_t helper_fctiwz (uint64_t arg)
1158 CPU_DoubleU farg;
1159 farg.ll = arg;
1161 if (unlikely(float64_is_signaling_nan(farg.d))) {
1162 /* sNaN conversion */
1163 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1164 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1165 /* qNan / infinity conversion */
1166 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1167 } else {
1168 farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
1169 #if USE_PRECISE_EMULATION
1170 /* XXX: higher bits are not supposed to be significant.
1171 * to make tests easier, return the same as a real PowerPC 750
1173 farg.ll |= 0xFFF80000ULL << 32;
1174 #endif
1176 return farg.ll;
1179 #if defined(TARGET_PPC64)
1180 /* fcfid - fcfid. */
1181 uint64_t helper_fcfid (uint64_t arg)
1183 CPU_DoubleU farg;
1184 farg.d = int64_to_float64(arg, &env->fp_status);
1185 return farg.ll;
1188 /* fctid - fctid. */
1189 uint64_t helper_fctid (uint64_t arg)
1191 CPU_DoubleU farg;
1192 farg.ll = arg;
1194 if (unlikely(float64_is_signaling_nan(farg.d))) {
1195 /* sNaN conversion */
1196 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1197 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1198 /* qNan / infinity conversion */
1199 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1200 } else {
1201 farg.ll = float64_to_int64(farg.d, &env->fp_status);
1203 return farg.ll;
1206 /* fctidz - fctidz. */
1207 uint64_t helper_fctidz (uint64_t arg)
1209 CPU_DoubleU farg;
1210 farg.ll = arg;
1212 if (unlikely(float64_is_signaling_nan(farg.d))) {
1213 /* sNaN conversion */
1214 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1215 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1216 /* qNan / infinity conversion */
1217 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1218 } else {
1219 farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
1221 return farg.ll;
1224 #endif
1226 static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
1228 CPU_DoubleU farg;
1229 farg.ll = arg;
1231 if (unlikely(float64_is_signaling_nan(farg.d))) {
1232 /* sNaN round */
1233 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1234 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1235 /* qNan / infinity round */
1236 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1237 } else {
1238 set_float_rounding_mode(rounding_mode, &env->fp_status);
1239 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
1240 /* Restore rounding mode from FPSCR */
1241 fpscr_set_rounding_mode();
1243 return farg.ll;
1246 uint64_t helper_frin (uint64_t arg)
1248 return do_fri(arg, float_round_nearest_even);
1251 uint64_t helper_friz (uint64_t arg)
1253 return do_fri(arg, float_round_to_zero);
1256 uint64_t helper_frip (uint64_t arg)
1258 return do_fri(arg, float_round_up);
1261 uint64_t helper_frim (uint64_t arg)
1263 return do_fri(arg, float_round_down);
1266 /* fmadd - fmadd. */
1267 uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1269 CPU_DoubleU farg1, farg2, farg3;
1271 farg1.ll = arg1;
1272 farg2.ll = arg2;
1273 farg3.ll = arg3;
1274 #if USE_PRECISE_EMULATION
1275 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1276 float64_is_signaling_nan(farg2.d) ||
1277 float64_is_signaling_nan(farg3.d))) {
1278 /* sNaN operation */
1279 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1280 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1281 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1282 /* Multiplication of zero by infinity */
1283 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1284 } else {
1285 #ifdef FLOAT128
1286 /* This is the way the PowerPC specification defines it */
1287 float128 ft0_128, ft1_128;
1289 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1290 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1291 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1292 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1293 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1294 /* Magnitude subtraction of infinities */
1295 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1296 } else {
1297 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1298 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1299 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1301 #else
1302 /* This is OK on x86 hosts */
1303 farg1.d = (farg1.d * farg2.d) + farg3.d;
1304 #endif
1306 #else
1307 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1308 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1309 #endif
1310 return farg1.ll;
1313 /* fmsub - fmsub. */
1314 uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1316 CPU_DoubleU farg1, farg2, farg3;
1318 farg1.ll = arg1;
1319 farg2.ll = arg2;
1320 farg3.ll = arg3;
1321 #if USE_PRECISE_EMULATION
1322 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1323 float64_is_signaling_nan(farg2.d) ||
1324 float64_is_signaling_nan(farg3.d))) {
1325 /* sNaN operation */
1326 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1327 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1328 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1329 /* Multiplication of zero by infinity */
1330 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1331 } else {
1332 #ifdef FLOAT128
1333 /* This is the way the PowerPC specification defines it */
1334 float128 ft0_128, ft1_128;
1336 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1337 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1338 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1339 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1340 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1341 /* Magnitude subtraction of infinities */
1342 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1343 } else {
1344 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1345 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1346 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1348 #else
1349 /* This is OK on x86 hosts */
1350 farg1.d = (farg1.d * farg2.d) - farg3.d;
1351 #endif
1353 #else
1354 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1355 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1356 #endif
1357 return farg1.ll;
1360 /* fnmadd - fnmadd. */
1361 uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1363 CPU_DoubleU farg1, farg2, farg3;
1365 farg1.ll = arg1;
1366 farg2.ll = arg2;
1367 farg3.ll = arg3;
1369 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1370 float64_is_signaling_nan(farg2.d) ||
1371 float64_is_signaling_nan(farg3.d))) {
1372 /* sNaN operation */
1373 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1374 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1375 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1376 /* Multiplication of zero by infinity */
1377 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1378 } else {
1379 #if USE_PRECISE_EMULATION
1380 #ifdef FLOAT128
1381 /* This is the way the PowerPC specification defines it */
1382 float128 ft0_128, ft1_128;
1384 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1385 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1386 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1387 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1388 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1389 /* Magnitude subtraction of infinities */
1390 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1391 } else {
1392 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1393 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1394 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1396 #else
1397 /* This is OK on x86 hosts */
1398 farg1.d = (farg1.d * farg2.d) + farg3.d;
1399 #endif
1400 #else
1401 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1402 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1403 #endif
1404 if (likely(!float64_is_nan(farg1.d)))
1405 farg1.d = float64_chs(farg1.d);
1407 return farg1.ll;
1410 /* fnmsub - fnmsub. */
1411 uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1413 CPU_DoubleU farg1, farg2, farg3;
1415 farg1.ll = arg1;
1416 farg2.ll = arg2;
1417 farg3.ll = arg3;
1419 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1420 float64_is_signaling_nan(farg2.d) ||
1421 float64_is_signaling_nan(farg3.d))) {
1422 /* sNaN operation */
1423 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1424 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1425 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1426 /* Multiplication of zero by infinity */
1427 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1428 } else {
1429 #if USE_PRECISE_EMULATION
1430 #ifdef FLOAT128
1431 /* This is the way the PowerPC specification defines it */
1432 float128 ft0_128, ft1_128;
1434 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1435 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1436 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1437 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1438 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1439 /* Magnitude subtraction of infinities */
1440 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1441 } else {
1442 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1443 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1444 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1446 #else
1447 /* This is OK on x86 hosts */
1448 farg1.d = (farg1.d * farg2.d) - farg3.d;
1449 #endif
1450 #else
1451 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1452 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1453 #endif
1454 if (likely(!float64_is_nan(farg1.d)))
1455 farg1.d = float64_chs(farg1.d);
1457 return farg1.ll;
1460 /* frsp - frsp. */
1461 uint64_t helper_frsp (uint64_t arg)
1463 CPU_DoubleU farg;
1464 float32 f32;
1465 farg.ll = arg;
1467 #if USE_PRECISE_EMULATION
1468 if (unlikely(float64_is_signaling_nan(farg.d))) {
1469 /* sNaN square root */
1470 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1471 } else {
1472 f32 = float64_to_float32(farg.d, &env->fp_status);
1473 farg.d = float32_to_float64(f32, &env->fp_status);
1475 #else
1476 f32 = float64_to_float32(farg.d, &env->fp_status);
1477 farg.d = float32_to_float64(f32, &env->fp_status);
1478 #endif
1479 return farg.ll;
1482 /* fsqrt - fsqrt. */
1483 uint64_t helper_fsqrt (uint64_t arg)
1485 CPU_DoubleU farg;
1486 farg.ll = arg;
1488 if (unlikely(float64_is_signaling_nan(farg.d))) {
1489 /* sNaN square root */
1490 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1491 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1492 /* Square root of a negative nonzero number */
1493 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1494 } else {
1495 farg.d = float64_sqrt(farg.d, &env->fp_status);
1497 return farg.ll;
1500 /* fre - fre. */
1501 uint64_t helper_fre (uint64_t arg)
1503 CPU_DoubleU fone, farg;
1504 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1505 farg.ll = arg;
1507 if (unlikely(float64_is_signaling_nan(farg.d))) {
1508 /* sNaN reciprocal */
1509 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1510 } else {
1511 farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1513 return farg.d;
1516 /* fres - fres. */
1517 uint64_t helper_fres (uint64_t arg)
1519 CPU_DoubleU fone, farg;
1520 float32 f32;
1521 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1522 farg.ll = arg;
1524 if (unlikely(float64_is_signaling_nan(farg.d))) {
1525 /* sNaN reciprocal */
1526 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1527 } else {
1528 farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1529 f32 = float64_to_float32(farg.d, &env->fp_status);
1530 farg.d = float32_to_float64(f32, &env->fp_status);
1532 return farg.ll;
1535 /* frsqrte - frsqrte. */
1536 uint64_t helper_frsqrte (uint64_t arg)
1538 CPU_DoubleU fone, farg;
1539 float32 f32;
1540 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1541 farg.ll = arg;
1543 if (unlikely(float64_is_signaling_nan(farg.d))) {
1544 /* sNaN reciprocal square root */
1545 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1546 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1547 /* Reciprocal square root of a negative nonzero number */
1548 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1549 } else {
1550 farg.d = float64_sqrt(farg.d, &env->fp_status);
1551 farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1552 f32 = float64_to_float32(farg.d, &env->fp_status);
1553 farg.d = float32_to_float64(f32, &env->fp_status);
1555 return farg.ll;
1558 /* fsel - fsel. */
1559 uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1561 CPU_DoubleU farg1;
1563 farg1.ll = arg1;
1565 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d))
1566 return arg2;
1567 else
1568 return arg3;
1571 void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1573 CPU_DoubleU farg1, farg2;
1574 uint32_t ret = 0;
1575 farg1.ll = arg1;
1576 farg2.ll = arg2;
1578 if (unlikely(float64_is_nan(farg1.d) ||
1579 float64_is_nan(farg2.d))) {
1580 ret = 0x01UL;
1581 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1582 ret = 0x08UL;
1583 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1584 ret = 0x04UL;
1585 } else {
1586 ret = 0x02UL;
1589 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1590 env->fpscr |= ret << FPSCR_FPRF;
1591 env->crf[crfD] = ret;
1592 if (unlikely(ret == 0x01UL
1593 && (float64_is_signaling_nan(farg1.d) ||
1594 float64_is_signaling_nan(farg2.d)))) {
1595 /* sNaN comparison */
1596 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1600 void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1602 CPU_DoubleU farg1, farg2;
1603 uint32_t ret = 0;
1604 farg1.ll = arg1;
1605 farg2.ll = arg2;
1607 if (unlikely(float64_is_nan(farg1.d) ||
1608 float64_is_nan(farg2.d))) {
1609 ret = 0x01UL;
1610 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1611 ret = 0x08UL;
1612 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1613 ret = 0x04UL;
1614 } else {
1615 ret = 0x02UL;
1618 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1619 env->fpscr |= ret << FPSCR_FPRF;
1620 env->crf[crfD] = ret;
1621 if (unlikely (ret == 0x01UL)) {
1622 if (float64_is_signaling_nan(farg1.d) ||
1623 float64_is_signaling_nan(farg2.d)) {
1624 /* sNaN comparison */
1625 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1626 POWERPC_EXCP_FP_VXVC);
1627 } else {
1628 /* qNaN comparison */
1629 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1634 #if !defined (CONFIG_USER_ONLY)
1635 void helper_store_msr (target_ulong val)
1637 val = hreg_store_msr(env, val, 0);
1638 if (val != 0) {
1639 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1640 helper_raise_exception(val);
1644 static always_inline void do_rfi (target_ulong nip, target_ulong msr,
1645 target_ulong msrm, int keep_msrh)
1647 #if defined(TARGET_PPC64)
1648 if (msr & (1ULL << MSR_SF)) {
1649 nip = (uint64_t)nip;
1650 msr &= (uint64_t)msrm;
1651 } else {
1652 nip = (uint32_t)nip;
1653 msr = (uint32_t)(msr & msrm);
1654 if (keep_msrh)
1655 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1657 #else
1658 nip = (uint32_t)nip;
1659 msr &= (uint32_t)msrm;
1660 #endif
1661 /* XXX: beware: this is false if VLE is supported */
1662 env->nip = nip & ~((target_ulong)0x00000003);
1663 hreg_store_msr(env, msr, 1);
1664 #if defined (DEBUG_OP)
1665 cpu_dump_rfi(env->nip, env->msr);
1666 #endif
1667 /* No need to raise an exception here,
1668 * as rfi is always the last insn of a TB
1670 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1673 void helper_rfi (void)
1675 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1676 ~((target_ulong)0xFFFF0000), 1);
1679 #if defined(TARGET_PPC64)
1680 void helper_rfid (void)
1682 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1683 ~((target_ulong)0xFFFF0000), 0);
1686 void helper_hrfid (void)
1688 do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1689 ~((target_ulong)0xFFFF0000), 0);
1691 #endif
1692 #endif
1694 void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
1696 if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1697 ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1698 ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1699 ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1700 ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1701 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1705 #if defined(TARGET_PPC64)
1706 void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
1708 if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1709 ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1710 ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1711 ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1712 ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
1713 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1715 #endif
1717 /*****************************************************************************/
1718 /* PowerPC 601 specific instructions (POWER bridge) */
1720 target_ulong helper_clcs (uint32_t arg)
1722 switch (arg) {
1723 case 0x0CUL:
1724 /* Instruction cache line size */
1725 return env->icache_line_size;
1726 break;
1727 case 0x0DUL:
1728 /* Data cache line size */
1729 return env->dcache_line_size;
1730 break;
1731 case 0x0EUL:
1732 /* Minimum cache line size */
1733 return (env->icache_line_size < env->dcache_line_size) ?
1734 env->icache_line_size : env->dcache_line_size;
1735 break;
1736 case 0x0FUL:
1737 /* Maximum cache line size */
1738 return (env->icache_line_size > env->dcache_line_size) ?
1739 env->icache_line_size : env->dcache_line_size;
1740 break;
1741 default:
1742 /* Undefined */
1743 return 0;
1744 break;
1748 target_ulong helper_div (target_ulong arg1, target_ulong arg2)
1750 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1752 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1753 (int32_t)arg2 == 0) {
1754 env->spr[SPR_MQ] = 0;
1755 return INT32_MIN;
1756 } else {
1757 env->spr[SPR_MQ] = tmp % arg2;
1758 return tmp / (int32_t)arg2;
1762 target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
1764 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1766 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1767 (int32_t)arg2 == 0) {
1768 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1769 env->spr[SPR_MQ] = 0;
1770 return INT32_MIN;
1771 } else {
1772 env->spr[SPR_MQ] = tmp % arg2;
1773 tmp /= (int32_t)arg2;
1774 if ((int32_t)tmp != tmp) {
1775 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1776 } else {
1777 env->xer &= ~(1 << XER_OV);
1779 return tmp;
1783 target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
1785 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1786 (int32_t)arg2 == 0) {
1787 env->spr[SPR_MQ] = 0;
1788 return INT32_MIN;
1789 } else {
1790 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1791 return (int32_t)arg1 / (int32_t)arg2;
1795 target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
1797 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1798 (int32_t)arg2 == 0) {
1799 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1800 env->spr[SPR_MQ] = 0;
1801 return INT32_MIN;
1802 } else {
1803 env->xer &= ~(1 << XER_OV);
1804 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1805 return (int32_t)arg1 / (int32_t)arg2;
1809 #if !defined (CONFIG_USER_ONLY)
1810 target_ulong helper_rac (target_ulong addr)
1812 mmu_ctx_t ctx;
1813 int nb_BATs;
1814 target_ulong ret = 0;
1816 /* We don't have to generate many instances of this instruction,
1817 * as rac is supervisor only.
1819 /* XXX: FIX THIS: Pretend we have no BAT */
1820 nb_BATs = env->nb_BATs;
1821 env->nb_BATs = 0;
1822 if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
1823 ret = ctx.raddr;
1824 env->nb_BATs = nb_BATs;
1825 return ret;
1828 void helper_rfsvc (void)
1830 do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1832 #endif
1834 /*****************************************************************************/
1835 /* 602 specific instructions */
1836 /* mfrom is the most crazy instruction ever seen, imho ! */
1837 /* Real implementation uses a ROM table. Do the same */
1838 /* Extremly decomposed:
1839 * -arg / 256
1840 * return 256 * log10(10 + 1.0) + 0.5
1842 #if !defined (CONFIG_USER_ONLY)
1843 target_ulong helper_602_mfrom (target_ulong arg)
1845 if (likely(arg < 602)) {
1846 #include "mfrom_table.c"
1847 return mfrom_ROM_table[arg];
1848 } else {
1849 return 0;
1852 #endif
1854 /*****************************************************************************/
1855 /* Embedded PowerPC specific helpers */
1857 /* XXX: to be improved to check access rights when in user-mode */
1858 target_ulong helper_load_dcr (target_ulong dcrn)
1860 target_ulong val = 0;
1862 if (unlikely(env->dcr_env == NULL)) {
1863 if (loglevel != 0) {
1864 fprintf(logfile, "No DCR environment\n");
1866 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1867 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1868 } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
1869 if (loglevel != 0) {
1870 fprintf(logfile, "DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
1872 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1873 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1875 return val;
1878 void helper_store_dcr (target_ulong dcrn, target_ulong val)
1880 if (unlikely(env->dcr_env == NULL)) {
1881 if (loglevel != 0) {
1882 fprintf(logfile, "No DCR environment\n");
1884 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1885 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1886 } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
1887 if (loglevel != 0) {
1888 fprintf(logfile, "DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
1890 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1891 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1895 #if !defined(CONFIG_USER_ONLY)
1896 void helper_40x_rfci (void)
1898 do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1899 ~((target_ulong)0xFFFF0000), 0);
1902 void helper_rfci (void)
1904 do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1905 ~((target_ulong)0x3FFF0000), 0);
1908 void helper_rfdi (void)
1910 do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1911 ~((target_ulong)0x3FFF0000), 0);
1914 void helper_rfmci (void)
1916 do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1917 ~((target_ulong)0x3FFF0000), 0);
1919 #endif
1921 /* 440 specific */
1922 target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
1924 target_ulong mask;
1925 int i;
1927 i = 1;
1928 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1929 if ((high & mask) == 0) {
1930 if (update_Rc) {
1931 env->crf[0] = 0x4;
1933 goto done;
1935 i++;
1937 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1938 if ((low & mask) == 0) {
1939 if (update_Rc) {
1940 env->crf[0] = 0x8;
1942 goto done;
1944 i++;
1946 if (update_Rc) {
1947 env->crf[0] = 0x2;
1949 done:
1950 env->xer = (env->xer & ~0x7F) | i;
1951 if (update_Rc) {
1952 env->crf[0] |= xer_so;
1954 return i;
1957 /*****************************************************************************/
1958 /* Altivec extension helpers */
1959 #if defined(WORDS_BIGENDIAN)
1960 #define HI_IDX 0
1961 #define LO_IDX 1
1962 #else
1963 #define HI_IDX 1
1964 #define LO_IDX 0
1965 #endif
1967 #if defined(WORDS_BIGENDIAN)
1968 #define VECTOR_FOR_INORDER_I(index, element) \
1969 for (index = 0; index < ARRAY_SIZE(r->element); index++)
1970 #else
1971 #define VECTOR_FOR_INORDER_I(index, element) \
1972 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
1973 #endif
1975 void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1977 int i;
1978 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
1979 r->u32[i] = ~a->u32[i] < b->u32[i];
1983 #define VARITH_DO(name, op, element) \
1984 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1986 int i; \
1987 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1988 r->element[i] = a->element[i] op b->element[i]; \
1991 #define VARITH(suffix, element) \
1992 VARITH_DO(add##suffix, +, element) \
1993 VARITH_DO(sub##suffix, -, element)
1994 VARITH(ubm, u8)
1995 VARITH(uhm, u16)
1996 VARITH(uwm, u32)
1997 #undef VARITH_DO
1998 #undef VARITH
2000 #define VAVG_DO(name, element, etype) \
2001 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2003 int i; \
2004 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2005 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
2006 r->element[i] = x >> 1; \
2010 #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
2011 VAVG_DO(avgs##type, signed_element, signed_type) \
2012 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
2013 VAVG(b, s8, int16_t, u8, uint16_t)
2014 VAVG(h, s16, int32_t, u16, uint32_t)
2015 VAVG(w, s32, int64_t, u32, uint64_t)
2016 #undef VAVG_DO
2017 #undef VAVG
2019 #define VMINMAX_DO(name, compare, element) \
2020 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2022 int i; \
2023 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2024 if (a->element[i] compare b->element[i]) { \
2025 r->element[i] = b->element[i]; \
2026 } else { \
2027 r->element[i] = a->element[i]; \
2031 #define VMINMAX(suffix, element) \
2032 VMINMAX_DO(min##suffix, >, element) \
2033 VMINMAX_DO(max##suffix, <, element)
2034 VMINMAX(sb, s8)
2035 VMINMAX(sh, s16)
2036 VMINMAX(sw, s32)
2037 VMINMAX(ub, u8)
2038 VMINMAX(uh, u16)
2039 VMINMAX(uw, u32)
2040 #undef VMINMAX_DO
2041 #undef VMINMAX
2043 #define VMRG_DO(name, element, highp) \
2044 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2046 ppc_avr_t result; \
2047 int i; \
2048 size_t n_elems = ARRAY_SIZE(r->element); \
2049 for (i = 0; i < n_elems/2; i++) { \
2050 if (highp) { \
2051 result.element[i*2+HI_IDX] = a->element[i]; \
2052 result.element[i*2+LO_IDX] = b->element[i]; \
2053 } else { \
2054 result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
2055 result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
2058 *r = result; \
2060 #if defined(WORDS_BIGENDIAN)
2061 #define MRGHI 0
2062 #define MRGL0 1
2063 #else
2064 #define MRGHI 1
2065 #define MRGLO 0
2066 #endif
2067 #define VMRG(suffix, element) \
2068 VMRG_DO(mrgl##suffix, element, MRGHI) \
2069 VMRG_DO(mrgh##suffix, element, MRGLO)
2070 VMRG(b, u8)
2071 VMRG(h, u16)
2072 VMRG(w, u32)
2073 #undef VMRG_DO
2074 #undef VMRG
2075 #undef MRGHI
2076 #undef MRGLO
2078 #define VMUL_DO(name, mul_element, prod_element, evenp) \
2079 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2081 int i; \
2082 VECTOR_FOR_INORDER_I(i, prod_element) { \
2083 if (evenp) { \
2084 r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
2085 } else { \
2086 r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
2090 #define VMUL(suffix, mul_element, prod_element) \
2091 VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
2092 VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
2093 VMUL(sb, s8, s16)
2094 VMUL(sh, s16, s32)
2095 VMUL(ub, u8, u16)
2096 VMUL(uh, u16, u32)
2097 #undef VMUL_DO
2098 #undef VMUL
2100 #define VSL(suffix, element) \
2101 void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2103 int i; \
2104 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2105 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2106 unsigned int shift = b->element[i] & mask; \
2107 r->element[i] = a->element[i] << shift; \
2110 VSL(b, u8)
2111 VSL(h, u16)
2112 VSL(w, u32)
2113 #undef VSL
2115 void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2117 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2119 #if defined (WORDS_BIGENDIAN)
2120 memmove (&r->u8[0], &a->u8[sh], 16-sh);
2121 memset (&r->u8[16-sh], 0, sh);
2122 #else
2123 memmove (&r->u8[sh], &a->u8[0], 16-sh);
2124 memset (&r->u8[0], 0, sh);
2125 #endif
2128 #define VSR(suffix, element) \
2129 void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2131 int i; \
2132 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2133 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2134 unsigned int shift = b->element[i] & mask; \
2135 r->element[i] = a->element[i] >> shift; \
2138 VSR(ab, s8)
2139 VSR(ah, s16)
2140 VSR(aw, s32)
2141 VSR(b, u8)
2142 VSR(h, u16)
2143 VSR(w, u32)
2144 #undef VSR
2146 void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2148 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2150 #if defined (WORDS_BIGENDIAN)
2151 memmove (&r->u8[sh], &a->u8[0], 16-sh);
2152 memset (&r->u8[0], 0, sh);
2153 #else
2154 memmove (&r->u8[0], &a->u8[sh], 16-sh);
2155 memset (&r->u8[16-sh], 0, sh);
2156 #endif
2159 void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2161 int i;
2162 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2163 r->u32[i] = a->u32[i] >= b->u32[i];
2167 #undef VECTOR_FOR_INORDER_I
2168 #undef HI_IDX
2169 #undef LO_IDX
2171 /*****************************************************************************/
2172 /* SPE extension helpers */
2173 /* Use a table to make this quicker */
2174 static uint8_t hbrev[16] = {
2175 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2176 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2179 static always_inline uint8_t byte_reverse (uint8_t val)
2181 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2184 static always_inline uint32_t word_reverse (uint32_t val)
2186 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2187 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2190 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
2191 target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
2193 uint32_t a, b, d, mask;
2195 mask = UINT32_MAX >> (32 - MASKBITS);
2196 a = arg1 & mask;
2197 b = arg2 & mask;
2198 d = word_reverse(1 + word_reverse(a | ~b));
2199 return (arg1 & ~mask) | (d & b);
2202 uint32_t helper_cntlsw32 (uint32_t val)
2204 if (val & 0x80000000)
2205 return clz32(~val);
2206 else
2207 return clz32(val);
2210 uint32_t helper_cntlzw32 (uint32_t val)
2212 return clz32(val);
2215 /* Single-precision floating-point conversions */
2216 static always_inline uint32_t efscfsi (uint32_t val)
2218 CPU_FloatU u;
2220 u.f = int32_to_float32(val, &env->spe_status);
2222 return u.l;
2225 static always_inline uint32_t efscfui (uint32_t val)
2227 CPU_FloatU u;
2229 u.f = uint32_to_float32(val, &env->spe_status);
2231 return u.l;
2234 static always_inline int32_t efsctsi (uint32_t val)
2236 CPU_FloatU u;
2238 u.l = val;
2239 /* NaN are not treated the same way IEEE 754 does */
2240 if (unlikely(float32_is_nan(u.f)))
2241 return 0;
2243 return float32_to_int32(u.f, &env->spe_status);
2246 static always_inline uint32_t efsctui (uint32_t val)
2248 CPU_FloatU u;
2250 u.l = val;
2251 /* NaN are not treated the same way IEEE 754 does */
2252 if (unlikely(float32_is_nan(u.f)))
2253 return 0;
2255 return float32_to_uint32(u.f, &env->spe_status);
2258 static always_inline uint32_t efsctsiz (uint32_t val)
2260 CPU_FloatU u;
2262 u.l = val;
2263 /* NaN are not treated the same way IEEE 754 does */
2264 if (unlikely(float32_is_nan(u.f)))
2265 return 0;
2267 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2270 static always_inline uint32_t efsctuiz (uint32_t val)
2272 CPU_FloatU u;
2274 u.l = val;
2275 /* NaN are not treated the same way IEEE 754 does */
2276 if (unlikely(float32_is_nan(u.f)))
2277 return 0;
2279 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2282 static always_inline uint32_t efscfsf (uint32_t val)
2284 CPU_FloatU u;
2285 float32 tmp;
2287 u.f = int32_to_float32(val, &env->spe_status);
2288 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2289 u.f = float32_div(u.f, tmp, &env->spe_status);
2291 return u.l;
2294 static always_inline uint32_t efscfuf (uint32_t val)
2296 CPU_FloatU u;
2297 float32 tmp;
2299 u.f = uint32_to_float32(val, &env->spe_status);
2300 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2301 u.f = float32_div(u.f, tmp, &env->spe_status);
2303 return u.l;
2306 static always_inline uint32_t efsctsf (uint32_t val)
2308 CPU_FloatU u;
2309 float32 tmp;
2311 u.l = val;
2312 /* NaN are not treated the same way IEEE 754 does */
2313 if (unlikely(float32_is_nan(u.f)))
2314 return 0;
2315 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2316 u.f = float32_mul(u.f, tmp, &env->spe_status);
2318 return float32_to_int32(u.f, &env->spe_status);
2321 static always_inline uint32_t efsctuf (uint32_t val)
2323 CPU_FloatU u;
2324 float32 tmp;
2326 u.l = val;
2327 /* NaN are not treated the same way IEEE 754 does */
2328 if (unlikely(float32_is_nan(u.f)))
2329 return 0;
2330 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2331 u.f = float32_mul(u.f, tmp, &env->spe_status);
2333 return float32_to_uint32(u.f, &env->spe_status);
2336 #define HELPER_SPE_SINGLE_CONV(name) \
2337 uint32_t helper_e##name (uint32_t val) \
2339 return e##name(val); \
2341 /* efscfsi */
2342 HELPER_SPE_SINGLE_CONV(fscfsi);
2343 /* efscfui */
2344 HELPER_SPE_SINGLE_CONV(fscfui);
2345 /* efscfuf */
2346 HELPER_SPE_SINGLE_CONV(fscfuf);
2347 /* efscfsf */
2348 HELPER_SPE_SINGLE_CONV(fscfsf);
2349 /* efsctsi */
2350 HELPER_SPE_SINGLE_CONV(fsctsi);
2351 /* efsctui */
2352 HELPER_SPE_SINGLE_CONV(fsctui);
2353 /* efsctsiz */
2354 HELPER_SPE_SINGLE_CONV(fsctsiz);
2355 /* efsctuiz */
2356 HELPER_SPE_SINGLE_CONV(fsctuiz);
2357 /* efsctsf */
2358 HELPER_SPE_SINGLE_CONV(fsctsf);
2359 /* efsctuf */
2360 HELPER_SPE_SINGLE_CONV(fsctuf);
2362 #define HELPER_SPE_VECTOR_CONV(name) \
2363 uint64_t helper_ev##name (uint64_t val) \
2365 return ((uint64_t)e##name(val >> 32) << 32) | \
2366 (uint64_t)e##name(val); \
2368 /* evfscfsi */
2369 HELPER_SPE_VECTOR_CONV(fscfsi);
2370 /* evfscfui */
2371 HELPER_SPE_VECTOR_CONV(fscfui);
2372 /* evfscfuf */
2373 HELPER_SPE_VECTOR_CONV(fscfuf);
2374 /* evfscfsf */
2375 HELPER_SPE_VECTOR_CONV(fscfsf);
2376 /* evfsctsi */
2377 HELPER_SPE_VECTOR_CONV(fsctsi);
2378 /* evfsctui */
2379 HELPER_SPE_VECTOR_CONV(fsctui);
2380 /* evfsctsiz */
2381 HELPER_SPE_VECTOR_CONV(fsctsiz);
2382 /* evfsctuiz */
2383 HELPER_SPE_VECTOR_CONV(fsctuiz);
2384 /* evfsctsf */
2385 HELPER_SPE_VECTOR_CONV(fsctsf);
2386 /* evfsctuf */
2387 HELPER_SPE_VECTOR_CONV(fsctuf);
2389 /* Single-precision floating-point arithmetic */
2390 static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
2392 CPU_FloatU u1, u2;
2393 u1.l = op1;
2394 u2.l = op2;
2395 u1.f = float32_add(u1.f, u2.f, &env->spe_status);
2396 return u1.l;
2399 static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
2401 CPU_FloatU u1, u2;
2402 u1.l = op1;
2403 u2.l = op2;
2404 u1.f = float32_sub(u1.f, u2.f, &env->spe_status);
2405 return u1.l;
2408 static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
2410 CPU_FloatU u1, u2;
2411 u1.l = op1;
2412 u2.l = op2;
2413 u1.f = float32_mul(u1.f, u2.f, &env->spe_status);
2414 return u1.l;
2417 static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
2419 CPU_FloatU u1, u2;
2420 u1.l = op1;
2421 u2.l = op2;
2422 u1.f = float32_div(u1.f, u2.f, &env->spe_status);
2423 return u1.l;
2426 #define HELPER_SPE_SINGLE_ARITH(name) \
2427 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
2429 return e##name(op1, op2); \
2431 /* efsadd */
2432 HELPER_SPE_SINGLE_ARITH(fsadd);
2433 /* efssub */
2434 HELPER_SPE_SINGLE_ARITH(fssub);
2435 /* efsmul */
2436 HELPER_SPE_SINGLE_ARITH(fsmul);
2437 /* efsdiv */
2438 HELPER_SPE_SINGLE_ARITH(fsdiv);
2440 #define HELPER_SPE_VECTOR_ARITH(name) \
2441 uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \
2443 return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \
2444 (uint64_t)e##name(op1, op2); \
2446 /* evfsadd */
2447 HELPER_SPE_VECTOR_ARITH(fsadd);
2448 /* evfssub */
2449 HELPER_SPE_VECTOR_ARITH(fssub);
2450 /* evfsmul */
2451 HELPER_SPE_VECTOR_ARITH(fsmul);
2452 /* evfsdiv */
2453 HELPER_SPE_VECTOR_ARITH(fsdiv);
2455 /* Single-precision floating-point comparisons */
2456 static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
2458 CPU_FloatU u1, u2;
2459 u1.l = op1;
2460 u2.l = op2;
2461 return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0;
2464 static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
2466 CPU_FloatU u1, u2;
2467 u1.l = op1;
2468 u2.l = op2;
2469 return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4;
2472 static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
2474 CPU_FloatU u1, u2;
2475 u1.l = op1;
2476 u2.l = op2;
2477 return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0;
2480 static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
2482 /* XXX: TODO: test special values (NaN, infinites, ...) */
2483 return efststlt(op1, op2);
2486 static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2)
2488 /* XXX: TODO: test special values (NaN, infinites, ...) */
2489 return efststgt(op1, op2);
2492 static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2)
2494 /* XXX: TODO: test special values (NaN, infinites, ...) */
2495 return efststeq(op1, op2);
2498 #define HELPER_SINGLE_SPE_CMP(name) \
2499 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
2501 return e##name(op1, op2) << 2; \
2503 /* efststlt */
2504 HELPER_SINGLE_SPE_CMP(fststlt);
2505 /* efststgt */
2506 HELPER_SINGLE_SPE_CMP(fststgt);
2507 /* efststeq */
2508 HELPER_SINGLE_SPE_CMP(fststeq);
2509 /* efscmplt */
2510 HELPER_SINGLE_SPE_CMP(fscmplt);
2511 /* efscmpgt */
2512 HELPER_SINGLE_SPE_CMP(fscmpgt);
2513 /* efscmpeq */
2514 HELPER_SINGLE_SPE_CMP(fscmpeq);
2516 static always_inline uint32_t evcmp_merge (int t0, int t1)
2518 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2521 #define HELPER_VECTOR_SPE_CMP(name) \
2522 uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \
2524 return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \
2526 /* evfststlt */
2527 HELPER_VECTOR_SPE_CMP(fststlt);
2528 /* evfststgt */
2529 HELPER_VECTOR_SPE_CMP(fststgt);
2530 /* evfststeq */
2531 HELPER_VECTOR_SPE_CMP(fststeq);
2532 /* evfscmplt */
2533 HELPER_VECTOR_SPE_CMP(fscmplt);
2534 /* evfscmpgt */
2535 HELPER_VECTOR_SPE_CMP(fscmpgt);
2536 /* evfscmpeq */
2537 HELPER_VECTOR_SPE_CMP(fscmpeq);
2539 /* Double-precision floating-point conversion */
2540 uint64_t helper_efdcfsi (uint32_t val)
2542 CPU_DoubleU u;
2544 u.d = int32_to_float64(val, &env->spe_status);
2546 return u.ll;
2549 uint64_t helper_efdcfsid (uint64_t val)
2551 CPU_DoubleU u;
2553 u.d = int64_to_float64(val, &env->spe_status);
2555 return u.ll;
2558 uint64_t helper_efdcfui (uint32_t val)
2560 CPU_DoubleU u;
2562 u.d = uint32_to_float64(val, &env->spe_status);
2564 return u.ll;
2567 uint64_t helper_efdcfuid (uint64_t val)
2569 CPU_DoubleU u;
2571 u.d = uint64_to_float64(val, &env->spe_status);
2573 return u.ll;
2576 uint32_t helper_efdctsi (uint64_t val)
2578 CPU_DoubleU u;
2580 u.ll = val;
2581 /* NaN are not treated the same way IEEE 754 does */
2582 if (unlikely(float64_is_nan(u.d)))
2583 return 0;
2585 return float64_to_int32(u.d, &env->spe_status);
2588 uint32_t helper_efdctui (uint64_t val)
2590 CPU_DoubleU u;
2592 u.ll = val;
2593 /* NaN are not treated the same way IEEE 754 does */
2594 if (unlikely(float64_is_nan(u.d)))
2595 return 0;
2597 return float64_to_uint32(u.d, &env->spe_status);
2600 uint32_t helper_efdctsiz (uint64_t val)
2602 CPU_DoubleU u;
2604 u.ll = val;
2605 /* NaN are not treated the same way IEEE 754 does */
2606 if (unlikely(float64_is_nan(u.d)))
2607 return 0;
2609 return float64_to_int32_round_to_zero(u.d, &env->spe_status);
2612 uint64_t helper_efdctsidz (uint64_t val)
2614 CPU_DoubleU u;
2616 u.ll = val;
2617 /* NaN are not treated the same way IEEE 754 does */
2618 if (unlikely(float64_is_nan(u.d)))
2619 return 0;
2621 return float64_to_int64_round_to_zero(u.d, &env->spe_status);
2624 uint32_t helper_efdctuiz (uint64_t val)
2626 CPU_DoubleU u;
2628 u.ll = val;
2629 /* NaN are not treated the same way IEEE 754 does */
2630 if (unlikely(float64_is_nan(u.d)))
2631 return 0;
2633 return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
2636 uint64_t helper_efdctuidz (uint64_t val)
2638 CPU_DoubleU u;
2640 u.ll = val;
2641 /* NaN are not treated the same way IEEE 754 does */
2642 if (unlikely(float64_is_nan(u.d)))
2643 return 0;
2645 return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
2648 uint64_t helper_efdcfsf (uint32_t val)
2650 CPU_DoubleU u;
2651 float64 tmp;
2653 u.d = int32_to_float64(val, &env->spe_status);
2654 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2655 u.d = float64_div(u.d, tmp, &env->spe_status);
2657 return u.ll;
2660 uint64_t helper_efdcfuf (uint32_t val)
2662 CPU_DoubleU u;
2663 float64 tmp;
2665 u.d = uint32_to_float64(val, &env->spe_status);
2666 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2667 u.d = float64_div(u.d, tmp, &env->spe_status);
2669 return u.ll;
2672 uint32_t helper_efdctsf (uint64_t val)
2674 CPU_DoubleU u;
2675 float64 tmp;
2677 u.ll = val;
2678 /* NaN are not treated the same way IEEE 754 does */
2679 if (unlikely(float64_is_nan(u.d)))
2680 return 0;
2681 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2682 u.d = float64_mul(u.d, tmp, &env->spe_status);
2684 return float64_to_int32(u.d, &env->spe_status);
2687 uint32_t helper_efdctuf (uint64_t val)
2689 CPU_DoubleU u;
2690 float64 tmp;
2692 u.ll = val;
2693 /* NaN are not treated the same way IEEE 754 does */
2694 if (unlikely(float64_is_nan(u.d)))
2695 return 0;
2696 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2697 u.d = float64_mul(u.d, tmp, &env->spe_status);
2699 return float64_to_uint32(u.d, &env->spe_status);
2702 uint32_t helper_efscfd (uint64_t val)
2704 CPU_DoubleU u1;
2705 CPU_FloatU u2;
2707 u1.ll = val;
2708 u2.f = float64_to_float32(u1.d, &env->spe_status);
2710 return u2.l;
2713 uint64_t helper_efdcfs (uint32_t val)
2715 CPU_DoubleU u2;
2716 CPU_FloatU u1;
2718 u1.l = val;
2719 u2.d = float32_to_float64(u1.f, &env->spe_status);
2721 return u2.ll;
2724 /* Double precision fixed-point arithmetic */
2725 uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
2727 CPU_DoubleU u1, u2;
2728 u1.ll = op1;
2729 u2.ll = op2;
2730 u1.d = float64_add(u1.d, u2.d, &env->spe_status);
2731 return u1.ll;
2734 uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
2736 CPU_DoubleU u1, u2;
2737 u1.ll = op1;
2738 u2.ll = op2;
2739 u1.d = float64_sub(u1.d, u2.d, &env->spe_status);
2740 return u1.ll;
2743 uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
2745 CPU_DoubleU u1, u2;
2746 u1.ll = op1;
2747 u2.ll = op2;
2748 u1.d = float64_mul(u1.d, u2.d, &env->spe_status);
2749 return u1.ll;
2752 uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
2754 CPU_DoubleU u1, u2;
2755 u1.ll = op1;
2756 u2.ll = op2;
2757 u1.d = float64_div(u1.d, u2.d, &env->spe_status);
2758 return u1.ll;
2761 /* Double precision floating point helpers */
2762 uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
2764 CPU_DoubleU u1, u2;
2765 u1.ll = op1;
2766 u2.ll = op2;
2767 return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0;
2770 uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
2772 CPU_DoubleU u1, u2;
2773 u1.ll = op1;
2774 u2.ll = op2;
2775 return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4;
2778 uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
2780 CPU_DoubleU u1, u2;
2781 u1.ll = op1;
2782 u2.ll = op2;
2783 return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0;
2786 uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
2788 /* XXX: TODO: test special values (NaN, infinites, ...) */
2789 return helper_efdtstlt(op1, op2);
2792 uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
2794 /* XXX: TODO: test special values (NaN, infinites, ...) */
2795 return helper_efdtstgt(op1, op2);
2798 uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
2800 /* XXX: TODO: test special values (NaN, infinites, ...) */
2801 return helper_efdtsteq(op1, op2);
2804 /*****************************************************************************/
2805 /* Softmmu support */
2806 #if !defined (CONFIG_USER_ONLY)
2808 #define MMUSUFFIX _mmu
2810 #define SHIFT 0
2811 #include "softmmu_template.h"
2813 #define SHIFT 1
2814 #include "softmmu_template.h"
2816 #define SHIFT 2
2817 #include "softmmu_template.h"
2819 #define SHIFT 3
2820 #include "softmmu_template.h"
2822 /* try to fill the TLB and return an exception if error. If retaddr is
2823 NULL, it means that the function was called in C code (i.e. not
2824 from generated code or from helper.c) */
2825 /* XXX: fix it to restore all registers */
2826 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2828 TranslationBlock *tb;
2829 CPUState *saved_env;
2830 unsigned long pc;
2831 int ret;
2833 /* XXX: hack to restore env in all cases, even if not called from
2834 generated code */
2835 saved_env = env;
2836 env = cpu_single_env;
2837 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2838 if (unlikely(ret != 0)) {
2839 if (likely(retaddr)) {
2840 /* now we have a real cpu fault */
2841 pc = (unsigned long)retaddr;
2842 tb = tb_find_pc(pc);
2843 if (likely(tb)) {
2844 /* the PC is inside the translated code. It means that we have
2845 a virtual CPU fault */
2846 cpu_restore_state(tb, env, pc, NULL);
2849 helper_raise_exception_err(env->exception_index, env->error_code);
2851 env = saved_env;
2854 /* Segment registers load and store */
2855 target_ulong helper_load_sr (target_ulong sr_num)
2857 return env->sr[sr_num];
2860 void helper_store_sr (target_ulong sr_num, target_ulong val)
2862 ppc_store_sr(env, sr_num, val);
2865 /* SLB management */
2866 #if defined(TARGET_PPC64)
2867 target_ulong helper_load_slb (target_ulong slb_nr)
2869 return ppc_load_slb(env, slb_nr);
2872 void helper_store_slb (target_ulong slb_nr, target_ulong rs)
2874 ppc_store_slb(env, slb_nr, rs);
2877 void helper_slbia (void)
2879 ppc_slb_invalidate_all(env);
2882 void helper_slbie (target_ulong addr)
2884 ppc_slb_invalidate_one(env, addr);
2887 #endif /* defined(TARGET_PPC64) */
2889 /* TLB management */
2890 void helper_tlbia (void)
2892 ppc_tlb_invalidate_all(env);
2895 void helper_tlbie (target_ulong addr)
2897 ppc_tlb_invalidate_one(env, addr);
2900 /* Software driven TLBs management */
2901 /* PowerPC 602/603 software TLB load instructions helpers */
2902 static void do_6xx_tlb (target_ulong new_EPN, int is_code)
2904 target_ulong RPN, CMP, EPN;
2905 int way;
2907 RPN = env->spr[SPR_RPA];
2908 if (is_code) {
2909 CMP = env->spr[SPR_ICMP];
2910 EPN = env->spr[SPR_IMISS];
2911 } else {
2912 CMP = env->spr[SPR_DCMP];
2913 EPN = env->spr[SPR_DMISS];
2915 way = (env->spr[SPR_SRR1] >> 17) & 1;
2916 #if defined (DEBUG_SOFTWARE_TLB)
2917 if (loglevel != 0) {
2918 fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
2919 " PTE1 " ADDRX " way %d\n",
2920 __func__, new_EPN, EPN, CMP, RPN, way);
2922 #endif
2923 /* Store this TLB */
2924 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
2925 way, is_code, CMP, RPN);
2928 void helper_6xx_tlbd (target_ulong EPN)
2930 do_6xx_tlb(EPN, 0);
2933 void helper_6xx_tlbi (target_ulong EPN)
2935 do_6xx_tlb(EPN, 1);
2938 /* PowerPC 74xx software TLB load instructions helpers */
2939 static void do_74xx_tlb (target_ulong new_EPN, int is_code)
2941 target_ulong RPN, CMP, EPN;
2942 int way;
2944 RPN = env->spr[SPR_PTELO];
2945 CMP = env->spr[SPR_PTEHI];
2946 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2947 way = env->spr[SPR_TLBMISS] & 0x3;
2948 #if defined (DEBUG_SOFTWARE_TLB)
2949 if (loglevel != 0) {
2950 fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
2951 " PTE1 " ADDRX " way %d\n",
2952 __func__, new_EPN, EPN, CMP, RPN, way);
2954 #endif
2955 /* Store this TLB */
2956 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
2957 way, is_code, CMP, RPN);
2960 void helper_74xx_tlbd (target_ulong EPN)
2962 do_74xx_tlb(EPN, 0);
2965 void helper_74xx_tlbi (target_ulong EPN)
2967 do_74xx_tlb(EPN, 1);
2970 static always_inline target_ulong booke_tlb_to_page_size (int size)
2972 return 1024 << (2 * size);
2975 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
2977 int size;
2979 switch (page_size) {
2980 case 0x00000400UL:
2981 size = 0x0;
2982 break;
2983 case 0x00001000UL:
2984 size = 0x1;
2985 break;
2986 case 0x00004000UL:
2987 size = 0x2;
2988 break;
2989 case 0x00010000UL:
2990 size = 0x3;
2991 break;
2992 case 0x00040000UL:
2993 size = 0x4;
2994 break;
2995 case 0x00100000UL:
2996 size = 0x5;
2997 break;
2998 case 0x00400000UL:
2999 size = 0x6;
3000 break;
3001 case 0x01000000UL:
3002 size = 0x7;
3003 break;
3004 case 0x04000000UL:
3005 size = 0x8;
3006 break;
3007 case 0x10000000UL:
3008 size = 0x9;
3009 break;
3010 case 0x40000000UL:
3011 size = 0xA;
3012 break;
3013 #if defined (TARGET_PPC64)
3014 case 0x000100000000ULL:
3015 size = 0xB;
3016 break;
3017 case 0x000400000000ULL:
3018 size = 0xC;
3019 break;
3020 case 0x001000000000ULL:
3021 size = 0xD;
3022 break;
3023 case 0x004000000000ULL:
3024 size = 0xE;
3025 break;
3026 case 0x010000000000ULL:
3027 size = 0xF;
3028 break;
3029 #endif
3030 default:
3031 size = -1;
3032 break;
3035 return size;
3038 /* Helpers for 4xx TLB management */
3039 target_ulong helper_4xx_tlbre_lo (target_ulong entry)
3041 ppcemb_tlb_t *tlb;
3042 target_ulong ret;
3043 int size;
3045 entry &= 0x3F;
3046 tlb = &env->tlb[entry].tlbe;
3047 ret = tlb->EPN;
3048 if (tlb->prot & PAGE_VALID)
3049 ret |= 0x400;
3050 size = booke_page_size_to_tlb(tlb->size);
3051 if (size < 0 || size > 0x7)
3052 size = 1;
3053 ret |= size << 7;
3054 env->spr[SPR_40x_PID] = tlb->PID;
3055 return ret;
3058 target_ulong helper_4xx_tlbre_hi (target_ulong entry)
3060 ppcemb_tlb_t *tlb;
3061 target_ulong ret;
3063 entry &= 0x3F;
3064 tlb = &env->tlb[entry].tlbe;
3065 ret = tlb->RPN;
3066 if (tlb->prot & PAGE_EXEC)
3067 ret |= 0x200;
3068 if (tlb->prot & PAGE_WRITE)
3069 ret |= 0x100;
3070 return ret;
3073 void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
3075 ppcemb_tlb_t *tlb;
3076 target_ulong page, end;
3078 #if defined (DEBUG_SOFTWARE_TLB)
3079 if (loglevel != 0) {
3080 fprintf(logfile, "%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
3082 #endif
3083 entry &= 0x3F;
3084 tlb = &env->tlb[entry].tlbe;
3085 /* Invalidate previous TLB (if it's valid) */
3086 if (tlb->prot & PAGE_VALID) {
3087 end = tlb->EPN + tlb->size;
3088 #if defined (DEBUG_SOFTWARE_TLB)
3089 if (loglevel != 0) {
3090 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
3091 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3093 #endif
3094 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3095 tlb_flush_page(env, page);
3097 tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
3098 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
3099 * If this ever occurs, one should use the ppcemb target instead
3100 * of the ppc or ppc64 one
3102 if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
3103 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
3104 "are not supported (%d)\n",
3105 tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
3107 tlb->EPN = val & ~(tlb->size - 1);
3108 if (val & 0x40)
3109 tlb->prot |= PAGE_VALID;
3110 else
3111 tlb->prot &= ~PAGE_VALID;
3112 if (val & 0x20) {
3113 /* XXX: TO BE FIXED */
3114 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
3116 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
3117 tlb->attr = val & 0xFF;
3118 #if defined (DEBUG_SOFTWARE_TLB)
3119 if (loglevel != 0) {
3120 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3121 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3122 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3123 tlb->prot & PAGE_READ ? 'r' : '-',
3124 tlb->prot & PAGE_WRITE ? 'w' : '-',
3125 tlb->prot & PAGE_EXEC ? 'x' : '-',
3126 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3128 #endif
3129 /* Invalidate new TLB (if valid) */
3130 if (tlb->prot & PAGE_VALID) {
3131 end = tlb->EPN + tlb->size;
3132 #if defined (DEBUG_SOFTWARE_TLB)
3133 if (loglevel != 0) {
3134 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
3135 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3137 #endif
3138 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3139 tlb_flush_page(env, page);
3143 void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
3145 ppcemb_tlb_t *tlb;
3147 #if defined (DEBUG_SOFTWARE_TLB)
3148 if (loglevel != 0) {
3149 fprintf(logfile, "%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
3151 #endif
3152 entry &= 0x3F;
3153 tlb = &env->tlb[entry].tlbe;
3154 tlb->RPN = val & 0xFFFFFC00;
3155 tlb->prot = PAGE_READ;
3156 if (val & 0x200)
3157 tlb->prot |= PAGE_EXEC;
3158 if (val & 0x100)
3159 tlb->prot |= PAGE_WRITE;
3160 #if defined (DEBUG_SOFTWARE_TLB)
3161 if (loglevel != 0) {
3162 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3163 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3164 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3165 tlb->prot & PAGE_READ ? 'r' : '-',
3166 tlb->prot & PAGE_WRITE ? 'w' : '-',
3167 tlb->prot & PAGE_EXEC ? 'x' : '-',
3168 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3170 #endif
3173 target_ulong helper_4xx_tlbsx (target_ulong address)
3175 return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
3178 /* PowerPC 440 TLB management */
3179 void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
3181 ppcemb_tlb_t *tlb;
3182 target_ulong EPN, RPN, size;
3183 int do_flush_tlbs;
3185 #if defined (DEBUG_SOFTWARE_TLB)
3186 if (loglevel != 0) {
3187 fprintf(logfile, "%s word %d entry %d value " ADDRX "\n",
3188 __func__, word, (int)entry, value);
3190 #endif
3191 do_flush_tlbs = 0;
3192 entry &= 0x3F;
3193 tlb = &env->tlb[entry].tlbe;
3194 switch (word) {
3195 default:
3196 /* Just here to please gcc */
3197 case 0:
3198 EPN = value & 0xFFFFFC00;
3199 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3200 do_flush_tlbs = 1;
3201 tlb->EPN = EPN;
3202 size = booke_tlb_to_page_size((value >> 4) & 0xF);
3203 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3204 do_flush_tlbs = 1;
3205 tlb->size = size;
3206 tlb->attr &= ~0x1;
3207 tlb->attr |= (value >> 8) & 1;
3208 if (value & 0x200) {
3209 tlb->prot |= PAGE_VALID;
3210 } else {
3211 if (tlb->prot & PAGE_VALID) {
3212 tlb->prot &= ~PAGE_VALID;
3213 do_flush_tlbs = 1;
3216 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3217 if (do_flush_tlbs)
3218 tlb_flush(env, 1);
3219 break;
3220 case 1:
3221 RPN = value & 0xFFFFFC0F;
3222 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3223 tlb_flush(env, 1);
3224 tlb->RPN = RPN;
3225 break;
3226 case 2:
3227 tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
3228 tlb->prot = tlb->prot & PAGE_VALID;
3229 if (value & 0x1)
3230 tlb->prot |= PAGE_READ << 4;
3231 if (value & 0x2)
3232 tlb->prot |= PAGE_WRITE << 4;
3233 if (value & 0x4)
3234 tlb->prot |= PAGE_EXEC << 4;
3235 if (value & 0x8)
3236 tlb->prot |= PAGE_READ;
3237 if (value & 0x10)
3238 tlb->prot |= PAGE_WRITE;
3239 if (value & 0x20)
3240 tlb->prot |= PAGE_EXEC;
3241 break;
3245 target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
3247 ppcemb_tlb_t *tlb;
3248 target_ulong ret;
3249 int size;
3251 entry &= 0x3F;
3252 tlb = &env->tlb[entry].tlbe;
3253 switch (word) {
3254 default:
3255 /* Just here to please gcc */
3256 case 0:
3257 ret = tlb->EPN;
3258 size = booke_page_size_to_tlb(tlb->size);
3259 if (size < 0 || size > 0xF)
3260 size = 1;
3261 ret |= size << 4;
3262 if (tlb->attr & 0x1)
3263 ret |= 0x100;
3264 if (tlb->prot & PAGE_VALID)
3265 ret |= 0x200;
3266 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3267 env->spr[SPR_440_MMUCR] |= tlb->PID;
3268 break;
3269 case 1:
3270 ret = tlb->RPN;
3271 break;
3272 case 2:
3273 ret = tlb->attr & ~0x1;
3274 if (tlb->prot & (PAGE_READ << 4))
3275 ret |= 0x1;
3276 if (tlb->prot & (PAGE_WRITE << 4))
3277 ret |= 0x2;
3278 if (tlb->prot & (PAGE_EXEC << 4))
3279 ret |= 0x4;
3280 if (tlb->prot & PAGE_READ)
3281 ret |= 0x8;
3282 if (tlb->prot & PAGE_WRITE)
3283 ret |= 0x10;
3284 if (tlb->prot & PAGE_EXEC)
3285 ret |= 0x20;
3286 break;
3288 return ret;
3291 target_ulong helper_440_tlbsx (target_ulong address)
3293 return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
3296 #endif /* !CONFIG_USER_ONLY */