change pavo nand flash size from 128M to 1G bytes
[qemu/qemu-JZ.git] / hw / integratorcp.c
blobfdbfe202fd32dcbebd2d72e6bacfc908a66102bd
1 /*
2 * ARM Integrator CP System emulation.
4 * Copyright (c) 2005-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL
8 */
10 #include "hw.h"
11 #include "primecell.h"
12 #include "devices.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "arm-misc.h"
16 #include "net.h"
18 typedef struct {
19 uint32_t flash_offset;
20 uint32_t cm_osc;
21 uint32_t cm_ctrl;
22 uint32_t cm_lock;
23 uint32_t cm_auxosc;
24 uint32_t cm_sdram;
25 uint32_t cm_init;
26 uint32_t cm_flags;
27 uint32_t cm_nvflags;
28 uint32_t int_level;
29 uint32_t irq_enabled;
30 uint32_t fiq_enabled;
31 } integratorcm_state;
33 static uint8_t integrator_spd[128] = {
34 128, 8, 4, 11, 9, 1, 64, 0, 2, 0xa0, 0xa0, 0, 0, 8, 0, 1,
35 0xe, 4, 0x1c, 1, 2, 0x20, 0xc0, 0, 0, 0, 0, 0x30, 0x28, 0x30, 0x28, 0x40
38 static uint32_t integratorcm_read(void *opaque, target_phys_addr_t offset)
40 integratorcm_state *s = (integratorcm_state *)opaque;
41 if (offset >= 0x100 && offset < 0x200) {
42 /* CM_SPD */
43 if (offset >= 0x180)
44 return 0;
45 return integrator_spd[offset >> 2];
47 switch (offset >> 2) {
48 case 0: /* CM_ID */
49 return 0x411a3001;
50 case 1: /* CM_PROC */
51 return 0;
52 case 2: /* CM_OSC */
53 return s->cm_osc;
54 case 3: /* CM_CTRL */
55 return s->cm_ctrl;
56 case 4: /* CM_STAT */
57 return 0x00100000;
58 case 5: /* CM_LOCK */
59 if (s->cm_lock == 0xa05f) {
60 return 0x1a05f;
61 } else {
62 return s->cm_lock;
64 case 6: /* CM_LMBUSCNT */
65 /* ??? High frequency timer. */
66 cpu_abort(cpu_single_env, "integratorcm_read: CM_LMBUSCNT");
67 case 7: /* CM_AUXOSC */
68 return s->cm_auxosc;
69 case 8: /* CM_SDRAM */
70 return s->cm_sdram;
71 case 9: /* CM_INIT */
72 return s->cm_init;
73 case 10: /* CM_REFCT */
74 /* ??? High frequency timer. */
75 cpu_abort(cpu_single_env, "integratorcm_read: CM_REFCT");
76 case 12: /* CM_FLAGS */
77 return s->cm_flags;
78 case 14: /* CM_NVFLAGS */
79 return s->cm_nvflags;
80 case 16: /* CM_IRQ_STAT */
81 return s->int_level & s->irq_enabled;
82 case 17: /* CM_IRQ_RSTAT */
83 return s->int_level;
84 case 18: /* CM_IRQ_ENSET */
85 return s->irq_enabled;
86 case 20: /* CM_SOFT_INTSET */
87 return s->int_level & 1;
88 case 24: /* CM_FIQ_STAT */
89 return s->int_level & s->fiq_enabled;
90 case 25: /* CM_FIQ_RSTAT */
91 return s->int_level;
92 case 26: /* CM_FIQ_ENSET */
93 return s->fiq_enabled;
94 case 32: /* CM_VOLTAGE_CTL0 */
95 case 33: /* CM_VOLTAGE_CTL1 */
96 case 34: /* CM_VOLTAGE_CTL2 */
97 case 35: /* CM_VOLTAGE_CTL3 */
98 /* ??? Voltage control unimplemented. */
99 return 0;
100 default:
101 cpu_abort (cpu_single_env,
102 "integratorcm_read: Unimplemented offset 0x%x\n", (int)offset);
103 return 0;
107 static void integratorcm_do_remap(integratorcm_state *s, int flash)
109 if (flash) {
110 cpu_register_physical_memory(0, 0x100000, IO_MEM_RAM);
111 } else {
112 cpu_register_physical_memory(0, 0x100000, s->flash_offset | IO_MEM_RAM);
114 //??? tlb_flush (cpu_single_env, 1);
117 static void integratorcm_set_ctrl(integratorcm_state *s, uint32_t value)
119 if (value & 8) {
120 cpu_abort(cpu_single_env, "Board reset\n");
122 if ((s->cm_init ^ value) & 4) {
123 integratorcm_do_remap(s, (value & 4) == 0);
125 if ((s->cm_init ^ value) & 1) {
126 printf("Green LED %s\n", (value & 1) ? "on" : "off");
128 s->cm_init = (s->cm_init & ~ 5) | (value ^ 5);
131 static void integratorcm_update(integratorcm_state *s)
133 /* ??? The CPU irq/fiq is raised when either the core module or base PIC
134 are active. */
135 if (s->int_level & (s->irq_enabled | s->fiq_enabled))
136 cpu_abort(cpu_single_env, "Core module interrupt\n");
139 static void integratorcm_write(void *opaque, target_phys_addr_t offset,
140 uint32_t value)
142 integratorcm_state *s = (integratorcm_state *)opaque;
143 switch (offset >> 2) {
144 case 2: /* CM_OSC */
145 if (s->cm_lock == 0xa05f)
146 s->cm_osc = value;
147 break;
148 case 3: /* CM_CTRL */
149 integratorcm_set_ctrl(s, value);
150 break;
151 case 5: /* CM_LOCK */
152 s->cm_lock = value & 0xffff;
153 break;
154 case 7: /* CM_AUXOSC */
155 if (s->cm_lock == 0xa05f)
156 s->cm_auxosc = value;
157 break;
158 case 8: /* CM_SDRAM */
159 s->cm_sdram = value;
160 break;
161 case 9: /* CM_INIT */
162 /* ??? This can change the memory bus frequency. */
163 s->cm_init = value;
164 break;
165 case 12: /* CM_FLAGSS */
166 s->cm_flags |= value;
167 break;
168 case 13: /* CM_FLAGSC */
169 s->cm_flags &= ~value;
170 break;
171 case 14: /* CM_NVFLAGSS */
172 s->cm_nvflags |= value;
173 break;
174 case 15: /* CM_NVFLAGSS */
175 s->cm_nvflags &= ~value;
176 break;
177 case 18: /* CM_IRQ_ENSET */
178 s->irq_enabled |= value;
179 integratorcm_update(s);
180 break;
181 case 19: /* CM_IRQ_ENCLR */
182 s->irq_enabled &= ~value;
183 integratorcm_update(s);
184 break;
185 case 20: /* CM_SOFT_INTSET */
186 s->int_level |= (value & 1);
187 integratorcm_update(s);
188 break;
189 case 21: /* CM_SOFT_INTCLR */
190 s->int_level &= ~(value & 1);
191 integratorcm_update(s);
192 break;
193 case 26: /* CM_FIQ_ENSET */
194 s->fiq_enabled |= value;
195 integratorcm_update(s);
196 break;
197 case 27: /* CM_FIQ_ENCLR */
198 s->fiq_enabled &= ~value;
199 integratorcm_update(s);
200 break;
201 case 32: /* CM_VOLTAGE_CTL0 */
202 case 33: /* CM_VOLTAGE_CTL1 */
203 case 34: /* CM_VOLTAGE_CTL2 */
204 case 35: /* CM_VOLTAGE_CTL3 */
205 /* ??? Voltage control unimplemented. */
206 break;
207 default:
208 cpu_abort (cpu_single_env,
209 "integratorcm_write: Unimplemented offset 0x%x\n", (int)offset);
210 break;
214 /* Integrator/CM control registers. */
216 static CPUReadMemoryFunc *integratorcm_readfn[] = {
217 integratorcm_read,
218 integratorcm_read,
219 integratorcm_read
222 static CPUWriteMemoryFunc *integratorcm_writefn[] = {
223 integratorcm_write,
224 integratorcm_write,
225 integratorcm_write
228 static void integratorcm_init(int memsz)
230 int iomemtype;
231 integratorcm_state *s;
233 s = (integratorcm_state *)qemu_mallocz(sizeof(integratorcm_state));
234 s->cm_osc = 0x01000048;
235 /* ??? What should the high bits of this value be? */
236 s->cm_auxosc = 0x0007feff;
237 s->cm_sdram = 0x00011122;
238 if (memsz >= 256) {
239 integrator_spd[31] = 64;
240 s->cm_sdram |= 0x10;
241 } else if (memsz >= 128) {
242 integrator_spd[31] = 32;
243 s->cm_sdram |= 0x0c;
244 } else if (memsz >= 64) {
245 integrator_spd[31] = 16;
246 s->cm_sdram |= 0x08;
247 } else if (memsz >= 32) {
248 integrator_spd[31] = 4;
249 s->cm_sdram |= 0x04;
250 } else {
251 integrator_spd[31] = 2;
253 memcpy(integrator_spd + 73, "QEMU-MEMORY", 11);
254 s->cm_init = 0x00000112;
255 s->flash_offset = qemu_ram_alloc(0x100000);
257 iomemtype = cpu_register_io_memory(0, integratorcm_readfn,
258 integratorcm_writefn, s);
259 cpu_register_physical_memory(0x10000000, 0x00800000, iomemtype);
260 integratorcm_do_remap(s, 1);
261 /* ??? Save/restore. */
264 /* Integrator/CP hardware emulation. */
265 /* Primary interrupt controller. */
267 typedef struct icp_pic_state
269 uint32_t level;
270 uint32_t irq_enabled;
271 uint32_t fiq_enabled;
272 qemu_irq parent_irq;
273 qemu_irq parent_fiq;
274 } icp_pic_state;
276 static void icp_pic_update(icp_pic_state *s)
278 uint32_t flags;
280 flags = (s->level & s->irq_enabled);
281 qemu_set_irq(s->parent_irq, flags != 0);
282 flags = (s->level & s->fiq_enabled);
283 qemu_set_irq(s->parent_fiq, flags != 0);
286 static void icp_pic_set_irq(void *opaque, int irq, int level)
288 icp_pic_state *s = (icp_pic_state *)opaque;
289 if (level)
290 s->level |= 1 << irq;
291 else
292 s->level &= ~(1 << irq);
293 icp_pic_update(s);
296 static uint32_t icp_pic_read(void *opaque, target_phys_addr_t offset)
298 icp_pic_state *s = (icp_pic_state *)opaque;
300 switch (offset >> 2) {
301 case 0: /* IRQ_STATUS */
302 return s->level & s->irq_enabled;
303 case 1: /* IRQ_RAWSTAT */
304 return s->level;
305 case 2: /* IRQ_ENABLESET */
306 return s->irq_enabled;
307 case 4: /* INT_SOFTSET */
308 return s->level & 1;
309 case 8: /* FRQ_STATUS */
310 return s->level & s->fiq_enabled;
311 case 9: /* FRQ_RAWSTAT */
312 return s->level;
313 case 10: /* FRQ_ENABLESET */
314 return s->fiq_enabled;
315 case 3: /* IRQ_ENABLECLR */
316 case 5: /* INT_SOFTCLR */
317 case 11: /* FRQ_ENABLECLR */
318 default:
319 printf ("icp_pic_read: Bad register offset 0x%x\n", (int)offset);
320 return 0;
324 static void icp_pic_write(void *opaque, target_phys_addr_t offset,
325 uint32_t value)
327 icp_pic_state *s = (icp_pic_state *)opaque;
329 switch (offset >> 2) {
330 case 2: /* IRQ_ENABLESET */
331 s->irq_enabled |= value;
332 break;
333 case 3: /* IRQ_ENABLECLR */
334 s->irq_enabled &= ~value;
335 break;
336 case 4: /* INT_SOFTSET */
337 if (value & 1)
338 icp_pic_set_irq(s, 0, 1);
339 break;
340 case 5: /* INT_SOFTCLR */
341 if (value & 1)
342 icp_pic_set_irq(s, 0, 0);
343 break;
344 case 10: /* FRQ_ENABLESET */
345 s->fiq_enabled |= value;
346 break;
347 case 11: /* FRQ_ENABLECLR */
348 s->fiq_enabled &= ~value;
349 break;
350 case 0: /* IRQ_STATUS */
351 case 1: /* IRQ_RAWSTAT */
352 case 8: /* FRQ_STATUS */
353 case 9: /* FRQ_RAWSTAT */
354 default:
355 printf ("icp_pic_write: Bad register offset 0x%x\n", (int)offset);
356 return;
358 icp_pic_update(s);
361 static CPUReadMemoryFunc *icp_pic_readfn[] = {
362 icp_pic_read,
363 icp_pic_read,
364 icp_pic_read
367 static CPUWriteMemoryFunc *icp_pic_writefn[] = {
368 icp_pic_write,
369 icp_pic_write,
370 icp_pic_write
373 static qemu_irq *icp_pic_init(uint32_t base,
374 qemu_irq parent_irq, qemu_irq parent_fiq)
376 icp_pic_state *s;
377 int iomemtype;
378 qemu_irq *qi;
380 s = (icp_pic_state *)qemu_mallocz(sizeof(icp_pic_state));
381 if (!s)
382 return NULL;
383 qi = qemu_allocate_irqs(icp_pic_set_irq, s, 32);
384 s->parent_irq = parent_irq;
385 s->parent_fiq = parent_fiq;
386 iomemtype = cpu_register_io_memory(0, icp_pic_readfn,
387 icp_pic_writefn, s);
388 cpu_register_physical_memory(base, 0x00800000, iomemtype);
389 /* ??? Save/restore. */
390 return qi;
393 /* CP control registers. */
394 static uint32_t icp_control_read(void *opaque, target_phys_addr_t offset)
396 switch (offset >> 2) {
397 case 0: /* CP_IDFIELD */
398 return 0x41034003;
399 case 1: /* CP_FLASHPROG */
400 return 0;
401 case 2: /* CP_INTREG */
402 return 0;
403 case 3: /* CP_DECODE */
404 return 0x11;
405 default:
406 cpu_abort (cpu_single_env, "icp_control_read: Bad offset %x\n",
407 (int)offset);
408 return 0;
412 static void icp_control_write(void *opaque, target_phys_addr_t offset,
413 uint32_t value)
415 switch (offset >> 2) {
416 case 1: /* CP_FLASHPROG */
417 case 2: /* CP_INTREG */
418 case 3: /* CP_DECODE */
419 /* Nothing interesting implemented yet. */
420 break;
421 default:
422 cpu_abort (cpu_single_env, "icp_control_write: Bad offset %x\n",
423 (int)offset);
426 static CPUReadMemoryFunc *icp_control_readfn[] = {
427 icp_control_read,
428 icp_control_read,
429 icp_control_read
432 static CPUWriteMemoryFunc *icp_control_writefn[] = {
433 icp_control_write,
434 icp_control_write,
435 icp_control_write
438 static void icp_control_init(uint32_t base)
440 int iomemtype;
442 iomemtype = cpu_register_io_memory(0, icp_control_readfn,
443 icp_control_writefn, NULL);
444 cpu_register_physical_memory(base, 0x00800000, iomemtype);
445 /* ??? Save/restore. */
449 /* Board init. */
451 static struct arm_boot_info integrator_binfo = {
452 .loader_start = 0x0,
453 .board_id = 0x113,
456 static void integratorcp_init(ram_addr_t ram_size, int vga_ram_size,
457 const char *boot_device, DisplayState *ds,
458 const char *kernel_filename, const char *kernel_cmdline,
459 const char *initrd_filename, const char *cpu_model)
461 CPUState *env;
462 uint32_t ram_offset;
463 qemu_irq *pic;
464 qemu_irq *cpu_pic;
465 int sd;
467 if (!cpu_model)
468 cpu_model = "arm926";
469 env = cpu_init(cpu_model);
470 if (!env) {
471 fprintf(stderr, "Unable to find CPU definition\n");
472 exit(1);
474 ram_offset = qemu_ram_alloc(ram_size);
475 /* ??? On a real system the first 1Mb is mapped as SSRAM or boot flash. */
476 /* ??? RAM should repeat to fill physical memory space. */
477 /* SDRAM at address zero*/
478 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
479 /* And again at address 0x80000000 */
480 cpu_register_physical_memory(0x80000000, ram_size, ram_offset | IO_MEM_RAM);
482 integratorcm_init(ram_size >> 20);
483 cpu_pic = arm_pic_init_cpu(env);
484 pic = icp_pic_init(0x14000000, cpu_pic[ARM_PIC_CPU_IRQ],
485 cpu_pic[ARM_PIC_CPU_FIQ]);
486 icp_pic_init(0xca000000, pic[26], NULL);
487 icp_pit_init(0x13000000, pic, 5);
488 pl031_init(0x15000000, pic[8]);
489 pl011_init(0x16000000, pic[1], serial_hds[0], PL011_ARM);
490 pl011_init(0x17000000, pic[2], serial_hds[1], PL011_ARM);
491 icp_control_init(0xcb000000);
492 pl050_init(0x18000000, pic[3], 0);
493 pl050_init(0x19000000, pic[4], 1);
494 sd = drive_get_index(IF_SD, 0, 0);
495 if (sd == -1) {
496 fprintf(stderr, "qemu: missing SecureDigital card\n");
497 exit(1);
499 pl181_init(0x1c000000, drives_table[sd].bdrv, pic[23], pic[24]);
500 if (nd_table[0].vlan)
501 smc91c111_init(&nd_table[0], 0xc8000000, pic[27]);
502 pl110_init(ds, 0xc0000000, pic[22], 0);
504 integrator_binfo.ram_size = ram_size;
505 integrator_binfo.kernel_filename = kernel_filename;
506 integrator_binfo.kernel_cmdline = kernel_cmdline;
507 integrator_binfo.initrd_filename = initrd_filename;
508 arm_load_kernel(env, &integrator_binfo);
511 QEMUMachine integratorcp_machine = {
512 .name = "integratorcp",
513 .desc = "ARM Integrator/CP (ARM926EJ-S)",
514 .init = integratorcp_init,
515 .ram_require = 0x100000,