Add vmrg{l,h}{b,h,w} instructions.
[qemu/qemu-JZ.git] / target-ppc / op_helper.c
blob3e495a1b12d4645408b86d56cb62b762dc3dd432
1 /*
2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "exec.h"
21 #include "host-utils.h"
22 #include "helper.h"
24 #include "helper_regs.h"
26 //#define DEBUG_OP
27 //#define DEBUG_EXCEPTIONS
28 //#define DEBUG_SOFTWARE_TLB
30 /*****************************************************************************/
31 /* Exceptions processing helpers */
33 void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
35 #if 0
36 printf("Raise exception %3x code : %d\n", exception, error_code);
37 #endif
38 env->exception_index = exception;
39 env->error_code = error_code;
40 cpu_loop_exit();
43 void helper_raise_exception (uint32_t exception)
45 helper_raise_exception_err(exception, 0);
48 /*****************************************************************************/
49 /* Registers load and stores */
50 target_ulong helper_load_cr (void)
52 return (env->crf[0] << 28) |
53 (env->crf[1] << 24) |
54 (env->crf[2] << 20) |
55 (env->crf[3] << 16) |
56 (env->crf[4] << 12) |
57 (env->crf[5] << 8) |
58 (env->crf[6] << 4) |
59 (env->crf[7] << 0);
62 void helper_store_cr (target_ulong val, uint32_t mask)
64 int i, sh;
66 for (i = 0, sh = 7; i < 8; i++, sh--) {
67 if (mask & (1 << sh))
68 env->crf[i] = (val >> (sh * 4)) & 0xFUL;
72 /*****************************************************************************/
73 /* SPR accesses */
74 void helper_load_dump_spr (uint32_t sprn)
76 if (loglevel != 0) {
77 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
78 sprn, sprn, env->spr[sprn]);
82 void helper_store_dump_spr (uint32_t sprn)
84 if (loglevel != 0) {
85 fprintf(logfile, "Write SPR %d %03x <= " ADDRX "\n",
86 sprn, sprn, env->spr[sprn]);
90 target_ulong helper_load_tbl (void)
92 return cpu_ppc_load_tbl(env);
95 target_ulong helper_load_tbu (void)
97 return cpu_ppc_load_tbu(env);
100 target_ulong helper_load_atbl (void)
102 return cpu_ppc_load_atbl(env);
105 target_ulong helper_load_atbu (void)
107 return cpu_ppc_load_atbu(env);
110 target_ulong helper_load_601_rtcl (void)
112 return cpu_ppc601_load_rtcl(env);
115 target_ulong helper_load_601_rtcu (void)
117 return cpu_ppc601_load_rtcu(env);
120 #if !defined(CONFIG_USER_ONLY)
121 #if defined (TARGET_PPC64)
122 void helper_store_asr (target_ulong val)
124 ppc_store_asr(env, val);
126 #endif
128 void helper_store_sdr1 (target_ulong val)
130 ppc_store_sdr1(env, val);
133 void helper_store_tbl (target_ulong val)
135 cpu_ppc_store_tbl(env, val);
138 void helper_store_tbu (target_ulong val)
140 cpu_ppc_store_tbu(env, val);
143 void helper_store_atbl (target_ulong val)
145 cpu_ppc_store_atbl(env, val);
148 void helper_store_atbu (target_ulong val)
150 cpu_ppc_store_atbu(env, val);
153 void helper_store_601_rtcl (target_ulong val)
155 cpu_ppc601_store_rtcl(env, val);
158 void helper_store_601_rtcu (target_ulong val)
160 cpu_ppc601_store_rtcu(env, val);
163 target_ulong helper_load_decr (void)
165 return cpu_ppc_load_decr(env);
168 void helper_store_decr (target_ulong val)
170 cpu_ppc_store_decr(env, val);
173 void helper_store_hid0_601 (target_ulong val)
175 target_ulong hid0;
177 hid0 = env->spr[SPR_HID0];
178 if ((val ^ hid0) & 0x00000008) {
179 /* Change current endianness */
180 env->hflags &= ~(1 << MSR_LE);
181 env->hflags_nmsr &= ~(1 << MSR_LE);
182 env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
183 env->hflags |= env->hflags_nmsr;
184 if (loglevel != 0) {
185 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
186 __func__, val & 0x8 ? 'l' : 'b', env->hflags);
189 env->spr[SPR_HID0] = (uint32_t)val;
192 void helper_store_403_pbr (uint32_t num, target_ulong value)
194 if (likely(env->pb[num] != value)) {
195 env->pb[num] = value;
196 /* Should be optimized */
197 tlb_flush(env, 1);
201 target_ulong helper_load_40x_pit (void)
203 return load_40x_pit(env);
206 void helper_store_40x_pit (target_ulong val)
208 store_40x_pit(env, val);
211 void helper_store_40x_dbcr0 (target_ulong val)
213 store_40x_dbcr0(env, val);
216 void helper_store_40x_sler (target_ulong val)
218 store_40x_sler(env, val);
221 void helper_store_booke_tcr (target_ulong val)
223 store_booke_tcr(env, val);
226 void helper_store_booke_tsr (target_ulong val)
228 store_booke_tsr(env, val);
231 void helper_store_ibatu (uint32_t nr, target_ulong val)
233 ppc_store_ibatu(env, nr, val);
236 void helper_store_ibatl (uint32_t nr, target_ulong val)
238 ppc_store_ibatl(env, nr, val);
241 void helper_store_dbatu (uint32_t nr, target_ulong val)
243 ppc_store_dbatu(env, nr, val);
246 void helper_store_dbatl (uint32_t nr, target_ulong val)
248 ppc_store_dbatl(env, nr, val);
251 void helper_store_601_batl (uint32_t nr, target_ulong val)
253 ppc_store_ibatl_601(env, nr, val);
256 void helper_store_601_batu (uint32_t nr, target_ulong val)
258 ppc_store_ibatu_601(env, nr, val);
260 #endif
262 /*****************************************************************************/
263 /* Memory load and stores */
265 static always_inline target_ulong addr_add(target_ulong addr, target_long arg)
267 #if defined(TARGET_PPC64)
268 if (!msr_sf)
269 return (uint32_t)(addr + arg);
270 else
271 #endif
272 return addr + arg;
275 void helper_lmw (target_ulong addr, uint32_t reg)
277 for (; reg < 32; reg++) {
278 if (msr_le)
279 env->gpr[reg] = bswap32(ldl(addr));
280 else
281 env->gpr[reg] = ldl(addr);
282 addr = addr_add(addr, 4);
286 void helper_stmw (target_ulong addr, uint32_t reg)
288 for (; reg < 32; reg++) {
289 if (msr_le)
290 stl(addr, bswap32((uint32_t)env->gpr[reg]));
291 else
292 stl(addr, (uint32_t)env->gpr[reg]);
293 addr = addr_add(addr, 4);
297 void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
299 int sh;
300 for (; nb > 3; nb -= 4) {
301 env->gpr[reg] = ldl(addr);
302 reg = (reg + 1) % 32;
303 addr = addr_add(addr, 4);
305 if (unlikely(nb > 0)) {
306 env->gpr[reg] = 0;
307 for (sh = 24; nb > 0; nb--, sh -= 8) {
308 env->gpr[reg] |= ldub(addr) << sh;
309 addr = addr_add(addr, 1);
313 /* PPC32 specification says we must generate an exception if
314 * rA is in the range of registers to be loaded.
315 * In an other hand, IBM says this is valid, but rA won't be loaded.
316 * For now, I'll follow the spec...
318 void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
320 if (likely(xer_bc != 0)) {
321 if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
322 (reg < rb && (reg + xer_bc) > rb))) {
323 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
324 POWERPC_EXCP_INVAL |
325 POWERPC_EXCP_INVAL_LSWX);
326 } else {
327 helper_lsw(addr, xer_bc, reg);
332 void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
334 int sh;
335 for (; nb > 3; nb -= 4) {
336 stl(addr, env->gpr[reg]);
337 reg = (reg + 1) % 32;
338 addr = addr_add(addr, 4);
340 if (unlikely(nb > 0)) {
341 for (sh = 24; nb > 0; nb--, sh -= 8) {
342 stb(addr, (env->gpr[reg] >> sh) & 0xFF);
343 addr = addr_add(addr, 1);
348 static void do_dcbz(target_ulong addr, int dcache_line_size)
350 addr &= ~(dcache_line_size - 1);
351 int i;
352 for (i = 0 ; i < dcache_line_size ; i += 4) {
353 stl(addr + i , 0);
355 if (env->reserve == addr)
356 env->reserve = (target_ulong)-1ULL;
359 void helper_dcbz(target_ulong addr)
361 do_dcbz(addr, env->dcache_line_size);
364 void helper_dcbz_970(target_ulong addr)
366 if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
367 do_dcbz(addr, 32);
368 else
369 do_dcbz(addr, env->dcache_line_size);
372 void helper_icbi(target_ulong addr)
374 uint32_t tmp;
376 addr &= ~(env->dcache_line_size - 1);
377 /* Invalidate one cache line :
378 * PowerPC specification says this is to be treated like a load
379 * (not a fetch) by the MMU. To be sure it will be so,
380 * do the load "by hand".
382 tmp = ldl(addr);
383 tb_invalidate_page_range(addr, addr + env->icache_line_size);
386 // XXX: to be tested
387 target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
389 int i, c, d;
390 d = 24;
391 for (i = 0; i < xer_bc; i++) {
392 c = ldub(addr);
393 addr = addr_add(addr, 1);
394 /* ra (if not 0) and rb are never modified */
395 if (likely(reg != rb && (ra == 0 || reg != ra))) {
396 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
398 if (unlikely(c == xer_cmp))
399 break;
400 if (likely(d != 0)) {
401 d -= 8;
402 } else {
403 d = 24;
404 reg++;
405 reg = reg & 0x1F;
408 return i;
411 /*****************************************************************************/
412 /* Fixed point operations helpers */
413 #if defined(TARGET_PPC64)
415 /* multiply high word */
416 uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
418 uint64_t tl, th;
420 muls64(&tl, &th, arg1, arg2);
421 return th;
424 /* multiply high word unsigned */
425 uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
427 uint64_t tl, th;
429 mulu64(&tl, &th, arg1, arg2);
430 return th;
433 uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
435 int64_t th;
436 uint64_t tl;
438 muls64(&tl, (uint64_t *)&th, arg1, arg2);
439 /* If th != 0 && th != -1, then we had an overflow */
440 if (likely((uint64_t)(th + 1) <= 1)) {
441 env->xer &= ~(1 << XER_OV);
442 } else {
443 env->xer |= (1 << XER_OV) | (1 << XER_SO);
445 return (int64_t)tl;
447 #endif
449 target_ulong helper_cntlzw (target_ulong t)
451 return clz32(t);
454 #if defined(TARGET_PPC64)
455 target_ulong helper_cntlzd (target_ulong t)
457 return clz64(t);
459 #endif
461 /* shift right arithmetic helper */
462 target_ulong helper_sraw (target_ulong value, target_ulong shift)
464 int32_t ret;
466 if (likely(!(shift & 0x20))) {
467 if (likely((uint32_t)shift != 0)) {
468 shift &= 0x1f;
469 ret = (int32_t)value >> shift;
470 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
471 env->xer &= ~(1 << XER_CA);
472 } else {
473 env->xer |= (1 << XER_CA);
475 } else {
476 ret = (int32_t)value;
477 env->xer &= ~(1 << XER_CA);
479 } else {
480 ret = (int32_t)value >> 31;
481 if (ret) {
482 env->xer |= (1 << XER_CA);
483 } else {
484 env->xer &= ~(1 << XER_CA);
487 return (target_long)ret;
490 #if defined(TARGET_PPC64)
491 target_ulong helper_srad (target_ulong value, target_ulong shift)
493 int64_t ret;
495 if (likely(!(shift & 0x40))) {
496 if (likely((uint64_t)shift != 0)) {
497 shift &= 0x3f;
498 ret = (int64_t)value >> shift;
499 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
500 env->xer &= ~(1 << XER_CA);
501 } else {
502 env->xer |= (1 << XER_CA);
504 } else {
505 ret = (int64_t)value;
506 env->xer &= ~(1 << XER_CA);
508 } else {
509 ret = (int64_t)value >> 63;
510 if (ret) {
511 env->xer |= (1 << XER_CA);
512 } else {
513 env->xer &= ~(1 << XER_CA);
516 return ret;
518 #endif
520 target_ulong helper_popcntb (target_ulong val)
522 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
523 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
524 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
525 return val;
528 #if defined(TARGET_PPC64)
529 target_ulong helper_popcntb_64 (target_ulong val)
531 val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
532 val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
533 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL);
534 return val;
536 #endif
538 /*****************************************************************************/
539 /* Floating point operations helpers */
540 uint64_t helper_float32_to_float64(uint32_t arg)
542 CPU_FloatU f;
543 CPU_DoubleU d;
544 f.l = arg;
545 d.d = float32_to_float64(f.f, &env->fp_status);
546 return d.ll;
549 uint32_t helper_float64_to_float32(uint64_t arg)
551 CPU_FloatU f;
552 CPU_DoubleU d;
553 d.ll = arg;
554 f.f = float64_to_float32(d.d, &env->fp_status);
555 return f.l;
558 static always_inline int isden (float64 d)
560 CPU_DoubleU u;
562 u.d = d;
564 return ((u.ll >> 52) & 0x7FF) == 0;
567 uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
569 CPU_DoubleU farg;
570 int isneg;
571 int ret;
572 farg.ll = arg;
573 isneg = float64_is_neg(farg.d);
574 if (unlikely(float64_is_nan(farg.d))) {
575 if (float64_is_signaling_nan(farg.d)) {
576 /* Signaling NaN: flags are undefined */
577 ret = 0x00;
578 } else {
579 /* Quiet NaN */
580 ret = 0x11;
582 } else if (unlikely(float64_is_infinity(farg.d))) {
583 /* +/- infinity */
584 if (isneg)
585 ret = 0x09;
586 else
587 ret = 0x05;
588 } else {
589 if (float64_is_zero(farg.d)) {
590 /* +/- zero */
591 if (isneg)
592 ret = 0x12;
593 else
594 ret = 0x02;
595 } else {
596 if (isden(farg.d)) {
597 /* Denormalized numbers */
598 ret = 0x10;
599 } else {
600 /* Normalized numbers */
601 ret = 0x00;
603 if (isneg) {
604 ret |= 0x08;
605 } else {
606 ret |= 0x04;
610 if (set_fprf) {
611 /* We update FPSCR_FPRF */
612 env->fpscr &= ~(0x1F << FPSCR_FPRF);
613 env->fpscr |= ret << FPSCR_FPRF;
615 /* We just need fpcc to update Rc1 */
616 return ret & 0xF;
619 /* Floating-point invalid operations exception */
620 static always_inline uint64_t fload_invalid_op_excp (int op)
622 uint64_t ret = 0;
623 int ve;
625 ve = fpscr_ve;
626 switch (op) {
627 case POWERPC_EXCP_FP_VXSNAN:
628 env->fpscr |= 1 << FPSCR_VXSNAN;
629 break;
630 case POWERPC_EXCP_FP_VXSOFT:
631 env->fpscr |= 1 << FPSCR_VXSOFT;
632 break;
633 case POWERPC_EXCP_FP_VXISI:
634 /* Magnitude subtraction of infinities */
635 env->fpscr |= 1 << FPSCR_VXISI;
636 goto update_arith;
637 case POWERPC_EXCP_FP_VXIDI:
638 /* Division of infinity by infinity */
639 env->fpscr |= 1 << FPSCR_VXIDI;
640 goto update_arith;
641 case POWERPC_EXCP_FP_VXZDZ:
642 /* Division of zero by zero */
643 env->fpscr |= 1 << FPSCR_VXZDZ;
644 goto update_arith;
645 case POWERPC_EXCP_FP_VXIMZ:
646 /* Multiplication of zero by infinity */
647 env->fpscr |= 1 << FPSCR_VXIMZ;
648 goto update_arith;
649 case POWERPC_EXCP_FP_VXVC:
650 /* Ordered comparison of NaN */
651 env->fpscr |= 1 << FPSCR_VXVC;
652 env->fpscr &= ~(0xF << FPSCR_FPCC);
653 env->fpscr |= 0x11 << FPSCR_FPCC;
654 /* We must update the target FPR before raising the exception */
655 if (ve != 0) {
656 env->exception_index = POWERPC_EXCP_PROGRAM;
657 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
658 /* Update the floating-point enabled exception summary */
659 env->fpscr |= 1 << FPSCR_FEX;
660 /* Exception is differed */
661 ve = 0;
663 break;
664 case POWERPC_EXCP_FP_VXSQRT:
665 /* Square root of a negative number */
666 env->fpscr |= 1 << FPSCR_VXSQRT;
667 update_arith:
668 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
669 if (ve == 0) {
670 /* Set the result to quiet NaN */
671 ret = 0xFFF8000000000000ULL;
672 env->fpscr &= ~(0xF << FPSCR_FPCC);
673 env->fpscr |= 0x11 << FPSCR_FPCC;
675 break;
676 case POWERPC_EXCP_FP_VXCVI:
677 /* Invalid conversion */
678 env->fpscr |= 1 << FPSCR_VXCVI;
679 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
680 if (ve == 0) {
681 /* Set the result to quiet NaN */
682 ret = 0xFFF8000000000000ULL;
683 env->fpscr &= ~(0xF << FPSCR_FPCC);
684 env->fpscr |= 0x11 << FPSCR_FPCC;
686 break;
688 /* Update the floating-point invalid operation summary */
689 env->fpscr |= 1 << FPSCR_VX;
690 /* Update the floating-point exception summary */
691 env->fpscr |= 1 << FPSCR_FX;
692 if (ve != 0) {
693 /* Update the floating-point enabled exception summary */
694 env->fpscr |= 1 << FPSCR_FEX;
695 if (msr_fe0 != 0 || msr_fe1 != 0)
696 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
698 return ret;
701 static always_inline void float_zero_divide_excp (void)
703 env->fpscr |= 1 << FPSCR_ZX;
704 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
705 /* Update the floating-point exception summary */
706 env->fpscr |= 1 << FPSCR_FX;
707 if (fpscr_ze != 0) {
708 /* Update the floating-point enabled exception summary */
709 env->fpscr |= 1 << FPSCR_FEX;
710 if (msr_fe0 != 0 || msr_fe1 != 0) {
711 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
712 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
717 static always_inline void float_overflow_excp (void)
719 env->fpscr |= 1 << FPSCR_OX;
720 /* Update the floating-point exception summary */
721 env->fpscr |= 1 << FPSCR_FX;
722 if (fpscr_oe != 0) {
723 /* XXX: should adjust the result */
724 /* Update the floating-point enabled exception summary */
725 env->fpscr |= 1 << FPSCR_FEX;
726 /* We must update the target FPR before raising the exception */
727 env->exception_index = POWERPC_EXCP_PROGRAM;
728 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
729 } else {
730 env->fpscr |= 1 << FPSCR_XX;
731 env->fpscr |= 1 << FPSCR_FI;
735 static always_inline void float_underflow_excp (void)
737 env->fpscr |= 1 << FPSCR_UX;
738 /* Update the floating-point exception summary */
739 env->fpscr |= 1 << FPSCR_FX;
740 if (fpscr_ue != 0) {
741 /* XXX: should adjust the result */
742 /* Update the floating-point enabled exception summary */
743 env->fpscr |= 1 << FPSCR_FEX;
744 /* We must update the target FPR before raising the exception */
745 env->exception_index = POWERPC_EXCP_PROGRAM;
746 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
750 static always_inline void float_inexact_excp (void)
752 env->fpscr |= 1 << FPSCR_XX;
753 /* Update the floating-point exception summary */
754 env->fpscr |= 1 << FPSCR_FX;
755 if (fpscr_xe != 0) {
756 /* Update the floating-point enabled exception summary */
757 env->fpscr |= 1 << FPSCR_FEX;
758 /* We must update the target FPR before raising the exception */
759 env->exception_index = POWERPC_EXCP_PROGRAM;
760 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
764 static always_inline void fpscr_set_rounding_mode (void)
766 int rnd_type;
768 /* Set rounding mode */
769 switch (fpscr_rn) {
770 case 0:
771 /* Best approximation (round to nearest) */
772 rnd_type = float_round_nearest_even;
773 break;
774 case 1:
775 /* Smaller magnitude (round toward zero) */
776 rnd_type = float_round_to_zero;
777 break;
778 case 2:
779 /* Round toward +infinite */
780 rnd_type = float_round_up;
781 break;
782 default:
783 case 3:
784 /* Round toward -infinite */
785 rnd_type = float_round_down;
786 break;
788 set_float_rounding_mode(rnd_type, &env->fp_status);
791 void helper_fpscr_clrbit (uint32_t bit)
793 int prev;
795 prev = (env->fpscr >> bit) & 1;
796 env->fpscr &= ~(1 << bit);
797 if (prev == 1) {
798 switch (bit) {
799 case FPSCR_RN1:
800 case FPSCR_RN:
801 fpscr_set_rounding_mode();
802 break;
803 default:
804 break;
809 void helper_fpscr_setbit (uint32_t bit)
811 int prev;
813 prev = (env->fpscr >> bit) & 1;
814 env->fpscr |= 1 << bit;
815 if (prev == 0) {
816 switch (bit) {
817 case FPSCR_VX:
818 env->fpscr |= 1 << FPSCR_FX;
819 if (fpscr_ve)
820 goto raise_ve;
821 case FPSCR_OX:
822 env->fpscr |= 1 << FPSCR_FX;
823 if (fpscr_oe)
824 goto raise_oe;
825 break;
826 case FPSCR_UX:
827 env->fpscr |= 1 << FPSCR_FX;
828 if (fpscr_ue)
829 goto raise_ue;
830 break;
831 case FPSCR_ZX:
832 env->fpscr |= 1 << FPSCR_FX;
833 if (fpscr_ze)
834 goto raise_ze;
835 break;
836 case FPSCR_XX:
837 env->fpscr |= 1 << FPSCR_FX;
838 if (fpscr_xe)
839 goto raise_xe;
840 break;
841 case FPSCR_VXSNAN:
842 case FPSCR_VXISI:
843 case FPSCR_VXIDI:
844 case FPSCR_VXZDZ:
845 case FPSCR_VXIMZ:
846 case FPSCR_VXVC:
847 case FPSCR_VXSOFT:
848 case FPSCR_VXSQRT:
849 case FPSCR_VXCVI:
850 env->fpscr |= 1 << FPSCR_VX;
851 env->fpscr |= 1 << FPSCR_FX;
852 if (fpscr_ve != 0)
853 goto raise_ve;
854 break;
855 case FPSCR_VE:
856 if (fpscr_vx != 0) {
857 raise_ve:
858 env->error_code = POWERPC_EXCP_FP;
859 if (fpscr_vxsnan)
860 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
861 if (fpscr_vxisi)
862 env->error_code |= POWERPC_EXCP_FP_VXISI;
863 if (fpscr_vxidi)
864 env->error_code |= POWERPC_EXCP_FP_VXIDI;
865 if (fpscr_vxzdz)
866 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
867 if (fpscr_vximz)
868 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
869 if (fpscr_vxvc)
870 env->error_code |= POWERPC_EXCP_FP_VXVC;
871 if (fpscr_vxsoft)
872 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
873 if (fpscr_vxsqrt)
874 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
875 if (fpscr_vxcvi)
876 env->error_code |= POWERPC_EXCP_FP_VXCVI;
877 goto raise_excp;
879 break;
880 case FPSCR_OE:
881 if (fpscr_ox != 0) {
882 raise_oe:
883 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
884 goto raise_excp;
886 break;
887 case FPSCR_UE:
888 if (fpscr_ux != 0) {
889 raise_ue:
890 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
891 goto raise_excp;
893 break;
894 case FPSCR_ZE:
895 if (fpscr_zx != 0) {
896 raise_ze:
897 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
898 goto raise_excp;
900 break;
901 case FPSCR_XE:
902 if (fpscr_xx != 0) {
903 raise_xe:
904 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
905 goto raise_excp;
907 break;
908 case FPSCR_RN1:
909 case FPSCR_RN:
910 fpscr_set_rounding_mode();
911 break;
912 default:
913 break;
914 raise_excp:
915 /* Update the floating-point enabled exception summary */
916 env->fpscr |= 1 << FPSCR_FEX;
917 /* We have to update Rc1 before raising the exception */
918 env->exception_index = POWERPC_EXCP_PROGRAM;
919 break;
924 void helper_store_fpscr (uint64_t arg, uint32_t mask)
927 * We use only the 32 LSB of the incoming fpr
929 uint32_t prev, new;
930 int i;
932 prev = env->fpscr;
933 new = (uint32_t)arg;
934 new &= ~0x60000000;
935 new |= prev & 0x60000000;
936 for (i = 0; i < 8; i++) {
937 if (mask & (1 << i)) {
938 env->fpscr &= ~(0xF << (4 * i));
939 env->fpscr |= new & (0xF << (4 * i));
942 /* Update VX and FEX */
943 if (fpscr_ix != 0)
944 env->fpscr |= 1 << FPSCR_VX;
945 else
946 env->fpscr &= ~(1 << FPSCR_VX);
947 if ((fpscr_ex & fpscr_eex) != 0) {
948 env->fpscr |= 1 << FPSCR_FEX;
949 env->exception_index = POWERPC_EXCP_PROGRAM;
950 /* XXX: we should compute it properly */
951 env->error_code = POWERPC_EXCP_FP;
953 else
954 env->fpscr &= ~(1 << FPSCR_FEX);
955 fpscr_set_rounding_mode();
958 void helper_float_check_status (void)
960 #ifdef CONFIG_SOFTFLOAT
961 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
962 (env->error_code & POWERPC_EXCP_FP)) {
963 /* Differred floating-point exception after target FPR update */
964 if (msr_fe0 != 0 || msr_fe1 != 0)
965 helper_raise_exception_err(env->exception_index, env->error_code);
966 } else {
967 int status = get_float_exception_flags(&env->fp_status);
968 if (status & float_flag_divbyzero) {
969 float_zero_divide_excp();
970 } else if (status & float_flag_overflow) {
971 float_overflow_excp();
972 } else if (status & float_flag_underflow) {
973 float_underflow_excp();
974 } else if (status & float_flag_inexact) {
975 float_inexact_excp();
978 #else
979 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
980 (env->error_code & POWERPC_EXCP_FP)) {
981 /* Differred floating-point exception after target FPR update */
982 if (msr_fe0 != 0 || msr_fe1 != 0)
983 helper_raise_exception_err(env->exception_index, env->error_code);
985 #endif
988 #ifdef CONFIG_SOFTFLOAT
989 void helper_reset_fpstatus (void)
991 set_float_exception_flags(0, &env->fp_status);
993 #endif
995 /* fadd - fadd. */
996 uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
998 CPU_DoubleU farg1, farg2;
1000 farg1.ll = arg1;
1001 farg2.ll = arg2;
1002 #if USE_PRECISE_EMULATION
1003 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1004 float64_is_signaling_nan(farg2.d))) {
1005 /* sNaN addition */
1006 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1007 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1008 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
1009 /* Magnitude subtraction of infinities */
1010 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1011 } else {
1012 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1014 #else
1015 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1016 #endif
1017 return farg1.ll;
1020 /* fsub - fsub. */
1021 uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
1023 CPU_DoubleU farg1, farg2;
1025 farg1.ll = arg1;
1026 farg2.ll = arg2;
1027 #if USE_PRECISE_EMULATION
1029 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1030 float64_is_signaling_nan(farg2.d))) {
1031 /* sNaN subtraction */
1032 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1033 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1034 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
1035 /* Magnitude subtraction of infinities */
1036 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1037 } else {
1038 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1041 #else
1042 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1043 #endif
1044 return farg1.ll;
1047 /* fmul - fmul. */
1048 uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
1050 CPU_DoubleU farg1, farg2;
1052 farg1.ll = arg1;
1053 farg2.ll = arg2;
1054 #if USE_PRECISE_EMULATION
1055 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1056 float64_is_signaling_nan(farg2.d))) {
1057 /* sNaN multiplication */
1058 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1059 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1060 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1061 /* Multiplication of zero by infinity */
1062 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1063 } else {
1064 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1066 #else
1067 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1068 #endif
1069 return farg1.ll;
1072 /* fdiv - fdiv. */
1073 uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
1075 CPU_DoubleU farg1, farg2;
1077 farg1.ll = arg1;
1078 farg2.ll = arg2;
1079 #if USE_PRECISE_EMULATION
1080 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1081 float64_is_signaling_nan(farg2.d))) {
1082 /* sNaN division */
1083 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1084 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
1085 /* Division of infinity by infinity */
1086 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
1087 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
1088 /* Division of zero by zero */
1089 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1090 } else {
1091 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1093 #else
1094 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1095 #endif
1096 return farg1.ll;
1099 /* fabs */
1100 uint64_t helper_fabs (uint64_t arg)
1102 CPU_DoubleU farg;
1104 farg.ll = arg;
1105 farg.d = float64_abs(farg.d);
1106 return farg.ll;
1109 /* fnabs */
1110 uint64_t helper_fnabs (uint64_t arg)
1112 CPU_DoubleU farg;
1114 farg.ll = arg;
1115 farg.d = float64_abs(farg.d);
1116 farg.d = float64_chs(farg.d);
1117 return farg.ll;
1120 /* fneg */
1121 uint64_t helper_fneg (uint64_t arg)
1123 CPU_DoubleU farg;
1125 farg.ll = arg;
1126 farg.d = float64_chs(farg.d);
1127 return farg.ll;
1130 /* fctiw - fctiw. */
1131 uint64_t helper_fctiw (uint64_t arg)
1133 CPU_DoubleU farg;
1134 farg.ll = arg;
1136 if (unlikely(float64_is_signaling_nan(farg.d))) {
1137 /* sNaN conversion */
1138 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1139 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1140 /* qNan / infinity conversion */
1141 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1142 } else {
1143 farg.ll = float64_to_int32(farg.d, &env->fp_status);
1144 #if USE_PRECISE_EMULATION
1145 /* XXX: higher bits are not supposed to be significant.
1146 * to make tests easier, return the same as a real PowerPC 750
1148 farg.ll |= 0xFFF80000ULL << 32;
1149 #endif
1151 return farg.ll;
1154 /* fctiwz - fctiwz. */
1155 uint64_t helper_fctiwz (uint64_t arg)
1157 CPU_DoubleU farg;
1158 farg.ll = arg;
1160 if (unlikely(float64_is_signaling_nan(farg.d))) {
1161 /* sNaN conversion */
1162 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1163 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1164 /* qNan / infinity conversion */
1165 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1166 } else {
1167 farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
1168 #if USE_PRECISE_EMULATION
1169 /* XXX: higher bits are not supposed to be significant.
1170 * to make tests easier, return the same as a real PowerPC 750
1172 farg.ll |= 0xFFF80000ULL << 32;
1173 #endif
1175 return farg.ll;
1178 #if defined(TARGET_PPC64)
1179 /* fcfid - fcfid. */
1180 uint64_t helper_fcfid (uint64_t arg)
1182 CPU_DoubleU farg;
1183 farg.d = int64_to_float64(arg, &env->fp_status);
1184 return farg.ll;
1187 /* fctid - fctid. */
1188 uint64_t helper_fctid (uint64_t arg)
1190 CPU_DoubleU farg;
1191 farg.ll = arg;
1193 if (unlikely(float64_is_signaling_nan(farg.d))) {
1194 /* sNaN conversion */
1195 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1196 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1197 /* qNan / infinity conversion */
1198 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1199 } else {
1200 farg.ll = float64_to_int64(farg.d, &env->fp_status);
1202 return farg.ll;
1205 /* fctidz - fctidz. */
1206 uint64_t helper_fctidz (uint64_t arg)
1208 CPU_DoubleU farg;
1209 farg.ll = arg;
1211 if (unlikely(float64_is_signaling_nan(farg.d))) {
1212 /* sNaN conversion */
1213 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1214 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1215 /* qNan / infinity conversion */
1216 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1217 } else {
1218 farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
1220 return farg.ll;
1223 #endif
1225 static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
1227 CPU_DoubleU farg;
1228 farg.ll = arg;
1230 if (unlikely(float64_is_signaling_nan(farg.d))) {
1231 /* sNaN round */
1232 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1233 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1234 /* qNan / infinity round */
1235 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1236 } else {
1237 set_float_rounding_mode(rounding_mode, &env->fp_status);
1238 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
1239 /* Restore rounding mode from FPSCR */
1240 fpscr_set_rounding_mode();
1242 return farg.ll;
1245 uint64_t helper_frin (uint64_t arg)
1247 return do_fri(arg, float_round_nearest_even);
1250 uint64_t helper_friz (uint64_t arg)
1252 return do_fri(arg, float_round_to_zero);
1255 uint64_t helper_frip (uint64_t arg)
1257 return do_fri(arg, float_round_up);
1260 uint64_t helper_frim (uint64_t arg)
1262 return do_fri(arg, float_round_down);
1265 /* fmadd - fmadd. */
1266 uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1268 CPU_DoubleU farg1, farg2, farg3;
1270 farg1.ll = arg1;
1271 farg2.ll = arg2;
1272 farg3.ll = arg3;
1273 #if USE_PRECISE_EMULATION
1274 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1275 float64_is_signaling_nan(farg2.d) ||
1276 float64_is_signaling_nan(farg3.d))) {
1277 /* sNaN operation */
1278 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1279 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1280 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1281 /* Multiplication of zero by infinity */
1282 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1283 } else {
1284 #ifdef FLOAT128
1285 /* This is the way the PowerPC specification defines it */
1286 float128 ft0_128, ft1_128;
1288 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1289 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1290 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1291 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1292 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1293 /* Magnitude subtraction of infinities */
1294 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1295 } else {
1296 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1297 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1298 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1300 #else
1301 /* This is OK on x86 hosts */
1302 farg1.d = (farg1.d * farg2.d) + farg3.d;
1303 #endif
1305 #else
1306 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1307 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1308 #endif
1309 return farg1.ll;
1312 /* fmsub - fmsub. */
1313 uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1315 CPU_DoubleU farg1, farg2, farg3;
1317 farg1.ll = arg1;
1318 farg2.ll = arg2;
1319 farg3.ll = arg3;
1320 #if USE_PRECISE_EMULATION
1321 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1322 float64_is_signaling_nan(farg2.d) ||
1323 float64_is_signaling_nan(farg3.d))) {
1324 /* sNaN operation */
1325 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1326 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1327 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1328 /* Multiplication of zero by infinity */
1329 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1330 } else {
1331 #ifdef FLOAT128
1332 /* This is the way the PowerPC specification defines it */
1333 float128 ft0_128, ft1_128;
1335 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1336 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1337 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1338 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1339 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1340 /* Magnitude subtraction of infinities */
1341 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1342 } else {
1343 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1344 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1345 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1347 #else
1348 /* This is OK on x86 hosts */
1349 farg1.d = (farg1.d * farg2.d) - farg3.d;
1350 #endif
1352 #else
1353 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1354 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1355 #endif
1356 return farg1.ll;
1359 /* fnmadd - fnmadd. */
1360 uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1362 CPU_DoubleU farg1, farg2, farg3;
1364 farg1.ll = arg1;
1365 farg2.ll = arg2;
1366 farg3.ll = arg3;
1368 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1369 float64_is_signaling_nan(farg2.d) ||
1370 float64_is_signaling_nan(farg3.d))) {
1371 /* sNaN operation */
1372 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1373 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1374 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1375 /* Multiplication of zero by infinity */
1376 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1377 } else {
1378 #if USE_PRECISE_EMULATION
1379 #ifdef FLOAT128
1380 /* This is the way the PowerPC specification defines it */
1381 float128 ft0_128, ft1_128;
1383 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1384 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1385 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1386 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1387 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1388 /* Magnitude subtraction of infinities */
1389 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1390 } else {
1391 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1392 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1393 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1395 #else
1396 /* This is OK on x86 hosts */
1397 farg1.d = (farg1.d * farg2.d) + farg3.d;
1398 #endif
1399 #else
1400 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1401 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1402 #endif
1403 if (likely(!float64_is_nan(farg1.d)))
1404 farg1.d = float64_chs(farg1.d);
1406 return farg1.ll;
1409 /* fnmsub - fnmsub. */
1410 uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1412 CPU_DoubleU farg1, farg2, farg3;
1414 farg1.ll = arg1;
1415 farg2.ll = arg2;
1416 farg3.ll = arg3;
1418 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1419 float64_is_signaling_nan(farg2.d) ||
1420 float64_is_signaling_nan(farg3.d))) {
1421 /* sNaN operation */
1422 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1423 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1424 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1425 /* Multiplication of zero by infinity */
1426 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1427 } else {
1428 #if USE_PRECISE_EMULATION
1429 #ifdef FLOAT128
1430 /* This is the way the PowerPC specification defines it */
1431 float128 ft0_128, ft1_128;
1433 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1434 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1435 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1436 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1437 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1438 /* Magnitude subtraction of infinities */
1439 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1440 } else {
1441 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1442 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1443 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1445 #else
1446 /* This is OK on x86 hosts */
1447 farg1.d = (farg1.d * farg2.d) - farg3.d;
1448 #endif
1449 #else
1450 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1451 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1452 #endif
1453 if (likely(!float64_is_nan(farg1.d)))
1454 farg1.d = float64_chs(farg1.d);
1456 return farg1.ll;
1459 /* frsp - frsp. */
1460 uint64_t helper_frsp (uint64_t arg)
1462 CPU_DoubleU farg;
1463 float32 f32;
1464 farg.ll = arg;
1466 #if USE_PRECISE_EMULATION
1467 if (unlikely(float64_is_signaling_nan(farg.d))) {
1468 /* sNaN square root */
1469 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1470 } else {
1471 f32 = float64_to_float32(farg.d, &env->fp_status);
1472 farg.d = float32_to_float64(f32, &env->fp_status);
1474 #else
1475 f32 = float64_to_float32(farg.d, &env->fp_status);
1476 farg.d = float32_to_float64(f32, &env->fp_status);
1477 #endif
1478 return farg.ll;
1481 /* fsqrt - fsqrt. */
1482 uint64_t helper_fsqrt (uint64_t arg)
1484 CPU_DoubleU farg;
1485 farg.ll = arg;
1487 if (unlikely(float64_is_signaling_nan(farg.d))) {
1488 /* sNaN square root */
1489 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1490 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1491 /* Square root of a negative nonzero number */
1492 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1493 } else {
1494 farg.d = float64_sqrt(farg.d, &env->fp_status);
1496 return farg.ll;
1499 /* fre - fre. */
1500 uint64_t helper_fre (uint64_t arg)
1502 CPU_DoubleU fone, farg;
1503 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1504 farg.ll = arg;
1506 if (unlikely(float64_is_signaling_nan(farg.d))) {
1507 /* sNaN reciprocal */
1508 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1509 } else {
1510 farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1512 return farg.d;
1515 /* fres - fres. */
1516 uint64_t helper_fres (uint64_t arg)
1518 CPU_DoubleU fone, farg;
1519 float32 f32;
1520 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1521 farg.ll = arg;
1523 if (unlikely(float64_is_signaling_nan(farg.d))) {
1524 /* sNaN reciprocal */
1525 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1526 } else {
1527 farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1528 f32 = float64_to_float32(farg.d, &env->fp_status);
1529 farg.d = float32_to_float64(f32, &env->fp_status);
1531 return farg.ll;
1534 /* frsqrte - frsqrte. */
1535 uint64_t helper_frsqrte (uint64_t arg)
1537 CPU_DoubleU fone, farg;
1538 float32 f32;
1539 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1540 farg.ll = arg;
1542 if (unlikely(float64_is_signaling_nan(farg.d))) {
1543 /* sNaN reciprocal square root */
1544 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1545 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1546 /* Reciprocal square root of a negative nonzero number */
1547 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1548 } else {
1549 farg.d = float64_sqrt(farg.d, &env->fp_status);
1550 farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1551 f32 = float64_to_float32(farg.d, &env->fp_status);
1552 farg.d = float32_to_float64(f32, &env->fp_status);
1554 return farg.ll;
1557 /* fsel - fsel. */
1558 uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1560 CPU_DoubleU farg1;
1562 farg1.ll = arg1;
1564 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d))
1565 return arg2;
1566 else
1567 return arg3;
1570 void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1572 CPU_DoubleU farg1, farg2;
1573 uint32_t ret = 0;
1574 farg1.ll = arg1;
1575 farg2.ll = arg2;
1577 if (unlikely(float64_is_nan(farg1.d) ||
1578 float64_is_nan(farg2.d))) {
1579 ret = 0x01UL;
1580 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1581 ret = 0x08UL;
1582 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1583 ret = 0x04UL;
1584 } else {
1585 ret = 0x02UL;
1588 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1589 env->fpscr |= ret << FPSCR_FPRF;
1590 env->crf[crfD] = ret;
1591 if (unlikely(ret == 0x01UL
1592 && (float64_is_signaling_nan(farg1.d) ||
1593 float64_is_signaling_nan(farg2.d)))) {
1594 /* sNaN comparison */
1595 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1599 void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1601 CPU_DoubleU farg1, farg2;
1602 uint32_t ret = 0;
1603 farg1.ll = arg1;
1604 farg2.ll = arg2;
1606 if (unlikely(float64_is_nan(farg1.d) ||
1607 float64_is_nan(farg2.d))) {
1608 ret = 0x01UL;
1609 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1610 ret = 0x08UL;
1611 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1612 ret = 0x04UL;
1613 } else {
1614 ret = 0x02UL;
1617 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1618 env->fpscr |= ret << FPSCR_FPRF;
1619 env->crf[crfD] = ret;
1620 if (unlikely (ret == 0x01UL)) {
1621 if (float64_is_signaling_nan(farg1.d) ||
1622 float64_is_signaling_nan(farg2.d)) {
1623 /* sNaN comparison */
1624 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1625 POWERPC_EXCP_FP_VXVC);
1626 } else {
1627 /* qNaN comparison */
1628 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1633 #if !defined (CONFIG_USER_ONLY)
1634 void helper_store_msr (target_ulong val)
1636 val = hreg_store_msr(env, val, 0);
1637 if (val != 0) {
1638 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1639 helper_raise_exception(val);
1643 static always_inline void do_rfi (target_ulong nip, target_ulong msr,
1644 target_ulong msrm, int keep_msrh)
1646 #if defined(TARGET_PPC64)
1647 if (msr & (1ULL << MSR_SF)) {
1648 nip = (uint64_t)nip;
1649 msr &= (uint64_t)msrm;
1650 } else {
1651 nip = (uint32_t)nip;
1652 msr = (uint32_t)(msr & msrm);
1653 if (keep_msrh)
1654 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1656 #else
1657 nip = (uint32_t)nip;
1658 msr &= (uint32_t)msrm;
1659 #endif
1660 /* XXX: beware: this is false if VLE is supported */
1661 env->nip = nip & ~((target_ulong)0x00000003);
1662 hreg_store_msr(env, msr, 1);
1663 #if defined (DEBUG_OP)
1664 cpu_dump_rfi(env->nip, env->msr);
1665 #endif
1666 /* No need to raise an exception here,
1667 * as rfi is always the last insn of a TB
1669 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1672 void helper_rfi (void)
1674 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1675 ~((target_ulong)0xFFFF0000), 1);
1678 #if defined(TARGET_PPC64)
1679 void helper_rfid (void)
1681 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1682 ~((target_ulong)0xFFFF0000), 0);
1685 void helper_hrfid (void)
1687 do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1688 ~((target_ulong)0xFFFF0000), 0);
1690 #endif
1691 #endif
1693 void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
1695 if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1696 ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1697 ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1698 ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1699 ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1700 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1704 #if defined(TARGET_PPC64)
1705 void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
1707 if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1708 ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1709 ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1710 ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1711 ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
1712 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1714 #endif
1716 /*****************************************************************************/
1717 /* PowerPC 601 specific instructions (POWER bridge) */
1719 target_ulong helper_clcs (uint32_t arg)
1721 switch (arg) {
1722 case 0x0CUL:
1723 /* Instruction cache line size */
1724 return env->icache_line_size;
1725 break;
1726 case 0x0DUL:
1727 /* Data cache line size */
1728 return env->dcache_line_size;
1729 break;
1730 case 0x0EUL:
1731 /* Minimum cache line size */
1732 return (env->icache_line_size < env->dcache_line_size) ?
1733 env->icache_line_size : env->dcache_line_size;
1734 break;
1735 case 0x0FUL:
1736 /* Maximum cache line size */
1737 return (env->icache_line_size > env->dcache_line_size) ?
1738 env->icache_line_size : env->dcache_line_size;
1739 break;
1740 default:
1741 /* Undefined */
1742 return 0;
1743 break;
1747 target_ulong helper_div (target_ulong arg1, target_ulong arg2)
1749 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1751 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1752 (int32_t)arg2 == 0) {
1753 env->spr[SPR_MQ] = 0;
1754 return INT32_MIN;
1755 } else {
1756 env->spr[SPR_MQ] = tmp % arg2;
1757 return tmp / (int32_t)arg2;
1761 target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
1763 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1765 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1766 (int32_t)arg2 == 0) {
1767 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1768 env->spr[SPR_MQ] = 0;
1769 return INT32_MIN;
1770 } else {
1771 env->spr[SPR_MQ] = tmp % arg2;
1772 tmp /= (int32_t)arg2;
1773 if ((int32_t)tmp != tmp) {
1774 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1775 } else {
1776 env->xer &= ~(1 << XER_OV);
1778 return tmp;
1782 target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
1784 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1785 (int32_t)arg2 == 0) {
1786 env->spr[SPR_MQ] = 0;
1787 return INT32_MIN;
1788 } else {
1789 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1790 return (int32_t)arg1 / (int32_t)arg2;
1794 target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
1796 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1797 (int32_t)arg2 == 0) {
1798 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1799 env->spr[SPR_MQ] = 0;
1800 return INT32_MIN;
1801 } else {
1802 env->xer &= ~(1 << XER_OV);
1803 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1804 return (int32_t)arg1 / (int32_t)arg2;
1808 #if !defined (CONFIG_USER_ONLY)
1809 target_ulong helper_rac (target_ulong addr)
1811 mmu_ctx_t ctx;
1812 int nb_BATs;
1813 target_ulong ret = 0;
1815 /* We don't have to generate many instances of this instruction,
1816 * as rac is supervisor only.
1818 /* XXX: FIX THIS: Pretend we have no BAT */
1819 nb_BATs = env->nb_BATs;
1820 env->nb_BATs = 0;
1821 if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
1822 ret = ctx.raddr;
1823 env->nb_BATs = nb_BATs;
1824 return ret;
1827 void helper_rfsvc (void)
1829 do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1831 #endif
1833 /*****************************************************************************/
1834 /* 602 specific instructions */
1835 /* mfrom is the most crazy instruction ever seen, imho ! */
1836 /* Real implementation uses a ROM table. Do the same */
1837 /* Extremly decomposed:
1838 * -arg / 256
1839 * return 256 * log10(10 + 1.0) + 0.5
1841 #if !defined (CONFIG_USER_ONLY)
1842 target_ulong helper_602_mfrom (target_ulong arg)
1844 if (likely(arg < 602)) {
1845 #include "mfrom_table.c"
1846 return mfrom_ROM_table[arg];
1847 } else {
1848 return 0;
1851 #endif
1853 /*****************************************************************************/
1854 /* Embedded PowerPC specific helpers */
1856 /* XXX: to be improved to check access rights when in user-mode */
1857 target_ulong helper_load_dcr (target_ulong dcrn)
1859 target_ulong val = 0;
1861 if (unlikely(env->dcr_env == NULL)) {
1862 if (loglevel != 0) {
1863 fprintf(logfile, "No DCR environment\n");
1865 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1866 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1867 } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
1868 if (loglevel != 0) {
1869 fprintf(logfile, "DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
1871 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1872 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1874 return val;
1877 void helper_store_dcr (target_ulong dcrn, target_ulong val)
1879 if (unlikely(env->dcr_env == NULL)) {
1880 if (loglevel != 0) {
1881 fprintf(logfile, "No DCR environment\n");
1883 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1884 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1885 } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
1886 if (loglevel != 0) {
1887 fprintf(logfile, "DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
1889 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1890 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1894 #if !defined(CONFIG_USER_ONLY)
1895 void helper_40x_rfci (void)
1897 do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1898 ~((target_ulong)0xFFFF0000), 0);
1901 void helper_rfci (void)
1903 do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1904 ~((target_ulong)0x3FFF0000), 0);
1907 void helper_rfdi (void)
1909 do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1910 ~((target_ulong)0x3FFF0000), 0);
1913 void helper_rfmci (void)
1915 do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1916 ~((target_ulong)0x3FFF0000), 0);
1918 #endif
1920 /* 440 specific */
1921 target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
1923 target_ulong mask;
1924 int i;
1926 i = 1;
1927 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1928 if ((high & mask) == 0) {
1929 if (update_Rc) {
1930 env->crf[0] = 0x4;
1932 goto done;
1934 i++;
1936 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1937 if ((low & mask) == 0) {
1938 if (update_Rc) {
1939 env->crf[0] = 0x8;
1941 goto done;
1943 i++;
1945 if (update_Rc) {
1946 env->crf[0] = 0x2;
1948 done:
1949 env->xer = (env->xer & ~0x7F) | i;
1950 if (update_Rc) {
1951 env->crf[0] |= xer_so;
1953 return i;
1956 /*****************************************************************************/
1957 /* Altivec extension helpers */
1958 #if defined(WORDS_BIGENDIAN)
1959 #define HI_IDX 0
1960 #define LO_IDX 1
1961 #else
1962 #define HI_IDX 1
1963 #define LO_IDX 0
1964 #endif
1966 #if defined(WORDS_BIGENDIAN)
1967 #define VECTOR_FOR_INORDER_I(index, element) \
1968 for (index = 0; index < ARRAY_SIZE(r->element); index++)
1969 #else
1970 #define VECTOR_FOR_INORDER_I(index, element) \
1971 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
1972 #endif
1974 #define VARITH_DO(name, op, element) \
1975 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1977 int i; \
1978 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1979 r->element[i] = a->element[i] op b->element[i]; \
1982 #define VARITH(suffix, element) \
1983 VARITH_DO(add##suffix, +, element) \
1984 VARITH_DO(sub##suffix, -, element)
1985 VARITH(ubm, u8)
1986 VARITH(uhm, u16)
1987 VARITH(uwm, u32)
1988 #undef VARITH_DO
1989 #undef VARITH
1991 #define VAVG_DO(name, element, etype) \
1992 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1994 int i; \
1995 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1996 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
1997 r->element[i] = x >> 1; \
2001 #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
2002 VAVG_DO(avgs##type, signed_element, signed_type) \
2003 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
2004 VAVG(b, s8, int16_t, u8, uint16_t)
2005 VAVG(h, s16, int32_t, u16, uint32_t)
2006 VAVG(w, s32, int64_t, u32, uint64_t)
2007 #undef VAVG_DO
2008 #undef VAVG
2010 #define VMINMAX_DO(name, compare, element) \
2011 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2013 int i; \
2014 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2015 if (a->element[i] compare b->element[i]) { \
2016 r->element[i] = b->element[i]; \
2017 } else { \
2018 r->element[i] = a->element[i]; \
2022 #define VMINMAX(suffix, element) \
2023 VMINMAX_DO(min##suffix, >, element) \
2024 VMINMAX_DO(max##suffix, <, element)
2025 VMINMAX(sb, s8)
2026 VMINMAX(sh, s16)
2027 VMINMAX(sw, s32)
2028 VMINMAX(ub, u8)
2029 VMINMAX(uh, u16)
2030 VMINMAX(uw, u32)
2031 #undef VMINMAX_DO
2032 #undef VMINMAX
2034 #define VMRG_DO(name, element, highp) \
2035 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2037 ppc_avr_t result; \
2038 int i; \
2039 size_t n_elems = ARRAY_SIZE(r->element); \
2040 for (i = 0; i < n_elems/2; i++) { \
2041 if (highp) { \
2042 result.element[i*2+HI_IDX] = a->element[i]; \
2043 result.element[i*2+LO_IDX] = b->element[i]; \
2044 } else { \
2045 result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
2046 result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
2049 *r = result; \
2051 #if defined(WORDS_BIGENDIAN)
2052 #define MRGHI 0
2053 #define MRGL0 1
2054 #else
2055 #define MRGHI 1
2056 #define MRGLO 0
2057 #endif
2058 #define VMRG(suffix, element) \
2059 VMRG_DO(mrgl##suffix, element, MRGHI) \
2060 VMRG_DO(mrgh##suffix, element, MRGLO)
2061 VMRG(b, u8)
2062 VMRG(h, u16)
2063 VMRG(w, u32)
2064 #undef VMRG_DO
2065 #undef VMRG
2066 #undef MRGHI
2067 #undef MRGLO
2069 #undef VECTOR_FOR_INORDER_I
2070 #undef HI_IDX
2071 #undef LO_IDX
2073 /*****************************************************************************/
2074 /* SPE extension helpers */
2075 /* Use a table to make this quicker */
2076 static uint8_t hbrev[16] = {
2077 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2078 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2081 static always_inline uint8_t byte_reverse (uint8_t val)
2083 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2086 static always_inline uint32_t word_reverse (uint32_t val)
2088 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2089 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2092 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
2093 target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
2095 uint32_t a, b, d, mask;
2097 mask = UINT32_MAX >> (32 - MASKBITS);
2098 a = arg1 & mask;
2099 b = arg2 & mask;
2100 d = word_reverse(1 + word_reverse(a | ~b));
2101 return (arg1 & ~mask) | (d & b);
2104 uint32_t helper_cntlsw32 (uint32_t val)
2106 if (val & 0x80000000)
2107 return clz32(~val);
2108 else
2109 return clz32(val);
2112 uint32_t helper_cntlzw32 (uint32_t val)
2114 return clz32(val);
2117 /* Single-precision floating-point conversions */
2118 static always_inline uint32_t efscfsi (uint32_t val)
2120 CPU_FloatU u;
2122 u.f = int32_to_float32(val, &env->spe_status);
2124 return u.l;
2127 static always_inline uint32_t efscfui (uint32_t val)
2129 CPU_FloatU u;
2131 u.f = uint32_to_float32(val, &env->spe_status);
2133 return u.l;
2136 static always_inline int32_t efsctsi (uint32_t val)
2138 CPU_FloatU u;
2140 u.l = val;
2141 /* NaN are not treated the same way IEEE 754 does */
2142 if (unlikely(float32_is_nan(u.f)))
2143 return 0;
2145 return float32_to_int32(u.f, &env->spe_status);
2148 static always_inline uint32_t efsctui (uint32_t val)
2150 CPU_FloatU u;
2152 u.l = val;
2153 /* NaN are not treated the same way IEEE 754 does */
2154 if (unlikely(float32_is_nan(u.f)))
2155 return 0;
2157 return float32_to_uint32(u.f, &env->spe_status);
2160 static always_inline uint32_t efsctsiz (uint32_t val)
2162 CPU_FloatU u;
2164 u.l = val;
2165 /* NaN are not treated the same way IEEE 754 does */
2166 if (unlikely(float32_is_nan(u.f)))
2167 return 0;
2169 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2172 static always_inline uint32_t efsctuiz (uint32_t val)
2174 CPU_FloatU u;
2176 u.l = val;
2177 /* NaN are not treated the same way IEEE 754 does */
2178 if (unlikely(float32_is_nan(u.f)))
2179 return 0;
2181 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2184 static always_inline uint32_t efscfsf (uint32_t val)
2186 CPU_FloatU u;
2187 float32 tmp;
2189 u.f = int32_to_float32(val, &env->spe_status);
2190 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2191 u.f = float32_div(u.f, tmp, &env->spe_status);
2193 return u.l;
2196 static always_inline uint32_t efscfuf (uint32_t val)
2198 CPU_FloatU u;
2199 float32 tmp;
2201 u.f = uint32_to_float32(val, &env->spe_status);
2202 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2203 u.f = float32_div(u.f, tmp, &env->spe_status);
2205 return u.l;
2208 static always_inline uint32_t efsctsf (uint32_t val)
2210 CPU_FloatU u;
2211 float32 tmp;
2213 u.l = val;
2214 /* NaN are not treated the same way IEEE 754 does */
2215 if (unlikely(float32_is_nan(u.f)))
2216 return 0;
2217 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2218 u.f = float32_mul(u.f, tmp, &env->spe_status);
2220 return float32_to_int32(u.f, &env->spe_status);
2223 static always_inline uint32_t efsctuf (uint32_t val)
2225 CPU_FloatU u;
2226 float32 tmp;
2228 u.l = val;
2229 /* NaN are not treated the same way IEEE 754 does */
2230 if (unlikely(float32_is_nan(u.f)))
2231 return 0;
2232 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2233 u.f = float32_mul(u.f, tmp, &env->spe_status);
2235 return float32_to_uint32(u.f, &env->spe_status);
2238 #define HELPER_SPE_SINGLE_CONV(name) \
2239 uint32_t helper_e##name (uint32_t val) \
2241 return e##name(val); \
2243 /* efscfsi */
2244 HELPER_SPE_SINGLE_CONV(fscfsi);
2245 /* efscfui */
2246 HELPER_SPE_SINGLE_CONV(fscfui);
2247 /* efscfuf */
2248 HELPER_SPE_SINGLE_CONV(fscfuf);
2249 /* efscfsf */
2250 HELPER_SPE_SINGLE_CONV(fscfsf);
2251 /* efsctsi */
2252 HELPER_SPE_SINGLE_CONV(fsctsi);
2253 /* efsctui */
2254 HELPER_SPE_SINGLE_CONV(fsctui);
2255 /* efsctsiz */
2256 HELPER_SPE_SINGLE_CONV(fsctsiz);
2257 /* efsctuiz */
2258 HELPER_SPE_SINGLE_CONV(fsctuiz);
2259 /* efsctsf */
2260 HELPER_SPE_SINGLE_CONV(fsctsf);
2261 /* efsctuf */
2262 HELPER_SPE_SINGLE_CONV(fsctuf);
2264 #define HELPER_SPE_VECTOR_CONV(name) \
2265 uint64_t helper_ev##name (uint64_t val) \
2267 return ((uint64_t)e##name(val >> 32) << 32) | \
2268 (uint64_t)e##name(val); \
2270 /* evfscfsi */
2271 HELPER_SPE_VECTOR_CONV(fscfsi);
2272 /* evfscfui */
2273 HELPER_SPE_VECTOR_CONV(fscfui);
2274 /* evfscfuf */
2275 HELPER_SPE_VECTOR_CONV(fscfuf);
2276 /* evfscfsf */
2277 HELPER_SPE_VECTOR_CONV(fscfsf);
2278 /* evfsctsi */
2279 HELPER_SPE_VECTOR_CONV(fsctsi);
2280 /* evfsctui */
2281 HELPER_SPE_VECTOR_CONV(fsctui);
2282 /* evfsctsiz */
2283 HELPER_SPE_VECTOR_CONV(fsctsiz);
2284 /* evfsctuiz */
2285 HELPER_SPE_VECTOR_CONV(fsctuiz);
2286 /* evfsctsf */
2287 HELPER_SPE_VECTOR_CONV(fsctsf);
2288 /* evfsctuf */
2289 HELPER_SPE_VECTOR_CONV(fsctuf);
2291 /* Single-precision floating-point arithmetic */
2292 static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
2294 CPU_FloatU u1, u2;
2295 u1.l = op1;
2296 u2.l = op2;
2297 u1.f = float32_add(u1.f, u2.f, &env->spe_status);
2298 return u1.l;
2301 static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
2303 CPU_FloatU u1, u2;
2304 u1.l = op1;
2305 u2.l = op2;
2306 u1.f = float32_sub(u1.f, u2.f, &env->spe_status);
2307 return u1.l;
2310 static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
2312 CPU_FloatU u1, u2;
2313 u1.l = op1;
2314 u2.l = op2;
2315 u1.f = float32_mul(u1.f, u2.f, &env->spe_status);
2316 return u1.l;
2319 static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
2321 CPU_FloatU u1, u2;
2322 u1.l = op1;
2323 u2.l = op2;
2324 u1.f = float32_div(u1.f, u2.f, &env->spe_status);
2325 return u1.l;
2328 #define HELPER_SPE_SINGLE_ARITH(name) \
2329 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
2331 return e##name(op1, op2); \
2333 /* efsadd */
2334 HELPER_SPE_SINGLE_ARITH(fsadd);
2335 /* efssub */
2336 HELPER_SPE_SINGLE_ARITH(fssub);
2337 /* efsmul */
2338 HELPER_SPE_SINGLE_ARITH(fsmul);
2339 /* efsdiv */
2340 HELPER_SPE_SINGLE_ARITH(fsdiv);
2342 #define HELPER_SPE_VECTOR_ARITH(name) \
2343 uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \
2345 return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \
2346 (uint64_t)e##name(op1, op2); \
2348 /* evfsadd */
2349 HELPER_SPE_VECTOR_ARITH(fsadd);
2350 /* evfssub */
2351 HELPER_SPE_VECTOR_ARITH(fssub);
2352 /* evfsmul */
2353 HELPER_SPE_VECTOR_ARITH(fsmul);
2354 /* evfsdiv */
2355 HELPER_SPE_VECTOR_ARITH(fsdiv);
2357 /* Single-precision floating-point comparisons */
2358 static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
2360 CPU_FloatU u1, u2;
2361 u1.l = op1;
2362 u2.l = op2;
2363 return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0;
2366 static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
2368 CPU_FloatU u1, u2;
2369 u1.l = op1;
2370 u2.l = op2;
2371 return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4;
2374 static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
2376 CPU_FloatU u1, u2;
2377 u1.l = op1;
2378 u2.l = op2;
2379 return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0;
2382 static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
2384 /* XXX: TODO: test special values (NaN, infinites, ...) */
2385 return efststlt(op1, op2);
2388 static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2)
2390 /* XXX: TODO: test special values (NaN, infinites, ...) */
2391 return efststgt(op1, op2);
2394 static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2)
2396 /* XXX: TODO: test special values (NaN, infinites, ...) */
2397 return efststeq(op1, op2);
2400 #define HELPER_SINGLE_SPE_CMP(name) \
2401 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
2403 return e##name(op1, op2) << 2; \
2405 /* efststlt */
2406 HELPER_SINGLE_SPE_CMP(fststlt);
2407 /* efststgt */
2408 HELPER_SINGLE_SPE_CMP(fststgt);
2409 /* efststeq */
2410 HELPER_SINGLE_SPE_CMP(fststeq);
2411 /* efscmplt */
2412 HELPER_SINGLE_SPE_CMP(fscmplt);
2413 /* efscmpgt */
2414 HELPER_SINGLE_SPE_CMP(fscmpgt);
2415 /* efscmpeq */
2416 HELPER_SINGLE_SPE_CMP(fscmpeq);
2418 static always_inline uint32_t evcmp_merge (int t0, int t1)
2420 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2423 #define HELPER_VECTOR_SPE_CMP(name) \
2424 uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \
2426 return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \
2428 /* evfststlt */
2429 HELPER_VECTOR_SPE_CMP(fststlt);
2430 /* evfststgt */
2431 HELPER_VECTOR_SPE_CMP(fststgt);
2432 /* evfststeq */
2433 HELPER_VECTOR_SPE_CMP(fststeq);
2434 /* evfscmplt */
2435 HELPER_VECTOR_SPE_CMP(fscmplt);
2436 /* evfscmpgt */
2437 HELPER_VECTOR_SPE_CMP(fscmpgt);
2438 /* evfscmpeq */
2439 HELPER_VECTOR_SPE_CMP(fscmpeq);
2441 /* Double-precision floating-point conversion */
2442 uint64_t helper_efdcfsi (uint32_t val)
2444 CPU_DoubleU u;
2446 u.d = int32_to_float64(val, &env->spe_status);
2448 return u.ll;
2451 uint64_t helper_efdcfsid (uint64_t val)
2453 CPU_DoubleU u;
2455 u.d = int64_to_float64(val, &env->spe_status);
2457 return u.ll;
2460 uint64_t helper_efdcfui (uint32_t val)
2462 CPU_DoubleU u;
2464 u.d = uint32_to_float64(val, &env->spe_status);
2466 return u.ll;
2469 uint64_t helper_efdcfuid (uint64_t val)
2471 CPU_DoubleU u;
2473 u.d = uint64_to_float64(val, &env->spe_status);
2475 return u.ll;
2478 uint32_t helper_efdctsi (uint64_t val)
2480 CPU_DoubleU u;
2482 u.ll = val;
2483 /* NaN are not treated the same way IEEE 754 does */
2484 if (unlikely(float64_is_nan(u.d)))
2485 return 0;
2487 return float64_to_int32(u.d, &env->spe_status);
2490 uint32_t helper_efdctui (uint64_t val)
2492 CPU_DoubleU u;
2494 u.ll = val;
2495 /* NaN are not treated the same way IEEE 754 does */
2496 if (unlikely(float64_is_nan(u.d)))
2497 return 0;
2499 return float64_to_uint32(u.d, &env->spe_status);
2502 uint32_t helper_efdctsiz (uint64_t val)
2504 CPU_DoubleU u;
2506 u.ll = val;
2507 /* NaN are not treated the same way IEEE 754 does */
2508 if (unlikely(float64_is_nan(u.d)))
2509 return 0;
2511 return float64_to_int32_round_to_zero(u.d, &env->spe_status);
2514 uint64_t helper_efdctsidz (uint64_t val)
2516 CPU_DoubleU u;
2518 u.ll = val;
2519 /* NaN are not treated the same way IEEE 754 does */
2520 if (unlikely(float64_is_nan(u.d)))
2521 return 0;
2523 return float64_to_int64_round_to_zero(u.d, &env->spe_status);
2526 uint32_t helper_efdctuiz (uint64_t val)
2528 CPU_DoubleU u;
2530 u.ll = val;
2531 /* NaN are not treated the same way IEEE 754 does */
2532 if (unlikely(float64_is_nan(u.d)))
2533 return 0;
2535 return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
2538 uint64_t helper_efdctuidz (uint64_t val)
2540 CPU_DoubleU u;
2542 u.ll = val;
2543 /* NaN are not treated the same way IEEE 754 does */
2544 if (unlikely(float64_is_nan(u.d)))
2545 return 0;
2547 return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
2550 uint64_t helper_efdcfsf (uint32_t val)
2552 CPU_DoubleU u;
2553 float64 tmp;
2555 u.d = int32_to_float64(val, &env->spe_status);
2556 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2557 u.d = float64_div(u.d, tmp, &env->spe_status);
2559 return u.ll;
2562 uint64_t helper_efdcfuf (uint32_t val)
2564 CPU_DoubleU u;
2565 float64 tmp;
2567 u.d = uint32_to_float64(val, &env->spe_status);
2568 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2569 u.d = float64_div(u.d, tmp, &env->spe_status);
2571 return u.ll;
2574 uint32_t helper_efdctsf (uint64_t val)
2576 CPU_DoubleU u;
2577 float64 tmp;
2579 u.ll = val;
2580 /* NaN are not treated the same way IEEE 754 does */
2581 if (unlikely(float64_is_nan(u.d)))
2582 return 0;
2583 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2584 u.d = float64_mul(u.d, tmp, &env->spe_status);
2586 return float64_to_int32(u.d, &env->spe_status);
2589 uint32_t helper_efdctuf (uint64_t val)
2591 CPU_DoubleU u;
2592 float64 tmp;
2594 u.ll = val;
2595 /* NaN are not treated the same way IEEE 754 does */
2596 if (unlikely(float64_is_nan(u.d)))
2597 return 0;
2598 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2599 u.d = float64_mul(u.d, tmp, &env->spe_status);
2601 return float64_to_uint32(u.d, &env->spe_status);
2604 uint32_t helper_efscfd (uint64_t val)
2606 CPU_DoubleU u1;
2607 CPU_FloatU u2;
2609 u1.ll = val;
2610 u2.f = float64_to_float32(u1.d, &env->spe_status);
2612 return u2.l;
2615 uint64_t helper_efdcfs (uint32_t val)
2617 CPU_DoubleU u2;
2618 CPU_FloatU u1;
2620 u1.l = val;
2621 u2.d = float32_to_float64(u1.f, &env->spe_status);
2623 return u2.ll;
2626 /* Double precision fixed-point arithmetic */
2627 uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
2629 CPU_DoubleU u1, u2;
2630 u1.ll = op1;
2631 u2.ll = op2;
2632 u1.d = float64_add(u1.d, u2.d, &env->spe_status);
2633 return u1.ll;
2636 uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
2638 CPU_DoubleU u1, u2;
2639 u1.ll = op1;
2640 u2.ll = op2;
2641 u1.d = float64_sub(u1.d, u2.d, &env->spe_status);
2642 return u1.ll;
2645 uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
2647 CPU_DoubleU u1, u2;
2648 u1.ll = op1;
2649 u2.ll = op2;
2650 u1.d = float64_mul(u1.d, u2.d, &env->spe_status);
2651 return u1.ll;
2654 uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
2656 CPU_DoubleU u1, u2;
2657 u1.ll = op1;
2658 u2.ll = op2;
2659 u1.d = float64_div(u1.d, u2.d, &env->spe_status);
2660 return u1.ll;
2663 /* Double precision floating point helpers */
2664 uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
2666 CPU_DoubleU u1, u2;
2667 u1.ll = op1;
2668 u2.ll = op2;
2669 return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0;
2672 uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
2674 CPU_DoubleU u1, u2;
2675 u1.ll = op1;
2676 u2.ll = op2;
2677 return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4;
2680 uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
2682 CPU_DoubleU u1, u2;
2683 u1.ll = op1;
2684 u2.ll = op2;
2685 return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0;
2688 uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
2690 /* XXX: TODO: test special values (NaN, infinites, ...) */
2691 return helper_efdtstlt(op1, op2);
2694 uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
2696 /* XXX: TODO: test special values (NaN, infinites, ...) */
2697 return helper_efdtstgt(op1, op2);
2700 uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
2702 /* XXX: TODO: test special values (NaN, infinites, ...) */
2703 return helper_efdtsteq(op1, op2);
2706 /*****************************************************************************/
2707 /* Softmmu support */
2708 #if !defined (CONFIG_USER_ONLY)
2710 #define MMUSUFFIX _mmu
2712 #define SHIFT 0
2713 #include "softmmu_template.h"
2715 #define SHIFT 1
2716 #include "softmmu_template.h"
2718 #define SHIFT 2
2719 #include "softmmu_template.h"
2721 #define SHIFT 3
2722 #include "softmmu_template.h"
2724 /* try to fill the TLB and return an exception if error. If retaddr is
2725 NULL, it means that the function was called in C code (i.e. not
2726 from generated code or from helper.c) */
2727 /* XXX: fix it to restore all registers */
2728 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2730 TranslationBlock *tb;
2731 CPUState *saved_env;
2732 unsigned long pc;
2733 int ret;
2735 /* XXX: hack to restore env in all cases, even if not called from
2736 generated code */
2737 saved_env = env;
2738 env = cpu_single_env;
2739 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2740 if (unlikely(ret != 0)) {
2741 if (likely(retaddr)) {
2742 /* now we have a real cpu fault */
2743 pc = (unsigned long)retaddr;
2744 tb = tb_find_pc(pc);
2745 if (likely(tb)) {
2746 /* the PC is inside the translated code. It means that we have
2747 a virtual CPU fault */
2748 cpu_restore_state(tb, env, pc, NULL);
2751 helper_raise_exception_err(env->exception_index, env->error_code);
2753 env = saved_env;
2756 /* Segment registers load and store */
2757 target_ulong helper_load_sr (target_ulong sr_num)
2759 return env->sr[sr_num];
2762 void helper_store_sr (target_ulong sr_num, target_ulong val)
2764 ppc_store_sr(env, sr_num, val);
2767 /* SLB management */
2768 #if defined(TARGET_PPC64)
2769 target_ulong helper_load_slb (target_ulong slb_nr)
2771 return ppc_load_slb(env, slb_nr);
2774 void helper_store_slb (target_ulong slb_nr, target_ulong rs)
2776 ppc_store_slb(env, slb_nr, rs);
2779 void helper_slbia (void)
2781 ppc_slb_invalidate_all(env);
2784 void helper_slbie (target_ulong addr)
2786 ppc_slb_invalidate_one(env, addr);
2789 #endif /* defined(TARGET_PPC64) */
2791 /* TLB management */
2792 void helper_tlbia (void)
2794 ppc_tlb_invalidate_all(env);
2797 void helper_tlbie (target_ulong addr)
2799 ppc_tlb_invalidate_one(env, addr);
2802 /* Software driven TLBs management */
2803 /* PowerPC 602/603 software TLB load instructions helpers */
2804 static void do_6xx_tlb (target_ulong new_EPN, int is_code)
2806 target_ulong RPN, CMP, EPN;
2807 int way;
2809 RPN = env->spr[SPR_RPA];
2810 if (is_code) {
2811 CMP = env->spr[SPR_ICMP];
2812 EPN = env->spr[SPR_IMISS];
2813 } else {
2814 CMP = env->spr[SPR_DCMP];
2815 EPN = env->spr[SPR_DMISS];
2817 way = (env->spr[SPR_SRR1] >> 17) & 1;
2818 #if defined (DEBUG_SOFTWARE_TLB)
2819 if (loglevel != 0) {
2820 fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
2821 " PTE1 " ADDRX " way %d\n",
2822 __func__, new_EPN, EPN, CMP, RPN, way);
2824 #endif
2825 /* Store this TLB */
2826 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
2827 way, is_code, CMP, RPN);
2830 void helper_6xx_tlbd (target_ulong EPN)
2832 do_6xx_tlb(EPN, 0);
2835 void helper_6xx_tlbi (target_ulong EPN)
2837 do_6xx_tlb(EPN, 1);
2840 /* PowerPC 74xx software TLB load instructions helpers */
2841 static void do_74xx_tlb (target_ulong new_EPN, int is_code)
2843 target_ulong RPN, CMP, EPN;
2844 int way;
2846 RPN = env->spr[SPR_PTELO];
2847 CMP = env->spr[SPR_PTEHI];
2848 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2849 way = env->spr[SPR_TLBMISS] & 0x3;
2850 #if defined (DEBUG_SOFTWARE_TLB)
2851 if (loglevel != 0) {
2852 fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
2853 " PTE1 " ADDRX " way %d\n",
2854 __func__, new_EPN, EPN, CMP, RPN, way);
2856 #endif
2857 /* Store this TLB */
2858 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
2859 way, is_code, CMP, RPN);
2862 void helper_74xx_tlbd (target_ulong EPN)
2864 do_74xx_tlb(EPN, 0);
2867 void helper_74xx_tlbi (target_ulong EPN)
2869 do_74xx_tlb(EPN, 1);
2872 static always_inline target_ulong booke_tlb_to_page_size (int size)
2874 return 1024 << (2 * size);
2877 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
2879 int size;
2881 switch (page_size) {
2882 case 0x00000400UL:
2883 size = 0x0;
2884 break;
2885 case 0x00001000UL:
2886 size = 0x1;
2887 break;
2888 case 0x00004000UL:
2889 size = 0x2;
2890 break;
2891 case 0x00010000UL:
2892 size = 0x3;
2893 break;
2894 case 0x00040000UL:
2895 size = 0x4;
2896 break;
2897 case 0x00100000UL:
2898 size = 0x5;
2899 break;
2900 case 0x00400000UL:
2901 size = 0x6;
2902 break;
2903 case 0x01000000UL:
2904 size = 0x7;
2905 break;
2906 case 0x04000000UL:
2907 size = 0x8;
2908 break;
2909 case 0x10000000UL:
2910 size = 0x9;
2911 break;
2912 case 0x40000000UL:
2913 size = 0xA;
2914 break;
2915 #if defined (TARGET_PPC64)
2916 case 0x000100000000ULL:
2917 size = 0xB;
2918 break;
2919 case 0x000400000000ULL:
2920 size = 0xC;
2921 break;
2922 case 0x001000000000ULL:
2923 size = 0xD;
2924 break;
2925 case 0x004000000000ULL:
2926 size = 0xE;
2927 break;
2928 case 0x010000000000ULL:
2929 size = 0xF;
2930 break;
2931 #endif
2932 default:
2933 size = -1;
2934 break;
2937 return size;
2940 /* Helpers for 4xx TLB management */
2941 target_ulong helper_4xx_tlbre_lo (target_ulong entry)
2943 ppcemb_tlb_t *tlb;
2944 target_ulong ret;
2945 int size;
2947 entry &= 0x3F;
2948 tlb = &env->tlb[entry].tlbe;
2949 ret = tlb->EPN;
2950 if (tlb->prot & PAGE_VALID)
2951 ret |= 0x400;
2952 size = booke_page_size_to_tlb(tlb->size);
2953 if (size < 0 || size > 0x7)
2954 size = 1;
2955 ret |= size << 7;
2956 env->spr[SPR_40x_PID] = tlb->PID;
2957 return ret;
2960 target_ulong helper_4xx_tlbre_hi (target_ulong entry)
2962 ppcemb_tlb_t *tlb;
2963 target_ulong ret;
2965 entry &= 0x3F;
2966 tlb = &env->tlb[entry].tlbe;
2967 ret = tlb->RPN;
2968 if (tlb->prot & PAGE_EXEC)
2969 ret |= 0x200;
2970 if (tlb->prot & PAGE_WRITE)
2971 ret |= 0x100;
2972 return ret;
2975 void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
2977 ppcemb_tlb_t *tlb;
2978 target_ulong page, end;
2980 #if defined (DEBUG_SOFTWARE_TLB)
2981 if (loglevel != 0) {
2982 fprintf(logfile, "%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
2984 #endif
2985 entry &= 0x3F;
2986 tlb = &env->tlb[entry].tlbe;
2987 /* Invalidate previous TLB (if it's valid) */
2988 if (tlb->prot & PAGE_VALID) {
2989 end = tlb->EPN + tlb->size;
2990 #if defined (DEBUG_SOFTWARE_TLB)
2991 if (loglevel != 0) {
2992 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2993 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
2995 #endif
2996 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2997 tlb_flush_page(env, page);
2999 tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
3000 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
3001 * If this ever occurs, one should use the ppcemb target instead
3002 * of the ppc or ppc64 one
3004 if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
3005 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
3006 "are not supported (%d)\n",
3007 tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
3009 tlb->EPN = val & ~(tlb->size - 1);
3010 if (val & 0x40)
3011 tlb->prot |= PAGE_VALID;
3012 else
3013 tlb->prot &= ~PAGE_VALID;
3014 if (val & 0x20) {
3015 /* XXX: TO BE FIXED */
3016 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
3018 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
3019 tlb->attr = val & 0xFF;
3020 #if defined (DEBUG_SOFTWARE_TLB)
3021 if (loglevel != 0) {
3022 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3023 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3024 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3025 tlb->prot & PAGE_READ ? 'r' : '-',
3026 tlb->prot & PAGE_WRITE ? 'w' : '-',
3027 tlb->prot & PAGE_EXEC ? 'x' : '-',
3028 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3030 #endif
3031 /* Invalidate new TLB (if valid) */
3032 if (tlb->prot & PAGE_VALID) {
3033 end = tlb->EPN + tlb->size;
3034 #if defined (DEBUG_SOFTWARE_TLB)
3035 if (loglevel != 0) {
3036 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
3037 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3039 #endif
3040 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3041 tlb_flush_page(env, page);
3045 void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
3047 ppcemb_tlb_t *tlb;
3049 #if defined (DEBUG_SOFTWARE_TLB)
3050 if (loglevel != 0) {
3051 fprintf(logfile, "%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
3053 #endif
3054 entry &= 0x3F;
3055 tlb = &env->tlb[entry].tlbe;
3056 tlb->RPN = val & 0xFFFFFC00;
3057 tlb->prot = PAGE_READ;
3058 if (val & 0x200)
3059 tlb->prot |= PAGE_EXEC;
3060 if (val & 0x100)
3061 tlb->prot |= PAGE_WRITE;
3062 #if defined (DEBUG_SOFTWARE_TLB)
3063 if (loglevel != 0) {
3064 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3065 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3066 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3067 tlb->prot & PAGE_READ ? 'r' : '-',
3068 tlb->prot & PAGE_WRITE ? 'w' : '-',
3069 tlb->prot & PAGE_EXEC ? 'x' : '-',
3070 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3072 #endif
3075 target_ulong helper_4xx_tlbsx (target_ulong address)
3077 return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
3080 /* PowerPC 440 TLB management */
3081 void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
3083 ppcemb_tlb_t *tlb;
3084 target_ulong EPN, RPN, size;
3085 int do_flush_tlbs;
3087 #if defined (DEBUG_SOFTWARE_TLB)
3088 if (loglevel != 0) {
3089 fprintf(logfile, "%s word %d entry %d value " ADDRX "\n",
3090 __func__, word, (int)entry, value);
3092 #endif
3093 do_flush_tlbs = 0;
3094 entry &= 0x3F;
3095 tlb = &env->tlb[entry].tlbe;
3096 switch (word) {
3097 default:
3098 /* Just here to please gcc */
3099 case 0:
3100 EPN = value & 0xFFFFFC00;
3101 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3102 do_flush_tlbs = 1;
3103 tlb->EPN = EPN;
3104 size = booke_tlb_to_page_size((value >> 4) & 0xF);
3105 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3106 do_flush_tlbs = 1;
3107 tlb->size = size;
3108 tlb->attr &= ~0x1;
3109 tlb->attr |= (value >> 8) & 1;
3110 if (value & 0x200) {
3111 tlb->prot |= PAGE_VALID;
3112 } else {
3113 if (tlb->prot & PAGE_VALID) {
3114 tlb->prot &= ~PAGE_VALID;
3115 do_flush_tlbs = 1;
3118 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3119 if (do_flush_tlbs)
3120 tlb_flush(env, 1);
3121 break;
3122 case 1:
3123 RPN = value & 0xFFFFFC0F;
3124 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3125 tlb_flush(env, 1);
3126 tlb->RPN = RPN;
3127 break;
3128 case 2:
3129 tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
3130 tlb->prot = tlb->prot & PAGE_VALID;
3131 if (value & 0x1)
3132 tlb->prot |= PAGE_READ << 4;
3133 if (value & 0x2)
3134 tlb->prot |= PAGE_WRITE << 4;
3135 if (value & 0x4)
3136 tlb->prot |= PAGE_EXEC << 4;
3137 if (value & 0x8)
3138 tlb->prot |= PAGE_READ;
3139 if (value & 0x10)
3140 tlb->prot |= PAGE_WRITE;
3141 if (value & 0x20)
3142 tlb->prot |= PAGE_EXEC;
3143 break;
3147 target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
3149 ppcemb_tlb_t *tlb;
3150 target_ulong ret;
3151 int size;
3153 entry &= 0x3F;
3154 tlb = &env->tlb[entry].tlbe;
3155 switch (word) {
3156 default:
3157 /* Just here to please gcc */
3158 case 0:
3159 ret = tlb->EPN;
3160 size = booke_page_size_to_tlb(tlb->size);
3161 if (size < 0 || size > 0xF)
3162 size = 1;
3163 ret |= size << 4;
3164 if (tlb->attr & 0x1)
3165 ret |= 0x100;
3166 if (tlb->prot & PAGE_VALID)
3167 ret |= 0x200;
3168 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3169 env->spr[SPR_440_MMUCR] |= tlb->PID;
3170 break;
3171 case 1:
3172 ret = tlb->RPN;
3173 break;
3174 case 2:
3175 ret = tlb->attr & ~0x1;
3176 if (tlb->prot & (PAGE_READ << 4))
3177 ret |= 0x1;
3178 if (tlb->prot & (PAGE_WRITE << 4))
3179 ret |= 0x2;
3180 if (tlb->prot & (PAGE_EXEC << 4))
3181 ret |= 0x4;
3182 if (tlb->prot & PAGE_READ)
3183 ret |= 0x8;
3184 if (tlb->prot & PAGE_WRITE)
3185 ret |= 0x10;
3186 if (tlb->prot & PAGE_EXEC)
3187 ret |= 0x20;
3188 break;
3190 return ret;
3193 target_ulong helper_440_tlbsx (target_ulong address)
3195 return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
3198 #endif /* !CONFIG_USER_ONLY */