add big page nand flash emulation
[qemu/qemu-JZ.git] / target-i386 / kvm.c
blob2412ae43407d9c8f91a6fc881442143b04815606
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
26 //#define DEBUG_KVM
28 #ifdef DEBUG_KVM
29 #define dprintf(fmt, ...) \
30 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
31 #else
32 #define dprintf(fmt, ...) \
33 do { } while (0)
34 #endif
36 int kvm_arch_init_vcpu(CPUState *env)
38 struct {
39 struct kvm_cpuid cpuid;
40 struct kvm_cpuid_entry entries[100];
41 } __attribute__((packed)) cpuid_data;
42 uint32_t limit, i, cpuid_i;
43 uint32_t eax, ebx, ecx, edx;
45 cpuid_i = 0;
47 cpu_x86_cpuid(env, 0, &eax, &ebx, &ecx, &edx);
48 limit = eax;
50 for (i = 0; i <= limit; i++) {
51 struct kvm_cpuid_entry *c = &cpuid_data.entries[cpuid_i++];
53 cpu_x86_cpuid(env, i, &eax, &ebx, &ecx, &edx);
54 c->function = i;
55 c->eax = eax;
56 c->ebx = ebx;
57 c->ecx = ecx;
58 c->edx = edx;
61 cpu_x86_cpuid(env, 0x80000000, &eax, &ebx, &ecx, &edx);
62 limit = eax;
64 for (i = 0x80000000; i <= limit; i++) {
65 struct kvm_cpuid_entry *c = &cpuid_data.entries[cpuid_i++];
67 cpu_x86_cpuid(env, i, &eax, &ebx, &ecx, &edx);
68 c->function = i;
69 c->eax = eax;
70 c->ebx = ebx;
71 c->ecx = ecx;
72 c->edx = edx;
75 cpuid_data.cpuid.nent = cpuid_i;
77 return kvm_vcpu_ioctl(env, KVM_SET_CPUID, &cpuid_data);
80 static int kvm_has_msr_star(CPUState *env)
82 static int has_msr_star;
83 int ret;
85 /* first time */
86 if (has_msr_star == 0) {
87 struct kvm_msr_list msr_list, *kvm_msr_list;
89 has_msr_star = -1;
91 /* Obtain MSR list from KVM. These are the MSRs that we must
92 * save/restore */
93 msr_list.nmsrs = 0;
94 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
95 if (ret < 0)
96 return 0;
98 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
99 msr_list.nmsrs * sizeof(msr_list.indices[0]));
100 if (kvm_msr_list == NULL)
101 return 0;
103 kvm_msr_list->nmsrs = msr_list.nmsrs;
104 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
105 if (ret >= 0) {
106 int i;
108 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
109 if (kvm_msr_list->indices[i] == MSR_STAR) {
110 has_msr_star = 1;
111 break;
116 free(kvm_msr_list);
119 if (has_msr_star == 1)
120 return 1;
121 return 0;
124 int kvm_arch_init(KVMState *s, int smp_cpus)
126 int ret;
128 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
129 * directly. In order to use vm86 mode, a TSS is needed. Since this
130 * must be part of guest physical memory, we need to allocate it. Older
131 * versions of KVM just assumed that it would be at the end of physical
132 * memory but that doesn't work with more than 4GB of memory. We simply
133 * refuse to work with those older versions of KVM. */
134 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
135 if (ret <= 0) {
136 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
137 return ret;
140 /* this address is 3 pages before the bios, and the bios should present
141 * as unavaible memory. FIXME, need to ensure the e820 map deals with
142 * this?
144 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
147 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
149 lhs->selector = rhs->selector;
150 lhs->base = rhs->base;
151 lhs->limit = rhs->limit;
152 lhs->type = 3;
153 lhs->present = 1;
154 lhs->dpl = 3;
155 lhs->db = 0;
156 lhs->s = 1;
157 lhs->l = 0;
158 lhs->g = 0;
159 lhs->avl = 0;
160 lhs->unusable = 0;
163 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
165 unsigned flags = rhs->flags;
166 lhs->selector = rhs->selector;
167 lhs->base = rhs->base;
168 lhs->limit = rhs->limit;
169 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
170 lhs->present = (flags & DESC_P_MASK) != 0;
171 lhs->dpl = rhs->selector & 3;
172 lhs->db = (flags >> DESC_B_SHIFT) & 1;
173 lhs->s = (flags & DESC_S_MASK) != 0;
174 lhs->l = (flags >> DESC_L_SHIFT) & 1;
175 lhs->g = (flags & DESC_G_MASK) != 0;
176 lhs->avl = (flags & DESC_AVL_MASK) != 0;
177 lhs->unusable = 0;
180 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
182 lhs->selector = rhs->selector;
183 lhs->base = rhs->base;
184 lhs->limit = rhs->limit;
185 lhs->flags =
186 (rhs->type << DESC_TYPE_SHIFT)
187 | (rhs->present * DESC_P_MASK)
188 | (rhs->dpl << DESC_DPL_SHIFT)
189 | (rhs->db << DESC_B_SHIFT)
190 | (rhs->s * DESC_S_MASK)
191 | (rhs->l << DESC_L_SHIFT)
192 | (rhs->g * DESC_G_MASK)
193 | (rhs->avl * DESC_AVL_MASK);
196 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
198 if (set)
199 *kvm_reg = *qemu_reg;
200 else
201 *qemu_reg = *kvm_reg;
204 static int kvm_getput_regs(CPUState *env, int set)
206 struct kvm_regs regs;
207 int ret = 0;
209 if (!set) {
210 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
211 if (ret < 0)
212 return ret;
215 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
216 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
217 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
218 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
219 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
220 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
221 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
222 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
223 #ifdef TARGET_X86_64
224 kvm_getput_reg(&regs.r8, &env->regs[8], set);
225 kvm_getput_reg(&regs.r9, &env->regs[9], set);
226 kvm_getput_reg(&regs.r10, &env->regs[10], set);
227 kvm_getput_reg(&regs.r11, &env->regs[11], set);
228 kvm_getput_reg(&regs.r12, &env->regs[12], set);
229 kvm_getput_reg(&regs.r13, &env->regs[13], set);
230 kvm_getput_reg(&regs.r14, &env->regs[14], set);
231 kvm_getput_reg(&regs.r15, &env->regs[15], set);
232 #endif
234 kvm_getput_reg(&regs.rflags, &env->eflags, set);
235 kvm_getput_reg(&regs.rip, &env->eip, set);
237 if (set)
238 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
240 return ret;
243 static int kvm_put_fpu(CPUState *env)
245 struct kvm_fpu fpu;
246 int i;
248 memset(&fpu, 0, sizeof fpu);
249 fpu.fsw = env->fpus & ~(7 << 11);
250 fpu.fsw |= (env->fpstt & 7) << 11;
251 fpu.fcw = env->fpuc;
252 for (i = 0; i < 8; ++i)
253 fpu.ftwx |= (!env->fptags[i]) << i;
254 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
255 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
256 fpu.mxcsr = env->mxcsr;
258 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
261 static int kvm_put_sregs(CPUState *env)
263 struct kvm_sregs sregs;
265 memcpy(sregs.interrupt_bitmap,
266 env->interrupt_bitmap,
267 sizeof(sregs.interrupt_bitmap));
269 if ((env->eflags & VM_MASK)) {
270 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
271 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
272 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
273 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
274 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
275 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
276 } else {
277 set_seg(&sregs.cs, &env->segs[R_CS]);
278 set_seg(&sregs.ds, &env->segs[R_DS]);
279 set_seg(&sregs.es, &env->segs[R_ES]);
280 set_seg(&sregs.fs, &env->segs[R_FS]);
281 set_seg(&sregs.gs, &env->segs[R_GS]);
282 set_seg(&sregs.ss, &env->segs[R_SS]);
284 if (env->cr[0] & CR0_PE_MASK) {
285 /* force ss cpl to cs cpl */
286 sregs.ss.selector = (sregs.ss.selector & ~3) |
287 (sregs.cs.selector & 3);
288 sregs.ss.dpl = sregs.ss.selector & 3;
292 set_seg(&sregs.tr, &env->tr);
293 set_seg(&sregs.ldt, &env->ldt);
295 sregs.idt.limit = env->idt.limit;
296 sregs.idt.base = env->idt.base;
297 sregs.gdt.limit = env->gdt.limit;
298 sregs.gdt.base = env->gdt.base;
300 sregs.cr0 = env->cr[0];
301 sregs.cr2 = env->cr[2];
302 sregs.cr3 = env->cr[3];
303 sregs.cr4 = env->cr[4];
305 sregs.cr8 = cpu_get_apic_tpr(env);
306 sregs.apic_base = cpu_get_apic_base(env);
308 sregs.efer = env->efer;
310 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
313 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
314 uint32_t index, uint64_t value)
316 entry->index = index;
317 entry->data = value;
320 static int kvm_put_msrs(CPUState *env)
322 struct {
323 struct kvm_msrs info;
324 struct kvm_msr_entry entries[100];
325 } msr_data;
326 struct kvm_msr_entry *msrs = msr_data.entries;
327 int n = 0;
329 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
330 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
331 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
332 if (kvm_has_msr_star(env))
333 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
334 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
335 #ifdef TARGET_X86_64
336 /* FIXME if lm capable */
337 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
338 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
339 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
340 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
341 #endif
342 msr_data.info.nmsrs = n;
344 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
349 static int kvm_get_fpu(CPUState *env)
351 struct kvm_fpu fpu;
352 int i, ret;
354 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
355 if (ret < 0)
356 return ret;
358 env->fpstt = (fpu.fsw >> 11) & 7;
359 env->fpus = fpu.fsw;
360 env->fpuc = fpu.fcw;
361 for (i = 0; i < 8; ++i)
362 env->fptags[i] = !((fpu.ftwx >> i) & 1);
363 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
364 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
365 env->mxcsr = fpu.mxcsr;
367 return 0;
370 static int kvm_get_sregs(CPUState *env)
372 struct kvm_sregs sregs;
373 uint32_t hflags;
374 int ret;
376 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
377 if (ret < 0)
378 return ret;
380 memcpy(env->interrupt_bitmap,
381 sregs.interrupt_bitmap,
382 sizeof(sregs.interrupt_bitmap));
384 get_seg(&env->segs[R_CS], &sregs.cs);
385 get_seg(&env->segs[R_DS], &sregs.ds);
386 get_seg(&env->segs[R_ES], &sregs.es);
387 get_seg(&env->segs[R_FS], &sregs.fs);
388 get_seg(&env->segs[R_GS], &sregs.gs);
389 get_seg(&env->segs[R_SS], &sregs.ss);
391 get_seg(&env->tr, &sregs.tr);
392 get_seg(&env->ldt, &sregs.ldt);
394 env->idt.limit = sregs.idt.limit;
395 env->idt.base = sregs.idt.base;
396 env->gdt.limit = sregs.gdt.limit;
397 env->gdt.base = sregs.gdt.base;
399 env->cr[0] = sregs.cr0;
400 env->cr[2] = sregs.cr2;
401 env->cr[3] = sregs.cr3;
402 env->cr[4] = sregs.cr4;
404 cpu_set_apic_base(env, sregs.apic_base);
406 env->efer = sregs.efer;
407 //cpu_set_apic_tpr(env, sregs.cr8);
409 #define HFLAG_COPY_MASK ~( \
410 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
411 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
412 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
413 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
417 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
418 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
419 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
420 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
421 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
422 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
423 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
425 if (env->efer & MSR_EFER_LMA) {
426 hflags |= HF_LMA_MASK;
429 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
430 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
431 } else {
432 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
433 (DESC_B_SHIFT - HF_CS32_SHIFT);
434 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
435 (DESC_B_SHIFT - HF_SS32_SHIFT);
436 if (!(env->cr[0] & CR0_PE_MASK) ||
437 (env->eflags & VM_MASK) ||
438 !(hflags & HF_CS32_MASK)) {
439 hflags |= HF_ADDSEG_MASK;
440 } else {
441 hflags |= ((env->segs[R_DS].base |
442 env->segs[R_ES].base |
443 env->segs[R_SS].base) != 0) <<
444 HF_ADDSEG_SHIFT;
447 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
448 env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
449 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
450 env->cc_op = CC_OP_EFLAGS;
451 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
453 return 0;
456 static int kvm_get_msrs(CPUState *env)
458 struct {
459 struct kvm_msrs info;
460 struct kvm_msr_entry entries[100];
461 } msr_data;
462 struct kvm_msr_entry *msrs = msr_data.entries;
463 int ret, i, n;
465 n = 0;
466 msrs[n++].index = MSR_IA32_SYSENTER_CS;
467 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
468 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
469 if (kvm_has_msr_star(env))
470 msrs[n++].index = MSR_STAR;
471 msrs[n++].index = MSR_IA32_TSC;
472 #ifdef TARGET_X86_64
473 /* FIXME lm_capable_kernel */
474 msrs[n++].index = MSR_CSTAR;
475 msrs[n++].index = MSR_KERNELGSBASE;
476 msrs[n++].index = MSR_FMASK;
477 msrs[n++].index = MSR_LSTAR;
478 #endif
479 msr_data.info.nmsrs = n;
480 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
481 if (ret < 0)
482 return ret;
484 for (i = 0; i < ret; i++) {
485 switch (msrs[i].index) {
486 case MSR_IA32_SYSENTER_CS:
487 env->sysenter_cs = msrs[i].data;
488 break;
489 case MSR_IA32_SYSENTER_ESP:
490 env->sysenter_esp = msrs[i].data;
491 break;
492 case MSR_IA32_SYSENTER_EIP:
493 env->sysenter_eip = msrs[i].data;
494 break;
495 case MSR_STAR:
496 env->star = msrs[i].data;
497 break;
498 #ifdef TARGET_X86_64
499 case MSR_CSTAR:
500 env->cstar = msrs[i].data;
501 break;
502 case MSR_KERNELGSBASE:
503 env->kernelgsbase = msrs[i].data;
504 break;
505 case MSR_FMASK:
506 env->fmask = msrs[i].data;
507 break;
508 case MSR_LSTAR:
509 env->lstar = msrs[i].data;
510 break;
511 #endif
512 case MSR_IA32_TSC:
513 env->tsc = msrs[i].data;
514 break;
518 return 0;
521 int kvm_arch_put_registers(CPUState *env)
523 int ret;
525 ret = kvm_getput_regs(env, 1);
526 if (ret < 0)
527 return ret;
529 ret = kvm_put_fpu(env);
530 if (ret < 0)
531 return ret;
533 ret = kvm_put_sregs(env);
534 if (ret < 0)
535 return ret;
537 ret = kvm_put_msrs(env);
538 if (ret < 0)
539 return ret;
541 return 0;
544 int kvm_arch_get_registers(CPUState *env)
546 int ret;
548 ret = kvm_getput_regs(env, 0);
549 if (ret < 0)
550 return ret;
552 ret = kvm_get_fpu(env);
553 if (ret < 0)
554 return ret;
556 ret = kvm_get_sregs(env);
557 if (ret < 0)
558 return ret;
560 ret = kvm_get_msrs(env);
561 if (ret < 0)
562 return ret;
564 return 0;
567 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
569 /* Try to inject an interrupt if the guest can accept it */
570 if (run->ready_for_interrupt_injection &&
571 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
572 (env->eflags & IF_MASK)) {
573 int irq;
575 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
576 irq = cpu_get_pic_interrupt(env);
577 if (irq >= 0) {
578 struct kvm_interrupt intr;
579 intr.irq = irq;
580 /* FIXME: errors */
581 dprintf("injected interrupt %d\n", irq);
582 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
586 /* If we have an interrupt but the guest is not ready to receive an
587 * interrupt, request an interrupt window exit. This will
588 * cause a return to userspace as soon as the guest is ready to
589 * receive interrupts. */
590 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
591 run->request_interrupt_window = 1;
592 else
593 run->request_interrupt_window = 0;
595 dprintf("setting tpr\n");
596 run->cr8 = cpu_get_apic_tpr(env);
598 return 0;
601 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
603 if (run->if_flag)
604 env->eflags |= IF_MASK;
605 else
606 env->eflags &= ~IF_MASK;
608 cpu_set_apic_tpr(env, run->cr8);
609 cpu_set_apic_base(env, run->apic_base);
611 return 0;
614 static int kvm_handle_halt(CPUState *env)
616 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
617 (env->eflags & IF_MASK)) &&
618 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
619 env->halted = 1;
620 env->exception_index = EXCP_HLT;
621 return 0;
624 return 1;
627 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
629 int ret = 0;
631 switch (run->exit_reason) {
632 case KVM_EXIT_HLT:
633 dprintf("handle_hlt\n");
634 ret = kvm_handle_halt(env);
635 break;
638 return ret;